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1
Introduction

Video processing is the task of transforming an input video signal into an output
signal, for example to improve the quality of the signal, or to adapt the signal to
a different standard. This transformation is described by a video algorithm. At
a high level, video processing can be seen as the task of processing a sequence
of still pictures, called frames. In case insufficient resources have been assigned
to process the most compute-intensive frames in time, a severe quality reduction
occurs. Evidently, the resources may be enhanced to guarantee a better output
quality, but alternatively the video algorithm may be modified.

This thesis describes a combination of scalable video processing and intelligent
control that aims at optimizing the output signal within the framework of a limited
amount of resources. In this first chapter the various concepts are being defined
that are used throughout this thesis and the problem formulated.

1.1 Video processing
Video – the Latin word for ‘I see’ – is the technology of recording, processing,
transmitting, and reconstructing motion pictures using analog or digital electronic
signals. A video signal consists of a sequence of still pictures, which are called
frames. Each frame consists of a number of horizontal lines, and each line consists
of a number of pixels. An important characteristic of a video signal is the frame
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2 Chapter 1

rate, which is the number of still pictures per unit of time. The number of lines per
frame, the number of pixels per line, and the frame rate of a video signal are de-
termined by the applied video standard. For example, the PAL (Phase Alternating
Line) color system prescribes a format of 576 lines per frame, 720 pixels per line,
and a frame rate of 25 frames per second (fps).

Because digital video signals are becoming increasingly more important than
analog video signals, we restrict ourselves to the former in this thesis. For ease of
reading, the term ‘digital’ is usually omitted. In a digital video signal, frames are
represented as two-dimensional arrays of pixels. A frame consisting of 576 lines
and 720 pixels per line is said to have a picture resolution of 720 by 576 pixels.
Per pixel usually two or four bytes of storage space are used to record color and
intensity information. Figure 1.1 shows an example of a digital video signal.

Figure 1.1. A sample of three successive frames from a digital video signal,
showing a white duck in motion. Each frame has a picture resolution of 21 by 15
pixels.

Video processing is concerned with the transformation of an input video sig-
nal into an output video signal. This transformation is described by a so-called
video algorithm. Two major classes of video algorithms are image enhancement
algorithms and video format conversion algorithms [De Haan, 2000]. An image
enhancement algorithm tries to improve the subjective picture quality of a video
signal, i.e., the quality of the video signal as perceived by a viewer. This can be
done, for example, by reducing noise or by sharpening edges in the pictures. A
video format conversion algorithm transforms an input video signal into an output
video signal having different properties, as, for example, a different frame rate, a
different picture resolution, or a different number of bytes per pixel.

Another important class of video algorithms is the class of video compression
and decompression algorithms. These algorithms are used to deal with the enor-
mous storage requirements imposed by digital video. To give an impression of
these storage requirements, consider a video signal with a picture resolution of 720
by 576 pixels. If frames are stored using two bytes per pixel, then each frame re-
quires a storage space of 810 kB. At a frame rate of 25 fps this means that only four
minutes of video fit onto a DVD (Digital Versatile Disc) with a capacity of 4.7 GB.
To reduce its storage requirements, a digital video signal can be compressed, which
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means that redundant information is removed from the signal. This can be done,
for example, by storing a frame as a set of differences with respect to a nearly iden-
tical neighboring frame, instead of storing the frame as a two-dimensional array of
pixels. Using compression, a two-hour movie can be stored on a DVD, or streamed
over the internet using only limited bandwidth.

In a compressed video signal, frames are generally not stored as two-
dimensional arrays of pixels. Hence, a compressed video signal cannot be used
directly for display. For this a decompression algorithm is needed, which restores
each frame of a compressed video signal as a two-dimensional array of pixels. The
successive frames of a compressed video signal are usually decompressed on the
fly, right before they are needed for display.

Video compression is usually lossy, which means that less important informa-
tion is deliberately not stored in the compressed signal, i.e., some data is lost. As
a result, the original video signal cannot be reconstructed exactly from the com-
pressed signal, but only closely approximated. In contrast, if compression is loss-
less, then no data is lost in the compression step, and the original video signal can
be fully reconstructed without any quality reduction. The main advantage of lossy
compression over lossless compression is that very high compression rates can be
obtained, where the compression rate is defined as the ratio between the size of the
original video signal and the size of the compressed signal.

1.1.1 MPEG-2
The Motion Picture Experts Group (MPEG), a consortium in which industry and
academia have joined forces, has developed various compression standards for au-
dio and video. MPEG compression is also called MPEG encoding, and MPEG
decompression is also called MPEG decoding.

MPEG-2 [Haskell et al., 1997; Mitchell et al., 1997] is a lossy compression
standard for video that is used, amongst others, for digital television and DVDs.
For MPEG-2, the order of the frames in an encoded video signal can differ from
the order in which the decoded frames have to be displayed. The order of the
frames in an encoded video signal, which corresponds to the order in which the
frames have to be decoded, is called the decoding order or transmission order of
frames. The order in which the decoded frames have to be displayed is called the
display order of frames. The latter corresponds to the original order of the frames,
i.e., the order of the frames before encoding. Using MPEG-2, frames are encoded
as I-, P-, or B-frames. An I-frame (or intra frame) is self-contained, which means
that it can be decoded without any additional information. The P- and B-frames
are not self-contained, and can only be decoded using reference frames. A P-frame
(or predicted frame) uses one reference frame, which is given by the most recently
decoded I- or P-frame. This reference frame appears earlier than the P-frame in
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display order. A B-frame (or bi-directionally predicted frame) uses two reference
frames, which are given by the two most recently decoded I- or P-frames. For a
B-frame, one reference frame appears earlier than the B-frame in display order,
and one reference frame appears later than the B-frame in display order. Hence,
if B-frames are used, then there is a difference between the decoding order and
display order of frames. Frame reordering in the encoding and decoding steps is
at the cost of using additional frame buffers, i.e., memory units which are used
for the temporal storage of encoded or decoded frames. Figure 1.2 illustrates the
difference between the decoding order and the display order of frames.

I P B B I B B

decoding order

display order

Figure 1.2. An example showing the difference between the decoding order and
the display order of frames for MPEG-2. The used GOP structure is IBBPBB.

In display order, the decoded I-, P-, and B-frames usually appear in a repeating
pattern called a group of pictures (GOP). A GOP is formed by an I-frame together
with all P- and B-frames before the next I-frame. In Figure 1.2, the used GOP
structure is IBBPBB.

1.2 Embedded video processing in software
Multimedia consumer terminals (MCTs) are consumer electronics devices that are
connected to a video broadcast network or a communication network and that pro-
vide multimedia experiences to users. Examples of MCTs are TV sets and the
boxes that are used to receive digital television from satellite or cable, the so-
called set-top boxes. Although MCTs today are mainly autonomously operating
devices, they are expected to evolve to cooperating devices in in-home digital net-
works [Chen, 1997], and beyond that to elements in an ambient intelligent envi-
ronment [Aarts et al., 2002]. Ambient intelligence refers to a vision where people
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are surrounded by numerous intelligent devices, which are embedded into every-
day objects. These devices cooperate to provide information, communication, and
entertainment experiences to the user.

One of the main tasks of an MCT is to perform high-quality audio and video
processing. Traditionally, audio and video processing in MCTs is performed
by dedicated hardware components. For example, Figure 1.3 shows the sys-
tem architecture of a high-end TV, consisting of various hardware components.
There is an ongoing trend towards programmable (i.e., software based) MCTs
[Bril et al., 2001a; Bril et al., 2001b; Isović and Fohler, 2004]. Rather than requir-
ing additional, dedicated, single-function hardware components for each addi-
tional feature, a programmable MCT enables additional features by sharing pro-
grammable components. Another advantage of a programmable MCT is that it can
be configured and upgraded after production, for example to enhance the function-
ality of the device, or to adapt the device to new standards.

A programmable MCT is an example of an embedded system, a special purpose
computer system which is fully embedded into a device. The core of an embedded
system is formed by one or more programmable processors, which are used to run
various software tasks. An instance of such a processor is the Philips TriMedia
VLIW processor [Rathnam and Slavenburg, 1996], which is optimized for audio
and video processing. In an embedded system, resources, such as processor cycles
and memory, are shared by the various software tasks to achieve cost effectiveness.

Video processing in software is often characterized by highly fluctuating,
content-dependent processing times of frames [Baiceanu et al., 1996]. This is
especially true for video algorithms that contain motion estimation, such as nat-
ural motion [Braspenning et al., 2002] or MPEG encoding [Mietens et al., 2004],
or motion compensation, such as MPEG decoding [Lan et al., 2001; Peng, 2001;
Zhong et al., 2002]. There is often a considerable gap between the worst-case
and average-case processing times of frames. For example, Figure 1.4 shows the
processing times (or load) for decoding a sequence of 700 MPEG-2 frames on
a TriMedia TM1300 180 MHz processor. The sequence of 700 frames was taken
from a larger sequence of in total 136,560 frames. The best-case, average-case, and
worst-case processing times of the 700 frames are 9.2 ms, 22.6 ms, and 36.6 ms, re-
spectively, and for the entire sequence of 136,560 frames they are 8.8 ms, 27.2 ms,
and 71.4 ms, respectively.

Video processing in dedicated hardware is generally designed to handle worst-
case input in time, which is guaranteed to result in high-quality output. If video
processing is done in software instead, the same stable, high-quality output can
be obtained. To avoid a quality reduction of the output signal, each frame should
be processed in time. This could be achieved by assigning sufficient resources to
a video processing task, based on its worst-case needs, but this is not cost effec-
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Figure 1.3. The system architecture of a high-end TV, consisting of various hard-
ware components (picture by courtesy of Egbert G.T. Jaspers).

tive. To relax the worst-case needs, video algorithms have been made scalable. A
scalable video algorithm (SVA) [Hentschel et al., 2001a; Hentschel et al., 2001b]
can process video frames at different quality levels. Each quality level provides a
particular trade-off between the time spent on processing a frame, and the result-
ing picture quality. Examples of scalable algorithms from the video domain are
scalable sharpness enhancement [Hentschel et al., 2001a] and scalable MPEG de-
coding [Lan et al., 2001; Peng, 2001; Zhong et al., 2002]. An example from the
3D graphics domain is scalable graceful degradation [Lafruit et al., 2000].
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Figure 1.4. The load of decoding a sequence of 700 MPEG-2 frames, taken from
the DVD ‘Pet Shop Boys – Somewhere’.

1.3 Real-time systems
To enable timely delivery of output, software video processing is usually done
using a real-time system. Real-time systems [Buttazzo, 1997] are computer sys-
tems that must react within precise time bounds to events from their environment.
The correct behavior of a real-time system therefore does not only depend on the
correctness of produced results, but it also depends on the response times of the
system: a result that becomes available too early or too late could be useless or
even dangerous. A real-time system is not necessarily a fast system. Although tim-
ing requirements can involve both lower and upper bounds on the response times,
they are usually only expressed as upper bounds on the response times. These up-
per bound are called deadlines. In contrast to a real-time system, a general purpose
computer system does not provide any guarantees on the times at which results
become available. Whereas the objective of a general purpose computer system
is typically to optimize average-case response times, the objective of a real-time
system is to guarantee that each individual timing requirement is met.

A distinction can be made between hard real-time systems and soft real-time
systems. A hard real-time system provides guarantees that system deadlines are
met predictably. Hard real-time systems are often applied to control physical hard-
ware, where a missed deadline may cause failure or damage. For example, a hard
real-time system can be used to control the times at which fuel is injected into the
cilinders of a car’s engine. Other application areas of hard real-time systems in-
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clude, amongst others, flight control systems, military systems, robotics, and plant
control systems.

A soft real-time system guarantees only that deadlines are met generally, but
occasional deadline misses are allowed. Soft real-time systems can be applied
when meeting deadlines is desirable for the reason of performance, but missing a
deadline does not lead to critical failure of the system. This is for example appli-
cable to video processing, where a processed frame that becomes available too late
does not lead to failure of the system, but reduces the quality of the output signal.

Real-time systems, like general purpose computer systems, are often based
on multitasking, which means that the processor of the system is time shared by
various software tasks. A dedicated scheduler switches repeatedly between the
execution of the various tasks, which from a distance gives the impression that all
tasks run simultaneously. Each task may be viewed as a sequence of jobs that are
activated by events, such as the arrival of new input from the environment. For
example, upon receiving a video frame one or more jobs may be started to process
the frame. Traditionally, the scheduling of real-time tasks is based on a-priori
knowledge of the worst-case execution times of jobs.

The jobs of a task can be activated aperiodically or periodically. Accordingly,
there are aperiodic and periodic tasks in a real-time system. An example of a
periodic task is video processing. For video processing, the successive frames to be
processed become available periodically at the input of the system, and processed
frames are also needed periodically at the output of the system. For scheduling
periodic tasks, an algorithm named fixed-priority preemptive scheduling [Klein
et al., 1993; Audsley et al., 1995] is the de facto standard. This algorithm always
selects the task with the highest priority for execution. If a task is executing a job
and in the meanwhile a job for a higher priority task becomes available, then the
execution of the lower priority task is suspended (preempted) in favor of the higher
priority task. The problem of scheduling a set of periodic tasks was first studied by
Liu and Layland [1973].

1.4 QoS RM framework
The work described in this thesis is part of a larger effort, which defines and builds
a framework for Quality of Service resource management for high-quality video,
named QoS RM [Bril et al., 2001b; Hentschel et al., 2001b; Otero Pérez et al.,
2003; Wüst et al., 2004a]. Quality of Service (QoS) is defined as “the collective
effect of service performance which determine the degree of satisfaction of a user
of the service” [ITU-T, 1994]. The notion of QoS can be used to trade-off dif-
ferent aspects of user-perceived quality in a single measure. The QoS RM frame-
work consists of a multi-layer control hierarchy and a reservation-based resource
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manager, and it runs on top of a real-time operating system. Figure 1.5 gives a
simplified view of the framework.

Quality Manager

Resource Manager

Control Hierarchy

RCEs

Control

Operation

Control

Operation

Control

Operation

Figure 1.5. A simplified view of the QoS RM framework.

In the framework, the resource manager addresses robustness of the system
by assigning periodic resource budgets to so-called resource consuming entities
(RCEs). An RCE is a cluster of one or more cooperating tasks. The resource
budget of an RCE is enforced by the resource manager, to ensure that parts of the
budget cannot be taken away by other RCEs in the system. Guaranteed resource
budgets are recognized as a basis for QoS resource management [Mercer et al.,
1994; Rajkumar et al., 1998; Feng and Mok, 2002]. The resource manager may
re-distribute unused parts of an RCE’s budget over the other RCEs in the system as
so-called gain time.

An RCE is scalable if it contains a scalable video processing task. A scalable
RCE can run at different quality levels. Each quality level provides a particular
trade-off between the output quality and the resource needs of the RCE. For each
scalable RCE one or more coarse-grain quality levels are defined. Each coarse-
grain quality level is defined as a cluster of quality levels. The quality levels that
belong to the same coarse-grain quality level all provide fine-grain variations on a
particular coarse-grain trade-off between the output quality and the resource needs
of the RCE. A quality level can belong to multiple coarse-grain quality levels.
An RCE that is not scalable can also be considered scalable, having only a single
quality level.

An RCE consists of an operational part and a control part. The operational part
performs the actual processing. From the outside of an RCE, the coarse-grain qual-
ity level can be set. Given the coarse-grain quality level, the control part of the RCE
dynamically fine-tunes the applied quality level during processing, to maximize a
local QoS measure for the RCE.
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In the control hierarchy, a quality manager is responsible for global QoS opti-
mization using a system-wide notion of utility [Prasad et al., 2003]. The quality
manager determines a coarse-grain quality level and a matching resource budget
for each active RCE, taking the relative importance of RCEs into account, using
a model similar to the one described by Lee et al. [1999]. The set of resource
budgets and periods for the various RCEs must be schedulable on the processor.
To perform the global QoS optimization, for each RCE the quality manager main-
tains a mapping from coarse-grain quality levels to estimated resource needs. This
mapping is dynamically updated using statistics provided by the resource manager.

In this thesis we focus on local QoS optimization for an RCE consisting of a
single scalable video processing task. The assumption has been made that insuffi-
cient processing-time budget is assigned to the RCE to meet the deadlines of the
most compute-intensive frames. Our results are also applicable outside the context
of the QoS RM framework, for example in case of a scalable video processing task
running on a private processor that does not have sufficient capacity to support the
worst-case workload of the task.

1.5 Informal problem statement
In the highly competitive market for digital consumer electronics, programmable
MCTs are subject to a low bill of material. To be cost effective, it is required that a
software video processing task exhibits a high average resource utilization. How-
ever, this requirement leads to a dilemma. On the one hand, to meet the deadlines
of the successive frames to be processed, we have to assign a periodic processing-
time budget to the task based on the task’s worst-case needs for processing video
frames. On the other hand, as has been shown in Figure 1.4, there is often a large
gap between the worst-case and average-case processing times of frames. This
means that a worst-case budget is not cost effective.

We address this dilemma as follows. First, the video processing task is consid-
ered to be a soft real-time task. For each frame to be processed there is a deadline,
which is given by the time at which the processed frame is needed for output. The
deadlines of successive frames are strictly periodic in time. In every deadline pe-
riod we assume that a processing-time budget is assigned to the task that is smaller
than the task’s worst-case needs for processing video frames. This periodic budget
can be viewed as a private processor, running at a fraction of the speed of the actual
processor.

Second, we allow the task to work ahead by means of asynchronous process-
ing [Sha et al., 1986]. An asynchronous video processing task starts processing
a new frame immediately upon completion of the previous one, without first hav-
ing to wait for the deadline of the completed frame, provided that a new frame is
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available. If no new frame is available, then the task will block. Asynchronous
processing reduces the risk of missing deadlines, because the unused part of the
budget for an easy frame can be used as a surplus to the budget for the next frame
to be processed. The extent to which working ahead can be applied is determined
by latency and buffer constraints [Isović et al., 2003].

Finally, we assume that the task makes use of an SVA, i.e., we assume that
the task is scalable. Hence, frames can be processed at different quality levels.
The higher the selected quality level for a frame, the higher is the resulting picture
quality, but also the more processing time is needed. By selecting the right quality
levels for frames, deadline misses may be prevented.

Informally, the problem at issue can be stated as follows. We consider a soft
real-time scalable video processing task to which is assigned a lower than worst-
case processing-time budget. The task can process each frame at different quality
levels. Furthermore, the task can work ahead by means of asynchronous process-
ing. For a given sequence of video frames to be processed, which is not known
upfront, we consider the problem of selecting the quality level for each frame. The
objective that we try to optimize reflects the user-perceived quality, and is deter-
mined by a combination of three aspects. First, we consider the quality level at
which frames are processed. Applying a higher quality level results in a better pic-
ture quality. Second, we consider deadline misses, because deadline misses may
result in a severe quality reduction of the output signal. Third, we also consider
changes in the applied quality level between successive frames, because (bigger)
changes in the quality level may result in (better) perceivable artifacts.

1.6 Related work
In the computer science literature various approaches can be found to optimize the
output quality of a real-time video processing task with limited resources, the sub-
ject of this thesis. First, in Section 1.6.1 we focus on approaches that are applicable
to non-scalable video, based on skipping frames. Next, in Section 1.6.2 we focus
on approaches that are applicable to scalable video.

Our approach, in which we assume a video processing task with a fixed re-
source budget, is complemented by a technique called conditionally guaranteed
budgets, in which the resource budget of a task can be varied, depending on its
actual needs. We discuss this technique in Section 1.6.3.

1.6.1 Optimizing approaches for non-scalable video
Hamann et al. [2001] model the MPEG decoding task according to the imprecise
computation model [Zhao et al., 1995]. The MPEG decoding task is modeled as a
periodic task which decodes one group of pictures every period. The decoding
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of a group of pictures consists of a mandatory part and an optional part. The
mandatory part consists of decoding the I- and P-frames, and the optional part
consists of decoding B-frames. Their QoS measure is the percentage of optional
parts that meet their deadlines. The disadvantage of the approach is the high latency
it requires, which is unacceptable for MCTs.

Isović and Fohler [2004] formulate a real-time scheduling problem for quality-
aware frame skipping during MPEG decoding. Given that not all frames can be
decoded in time, due to limited resources, only the frames that provide the best
picture quality are selected for processing. A frame is processed only if it can be
guaranteed that the frame’s deadline will be met. Our approach is also based on
skipping frames, in case a deadline is missed, as will be discussed in Chapter 2.
The method of Isović and Fohler could be used to make a dynamic decision about
which frames should be skipped.

1.6.2 Optimizing approaches for scalable video
Lee et al. [1999] present a QoS resource management framework which distributes
resources over tasks in a resource-constrained system. In their setup, tasks can be
scalable with respect to one or more resources. For each scalable task a finite
set of quality levels is defined. A quality level is given by a particular setting
for each scalable resource of the task. The resource needs of a scalable task are
assumed to be fixed for each quality level. Their objective is to maximize the
overall user-perceived output quality of the system, given the availability of only
a limited amount of resources. The notion of user-perceived quality is modeled
by means of utility functions, and the optimization problem is formulated as a
knapsack problem. Whereas the approach of Lee et al. addresses the distribution of
resources over the various tasks, which is the task of the quality manager in the QoS
RM framework, we consider the problem of how each single task makes optimal
use of its assigned resources, taking care of fluctuations in the task’s workload. In
that sense, the two approaches complement each other. Moreover, our approach is
more dynamic, because the approach of Lee et al. changes the quality level of a
task only upon a configuration change of the system.

Lan, Chen and Zhong [2001] describe a method to regulate the varying compu-
tation load of a scalable MPEG decoder, which is operated synchronously. Before
decoding an MPEG frame, the required computational resources are estimated,
and next the decoding is scaled such that it will not exceed a target computation
constraint. In contrast to our approach, they only optimize the output quality of
individual frames, and not the overall perceived quality over a sequence of frames.

In our approach we implicitly assume that the input signal of the video process-
ing task is of fixed quality. In contrast, Jarnikov, Van der Stok and Wüst [2004]
assume that the quality of the input signal can fluctuate over time, in the context of
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MPEG decoding. In their approach, each MPEG encoded frame is partitioned into
a base layer and a fixed number of enhancement layers. Decoding only the base
layer results in a low picture quality, and successive enhancement layers can be
decoded incrementally to obtain a better picture quality. The decoder can process
frames at different quality levels, where the lowest quality level corresponds to de-
coding only the base layer, the next quality level corresponds to decoding the base
layer and the first enhancement layer, etcetera. Due to loss of data in a wireless
network, it is assumed that that the maximum quality level at which frames can be
decoded at the receiving side of the network fluctuates dynamically. To optimize
the user-perceived quality of the output signal, a QoS controller is used which se-
lects a quality level for each frame to be decoded. The used model extends the
model described in this thesis.

Combaz et al. [2005a, 2005b] propose a method for QoS control of a scalable
video processing task, which was clearly inspired by our work. In their model,
they use the same QoS parameters as we do, viz. minimization of deadline misses,
maximization of the assigned processing-time budget, and smoothness of quality
levels. Based on average-case and worst-case execution times for various scal-
able and non-scalable subtasks of the task, a QoS controller is constructed. This
controller can dynamically adapt the quality level of the various scalable subtasks
during the processing of a frame, to optimize the QoS measure for the frame. One
main difference with our work is that we do not change the applied quality level
during the processing of a frame, to prevent quality fluctuations within frames. A
second main difference is that we optimize our QoS measure for an entire sequence
of frames to be processed, and not for frames individually.

1.6.3 Conditionally guaranteed budgets
Bril [2004] presents a technique called conditionally guaranteed budgets (CGBs)
which complements our approach. Whereas we assume a task with a fixed resource
budget, CGBs refine existing resource budgets by exploiting the notion of relative
importance of tasks (or applications). CGBs require a dedicated mechanism at
the level of a resource manager to facilitate an instantaneous budget configuration
change. This mechanism allows a more important task to instantaneously receive
an anticipated amount of additional resources upon request, at the cost of a prede-
termined set of less important tasks. Hence, CGBs allow a more important task to
maintain an acceptable perceived quality upon a structural load increase that would
otherwise result in a severe quality reduction. Our approach can be used in combi-
nation with CGBs, to control the quality level of a scalable task at times when its
resource budget is fixed.



14 Chapter 1

1.7 Thesis outline
In this thesis we present various mathematical strategies that can be used to control
the quality level at which a scalable video processing task processes video frames.
The goal of the strategies is to maximize the user-perceived quality of the task’s
output signal, within the framework of a limited amount of resources. First, in
Chapter 2 we present a model for real-time video processing in software, and we
present the QoS control problem. Next, in Chapter 3 we provide a basic introduc-
tion to reinforcement learning, which is used in the subsequent chapters. In Chapter
4 we model the QoS control problem as a Markov decision process. Solving this
model results in our first control strategy, which is based on off-line optimization
using pre-determined processing-time statistics. In Chapter 5 we present a vari-
ant of this strategy, which explicitly takes care of dependencies in the processing
times of successive frames. In Chapter 6 we present our last strategy, which hardly
requires any prior knowledge, but that learns how to behave optimally from ex-
perienced processing times. In Chapters 4 to 6 we validate the presented control
strategies by means of simulation experiments, based on processing-time statistics
of an MPEG-2 decoder. Finally, in Chapter 7 we briefly discuss user-perception
experiments, we come back to various simplifying assumptions that were made in
our work, and we summarize the main results.



2
Problem modeling and formulation

In this chapter we present a processing model for a scalable video processing task
with soft real-time constraints, and we formulate the problem that is studied in this
thesis. The basic processing model is presented in Section 2.1. Next, in Section 2.2
we discuss how input queue overflows and output queue underflows are handled
in the model. In Section 2.3 we assign a periodic processing-time budget to the
task, and we introduce a measure called progress. Given the processing model, in
Section 2.4 we present the objective of the work described in this thesis, and in
Section 2.5 we formulate the QoS control problem.

2.1 Basic processing model
In this section we present the basic processing model, as depicted in Figure 2.1.
We consider a single scalable video algorithm (SVA) that is running in a multitask-
ing system. For convenience, we use the terms task, scalable task, scalable video
processing task, and SVA interchangeably. The SVA has to process an indefinite
sequence of video frames. The successive frames to be processed are numbered
1 � 2 � 3 ������� . Throughout the thesis, we use integers f and g to indicate frame num-
bers. The SVA fetches frames to be processed from an input queue, and it writes
processed frames to an output queue. The input queue and output queue each con-
sist of a finite number of frame buffers. A frame buffer, or buffer for short, can hold
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Figure 2.1. The basic processing model.

one unprocessed or processed frame. The memory size of a buffer can vary, de-
pending on the size of the frame it holds. Buffers from the input queue and output
queue are called input buffers and output buffers, respectively.

The SVA can process frames at different quality levels, given by a finite set
Q � �

q1 ������� � qnQ � . We call quality level qi higher than quality level q j if i � j. The
higher the applied quality level, the more effort is spent by the SVA on processing
a frame, which results in a better picture quality. In general, applying a higher
quality level results in a higher processing time of a frame. However, this is no
strict rule, because the processing time of a frame may be influenced by effects
such as cache misses, bus contention, and task switching.

Each frame can be processed at a different quality level. We assume that a
frame is always processed at a single quality level, i.e., the used quality level can-
not be changed while the frame is being processed. The quality level at which
frame f is processed is denoted by q � f � . The quality levels q � 1 � � q � 2 � � ����� for the
successively processed frames are chosen by a controller. Before processing frame
f , the SVA first calls the controller to obtain quality level q � f � . We assume that the
time needed by the controller to select the quality level for a frame is part of the
frame’s processing time.

Frames can vary in type. For example, the MPEG-2 standard [Haskell et al.,
1997; Mitchell et al., 1997] differentiates between I-, P-, and B-frames. Because
frames of different types may have to be processed differently, the processing time
of a frame can depend on the frame type. We assume a finite set of frame types
Φ � �

φ1 � ����� � φnΦ � . The type of frame f is denoted by φ � f � . If we choose to not
differentiate between different frame types, then we can model this as all frames
having the same type φ1.

An input process, for example a digital video tuner, periodically inserts an un-
processed frame into the input queue, with a time period P � 0. The input process
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inserts frames in the order in which they have to be processed. An input buffer
has the status filled if it contains a frame that is waiting to be processed by the
SVA, or if it contains a frame that is currently being processed by the SVA, and the
status empty otherwise. Normally, the input process can only insert a frame into
an empty input buffer. If no empty input buffer is available, then an input queue
overflow occurs. Clearly, input queue overflows should be avoided.

An output process, for example a video renderer, periodically consumes a
frame from the output queue, also with period P. Hence, we assume that the in-
put frame rate and output frame rate are the same1. Consuming a frame from the
output queue means that the frame is read, but not removed from the queue. We
assume that the output process consumes frames in the order in which they have
been processed. Hence, we assume that the input order and output order of frames
are the same1. An output buffer has the status filled if it contains a frame that is
waiting to be consumed by the output process, and the status empty otherwise. If
the output process is unable to consume the frame that it needs, i.e., if no filled
output buffer is available, then an output queue underflow occurs. Clearly, output
queue underflows should be avoided. In Section 2.2 we discuss how input queue
overflows and output queue underflows are handled.

The input process and the output process are synchronized with a fixed latency
δ � P. This means that if frame f enters the input queue at time e � f � � e � 0 � �

f � P,
where e � 0 � is an offset, then it is consumed from the output queue at time
d � f � � e � f � � δ � P. We call δ the periodic latency, e � f � the entry time of frame
f , and d � f � the deadline of frame f . We assume that δ is an integer number, which
implies that the output process consumes a frame from the output queue at the very
same moment as the input process inserts a frame into the input queue1. On aver-
age, the SVA has to process one frame per period P. We assume a periodic latency
δ � 1, which allows the SVA to process asynchronously: after processing frame
f , the SVA can immediately start to process frame f

� 1, without first having to
wait for deadline d � f � , provided that frame f

� 1 is available for processing. For a
given periodic latency δ � 1, the SVA can work ahead by at most δ � 1 periods P.
We apply asynchronous processing to even out the fluctuating processing times of
frames in time.

Upon arrival of the first frame in the input queue, at e � 1 � , the SVA starts to
process as soon as it is scheduled on the processor. The time at which the SVA
starts to process frame f , the start point of frame f , is denoted by α � f � . The time
at which the SVA finishes processing frame f , the milestone of frame f , is denoted
by ω � f � . At milestone ω � f � , the SVA either completes processing frame f , or it
aborts processing frame f . The processing of a frame can be aborted in case of an

1We come back to this assumption in Chapter 7.
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input queue overflow or output queue underflow, as will be discussed in Section
2.2. The processing time of frame f is denoted by µ � f � . We assume that frames
have nonzero processing times. Note that µ � f ��� ω � f � � α � f � , because in the
time interval �α � f � � ω � f ��� the SVA can be interrupted by other tasks with a higher
priority.

The SVA can start to process a frame if two conditions are met. First, the
unprocessed frame should be present in the input queue, and second, there should
be an empty output buffer. At the start point of a frame, the SVA first claims
exclusive access to both the input buffer containing the unprocessed frame, and
one of the empty output buffers. Next, the SVA calls the controller to obtain the
quality level at which the frame will be processed. Upon receiving the quality
level, the SVA starts to process the frame. At the milestone of the frame, the two
claimed buffers are released. The released input buffer gets the status empty, and
the released output buffer gets the status filled. At the milestone, if the processing
conditions are met for the next frame to be processed, then a start point immediately
follows, assuming that the SVA can still use the processor. Otherwise, the SVA is
blocked until the processing conditions for the next frame are met, upon which the
start point follows as soon as the SVA is scheduled on the processor.

Example 2.1. Figure 2.2 shows an example timeline, illustrating the SVA’s pro-
cessing behavior for a periodic latency δ � 2. In the figure, time is indicated by
the periodic entry times and deadlines of frames, the start points and milestones
of frames are indicated by down-pointing arrows, and the processing of frames is
indicated by gray bars. Disregarding quality levels and frame types, the process-
ing times of frames 1 to 5 are given by µ � 1 � � 1 � 75P, µ � 2 � � 0 � 5P, µ � 3 � � 0 � 5P,
µ � 4 � � 0 � 75P, and µ � 5 � � 1 � 5P. For simplicity, we assume that the SVA runs on a
private processor.

P

time
blocked blocked

21 3 4 5

α(1) ω(1),α(2) ω(2),α(3) ω(3) α(4) ω(4)

e(1) e(2) e(3),d(1) e(4),d(2) e(5),d(3) e(6),d(4)

α(5)

...

Figure 2.2. An example timeline, illustrating an SVA’s processing behavior for a
periodic latency δ � 2.

Upon arrival of frame 1 in the input queue, at e � 1 � , the SVA start to process
immediately. Frames 1, 2, and 3 are processed in one batch. At ω � 3 � , the SVA
becomes blocked because frame 4 is not yet present in the input queue. At e � 4 � ,
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the frame enters the input queue, and the SVA continues to process. Similarly, the
SVA is blocked from ω � 4 � until α � 5 � . �

For each frame f there is a time interval � e � f � � e � f � � δP � in which the frame
has to be processed by the SVA. However, if the number of input buffers or the
number of output buffers is chosen smaller than δ, then this time interval is short-
ened. This can be seen as follows. Let integers i and j denote the number of
input buffers and output buffers, respectively. Without loss of generality, assume
that f � j. To process frame f , an empty output buffer is needed. An empty
output buffer is available no sooner than deadline d � f � j � , when frame f � j is
consumed from the output queue, because j output buffers are needed to store
frames f � j � ����� � f � 1. Moreover, to prevent the input queue from overflowing,
frame f should be completed by e � f

�
i � , because i input buffers are needed to

store frames f � ����� � f
�

i � 1. Hence, frame f has to be processed in time interval
�max

�
e � f � � e � f � � � δ � j � P � � min

�
e � f � �

iP� e � f � � δP � � . From this, we can see
that it is not useful to choose the number of input buffers or the number of output
buffers larger than δ. To provide the SVA maximum freedom to work ahead, we
assume that the number of input buffers and the number of output buffers are both
equal to δ.

In our model we assume that the entry times and deadlines of frames are strictly
periodic. In practice, however, there can be jitter in the entry times and deadlines
of frames. This means that the input process can try to insert frame f into the
input queue a little earlier or later than entry time e � f � in our model, and that the
output process can try to consume frame f from the output queue a little earlier
or later than deadline d � f � in our model. The problem of jitter can be dealt with
as follows. If the input process tries to insert frame f a little earlier than entry
time e � f � , then it can be the case that no empty input buffer is available for storing
frame f , which would normally be available. We can compensate for this time
difference by adding one extra buffer to the input queue. If the input process tries
to insert frame f a little later than entry time e � f � , then the SVA may be blocked
from e � f � until the time at which frame f arrives in the input queue. However,
this blocking will occur only if the SVA is far ahead of its deadlines. If the output
process tries to consume frame f a little earlier than deadline d � f � , then we have to
associate a possible deadline miss with the time at which the output process needs
the frame, and not with d � f � . If the output process tries to consume frame f a little
later than deadline d � f � , then the SVA may be blocked from d � f � until the time
at which the frame is consumed by the output process, in case no empty output
buffer is available. Again, this blocking will occur only if the SVA is far ahead of
its deadlines. The blocking can be avoided by adding an extra buffer to the output
queue.
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The process of inserting a frame into the input queue may take some time. This
is not a problem to our model, because the processing of a frame can already be
started if the frame is only partially available in the input queue. If the SVA is faster
than the input process, then the SVA may get blocked during processing until more
input data becomes available. Also the consumption of a frame from the output
queue may take some time. As with jitter in the consumption times of frames, this
may result in the SVA getting blocked. Again, blocking can be avoided by adding
an extra buffer to the output queue.

2.2 Overflow and underflow handling
In this section we discuss how input queue overflows and output queue underflows
are handled. An output queue underflow corresponds to a deadline miss. First, we
present two approaches to handle a deadline miss. Next, we show that input queue
overflows are automatically taken care of by the handling of deadline misses.

Normally, if the SVA is processing a frame f , and if the frame is not com-
pleted by deadline d � f � , then the deadline is missed. We consider two approaches
to handle a deadline miss. The first approach is to abort processing frame f at
deadline d � f � , which implies ω � f � � d � f � . At d � f � , the two buffers that were
claimed by the SVA for processing frame f are released. The released input buffer
is used immediately to insert frame f

� δ arriving from the input process. Hence,
the status of this buffer remains filled. The released output buffer gets the status
empty. Because frame f

� 1 is present in the input queue and an empty output
buffer is available, the processing conditions for frame f

� 1 are met. As a result,
the milestone of frame f is immediately followed by the start point of frame f

� 1,
assuming that the SVA is still scheduled on the processor. We call this approach to
handle a deadline miss the aborting approach.

A drawback of the aborting approach is that the processing time which has been
spent on an aborted frame f is wasted. Using possibly little additional processing
time, frame f could be completed. If it is acceptable that frame f is consumed at
a later deadline, at the cost of a temporal inconsistency in the end-to-end latency,
then the deadline miss can also be handled as follows. Instead of aborting frame
f at deadline d � f � , processing is continued, and a new deadline d � f

� 1 � is as-
signed to the frame. To restore the end-to-end latency, frame f

� 1 is skipped. At
d � f � , the input buffer which contains frame f

� 1 is overwritten with frame f
� δ

arriving from the input process. Hence, the status of this buffer remains filled. If
deadline d � f

� 1 � is missed too, then a new deadline d � f
� 2 � is assigned to frame

f , and frame f
� 2 is skipped. This procedure is repeated until frame f is finally

completed. We call this approach to handle a deadline miss the skipping approach.
In contrast to the aborting approach, the skipping approach preserves the work that
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has been spent on a frame when its deadline is missed. Note that the skipping
approach can result in multiple deadline misses per frame, whereas the aborting
approach can result in at most one deadline miss per frame.

Example 2.2. Figure 2.3 shows two example timelines, which illustrate how a
deadline miss is handled by the SVA, for the aborting approach (fig. A) and the
skipping approach (fig. B). In both timelines we assume a periodic latency δ � 2.
Disregarding quality levels and frame types, the processing times of frames 1 to 5
are given by µ � 1 � � 1 � 75P, µ � 2 � � 1 � 5P, µ � 3 � � 0 � 5P, µ � 4 � � 1 � 25P, and µ � 5 � � P.
For simplicity, we assume that the SVA runs on a private processor.

time

21 4

α(1) ω(1),α(2) ω(2),α(3) ω(4),α(5)

e(1) e(2) e(3),d(1) e(4),d(2) e(5),d(3) e(6),d(4)

3 5

ω(3),α(4)

time

21

α(1) ω(1),α(2) ω(2),α(4) ω(4),α(5)

e(1) e(2) e(3),d(1) e(4),d(2) e(5),d(3) e(6),d(4)

4 5

...

...

abort frame 2

skip frame 3

A: aborting approach

B: skipping approach

Figure 2.3. Example timelines, illustrating how a deadline miss is handled by the
SVA, for the aborting approach (fig. A) and the skipping approach (fig. B).

In both timelines deadline d � 2 � is missed. Applying the aborting approach,
frame 2 is aborted, and the SVA immediately continues to process frame 3. Ap-
plying the skipping approach, frame 2 is completed, and a new deadline d � 3 � is
assigned to the frame. Frame 3 is skipped at d � 2 � . �

Applying the skipping approach, frame f
� 1 is skipped if a new deadline

d � f
� 1 � is assigned to frame f . In general, also a later frame may be skipped.

For example, the SVA may skip frame f
� 3 instead of frame f

� 1. This involves
that deadlines d � f

� 2 � and d � f
� 3 � are assigned to frames f

� 1 and f
� 2, re-

spectively. To avoid a pile-up of frames in the input queue, the SVA can only skip
a frame that is already present in the input queue, or the frame arriving from the
input process. In general, the frame that is skipped should be chosen carefully. For
example, in MPEG-2 decoding, B-frames can safely be skipped, whereas skipping
an I-frame generally stalls the stream [Isović et al., 2003].



22 Chapter 2

Clearly, not only the SVA, but also the output process has to handle each dead-
line miss. Upon a deadline miss, we assume that the output process performs error
concealment. For example, if the output process is a video renderer, then it may
redisplay the most recently displayed frame. The renderer can consume this frame
once more from the output queue, provided that the SVA has not overwritten the
corresponding buffer. Because δ � 1, this can be achieved by letting the SVA never
claim the same output buffer two times in a row. If the aborting approach is ap-
plied, then the output process may also be able to display the aborted frame, albeit
at a lower picture quality. This is for example applicable to frames consisting of
multiple layers, where processing a base layer already provides an acceptable pic-
ture quality, and successive enhancement layers can be processed to improve the
picture quality [Jarnikov et al., 2004]. If the base layer and possibly some enhance-
ment layers have been completed at a missed deadline, then the aborted frame can
be used for output.

We now focus on handling input queue overflows. Let integers i and j denote
the number of filled input buffers and filled output buffers, respectively. Initially, at
e � 0 � , i � 0 and j � 0. For each frame that enters the input queue, i is increased by
one. For each frame that is completed, i is decreased by one and j is increased by
one. At e � δ � , when frame δ enters the input queue, and exactly one period before
deadline d � 1 � , at most δ � 1 frames have been completed. Hence, at e � δ � , the sum
of i and j becomes δ. Disregarding input queue overflows and deadline misses, at
each deadline i is increased by one and j is decreased by one. Because we assume
that the number of input buffers corresponds to the number of output buffers, the
first input queue overflow coincides with the first deadline miss. At this point in
time, i � δ and j � 0. The input queue overflow is hence handled implicitly by
the applied deadline miss approach. If the aborting approach is applied, then the
released input buffer is used to insert the frame arriving from the input process.
If the skipping approach is applied, then either a frame in a filled input buffer, or
the frame arriving from the input process is skipped. In the former case, the input
buffer containing the skipped frame is used to insert the frame arriving from the
input process. Hence, both deadline miss approaches do not change the values i � δ
and j � 0. As a result, every subsequent input queue overflow also coincides with a
deadline miss, and vice versa. This means that only the handling of deadline misses
is to be focused on, just because input queue overflows are handled implicitly by
the applied deadline miss approach. Note that if the SVA becomes blocked at a
milestone, then there is both no filled input buffer and no empty output buffer, i.e.,
i � 0 and j � δ. The SVA is then blocked until the earliest deadline, when a new
frame enters the input queue, and a processed frame is consumed from the output
queue.



Problem modeling and formulation 23

2.3 Budget and progress
The processor on which the SVA runs is applied for multitasking, which means that
it executes a number of tasks next to each other. A dedicated scheduler, for exam-
ple based on fixed-priority preemptive scheduling [Audsley et al., 1995], switches
repeatedly from task to task, which gives the appearance that all tasks run simul-
taneously. To study the SVA in isolation, we assume a fixed share of the available
processing time is assigned to the SVA. More specifically, starting at e � 1 � , in each
period P we assume that the SVA is guaranteed a fixed processing-time budget b
(0 � b � P) by a resource manager; see for example [Otero Pérez et al., 2003].
Budget b can be viewed as a virtual processor, running P

�
b times slower than the

actual processor [Feng and Mok, 2002]. The distribution of the budget over a pe-
riod is determined by the scheduler.

In Section 2.2 we noted that if the SVA becomes blocked at a milestone, then
it is blocked until the earliest next deadline. To not waste processing time, in
such a situation we assume that the scheduler immediately withdraws the SVA’s
remaining budget for the period. The scheduler redistributes the withdrawn budget
over the other tasks as so-called gain time [Audsley et al., 1994]. Other tasks may
also generate gain time, which may partly be assigned to the SVA in addition to
its budget. Also slack time [Lehoczky and Thuel, 1995] may be assigned to the
SVA, which is time that has not been allocated by means of resource reservation.
Unless mentioned otherwise, we assume that the SVA does not consume gain time
or slack time.

Example 2.3. Figure 2.4 shows an example timeline, which illustrates the process-
ing behavior of the SVA for b � 0 � 5P. We assume that δ � 2 and that the skipping
approach is applied to handle deadline misses. Disregarding quality levels and
frame types, the processing times of frames 1 to 5 are given by µ � 1 � � 0 � 25P,
µ � 2 � � 1 � 25P, µ � 3 � � P, µ � 4 � � 0 � 5P, and µ � 5 � � P.

time
blocked

21

α(1) ω(2),α(4)

e(1) e(2) e(3),d(1) e(4),d(2) e(5),d(3) e(6),d(4)

...

ω(1) α(2)

2 2 2 4 4 5

ω(4) α(5)

skip frame 3

Figure 2.4. An example timeline, illustrating the processing behavior of the SVA
for b � 0 � 5P.

Upon arrival at e � 1 � of frame 1 in the input queue, the SVA starts to process
as soon as it is scheduled on the processor, at α � 1 � . At ω � 1 � , the SVA becomes
blocked because frame 2 is not yet present in the input queue. The remaining
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budget of 0 � 25P is withdrawn. At e � 2 � , frame 2 enters the input queue, which
means that the SVA is no longer blocked. As soon as the SVA is scheduled again,
it starts processing frame 2, at α � 2 � . Note that in the period between e � 3 � and
e � 4 � the budget of 0 � 5P is distributed over two blocks of 0 � 25P. Deadline d � 2 � is
missed, and frame 3 is skipped. �

Based on the periodically guaranteed budget b we introduce a measure for
frames called progress. The progress of frame f at time t, denoted by λt � f � , pro-
vides an indication of how much budget is left for processing frame f , until the
deadline at which the frame is planned to be consumed from the output queue. If
we denote the total amount of budget left at time t until deadline d � f � by bt � f � ,
then the progress of frame f at time t is given by

λt � f � � bt � f � �
b �

Normally, frame f is planned to be consumed from the output queue at deadline
d � f � . However, if the skipping approach is applied, then the planned deadline
of consumption can change during processing. For example, if deadline d � f � is
missed, then from d � f � onwards frame f is planned to be consumed at deadline
d � f

� 1 � . Therefore, for the skipping approach the progress is given by

λt � f � �
�

bt � f � �
b if t � d � f �

bt � f
�

i � �
b if d � f

�
i � 1 ��� t � d � f

�
i � , for i ����� �

Note that the progress is computed based on guaranteed processing time only, i.e.,
a possible future consumption of gain time or slack time is ignored. We denote
the progress of frame f at start point α � f � and milestone ω � f � by λα � f � and
λω � f � , respectively. Due to the fixed end-to-end latency, within the time interval
�α � f � � ω � f ��� the progress of frame f is restricted to the interval � 0 � δ � .
Example 2.4.� In Figure 2.3A, the progress at the successive start points and milestones

is given by λα � 1 � � 2, λω � 1 � � 0 � 25, λα � 2 � � 1 � 25, λω � 2 � � 0, λα � 3 � � 1,
λω � 3 � � 0 � 5, λα � 4 � � 1 � 5, λω � 4 � � 0 � 25, and λα � 5 � � 1 � 25.� In Figure 2.3B, the progress at the successive start points and milestones is
given by λα � 1 � � 2, λω � 1 � � 0 � 25, λα � 2 � � 1 � 25, λω � 2 � � 0 � 75, λα � 4 � �
1 � 75, λω � 4 � � 0 � 5, and λα � 5 � � 1 � 5.� In Figure 2.4, the progress at the successive start points and milestones is
given by λα � 1 � � 2, λω � 1 � � 1 � 5, λα � 2 � � 2, λω � 2 � � 0 � 5, λα � 4 � � 1 � 5,
λω � 4 � � 0 � 5, and λα � 5 � � 1 � 5.

�
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We now compute how the progress of a frame changes during processing. Let f
and g be any pair of frames which are processed in succession. Usually, frame
g corresponds to frame f

� 1, but if the deadline of frame f is missed and the
skipping approach is applied, then frame g may also correspond to a later frame.
Without considering that the SVA may miss deadline d � f � , the progress of frame
f at its milestone can be expressed in λα � f � by

λ �ω � f � � λα � f � �
µ � f �

b
� (2.1)

However, if λ �ω � f � � 0, then deadline d � f � has been missed. If the aborting
approach is applied, then frame f is aborted at deadline d � f � , which implies
ω � f � � d � f � . If the skipping approach is applied, then a new deadline is assigned
to frame f , and processing is continued. Upon completion the frame is used as the
earliest next frame to be consumed by the output process. Hence, we find that

λω � f � �
���� 0 if λ �ω � f � � 0, applying the aborting approach

λ �ω � f � ���
� λ �ω � f ��� if λ �ω � f � � 0, applying the skipping approach

λ �ω � f � if λ �ω � f �
	 0 �
(2.2)

Figure 2.5 shows λω � f � as a function of λ �ω � f � , for the two deadline miss ap-
proaches. The number of deadlines misses for frame f , denoted by ndm � f � , is
given by

ndm � f � �
�� � 1 if λ �ω � f � � 0, applying the aborting approach�

� λ �ω � f ��� if λ �ω � f � � 0, applying the skipping approach
0 if λ �ω � f �
	 0 �

(2.3)

The deadline at which frame g is planned to be consumed by the output pro-
cess falls exactly one time period later than the deadline at which frame f is con-
sumed by the output process. Hence, without considering that the SVA may be-
come blocked at milestone ω � f � , the progress of frame g at its start point is given
by

λ �α � g � � λω � f � � 1 � (2.4)
Clearly, 1 � λ �α � g � � δ � 1. If λ �α � g � � δ, then frame g is not present in the input
queue at milestone ω � f � , and the SVA becomes blocked. The SVA is then blocked
until the earliest next deadline, when frame g enters the input queue. Hence, we
find that

λα � g � �
�

δ if λ �α � g � � δ
λ �α � g � otherwise.

(2.5)

By definition, λα � 1 � � δ. Hence, for each frame f 	 1 that is processed it holds
that 1 � λα � f � � δ and 0 � λω � f � � δ.



26 Chapter 2

A: aborting approach B: skipping approach

λω( f )λω( f )

-1-2-3 210
λω( f ) λω( f )

3

1

2

3

-1-2-3 210 3

1

2

3

Figure 2.5. λω � f � as a function of λ �ω � f � , for the aborting approach (fig. A) and
the skipping approach (fig. B).

2.4 Objective
Informally speaking, the objective of the work described in this thesis is to maxi-
mize the output quality of the SVA as perceived by a user, for an indefinite sequence
of video frames to be processed. In this section we formalize this objective.

As mentioned in Section 1.5, we consider three aspects of user-perceived qual-
ity: the quality levels at which frames are processed, deadline misses, and changes
in the quality level between successively processed frames. The user-perceived
output quality of the SVA is maximized if all frames are processed at the highest
quality level, and if there are no deadline misses. This can be achieved by choosing
budget b equal to or higher than the worst-case periodic processing-time needs of
the SVA, a so-called worst-case budget. If budget b is smaller than worst-case,
the situation that we generally consider in this thesis, then we have to trade-off the
three user-perception aspects to find an optimum. As mentioned in Section 1.5,
we apply the notion of QoS to balance the three aspects in a single QoS measure,
which represents the overall user satisfaction.

As a first step towards defining the QoS measure we assign a revenue r � f � to
each frame f that has been processed. The revenue of a processed frame is a real
number that indicates to what extent the three QoS parameters are satisfied for the
frame. We define revenue r � f � by

r � f � � Rql � q � f � � � ndm � f � � Pdm � Pqlc � q � prev � f � � � q � f � � � (2.6)

where� Rql � q � is a positive-valued reward for using quality level q,� Pdm is a positive-valued penalty for the occurence of a deadline miss,
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� prev � f � is the frame that was processed right before frame f was processed1 ,
and� Pqlc � q � q � � is a positive-valued penalty for changing the quality level from q
to q � .

To define the QoS measure, we should not look at the revenues of individual
frames, but we should look at the revenues of all frames that are processed. To
this end, we define the QoS measure as the average revenue per processed frame
(in short: average revenue per frame, or average revenue), which allows us to ap-
ply the measure to video sequences of varying length. We assume that the QoS
measure reflects the overall user satisfaction of the output signal, provided that the
rewards and penalties in (2.6) are well chosen. Tuning the QoS measure, i.e., de-
termining appropriate values for the various rewards and penalties, can be done on
the basis of user-perception experiments.

2.5 QoS control problem
At each start point of a frame, the controller has to select the quality level at which
the frame is processed. The problem we consider in this thesis is to find a quality-
level selection strategy for the controller (in short a control strategy or a strategy)
that maximizes the average revenue for an indefinite sequence of frames to be
processed. We call this problem the QoS control problem.

The QoS control problem is an on-line problem, as the controller has to select
the quality level for each frame without knowing how complex the frame is, or how
complex the frames are that follow. To estimate the processing time of a frame at
a particular quality level, the controller can make use of statistics of frames that
have been processed earlier. In Chapter 4 we present a control strategy that is
computed based on the processing-time statistics of a reference sequence of frames.
In Chapter 6 we present an adaptive control strategy that learns at run time how to
behave from experienced processing times.

1For frame f � 1 we define q
�
prev

�
f ����� q1.





3
Reinforcement learning

The QoS control problem formulated in Section 2.5 is a stochastic decision prob-
lem, a problem in which optimal decisions are sought subject to uncertainty in
instance data. A common way to address a stochastic decision problem is by mod-
eling it as a reinforcement learning task. This chapter provides a short introduction
to reinforcement learning, based on the textbook of Sutton and Barto [1998].

First, in Section 3.1 we describe the basic reinforcement learning model. Next,
in Section 3.2 we introduce value functions, which lay the foundation for many re-
inforcement learning algorithms. Using value functions, in Section 3.3 we discuss
a number of stochastic dynamic programming algorithms, and in Section 3.4 we
discuss the Q-learning algorithm.

3.1 Reinforcement learning model
Reinforcement learning is a computational approach to goal-directed learning from
interaction. It considers a system in which an agent repeatedly interacts with its
environment. The environment can occupy different states, and the agent can in-
fluence the state of the environment by taking actions. The set of states that can
be occupied by the environment is denoted by S, and the set of actions that can be
taken by the agent is denoted by A. At discrete time steps, t � 1 � 2 � ����� , the en-
vironment presents its state st � S to the agent, and next the agent takes an action

29
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at � A � st � , where A � st ��� A denotes the set of actions that can be taken by the agent
if the environment is in state st

1. Action at has influence on the environment, and,
as a result, the state of the environment at time step t

� 1 may differ from state st .
In general, the new state st � 1 cannot be derived deterministically from state st and
action at , i.e., the state transition is stochastic. At each time step t � 1, along with
state st the environment also presents a revenue rt to the agent. Revenue rt is a
real number that expresses the intrinsic desirability of the state transition from st � 1
to st . Figure 3.1 shows the interaction between the agent and its environment at a
time step t � 1.

environment agent

state st , revenue rt

action at

Figure 3.1. The interaction between a reinforcement learning agent and its envi-
ronment at a time step t � 1.

The goal of the agent is to take actions that will maximize the expected return,
where the return is defined as a function of all revenues to be received at future
time steps. This task is called the reinforcement learning task. In case of a finite
time horizon, when the total number of time steps is finite, and known before t � 1,
the return is usually defined as the sum of all future revenues. In the more general
case of an infinite time horizon, which we assume, there is no clearly defined final
time step. As a result, the sum of all future revenues may be infinite. To obtain a
finite measure, the return at time step t, denoted by Rt , is defined as the discounted
sum of all future revenues, i.e.,

Rt � rt � 1
�

∞

∑
i � 1

γ irt � 1 � i �

where γ � 0 � γ � 1 � is a discount rate. The return has a finite value as long as
the revenues are bounded. If γ � 0, then the goal of the agent is to maximize
the immediate revenues, and the closer γ approaches one the stronger the agent
takes future revenues into account, i.e., the stronger the agent tries to maximize
the average revenue received per time step. In general, an action of the agent does
not only influence the new state and the immediate revenue, but through the new

1A time step t is actually a (short) time interval that starts when the environment presents its
state st to the agent, and that ends when the agent returns action at . In the time interval the agent
may perform some computations to select action at from set A

�
st � , and to improve its strategy for

selecting actions. Successive time steps are not necessarily equidistant in time.
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state also all subsequent states and all subsequent revenues. Hence, the agent may
have to take actions which do not yield the highest possible immediate revenue, to
obtain a greater total revenue in the long run.

A state signal of the environment is said to satisfy the Markov property if state
st � 1 and revenue rt � 1 can be predicted from state st and action at as well as they can
be predicted from the states, actions, and revenues s1 � a1 � s2 � r2 � a2 � ����� � st � rt � at . In
other words, a Markov state signal is memoryless. A reinforcement learning task
that satisfies the Markov property is called a Markov decision process (MDP) [Van
der Wal, 1981; White, 1993; Puterman, 1994; Sutton and Barto, 1998]. A finite
MDP is characterized by a finite set S of states and a finite set A of actions. Let
s � s � � S, let a � A, and let t 	 1. For a finite MDP, the one-step dynamics of the
environment are given by state-transition probabilities

pa
ss � � Pr

�
st � 1 � s � �

st � s � at � a � �
and corresponding expected revenues

ra
ss � � E

�
rt � 1

�
st � s � at � a � st � 1 � s � � �

We assume a finite MDP, and we assume that the state-transition probabilities and
expected revenues do not change over time.

To select actions, the agent makes use of a policy. A stochastic policy π keeps
for each state s � S and for each action a � A � s � a probability π � s � a � of selecting
action a in state s. A special case of stochastic policies are deterministic policies.
A deterministic policy π keeps for each state s � S a single action π � s � � A � s � to be
chosen.

If the state-transition probabilities and expected revenues are available before
the first time step, then it is possible to compute an optimal policy for the agent.
Alternatively, the agent can also learn an optimal policy at run time, while using
the learned policy at the same time to select actions. A learning agent usually starts
with an arbitrary policy that is updated (learned) at each time step t � 1 using the
observed state and revenue.

3.2 Value functions
Value functions lay the foundation for many reinforcement learning algorithms. A
value function expresses how good a particular policy is in the long run, in terms
of the expected return.

The state value of state s under policy π, denoted by V π � s � , is defined as the
expected return, starting from state s, and following policy π to take actions, i.e.,

V π � s � � Eπ
�
Rt

�
st � s � �

where Eπ denotes the expected value of the return under policy π. Function V π
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is called the state-value function of policy π. The state-value function can be ex-
pressed recursively:

V π � s � � Eπ
�
Rt

�
st � s �

� Eπ
�
rt � 1

� γRt � 1
�
st � s �

� ∑
a � A

�
s �

π � s � a � ∑
s � � S

pa
ss � r

a
ss �

� γEπ
�
Rt � 1

�
st � s �

� ∑
a � A

�
s �

π � s � a � ∑
s ��� S

pa
ss � � ra

ss �
� γEπ

�
Rt � 1

�
st � 1 � s � � �

� ∑
a � A

�
s �

π � s � a � ∑
s ��� S

pa
ss � � ra

ss �
� γV π � s � � � � (3.1)

Equation (3.1) is known as the Bellman equation for V π. It expresses the state
value of state s in the state values of all possible successor states s � .

The action value of taking action a in state s under policy π, denoted by
Qπ � s � a � , is defined as the expected return, starting from state s, taking action a,
and thereafter following policy π to take actions, i.e.,

Qπ � s � a � � Eπ
�
Rt

�
st � s � at � a � �

Function Qπ is called the action-value function of policy π. The action-value func-
tion can be expressed in the state-value function:

Qπ � s � a � � Eπ
�
Rt

�
st � s � at � a �

� Eπ
�
rt � 1

� γRt � 1
�
st � s � at � a �

� ∑
s ��� S

pa
ss � r

a
ss �

� γEπ
�
Rt � 1

�
st � s � at � a �

� ∑
s � � S

pa
ss � � ra

ss �
� γEπ

�
Rt � 1

�
st � 1 � s � � �

� ∑
s ��� S

pa
ss � � ra

ss �
� γV π � s � � � � (3.2)

A policy π is defined to be equivalent to a policy π � if V π � s � � V π � � s � for all
s � S, and π is defined to be better than π � if V π � s � 	 V π � � s � for all s � S and
inequality holds for at least one state s. A policy is optimal if it is better than
or equivalent to all other policies. Because we assume that the state-transition
probabilities and expected revenues do not change over time, always one or more
optimal policies exist. We denote any optimal policy by π � . Optimal policies
share the same state-value function and action-value function, the optimal state-
value function and optimal action-value function, which are denoted by V � and Q � ,
respectively. Function V � is defined by

V � � s � � max
π

V π � s ��� s � S �
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and function Q � is defined by

Q � � s � a � � max
π

Qπ � s � a � � s � S � � a � A � s � �
Because V � and Q � are both optimal value functions, it must hold that

V � � s � � max
a � A

�
s �

Q � � s � a ��� s � S �

Using (3.2), for V � we can now derive that

V � � s � � max
a � A

�
s �

Q � � s � a �
� max

a � A
�
s � ∑s ��� S

pa
ss � � ra

ss �
� γV � � s � � � � (3.3)

and for Q � we can derive that

Q � � s � a � � ∑
s ��� S

pa
ss � � ra

ss �
� γV � � s � � �

� ∑
s ��� S

pa
ss � � ra

ss �
� γ max

a ��� A
�
s � �

Q � � s � � a � � � � (3.4)

Equation (3.3), known as the Bellman optimality equation for V � , is a system of
�
S

�

nonlinear equations in
�
S

�
unknowns. Equation (3.4), known as the Bellman opti-

mality equation for Q � , is a system of
�
S

�
�

�
A

�
nonlinear equations in

�
S

�
unknowns.

If the state-transition probabilities pa
ss � and expected revenues ra

ss � are known,
then the Bellman optimality equations can be solved. Given V � , an optimal policy
π � can be found by for each state s assigning a probability of zero to every action
a � A � s � for which (3.3) does not attain the maximum value for s, and by randomly
distributing a probability of one over all actions a � A � s � for which (3.3) attains the
maximum value for s. Given Q � , an optimal policy can be found by for each state s
assigning a probability of zero to every action a � A � s � for which Q � � s � a � does not
attain the maximum value for s, and by randomly distributing a probability of one
over all actions a � A � s � for which Q � � s � a � attains the maximum value for s. Note
that for each state it is possible to assign a probability of one to only a single action,
and a probability of zero to all other actions. Hence, always at least one optimal
deterministic policy exists. Without loss of optimality, we restrict ourselves to
deterministic policies only. As compared to a stochastic policy, a deterministic
policy can be stored more efficiently, and it can be looked-up more easily.

3.3 Stochastic dynamic programming algorithms
To find an optimal policy, the Bellman optimality equations for V � or Q � have to
be solved. Although V � and Q � can be computed exactly, it is common practice
to find a good approximation, at the benefit of a significantly shorter computation
time. Usually this has very little or no influence on the quality of the policy that
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is derived from the solution. In this section we discuss three stochastic dynamic
programming algorithms that can be used to find an optimal policy in acceptable
time: policy iteration, value iteration, and successive approximation.

The policy iteration algorithm consists of two procedures, which are executed
alternatingly: policy evaluation and policy improvement. Policy evaluation is a
procedure that computes the state-value function V π of a given policy π. Next,
policy improvement uses V π as input to construct a policy π � that is better than
or equivalent to π. In turn, the constructed policy π � is used as input for policy
evaluation. In combination, the two procedures can be used to compute an optimal
policy π � .

The policy evaluation procedure is given by (3.1), transformed into an iterative
update rule:

Vi � 1 � s � : � ∑
s ��� S

pπ
�
s �

ss � � rπ
�
s �

ss �
� γVi � s � � � for i � 1 � 2 ���������

This update rule can be programmed using two arrays, one to store the state values
Vi � 1 � s � that are computed, and one to store the given state values Vi � s � . Func-
tion V π is a fixed point for the update rule, because (3.1) assures equality in this
case. Given an arbitrarily chosen state-value function V1, the sequence of itera-
tively computed state-value functions V2 � V3 � ����� can be shown to converge to V π as
i � ∞. The procedure is usually stopped when

�
Vi � 1 � s � � Vi � s � � � ε for all s � S,

for some positive error ε that is chosen close to zero.
Next, the policy improvement procedure is based on the following theorem

[Sutton and Barto, 1998].

Theorem 3.1. Let π and π � be policies such that V π � s � � Qπ � s � π � � s � � for all s � S.
Then V π � s � � V π � � s � for all s � S. �

Hence, for a policy π, which is implicitly given by state-value function V π, an
equivalent or better policy π � can be constructed by selecting

π � � s � : � arg max
a � A

�
s �

Qπ � s � a �
� arg max

a � A
�
s �

E
�
rt � 1

� γV π � st � 1 � �
st � s � at � a �

� arg max
a � A

�
s � ∑s � � S

pa
ss � � ra

ss �
� γV π � s � � � � (3.5)

for all s � S. If π � is equivalent to π, i.e., if V π � � s � � V π � s � for all s � S, then, using
(3.5), we find that

V π � � s � � max
a � A

�
s � ∑s ��� S

pa
ss � � ra

ss �
� γV π � � s � � � �

This is the same as Bellman optimality equation (3.3). Hence, π � and π are both
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optimal policies.
The policy iteration algorithm starts with an arbitrarily chosen policy. In each

iteration of the algorithm, by successively performing a run of the policy evaluation
procedure and a run of the policy improvement procedure, a policy is constructed
that is better than or equivalent to the policy of the previous iteration. If two suc-
cessive policies are equivalent, then they are both optimal, and the algorithm stops.
After every policy evaluation run, the final state-value function can be used as ini-
tial state-value function for the next policy evaluation run. This is expected to
speed-up convergence, because the policies of successive iterations are likely to be
closely related.

Formally, the policy evaluation procedure requires an infinite number of iter-
ations to compute the state-value function of a given policy. In practice, the pro-
cedure is stopped after a finite number of iterations, when the difference between
two successive state-value functions is small enough. Nevertheless, even if the pro-
cedure is stopped after only a single iteration, then the policy iteration algorithm
can be shown to converge to an optimal policy. The variant of policy iteration in
which the policy evaluation procedure is always stopped after only a single iter-
ation is called value iteration. The single iteration of policy evaluation and the
policy improvement procedure can be combined into a single iterative update rule:

Vi � 1 � s � : � max
a � A

�
s � ∑s � � S

pa
ss � � ra

ss �
� γVi � s � � � �

Formally, the value iteration algorithm requires an infinite number of iterations to
find an optimal policy. In practice, the algorithm is stopped after a finite number
of iterations, when the difference between two successive state-value functions is
small enough.

Policy iteration and value iteration both cannot handle a discount rate γ � 1.
Hence, to maximize the average revenue per state transition, γ should be chosen
very close to one, but that will slow down convergence. To truly maximize the
average revenue, we can apply the successive approximation algorithm [Van der
Wal, 1981]. This algorithm is basically the same as value iteration, but it uses a
discount rate γ � 1 and a different stop criterion. Because γ � 1, the successively
computed state-value functions Vi no longer converge to V � . Instead, for each
state s the difference Vi � 1 � s � � Vi � s � converges to an optimum as i � ∞, viz. the
expected average revenue per state transition for an optimal policy. The algorithm
is stopped when maxs � S � Vi � 1 � s � � Vi � s � � � mins � S � Vi � 1 � s � � Vi � s � � � ε for some
positive error ε that is chosen close to zero. Figure 3.2 shows pseudo-code for
the successive approximation algorithm. Apart from computing an optimal policy,
the algorithm also returns the expected average revenue per state transition for an
optimal policy.
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for each s � S do
initialize V � s � arbitrarily;

repeat
for each s � S do

Vold � s � : � V � s � ;
max dif : ��� ∞;
min dif : ��� ∞;
for each s � S do
begin

V � s � : � maxa � A � s � ∑s � � S pa
ss � � ra

ss � � Vold � s � � � ;
if V � s ��� Vold � s ��� max dif
then max dif : � V � s ��� Vold � s � ;
if V � s ��� Vold � s �
	 min dif
then min dif : � V � s ��� Vold � s � ;

end
until max dif � min dif 	 ε;
for each s � S do

π � s � : � argmaxa � A � s � ∑s � � S pa
ss � � ra

ss � � V � s � � � ;
expected average revenue : � � max dif � min dif ��� 2;

Figure 3.2. Pseudo-code for the successive approximation algorithm.

3.4 Q-learning
Q-learning [Watkins, 1989] is an on-line reinforcement learning algorithm that
does not require a model of the environment in terms of state-transition proba-
bilities and expected revenues. The agent starts without any knowledge, and at
the successive time steps it has to learn how to take actions, to maximize the ex-
pected return. To learn optimal behavior, the agent maintains an estimate of the
optimal action-value function Q � . The estimated action value of state s � S and
action a � A � s � is denoted by Q � s � a � . Initially, the Q-values are chosen arbitrarily.
At each time step t � 1, prior to selecting action at , the agent updates action value
Q � st � 1 � at � 1 � using Sutton’s temporal difference error [Sutton, 1988]. This error is
defined as the difference between the immediate revenue rt plus the discounted es-
timated state value of state st , and Q � st � 1 � at � 1 � . The state value of st is estimated
by maxa � A

�
st � Q � st � a � . The update at time step t � 1 is given by

Q � st � 1 � at � 1 � : � Q � st � 1 � at � 1 � � ψ � rt
� γ max

a � A
�
st �

Q � st � a � � Q � st � 1 � at � 1 � �
� � 1 � ψ � Q � st � 1 � at � 1 � � ψ � rt

� γ max
a � A

�
st �

Q � st � a � � �
where ψ � 0 � ψ � 1 � is a step-size parameter called the learning rate. The learning
rate controls how much weight is given to the new experience, as opposed to the old
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estimate Q � st � 1 � at � 1 � . If ψ � 1, then full weigth is given to the new experience,
and the closer ψ approaches zero, the more function Q is building up an average
over all past experiences.

For learning it is unimportant which actions are taken by the agent. This is
because action value Q � st � 1 � at � 1 � is always updated using the action that looks
optimal in state st . In other words, the policy that is learned does not have to corre-
spond to the policy that is applied for control. For this reason, Q-learning is called
an off-policy algorithm. To maximize the expected return the agent should take so-
called greedy actions, i.e., actions at for which Q � st � at � is maximal. However, to
guarantee convergence of Q to Q � , each estimate Q � s � a � should be updated many
times. This can only be guaranteed if the agent takes non-greedy actions as well.
This dilemma between exploiting and exploring actions is addressed by means of
ε-greedy action selection. This means that most of the time the agent selects a
greedy action, but with a probability ε the agent selects an action at random. Usu-
ally, in the beginning ε is chosen close to one, and as time passes by the value of
ε is moved slowly towards zero. Figure 3.3 shows pseudo-code for the Q-learning
algorithm.

for each s � S do
for each a � A � s � do

initialize Q � s � a � arbitrarily;�
time step t � 1 �

observe state s;
a : � argmaxa � A � s � Q � s � a � ;
while true do
begin

sold : � s;
aold : � a;
take action a;�

time step t � 1 �
observe state s and revenue r;
Q � sold � aold � : � Q � sold � aold � � ψ � r � γ maxa � A � s � Q � s � a ��� Q � sold � aold � � ;
if Random � 0 � 1 � 	 ε
then randomly select action a from set A � s � ;
else a : � argmaxa � A � s � Q � s � a � ;

end

Figure 3.3. Pseudo-code for the Q-learning algorithm.





4
Off-line solution approach

In Chapter 2 we presented a processing model for an SVA, and we formulated the
QoS control problem. Next, in Chapter 3 we gave an introduction to reinforcement
learning. Given this, we now present our first solution approach to the QoS control
problem. Our approach is based on modeling the problem as a finite MDP, and
solving this model before run time using predetermined processing-time statistics.
The solution is given by a policy that can be used by the SVA’s controller at run
time to select the quality level for each frame to be processed. We call this approach
the off-line solution approach.

First, in Section 4.1 we model the QoS control problem as a finite MDP, and we
estimate state-transition probabilities and expected revenues for the model. Next,
in Section 4.2 we discuss how the MDP model is solved. In Section 4.3 we discuss
how the resulting policy can be used as a quality-level control strategy. Finally,
in Section 4.4 we assess the effectiveness of the approach by means of simulation
experiments.

4.1 Finite MDP model
We now model the QoS control problem as a finite MDP. Because a Markov deci-
sion process is by definition memoryless, in the model it is implicitly assumed that
the processing times of successive frames are independent. In practice, however,
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there may be dependencies in the processing times of successive frames. We come
back to this issue in Section 4.4.6, and we discuss it further in Chapter 5.

In the model, the role of environment is assigned to the SVA, and the role of
agent is assigned to the controller. The discrete time steps at which the environment
presents its state and a revenue to the agent and at which the agent takes an action
are given by the start points of frames, at which the SVA calls the controller to
obtain the quality level. Hence, the set A of actions that can be taken by the agent
is given by the finite set of quality levels Q. Because each frame can be processed
at any quality level, we have A � s � � Q for all s � S.

At each start point of a frame, the controller has to select the quality level at
which the frame will be processed, based on the state of the SVA. Because we
assume a budget that is smaller than the SVA’s worst-case needs for processing
frames at the highest quality level, qnQ , the controller should sometimes select a
lower quality level for frames, to prevent deadline misses. Hence, the state signal
should comprise information that can be used to estimate whether or not a frame’s
deadline will be missed if the frame is processed at a particular quality level. As a
first component of the state we therefore consider the progress of the frame to be
processed at the start point, because a higher progress leads to a lower probability
of missing the frame’s deadline. As derived in Section 2.3, the progress of a frame
at its start point is a real number from the interval � 1 � δ � . Because we need a finite
set of states, we define a finite set Λ of nΛ � 	 2 � equal-sized progress intervals
λ1 � ����� � λnΛ between 1 and δ by

λi �
���
�� � 1 �

�
i � 1 � � δ � 1 �

nΛ
� 1 � i

�
δ � 1 �
nΛ

� if i � nΛ

� δ �
δ � 1
nΛ

� δ � if i � nΛ �

The lower bound and upper bound of a progress interval λ � Λ are denoted by λ
and λ, respectively. As a second component of the state we consider the frame
type, because it may provide information on the frame’s processing complexity,
and thus on the probability of missing the frame’s deadline. Finally, because we
want to minimize the number and size of quality-level changes between succes-
sively processed frames, as a third component of the state we consider the quality
level that was used for the most recently processed frame, the so-called previous
quality level. As mentioned, for frame 1 we define the previous quality level to be
the lowest one, i.e., q1. Hence, we define the set S of states by Λ � Φ � Q. The
state given by a progress interval λ, a frame type φ, and a previous quality level
q is denoted by � λ � φ � q � . For a state s � S, we denote the corresponding progress
interval, frame type, and previous quality level by λs, φs, and qs, respectively.

Consider the transition from state s � S to state s � � S under the selection of
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quality level q � Q in state s. For state s � , progress interval λs � can be predicted
from progress interval λs, frame type φs, and quality level q using state-transition
probabilities pq

ss � . The previous quality level qs � is given by quality level q. To
obtain a memoryless state signal, we have to assume that frame type φs � can be
predicted from frame type φs only. Note that this assumption may not be suitable
for some video sequences.

Given the above, we now derive state-transition probabilities and correspond-
ing expected revenues for the model.

4.1.1 State-transition probabilities
To compute the state-transition probabilities pq

ss � , we consider the transition from
state s � S to state s � � S under the selection of quality level q � Q in state s. After
the transition it must hold that qs � � q, which means that pq

ss � � 0 for any state s �
with qs �

�� q. For all other states s � the state-transition probabilities can be computed
as follows.

Let f and g be any pair of frames which are processed in succession. Usually,
frame g corresponds to frame f

� 1, but if the deadline of frame f is missed and the
skipping approach is applied, then frame g may also correspond to a later frame.
Given the progress λα � f � and the type φ � f � of frame f , we define P g:λ � φ

λα
�
f ��� φ � f � as

the probability that frame g has a progress λα � g ��� λ and a type φ � g � � φ. This
probability is the product of two independent probabilities. The first one is the
probability that a frame of type φ is processed immediately after a frame of type
φ � f � has been processed, denoted by Pr � φ � f � � φ � . This probability can be estimated
using statistics on how frequently the different frame types appear successively.
The second one is the probability that λα � g � � λ, given λα � f � and φ � f � . For this
second probability, denoted by P g:λ

λα
�
f ��� φ � f � , we derive that

P g:λ
λα
�
f ��� φ � f � �

�����������
����������

Pr � λα � g � � λ �
� 1 � Pr � λα � g � 	 λ � if λ � λ1

Pr � λα � g �
	 λ � if λ � λnΛ

Pr � λ � λα � g � � λ �
� Pr � λα � g � 	 λ � � Pr � λα � g � 	 λ � otherwise.

(4.1)

In this equation, we compute the probabilities Pr � λα � g � 	 x � for values of x � � 1 � δ �
as follows. For frame type φ � Φ and quality level q � Q, let random variable Xφq

denote the time needed by the SVA to process a single frame of type φ at quality
level q. Let Fφq denote the cumulative distribution function of Xφq, i.e.,

Fφq � x � � Pr � Xφq � x � � (4.2)
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For the aborting approach, for 1 � x � δ we derive that

Pr � λα � g �
	 x � � �
using � 2 � 5 � and x � δ �

Pr � λ �α � g �
	 x �
� �

using � 2 � 4 � �
Pr � λω � f � 	 x � 1 �

� �
using � 2 � 2 � and x � 1 � 0 �

Pr � λ �ω � f � 	 x � 1 �
� �

using � 2 � 1 � �
Pr � Xφ

�
f � q � f � � b � λα � f � � x

� 1 � �
� �

using � 4 � 2 � �
Fφ
�
f � q � f � � b � λα � f � � x

� 1 � � �
For the skipping approach, for 1 � x � 2 we derive that

Pr � λα � g �
	 x � � �
using � 2 � 5 � � x � 2 and δ 	 2 �

Pr � λ �α � g �
	 x �
� �

using � 2 � 4 � �
Pr � λω � f � 	 x � 1 �

� �
using � 2 � 2 � and 0 � x � 1 � 1 �

Pr � λ �ω � f � 	 x � 1 � �
∞

∑
i � 1

Pr � x � 1 � i � λ �ω � f � � 1 � i �
� �

using � 2 � 1 � �
Pr � Xφ

�
f � q � f � � b � λα � f � � x

� 1 � �
�

∞

∑
i � 1

Pr � Xφ
�
f � q � f � � b � λα � f � � x

� 1 �
i � �

�

∞

∑
i � 1

Pr � Xφ
�
f � q � f � � b � λα � f � � 1 �

i � �
� �

using � 4 � 2 � �
Fφ
�
f � q � f � � b � λα � f � � x

� 1 � �
�

∞

∑
i � 1

Fφ
�
f � q � f � � b � λα � f � � x

� 1 �
i � �

�

∞

∑
i � 1

Fφ
�
f � q � f � � b � λα � f � � 1 �

i � � �
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and for 2 � x � δ we derive that

Pr � λα � g �
	 x � � �
using � 2 � 5 � and x � δ �

Pr � λ �α � g �
	 x �
� �

using � 2 � 4 � �
Pr � λω � f � 	 x � 1 �

� �
using � 2 � 2 � and x � 1 	 1 �

Pr � λ �ω � f � 	 x � 1 �
� �

using � 2 � 1 � �
Pr � Xφ

�
f � q � f � � b � λα � f � � x

� 1 � �
� �

using � 4 � 2 � �
Fφ
�
f � q � f � � b � λα � f � � x

� 1 � � �

To compute the state-transition probabilities pq
ss � , let s be the state of the SVA at

start point α � f � , and let s � be the state of the SVA at start point α � g � . To apply (4.1),
a value for λα � f � is needed. Unfortunately, λα � f � is not completely determined by
state s, i.e., we only know that λα � f � is somewhere in progress interval λs. A worst-
case approximation is obtained by using the lower bound of the progress interval,
i.e., by approximating

λα � f ��� λs � (4.3)
Given the above, the state-transition probabilities pq

ss � can be approximated as fol-
lows, depending on the applied deadline miss approach and progress interval λs � :� aborting approach, λs � � λ1:

pq
ss � � Pr � φs � φs � � � � 1 � Fφsq � b � λs � λs �

� 1 � � � (4.4)
� aborting approach, λs � � λnΛ :

pq
ss � � Pr � φs � φs � � � Fφsq � b � λs � λs �

� 1 � � (4.5)
� aborting approach, λs �

�� λ1 and λs �
�� λnΛ :

pq
ss � � Pr � φs � φs � � �

� Fφsq � b � λs � λs �
� 1 � � � Fφsq � b � λs � λs �

� 1 � � � (4.6)
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� skipping approach, λs � � λ1 and λs � � 2:

pq
ss � � Pr � φs � φs � � �

� 1 � Fφsq � b � λs � λs �
� 1 � �

�

∞

∑
i � 1

� Fφsq � b � λs � λs �
� 1 �

i � � � Fφsq � b � λs � 1 �
i � � � �

� skipping approach, λs � � λ1 and λs � 	 2:

pq
ss � � Pr � φs � φs � � � � 1 � Fφsq � b � λs � λs �

� 1 � � �

� skipping approach, λs � � λnΛ and λs � � 2:

pq
ss � � Pr � φs � φs � � �

� Fφsq � b � λs � λs �
� 1 � �

�
∞

∑
i � 1

� Fφsq � b � λs � λs �
� 1 �

i � � � Fφsq � b � λs � 1 �
i � � � �

� skipping approach, λs � � λnΛ and λs � 	 2:

pq
ss � � Pr � φs � φs � � � Fφsq � b � λs � λs �

� 1 � �

� skipping approach, λs �
�� λ1 and λs �

�� λnΛ and λs � � 2:

pq
ss � � Pr � φs � φs � � �

� Fφsq � b � λs � λs �
� 1 � � � Fφsq � b � λs � λs �

� 1 � �
�

∞

∑
i � 1

� Fφsq � b � λs � λs �
� 1 �

i � � � Fφsq � b � λs � λs �
� 1 �

i � � � �

� skipping approach, λs �
�� λ1 and λs �

�� λnΛ and λs � � 2 and λs � 	 2:

pq
ss � � Pr � φs � φs � � �

� Fφsq � b � λs � λs �
� 1 � � � Fφsq � b � λs � λs �

� 1 � �
�

∞

∑
i � 1

� Fφsq � b � λs � λs �
� 1 �

i � � � Fφsq � b � λs � 1 �
i � � � �

� skipping approach, λs �
�� λ1 and λs �

�� λnΛ and λs � 	 2:

pq
ss � � Pr � φs � φs � � � � Fφsq � b � λs � λs �

� 1 � � � Fφsq � b � λs � λs �
� 1 � � �
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Clearly, the larger the number of progress intervals, the better the modeling of
the state-transition probabilities becomes, as the approximated values for λα � f � in
(4.3) move closer to their real values.

4.1.2 Expected revenues
To compute the expected revenues rq

ss � , consider processing any frame f . Further-
more, let s be the state of the SVA at start point α � f � , and let q be the quality level
at which frame f is processed. For frame f , the reward for the applied quality level
and the penalty for changing the quality level follow straightforwardly from state s
and quality level q, and are given by Rql � q � and Pqlc � qs � q � , respectively. We now
compute the expected number of deadlines misses for frame f . Recall from Section
2.3 that λ �ω � f � denotes the progress of frame f at its milestone, before consider-
ing possible deadline misses. If the aborting approach is applied, then at most one
deadline is missed for frame f . Hence, the expected number of deadline misses is
given by the probability of missing deadline d � f � :

Pr � λ �ω � f � � 0 � � �
using � 2 � 1 � �

1 � Pr � Xφ
�
f � q � f � � b � λα � f � �

� �
using � 4 � 2 � �

1 � Fφ
�
f � q � f � � b � λα � f � � �

If the skipping approach is applied, then multiple deadlines can be missed for frame
f , and the expected number of deadline misses is given by

∞

∑
i � 1

i � Pr � � i � λ �ω � f � � 1 � i � � �
using � 2 � 1 � �

∞

∑
i � 1

i � Pr � Xφ
�
f � q � f � � b � λα � f � �

i � �

�

∞

∑
i � 1

i � Pr � Xφ
�
f � q � f � � b � λα � f � �

i � 1 � �
� �

using � 4 � 2 � �
∞

∑
i � 1

i � Fφ
�
f � q � f � � b � λα � f � �

i � �

�

∞

∑
i � 1

i � Fφ
�
f � q � f � � b � λα � f � �

i � 1 � � �
Again using (4.3) to approximate λα � f � , for the aborting approach the expected
revenues rq

ss � are approximated by

rq
ss � � Rql � q � � Pdm � � 1 � Fφsq � b � λs � � � Pqlc � qs � q � �
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and for the skipping approach they are approximated by

rq
ss � � Rql � q � � Pdm �

∞

∑
i � 1

i � � Fφsq � b � λs
�

i � � � Fφsq � b � λs
�

i � 1 � � � � Pqlc � qs � q � �

Note that the expected revenues rq
ss � are independent of state s � . Hence, we can

denote the expected revenues by rq
s . Due to approximation (4.3), a larger number of

progress intervals nΛ results in a more accurate modeling of the expected revenues.

4.2 Solving the MDP model
We now discuss how the above-defined MDP model can be solved. First we have
to fill in a number of parameters in the model. We assume that the set Q of qual-
ity levels, the set Φ of frame types, the periodic latency δ, the applied deadline
miss approach, the budget b, and the different revenue parameters Rql � q � , Pdm, and
Pqlc � q � q � � are given by the context of the SVA and the system in which it runs. To
define the set of states, we have to choose the number nΛ of progress intervals. As
mentioned, the larger nΛ is chosen, the more accurately the state-transition prob-
abilities and expected revenues are approximated. To compute the state-transition
probabilities and expected revenues, the probabilities Pr � φ � φ � � and the cumulative
distribution functions Fφq must be available. The distribution functions Fφq can be
estimated by processing one or more representative video sequences nQ times, at
each of the nQ different quality levels, and by collecting processing-time statistics
for each frame type φ and for each quality level q. By also collecting statistics
on the frame types that appear successively, the probabilities Pr � φ � φ � � can be esti-
mated.

Using these parameters, the set of states and the set of actions are defined, and
the state-transition probabilities and expected revenues can be computed. Next,
the MDP model can be solved, which results in an optimal policy. For the MDP
there are in total n

nΛ � nΦ � nQ
Q different deterministic policies, of which one or more are

optimal. We first give an example to illustrate how the state-transition probabilities
and expected revenues are computed, and how an optimal policy can be derived.

Example 4.1. Consider an SVA that can process frames at two different quality
levels, q1 and q2. The frames do not vary in type, i.e., all frames are of type φ1. To
handle deadline misses we apply the aborting approach. Let the periodic latency
and the budget be given by δ � 2 and b � 40 ms, respectively. To define the set of
states we choose nΛ � 4 progress intervals: λ1 � � 1 � 1 � 25 � , λ2 � � 1 � 25 � 1 � 5 � , λ3 �
� 1 � 5 � 1 � 75 � , and λ4 � � 1 � 75 � 2 � . To estimate the cumulative distribution functions we
use the processing times of 100 frames. Applying quality level q1, the frames result
in the following processing times: 18 ms (10 frames), 28 ms (20 frames), 32 ms (25
frames), 38 ms (5 frames), 42 ms (10 frames), 48 ms (10 frames), and 52 ms (20
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frames). Applying quality level q2, the processing time for each frame is exactly
5 ms higher. Let the revenue parameters be given by Rql � q1 � � 0, Rql � q2 � � 5, and
Pdm � 20. For simplicity we assume that quality-level changes are not penalized.

Because frames do not vary in type and quality-level changes are not penalized,
we can reduce the set of states to the set of progress intervals only. Let random
variable Xq denote the processing time of a single frame at quality level q, and
let Fq denote the cumulative distribution function of Xq, i.e., Fq � x � � Pr � Xq � x � .
Because frames do not vary in type, the probabilities Pr � φs � φs � � in (4.4) – (4.6)
are all one, and distribution function Fφ1q is given by Fq. Applying (4.6), state-
transition probability pq1

λ2λ3
, for example, is given by Fq1 � 40 � 1 � 25 � 1 � 5 � 1 � � �

Fq1 � 40 � 1 � 25 � 1 � 75 � 1 � � � Fq1 � 30 � � Fq1 � 20 � . To compute this, we observe that
30 out of 100 frames have a processing time of at most 30 ms at quality level q1,
and 10 out of 100 frames have a processing time of at most 20 ms. Hence pq1

λ2λ3
�

0 � 2. The other state-transition probabilities and expected revenues are estimated
analogously, and are given in Table 4.1.

Table 4.1. The state-transition probabilities and expected revenues.

pq1
λiλ1

pq1
λiλ2

pq1
λiλ3

pq1
λiλ4

pq2
λiλ1

pq2
λiλ2

pq2
λiλ3

pq2
λiλ4

rq1
λi

rq2
λi

i � 1 0.7 0.2 0.1 0.0 0.9 0.1 0.0 0.0 � 8.0 � 4.0
i � 2 0.4 0.3 0.2 0.1 0.45 0.45 0.1 0.0 � 4.0 � 1.0
i � 3 0.2 0.2 0.3 0.3 0.3 0.15 0.45 0.1 0.0 5.0
i � 4 0.0 0.2 0.2 0.6 0.0 0.3 0.15 0.55 0.0 5.0

At each start point of a frame, the state of the SVA is given by one of the four
progress intervals, and given the state the controller selects either quality level q1
or q2. Hence, there are 24 � 16 different policies, of which at least one is optimal.
Let � q1 � q1 � q2 � q2 � denote the policy of selecting quality level q1 in states λ1 and
λ2, and quality level q2 in states λ3 and λ4. Using the state-transition probabilities,
this policy results in the Markov chain depicted in Figure 4.1.

Let p � λ � denote the (stationary) probability that the SVA’s state at the start
point of a frame is given by progress interval λ. The Markov chain for policy

� q1 � q1 � q2 � q2 � results in the following set of equations for p � λ1 � to p � λ4 � .������
�����

1 � p � λ1 � �
p � λ2 � �

p � λ3 � �
p � λ4 �

p � λ1 � � 0 � 7p � λ1 � � 0 � 4p � λ2 � � 0 � 3p � λ3 �
p � λ2 � � 0 � 2p � λ1 � � 0 � 3p � λ2 � � 0 � 15p � λ3 � � 0 � 3p � λ4 �
p � λ3 � � 0 � 1p � λ1 � � 0 � 2p � λ2 � � 0 � 45p � λ3 � � 0 � 15p � λ4 �
p � λ4 � � 0 � 1p � λ2 � � 0 � 1p � λ3 � � 0 � 55p � λ4 �

Solving this set of equations yields p � λ1 � � 498
1015 , p � λ2 � � 225

1015 , p � λ3 � � 198
1015 ,

and p � λ4 � � 94
1015 . Hence, the expected average revenue per frame of policy
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Figure 4.1. The Markov chain for policy � q1 � q1 � q2 � q2 � .

Table 4.2. The expected average revenues of the different policies.

policy expected average revenue
�
q1 � q1 � q1 � q1 � � 1096/261 �

� 4.20�
q1 � q1 � q1 � q2 � � 2150/599 �

� 3.59�
q1 � q1 � q2 � q1 � � 1684/455 �

� 3.70�
q1 � q1 � q2 � q2 � � 3424/1015 �

� 3.37�
q1 � q2 � q1 � q1 � � 1828/435 �

� 4.20�
q1 � q2 � q1 � q2 � � 446/115 �

� 3.88�
q1 � q2 � q2 � q1 � � 476/125 �

� 3.81�
q1 � q2 � q2 � q2 � � 424/115 �

� 3.69�
q2 � q1 � q1 � q1 � � 520/153 �

� 3.40�
q2 � q1 � q1 � q2 � � 1118/359 �

� 3.11�
q2 � q1 � q2 � q1 � � 188/59 �

� 3.19�
q2 � q1 � q2 � q2 � � 668/221 �

� 3.02�
q2 � q2 � q1 � q1 � � 225/68 �

� 3.31�
q2 � q2 � q1 � q2 � � 178/55 �

� 3.24�
q2 � q2 � q2 � q1 � � 408/127 �

� 3.21�
q2 � q2 � q2 � q2 � � 3746/1175 �

� 3.19

� q1 � q1 � q2 � q2 � is given by p � λ1 � rq1
λ1

�
p � λ2 � rq1

λ2

�
p � λ3 � rq2

λ3

�
p � λ4 � rq2

λ4
� �

3424
1015 �

� 3 � 37. The expected average revenues of all 16 policies are given in Table 4.2. It
follows that policy � q2 � q1 � q2 � q2 � is the only optimal policy, having an expected
average revenue of �

668
221 � � 3 � 02. Note that, although choosing quality level q2

in a state always results in a higher immediate revenue than choosing quality level
q1, in state λ2 it is apparently better to choose quality level q1. �
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To find an optimal policy without exhaustive search, we can apply, amongst others,
the policy iteration algorithm, the value iteration algorithm, or the successive ap-
proximation algorithm, as discussed in Section 3.3. The computation time of these
algorithms grows roughly quadratically with the number of states. Hence, when
choosing the number of progress intervals, one has to make a trade-off between the
accuracy of a solution and the time required to find it.

4.3 Off-line strategy
An optimal policy can as follows serve as a strategy for the controller. At each
start point of a frame f , the SVA calls the controller to obtain quality level q � f � .
In this call the SVA provides progress λα � f � and frame type φ � f � to the controller.
The controller uses this information to determine the state of the SVA. The state
is given by the progress interval corresponding to λα � f � , the previous quality level
for frame f , and frame type φ � f � . To determine the previous quality level, the
controller has to remember the quality level selected for the last-processed frame.
As mentioned earlier, for frame 1 we assume a previous quality level q1. Given
the state, the controller looks up the policy to select the quality level, and next it
returns the selected quality level to the SVA. We call this control strategy the off-
line strategy, because the applied policy is computed off line (i.e., before we run
the SVA) and it is not changed at run time.

An important issue is the run-time overhead (or processing-time overhead) im-
posed by the off-line strategy. Assuming a video signal with a picture resolution of
720 � 576 pixels, for each frame there are 414,720 pixels to be computed. Using
the off-line strategy, at each start point of a frame the controller successively has to
determine the state of the SVA, select the quality level for the frame by performing
a table lookup, update an internal register to store the selected quality level, and
return the selected quality level to the SVA. Since this all can be done in a small
number of computational steps, we consider the run-time overhead of the off-line
strategy to be low.

Another important issue is the storage overhead imposed by the off-line strat-
egy. A policy has a space complexity of

� � nΛ � nΦ � nQ � log � nQ � � . The storage
overhead of the off-line strategy can be reduced by considering only monotonic
policies. We call a policy monotonic if, for each integer i � �

2 � ������� nΛ � , for each
frame type φ � Φ, and for each previous quality level q � Q, the quality level to be
chosen in state � λi � φ � q � is the same or higher than the quality level to be chosen
in state � λi � 1 � φ � q � . In practice, optimal policies are usually monotonic, but this
is no strict rule. We constructed Example 4.1 especially to show that an optimal
policy can be non-monotonic. For a monotonic policy, per frame type and previous
quality level only nQ progress intervals have to be stored, viz. for each quality-level
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action the highest progress interval with that particular action. Hence, a monotonic
policy has a space complexity of

� � nΦ � n2
Q � log � nΛ � � . In practice, the number nΛ

of progress intervals is usually chosen much larger than the number nQ of quality
levels.

So, to relax the storage overhead imposed by the off-line strategy, we only use
monotonic policies. In case an optimal policy turns out to be non-monotonic, we
transform it as follows into a monotonic one. For each frame type φ � Φ and for
each quality level q � Q, we pairwise consider the progress intervals λi � 1 and λi,
for i � 2 ������� � nΛ. If the quality level to be chosen in state � λi � 1 � φ � q � is higher
than the quality level to be chosen in state � λi � φ � q � , then we change the quality
level to be chosen in state � λi � φ � q � to the one of state � λi � 1 � φ � q � . In general, this
transformation is at the cost of losing optimality. However, we take possible per-
formance losses for granted, as they are usually small in practice. In Example 4.1,
for example, the optimal policy � q2 � q1 � q2 � q2 � , with an expected average revenue
of � 3.02, would be transformed into the monotonic policy � q2 � q2 � q2 � q2 � , with an
expected average revenue of � 3.19.

Figure 4.2 shows an example monotonic policy for an SVA with four quality
levels and a periodic latency δ � 3, and for nΛ � 8 progress intervals. For simplic-
ity, we assume that frames do not vary in type. The figure has four columns, one
for each previous quality level. Each possible state of the SVA at the start point of
a frame is given by a particular progress interval in a particular column. The gray
scale indicates the quality level to be chosen. For example, if the progress at the
start point of a frame is 2.6 and the previous quality level is q2, then the off-line
strategy selects quality level q3.
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Figure 4.2. An example monotonic policy.
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4.4 Simulation experiments
To assess the effectiveness of the off-line strategy, and to study the behavior of
the strategy, we have run simulation experiments. These experiments are based on
processing-time statistics of a scalable MPEG-2 decoder running on a TriMedia
1300 (180 MHz) processor [Rathnam and Slavenburg, 1996]. The decoder was
made available to us by colleagues at Philips Research [Peng, 2001; Zhong et al.,
2002]. We used the decoder in the setting of a demonstrator annex research plat-
form [Otero Pérez and Nitescu, 2002; Hentschel et al., 2003]. Given an MPEG-2
encoded video stream as input, the decoder sequentially processes (decodes) the
frames of the stream. The decoder can process frames at four quality levels, in
increasing quality order named q1 to q4.

In the decoder, scalability is achieved by pruning input data of the Inverse Dis-
crete Cosine Transform (IDCT) process. This transformation reconstructs picture
data from a set of coefficients. If a fraction of the least important coefficients are
not used in the transformation (the pruning), then the picture data can still be re-
constructed, albeit at the cost of a lower visual quality. The fewer coefficients that
are used in the transformation, the smaller is the required number of computations.

Traces
To collect data for the experiments, we selected 18 MPEG-2 sequences from DVD;
see Table 4.3. The 18 sequences all have a frame rate of 25 fps. Using the decoder,
we processed each sequence four times, one time at each of the four different qual-
ity levels, and we measured the per-frame processing times. The sequences were
processed without imposing deadlines on frames. For each sequence we created a
so-called trace, a table in which we collected the measured processing time. The
successive rows of a trace correspond to the successive frames of the sequence,
and there is a column for each quality level. There is also a column for storing the
MPEG-2 frame type (I, P, or B). We labeled the 18 traces with the letters A to R.
Table 4.3 provides for each trace the title of the source DVD, the number of frames
in the sequence, and the average processing time per frame for quality levels q1 to
q4.

By concatenating traces A to R in alphabetical order, we also created one large
trace of in total 2,997,326 frames. At a frame rate of 25 fps, this trace corre-
sponds to over 33 hours of video. We labeled the concatenated trace with the
name CONCAT. Figure 4.3 shows for each quality level a cumulative distribution
function of the time required to process a single frame, based on the processing
times of trace CONCAT. A small fraction of the frames have a processing time
lower than 10 ms or higher than 45 ms, which is not visible in the figure.
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Table 4.3. The title of the source DVD, the number of frames, and the average
processing time per frame for quality levels q1 to q4, for the various traces used in
the experiments.

average processing time
per frame (ms)

trace title of source DVD #frames q1 q2 q3 q4

A ‘Allo ‘Allo series 1 & 2 (disc 1) 230,936 23.2 24.1 25.4 28.0
B ‘Allo ‘Allo series 1 & 2 (disc 2) 186,560 23.9 24.7 26.0 28.8
C ‘Allo ‘Allo series 1 & 2 (disc 3) 232,461 23.9 24.8 25.9 28.9
D Amsterdamned 162,900 22.9 23.7 24.7 28.0
E Antz 119,233 22.5 23.2 24.2 26.4
F De Lift 141,739 21.3 21.8 22.6 25.3
G Falling Down 161,842 22.7 23.7 25.4 27.3
H Flodder 164,158 20.7 21.2 22.2 24.5
I The Very Best of the 151,363 22.9 23.6 24.6 26.8

Muppet Show
J Pet Shop Boys – Montage 166,740 25.0 25.8 28.3 30.3
K Passenger 57 120,164 23.8 24.7 26.7 29.1
L The Leaning Tower of Pisa 75,075 21.7 22.3 23.2 25.5
M PSV Hoogtepunten 138,987 21.3 22.4 23.3 24.9
N Pet Shop Boys – Somewhere 136,560 22.2 22.9 24.2 27.2
O Van Kooten & De Bie 7 161,057 22.2 23.1 24.6 27.0
P Violent City 162,287 19.4 20.1 20.9 22.4
Q The World is not Enough 184,035 20.5 21.2 22.4 24.2
R Yes Minister series 1 301,229 21.5 22.2 23.0 24.8

CONCAT — 2,997,326 22.3 23.1 24.3 26.7
ARTIFICIAL — 5,000,000 22.3 23.1 24.3 26.7

As mentioned earlier, in the MDP model it is implicitly assumed that the processing
times of successive frames are independent. To assess the off-line strategy using
data that satisfies this assumption, we created a trace named ARTIFICIAL by in-
dependently drawing 5,000,000 real numbers from interval � 0 � 1 � , and by looking
up for each number the processing time at each of the four quality levels in the
distribution functions of Figure 4.3. In trace ARTIFICIAL we do not distinguish
between different frame types.

Settings
In the MDP model we use the following default settings for the various parameters.
These settings are varied in Sections 4.4.2 till 4.4.5.� We use a periodic latency δ � 3, which implies that the SVA can work ahead

by at most two periods P; other values of δ are evaluated in Section 4.4.2.
Because the used MPEG-2 sequences all have a frame rate of 25 fps, we have
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Figure 4.3. A cumulative distribution function of the time required to process a
single frame, for each quality level of the scalable MPEG-2 decoder, based on the
processing times of trace CONCAT.

P � 40 ms.� To handle deadline misses we apply the skipping approach; the difference
with the aborting approach is evaluated in Section 4.4.3.� We use nΛ � 300 progress intervals; other values of nΛ are evaluated in
Section 4.4.4.� Based on a discussion with experts in the video domain, we define the rev-
enue parameters as follows. The rewards for processing a frame at a partic-
ular quality level are given by Rql � q1 � � 4, Rql � q2 � � 6, Rql � q3 � � 8, and
Rql � q4 � � 10. The deadline-miss penalty is set to Pdm � 10 � 000, which
roughly means that we allow at most one deadline miss per 1000 frames,
given Rql � q4 � � 10; other values of the deadline-miss penalty are evaluated in
Section 4.4.5. The penalties Pqlc for changing the quality level between two
successively processed frames are given by 10, 100, and 1000 for increasing
or decreasing the quality level by one, two, or three levels, respectively.

To solve the MDP model, we use the successive approximation algorithm with
a convergence error ε � 0 � 001; see Section 3.3. This algorithm computes an opti-
mal policy for the MDP, and a corresponding expected average revenue per frame.
As mentioned earlier, if the computed policy is non-monotonic, then we transform
it into a monotonic one.
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We use OFF(τ) as a shorthand notation for the off-line strategy, using a pol-
icy that was computed for the above-mentioned default parameter settings and for
distribution functions Fφq derived from the processing times of a trace τ. We call
trace τ the statistics trace. Strategy OFF(τ) can use multiple policies, computed for
different values of budget b. For any change in the parameter settings with respect
to the default settings we extend the shorthand notation. For example, if we use
the aborting approach instead of the skipping approach in the MDP model, then we
denote the strategy by OFF(τ, aborting approach).

To assess the off-line strategy, or any other control strategy, for different values
of budget b we simulate that the SVA processes a sequence of MPEG-2 frames,
based on the processing model described in Chapter 2. The control strategy is
used to select the quality level for each frame, and the processing times of the
successive frames in the sequence are taken from a trace τ. We call this a simulation
of the control strategy on trace τ, and we call trace τ the simulation trace. In every
simulation we measure various performance aspects, such as the number of frames
that are processed at each quality level, the number of deadline misses, the number
and size of the quality-level changes between successively processed frames, and
the average revenue received per processed frame.

As a rule, the parameters that are used in a simulation always match the pa-
rameters that were used to derive the applied control strategy. For example, in a
simulation of strategy OFF(CONCAT, δ � 4) on a trace τ we also use a periodic
latency of 4. Also, if we use a budget of 30 ms in the simulation, then the off-
line strategy uses a policy that was computed for the exactly same budget. The
only exception to this rule is that the used statistics trace can differ from the used
simulation trace.

To evaluate a particular parameter setting for the off-line strategy, or for any
other control strategy in one of the subsequent chapters, we always use trace
CONCAT as statistics trace. This is because trace CONCAT provides a kind of
average over the traces A to R, which mutually vary in processing complexity. In
Section 6.6.4 we discuss whether trace CONCAT is indeed a good choice. As
simulation trace we mainly use trace ARTIFICIAL. Because this trace does not
contain frame type information, in the MDP model we assume that all frames have
the same type. In Section 5.4.3 we evaluate the usage of different frame types in
the MDP model.

Experiment overview
In Section 4.4.1 we assess the off-line strategy for the default parameter settings.
Next, in Section 4.4.2 we vary the periodic latency, in Section 4.4.3 we vary the
deadline miss approach, in Section 4.4.4 we vary the number of progress intervals,
and in Section 4.4.5 we vary the deadline miss penalty. Finally, in Section 4.4.6 we
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use trace CONCAT instead of trace ARTIFICIAL as simulation trace.

4.4.1 Results for the default parameter settings
As an initial experiment, we applied strategy OFF(CONCAT) in 61 simulations on
trace ARTIFICIAL, for budgets 10ms � 10 � 5ms � ����� � 40ms. Figures 4.4, 4.5, 4.6,
and 4.7 show the average revenue per frame, the number of deadline misses, the
average increase in quality level per frame, and the number of frames processed
at each quality level, respectively, as a function of the budget, as measured in the
different simulations. The figures only show results over the budget range 20 ms –
30 ms. We do not show a graph of the average decrease in quality level, as it is
almost identical to the average increase in quality level. This is because the sum of
all quality level increases and the sum of all quality level decreases in a simulation
can differ at most nQ � 1 � 3.

For low values of the budget we observe that the strategy only selects quality
level q1, and that the average revenue is strongly negative, which is due to un-
avoidable deadline misses and the relatively high deadline miss penalty. For each
missed deadline one frame is skipped. The larger the budget, the better the SVA
is capable of meeting deadlines. Hence, as the budget increases, the number of
frames that are processed at q1 first grows towards the number of frames of trace
ARTIFICIAL, which is 5,000,000. At b � 23 ms, the number of deadline misses is
small enough (1604) to result in a positive average revenue (0.79). At b � 23 � 5 ms,
the controller starts to select q2 as well, and the number of deadline misses drops
further to 313. As the budget further increases, the most frequently selected quality
level moves gradually to q4, and the average revenue converges to the maximum
value of 10. This maximum value of 10 is due to the reward of 10 for processing
a frame at quality level q4, and the vanishing of both deadline misses and quality-
level changes. From b � 30ms onwards the number of deadline misses is zero,
and almost all frames are processed at q4. In Figure 4.6, the peaks at b � 23 � 5 ms,
b � 24 � 5 ms and b � 26 ms correspond to the budgets at which the strategy starts
using a higher quality level as well.

To give an impression of the different constituents of the average revenue, con-
sider the simulation for b � 25 ms. In this simulation, we measure that 62,278
frames are processed at q1, 277,975 frames are processed at q2, and 4,659,709
frames are processed at q3. We measure in total 38 deadline misses. The qual-
ity level is increased 42,892 times by one level, decreased 42,516 times by one
level, and decreased 187 times by two levels. This results in an average revenue of

� 62 � 278 � 4 � 277 � 975 � 6 � 4 � 659 � 709 � 8 � 38 � 10 � 000 � � 42 � 892 � 42 � 516 � � 10 �

187 � 100 � �
4 � 999 � 962 � 7 � 59.
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Figure 4.4. The average revenue as a function of the budget, for strategy
OFF(CONCAT) applied in simulations on trace ARTIFICIAL.
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Figure 4.5. The number of deadline misses as a function of the budget, for strategy
OFF(CONCAT) applied in simulations on trace ARTIFICIAL.
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Figure 4.6. The average increase in quality level as a function of the budget, for
strategy OFF(CONCAT) applied in simulations on trace ARTIFICIAL.

0

1

2

3

4

5

20 21 22 23 24 25 26 27 28 29 30

nu
m

be
r o

f p
ro

ce
ss

ed
 fr

am
es

 (x
 1

,0
00

,0
00

)

budget b (ms)

q1

q4

q3

q2

Figure 4.7. The number of frames processed at each quality level as a func-
tion of the budget, for strategy OFF(CONCAT) applied in simulations on trace
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58 Chapter 4

4.4.2 Varying the latency
To study the influence of the latency on the results we obtained for the de-
fault parameter settings, we applied the strategies OFF(CONCAT, δ � 2) to
OFF(CONCAT, δ � 6) each in 61 simulations on trace ARTIFICIAL, for budgets
10ms � 10 � 5ms � ����� � 40ms. Note that strategy OFF(CONCAT, δ � 3) is the same as
strategy OFF(CONCAT). Figure 4.8 shows the average revenue per frame that we
measured in the simulations for the different strategies, as a function of the budget.
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Figure 4.8. The average revenue for strategies OFF(CONCAT, δ � 2) to
OFF(CONCAT, δ � 6) applied in simulations on trace ARTIFICIAL, as a func-
tion of the budget.

We see that a higher latency results in a higher average revenue, which is logical
because a higher latency gives more space to the SVA to even out the varying load
of successive frames. As a result, larger bursts in the load of frames can be handled
without missing a deadline. Second, we see that the increase in average revenue
for successive values of δ becomes smaller, as the numbers of bursts that cannot be
handled properly, decreases (rapidly). Additionally, the smaller δ, the stronger the
off-line strategy has to reduce its quality level if the progress decreases, to prevent
deadline misses.

For some systems a high latency is unacceptable. This is for example the case
when the number of buffers is required to be small, due to a limited amount of sys-
tem memory. Another example is when a video stream and a corresponding audio
stream are processed using independent devices. In that case, using a high latency
for video processing may cause the audio stream and video stream to run out of
sync. User perception studies show that for lip synchronization a delay of 80 ms
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between audio and video (audio ahead of video, or video ahead of audio) generally
remains undetected, whereas a delay of 160 ms is considered to be unacceptable
[Steinmetz, 1996]. However, for many systems it is not that hard to keep audio and
video synchronized, in which case a high latency can be allowed.

From the above experiment we do not see a clear benefit of choosing the latency
very high. To give the SVA some space to work ahead, we use δ � 3 as default value
for the periodic latency, i.e., the SVA can work ahead by at most two periods. At a
frame rate of 25 fps, a lip synchronization delay of 80 ms corresponds to two video
frames.

4.4.3 Varying the deadline miss approach
To study the influence of the deadline miss approach on the results we obtained for
the default parameter settings, we applied the strategies OFF(CONCAT, aborting
approach) and OFF(CONCAT, skipping approach) each in 61 simulations on
trace ARTIFICIAL, for budgets 10ms � 10 � 5ms ������� � 40ms. Note that strategy
OFF(CONCAT, skipping approach) is the same as strategy OFF(CONCAT). Fig-
ures 4.9 and 4.10 show the average revenue per frame and the number of deadline
misses, respectively, that we measured in the simulations for both strategies, as a
function of the budget.

For both strategies we observe that deadlines are missed up to and including
a budget of 29.5 ms. For smaller budgets we observe that the skipping approach
results in fewer deadline misses than the aborting approach, and therefore in a
higher average revenue.

Applying the skipping approach, if the deadline of a frame is missed, then a
new deadline is assigned to the frame, and a later frame is skipped. Because for
small budgets many deadlines are missed, also many frames are skipped. However,
even for small budgets the number of deadline misses is considerably smaller than
the total number of frames, which is 5,000,000. Due to the work-preserving nature
of the skipping approach, still a reasonable number of frames are completed. For
budgets up to and including 23 ms the strategy only selects quality level q1, and
the SVA tries to complete as many frames as possible within the given time. As a
result, the number of deadline misses decreases roughly linearly as a function of the
budget. At b � 23 � 5 ms, when the strategy starts to trade-off a higher quality level
for deadline misses and quality-level changes, the number of deadline misses does
not immediately drop to zero, but starts decreasing at a lower rate. At b � 30ms
the number of deadline misses becomes zero.

Applying the aborting approach, if the deadline of a frame is missed, then the
frame is aborted and all work is lost. Because the aborting approach is not work-
preserving, for small budgets the number of deadline misses approaches the total
number of frames. In a worst-case situation a frame’s deadline falls right before the
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Figure 4.9. The average revenue for strategies OFF(CONCAT, aborting ap-
proach) and OFF(CONCAT, skipping approach) applied in simulations on trace
ARTIFICIAL, as a function of the budget.

0

1

2

3

4

5

10 12 14 16 18 20 22 24 26 28 30

nu
m

be
r o

f d
ea

dl
in

e 
m

is
se

s 
(x

 1
,0

00
,0

00
)

budget b (ms)

aborting approach
skipping approach

Figure 4.10. The number of deadline misses for strategies
OFF(CONCAT, aborting approach) and OFF(CONCAT, skipping approach)
applied in simulations on trace ARTIFICIAL, as a function of the budget.



Off-line solution approach 61

frame is completed, which means that a lot of processing time is wasted. The shape
of the graph of the number of deadline misses can be explained as follows. From
(2.1) – (2.5) it can be derived that if a frame is aborted, then the next frame to be
processed has a progress of exactly one at the start point. If the progress of a frame
at its start point is one, then the SVA has exactly b time to process the frame without
missing the frame’s deadline. If all frames would have a progress of one at the
start point, then for increasing values of the budget the number of deadline misses
would decrease roughly according to the distribution of the processing times of
the frames. For small budgets many deadlines are missed, which means that many
frames indeed have a progress of one at the start point. As the budget increases, the
number of deadline misses decreases, which means that the number of frames with
a progress of one at the start point also decreases. Hence, as the budget increases,
the number of deadline misses starts decreasing more linearly, as for the skipping
approach. At b � 24 ms, the controller starts to trade-off a higher quality level for
deadline misses and quality-level changes. From this budget onwards the strategy
behaves roughly similarly to the strategy for the skipping approach.

4.4.4 Varying the number of progress intervals
To study the influence of the number nΛ of progress intervals on the results we
obtained for the default parameter settings, we have chosen twelve different values
of nΛ: 25, 40, 60, 90, 135, 200, 300, 450, 675, 1000, 1500, and 2250. In succes-
sion, these values increase roughly by a factor of 1.5. For each value of nΛ we
applied strategy OFF(CONCAT, nΛ) in 61 simulations on trace ARTIFICIAL, for
budgets 10ms � 10 � 5ms � ����� � 40ms. Note that strategy OFF(CONCAT, nΛ � 300)
is the same as strategy OFF(CONCAT). Figure 4.11 shows the computation time
of successive approximation1 , the expected average revenue per frame of strat-
egy OFF(CONCAT, nΛ) as computed by successive approximation, and the aver-
age revenue per frame for strategy OFF(CONCAT, nΛ) applied in a simulation on
trace ARTIFICIAL, as a function of nΛ, for b � 27 ms. The computation time of
successive approximation includes the time needed to compute the required state-
transition probabilities and expected revenues beforehand.

We observe that the computation time of successive approximation grows
roughly quadratically with nΛ. This computation time is not a real point of concern,
because the algorithm is applied before run time, and we are primarily interested
in a low run-time overhead of the controller. Nevertheless, this observation gives
reason to not choose the number of progress intervals unnecessarily large.

In the figure, we observe that for an increasing number of progress intervals
1The computation time was measured on a Toshiba Satellite 1410-304 personal computer (Mo-

bile Intel Celeron 1.8 GHz processor, 512 MB RAM). The successive approximation algorithm was
implemented using Microsoft Visual C++ 6.0.
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Figure 4.11. The computation time of successive approximation (right axis),
the expected average revenue of strategy OFF(CONCAT, nΛ) as computed by
successive approximation (left axis), and the average revenue for strategy
OFF(CONCAT, nΛ) applied in a simulation on trace ARTIFICIAL (left axis), as a
function of nΛ, for b � 27 ms.

the expected average revenue becomes less pessimistic. This pessimism is due to
worst-case approximation (4.3) in the MDP model. The average revenue measured
in the simulations is persistently higher than the expected average revenue, and
the distance between the two becomes smaller as the number of progress intervals
increases. The average revenue measured in the simulations quickly converges to
a value of approximately 9 � 4, and from nΛ � 300 progress intervals onwards this
value does not significantly increase anymore. Even though the expected average
revenue has not yet converged at nΛ � 300, this number of progress intervals al-
ready results in a nearly optimal strategy for the simulation trace. For the other 60
values of the budget we observe a similar convergence result. For this reason, we
have selected nΛ � 300 as the default number of progress intervals.

4.4.5 Varying the revenue parameters
The deadline miss penalty has the highest value of all revenue parameters. Initial
tests showed that the effects of varying the quality-level rewards and the quality-
level change penalties are marginal, in the sense that all settings work similarly
well. Hence, in this section we discuss only the effect of changing the deadline
miss penalty.
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To study the influence of deadline-miss penalty Pdm on the results we obtained
for the default parameter settings, we have chosen five different values of Pdm:
10, 100, 1000, 10,000, and 100,000. For each value of Pdm we applied strat-
egy OFF(CONCAT, Pdm) in 61 simulations on trace ARTIFICIAL, for budgets
10ms � 10 � 5ms � ����� � 40ms. Note that strategy OFF(CONCAT, Pdm � 10 � 000) is the
same as strategy OFF(CONCAT). Figures 4.12 and 4.13 show the average revenue
per frame and the number of deadline misses that we measured in the simulations
for the different strategies, as a function of the budget.

For a given budget, we observe that a higher deadline miss penalty results in a
lower average revenue. Up to and including a budget of 22 ms, the four strategies
OFF(CONCAT, Pdm) for Pdm � 100 to Pdm � 100 � 000 only select quality level q1.
As a result, their graphs for the number of deadline misses overlap. The four
strategies start using higher quality levels at budgets of 22.5 ms, 23.5 ms, 23.5 ms,
and 24.0 ms, respectively. The strategy for Pdm � 100 � 000 starts using quality level
q3 at b � 26 � 5ms, which results in a dip in the average revenue at b � 26ms. Other
dips in the average revenue can be explained similarly.

Because of its low deadline miss penalty, strategy OFF(CONCAT, Pdm � 10)
also uses high quality levels at small budgets. Up to and including a budget of
11.5 ms the strategy only selects q3, and from a budget of 12 ms onwards the strat-
egy only selects q4. The switch from q3 to q4 results in a jump in the number of
deadline misses. Apparently, the penalty for a deadline miss is outweighted by the
reward for a high quality level. If one wants to avoid deadline misses, then the
deadline miss penalty should be chosen significantly higher than the rewards for
the different quality levels.

4.4.6 Processing-time independence revisited
As mentioned earlier, the MDP model implicitly assumes that the processing times
of successive frames are independent. So far, we only used trace ARTIFICIAL as
simulation trace, a trace that was especially constructed to satisfy this assumption.
To evaluate the effect of using a simulation trace that corresponds to real video
content, we applied strategy OFF(CONCAT) in 61 simulations on trace CONCAT,
for budgets 10ms � 10 � 5ms � ����� � 40ms. We compare the results of these simulations
with the results we obtained earlier for strategy OFF(CONCAT) applied in simu-
lations on trace ARTIFICIAL, in Section 4.4.1. Figures 4.14 and 4.15 show the
average revenue per frame and the average number of deadline misses per frame,
respectively, as a function of the budget, for strategy OFF(CONCAT) applied in
simulations on both trace ARTIFICIAL and trace CONCAT. Because the two sim-
ulation traces vary in length, we do not consider the actual number of deadline
misses, but only an average.
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Figure 4.14. The average revenue for strategy OFF(CONCAT) applied in simula-
tions on trace ARTIFICIAL and trace CONCAT, as a function of the budget.
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We observe that the performance of the off-line strategy is disappointing if trace
CONCAT is used as simulation trace. For example, using trace ARTIFICIAL as
simulation trace, at b � 24ms the average number of deadline misses is almost zero
and the average revenue is 5.5. At the same budget, for trace CONCAT the average
number of deadlines misses is 0.012 and the average revenue is � 118.7. This re-
markable difference in performance can be explained as follows. The MDP model
is memoryless, which means that the processing times of successive frames are im-
plicitly assumed to be independent. For trace ARTIFICIAL this is indeed a valid
assumption, because its processing times have been drawn independently from dis-
tribution functions. However, the assumption is not valid for trace CONCAT. For
example, Figure 4.16 shows the processing times of frames 15,000 – 17,500 of
trace ARTIFICIAL and trace CONCAT, for quality level q4. As we can see, trace
CONCAT shows dependencies in the processing times of successive frames. These
dependencies are due to the related content of successive frames. The off-line strat-
egy is not prepared for such dependencies. In particular, if there is an accumulation
of high processing times, then the strategy selects the quality levels for frames too
optimistically, because on average it does not expect too many difficult frames in a
row. As a result, many deadlines are missed. Similarly, if there is an accumulation
of low processing times, then the strategy is too pessimistic, because on average it
does not expect so many easy frames in a row.

Because the off-line strategy is not prepared to handle dependencies in the
processing times of successive frames, it performs sub-optimal. In the next chapter
we enhance the off-line strategy to get over this shortcoming.
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Figure 4.16. The processing times of frames 15,000 – 17,500 of trace
ARTIFICIAL (fig. A) and trace CONCAT (fig. B), for quality level q4.





5
Handling load dependencies

At the end of Chapter 4 we observed that the off-line strategy performs well if the
processing times of successive frames are independent, but that the strategy falls
short when there are load dependencies. In this chapter we present an approach to
tackle this shortcoming of the strategy. First, in Section 5.1 we distinguish between
short-term and structural load fluctuations, and we define a run-time measure for
the structural load. Next, in Section 5.2 we discuss an assumption that is needed
to define this run-time measure. Based on the run-time measure for the structural
load, in Section 5.3 we enhance the off-line strategy, to take care of dependencies
in the processing times of successive frames. Finally, in Section 5.4 we assess the
effectiveness of the enhanced strategy by means of simulation experiments.

5.1 Load fluctuations
The processing time of a frame may depend on various aspects, as, for example, the
quality level at which the frame is processed, the frame type, cache misses, and the
overhead imposed by task switching and control. Due to the random or short-term
dynamic nature of these aspects, they typically result in short-term fluctuations in
the processing times of successive frames. For many video algorithms, the pro-
cessing time of a frame may also (strongly) depend on the video content. For these
algorithms, long-term dependencies in the video content of successive frames may

69
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result in long-term dependencies in the processing times of the frames. In par-
ticular, the processing times of frames in the same video shot are usually highly
correlated.

To illustrate the influence of the video content on the processing times of
frames, in Figure 5.1 we show the processing times of frames 700 – 1700 of trace
N, at quality level q4, and we compare these processing times with the correspond-
ing video content. The subsequence consisting of frames 700 – 792 shows a black
title screen. Next, subsequence 793 – 1002 is a video shot of a living room with
people, and subsequence 1003 – 1176 is a video shot of two similar living rooms.
At frame 1177 a concert begins. The concert starts with some dark video shots,
and gradually more light and movement appears in the video. The peak in the load
at frame 1392 corresponds to a sudden light flash.
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Figure 5.1. The processing times of frames 700 – 1700 of trace N, at quality level
q4.

In Figure 5.1 we can distinguish between short-term load fluctuations, as, for
example, the load fluctuations within the subsequences 700 – 792 and 793 – 1002,
and structural load fluctuations, as, for example, the significant jumps in the load at
frames 793, 1003, and 1177. Once the concert begins, at frame 1177, the structural
load fluctuations become more smoothly. In the figure, the short-term load fluc-
tuations are mainly due to difference in decoding complexity between MPEG-2
I-, P-, and B-frames, and the structural fluctuations are mainly due to the varying
complexity of the video content that is processed.

Given the above, we consider the load of a video processing task to consist of a
content-dependent structural load, around which short-term load fluctuations take
place. In the off-line strategy, the controller selects the quality level for each frame
based on the progress and the previous quality level. To take care of dependencies
in the processing times of successive frames, the controller has to select the quality
levels for frames based on the structural load as well, but it has to ignore the short-
term load fluctuations. Hence, we are interested in a measure for the structural load
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that can be computed by the controller at run time.
For an SVA, load fluctuations are partly due to the different quality levels at

which successive frames are processed. To remove this influence of the quality
level, as a first step towards defining a run-time measure for the structural load we
define the complexity factor of a completed frame f by

c � f � � µ � f �
µ̄ � q � f � � �

where µ̄ � q � denotes the expected processing time of a frame processed at quality
level q � Q. The µ̄ � q � -values for the different quality levels q are determined before
run time, for example by computing the average processing time per frame at each
quality level, for the processing times in a trace. The used trace should, of course,
be representative for the sequence of frames that is processed at run time. For the
various traces that we use throughout this thesis, the average processing times are
given in Table 4.3.

We assume that the complexity factor of a completed frame is more or less
independent of the quality level at which the frame has been processed. We need
this assumption, because at run time we can measure the processing time of a frame
at only one quality level, the quality level at which the frame is processed, which
is not necessarily the quality level at which other frames are processed. We discuss
this assumption in more detail in Section 5.2.

The complexity factors of successively completed frames comprise both short-
term and structural fluctuations. To remove the short-term fluctuations, we can
apply various types of low-pass filters, such as a finite impulse response (FIR)
filter or an infinite impulse response (IIR) filter [Oppenheim and Schafer, 1975].
An FIR filter computes a weighted average over a window of past inputs. An IIR
filter uses a feedback mechanism, which means that the filter’s output is implicitly
based on all past inputs. An example of an IIR filter is the exponential recency-
weighted average [Sutton and Barto, 1998]. This filter weights recent inputs more
heavily than long-past ones. Let xi and yi denote the i-th input and output of the
filter, respectively. Given input xi, output yi is given by

yi � � 1 � θ � yi � 1
� θxi � (5.1)

where θ is a step-size parameter � 0 � θ � 1 � . Initial value y0 is usually chosen
equal to x1. Using this filter, in the computation of yi, to each input x j � 1 � j � i �
a weight of θ � 1 � θ � i � j is assigned, and to y0 a weight of � 1 � θ � i is assigned. The
sum of these i

� 1 weights is one, and each weight decreases exponentially as i
increases. The closer to zero θ is chosen, the stronger the filter takes past inputs
into account. For θ � 1 each output yi is given by input xi.

We denote the filtered value of complexity factor c � f � by c � � f � . We call c � � f �
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Figure 5.2. The processing times for decoding a sequence of MPEG-2 frames,
where each frame is processed randomly at one of four different quality levels (fig.
A), the corresponding complexity factors (gray) and running complexity factors
(black), computed using filter (5.1) with θ � 0 � 1 (fig. B), and the corresponding
scaled budgets for b � 25 ms (fig. C).

the running complexity factor of frame f . If we use the running complexity fac-
tor without referring to a particular frame, then we implicitly refer to the running
complexity factor of the most recently completed frame. For initialization, if there
is no completed frame, then we assume a running complexity factor of one.

The running complexity factor of a frame f is a run-time measure for the hard-
ness of the frames in the near vicinity of f . At run time, a running complexity
factor of, say, 1.2 indicates that the frames that are currently being processed are
roughly 1.2 times harder to process than expected. For the SVA, this is like process-
ing frames with a running complexity factor of one, but using a budget that is 1.2
times smaller than the actual budget b. In other words, a budget of 30 ms appears to
be a budget of only 30ms

�
1 � 2 � 25ms. Similarly, for a running complexity factor
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of 0.8 that same budget appears to be 37.5 ms. We call these instinctive budgets of
25 ms and 37.5 ms scaled budgets. More precisely, we define the scaled budget of
a completed frame f by

υ � f � � b
c � � f � �

Again, if we use the scaled budget without referring to a particular frame, then we
implicitly refer to the scaled budget of the most recently completed frame. For
initialization, if there is no completed frame, then we assume a scaled budget of b.

To illustrate the complexity factor, running complexity factor, and scaled bud-
get, we created a small trace consisting of the processing times for the first 5000
frames of trace E. Figure 5.2A shows the processing times of the 5000 frames,
where for each frame we have selected the applied quality level at random from set
Q. If we compute the complexity factor of each frame, using µ̄ � q � -values that are
given by the different average processing times of the 5000 frames, then we obtain
the gray graph of complexity factors that is shown in Figure 5.2B. The black line in
this figure shows the running complexity factors, computed using filter (5.1) with
a step-size parameter θ � 0 � 1. Next, Figure 5.2C shows the corresponding graph
of the scaled budget, for b � 25 ms.

5.2 Complexity-factor assumption
In this section we discuss the assumption that the complexity factor of a completed
frame is more or less independent of the quality level at which the frame has been
processed. Because we use the complexity factor of a frame only to compute the
running complexity factor of the frame, we evaluate the assumption from the per-
spective of the running complexity factor.

For each quality level q1 to q4 we have computed complexity factor c � f � and
running complexity factor c � � f � for each frame f of trace CONCAT. To compute
the complexity factors, we used the average processing times of trace CONCAT as
given in Table 4.3 for the different µ̄ � q � -values. To compute the running complexity
factors, for each quality level we applied a copy of filter (5.1) with a step-size pa-
rameter θ � 0 � 1. We denote the complexity factor and running complexity factor of
a frame f that has been processed at quality level q by c � f � q � and c � � f � q � , respec-
tively. Using this notation, we define the maximum relative difference in running
complexity factor of a frame f by minq � Q c � � f � q � �

maxq � Q c � � f � q � . Figure 5.3
shows, for each quality level q, a cumulative distribution function of running com-
plexity factor c � � f � q � . Next, Figure 5.4 shows a cumulative distribution function
of the maximum relative difference in running complexity factor.

In Figure 5.3 we observe that the running complexity factors of frames vary
roughly between 0.6 and 1.4, for each of the four quality levels. We observe that
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Figure 5.3. A cumulative distribution function of running complexity factor
c � � f � q � for each quality level q, for the frames f of trace CONCAT.
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the four distribution functions are relatively close to each other. Next, in Figure
5.4 we observe that the maximum relative difference in running complexity factor
varies roughly between 0.9 and 1. Based on this result, we consider the running
complexity factor for a frame to be roughly independent of the applied quality
level.

5.3 Enhanced off-line strategy
In this section we discuss our approach to enhance the off-line strategy, to take
care of dependencies in the processing times of successive frames. First, in Sec-
tion 5.3.1 we consider a straightforward approach to enhance the off-line strategy.
Because this approach has severe disadvantages, in Section 5.3.2 we present an
alternative approach to enhance the off-line strategy, the so-called budget scaling
approach. Additional steps needed for the latter approach are discussed in Sections
5.3.3 and 5.3.4. In Section 5.3.5 we discuss the run-time overhead of the enhanced
strategy. Finally, in Section 5.3.6 we compare the budget scaling approach with the
straightforward approach.

5.3.1 A straightforward approach
To take care of dependencies in the processing times of successive frames in the
off-line strategy, a straightforward approach is to extend the definition of a state
in the MDP model with an extra component, viz. the running complexity factor.
Because the running complexity factor is a continuous measure, it has to be dis-
cretized in the same way as we discretized the progress, i.e., using intervals. Using
the extra state component, the controller can select the quality levels for frames
based on the structural load as well, without having the interference of short-term
load fluctuations. This approach requires that the controller keeps track of the run-
ning complexity factors of frames at run time.

The main disadvantage of this approach is that it suffers from from the so-called
curse of dimensionality [Sutton and Barto, 1998]. This means that the number of
states grows exponentially with the number of state components. Due to the larger
set of states, a larger set of processing-time statistics is needed to obtain the same
accuracy of the distribution functions Fφq of Fq in the MDP model. Moreover, the
set of states can easily grow too large to solve the MDP model in reasonable time.
For example, in Section 4.4.4 we measured a computation time of 3.0 s to solve the
MDP model for b � 27 ms, nΛ � 300, and nΦ � 1. If we assume a quadratic depen-
dence between the number of states and the time required to compute a policy, and
if we also use a granularity of 300 intervals to discretize the running complexity
factor, then the computation time will grow to over three days. Moreover, if we
also distinguish between the different MPEG-2 frame types in the MDP model,
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then the computation time will grow to over 28 days. Even worse, we may have to
compute a policy for many different values of the budget, as the run-time budget
of the SVA is usually not known in advance. Hence, the straightforward approach
to enhance the off-line strategy is practically infeasible.

5.3.2 Budget scaling approach
To avoid the disadvantages of the straightforward approach, we use an alternative
approach to enhance the off-line strategy, the so-called budget scaling approach.
The idea of the approach is the following. At run time we let the controller compute
the running complexity factors of the successively completed frames. A running
complexity factor of c � at the start point of a frame f indicates that the frames in the
near vicinity of f are roughly c � times harder than expected (ignoring short-term
fluctuations in the complexity factors of the frames). For the controller this feels
like the frames are exactly as hard as expected, but using a budget that is c � times
smaller than the actual budget b, i.e., a scaled budget of b

�
c � . To select quality level

q � f � , we hence let the controller apply a policy that has been computed for exactly
this situation, i.e., a policy computed for scaled budget υ � b

�
c � .

To compute a policy for a scaled budget υ, in the MDP model we fill in scaled
budget υ for budget b. Furthermore, in the MDP model we use processing-time
distribution functions Fφq or Fq which, for each quality level q, only comprise short-
term load fluctuations around the structural load. In Section 5.3.3 we discuss how
these distribution functions can be derived.

Before run time, we compute a policy – in principle – for each possible value
of the scaled budget. Next, at run time, to select the quality level for a frame, we let
the controller apply a policy that was computed for the actual value of the scaled
budget. Hence, the controller always applies a policy that is optimized for handling
short-term load fluctuations around the actual structural load. We call the off-line
strategy that is enhanced with this budget scaling approach the enhanced off-line
strategy, or, in short, the enhanced strategy. Note that in the enhanced strategy we
do not change the SVA’s budget for processing, b, but only the budget for which
the controller looks up the policy.

Clearly, because the scaled budget is a continuous measure, it is not feasible
to solve the MDP model for each possible value of the scaled budget. Therefore,
in practice we solve the MDP model only for a small well-chosen set of scaled
budgets. To approximate the policy for a particular value of the scaled budget, we
apply linear interpolation between the computed policies. We discuss this process
in more detail in Section 5.3.4.
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5.3.3 Trace normalization
As mentioned, in the MDP model we should use processing-time distribution func-
tions Fφq or Fq that for each quality level q only comprise short-term load fluctu-
ations around the structural load. We derive these distribution functions from the
processing times of a so-called normalized trace. In this section we discuss how
we can generate a normalized trace from a given source trace.

To generate a normalized trace from a given source trace, we mimic the run-
time effect of scaling, and we compensate for that in the processing times of the
source trace. Given the processing times in the source trace, for each quality level
q we first compute the average processing time per frame. We use these average
processing times for the different µ̄ � q � -values. Next, we again consider the pro-
cessing times of the successive frames in the source trace. For each frame f , and
for each quality level q, we compute complexity factor c � f � q � using expected pro-
cessing time µ̄ � q � , and we compute running complexity factor c � � f � q � using the
same low-pass filter as will be applied at run time. To compute the running com-
plexity factors c � � f � q � for a frame f at the different quality levels q, we use nQ

copies of the filter, one copy for each quality level. For the normalized trace, we
next define the processing time of frame f at quality level q by

µn � f � q � �
�� � µ � f � q � for f � 1

µ � f � q � �
c � � f � 1 � q � for f � 1 �

(5.2)

where µ � f � q � denotes the processing time of frame f at quality level q, as given
in the source trace. Note that in (5.2) we use denominator c � � f � 1 � q � instead of
c � � f � q � , to match the run-time situation where the controller at the start point of
a frame f only knows the running complexity factor of the just-completed frame
f � 1, and not of the frame f to be processed. If the applied low-pass filter is well-
chosen, then the processing times in the normalized trace will for each quality level
q only comprise short-term load fluctuations around the structural load.

To synchronize with the budget scaling process at run time, we let the controller
apply the µ̄ � q � -values and the filter that were also applied to create the normalized
trace that was used to compute the policies. Note that the running complexity fac-
tors that are computed by the controller at run time are based on the varying quality
levels at which frames are processed. As mentioned, this is unavoidable, because
at run time we can measure the processing time of a frame for only one quality
level, the quality level at which the frame is processed, which is not necessarily
the quality level at which other frames are processed. Clearly, in the process of
generating a normalized trace we do not have this restriction, because the source
trace contains the processing times of each frame at all quality levels.
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5.3.4 Linear interpolation of policies
We now discuss the interpolation step. As mentioned, we solve the MDP model
for a finite set of scaled budgets, and we let the controller interpolate linearly be-
tween the computed policies to select the quality level for a frame. We explain this
process using Figures 5.5 and 5.6. To derive these figures, we used an MDP model
with four quality levels, q1 to q4, and a periodic latency δ � 3. For simplicity, in
the MDP model we do not distinguish between different frame types. We solved
the MDP model for scaled budgets 15ms � 16ms � ����� � 40ms. Figure 5.5 shows the
policy that was computed for a scaled budget of 25 ms. Next, Figure 5.6 shows the
space of all computed policies, as a function of the scaled budget, but the view is
restricted to previous quality level q3 only. We can make such a figure for each
previous quality level. The dashed column for previous quality level q3 in Figure
5.5 corresponds to the dashed column for a scaled budget of 25 ms in Figure 5.6.
In Figure 5.6, we have connected the boundaries of the successive (sub)policies by
lines.

To select the quality level for a frame, the controller interpolates linearly be-
tween the computed policies. For example, at the start point of a frame f , if the
scaled budget is 28.5 ms, then the controller interpolates linearly between the poli-
cies for the scaled budgets of 28 ms and 29 ms to select quality level q � f � . If the
progress of frame f at the start point is given by λα � f � � 2, and if the previous
quality level is given by q3, then the controller selects quality level q4. This is
indicated by the ‘ � ’ in the figure. We do not extrapolate policies, i.e., for scaled
budgets smaller than 15 ms or larger than 40 ms the controller uses the policies for
scaled budgets of 15 ms and 40 ms, respectively.

5.3.5 Run-time overhead
Due to the budget scaling approach, the enhanced strategy results in a higher run-
time overhead than the off-line strategy. At each start point of a frame, the en-
hanced strategy first has to compute a complexity factor, a running complexity
factor, and a scaled budget. Next, the strategy has to interpolate between the com-
puted policies to select the quality level for the frame to be processed. Because
these computations can all be done in a small number of steps, we consider the
run-time overhead of the enhanced strategy to be comparable to the run-time over-
head of the off-line strategy.

5.3.6 Budget scaling approach vs. straightforward approach
In the straightforward approach of Section 5.3.1, the running complexity factor has
to be discretized to obtain a finite set of states for the MDP model. This discretiza-
tion has to be done using intervals, to be able to compute state-transition probabil-
ities and expected revenues for the MDP model. In the budget scaling approach,
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the scaled budget is also discretized. However, this is not done using intervals, but
by defining a finite set of scaled budget values for which a policy is computed, and
by applying linear interpolation between the computed policies at run time. The
latter discretization method is possible because we use the scaled budget indirectly
as a state component. Because a discretization step using intervals is less accurate
than a discretization step using linear interpolation, in the budget scaling approach
we can discretize the scaled budget at a much lower granularity than the running
complexity factor in the straightforward approach, to obtain a solution of the same
accuracy. Hence, significantly less computation time is needed to derive the set of
policies for the budget scaling approach than is needed to derive the single policy
for the straightforward approach. Moreover, if the budget of the SVA is not known
before run time, then using the straightforward approach we have to compute a
policy for different possible values of the budget.

5.4 Simulation experiments
To evaluate the enhanced strategy, we have run simulation experiments. These
experiments are a continuation of the experiments described in Section 4.4.

Settings
Given the default parameter settings defined in Section 4.4, for the enhanced strat-
egy we add one default parameter setting, namely an IIR filter with a step-size
parameter θ � 0 � 1. We evaluate other values of θ in Section 5.4.2.

To implement the enhanced strategy, we always solve the MDP model 61 times,
for scaled budgets 10ms � 10 � 5ms ������� � 40ms. Hence, the enhanced strategy has to
interpolate between 61 policies. We use ENH(τ) as a shorthand notation for the
enhanced strategy, using a set of policies computed for the default settings and a
statistics trace τ. Statistics trace τ is used as source trace to generate a normalized
trace. The normalized trace is used as input for the MDP model, to derive policies
for the strategy. The µ̄ � q � -values and the low-pass filter that are used in the trace
normalization process are also used at run time by the strategy, to compute the
complexity factors and running complexity factors of completed frames. For any
change in the parameter settings with respect to the default settings, we extend the
shorthand notation. For example, if we use an IIR filter with a step-size parameter
of 0.2 instead of 0.1, then we denote the strategy by ENH(τ, θ � 0 � 2).

Benchmark strategies
To assess the performance of control strategies, we introduce two benchmark
strategies. As a simple reference strategy we introduce Q4, which selects qual-
ity level q4 for each frame to be processed. Hence, this strategy corresponds to no
(intelligent) control at all. As a best-case strategy we introduce CLV, a clairvoyant



Handling load dependencies 81

strategy which optimally selects the quality level for each frame based on complete
knowledge of the processing times of future frames. Strategy CLV is virtual, in the
sense that it cannot be used in a simulation, but it only provides an upper bound
on the average revenue that can be attained in a simulation. This upper bound is
computed off line, based on the processing times given in a simulation trace. At
the start point of a frame, a run-time strategy can only guess what the processing
time of the frame at a particular quality level will be. The clairvoyant strategy is
not a run time strategy, because it knows this processing time in advance, as well
as the processing times of all the frames that follow. The closer a run-time strategy
performs to the clairvoyant strategy, the better it is.

To compute an upper bound on the average revenue that can be obtained in
a simulation on a trace τ for a budget b, as provided by the clairvoyant strategy,
we apply dynamic programming [Bellman, 1957]. We do this as follows. Let
n denote the number of frames of trace τ. We consider successively the frames
n � n � 1 ������� � 1. For each frame f that we consider, for each state s � S, and for
each quality level q � Q, we compute the effect of processing frame f at quality
level q, starting from state s at the start point of frame f . This computation is
based on (2.1) – (2.5), in which the processing time of frame f at quality level q is
taken from trace τ. In particular, we compute the frame that has to be processed
by the SVA after processing frame f , denoted by g � f � s � q � , the resulting state
of the SVA at the start point of frame g � f � s � q � , denoted by s � � f � s � q � , and the
revenue corresponding to the state transition, denoted by r � � f � s � q � . Usually, frame
g � f � s � q � corresponds to frame f

� 1, but if the skipping approach is applied the
frame may also corresponds to a later frame. Note that frame g � f � s � q � and state
s � � f � s � q � are undefined if f is the last frame to be processed, for example when
f � n, or when f � n � 1 and frame n is skipped. Because the number n of frames
is given, we have a finite time horizon. Hence, we can maximize the sum of the
revenues over all processed frames. To compute the maximum average revenue,
we also have to know the number of processed frames. We next give the required
recursive equations for dynamic programming.

For each frame f and for each state s, we compute an accumulated revenue
racc � f � s � and a number i � f � s � of processed frames. If f or s is undefined, then we
define racc � f � s � � 0 and i � f � s � � 0. Otherwise, to compute racc � f � s � and i � f � s � ,
we first compute quality level q � f � s � by1

q � f � s � � arg max
q � Q

� r � � f � s � q � �
racc � g � f � s � q � � s � � f � s � q � � � �

1Note that, in theory, another quality level q
�
f � s � might result in a smaller number i

�
f � s � , which

in turn might result in a larger fraction racc � f � s ��� i
�
f � s � . However, this is very unlikely, because a

smaller number i
�
f � s � means that more deadlines have been missed, and deadline misses are heavily

penalized.
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Next, we compute the accumulated revenue racc � f � s � by

racc � f � s � � r � � f � s � q � f � s � � �
racc � g � f � s � q � f � s � � � s � � f � s � q � f � s � � � �

and we compute the number i � f � s � by

i � f � s � � 1 �
i � g � f � s � q � f � s � � � s � � f � s � q � f � s � � � �

Given the state s � S of the SVA at the start point of frame 1, an upper bound on the
average revenue that can be attained in the simulation is given by racc � 1 � s � �

i � 1 � s � .
From the dynamic programming computation we can also derive other perfor-
mance aspects, such as the optimal quality level to be chosen for each frame, and
the number of deadline misses.

Experiment overview
First, in Section 5.4.1 we study the behavior of the enhanced strategy for the default
settings, and we benchmark the strategy against the off-line strategy, strategy Q4,
and the clairvoyant strategy. Next, in Section 5.4.2 we vary step-size parameter θ.
Finally, in Section 5.4.3 we give an answer to the still pending question whether
it is useful to distinguish between the different MPEG-2 frame types in the MDP
model.

5.4.1 Results for the default settings
To study the behavior of the enhanced strategy for the default settings, and to
benchmark the strategy against other strategies, we applied the strategies Q4,
OFF(CONCAT), ENH(CONCAT), and CLV each in 61 simulations on trace
CONCAT, for budgets 10ms � 10 � 5ms � ����� � 40ms. Figures 5.7 and 5.8 show the av-
erage revenue per frame and the number of deadline misses, respectively, that we
measured in the different simulations, as a function of the budget. Next, Figures
5.9 and 5.10 show the number of frames that were processed at each quality level,
for strategies OFF(CONCAT) and ENH(CONCAT), respectively, as a function of
the budget.

For all strategies we observe that the average revenue is strongly negative for
small budgets, and that the average revenue converges to the maximum value of
10 as the budget increases. An average revenue of nearly 10 implies that al-
most no deadlines are missed and that almost all frames are processed at quality
level q4. The enhanced strategy performs closest to optimum, and clearly out-
performs strategies Q4 and OFF(CONCAT). For example, at a budget of 27 ms,
strategies Q4, OFF(CONCAT), ENH(CONCAT), and CLV attain average revenues
of � 402.6, � 12.0, 0.2, and 5.0, respectively. Due to convergence, the difference
in average revenue between strategies ENH(CONCAT) and CLV becomes smaller
as the budget increases. Although this difference is still significant at a budget
of 27 ms, we can also look at the results from a different perspective. Table 5.1



Handling load dependencies 83

-2

0

2

4

6

8

10

26 28 30 32 34 36 38 40

av
er

ag
e 

re
ve

nu
e 

pe
r p

ro
ce

ss
ed

 fr
am

e

budget b (ms)

Q4
OFF(CONCAT)
ENH(CONCAT)

CLV

Figure 5.7. The average revenue for strategies Q4, OFF(CONCAT),
ENH(CONCAT), and CLV applied in simulations on trace CONCAT, as a function
of the budget.
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Figure 5.9. The number of frames processed at each quality level, as a function of
the budget, for strategy OFF(CONCAT) applied in simulations on trace CONCAT.
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tion of the budget, for strategy ENH(CONCAT) applied in simulations on trace
CONCAT.
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shows for each strategy the various budgets required to attain different values of
the average revenue, computed by using linear interpolation between the simula-
tion results. To attain an average revenue of 5, CLV requires a budget of 27.0 ms,
ENH(CONCAT) requires a budget of 27.8 ms ( � 0.8 ms), OFF(CONCAT) requires
a budget of 30.0 ms ( � 3.0 ms), and Q4 requires a budget of 34.0 ms ( � 7.0 ms).
Hence, at the cost of a slightly larger budget, the enhanced strategy performs
equally well as the clairvoyant strategy. The main difference between the enhanced
strategy and the clairvoyant strategy is that the clairvoyant strategy can prepare for
structural load increases, whereas the enhanced strategy can only react to them.

Table 5.1. The budgets required to attain different values of the average revenue,
for strategies CLV, Q4, OFF(CONCAT), and ENH(CONCAT) applied in simula-
tions on trace CONCAT.

average revenue CLV Q4 OFF(CONCAT) ENH(CONCAT)

0.0 26.3 ms 33.3 ms ( � 7.0 ms) 28.5 ms ( � 2.2 ms) 27.0 ms ( � 0.7 ms)
1.0 26.4 ms 33.4 ms ( � 7.0 ms) 28.7 ms ( � 2.3 ms) 27.1 ms ( � 0.7 ms)
2.0 26.5 ms 33.5 ms ( � 7.0 ms) 29.0 ms ( � 2.5 ms) 27.3 ms ( � 0.8 ms)
3.0 26.7 ms 33.7 ms ( � 7.0 ms) 29.2 ms ( � 2.5 ms) 27.4 ms ( � 0.7 ms)
4.0 26.8 ms 33.9 ms ( � 7.1 ms) 29.5 ms ( � 2.7 ms) 27.6 ms ( � 0.8 ms)
5.0 27.0 ms 34.0 ms ( � 7.0 ms) 30.0 ms ( � 3.0 ms) 27.8 ms ( � 0.8 ms)
6.0 27.3 ms 34.3 ms ( � 7.0 ms) 30.5 ms ( � 3.2 ms) 28.1 ms ( � 0.8 ms)
7.0 27.6 ms 34.7 ms ( � 7.1 ms) 31.3 ms ( � 3.7 ms) 28.4 ms ( � 0.8 ms)
8.0 28.0 ms 35.2 ms ( � 7.2 ms) 32.7 ms ( � 4.7 ms) 28.9 ms ( � 0.9 ms)
9.0 28.9 ms 36.1 ms ( � 7.2 ms) 34.8 ms ( � 5.9 ms) 29.8 ms ( � 0.9 ms)
9.9 31.4 ms 38.7 ms ( � 7.3 ms) 38.4 ms ( � 7.0 ms) 32.6 ms ( � 1.2 ms)

If we look at the number of deadline misses, then we observe that the enhanced
strategy outperforms strategies Q4 and OFF(CONCAT). At the cost of a slightly
larger budget, the number of deadline misses for the enhanced strategy is at the
same level as for the clairvoyant strategy. Because deadline misses are heavily
penalized, a small increase in the number of deadline misses may result in a large
decrease in the average revenue. For this reason, the difference in the number
of deadline misses between the off-line strategy and the enhanced strategy looks
relatively small as compared to the difference in average revenue. For strategies
ENH(CONCAT) and CLV, the number of deadline misses becomes zero at budgets
of 35 ms and 32 ms, respectively. Apparently, for the enhanced strategy the work-
ahead of two periods suffices to absorb load fluctuations from a budget of 35 ms
onwards. At a budget of 35 ms, strategies Q4 and OFF(CONCAT) still result in 664
and 284 deadline misses, respectively, and at a budget of 40 ms they each result in
two deadline misses.
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It is also interesting to look at the quality levels that are chosen by the differ-
ent strategies. For small budgets the off-line strategy only selects quality level q1,
and many deadlines are missed. For each missed deadline one frame is skipped.
The more budget is given to the SVA, the better it is capable of meeting deadlines.
Hence, as the budget increases, the number of frames that are processed at q1 first
grows towards the number of frames of trace CONCAT, which is 2,997,326. Right
before this level is reached, the strategy starts using q2, at a budget of 23.5 ms.
Next, the strategy starts using q3 and q4 at budgets of 24.5 ms and 26 ms, respec-
tively. When the strategy starts using a higher quality level, it switches radically to
the new quality level, which results in the steep edges in Figure 5.9. At a budget
of 28.5 ms, the first budget at which the off-line strategy attains a positive average
revenue, 1.7%, 2.6%, 12.5%, and 83.2% of the frames are processed at quality
levels q1, q2, q3, and q4, respectively.

For small budgets the enhanced strategy also mainly uses quality level q1, and
the number of frames that are processed at q1 grows towards the number of frames
of trace CONCAT as the budget increases. However, in contrast to the off-line
strategy, the enhanced strategy also uses higher quality levels at small budgets. For
example, at a budget of 10 ms, 32 frames are processed at q2, 59 frames are pro-
cessed at q3, and 272 frames are processed at q4. The usage of high quality levels
at small budgets is due to subsequences that turn out to be easier than expected,
for which the strategy applies a policy corresponding to a scaled budget that is
larger than budget b. Due to the budget scaling approach, the usage of the different
quality levels is more smoothly balanced over the budget spectrum. At a budget
of 28.5 ms, 2.7%, 2.6%, 13.5%, and 81.2% of the frames are processed at quality
levels q1, q2, q3, and q4, respectively. Although these fractions are roughly the
same for the off-line strategy, the enhanced strategy delivers a much better job in
preventing deadline misses.

5.4.2 Varying step-size parameter θ
To study the influence of step-size parameter θ on the results we obtained for
the default settings, we defined a set Θ with twelve candidate step-size pa-
rameters: 0 � 001 � 0 � 01 � 0 � 05 � 0 � 1 � 0 � 15 � ������� 0 � 5. For each θ � Θ, we applied
strategy ENH(CONCAT, θ) in 61 simulations on trace CONCAT, for budgets
10ms � 10 � 5ms � ����� � 40ms. Note that strategy ENH(CONCAT, θ � 0 � 1) is the same
as strategy ENH(CONCAT). Figure 5.11 shows the average revenue that we mea-
sured in the simulations for the different strategies, as a function of θ, for budgets
between 27 ms and 31 ms.

For small budgets the average revenue is strongly negative for every θ � Θ.
As the budget increases, the average revenue turns positive at b � 27ms, for θ �
0 � 1, θ � 0 � 15, θ � 0 � 2, and θ � 0 � 25. In Figure 5.11, the distance between the
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Figure 5.11. The average revenue for different strategies ENH(CONCAT, θ) ap-
plied in simulations on trace CONCAT, as a function of step-size parameter θ,
for budgets between 27 ms and 31 ms. For each budget, we indicate the highest
average revenue over all twelve values of θ by means of a white dot.

Table 5.2. Error measure e � B � θ � for different budget sets B and for each θ � Θ.

θ e
�
B
�
10 � 40 � � θ � e

�
B
�
27 � 40 � � θ � e

�
B
�
27 � 31 � � θ �

0.001 70.23 25.45 21.97
0.01 50.19 10.10 9.19
0.05 44.71 0.93 0.91
0.1 41.23 0.30 0.22
0.15 33.86 0.57 0.37
0.2 32.02 1.63 1.26
0.25 30.51 2.76 2.19
0.3 31.26 4.29 3.47
0.35 35.10 6.42 5.28
0.4 41.08 8.99 7.43
0.45 52.25 12.18 10.09
0.5 64.25 16.09 13.36
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successive budget lines becomes smaller, which is due to the convergence of the
average revenue to 10 as the budget increases. The budget lines show maximum
average revenues for values of θ in the range [0.05, 0.15].

We came to the default setting θ � 0 � 1 as follows. Let x � b � θ � denote the
average revenue that we measured in the simulation for budget b and step-size
parameter θ. Furthermore, let B � i � j � denote the subset of budgets from set�
10ms � 10 � 5ms � ����� � 40ms � in the range � ims � j ms � . For a set of budgets B we

define error measure e � B � θ � by

e � B � θ � � ∑
b � B

� max
θ � � Θ

x � b � θ � � � x � b � θ � � �

Table 5.2 shows e � B � θ � for the different values θ � Θ, and for the budget sets
B � 10 � 40 � , B � 27 � 40 � , and B � 27 � 31 � . The smaller the error measure for a given set
of budgets B, the better. Because we are interested in a positive average revenue,
we focus on budgets of 27 ms and larger. Hence, based on the results in Table 5.2,
we have selected θ � 0 � 1 as default step-size parameter.

5.4.3 Distinguishing between MPEG-2 frame types
In this section we give an answer to the pending question whether it is useful to
distinguish between the different MPEG-2 frame types I, P, and B in the MDP
model. To indicate that a strategy was derived taking MPEG-2 frame types into
account in the MDP model, we extend the name of the strategy with ‘IPB’.

There are a number of disadvantages to distinguishing between different frame
types in the MDP model. A first and main disadvantage is that the processing-time
distribution functions in the MDP model, which are derived from a statistics trace,
have a lower accuracy than normal, and that the functions can vary in accuracy.
For example, trace CONCAT contains the processing times of 235,632 I-frames,
782,460 P-frames, and 1,979,234 B-frames. Hence, a distribution function Fφq is
less accurate for an I-frame than for a P-frame, and for a P-frame the distribution
function is less accurate than for a B-frame. If we do not distinguish between I-, P-,
and B-frames, then the distribution functions in the MDP model are all based on the
processing times of 2,997,326 frames. Although a distribution function based on
the processing times of 235,632 frames is probably accurate enough, the accuracy
could be insufficient if a smaller statistics trace is used.

A second disadvantage is that the time needed to solve the MDP model in-
creases significantly. For example, Figure 5.12 shows the time needed by suc-
cessive approximation to compute policies for strategies OFF(CONCAT) and
OFF(CONCAT, IPB), for budgets 10ms � 10 � 5ms � ����� � 40ms. We observe that the
computation time varies as a function of the budget. If we distinguish between I-,
P-, and B-frames in the MDP model, then the number of states in the model grows
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by a factor of three, but over all 61 budgets we experience an average increase in
computation time by a factor of 7.7.

The only reason to distinguish between MPEG-2 frame types in the MDP
model is to obtain a higher average revenue at run time, by taking advantage
of the specific processing-time statistics of I-, P-, and B-frames. To study if
it is useful to distinguish between MPEG-2 frame types in the MDP model,
we applied the strategies OFF(CONCAT), OFF(CONCAT, IPB), ENH(CONCAT),
and ENH(CONCAT, IPB) each in 61 simulations on trace CONCAT, for budgets
10ms � 10 � 5ms � ����� � 40ms. Figure 5.13 shows the average revenue per frame for
each strategy, as measured in the different simulations, as a function of the budget.
The graphs for strategies OFF(CONCAT) and OFF(CONCAT, IPB) roughly over-
lap, as well as the graphs of strategies ENH(CONCAT) and ENH(CONCAT, IPB).
Hence, we do not see a clear benefit of using MPEG-2 frame types in the MDP
model. On the one hand, the assumption that a frame type can be predicted from
the type of the preceding frame only is probably too simple for MPEG-2. This
assumption was needed to make the model memoryless. On the other hand, as we
have seen in Section 5.4.1, the performance of ENH(CONCAT) is already reason-
ably close to optimum. Hence, there is not much performance to be won.



6
On-line solution approach

In this chapter we present an on-line solution approach to the QoS control prob-
lem, based on the Q-learning algorithm. First, in Section 6.1 we revisit the finite
MDP model, to discretize continuous state components differently in the on-line
case. Next, in Section 6.2 we discuss the process of learning action values. To re-
duce the run-time overhead of learning, without reducing the accuracy of learning,
in Section 6.3 we introduce a technique called state compression. In Section 6.4 we
discuss how action values that are not learned can be approximated from learned
action values. Based on all this, in Section 6.5 we present an on-line control strat-
egy. Finally, in Section 6.6 we benchmark this strategy against other strategies by
means of simulation experiments.

6.1 State discretization revisited
In Section 4.1, to obtain a finite set of states for the MDP model, we divided the
interval � 1 � δ � of all possible progress values at the start point of a frame into a finite
set of subintervals Λ � �

λ1 ��������� λnΛ � . We had to discretize the progress using in-
tervals, to be able to compute state-transition probabilities and expected revenues
for the MDP model. These state-transition probabilities and expected revenues
are needed when the MDP model is solved off line. Solving the MDP model off
line, for the given set of states an optimal state-value function is computed, from
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which an optimal static policy is derived. The optimal state-value function is a
piecewise-constant approximation of the optimal state-value function for the situa-
tion in which there are infinitely many progress intervals, i.e., the situation in which
the progress is not discretized. The larger the number nΛ of progress intervals is
chosen, the better the approximation becomes.

The Q-learning algorithm is a reinforcement learning algorithm that learns a
policy at run time while using the learned policy at the same time for control.
The algorithm does not require pre-determined state-transition probabilities and
expected revenues. As a result, we can follow a different approach to discretize
continuous state components. The idea of this approach is as follows. We define
a set S of states that can have both continuous and discrete state components. For
each continuous state component we define a finite set of strictly increasing values
in the range of all values that the state component can attain, the so-called grid-
points. We define the finite set SG of gridpoint states as the subset of states from S
for which every continuous state component is a gridpoint. We let the Q-learning
algorithm only learn action values for the finite set SG of gridpoint states and for
a finite set A of actions. To approximate the action value of a state s � S

�
SG and

an action a � A, we apply linear interpolation on the learned action values for the
set of gridpoint states and action a. The optimal action-value function for the finite
set SG of gridpoint states and the finite set A of actions hence gives a piecewise-
linear approximation of the optimal action-value function for the infinite set S of
states and set A of actions. The more gridpoint states are defined, the better the
approximation becomes. Because a piecewise-constant function approximation is
less accurate than a piecewise-linear function approximation, we can define grid-
points at a much lower granularity than intervals to obtain the same accuracy of the
approximation; see Figure 6.1.

We now define the set S of states and the set A of actions that we use for Q-
learning. Again, we model the set A of actions by the finite set Q of quality levels.
We define the state of the SVA at the start point of a frame f as follows. As a
first component of the state we use progress λα � f � . Based on the results in Section
5.4.3, we no longer use frame type φ � f � as a state component. To implement
the penalty on quality-level changes, as a second (finite) state component we use
the previous quality level. Finally, to take care of dependencies in the processing
times of successive frames, as a third state component we use scaled budget υ � f � .
In Chapter 5 we could not use the scaled budget (or, equivalently, the running
complexity factor) as a state component, because the resulting set of states would
become too large to solve the MDP model in reasonable time. Because we can
now discretize continuous state components at a much lower granularity, we use
the scaled budget directly as a state component. We come back to this issue in
Section 6.6.3.
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Figure 6.1. Examples of a piecewise-constant function approximation (left figure)
and a piecewise-linear function approximation (right figure).

The state given by a progress λ, a previous quality level q, and a scaled budget
υ is denoted by � λ � q � υ � . For a state s � S, we denote the corresponding progress,
previous quality level, and scaled budget components by λs, qs, and υs, respec-
tively. Both the progress and the scaled budget are continuous state components.
For the progress, we denote the number of gridpoints by nΛ, and we denote the set
of increasing gridpoints by Λ � �

λ1 � ����� � λnΛ � 1. We define λ1 � 1 and λnΛ � δ,
i.e., the lowest and highest possible progress of a frame at its start point. For the
scaled budget, we denote the number of gridpoints by nϒ, and we denote the set of
increasing gridpoints by ϒ � �

υ1 ������� � υnϒ � .

6.2 Learning action values
Let f and g be any pair of frames that are processed in succession. Furthermore, let
s � f � � S be the state of the SVA at the start point of frame f , and let s � g � � S be the
state of the SVA at the start point of frame g. Recall that the processing time and the
revenue of frame f are denoted by µ � f � and r � f � , respectively. In a straightforward
control strategy based on the Q-learning algorithm, at the start point of frame g the
controller would update action value Q � s � f � � q � f � � using update rule

Q � s � f � � q � f � � : � � 1 � ψ � Q � s � f � � q � f � � � ψ � r � f � � γ max
q � Q

Q � s � g � � q � � � (6.1)

As mentioned above, we let the Q-learning algorithm only learn action values
for the finite set of gridpoint states SG and the finite set of quality levels Q. In
(6.1), states s � f � and s � g � are generally not gridpoint states. The nQ action val-
ues Q � s � g � � q � can be approximated by interpolating linearly between the learned
action values, as will be discussed in Section 6.4. However, it is not possible to
update action value Q � s � f � � q � f � � directly.

Although we cannot directly update action value Q � s � f � � q � f � � , we can update
the action value indirectly, via the set of learned action values. More specifically,

1To keep notation simple, we reuse symbols that we used earlier to define progress intervals.
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using processing time µ � f � we can update action value Q � s � q � f � � for any gridpoint
state s � SG. To this end, we determine the effect of processing frame f at quality
level q � f � , starting from state s at the start point of frame f . We compute the
resulting state s � � S at the start point of frame g, and use it to update action value
Q � s � q � f � � .

Before we continue, a short note on the deadline miss approach is in place.
Applying the aborting approach, if the deadline of frame f is missed, then the
processing of the frame is aborted. In that case, the processing time of frame f is
not available at the start point of frame g. As a result, it is not possible to update any
learned action value. For this reason, in this chapter we only consider the skipping
approach.

To compute state s � , we have to use a processing time for frame f that matches
scaled budget υs. The actual running complexity factor at the start point of frame
f is given by b

�
υs
�
f � . This means that frame f is roughly b

�
υs
�
f � times harder than

expected. Assuming state s at the start point of frame f , the frame is considered to
be roughly b

�
υs times harder than expected. To compensate for this difference, for

computing the progress component of state s � we use a processing time for frame
f given by

µ � � f � � µ � f � �
υs
�
f �

υs
� (6.2)

Next, given progress λs, processing time µ � � f � , and budget b, we can compute
progress component λs � using (2.1) – (2.5). The corresponding number of deadline
misses for frame f is given by

ndm � � f � �
� �

µ � � f � �
b � λs � if λs � µ � � f � �

b � 0
0 if λs � µ � � f � �

b 	 0 �

The previous quality level component of state s � is given by qs � � q � f � . Finally, we
need the scaled budget component of state s � . The scaled budgets of two successive
start points are roughly the same, because they are the successive outputs of the
same low-pass filter. Hence, we estimate the scaled budget component of state s �
by υs � � υs. Given state s � � � λs � � qs � � υs � � , we can update action value Q � s � q � f � �
using rule

Q � s � q � f � � : � � 1 � ψ � Q � s � q � f � � � ψ � r � � f � � γ max
q � Q

Q � s � � q � � � (6.3)

where revenue r � � f � is given by

r � � f � � Rql � q � f � � � ndm � � f � � Pdm � Pqlc � qs � q � f � � � (6.4)

Using this update rule, at the start point of frame g action value Q � s � q � f � �
can be updated for all gridpoint states s. We can even go one step further. By
estimating the processing time of frame f at different quality levels q � � f � � Q,
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action value Q � s � q � � f � � can be updated for all gridpoint states s and for all quality
levels q � � f � . Recall that µ̄ � q � denotes the expected processing time of a frame
processed at quality level q. Using pre-determined µ̄ � q � -values for the different
quality levels q � Q, we can estimate the processing time of frame f at quality
level q � � f � � Q by

µ̃ � f � � µ � f � �
µ̄ � q � � f � �
µ̄ � q � f � � �

By replacing µ � f � by µ̃ � f � in (6.2), and by replacing q � f � by q � � f � in (6.3) and
(6.4), the update of action value Q � s � q � � f � � is given by

Q � s � q � � f � � : � � 1 � ψ � Q � s � q � � f � � � ψ � r � � f � � γ max
q � Q

Q � s � � q � � � (6.5)

where revenue r � � f � is given by

r � � f � � Rql � q � � f � � � ndm � � f � � Pdm � Pqlc � qs � q � � f � � �
Using this update rule, at the start point of each frame g � 1 the controller can

update all learned action values. As compared to the original Q-learning algorithm,
in which only one action value is updated per time step, this will drastically speed
up the convergence of learning. Moreover, in the Q-learning algorithm there is no
longer the need to take exploring (non-greedy) actions, but the controller can fully
exploit what has been learned.

6.3 State compression
As mentioned above, at the start point of each frame g � 1 the controller can update
all learned action values. Doing so, we can make a trade-off between the accuracy
of learning and the run-time overhead of the controller by varying the number of
gridpoint states. To reduce the number of gridpoint states by a factor nQ, without
reducing the accuracy of learning, the following technique can be applied, which
we call state compression. The main idea is that the contribution of quality-level
changes to action values need not be learned, but can be computed separately.

Therefore, continuing in the line of Section 6.2, we define revenue r � � � f � by

r � � � f � � r � � f � �
Pqlc � qs � q � � f � � � Rql � q � � f � � � ndm � � f � � Pdm � (6.6)

and, for a state s � S and a quality level q � Q, we define action value Q � � s � q � by

Q � � s � q � � Q � s � q � �
Pqlc � qs � q � � (6.7)
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Using these definitions, we derive that

Q � � s � q � � f � � � �
using � 6 � 7 � �

Q � s � q � � f � � �
Pqlc � qs � q � � f � �

: � �
using � 6 � 5 � �

� 1 � ψ � Q � s � q � � f � �
� ψ � r � � f � � γ max

q � Q
Q � s � � q � � �

Pqlc � qs � q � � f � �
� � 1 � ψ � � Q � s � q � � f � � �

Pqlc � qs � q � � f � � �
� ψ � r � � f � �

Pqlc � qs � q � � f � � � γ max
q � Q

Q � s � � q � �
� �

using � 6 � 6 � � � 6 � 7 � � and qs � � q � � f � �
� 1 � ψ � Q � � s � q � � f � �

� ψ � r � � � f � � γ max
q � Q

� Q � � s � � q � � Pqlc � q � � f � � q � � � �
In this update rule, the penalty on quality-level changes is still present, but it only
depends on the chosen action q � � f � and the maximization iterator q. Hence, to
implement this penalty, there is no longer the need to use the previous quality level
as a state component. Furthermore, for learning action values Q � we also do not
need the previous quality level.

We now define the compressed state of the SVA at the start point of a frame
f 	 1 as the combination of progress λα � f � and scaled budget υ � f � . The set of all
compressed states is denoted by Ŝ. Next, we define the finite set ŜG of compressed
gridpoint states as the subset of compressed states from Ŝ for which the progress
component and the scaled budget component are both gridpoints. To indicate that
a state is a compressed state, we put a hat sign on top of it, i.e., we denote a com-
pressed state s by ŝ. The compressed state given by a progress λ and a scaled budget
υ is denoted by � λ � υ � . For a compressed state ŝ � Ŝ, we denote the corresponding
progress and scaled budget components by λŝ and υŝ, respectively.

To reduce the run-time overhead, we let the controller only learn action values
Q � � ŝ � q � for the finite set ŜG of compressed gridpoint states and the finite set Q of
quality levels. To express the difference in domain, we denote these action values
Q � � ŝ � q � by Q̂ � ŝ � q � . Assuming state s � SG at the start point of frame f , state s � � S
at the start point of frame g, and quality level q � � f � for frame f , we can apply
update rule

Q̂ � � λs � υs � � q � � f � � : � � 1 � ψ � Q̂ � � λs � υs � � q � � f � �
� ψr � � � f �
� ψγ max

q � Q
� Q̂ � � λs � � υs � � � q � � Pqlc � q � � f � � q � � � (6.8)
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Given the learned action values Q̂, the action value Q � s � q � for any gridpoint state
s � SG is computed by

Q � s � q � � Q̂ � � λs � υs � � q � � Pqlc � qs � q � �

6.4 Approximating action values
To approximate the action value Q̂ � ŝ � q � of a compressed state ŝ � Ŝ

�
ŜG and a

quality level q � Q, we apply linear interpolation on the learned action values Q̂ for
the set ŜG of compressed gridpoint states and the set Q of quality levels. More
specifically, we first determine integers i � 1 � i � nΛ � and j � 1 � j � nϒ � for
which λi � λŝ � λi � 1 and υ j � υŝ � υ j � 1, respectively. Using i and j, we compute
fractions x and y by

x � λŝ � λi

λi � 1 � λi
and y � υŝ � υ j

υ j � 1 � υ j
, (6.9)

respectively. In case υŝ � υ1 we select j � 1 and y � 0, and in case υŝ � υnϒ we
select j � nϒ � 1 and y � 1. The approximation of action value Q̂ � ŝ � q � is now
given by

Q̂LI � ŝ � q � � � 1 � x � � 1 � y � Q̂ � � λi � υ j � � q � �
x � 1 � y � Q̂ � � λi � 1 � υ j � � q �

� � 1 � x � yQ̂ � � λi � υ j � 1 � � q � �
xyQ̂ � � λi � 1 � υ j � 1 � � q � � (6.10)

We illustrate this interpolation process in Figure 6.2. The figure shows the
learned action values for a particular set of compressed gridpoint states and for a
particular quality level q. The set of compressed gridpoint states is defined by the
cross product of sets Λ � �

1 � 1 � 5 � 2 � 2 � 5 � 3 � and ϒ � �
10ms � 20ms � 30ms � 40ms � .

To approximate the action value of compressed state ŝ � � 2 � 25 � 27ms � (the black
dot in the figure), we interpolate linearly between the learned action values for
compressed gridpoint states � 2 � 20ms � , � 2 � 5 � 20ms � , � 2 � 30ms � , and � 2 � 5 � 30ms � .
Using (6.9) and (6.10), we approximate the action value of state ŝ and quality level
q by Q̂LI � ŝ � q � � 0 � 5 � 0 � 3 � 13 � 0 � 5 � 0 � 3 � 24 � 0 � 5 � 0 � 7 � 27 � 0 � 5 � 0 � 7 � 38 � 28 � 3.

6.5 On-line strategy
Figure 6.3 shows pseudo-code for a control strategy based on the Q-learning al-
gorithm, according to the approach described in Sections 6.1 to 6.4. We call this
control strategy the on-line strategy. The only data that the strategy needs in ad-
vance are µ̄ � q � -values for the different quality levels q � Q. These values can be
derived from a suitable trace.

An important issue is the run-time overhead of the on-line strategy. At each
start point of a frame f � 1, the strategy updates action value Q̂ � ŝ � q � for each
compressed gridpoint state ŝ � ŜG and for each quality level q � Q, using (6.8). In
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Figure 6.2. The learned action values for a set of compressed gridpoint
states defined by the cross product of sets Λ � �

1 � 1 � 5 � 2 � 2 � 5 � 3 � and ϒ ��
10ms � 20ms � 30ms � 40ms � , and for a particular quality level. The action value

of a compressed state is approximated by interpolating linearly between the
learned action values for the set of compressed gridpoint states.

this update rule nQ values are computed, of which only the highest value is used to
update Q̂ � ŝ � q � . Hence, the time complexity of the on-line strategy at the start point
of a frame f � 1 is given by

� � �
ŜG

�
�

�
Q

� 2 � . To obtain a low run-time overhead,
the number of compressed gridpoint states should not be chosen too large. We get
back on this issue in the Section 6.6.3.
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�
start point of frame f � 1 �

input:
output: quality level sel ql for frame f

for each ŝ � ŜG do
for each q � Q do

initialize Q̂ � ŝ � q � arbitrarily;
υ : � b;
sel ql : � Random

�
q1 � � � � � qnQ � ;

prev ql : � sel ql;

�
start point of a frame f � 1 �

input: progress λα � f � , processing time µ of the just-processed frame
output: quality level sel ql for frame f

for each ŝ � ŜG do
for each q � Q do
begin

λ : � λŝ � � µ � b ��� � µ̄ � q � � µ̄ � prev ql � ��� � υ � υŝ � ;
if λ 	 0
then begin

r : � Rql � q ��� Pdm � � � λ � ;
λ : � λ � � � λ � ;

end
else r : � Rql � q � ;
λ : � λ � 1;
if λ � δ
then λ : � δ;
Q̂ � ŝ � q � : � � 1 � ψ � Q̂ � ŝ � q � � ψ � r � γ maxq � � Q � Q̂LI � � λ � υŝ � � q � ��� Pqlc � q � q � � � � ;

end;
update scaled budget υ using processing time µ;
sel ql : � argmaxq � Q � Q̂LI � � λα � f � � υ � � q ��� Pqlc � prev ql � q � � ;
prev ql : � sel ql;

Figure 6.3. Pseudo-code for the on-line strategy.
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6.6 Simulation experiments
To evaluate the on-line strategy, we have run simulation experiments. These exper-
iments are a continuation of the experiments described in Sections 4.4 and 5.4.

Settings
Given the default parameter settings defined in Sections 4.4 and 5.4, for the on-line
strategy we add the following two default parameter settings.� We use a learning rate ψ � 0 � 01, i.e., action values are updated using a weight

of 1% for every new experience, and a weight of 99% for built-up experience.
We evaluate other learning rates in Section 6.6.2.� We use a set of 63 compressed gridpoint states, given by the cross product of
set Λ � �

1 � 1 � 25 � ����� � 3 � and set ϒ � �
10ms � 15ms � ����� � 40ms � ; other sets

of compressed gridpoint states are evaluated in Section 6.6.3.

We use ON(τ) as a shorthand notation for the on-line strategy, using trace τ as
statistics trace. Trace τ is used before run time to compute values for the expected
processing time per frame at the different quality levels. These µ̄ � q � -values, which
comprise the only off-line information needed by ON(τ), are used at run time to
estimate the processing times of frames at different quality levels, and to compute
the complexity factors of completed frames. For any change in the parameter set-
tings with respect to the default settings, we extend the shorthand notation. For
example, if we use a learning rate of 0.1 instead of 0.01, we denote the strategy by
ON(τ, ψ � 0 � 1).

Experiment overview
First, in Section 6.6.1 we study the behavior of the on-line strategy for the default
settings, and we benchmark the strategy against the off-line strategy, the enhanced
strategy, strategy Q4, and the clairvoyant strategy. Next, in Sections 6.6.2 and 6.6.3
we vary learning rate ψ and the set of compressed gridpoint states, respectively. In
Section 6.6.4 we study the effect of using a simulation trace that differs from the
applied statistics trace. Finally, in Section 6.6.5 we study the creation of gain time
by the SVA for the various control strategies.

6.6.1 Results for the default settings
To study the behavior of the on-line strategy for the default settings, and to
benchmark the strategy against other strategies, we applied the strategies Q4,
OFF(CONCAT), ENH(CONCAT), ON(CONCAT), and CLV each in 61 simula-
tions on trace CONCAT, for budgets 10ms � 10 � 5ms � ����� � 40ms. Figures 6.4 and
6.5 show the average revenue per frame and the number of deadline misses, respec-
tively, that we measured in the different simulations, as a function of the budget.
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Figure 6.4. The average revenue for strategies Q4, OFF(CONCAT),
ENH(CONCAT), ON(CONCAT), and CLV applied in simulations on trace
CONCAT, as a function of the budget.
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Figure 6.6. The number of frames processed at each quality level, as a function of
the budget, for strategy ON(CONCAT) applied in simulations on trace CONCAT.

Table 6.1. The budgets required to attain different values of the average revenue,
for strategies CLV, OFF(CONCAT), ENH(CONCAT), and ON(CONCAT) applied
in simulations on trace CONCAT.

average revenue CLV OFF(CONCAT) ENH(CONCAT) ON(CONCAT)

0.0 26.3 ms 28.5 ms ( � 2.2 ms) 27.0 ms ( � 0.7 ms) 26.9 ms ( � 0.6 ms)
1.0 26.4 ms 28.7 ms ( � 2.3 ms) 27.1 ms ( � 0.7 ms) 27.1 ms ( � 0.7 ms)
2.0 26.5 ms 29.0 ms ( � 2.5 ms) 27.3 ms ( � 0.8 ms) 27.2 ms ( � 0.7 ms)
3.0 26.7 ms 29.2 ms ( � 2.5 ms) 27.4 ms ( � 0.7 ms) 27.4 ms ( � 0.7 ms)
4.0 26.8 ms 29.5 ms ( � 2.7 ms) 27.6 ms ( � 0.8 ms) 27.6 ms ( � 0.8 ms)
5.0 27.0 ms 30.0 ms ( � 3.0 ms) 27.8 ms ( � 0.8 ms) 27.8 ms ( � 0.8 ms)
6.0 27.3 ms 30.5 ms ( � 3.2 ms) 28.1 ms ( � 0.8 ms) 28.1 ms ( � 0.8 ms)
7.0 27.6 ms 31.3 ms ( � 3.7 ms) 28.4 ms ( � 0.8 ms) 28.5 ms ( � 0.9 ms)
8.0 28.0 ms 32.7 ms ( � 4.7 ms) 28.9 ms ( � 0.9 ms) 29.2 ms ( � 1.2 ms)
9.0 28.9 ms 34.8 ms ( � 5.9 ms) 29.8 ms ( � 0.9 ms) 30.3 ms ( � 1.4 ms)
9.9 31.4 ms 38.4 ms ( � 7.0 ms) 32.6 ms ( � 1.2 ms) 34.0 ms ( � 2.6 ms)
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Next, Figure 6.6 shows the number of frames that were processed at each quality
level, as a function of the budget, for strategy ON(CONCAT).

We observe that the on-line strategy performs roughly the same as the enhanced
strategy, and that it clearly outperforms strategies Q4 and OFF(CONCAT). For the
on-line strategy, the number of deadline misses drops to zero at a budget of 34 ms.
For budgets smaller than 34 ms, the on-line strategy produces slightly fewer dead-
line misses than the enhanced strategy, with some minor exceptions for small bud-
gets. In Figure 6.6 we see that the on-line strategy uses the different quality levels
smoothly balanced over the budget spectrum. If we compare this figure with Fig-
ure 5.10, then we observe that the on-line strategy is a little more conservative than
the enhanced strategy, in the sense that it selects lower quality levels more often
for a given budget. As a result, despite the smaller number of deadline misses, the
average revenue for the on-line strategy is slightly lower than the average revenue
for the enhanced strategy, for budgets larger than 27 ms.

Finally, Table 6.1 shows the various budgets that are required to attain
different values of the average revenue, for strategies CLV, OFF(CONCAT),
ENH(CONCAT), and ON(CONCAT). These values were computed using linear
interpolation between the simulation results for the 61 budgets. Again we observe
that the on-line strategy performs very close to the enhanced strategy. To attain a
high average revenue, the enhanced strategy performs a little better than the on-
line strategy. Nevertheless, the on-line strategy still performs a lot better than the
off-line strategy. Apparently, the on-line strategy learns sufficiently fast.

6.6.2 Varying learning rate ψ
To study the influence of learning rate ψ on the results we obtained for
the default settings, we defined a set Ψ with twelve candidate learning
rates: 0 � 001 � 0 � 01 � 0 � 05 � 0 � 1 � 0 � 15 � ������� 0 � 5. For each ψ � Ψ, we applied
strategy ON(CONCAT, ψ) in 61 simulations on trace CONCAT, for budgets
10ms � 10 � 5ms � ����� � 40ms. Note that strategy ON(CONCAT, ψ � 0 � 01) is the same
as strategy ON(CONCAT). Figure 6.7 shows the average revenue that we mea-
sured in the simulations for the different strategies, as a function of ψ, for budgets
between 27 ms and 31 ms.

For small budgets the average revenue is strongly negative for every ψ � Ψ. As
the budget increases, the average revenue turns positive at b � 27ms, for values of
ψ in the range [0.001, 0.3]. In Figure 6.7, the distance between successive budget
lines becomes smaller, which is due to the convergence of the average revenue to
10 as the budget increases. The budget lines, which are pretty flat, show maximum
average revenues for values of ψ in the range [0.01, 0.05].

We came to the default setting ψ � 0 � 01 in a similar way as we determined θ
in Section 5.4.2. Let x � b � ψ � denote the average revenue that we measured in the
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Figure 6.7. The average revenue for different strategies ON(CONCAT, ψ) applied
in simulations on trace CONCAT, as a function of learning rate ψ, for budgets be-
tween 27 ms and 31 ms. For each budget we indicate the highest average revenue
over all twelve values of ψ by means of a white dot.

Table 6.2. Error measure e � B � ψ � for different budgets sets B, and for each ψ � Ψ.

ψ e
�
B
�
10 � 40 � � ψ � e

�
B
�
27 � 40 � � ψ � e

�
B
�
27 � 31 � � ψ �

0.001 10.21 0.43 0.25
0.01 9.33 0.03 0.03
0.05 7.91 0.13 0.07
0.1 4.64 0.33 0.20
0.15 7.48 0.54 0.35
0.2 18.15 0.80 0.55
0.25 90.62 1.17 0.86
0.3 365.36 2.18 1.83
0.35 859.35 3.42 3.02
0.4 1485.46 4.26 3.82
0.45 2189.32 5.21 4.73
0.5 2909.38 6.14 5.62
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simulation for budget b and learning rate ψ. Furthermore, let B � i � j � denote the
subset of budgets from set

�
10ms � 10 � 5ms � ����� � 40ms � in the range � ims � j ms � .

For a set of budgets B we define error measure e � B � ψ � by

e � B � ψ � � ∑
b � B

� max
ψ � � Ψ

x � b � ψ � � � x � b � ψ � � �

Table 6.2 shows e � B � ψ � for the different values ψ � Ψ, and for the budget sets
B � 10 � 40 � , B � 27 � 40 � , and B � 27 � 31 � . The smaller the error measure for a given set
of budgets B, the better. Because we are interested in a positive average revenue,
we focus on budgets of 27 ms and larger. Hence, based on the results in Table 6.2,
we have selected ψ � 0 � 01 as default learning rate.

6.6.3 Varying the set of compressed gridpoint states
To study the influence of the set of compressed gridpoint states on the results
we obtained for the default settings, we defined five sets of compressed grid-
point states, named CGS1 to CGS5; see Table 6.3. For each set CGS of com-
pressed gridpoint states, we applied strategy ON(CONCAT, CGS) in 61 simula-
tions on trace CONCAT, for budgets 10ms � 10 � 5ms � ������� 40ms. Note that strategy
ON(CONCAT, CGS4) is the same as strategy ON(CONCAT). Figure 6.8 shows the
average revenue that we measured in the simulations for the different strategies, as
a function of the budget.

Table 6.3. The different sets of compressed gridpoint states.

set progress gridpoints Λ scaled budget gridpoints ϒ number of states

CGS1 � 1 � 3 � � 10ms � 40ms � 4
CGS2 � 1 � 2 � 3 � � 10ms � 25ms � 40ms � 9
CGS3 � 1 � 1 � 5 � ����� � 3 � � 10ms � 17 � 5ms � ����� � 40ms � 25
CGS4 � 1 � 1 � 25 � ����� � 3 � � 10ms � 15ms � ����� � 40ms � 63
CGS5 � 1 � 1 � 1 � ����� � 3 � � 10ms � 11ms � ����� � 40ms � 651

As expected, a larger set of compressed gridpoint states results in a better per-
formance of the on-line strategy. Moreover, we observe that we can indeed define
gridpoints at a much lower granularity than intervals to obtain the same accuracy
of the approximation. Although sets CGS1 and CGS2 are clearly too small to be
useful, for set CGS3 the on-line strategy already gives an acceptable result. For set
CGS4 the on-line strategy performs roughly the same as the enhanced strategy, and
reasonably close to the optimum given by strategy CLV. For set CGS5 the on-line
strategy even outperforms the enhanced strategy, for budgets between 19.5 ms and
30.5 ms. It is unlikely that a set of compressed gridpoint states larger than CGS5
will further improve the performance of the on-line strategy significantly.
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Figure 6.8. The average revenue for strategies ON(CONCAT, CGS1) to
ON(CONCAT, CGS5) applied in simulations on trace CONCAT, as a function of
the budget.

The larger the used set of compressed gridpoint states, the higher is the run-
time overhead of the on-line strategy. Hence, we have to make a trade-off between
the performance of the on-line strategy and its run-time overhead. As mentioned
in Section 6.5, the time complexity of the on-line strategy at the start point of a
frame f � 1 is given by

� � �
ŜG

�
�

�
Q

� 2 � . For set CGS5 we have
�
ŜG

�
�

�
Q

� 2 � 10 � 416.
Given a video signal with a picture resolution of 720 � 576 pixels, for each frame
there are 414,720 individual pixels to be computed. Hence, even for set CGS5
we consider the run-time overhead of the on-line strategy to be acceptable. Be-
cause strategy ON(CONCAT, CGS5) performs only slightly better than strategy
ON(CONCAT, CGS4), but at the cost of an over times times higher run-time over-
head, we have selected set CGS4 as the default set of compressed gridpoint states.

6.6.4 Cross-trace experiments
So far, in simulation experiments we always used trace CONCAT as statistics trace
for the off-line strategy, the enhanced strategy, and the on-line strategy. Moreover,
we always used either trace ARTIFICIAL or trace CONCAT as simulation trace.
In this section we study the effect of using different statistics traces and different
simulation traces on the performance of the strategies. To this end, we applied
each of the strategies CLV, Q4, the 18 strategies OFF(A) to OFF(R), the 18 strate-
gies ENH(A) to ENH(R), and the 18 strategies ON(A) to ON(R) in simulations
on traces A to R, for budgets 10ms � 10 � 5ms ��������� 40ms. Table 6.4 gives the aver-
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age revenues for all simulations that were carried out. Because we are interested
in both a positive average revenue and a smaller than worst-case budget, for each
simulation trace we first identified a ‘sensible’ budget range, which is given by the
subset of budgets from set

�
10ms � 10 � 5ms ��������� 40ms � for which strategy CLV at-

tains an average revenue in the range [0, 9.9]. The average revenues in Table 6.4
are computed over the specified budget ranges.

As expected, strategy Q4 performs poorly on all 18 simulation traces. The
different off-line strategies consistently perform better than Q4. However, as can
be seen from the large deviations in the average revenue, the off-line strategy is very
sensitive to the used statistics trace. We observe that choosing the statistics trace the
same as the simulation trace is not always preferable. For example, using statistics
trace H, in simulations on trace H the off-line strategy results in an average revenue
of 1.89, whereas most other statistics traces result in a higher average revenue in
simulations on trace H. This may be explained as follows. If we average over all
18 simulation traces, then the off-line strategy performs the best using statistics
trace J, and the strategy performs the worst using statistics trace P. Of all traces A
to R, trace J is the trace with the highest average processing times for the different
quality levels, and trace P is the trace with the lowest average processing times; see
Table 4.3. Hence, using statistics trace J, the off-line strategy expects on average
low processing times. As a result, if the processing times in a simulation are lower,
then the strategy selects the quality levels for frames too low. This is an advantage
in structurally hard scenes, because fewer deadlines than normal are missed, and
deadline misses are heavily penalized. Similarly, using statistics trace P, the off-
line strategy expects on average low processing times. As a result, if the processing
times in a simulation are higher, then the strategy selects the quality levels for
frames too high. This is a disadvantage in structurally hard scenes, because more
deadlines than normal are missed.

The 18 enhanced strategies perform much closer to optimum. For each simu-
lation trace, the deviations in the average revenues for the different statistics traces
are much smaller than for the off-line strategy. The same holds for the 18 on-line
strategies. On average, the on-line strategy performs slightly worse than the en-
hanced strategy. We observe that the enhanced strategy and the on-line strategy
are quite insensitive to using the statistics of a different trace. This is a favorable
result, as in practice the strategies are applied to unknown video content.

For the on-line strategy, the cross relations between the statistics traces and
the simulation traces are negligible. Since the on-line strategy learns statistics at
run time, the only ‘statistics’ used are the expected processing times for the differ-
ent quality levels. Because the on-line strategy performs roughly the same as the
enhanced strategy, we again conclude that the on-line strategy learns sufficiently
fast.
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Table 6.4. The average revenues for the cross-trace experiments.
simulation trace: A B C D E F

sensible budget range: 27–32 ms 27–32 ms 26.5–31.5 ms 25–30 ms 25–29.5 ms 24–28 ms

CLV 8.21 8.87 8.19 8.77 8.72 8.43

Q4 � 279.27 � 335.50 � 399.34 � 523.20 � 337.80 � 272.02

OFF(A) 0.67 3.85 1.80 7.55 6.63 5.46
OFF(B) 0.69 3.86 1.96 7.38 6.46 4.86
OFF(C) � 1.27 2.70 1.06 7.36 6.43 4.86
OFF(D) � 53.71 � 43.33 � 40.99 5.53 1.79 5.64
OFF(E) � 66.37 � 58.91 � 54.39 4.23 � 0.78 5.20
OFF(F) � 128.93 � 132.97 � 124.89 � 10.71 � 24.65 0.91
OFF(G) � 83.52 � 79.94 � 72.80 2.20 � 1.57 4.77
OFF(H) � 118.40 � 120.26 � 112.53 � 4.52 � 16.27 1.59
OFF(I) � 17.50 � 10.09 � 11.06 7.13 5.65 6.27
OFF(J) 3.80 5.91 4.09 6.31 5.36 3.60
OFF(K) � 24.99 � 16.23 � 15.79 6.81 5.34 5.02
OFF(L) � 62.46 � 53.45 � 50.74 4.11 � 1.43 4.71
OFF(M) � 65.72 � 58.17 � 54.25 3.90 � 1.53 5.11
OFF(N) � 72.55 � 65.74 � 59.99 3.08 � 3.26 4.66
OFF(O) � 68.65 � 61.04 � 55.42 4.28 � 0.97 4.66
OFF(P) � 272.69 � 326.63 � 381.70 � 426.21 � 261.71 � 142.26
OFF(Q) � 88.93 � 83.94 � 82.33 0.18 � 7.62 2.22
OFF(R) � 77.15 � 70.40 � 65.98 2.55 � 4.04 3.87
OFF(CONCAT) � 6.06 � 1.40 � 4.78 7.12 5.56 6.01
AVG(OFF(A) �����OFF(R)) � 66.54 � 64.71 � 65.22 � 20.49 � 15.90 � 3.82
STDEV(OFF(A) �����OFF(R)) 63.50 75.25 85.33 98.50 60.15 33.60

ENH(A) 5.93 6.93 5.35 7.62 7.08 6.85
ENH(B) 5.75 6.86 5.14 7.69 7.04 6.80
ENH(C) 5.71 6.84 5.11 7.74 7.03 6.80
ENH(D) 4.43 5.81 3.73 7.73 6.41 6.42
ENH(E) 5.05 6.35 4.39 7.76 6.70 6.60
ENH(F) 4.84 6.20 4.17 7.66 6.64 6.51
ENH(G) 4.90 6.22 4.14 7.76 6.63 6.46
ENH(H) 5.16 6.48 4.50 7.68 6.79 6.62
ENH(I) 5.47 6.62 4.74 7.65 6.87 6.67
ENH(J) 5.52 6.64 4.77 7.71 6.92 6.65
ENH(K) 5.14 6.45 4.44 7.81 6.77 6.55
ENH(L) 5.48 6.65 4.74 7.66 6.90 6.69
ENH(M) 5.43 6.60 4.66 7.69 6.90 6.65
ENH(N) 5.29 6.55 4.58 7.77 6.82 6.64
ENH(O) 4.74 6.05 4.03 7.77 6.56 6.42
ENH(P) 5.21 6.49 4.48 7.69 6.79 6.64
ENH(Q) 5.54 6.68 4.85 7.69 6.98 6.74
ENH(R) 5.38 6.59 4.68 7.66 6.88 6.70
ENH(CONCAT) 5.50 6.65 4.78 7.74 6.98 6.69
AVG(ENH(A) ����� ENH(R)) 5.28 6.50 4.58 7.71 6.82 6.63
STDEV(ENH(A) ����� ENH(R)) 0.37 0.28 0.40 0.05 0.17 0.12

ON(A) 5.72 6.59 5.10 7.57 6.94 6.67
ON(B) 5.69 6.46 4.98 7.38 6.90 6.57
ON(C) 5.67 6.43 4.96 7.41 6.91 6.59
ON(D) 5.78 6.61 5.19 7.28 6.75 6.59
ON(E) 5.74 6.55 5.10 7.12 6.67 6.50
ON(F) 5.39 6.03 4.50 6.04 6.08 5.89
ON(G) 5.73 6.61 5.13 7.53 6.87 6.63
ON(H) 5.19 5.74 4.15 5.75 5.67 5.49
ON(I) 5.75 6.58 5.15 7.27 6.75 6.57
ON(J) 5.63 6.31 4.77 6.57 6.30 6.14
ON(K) 5.70 6.46 4.97 7.41 6.84 6.62
ON(L) 5.46 6.16 4.69 6.20 6.28 6.09
ON(M) 5.38 5.97 4.36 5.81 5.96 5.74
ON(N) 5.72 6.55 5.07 6.99 6.46 6.41
ON(O) 5.79 6.65 5.19 7.18 6.65 6.51
ON(P) 5.11 5.71 4.28 6.88 6.54 6.14
ON(Q) 5.13 5.62 4.01 5.65 5.57 5.37
ON(R) 5.31 5.90 4.29 5.74 5.91 5.72
ON(CONCAT) 5.76 6.60 5.13 7.12 6.66 6.49
AVG(ON(A) �����ON(R)) 5.55 6.27 4.77 6.77 6.45 6.24
STDEV(ON(A) �����ON(R)) 0.23 0.35 0.39 0.69 0.43 0.42
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Table 6.4. (continued)
simulation trace: G H I J K L

sensible budget range: 24.5–28.5 ms 24.5–28.5 ms 26–30.5 ms 29.5–34.5 ms 25–30.5 ms 25–29.5 ms

CLV 8.43 9.17 8.46 8.29 8.24 8.78

Q4 � 480.99 � 218.75 � 270.73 � 227.00 � 663.58 � 265.24

OFF(A) 6.44 6.90 5.43 � 30.54 5.82 6.29
OFF(B) 6.07 6.40 5.46 � 27.61 6.01 6.16
OFF(C) 6.06 6.40 5.24 � 50.51 5.90 6.13
OFF(D) 5.18 6.65 � 11.90 � 164.01 � 2.68 1.49
OFF(E) 3.47 5.85 � 17.34 � 163.29 � 6.75 � 0.99
OFF(F) � 13.21 � 0.01 � 64.13 � 198.42 � 61.88 � 16.78
OFF(G) 2.88 5.38 � 27.36 � 183.05 � 8.53 � 1.52
OFF(H) � 6.44 1.89 � 54.95 � 195.69 � 41.09 � 11.98
OFF(I) 6.38 7.36 1.44 � 101.26 3.56 5.02
OFF(J) 4.77 4.95 5.55 � 1.53 5.62 5.07
OFF(K) 5.83 6.36 � 1.03 � 119.30 4.26 4.61
OFF(L) 2.74 5.55 � 15.24 � 159.72 � 7.53 � 1.51
OFF(M) 2.72 5.63 � 17.56 � 169.88 � 9.28 � 1.51
OFF(N) 2.34 5.46 � 23.90 � 179.85 � 12.33 � 3.02
OFF(O) 3.21 5.79 � 18.71 � 175.80 � 7.65 � 0.72
OFF(P) � 292.83 � 144.63 � 254.82 � 226.99 � 547.53 � 203.23
OFF(Q) � 1.57 3.31 � 31.81 � 172.69 � 19.31 � 7.72
OFF(R) 0.57 4.64 � 23.77 � 175.98 � 14.18 � 3.52
OFF(CONCAT) 6.20 7.27 2.44 � 32.64 3.30 4.88
AVG(OFF(A) �����OFF(R)) � 14.19 � 3.12 � 29.97 � 138.67 � 39.31 � 12.10
STDEV(OFF(A) �����OFF(R)) 67.75 34.37 57.86 65.52 124.43 46.77

ENH(A) 6.64 8.09 6.52 5.88 5.79 6.70
ENH(B) 6.71 8.06 6.42 5.99 5.86 6.50
ENH(C) 6.65 8.05 6.37 5.98 5.81 6.45
ENH(D) 6.66 7.59 5.37 5.84 5.61 5.46
ENH(E) 6.74 7.84 5.93 5.88 5.65 5.86
ENH(F) 6.60 7.79 5.73 5.83 5.49 5.75
ENH(G) 6.77 7.77 5.73 5.95 5.71 5.78
ENH(H) 6.64 7.87 5.93 5.90 5.66 5.95
ENH(I) 6.62 7.96 6.16 5.92 5.76 6.23
ENH(J) 6.88 7.95 6.13 6.18 6.05 6.33
ENH(K) 6.87 7.89 5.90 6.07 5.95 6.03
ENH(L) 6.69 7.96 6.16 5.92 5.78 6.23
ENH(M) 6.76 7.93 6.20 5.96 5.86 6.21
ENH(N) 6.81 7.94 5.97 6.04 5.92 5.97
ENH(O) 6.73 7.70 5.57 5.97 5.71 5.68
ENH(P) 6.71 7.89 6.03 5.95 5.72 6.09
ENH(Q) 6.77 8.02 6.24 5.96 5.91 6.36
ENH(R) 6.64 7.94 6.15 5.90 5.70 6.18
ENH(CONCAT) 6.74 7.99 6.20 6.01 5.90 6.28
AVG(ENH(A) ����� ENH(R)) 6.72 7.90 6.03 5.95 5.77 6.10
STDEV(ENH(A) ����� ENH(R)) 0.08 0.13 0.29 0.08 0.13 0.31

ON(A) 6.34 7.96 6.26 5.86 5.61 6.48
ON(B) 6.38 7.92 6.24 5.62 5.67 6.51
ON(C) 6.38 7.91 6.22 5.56 5.68 6.49
ON(D) 5.78 7.86 6.25 5.56 5.19 6.31
ON(E) 5.98 7.77 6.10 5.28 5.08 6.30
ON(F) 4.98 7.34 5.77 4.98 4.38 5.97
ON(G) 6.28 7.95 6.37 5.86 5.58 6.46
ON(H) 4.47 7.06 5.45 4.65 4.03 5.76
ON(I) 5.78 7.86 6.24 5.51 5.18 6.40
ON(J) 5.63 7.57 5.91 5.38 4.99 6.16
ON(K) 6.36 7.95 6.26 5.67 5.72 6.50
ON(L) 5.31 7.47 5.87 5.14 4.57 6.09
ON(M) 4.80 7.21 5.65 4.75 4.18 5.90
ON(N) 5.69 7.71 6.01 5.27 4.90 6.08
ON(O) 5.72 7.80 6.17 5.48 5.14 6.25
ON(P) 5.91 7.57 5.68 4.88 5.36 6.21
ON(Q) 4.37 6.96 5.37 4.53 3.97 5.76
ON(R) 4.71 7.18 5.61 4.72 4.14 5.91
ON(CONCAT) 6.02 7.78 6.13 5.33 5.08 6.21
AVG(ON(A) �����ON(R)) 5.61 7.61 5.97 5.26 4.97 6.20
STDEV(ON(A) �����ON(R)) 0.66 0.32 0.30 0.41 0.59 0.25
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Table 6.4. (continued)
simulation trace: M N O P Q R

sensible budget range: 25–28 ms 24.5–29.5 ms 24.5–29.5 ms 20.5–23 ms 23.5–27.5 ms 24.5–28 ms

CLV 8.70 8.15 8.17 7.61 7.89 8.48

Q4 � 169.16 � 485.95 � 412.54 � 382.60 � 235.46 � 134.54

OFF(A) 6.11 6.18 6.11 1.42 4.19 5.21
OFF(B) 5.65 5.88 5.80 1.42 3.65 4.77
OFF(C) 5.61 5.89 5.79 1.42 3.65 4.72
OFF(D) 2.50 4.19 4.51 1.42 3.63 2.48
OFF(E) 0.43 1.82 2.36 1.42 2.65 0.74
OFF(F) � 12.04 � 12.70 � 12.85 3.06 � 6.64 � 8.83
OFF(G) � 0.32 1.06 0.69 1.42 2.52 � 0.04
OFF(H) � 8.35 � 8.47 � 7.44 3.36 � 4.42 � 6.25
OFF(I) 5.67 5.95 6.19 1.42 4.75 4.94
OFF(J) 4.43 4.71 4.59 1.42 2.67 3.61
OFF(K) 3.94 5.55 5.49 1.42 3.65 3.76
OFF(L) 0.26 0.84 2.08 2.08 1.59 0.74
OFF(M) 0.62 1.26 2.45 2.40 1.75 0.84
OFF(N) � 0.99 0.55 0.96 1.75 1.77 � 0.48
OFF(O) 0.70 1.88 2.40 1.75 2.16 0.70
OFF(P) � 136.97 � 330.98 � 284.46 2.63 � 95.46 � 100.70
OFF(Q) � 4.33 � 4.87 � 3.67 3.61 � 2.90 � 3.59
OFF(R) � 1.10 � 0.94 0.93 2.72 0.08 � 0.79
OFF(CONCAT) 5.46 5.69 5.99 1.42 4.59 4.78
AVG(OFF(A) �����OFF(R)) � 7.12 � 17.34 � 14.34 2.01 � 3.93 � 4.90
STDEV(OFF(A) �����OFF(R)) 31.85 76.23 65.70 0.74 22.40 23.54

ENH(A) 7.14 6.24 6.52 4.82 5.72 6.67
ENH(B) 6.94 6.30 6.60 4.97 5.64 6.44
ENH(C) 6.92 6.35 6.57 5.00 5.53 6.41
ENH(D) 5.80 6.16 6.56 4.95 4.31 5.28
ENH(E) 6.44 6.25 6.57 4.96 4.84 5.81
ENH(F) 6.16 6.22 6.48 4.93 4.65 5.64
ENH(G) 6.20 6.14 6.64 5.06 4.75 5.60
ENH(H) 6.44 6.27 6.52 5.00 4.93 5.91
ENH(I) 6.83 6.24 6.54 4.97 5.17 6.20
ENH(J) 6.78 6.27 6.69 5.07 5.36 6.17
ENH(K) 6.35 6.23 6.65 5.06 5.01 5.80
ENH(L) 6.75 6.28 6.54 4.97 5.25 6.17
ENH(M) 6.81 6.23 6.59 5.00 5.17 6.17
ENH(N) 6.50 6.40 6.61 5.05 5.11 5.88
ENH(O) 6.17 6.22 6.59 5.05 4.48 5.52
ENH(P) 6.68 6.14 6.58 4.95 5.03 6.05
ENH(Q) 6.87 6.28 6.59 4.97 5.38 6.29
ENH(R) 6.80 6.21 6.52 4.94 5.18 6.16
ENH(CONCAT) 6.80 6.31 6.63 5.07 5.29 6.19
AVG(ENH(A) ����� ENH(R)) 6.59 6.25 6.57 4.98 5.08 6.01
STDEV(ENH(A) ����� ENH(R)) 0.34 0.07 0.05 0.06 0.37 0.35

ON(A) 6.87 6.28 6.34 4.47 5.60 6.46
ON(B) 6.85 6.15 6.25 3.96 5.68 6.49
ON(C) 6.85 6.17 6.25 3.99 5.67 6.49
ON(D) 6.86 6.09 5.97 3.79 5.62 6.44
ON(E) 6.73 5.89 5.82 3.42 5.53 6.35
ON(F) 6.56 4.84 5.08 2.78 5.27 6.22
ON(G) 6.91 6.28 6.31 4.33 5.60 6.48
ON(H) 6.21 4.54 4.73 2.14 5.00 5.79
ON(I) 6.90 6.07 5.95 3.75 5.58 6.44
ON(J) 6.71 5.35 5.67 3.20 5.49 6.37
ON(K) 6.87 6.14 6.31 4.07 5.68 6.51
ON(L) 6.66 5.02 5.25 3.24 5.36 6.36
ON(M) 6.48 4.64 4.88 2.66 5.19 6.17
ON(N) 6.59 5.83 5.71 3.12 5.52 6.24
ON(O) 6.75 6.01 5.93 3.52 5.54 6.38
ON(P) 6.28 5.68 5.75 2.79 5.55 5.85
ON(Q) 6.09 4.43 4.63 2.02 4.92 5.65
ON(R) 6.42 4.58 4.79 2.54 5.16 6.14
ON(CONCAT) 6.70 5.95 5.85 3.35 5.54 6.33
AVG(ON(A) �����ON(R)) 6.64 5.56 5.65 3.32 5.44 6.27
STDEV(ON(A) �����ON(R)) 0.25 0.67 0.58 0.71 0.23 0.25
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In Table 6.4 we also present the results for strategies OFF(CONCAT),
ENH(CONCAT), and ON(CONCAT) applied in simulations on traces A to R. For
each strategy we observe that statistics trace CONCAT performs well on all 18
simulation traces. With only one minor exception, for strategy OFF(CONCAT)
applied in simulations on trace P, statistics trace CONCAT consistently results in a
higher average revenue over the specified budget range than the average taken over
the results for statistics traces A to R individually. Based on this result we conclude
that CONCAT is an appropriate statistics trace to derive parameter settings for the
different control strategies.

6.6.5 Gain-time creation
In Chapter 2 we briefly mentioned gain time [Audsley et al., 1994], which is the
difference between the budget assigned to a task and the budget used by the task.
The gain time that is generated by a task is made available to other tasks. The
amount of gain time that a task will receive from other tasks in a given time period
cannot be guaranteed, and is only know afterwards. For this reason, we want a task
to generate as little gain time as possible.

In this section we study the creation of gain time by the SVA for various control
strategies. Figure 6.9 shows a graph of the average budget usage per period, as a
function of the budget assigned to the SVA, for strategy ON(CONCAT) applied in
simulations on trace CONCAT. Up to a budget of 20 ms the SVA produces hardly
any gain time, i.e., the SVA almost fully consumes its budget. For increasing values
of the budget, the average budget usage converges to 26.7 ms, which is the average
processing time per frame for trace CONCAT at quality level q4.

Next, Table 6.5 shows the average budget usage per period to attain different
values of average revenue, for strategies Q4, OFF(CONCAT), ENH(CONCAT),
and ON(CONCAT) applied in simulations on trace CONCAT. The values in Ta-
ble 6.5 were computed using linear interpolation between the simulation results.
Unfortunately, we have no data for the clairvoyant strategy CLV. When comparing
these results with the results in Table 6.1, we observe overall a significant differ-
ence between the budget that has to be assigned to the SVA to attain a certain
average revenue, and the average budget usage. As mentioned, this difference is
the gain time, and we observe that it is smaller for strategies ENH(CONCAT) and
ON(CONCAT) than for strategies Q4 and OFF(CONCAT). By optimizing the QoS
measure, as we try to do with our control strategies, a significant reduction of gain
time can be achieved. For example, to attain an average revenue of 8, using strategy
ON(CONCAT) the SVA requires a budget of 29.2 ms, while its average budget us-
age is only 25.5 ms. This results in an average gain time of 3.7 ms, approximately
13% of the budget. For comparison, using strategy Q4, which does not try to opti-
mize the QoS measure, the gain time is approximately 32% of the budget. Hence,
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Figure 6.9. The average budget usage per period, as a function of the budget
assigned to the SVA, for strategy ON(CONCAT) applied in simulations on trace
CONCAT.

Table 6.5. The average budget usage per period to attain different values of
the average revenue, for strategies Q4, OFF(CONCAT), ENH(CONCAT), and
ON(CONCAT) applied in simulations on trace CONCAT.

average revenue Q4 OFF(CONCAT) ENH(CONCAT) ON(CONCAT)

0.0 26.6 ms 26.0 ms 25.3 ms 24.5 ms
1.0 26.6 ms 26.1 ms 25.4 ms 24.5 ms
2.0 26.6 ms 26.1 ms 25.5 ms 24.6 ms
3.0 26.6 ms 26.2 ms 25.5 ms 24.7 ms
4.0 26.6 ms 26.3 ms 25.6 ms 24.8 ms
5.0 26.6 ms 26.3 ms 25.7 ms 24.9 ms
6.0 26.7 ms 26.4 ms 25.8 ms 25.1 ms
7.0 26.7 ms 26.5 ms 25.9 ms 25.3 ms
8.0 26.7 ms 26.6 ms 26.0 ms 25.5 ms
9.0 26.7 ms 26.7 ms 26.3 ms 25.9 ms
9.9 26.7 ms 26.7 ms 26.6 ms 26.5 ms
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QoS control can be an effective approach to reduce gain time. The remaining gain
time can be put to good use by applying gain time reclamation.





7
Conclusion

In this final chapter we recapitulate the work presented in this thesis. First, in
Section 7.1 we discuss experiments that we set up to assess the various control
strategies based on user perception. Unfortunately, these experiments were not
very successful. Next, in Section 7.2 we come back to a number of simplifying
assumptions that were made in the processing model. Finally, in Section 7.3 we
summarize the main results of this thesis, and we present directions for future re-
search.

7.1 User-perception experiments
So far, in this thesis we have assessed the various control strategies only by means
of simulation experiments. Of course, the ultimate goal is to assess the strategies
in a real system, based on user perception. Unfortunately, the research platform
that we used to derive the traces could not be applied, because it was still under
development. To still be able to do some user-perception experiments, we followed
a different approach to assess the strategies. The idea of this approach is that, for a
given SVA, we first generate a number of processing-time traces for various video
sequences. We use these traces to run simulation experiments, similar to the ones
described in Chapters 4, 5, and 6. However, for each simulation we now use the
SVA to generate the true video output that corresponds to the imaginary video
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output of the simulation. The generated output sequence can be shown afterwards
in real-time on a display, and used for perception experiments.

A video algorithm that was eligible for this approach was natural motion. The
natural motion algorithm doubles the frame rate of a video sequence by insert-
ing a new frame between each pair of successive input frames. The new frame is
computed based on the two surrounding input frames. This computation consists
of a motion estimation step, in which the positions of objects in the new frame
are predicted, and a motion compensation step, in which the new frame is gener-
ated. Motion estimation is usually implemented by dividing each input frame into
smaller blocks of, for example, 8 � 8 or 16 � 16 pixels. For each block a motion
vector is computed, which indicates where the visual content of the block has most
probably moved to in the next input frame. A well-known motion estimation al-
gorithm is 3-D Recursive Search (3DRS) [De Haan et al., 1993]. For each block
this algorithm considers a particular set of candidate motion vectors. For each
candidate motion vector a match error called sum of absolute differences (SAD)
is computed. The candidate vector that results in the smallest SAD is applied for
motion compensation. The number of SAD computations is a proper measure for
the amount of processing time needed by the motion estimation algorithm.

In the natural motion algorithm that we used the 3DRS motion estimation al-
gorithm was already made scalable. This was done by introducing a threshold on
the SAD for accepting a candidate motion vector. For a given block, if a candidate
motion vector results in an acceptable SAD, then the motion vector is applied for
motion compensation, and the SAD computation for the other candidate motion
vectors is skipped. A set of quality levels can be defined by introducing multiple
threshold values, one for each quality level.

To define quality levels for the scalable algorithm, we considered a set of 53
different threshold values. For each threshold value we ran the natural motion al-
gorithm seven times, on seven input sequences of 20 frames each. In each run we
estimated the quality of the output signal using a Philips-proprietary tool. Figure
7.1 shows multiple graphs of the estimated output quality as a function of the re-
source usage (for the motion estimation part only, expressed in the average number
of SAD computations per block), for one of the input sequences. There is a graph
for each inserted frame. Each graph connects the measurements for 53 different
threshold values. The graphs for the other six input sequences are comparable to
the graphs of Figure 7.1. In the figure, the two lowest graphs are due to initializa-
tion of algorithm, and should be ignored. We have drawn a black curve in the fig-
ure, which is an intuitive approximation for the different graphs. Using the curve,
we defined four quality levels, q1 to q4, as indicated in the figure. We also defined
an additional quality level, q0, which generates the inserted frame by copying the
preceding input frame. This quality level, which requires no active processing of
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Figure 7.1. Multiple graphs of the output quality of a natural motion algorithm as
a function of the resource usage of its scalable motion estimation algorithm, for a
given input sequence of 20 frames. The different graphs correspond to the frames
that were inserted by natural motion. Each graph connects the measurements
for 53 different threshold values on the SAD. The black curve gives an intuitive
approximation for the different graphs.

the natural motion algorithm, provides the scenario for missing a deadline.
As a next step towards testing the various control strategies in user-perception

experiments, we set up an initial user-perception experiment to find proper rewards
for the different quality levels. In this experiment we used three video sequences
of 100 frames each as input for the natural motion algorithm. We selected these
sequences based on clearly visible motion artifacts, which can be reduced by natu-
ral motion. We processed each sequence at each of the five different quality levels.
This resulted in 15 processed sequences of 199 frames each. Next, we created a
set up in which two displays were placed next to each other. Using this setup,
we defined a number of paired comparison tests. In each paired comparison test
the two displays show the same video sequence simultaneously, but processed at
different quality levels. The test subject (a person) has to indicate which of the
two sequences he or she prefers, the left one or the right one. The sequences are
shown repeatedly, until the subject has made a choice. For each of the three video
sequences we defined a set of 20 paired comparison tests, for all combinations of a
particular quality level chosen for the left display and another quality level chosen
for the right display. This resulted in a set of 60 paired comparison tests.

We performed the experiment on a group of 20 test subjects. For each test sub-
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ject we placed the 60 paired comparison tests in random order. When performing
a statistical analysis on the obtained test data for the three sequences together, we
came to the following, disappointing conclusion. Although quality level q4 was
perceived significantly better than q3, the differences in user-perceived quality be-
tween q1 and q2 were not significant. Furthermore, the fall-back quality level q0,
to be used in case of deadline misses, was not even significantly different from q1
and q2, whereas one normally expects a very poor quality. Furthermore, when per-
forming a statistical analysis on the test data for the three sequences individually,
we observed a clear dependence of the applied video sequence on the user percep-
tion of the different quality levels. For example, for one sequence the difference
between q3 and q4 was not significant, and for another sequence the difference be-
tween q0 and q3 was not significant. Based on these results, we could not find a
solid basis to proceed with the experiments. Before continuing on this track, ei-
ther the MPEG-2 decoding algorithm used in the previous chapters should be made
more operational, or another algorithm with better perceivable differences should
be used.

In addition to the above, we observe that the curve in Figure 7.1 appears to
be logarithmic. For an SVA, a more linear relation between the output quality
and the resource needs is however preferred, to prevent that different quality levels
provide roughly the same user-perceived quality, or that they require roughly the
same amount of resources. In other words, there should be something to gain
by varying the quality level. In [Radha et al., 2001] a scalable MPEG-4 video
encoding algorithm is presented having this desirable property.

7.2 Some assumptions revisited
In Chapter 2 we made a number of simplifying assumptions in the processing
model. We now come back to these assumptions, and sketch possible solutions
for the situation that the assumptions do not hold.

The input order and output order of frames. In the processing model we as-
sume that the input order and output order of frames are the same. This assumption
is in general valid for all video algorithms, except for the class of MPEG algo-
rithms. To give an impression of the problems that arise, we focus on MPEG-2
decoding. As mentioned in Section 1.1.1, for MPEG-2 the decoding order (i.e.,
input order) of frames can differ from the display order (i.e., output order) of the
frames. For example, for a sequence of frames I1P2B3B4I5B6B7 in decoding or-
der, the display order is given by I1B3B4P2B6B7I5, where I1 denotes that frame 1
is an I-frame, P2 denotes that frame 2 is a P-frame, etcetera. For simplicity, we
assume that all frame numbers are in decoding order. A single quality-level change
in decoding order can result in multiple quality-level changes in display order. In
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the above example, if frames 1 and 2 are processed (decoded) at q1, and frames
3 to 7 are processed at q4, then the single quality-level change between frames 2
and 3 in decoding order maps onto three quality-level changes in display order,
viz. between frames 1 and 3, between frames 4 and 2, and between frames 2 and
6. On the other hand, multiple quality-level changes in decoding order can also
result in fewer quality-level changes in display order. If frame 1 is processed at
q1, frame 2 is processed at q4, frames 3 and 4 are processed at q1, and frames 5 to
7 are processed at q4, then the three quality-level changes in decoding order map
onto a single quality-level change in display order, viz between frames 4 and 2.
Another point of concern is that the picture quality of a processed frame does not
only depend on the quality level at which the frame is processed, but also on the
quality levels at which the used reference frames were processed. For example, if a
P-frame is processed at q3 using a reference I-frame that was processed at q1, then
the picture quality of the processed P-frame is typically lower than if the I-frame
was also processed at q3.

We consider two approaches to deal with the above issues. The first approach is
to only allow quality-level changes for I-frames, or only for I-frames and P-frames.
In other words, the controller is restricted to taking decisions less frequently. In the
MDP model this can be implemented by restricting the set of quality levels that
can be chosen in a given state. The second approach that we consider is to extend
the definition of a state in the MDP model with two extra components: the quality
level chosen for the last-processed I- or P-frame, and the quality level chosen for
the one-but-last processed I- or P-frame. Using this additional information, in the
MDP model it is possible to actively control the quality-level changes in display
order, and to prevent that a frame f is processed using a reference frame that has
been processed at a quality level lower than q � f � .

Another issue of different input and output orders concerns the deadlines of
frames. In our model, the deadline of a frame is given by the time at which the
processed frame is consumed from the output queue, and we assume that the dead-
lines of successively processed frames are strictly periodic in time. However, if the
decoding order and display order of frames can differ, then the deadlines of succes-
sively processed frames may no longer be strictly periodic in time. One approach
to deal with this issue is to revisit the definition of a deadline. The deadline of a
frame may still be mapped onto the time at which the processed frame is consumed
from the output queue. However, the deadline may also represent the time at which
the processed frame is needed as a reference frame. For both types of deadlines we
can define different deadline miss penalties. The second approach we consider is to
revisit the computation of progress in the processing model, to make the progress
of a frame dependent on the frame type. So, depending on the frame type, there
are different probabilities of missing a deadline.
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A final remark is that it may be useful to apply a combination of the skipping
approach and the aborting approach to handle deadline misses. Upon a deadline
miss, for an I-frame or a P-frame it may be best to apply the skipping approach,
as the processed frame may be needed as a reference frame. For a B-frame it
may be best to apply the aborting approach, to not reduce the budget available for
processing a later, more important, I- or P-frame.

The input rate and output rate of frames. In the processing model we assume
that the input rate and output rate of frames are the same. This assumption is
not valid for the class of scan rate up-conversion and down-conversion algorithms,
which increase or decrease the frame rate of a video sequence, respectively. For
example, the natural motion algorithm, described in Section 7.1, doubles the frame
rate of a video sequence. For each input frame the algorithm produces two output
frames. One output frame is copied directly from the input, and requires no active
processing. The other output frame is generated by means of motion-compensated
interpolation between two successive input frames. Hence, we can still see this as
a one-to-one relation between the input and the output of the algorithm. We can
also address the issue by redefining input frames or output frames. For example,
we can define two successive output frames as a single output frame.

An integer periodic latency. In the processing model we assume that the peri-
odic latency δ is an integer number. This means that the output process tries to
consume a frame from the output queue at the very same moment as the input pro-
cess tries to insert a frame into the input queue. In general, the periodic latency
does not have to be an integer number. The only consequence for our model is that
the input queue and output queue should each consist of at least � δ � frame buffers.
Hence, the available buffers are used less efficiently. Nevertheless, it may be useful
to choose δ somewhat higher than strictly necessary, to absorb fluctuations in the
arrival times and consumption times of frames.

7.3 Conclusions
In this final section we summarize the main results of this thesis, and we identify
directions for future research. First, in Chapter 2 we presented a processing model
for a software video processing task with soft real-time constraints. In this model
the task has to process an indefinite sequence of video frames. The task is charac-
terized by highly fluctuating, content-dependent processing times of frames. For
each frame to be processed there is a deadline, which is given by the time at which
the processed frame is needed for output. We assumed that the deadlines of the
successive frames to be processed are strictly periodic in time. In each time period
between two successive deadlines a fixed amount of guaranteed processing time is
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assigned to the task, called a budget. We assumed that this budget is smaller than
the task’s worst-case needs for processing video frames. Hence, if no countermea-
sures are taken, then the deadlines of the most compute-intensive frames will be
missed. A deadline miss generally results in a perceivable artifact in the output of
the task. We discussed two approaches to recover from a deadline miss, an abort-
ing approach and a skipping approach. Furthermore, we introduced a measure for
frames called progress. The progress of a frame indicates how much budget is left
for processing the frame, before the frame’s deadline is missed.

To prevent deadline misses we applied a combination of two techniques. First,
we applied scalable video processing. In particular, we considered a video process-
ing task consisting of a scalable video algorithm (SVA) and a corresponding con-
troller. An SVA can process frames at different quality levels. Each quality level
provides a particular trade-off between the time needed for processing a frame, and
the resulting picture quality. The controller is used to select the quality level for
each frame. By selecting the proper quality levels for frames, deadline misses may
be prevented. The second technique that we applied is asynchronous processing.
Asynchronous processing allows the task to work ahead, which can be used to even
out the fluctuating load of frames in time. The extent to which working ahead can
be applied is determined by latency and buffer constraints.

We used the notion of Quality of Service (QoS) to trade-off three aspects
of user-perceived output quality in a single measure: the quality levels at which
frames are processed, deadline misses, and quality-level changes between succes-
sively processed frames. We defined the revenue of a processed frame as a measure
indicating to what extent these three aspects are satisfied for the frame. Next, we
defined the QoS measure as the average revenue per frame, over all frames that
are processed. Given the QoS measure, we defined the QoS control problem as
the problem of finding a quality-level selection strategy for the controller that will
maximize the QoS measure for an arbitrary sequence of frames to be processed.
This problem is an on-line problem, because the controller has to select the quality
level for each frame without knowing how complex the frame is, or how complex
the frames are that follow.

In Chapter 4 we modeled the QoS control problem as a finite Markov decision
process (MDP). In this model, the controller has to select the quality level for each
frame based on the state of the SVA. We defined this state by the combination of
the progress of the frame, the type of the frame, and the previous quality level. To
obtain a finite set of states we discretized the progress using intervals. The state-
transition probabilities and expected revenues for the MDP model are estimated
based on pre-determined processing-time statistics. The MDP model is solved
before run time for one particular value of the budget. The result is given by an
optimal policy, a lookup table that indicates which quality level should be chosen



122 Chapter 7

for a frame to be processed, given the state of the SVA. Following an optimal policy
will maximize the average revenue, provided that the situation at run time matches
the MDP model. We defined the off-line strategy as the strategy for the controller
that selects the quality levels for frames using such a pre-computed policy.

In the MDP model, the processing times of successive frames are implicitly
assumed to be independent. However, in practice there are often dependencies in
the processing times of successive frames, due to the highly related video content
of the frames. Therefore, in Chapter 5 we introduced a technique to enhance the
off-line strategy, called budget scaling. The idea behind this technique is that we
consider the load of the SVA to consist of a content-dependent structural load,
around which short-term load fluctuations take place. We introduced a run-time
measure for the structural load of the SVA, called the scaled budget. The MDP
model is solved multiple times, for different values of the scaled budget. The state-
transition probabilities and expected revenues in the MDP model are estimated
based on processing-time statistics that only comprise short-term load fluctuations
around the structural load. At run time, to select the quality level for a frame,
we let the controller apply a policy that was computed for the actual value of the
scaled budget. Hence, the controller always applies a policy that was computed
to handle short-term load fluctuations around the actual structural load. We called
this control strategy the enhanced strategy.

In Chapter 6 we presented an on-line solution approach to the QoS control
problem. This approach is based on solving the MDP model at run time, using the
Q-learning algorithm. The Q-learning algorithm can learn an optimal policy at run
time, based on gained experience, while using the learned policy at the same time
for control. The algorithm does not require pre-determined state-transition proba-
bilities and expected revenues. This property allowed us to discretize continuous
state components differently, based on linear interpolation instead of intervals. As
a result, we could discretize the progress at a much lower granularity than before,
while maintaining the same accuracy of the MDP model, and we could integrate
the budget scaling technique directly into the MDP model. Next, we introduced
a technique to remove the previous quality level component from the state signal,
called state compression. The Q-learning algorithm makes use of a set of action
values, which represent a policy. The controller starts with randomly chosen ac-
tion values. Before processing a frame, the controller first updates a number of
action values, based on statistics of the just-processed frame. Next, the algorithm
uses the set of action values to select the quality level for the frame. Normally,
the Q-learning algorithm updates only a single action value per frame. Based on
characteristics of the QoS control problem we were able to adapt the Q-learning
algorithm. This adaptation allowed us to update all action values per frame, instead
of just a single action value, which speeds up learning significantly. We called the
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resulting control strategy the on-line strategy.
We assessed the various control strategies in simulation experiments. As input

for these experiments we used the processing times for decoding 18 MPEG-2 se-
quences from DVD. Each sequence was processed at four different quality levels.
For benchmarking purposes we introduced a clairvoyant control strategy, which
always selects the quality levels for frames optimally based on off-line optimiza-
tion. The performance of this clairvoyant strategy cannot be met by any run-time
strategy. In initial experiments we first fine-tuned the various control strategies.
From these experiments we learned that it does not pay off to use MPEG-2 frame
types in the MDP model. For the on-line strategy, the run-time overhead of the
controller is mainly determined by the number of states in the MDP model. To
obtain an acceptable run-time overhead we defined a relatively small set of states
for this strategy.

As expected, we observed that the off-line strategy cannot properly deal with
dependencies in the processing times of successive frames. In contrast, we ob-
served that the enhanced strategy and the on-line strategy are well able to deal
with load dependencies. Both strategies performed roughly equally well, and, in
contrast to the off-line strategy, they also performed relatively close to optimum.
To attain the same average revenue as the clairvoyant strategy, the two strategies
required only a little more budget. Based on this result we conclude that budget
scaling is a successful technique to handle load dependencies. Moreover, we con-
clude that the on-line strategy learns fast, and that it can perform remarkably well
using a small set of states.

We also observed that the enhanced strategy and the on-line strategy are quite
insensitive to the statistics that are used to derive the strategies. This is a favor-
able result, as in practice the strategies are applied to unknown video content. We
esteem the on-line strategy to be the best strategy. In contrast to the enhanced strat-
egy, it barely needs pre-determined processing-time statistics, which makes it more
suitable to be applied to new sequences. Finally, we conclude that reinforcement
learning can provide a powerful contribution to QoS control in adaptive real-time
systems.

There are a number of directions for future work. First of all, the various con-
trol strategies still have to be tested in a real system based on user perception. As
described in Section 7.1, our attempt to test the strategies in a realistic setting was
not successful, because users often could not see the differences between qual-
ity levels. Second, the enhanced strategy and the on-line strategy use expected
processing times for the different quality levels, to compute the scaled budgets of
completed frames. These expected processing times are computed before run time,
and at run time they are not adapted to the actual processing times. It would be
interesting to adapt these expected processing times at run time, and to study the
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effect on the performance of both control strategies. Third, so far we assumed that
a fixed periodic budget is assigned to the task. In practice, the budget may be sub-
ject to fluctuations. This is for example the case when the SVA has to share its
budget with another task that has a data-dependent load. Using a stochastic budget
is also a topic of future research.
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A
Appendix: Simulation software

In this appendix we give a high-level overview of the software that was written for
the simulation experiments of Sections 4.4, 5.4, and 6.6. The simulation experi-
ments were carried out using a set of C++ programs. In Section A.1 we give a short
description of these programs. Next, in Section A.2 we provide data flow graphs
of simulation experiments that make use of strategy Q4, the off-line strategy, the
enhanced strategy, and the on-line strategy.

A.1 Programs
GetAverageProcessingTimes
Description: For a given input trace, this program computes the average process-

ing time per frame for each quality level.
Input: a trace τ.
Output: the average processing time per frame for each quality level.

NormalizeTrace
Description: This program uses an IIR filter to transform a source trace into a

normalized trace, as described in Section 5.3.3.
Input: a trace τ and an IIR filter step-size parameter θ.

133



134 Appendix A

Output: a normalized trace τ � .
ComputePolicies
Description: This programs solves the MDP model of Section 4.1 using successive

approximation, for a given statistics trace, and for each budget in a given
set of budgets. To derive policies for the enhanced strategy, a normalized
statistics trace should be used, and the budgets should correspond to scaled
budgets.

Input: a statistics trace τ, a set of budgets b, a periodic latency δ, a number of
progress intervals nΛ, the applied deadline miss approach, a set of revenue
parameters, and a successive approximation convergence error ε.

Output: a monotonic policy for each budget b, the computation time of each pol-
icy, and the expected average revenue of each policy.

Simulator
Description: This program simulates the execution of an SVA, according to the

processing model of Chapter 2. The simulation is based on the processing
times in a given simulation trace. The SVA uses a controller to determine
the quality levels at which frames are processed. The controller applies
strategy Q4, the off-line strategy, the enhanced strategy, or the on-line strat-
egy.

Input: a simulation trace τ, a simulation budget b, a periodic latency δ, the applied
deadline miss approach, a set of revenue parameters, and the applied control
strategy.

Additional input for the off-line strategy: a monotonic policy computed for budget
b.

Additional input for the enhanced strategy: a set of monotonic policies computed
for different values of the scaled budget, an average processing time for
each quality level, and an IIR filter step-size parameter θ.

Additional input for the on-line strategy: a set of gridpoint states, a learning rate
ψ, an average processing time for each quality level, and an IIR filter step-
size parameter θ.

Output: the number of processed frames, the number of frames processed at each
quality level, the number of skipped frames, the number of aborted frames,
the number of quality level changes for each pair of quality levels, the num-
ber of deadline misses, the average revenue, and the average budget usage
per period.
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ClairvoyantStrategy
Description: This program computes the maximum average revenue that can be

attained in a simulation on a given simulation trace for a given simulation
budget, based on dynamic programming.

Input: a simulation budget b, a periodic latency δ, a number of progress intervals
nΛ, the applied deadline miss approach, and a set of revenue parameters.

Output: the number of processed frames, the number of frames processed at each
quality level, the number of skipped frames, the number of aborted frames,
the number of quality level changes for each pair of quality levels, the num-
ber of deadline misses, and the average revenue.

A.2 Data flow graphs

 controller:
strategy Q4

SVAsimulation
    trace

Simulator

Figure A.1. Data flow graph of a simulation experiment using strategy Q4.
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statistics
   trace

ComputePolicies

  policy for the
off-line strategy

     controller:
off-line strategy

SVAsimulation
    trace

Simulator

Figure A.2. Data flow graph of a simulation experiment using the off-line
strategy.
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NormalizeTrace

statistics
   trace

normalized
    trace

ComputePolicies

    set of policies
          for the
enhanced strategy

GetAverageProcessingTimes

average processing
          times

      controller:
enhanced strategy

SVAsimulation
    trace

Simulator

Figure A.3. Data flow graph of a simulation experiment using the enhanced
strategy.
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statistics
   trace

GetAverageProcessingTimes

average processing
          times

    controller:
on-line strategy

SVAsimulation
    trace

Simulator

Q-values

Figure A.4. Data flow graph of a simulation experiment using the on-line strategy.
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This appendix contains a list of papers and reports of which the author of this
thesis is an author, and a list of patent applications of which the author of this
thesis is an inventor. The listed papers, reports, and patent applications are all
related to the work described in this thesis.

B.1 Papers and reports
� WÜST, C., AND W. VERHAEGH [2001], Quality level control for scalable

media processing applications having fixed CPU budgets, Proc. 2nd Philips
Workshop on Scheduling and Resource Management (SCHARM’01), Eind-
hoven, The Netherlands, 29–39.� AARTS, E., E. DEN BOEF, J. KORST, V. PRONK, W. VERHAEGH, AND

C. WÜST [2002], Adaptive scheduling and resource management in ambient
intelligence, PT Embedded Systems Research Dossier, 12–15.� WÜST, C.C., AND W.F.J. VERHAEGH [2002], Dynamic control of scalable
media processing applications, Proc. 1st Philips Symposium On Intelligent
Algorithms (SOIA’02), Eindhoven, The Netherlands, 119–131.
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� WÜST, C.C., E.F.M. STEFFENS, AND W.F.J. VERHAEGH [2003], Adap-
tive QoS control for real-time video processing, Proc. Work-in-Progress
Session 15th Euromicro Conference on Real-Time Systems (ECRTS), Porto,
Portugal, 49–52.� WÜST, C.C., AND R.H.M. WUBBEN [2003], Resource Scalability of a
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Intelligent Control for
Scalable Video Processing

Summary

In this thesis we study a problem related to cost-effective video processing in soft-
ware by consumer electronics devices, such as digital TVs. Video processing is the
task of transforming an input video signal into an output video signal, for example
to improve the quality of the signal. This transformation is described by a video
algorithm. At a high level, video processing can be seen as the task of processing a
sequence of still pictures, called frames. Video processing in consumer electronic
devices is subject to strict time constraints. In general, the successively processed
frames are needed periodically in time. If a frame is not processed in time, then a
quality reduction of the output signal may be perceived.

Video processing in software is often characterized by highly fluctuating,
content-dependent processing times of frames. There is often a considerable gap
between the worst-case and average-case processing times of frames. In general,
assigning processing time to a software video processing task based on its worst-
case needs is not cost effective. We consider a software video processing task to
which has been assigned insufficient processing time to process the most compute-
intensive frames in time. As a result, a severe quality reduction of the output signal
may occur. To optimize the quality of the output signal, given the limited amount
of processing time that is available to the task, we do the following. First we use
a technique called asynchronous processing, which allows the task to make more
effective use of the available processing time by working ahead. Second, we make
use of scalable video algorithms. A scalable video algorithm can process frames at
different quality levels. The higher the applied quality level for a frame, the higher
is the resulting picture quality, but also the more processing time is needed. Due
to the combination of asynchronous processing and scalable processing, a larger
fraction of the frames can be processed in time, however at the cost of a sometimes
lower picture quality.

The problem we consider is to select the quality level for each frame. The
objective that we try to optimize reflects the user-perceived quality, and is given by
a combination of the number of frames that are not processed in time, the quality
levels applied for the processed frames, and changes in the applied quality level
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between successive frames. The video signal to be processed is not known in
advance, which means that we have to make a quality-level decision for each frame
without knowing in which processing time this will result, and without knowing the
complexity of the subsequent frames. As a first solution approach we modeled this
problem as a Markov decision process. The input of the model is given by the
budgetted processing time for the task, and statistics on the processing times of
frames at the different quality levels. Solving the Markov decision process results
in a Markov strategy that can be used to select a quality level for each frame to be
processed, based on the amount of time that is available for processing until the
deadline of the frame.

Our first solution approach works well if the processing times of successive
frames are independent. In practice, however, the processing times of successive
frames can be highly correlated, because successive frames are often very simi-
lar. Our second solution approach, which can be seen as an extension of our first
approach, takes care of the dependencies in the processing times of successive
frames. The idea is that we introduce a measure for the complexity of succes-
sively processed frames, based on structural fluctuations in the processing times
of the frames. Before processing, we solve the Markov decision process several
times, for different values of the complexity measure. During video processing we
regularly determine the complexity measure for the frames that have just been pro-
cessed, and based on this measure we dynamically adapt the Markov policy that is
applied to select the quality level for the next frame.

The Markov strategies that we use are computed based on processing-time
statistics of a particular collection of video sequences. Hence, these statistics can
differ from the statistics of the video sequence that is processed. Therefore we also
worked out a third solution approach in which we use a learning algorithm to select
the quality levels for frames. The algorithm starts with hardly any processing-time
statistics, but it has to learn these statistics from run-time experience. Basically,
the learning algorithm implicitly solves the Markov decision process at run time,
making use of the increasing amount of information that becomes available. The
algorithm also takes care of dependencies in the processing time of successive
frames, using the same complexity measure as in our second solution approach.

From computer simulations we learned that our second and third solution
approaches perform close to a theoretical upper bound, determined by a reference
strategy that selects the quality levels for frames based on complete knowledge
of the processing times of all frames to be processed. Although our solutions are
successful in computer simulations, they still have to be tested in a real system.
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