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SOLVING LINEAR SYSTEMS BY METHODS BASED ON A PROBABILISTIC INTERPRETATION

BY

+Jo van Nunen and Jaap Wessels*

Abstract

In this paper it is demonstrated how the probabilistic concept of a stopping

time in a random process may be used to generate an iterative method for

solving a system of linear equations. Actually all known iterative

approximation methods for solving linear equations are generated by various

choices of a stopping time e.g. the point and block Jacobi methods,

the point and block Gauss-Seidel Methods and overrelaxation methods are

covered.

The probabilistic approach offers -in a natural way- the possibility of

adapting the solution technique to the special structure of the problem.

Moreover:~ posterior bounds for the solution are constructed, which lead to

faster convergence of the approximations than with usual prior bounds.

1. Introduction

In this paper we are concerned with iterative approximation methods for

the square system of linear equations

(1. 1) A x = b, x E:R
N

Rewriting the system as

(1. 2) x = b + Px

with P = I - A, where I is the identity matrix, allows for a probabilistic

interpretation of the system and therefore allows for the construction of
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probabilistically based solution techniques. These probabilistic interpre

tations are feasible if the (i,j)-th entry p(i,j) of P is larger then or

equal to zero and

N
(1.3) I: p(i,j) ~ 1

j = 1
for all i = l,2, .•• ,N.

Hence we will develop our method of generating solution techniques for

that case first and indicate generalizations afterwards.

The system (1.1) or (1.2) is uniquely solvable if the spectral radius

of P is smaller then one.

The solution of (1.2)

(1. 4) x* = A- 1 b = (I _ p)-l b = r pt b
t=O

may be interpreted as the total expected reward belonging to a stochastic

process that is considered at discrete points in time t = 0,1,2, •.• : as being

in one of the states 1,2, ••• ,N and where we receive b(i) every time the

system is observed to be in state i. The state i corresponds to the i-th

equation in the linear system and to the i-th coordinate of x.

Using the concept of stopping time for this process yields the possibility

to compute the expected rewards for a particular set of paths (sequences

of states), in the random process.

The choice of the stopping time will determine the particular set.

Iterating the computation 6f expected rewards over that set finally

yields the solution of the system (1.2). This solution will be reached in

dependently of the chosen stopping time. So each stopping time will generate

an iterative procedure for solving a ~lstem of linear equations. More

explicitly each stopping time T will induce an operator LT that is con

tractive on~~ and has the solution of (1.2) as unique fixed point.

Actually all known iterative approximation methods for solving systems

of linear equations are generated by the various stopping times. E.g., the

point and block Jacobi methods, the point and block Gauss-Seidel methods
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and overrelaxation methods are covered.

The probabilistic approach, however, offers in a natural way the possibility

to adapt the solution technique to the special structure of the problem.

In Markov decisions theory it is commOn to incorporate in the approximation

technique the concept of upper and lowerbounds (MacQueen) [21 ) for the

solution of (1.2).

It will be shown that applying this concept will lead to faster convergency

of the approximation algorithms. The convergence will not be determined

by the norm of the operator L
T

but by the second largest eigenvalue.

In section 2 the probabilistic interpretations of

x = b + P x

will be presented. The concept of stopping time will be introduced in an

informal way. In section 3 stopping times will be used to generate iterative

approximation procedures, and examples will be described.

In order to be able to give the central proof about the operators LT
we will describe the concept of a stopping time more formally in section 3.

Examples of operators generated by stopping times will be given.

Section 4 will be devoted to upper and lower bounds for the solution of (1.2).

These bounds will be based on the n-th stage of the approximation process

and hence are posterior bounds. It appears that these posterior bounds

are usually much better than the common prior bounds.

2. Probabilistic concepts

As mentioned, we will make the following simplifying assumption for the

introduction of our main notions

A x = b

may be written as

x = b + P x

N

with p(i,j) > 0, L p(i,j) ~ 1 and P has a spectral radius p < 1.
j=1

Under these assumptions, the square linear system has the unique solutions
~ t -1
L P b = (I - P) b and the problem is to find the sum of this series

t = 0
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or an approximation to it.

An interpretation for this sum is apparent if we interprete the square

(N x N) matrix P as the matrix of transition probabilities of a Markov

chain. Namely, suppose a system can be in one of the states 1,2, ••. ,N;

at time epoch t = 0,1,2, •••. If it is in state i at time t it either

jumps to a state j ~ i at time t + 1 or it remains in the same state i. If

the system is in state i at time t the probability of a transition to state

j at time t + 1 is equal to p(i,j). The probability of remaining in state
N

i is p(i,i). The probability 1 - E p(i,j) may be viewed upon as the

probability for blowing the syst~~lup at time t. This implies e.g. that the

probability of a path i,j,k,l at times 0,1,2,3 given that the system

starts in state i is equal to p(i,j)p(j,k)p(k,l).

Hence the pro~ability of finding the system in state j at time t given

the system starts in state i at time t = ° is equal to

E
i 1 ,i2 ,···,i

t
_ 1

This form however is equal to the (i, j) -thcomponent of the(N x N) matrix pt.

If we interprete b(i) as the reward received at each visit of the system

to state i, then(p~) (i) is the expected reward at time t when the system

starts in state i. Moreover E p~ is the vector of total expected

rewards for the different st~~~ing states until the system is blown up.

This interpretation for the solution of (1.2) gives a good key to several

approximation ideas. In the most simple procedure we start with

= °
= b + P x = b

°
so, xl (i) is the immediate reward we get if we start in state i.
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Then we define

x2 = b + P xl = b + P b

or componentwise

N
= b(i) + E p(i,j) b(j)

j=l

X
2

(i) is the expected reward in the first two periods g~ven that the system

starts in state i.

In general this simple procedure proceeds as follows

=0 x =b+Px 1n n-
for n = 1,2, •••

We see that x is just the vector of expected rewards before time n
n

for the different starting states. Using the same procedure with Xo = a

the vector x gives the expected rewards if the system is stopped (if notn
blown up earlier) at time n and a reward a(j) is earned if this occurs in

state j. The vector a may be called a vector of terminal rewards.

Other procedures may be generated using so called stopping times. A stopping

instruction for the proces is an instruction which may use the path of

the process until time t in order to decide whether the process will be

stopped at t or not.

The random time at which the process is stopped according to a stopping

instruction is called the stopping time.

Simple examples of stopping instructions are

Example 2.1

Example 2.2

Example 2.3

Example 2.4

Example 2.5

stop at t = 1

stop at t = 2

stop as soon as the system reaches a state that is

differemt from the starting state.

stop as soon as the system reaches a state with a

higher number than the previous state

stop as soon as the system reaches a certain subset

of the state space.

We will allow stopping instructions which require a lottery to make the

stopping decision. As a very simple example we have
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Example 2.6 Stop certainly as soon as the system reaches a state

different from the starting state, but each time the

system remains in the starting state the process is
-

stopped with probability 1/2.

More sophisticated examples of randomized stopping instructions will be

given later on. For a formal treatment of the concept Of'(randomized)

stopping instructions, in a more general setting, see van Nunen [41.

3. The generation of iterative approximation schemes by stopping times.

Let us suppose for the moment that a stopping instruction is given. Denote

the random stopping time by T. Then we can compute the total rewards

until the process is stopped by

\~ere St denotes the random state of the system at time t. If a terminal

reward a(j) is earned in case the process is stopped in j, the total

rewards become

T-1
E beSt) + a(ST).

t=O

(If T = ~the final term is regarded as zero) The expected rewards given

the starting state i are denoted by

T-1
E i [L beSt) + a(ST)]

t=O

the index i is deleted if the vector of such expectations is meant.
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Now we consider the following procedure

= a

(3. 1)
n = 1,2, •••

Note that for T = 1 (example2.1) this procedure is exactly the same as the

procedure introduced earlier.

The question remains for which types of stopping instructions do we have

(3.2) lim:
n.... co

x = fr - pJ -1 bn L.
?

Intuitively this question is simple to answer: x (i) are the expected
n

total rewards over n iterations of the stopping time plus an expected

terminal reward at the end of this period given that we started in state i.

If this period tends to infinity for n.... co then x (i) will tend to then
total expected reward over the infinite time horizon.

As usual we may define the iterative procedure (3.1) by an operator LT

(3.3)
T-l

LTX =E.[ L b (St) + x (ST)1.
t=O

The question in (3.2) now becomes: does it hold that

(3.4) lim
n .... co

Nfor all a €lR,;

with Ln-F1
T

This question can be split in two parts

(i) is (I p)-lb a fixed point of LT ?

(ii) is LT a contracting operator ?

Then (3.4) holds if both questions can be answered in a positive way.

The answer to the first question happens to be yes because
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T-1
= JE [L b{St) + ( r pn~) (S-or) ']

t=O n=O

~fuere the infinite series in the right handside can be interpreted as

the expected reward from the stopping time on if the instruction to stop

in state ST at time T is ignored. So the whole expression is equal to the

total expected reward if there was no stopping instruction. This total

expected reward was just the solution of the system of linear equations

(1.?). For a formal proof see van Nunen [4J or Wessels [16].
The answer to the second question cannot be an unconditional one since

e.g. the case T =0 gives trivially LT x = x for any x.

Even the most straight forward case T = 1 requires some subtlety, since

p need not be contracting in maximum norm and therefore LTX = b + Px need

not be contracting.

However P is certainly N-stage contracting (for x) since its spectral

radius is less then one and therefore L
T

with T = 1 is N-stage contracting

and possesses a unique fixed point (I_P)-lb •

For other situations we have for any stopping time T.

T-1
(3.G) (LTX) (i)= :IE.r 1: b(St)] +LlP. (S = j, T <co)x (j)

1- t =O j 1 T

where Fi(ST = j , T <co) is the probability that the state at the stopping

time T equals j and T < co for given starting i.

This implies that LT is N-stage contracting analogous to the case T = 1,

if the matrix with (i,j)-th entryF,(S = j, T <co) is N-stage contracting.
1 T

We will prove that this holds if and only if the stopping instruction is

such that for any starting state the probability of immediate stopping

is strictly less then one. Such a stopping instruction, that does not

allow for immediate stopping at t = 0 with probability one will be

called a nonzero stopping instruction and the corresponding stopping time

will be referred to as:·.:a nonzero stopping time.

Theorem 1 For any, possibly randomized, nonzero stopping time the operator
, .

L T is N-stage (contracting and has the unique, fixed point

-.1
x = (I - P) b =

co
L

t=O



- 9 -

In order to be able to prove the above theorem we have to prove that

the operator L
T

is N-.stage .contracting.if T is a nonzero stopping time.

In order to treat this problem properly we have to introduce the stopping

instructions in a more formal way.

the set of all possible paths given bij Goo

and sk =S x S x •. XS'into [0,11.

Definition A (randomized) stopping instruction is a

= IT sk
k=l

function <5 from

(with S = {l,2, ... ,N}

For any sequence of states i
O

' i
1

, i
2

, .•. , i
k

the number of <5(iO, •••• ,ia ) will

give the probability that the process is stopped in state i
k

at time k given

that the path until time k was iO, •.• ,i
k

and that the process has not

been stopped earlier.

Remarks

3.1 Note that if for all ctf£G we have o.(ct) E{O, 1}, then the stopping instruction
00

is nonrandomized.

3.2 The stopping instruction <5 is nonzero if and only if <5(i) F 1 for all

iEs = {1, 2, ••• ,N}.

Examples

~ The stopping instruction defined in example 2.1 is nonzero and equals

<5(i) = 0 for all iEs and o(ct) = 1 for all ctEGc,,\S.

3.2. The stopping instruction defined in ex. 2.2 equals o(ct) = 0 for

ct€3US 2 and <5 (ct) = 1 for ct E G~US '2) •
00

3.3 The stopping instruction described in ex. 2.3 has O(ct) = 0 if and only

if al~ components of ct E G are equal e.g. ct = (3,3,3, •.. r3) and <5(ct) = 1 else.
co

3.4 The stopping instruction in ex. 2.4 has (i
O

' i
1

, .•. ,i
k

) = 0 iff

i
O

~ i 1 ~ ... ~ i
a

in all the other situations <5(ct) = 1.
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3.5 Example 2.5 corresponds to o(a) = 0 iff a = (i
O

' i
1

, ••. ,ia ) and

i
O

' i
1

, ••• ,i
a

E E where E is the special stopping set and o(a) = 1 else.

3.6 Example 2.6 corresponds to o(a) = t iff a = (i
O

' i 1 , •.• , i k )

and i O = i
1

- ••• - i
k

; o(a) = 1 else.

Note that 3.1 - 3.5 give nonrandomized stoppings instructions while 3.6

is randomized. All examples give nonzero stopping times.

Before proving that L is N-stage contracting, let us first introduce
T

some notations. The operator L
T

defined in (3.6) can be rewritten as

with

(3.7) L X = bT + PT xT .

T-1
b

T
=:IE L: b (St)

t=O

and P
T

is the (N x N)-matrix with (i,j)-th entry equal to

This in turn is equal to

00

L: lP. (5
n=O ~ n

j, T n) •

We will prove our point under the more restrictive assumptions that II P II < 1

where II pil = mfx f Ip(i,j) I·The extension to the case where P is N-stage

contracting is then straight forward>.

From (3.7) it appears that it suffices to show the contractingness. of PT'

Lemma 1 Let 0 be a nonzero stopping instruction and suppose II P II < 1,

then

p '- II P'I II ~ max o(i) + (l-max &i» II P [I < 1T'-
i i

00

Proof First we note that Il p
T II is finite, since II PT II ~ L: II pnll < 00 ,

(lIpll< 1)
n=O
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The proof will be given by induction. For the stopping instructions °we

define the instruction)~~ by

°M(a):=

5 (a)'

co •
if a E U SK

k"'~'H1

else

Then for every £ > 0 there exists a K E~ such that for all n > K

I II PT II - II PT II I < £
M

with P
T

and P
T

the matrices corresponding to the stopping instructions oM and °
~

respect~vely.

The above inequality is true since

So it suffices to prove the lemma for nonzero "finite" stopping instructions

of the type oM.

Let ~n be the set of all stopping instructions for which the process is

stopped with certainty before or at time n to

~ = {olo(a)
m

= 1 for all aE IT sk}
k=n+1

Consequently ~O only contains the stopping instructions that require

immediate stopping

Le. o(i) = 1 for i = 1, .•. , N, which implies IIP
o

11= 1.

Suppose °E ~1 is a nonzero stopping instruction then

L PT(i,j) =
jES

L l!'~ (SO=j,T=O) +]?~ (sl = j, T=l)]
j€S ... ...

= o(i) + (1 - o(i» L p(i,j)
jES

~ °(i) + (1 - °(i» II P II

Since °E ~1 is supposed to be nonzero o(i) ~ l-£for some £ > 0 and
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II pil ~ 1,we have II PT 11<1 forT corresponding to 0 E 6 1 ,

Now we state the induction hypothesis. Let 0 E 6be any stopping instruction
n

and T the stopping time corresponding to o.

Suppose

II PTII < 1 and II PTII < 1 if 0 is nonzero.

For 0' E6n +1 we define 0i (a.)

o. ~ 6 .
~ n

Now for any iEs we have

00 k
= o(i,a.) for iEs and a. E US. Then clearly

k=l

L PT(i,j) = L
jES jES

n+1
L JPi (Sm = j, T = m)

m=O

n+1
= j~S[ P1 (SO=j, T=O) + L JP. (S =j, T=m)]

1 ~ mm=

n+1
= 0(1) 't· (l-o(i) L L E p(i,k) JPi(S =j, T=ro!Sl = k)

jES m=l kES m

n
= o(i)+(l-o(i» E p(i,k) L L JPk(s =j, T.=m)

kES jES k=O m ~

~ 0 (i) + (1-0 (i) ) E p (i, k)

kES

~ o(i) + (1-o(i» II P II,

Where the last but one inequality follows from the induction hypothesis.

So for nonzero oE6
n

CoroLLary 1For any, possibly randomized, nonzero stopping time the sequence

x defined by
n

nx = L x = (L
T

) Xon T n-1

converges to the solution of the system (I-P)x = b.
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From the foregoing it follows that every nonzero stopping time T defines

an operator L
T

which in turn induces a successsive approximation algori~h~

for solving the system of linear equations(l.l).For solving a particular

problem, one has to exploit the specific structure in order to find

the best stopping time within the class of all stopping times.

ExampZes

p(i,j)x (j)
l'!

= b(i) +x (i) : =
..0+1,

N
3.1.a Let the stopping instruction be as in ex.3.1 and let Xo eR then

N

~

j=l

In matrix notation

x = b + P x 1n n-

This procedure is sometimes called the pre-Jacobi method.

3.3.a Let the stopping instruction be as in example 3.3
N'Then for Xo EJR the sequence x

n
is defined by

(3.8)
1

x 1 (i) = (LTx ) (i) = -:-----:-:---:-, [b(i) +n+ . n 1-p(i,i) ~ P(i,j)Xn(j)]
j1'i

This follows since the stopping instruction guaranties the reception of

b(i) everytime we remain in state i for one more period. So we earn b(i)

in first instance then we earn again b (i) in the next period with

pDcibability p(i,i). After 2 steps we are still in state i with probability

(p(i,i»2 So the expected contribution is (p(i,i»)2b (i) for step 2. In step 3

the contribution will be (p(i,i»3b (i). Continuing in this way yields the

geometric series that sums,up to

1
1-p(i,i)

b (i)

The second term in x 1 follows from a similar reasoning. The process is
n+

stopped after one period in state j with probability p(i,j). (j1'i) and the

final reward x (j) is earned. The process is stopped after 2 periods in
n

state j l' i iff it was still in state i after one period. This happens
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with probability p(i,i)p(i,j). The process is stopped in j 1 i

after 3 transitions with probability (p(i,i»2p (i,j). Continuing this

concept leads to the second term Irithe righthand side of (3.8).

We define D as the diagonal matrix with diagonal entries (l-p(i,i» and

the (NxN)-matrices F and E as the strictly upper and lower triangular parts

of P respectively (and zero entries elsewhere).

Then (3.8) can be reformulated as

-1 -1
x 1 = D (E +F)x + D bn+ n

This is the point Jacobi or point total step method see e.g. Varga (9J.

3.4.a Let the stopping instructions be as in example 3.4 then

(3.9) xn+
1

(i)
1 1

= I-p(i,i) b(i) + I-p(i,i) j~i p(i,j)xn+1 (j)

+ 1 • E p(i,j)xn(j)
I-p(i,i) j>i

This £ollows easily by noting that the reward earned after a transition

to state j < i equals~x_~~V~~H (j).

By using matrices D, E andF as defined in the previous.eHample,{3,9)' c@

be given by

x = (D_E)-l FX + (D-E)-lbn+l n

This iterative procedure is known as the point Gauss-Seidel or point

single-.step method. See e. g • Varga [9J.

Ex. 3.7 Let the stopping instruction be such"

that we stop after i O' il, .•. ,in,i in state i with probability 0(1) if

~ i ~ i,
n

in other situations we stop 'immediately (o(a) = 1}.
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Then in simular way as in the previous example we have

(3.10) xn+1 (i)
l-o(i) O(i)

= l-(l-o(i»p(i,i) b(i) + 71--7(~1-~0~(~i~)~)p~(i~,~i~)- x (i)
n

+ 1-0(i),
l-(l-o(i»p(i,i) r p(i,j)xn+1 (j)

j<i
cC

+ l-(~:~~~~)P(i,i) ~;~l?(i,j)Xn(j)

+

h th t (1 - O(i) (1 - p(i,i»
Let us define o(i) suc a __1__ (1 -0(1) )p(i,i_)_c. = constant = w

___c___

Then - again using the matrices D, E and F (3.10) becomes

(D - wE}x 1 = w b + [(1-tll)D + W'F] x
n+, n

which is known as the point successive overrelaxation method.

Ex. 3.8 Suppose the state space is partitioned in blocks.

B1= {1,2, •.. ,n} B
2

= {l).+1, .•. ,n
2

} , ... , B
k

= {~_1+1, ... ,N}.

".,"

P1,1 Pi,2 P1,k

P2 ,1 P2 ,2 P2 ,k

P ,. =

Pk ,l •••• a _ ...... Pk,k

Where P contains the entries p(i,j) with iEB and jEB . Let the (NxN)-nm n m
matrices D, E, F be defined by
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D = I -

p --- -.;.-P1,2 . 1,k
"

o

o 0 .......
1 .....
I ..........

I .....
I ..........
0 ':.... 0

=F

o _- - -' - - _..D -
...... r

... I

P ""... I
I~,l ", I
I" .... I
I ...... , "l...... I
I ...... , :, ..........

PlC,r---- -:Pk ,k-'l '0

=E

Now let 0 be the stopping instruction with o(i) = 0 for all iES,

O(iO' i 1••• , i,j) = 0 if i and j are in the same block else o(a) = 1

This means that the system is not stopped as long as the sta'tes that are
-

"visited" belong to the same block. Now it is straight forwardly veri-

fied that

can be reformulated as

= D- l (E + F)x
n

-1
+ D r

This iterative scheme is known as the block Jacobi iterative method

(see Varga [9J).

From the foregoing examples it will be clear that the so-called block

successive overrelaxation iterative method can be formed by combining

the examples 3.7 and 3.8.

Of course several other options are available. The previous examples are

only given to illustrate how the concept of stopping time can be used

to generate iterative methods for solving systems of linear equations.

For specially structured matrices one can choose the (randomized) stopping

instruction in such a way that the relevant paths are included by the mappinq

LT'
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Remarks

a. To apply the idea of stopping instructions it is not necessary that all

non-diagonal elements of the matrix A in (l,l)are non-positive and that
N

r P(i,j) < 1. In fact we only used these restrictions in order to obtain
j=l

a probabilistic interpretation of the system of equations. For the formal

proofs it suffices that A is nonsingular and that p
n
~ 0 for n ~ =.

b. In fact, the deduction of successive approximation methods by using the

concept of stopping time leads to a regular splitting of the (NxN)-matrix A,

(See again Varga [91.
The real matrices Q, R with A : = Q - R form,a regular splitting 0.£ A if

Q is nonsingular with Q-1 > 0 and R ~ O. If, in addition. A- 1 ~ 0,

then the sequence
-1 -1

x = Q R x + Q b converges to the solution of Ax b.
n+1 n

-1 -1 T-1
\fuere Q . R corresponds to P

T
and Q b = JE r b (S ) .

t=O
This relation -although not formulated in stopping times- can also be

found in Porteus [7J.

c. The theory of stopping times for Markov chains gives us the following

result which is probabilistically trivial.

Lemma J.2 (see van Nunen [4] p. 31)

Let 01 and 02 be stopping instructions such that 01 (CLl ~ 02(CL) for all

CL E Usk then
1<=1

where p indicates the spectral radius.

Essentially the same lemma can be found in text books of numerical

mathematics.
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(see Varga [9] pp. 81)

If A : = Q
1

- R
1

= Q
2

- R
2

are two regular splittings of A where A-I ~ 0

and R2 ~ R1 ~ 0 then

As a consequence of these lemmas it follows immediately that e.g. the

spectral radius for the Gauss-Seidel method is not larger than the spectral

radius for the Jacobi method. However it needs not be true that the bounds tha

can be constructed (see section 4) are better too (van Nunen [4]).

4. Upper and lower-bounds for the solution "of Ax = b.

In the previous section we showed that each stopping instruction generates

a sequence {x } ~O that converges to the solution· of (1.1).
n n=

By examples we illustrated that these sequences cover those arising from

the methods which are well known from numerical mathematics.

We did not give much attention to the convergence rate of the methods.

In this section the emphasis will be on the rate of convergence. We will

show how a faster convergence rate can be achieved by using the concept

of posterior upper and lowerbounds for the solution x* of (1.1).

For a sequence {x } we define a and S for n = 1,2, ••• by
n n n

an
min [x (i)

i . n

Sn = max Ix (i) - x l(l)J.
i n n-

Moreover, we define for a matrix B two types of numbers

II all = max E B(i,j)
i j

lal min E a(i,j)
i j

These numbers will be used in defining the upper and lowerbounds for the

solution x* Note that II B II is the norm of B in maximum norm sense if

B ~ O.
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L~mma 4.1

N
Let 0 be any nonzero stopping instruction and xOE~ • Let the sequence

{x } be defined by means of the stopping time based on the stopping
n

instruction 0 as in (3.3)

Then

(i)
00

The sequence {un}n~i defined by

u =
n

if f3 ? 0n

if 8 < 0
n

yields monotone non-increasing upperbounds for x~ if e denotes the transpose

of (1, 1 , •.. , 1) .

Moreover: u ~ x*.
n

+ Ip I ' 1-1x .(1 - IPT > ane, if a ~ 0n T n

b =
n

x + II 'PT II (1 - II PT II> -1 an e, if a < 0
n n

(iii) II u - 1 " " 211 p,Jl n
+

1
(l- llpT 11>-1 II xl - X o IIn n .1.

Proof For a complete proof we refer to van Nunen [4]. Similar results

have been found by;Porteus [7J. However, the underlying ideas for

the p-roof are rather-simple Le.
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x = L-x - L x = p (x - x )
n ~ n T n-1T n n-l

~ II P
T 113n

e , if Sn ? 0

~ \PTISne, if Sn < 0

2 L 3Using the analogous inequality for LT , 'T etc. yields

~
( II P

Tk II + IIPTk-l rl +••• + IlPT dl)

~

(IPTkl +IPT
k

-
1

1 + ••. + IPTI) Sne

S en
S if S ~ 0

n

if S < 0
n

Since 1.1 .. /!. is a norm and hence satisfies II CD II ~ II ell· \10 II for

nonnegative C,D and si:nce T.I satisfies ICDI).{el~lril for n0l"Ulegative C,D,
we obtain for k ~ =

x* ~

x +
n S en

if S ~ 0n .

if S < 0
n

The other statements can be found in a similar way.

From part (iii) of the foregoing lemma it follows that the convergence

of the sequence

is at least at a rate Il p
T II .
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We will show that the use of bounds may lead to a nonnegligeable acceleration

of the convergence.

Moreover, the asymptotic convergence rate may be improved.

Although this is not necessarily requested to derive the results in

the sequel of this section we.will -for reasons of simplicity- only

consider the following simple situation.

Assumption 4.1

(ii) PT has the equal row sum property i.e.

L p(i,j) = S < 1 for all i.
j

The first assumption implies that we can just use the upper parts of the

definitions for u ,1 in lemma 4.1. (i) and 4.1(ii), since a 1 ~ 0 impliesn n

an? 0 for n ~ 1 and hence Sn > o.
The condition a 1 ~ 0 can always be satisfied by choosing Xo in an

adequate way.

Note that a ~o implies that the convergence is monotone i.e.
n

x 1'~ x ~ x*n- n

Consequently

x ~ 1 ~ x* ~ un n n

The second assumption can also be imposed without loss of generality.

Any problem with a PT matrix that has unequal row sums can be transformed

into an equivalent problem with a p' matrix which possess this equal row sum
T

property. This transformation is due to Schweitzer [12]. It can be found in

Porteus [7J and may also be deduced by using a stopping time (see van Nunen

and Stidham (61) .

The corresponding stopping instructiono
TcT

• for this stopping time is based

on a combination of 0T and the instruct~on o' defined by 0' (i) = 0 for all

i and 0' (i,i) = 1 - (,1 ') (L PT(i,j) - y)(l - y) with
PT ~,~ j

Y = max (j ~1PT (i , j). (1- B
T
' (i ,i) -1) ) •

i
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Now, a straight forward verification shows that the matrix PTor has all

row sums equal to y < 1, where ToT' corresponds to the stopping

instruction that combines T and T' •

From lemma 3.2 it follows that IIPToT ' 11' ~ II PT, II·

In the situation that all row SUI!$ of PT are e~ual we have of course

P(PT) = 1\ PT II =-lpTI.

Consequently we have for that situation

u - An n

where sp (x):= max x(i) - min x(i)
i i

Lemma 4.2

Assume PT has the equal row sum property, then

(i) the convergence rate of the procedure based on PT is

bounded by the sub dominant eigenvalue A of PT
since

sp(PTx) ~ IAI•Iii PT IT sp (x)

(ii) an upperbound for IATI can be given by

Proof

For the proof of part (i) we refer to Morton and Wecker [3].

The proof of part (ii) can be found e.g. in Seneta [B] ot Hillmer [ll or

t-Iorton and Wecker [3l and uses the following result
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= ma~.

i

lipT II . { 1 max
'IIPT II i,j

(E max [PT(i,l)-PT(j,l), OJ)}. sp(x)
1

This implies that, although the norm and spectral radius of PT are equal

to II PT II, (if PT has equal row sums), the convergence rate of the sequence
1
"2 (un + In) equals IlpT 1.1· YT·

To illustrate the strength of the concept of posterior upper and lower

bounds we consider the following simple example.

0
1 2

( 3

!) b=(DP = .9 1
2

0

1 3-4 4

Let x =(~). cle=ly lip 11- .9 while V = .75
0

In the next three tables we give for thepre-·Jacobi iterates: the values
1

x . -2 (u +1 ) and sp(x -x 1) for several values of n respectively.n' n n n n-

TABEL 1
tpre-Jacobi iterates with xO=(O,O,O)

~ x~ x 2 x3 x4 x5 x 10 XiS x =x*
00

"'-
1 10.00 12.40 18.34 21.84 25.76 39.34 47.39 59.00

2 8.00 12.50 17.02 21. 31 24.86 38.55 46.59 58.20

3 0.00 7.65 11.23 15.62 19.30 32.90 40.95 52.56
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1
Table 2 shows the values for the sequences 2(un + In)'

TABLE 2

1\ a 1 a 2 a
3

a 4 a 5
a 10

i=l 55.00 51.62 61.18 37.35 57.37 59.00

i=2 53.00 57.72 59.86 56.81 58.48 58.20

i=3 45.00 52.87 54.07 51,. 11 52.92 52.56

TABLE 3

I~ d 1 d 2 d 3
d 4

d
5

d
10

i=l 10 2.40 5.94 3.50 3.92 2.19

i=2 8 4.50 4.52 4.28 3.55 2.19

i=3 0 1.65 3.58 4.39 3.68 2.18

sp 10 5.25 2.36 0.89 0.37 0.01

It is indicated by this very simple example that using the concept of

bounds leads to very fast convergence. In the example the estimate was

within 1% of the exact solution· after 10 iterates.
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5. Conclusions

We did not strive to be exhaustive in finding the best technique for solving

a system of linear equations. We merely aimed to give more relations

between the techniques used for solving Markov decision problems and those

for linear systems.

Moreover, we showed how the concept of posterior lower and upperbounds,

which is used in Markov decision theory can be exploited in solving linear

systems.

There are of course a lot of improvements possible. For example column re

ductions or diagonal reductions (see e.g. Porteus [71> can be used.

However it can be shown that these concepts do not improve the convergence

rate once the concept of bounds is used.

The norm used in this paper was the maximum norm. The same concepts of stopping

times and bounds can be used in the case where other norms are more suitable.

For an exposition on the use of weighted supremum norms for ~arkoy

decision processes we refer to Wessels [111 and van Nunen r4l
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