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Summary: A multiscale numerical model is used to investigate the 
structure–property relationship for oriented semicrystalline polymers. 
The basic element in this model is a layered two-phase composite 
inclusion, comprising both a crystalline and an amorphous domain. An 
aggregate of preferentially oriented composite inclusions is used in a 
macroscopic finite element model.  

 

Introduction 
The elasto-viscoplastic behaviour of semicrystalline polymeric materials is strongly 
dependent on the underlying microstructure [1,2]. Semicrystalline polymers consist of both 
amorphous and crystalline domains. The elastic and the viscoplastic behaviour depend on the 
percentage crystallinity, the initial crystallographic and morphological texture, as well as the 
evolution of this microstructure with deformation. For melt-extruded material, a stacked 
lamellar morphology is often observed. For this material, the mechanical response will 
depend on the direction of loading with respect to the flow direction, as illustrated by the 
images in Figure 1. 
In recent years, many experimental and modelling studies have focused on understanding the 
viscoplastic behaviour and the evolution of texture of semicrystalline polymers, e.g. [3-7]. A 
micromechanically-based model for the constitutive behaviour of semicrystalline polymeric 
material has been presented in Van Dommelen et al. [8]. The model accounts for both 
crystallographic and morphological texture, the latter corresponding to the orientation 
distribution of the lamellar interface normals. A three-level modelling approach was used to 
study intraspherulitic deformation and stresses for semicrystalline polyethylene [9]. The 
current work builds on these recently developed models by using this micromechanical 
framework for the simulation of the mechanical behaviour of oriented high density 
polyethylene (HDPE), depending on the initial microstructure. A three-level modelling 
approach is used to study the behaviour of oriented tensile bars. 

Model description 
The constitutive behaviour of semicrystalline material is modelled by an aggregate of two-
phase composite inclusions. This composite inclusion model, which is discussed in detail in 
[8], is concisely summarized in this section. Each inclusion consists of a crystalline and an 
amorphous phase. A microstructural elasto-viscoplastic constitutive model is defined for both 
the crystalline and the amorphous phase. 
The crystalline domain of polymeric material consists of regularly ordered molecular chains. 
The crystal structure shows (i) anisotropic elastic behaviour where the elastic properties, as 
characterized by a fourth-order anisotropically elastic modulus tensor, are given with respect 
to the crystallographic directions, and (ii) plastic deformation governed primarily by 
crystallographic slip on a limited number of slip planes [2,11], which is described by a rate-
dependent crystal plasticity model. 



 
 
 
 
 
 
 
 
 
 
 
        (a)                    (b)                   (c) 
Figure 1: Influence of extrusion direction 

(ED) for high density polyethylene in 
tensile tests. 

Figure 2: Schematic illustration of the 
multiscale model.

The amorphous phase of semicrystalline polymeric material consists of an assembly of 
disordered macromolecules, which are morphologically constrained by the neighbouring 
crystalline lamellae. The elastic deformation of the amorphous domains is modelled by a 
generalized neo-Hookean relationship. A relatively strain rate-insensitive power law relation 
between an effective shear strain rate and an effective shear stress is used [6]. The plastic rate 
of stretching is defined by an associated flow rule. The Arruda–Boyce eight-chain network 
model of rubber elasticity [12] is used to account for orientation-induced strain hardening 
[13,14]. 
The mechanical behaviour at the mesoscopic level is modelled by an aggregate of layered 
two-phase composite inclusions as was proposed by Lee et al. [6,7] for rigid/viscoplastic 
material behaviour. Each separate composite inclusion consists of a crystalline lamella which 
is mechanically coupled to its corresponding amorphous layer. The stress and deformation 
fields within each phase are assumed to be piecewise homogeneous, however, they will differ 
between the two coupled phases. The inclusion-averaged deformation gradient and the 
inclusion-averaged Cauchy stress are defined as the volume-weighted average of the 
respective phases. It is assumed that the crystalline and amorphous components remain fully 
mechanically coupled. Interface compatibility within the composite inclusion and traction 
continuity across the interface are enforced. To relate the volume-averaged mechanical 
behaviour of each composite inclusion to the imposed boundary conditions for an aggregate 
of inclusions, a hybrid local–global interaction law is used [8].  
A distinction between three different scales is made, as is schematically depicted in Figure 2. 
Whereas the composite inclusion model is used to relate the microscopic and the mesoscopic 
scales, a relation with the macroscopic scale is obtained by using the composite inclusion 
model in each integration point of a finite element (FE) model of the macrostructure, 
consisting of an extruded tensile bar where the local material behaviour depends on the 
extrusion direction and conditions. Local anisotropy results from preferential orientation 
distributions of composite inclusions. 

Results 
The stacked lamellar morphology commonly observed in extruded semicrystalline materials 
gives rise to a strong influence of the direction of flow with respect to the loading direction on 
the stability and localization phenomena in tensile experiments. The multiscale numerical 
model is used to simulate the effect of a stacked lamellar microstructure on the macroscopic 
behaviour [10]. Orientational model input (Figure 3(a)-(d)) is based on WAXS experiments 
on extruded material. The averaged fields of an aggregate, having these preferential 
orientations, constitute the mechanical behaviour of extruded material. The mechanical 
response of the aggregate in different deformation modes is shown in Figure 3(e) and (f). 
Details on the loading conditions are given in  [10]. 
 



 
 

 
 

Figure 3: Equal area projection pole figures with (a)–(c) the principal crystallographic lattice 
directions, and (d) the lamellar normals, and (e), (f) the normalized equivalent mesoscopic 

stress vs. the imposed deformation for tension and shear, respectively, in the material 
principal directions. Reproduced from [10]. 

 

 
 

      Figure 4: (a)–(c) Magnitude of plastic deformation, at ,45.0=tε and (d) macroscopic 
stress–strain response from simulations of tensile bars of extruded material with various 

initial angles between the extrusion direction (indicated by the grey arrows) and the loading 
direction. Reproduced from [10]. 



A macroscopic tensile bar is described by a finite element model. Results for simulations with 
various angles between the extrusion direction of the material and the loading direction are 
given in Figure 4(a)-(c). The microstructure-induced deformation hardening in the extrusion 
direction that was visible in Figure 3(e), is found to stabilize the macrostructure, when loaded 
in the flow direction, whereas when loaded perpendicular to the extrusion direction, a neck is 
formed. This corresponds to the experimentally observed orientation-dependence of extruded 
semicrystalline material [10].

Conclusions 
The deformation of semicrystalline polymeric materials is the result of the interplay of 
various effects and mechanisms at different levels. A universal prediction of the constitutive 
behaviour of these materials would require a coupled and detailed modelling of the various 
deformation mechanisms and criteria for the different failure modes, which is at present still 
not feasible. In this work, the sole influence of the microstructure, represented by the 
orientations of the crystalline lamellae, on the mechanical response was investigated using a 
multiscale model. In each integration point of a finite element model, an aggregate of 
composite inclusions was used as a representative microstructural element that provides the 
constitutive behaviour of the material at the mesoscopic level. Material properties were 
assigned at the microstructural level to both the amorphous and the crystalline phase. Besides 
these properties, the mesoscopic constitutive behaviour was formed by the crystallographic 
and lamellar orientations of the composite inclusions. The multiscale model was employed to 
study the behaviour of material with a lamellar row structure. For extruded material, the 
microstructure-induced deformation hardening in the extrusion direction was found to 
stabilize the macrostructure when loaded in the flow direction. 
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