Maximal type test statistics based on conditional processes

Citation for published version (APA):

Beirlant, J., \& Einmahl, J. H. J. (1993). Maximal type test statistics based on conditional processes. (Memorandum COSOR; Vol. 9317). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/1993

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

EINDHOVEN UNIVERSITY OF TECHNOLOGY
 Department of Mathematics and Computing Science

Memorandum COSOR 93-17
Maximal type test statistics based on conditional processes
J. Beirlant
J.H.J. Einmahl

Eindhoven, June 1993
The Netherlands

```
Eindhoven University of Technology
Department of Mathematics and Computing Science
Probability theory, statistics, operations research and systems theory
P.O. Box 513
5600 MB Eindhoven - The Netherlands
```

Secretariat: Dommel building 0.03
Telephone: 040-47 3130

ISSN 09264493

MAXIMAL TYPE TEST STATISTICS BASED ON CONDITIONAL PROCESSES

Jan Beirlant ${ }^{1}$
Catholic University Leuven

and

John H.J. Einmahl
Eindhoven University of Technology

Abstract

A general methodology is presented for non-parametric testing of independence, location and dispersion in multiple regression. The proposed testing procedures are based on the concepts of conditional distribution function, conditional quantile, and conditional shortest t-fraction. Techniques involved come from empirical process and extreme-value theory. The asymptotic distributions are standard Gumbel.

AMS 1991 Subject classifications. 62G07, 62G10, 62G20.
Key words and phrases. Non-parametric regression, empirical processes, extreme-value theory.

[^0]
I. INTRODUCTION AND MAIN RESULTS

Let $(\mathbf{X}, Y),\left(\mathbf{X}_{1}, Y_{1}\right), \cdots,\left(\mathbf{X}_{n}, Y_{n}\right)$ be i.i.d. random vectors from a distribution $\tilde{\mu}$ on $\mathbb{R}^{d+1}, \mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in \mathbb{R}(i=1, \cdots, n)$. The marginal distribution of the \mathbf{X} 's is denoted by μ; let S be the support of μ.
In this paper we are concerned with the conditional distribution of Y given $\mathbf{X}=\mathbf{x}$, determined by (a version of) the conditional distribution function (df) $F_{\mathbf{x}}$. The corresponding conditional quantiles

$$
Q_{\mathbf{X}}(p)=\inf \left\{y: F_{\mathbf{x}}(y) \geq p\right\}, p \in(0,1)
$$

can be used to describe the location of Y given $\mathbf{X}=\mathbf{x}$, as employed in median regression. Dispersion characteristics will be measured by means of lengths of shortest t-fractions (shortt); see e.g. Rousseeuw and Leroy (1988), Grübel (1988), and Einmahl and Mason (1992). For any $d f G$ and any interval $[c, d] \subset \mathbb{R}$ we use the notation $G([c, d])$ for $G(d)-G(c-)$.
The conditional length of a shortt is now defined by

$$
U_{\mathbf{x}}(t)=\inf \left\{b-a: F_{\mathbf{x}}([a, b]) \geq t\right\}, t \in(0,1) .
$$

It is our aim to provide new tests for independence, constant location, and homoscedasticity through $F_{\mathbf{x}}, Q_{\mathbf{x}}(p)$ and $U_{\mathbf{x}}(t)$ respectively. More precisely, the following hypotheses will be considered for $0<p, t<1$ fixed:

$$
\begin{aligned}
& H_{0}^{(1)}: F_{\mathbf{x}} \text { is independent of } \mathbf{x} \in S(\mu \text { a.e. }) ; \\
& \left.H_{0}^{(2)}: Q_{\mathbf{x}}(p) \text { is independent of } \mathbf{x} \in S \text { (} \mu \text { a.e. }\right) ; \\
& H_{0}^{(3)}: U_{\mathbf{x}}(t) \text { is independent of } \mathbf{x} \in S(\mu \text { a.e. }) .
\end{aligned}
$$

Our statistical test procedures will be based on an appropriately chosen partition $\left\{A_{j, n}: j=1, \cdots, m_{n}\right\}$ of S, with for convenience,

$$
\mu_{j}:=\mu\left(A_{j, n}\right) \geq \mu\left(A_{j+1, n}\right)=: \mu_{j+1}, \text { for all } 1 \leq j \leq m_{n}-1 .
$$

Empirical estimates of

$$
\begin{aligned}
& F_{j}(y):=P\left(Y \leq y \mid \mathbf{X} \in A_{j, n}\right), \\
& Q_{j}(p):=\inf \left\{y: F_{j}(y) \geq p\right\},
\end{aligned}
$$

and

$$
U_{j}(t):=\inf \left\{b-a: F_{j}([a, b]) \geq t\right\}
$$

are given by

$$
\begin{aligned}
& F_{j, n}(y):=\frac{\sum_{i=1}^{n} I_{A_{j, n} \times(-\infty, y]}\left(\mathbf{X}_{i}, Y_{i}\right)}{\sum_{i=1}^{n} I_{A_{j, n}}\left(\mathbf{X}_{i}\right)}, \\
& Q_{j, n}(p):=\inf \left\{y: F_{j, n}(y) \geq p\right\},
\end{aligned}
$$

and

$$
U_{j, n}(t):=\inf \left\{b-a: F_{j, n}([a, b]) \geq t\right\}
$$

Throughout we assume $F_{j}\left(j=1, \cdots, m_{n}\right)$ to be continuous on \mathbb{R}. Let μ_{n} denote the empirical measure based on $\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots, \mathbf{X}_{n}$, and set

$$
\mu_{j, n}=\mu_{n}\left(A_{j, n}\right), 1 \leq j \leq m_{n}
$$

Note that the common values of $F_{\mathbf{x}}, Q_{\mathbf{x}}(p)$ under $H_{0}^{(1)}, H_{0}^{(2)}$ respectively are equal to $F, Q(p)$, the marginal $d f$ and p-th quantile of the Y-distribution. Hence they are appropriately estimated by F_{n} and $Q_{n}(p)$, with

$$
\begin{aligned}
& F_{n}(y)=n^{-1} \sum_{i=1}^{n} I_{(-\infty, y]}\left(Y_{i}\right), y \in \mathbb{R}, \\
& Q_{n}(p)=\inf \left\{y: F_{n}(y) \geq p\right\}
\end{aligned}
$$

Concerning the hypothesis $H_{0}^{(3)}$, observe that the common value of $U_{\mathbf{x}}(t)$, denoted by $U .(t)$, is not necessarily equal to the length of the marginal shortt of the Y-distribution. We will estimate $U .(t)$ by

$$
U_{\cdot n}(t)=\sum_{j=1}^{m_{n}} \mu_{j, n} U_{j, n}(t) .
$$

Now we are ready to state our main results.
Let

$$
\Lambda(x)=\exp \left(-e^{-x}\right), \quad x \in \mathbb{R}
$$

be the standard Gumbel $d f, \Gamma$ a rv with $d f \Lambda$, and write

$$
I_{n}=\sup _{y \in \boldsymbol{R}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|F_{j, n}(y)-F_{n}(y)\right|
$$

THEOREM 1. If $n \mu_{m_{n}} /\left((\log n)^{2} \log m_{n}\right) \rightarrow \infty$ and $\mu_{1} \log m_{n} \rightarrow 0$ as $n \rightarrow \infty$, then we have under $H_{0}^{(1)}$ that

$$
\sqrt{8 \log m_{n}}\left(I_{n}-\sqrt{\frac{1}{2} \log \left(2 m_{n}\right)}\right) \xrightarrow{d} \Gamma .
$$

Let c_{α} be such that $1-\Lambda\left(c_{\alpha}\right)=\alpha, \alpha \in(0,1)$. Our asymptotic test for independence can now be specified.

COROLLARY 1. The test which rejects $H_{0}^{(1)}$ when

$$
I_{n} \geq \sqrt{\frac{1}{2} \log \left(2 m_{n}\right)}+c_{\alpha} / \sqrt{8 \log m_{n}}
$$

has asymptotic significance level α if the assumptions of Theorem 1 are satisfied.
The following corollary can be applied when the \mathbf{X}-distribution is known and continuous.
COROLLARY 2. If $m_{n} \rightarrow \infty, \mu_{1}=\mu_{m_{n}}$, and $n \mu_{1} /(\log n)^{3} \rightarrow \infty$, then

$$
\sqrt{8 \log m_{n}}\left(I_{n}-\sqrt{\frac{1}{2} \log \left(2 m_{n}\right)}\right) \stackrel{d}{\rightarrow} \Gamma .
$$

In the statement of our next result we make use of the following conditions:
(C.1) for some constant $c_{1}>0$,

$$
\limsup _{n \rightarrow \infty} \max _{1 \leq j \leq m_{n}} \sup _{y \in \boldsymbol{R}} f_{j}(y)<c_{1}
$$

where f_{j} denotes the derivative of F_{j};
(C.2) the derivative f of F exists at $Q(p)$ and satisfies $f(Q(p))>0$.

Furthermore, let

$$
c_{\alpha, n}=\sqrt{2 \log m_{n}}+\left(c_{\alpha}-\frac{1}{2}\left(\log \log m_{n}+\log \pi\right)\right) / \sqrt{2 \log m_{n}} .
$$

THEOREM 2. Let $p \in(0,1)$ be fixed. The test which rejects $H_{0}^{(2)}$ when for some $j \in\left\{1,2, \cdots, m_{n}\right\}$

$$
Q_{n}(p) \notin\left[Q_{j, n}\left(p-c_{\alpha, n} \sqrt{\frac{p(1-p)}{n \mu_{j, n}}}\right), Q_{j, n}\left(p+c_{\alpha, n} \sqrt{\left.\frac{p(1-p)}{n \mu_{j, n}}\right)}\right)\right.
$$

has asymptotic significance level α if (C1) and (C2) are satisfied and if $n \mu_{m_{n}} /\left((\log n)^{2} \log m_{n}\right)$ $\rightarrow \infty$ and $\mu_{1} \log m_{n} \rightarrow 0$.
In order to establish our last result some additional regularity conditions are required. The first one reads as follows:
(C.3) for large n, every $F_{j}\left(1 \leq j \leq m_{n}\right)$ has a density f_{j} which is continuous on \mathbb{R} and has support (β_{j}, γ_{j}), $-\infty \leq \beta_{j}<\gamma_{j} \leq \infty$, is strictly increasing on ($\beta_{j}, y_{0, j}$] and strictly decreasing on $\left[y_{0, j}, \gamma_{j}\right)$ for some $y_{0, j} \in\left(\beta_{j}, \gamma_{j}\right)$.
Moreover, every $f_{\mathbf{x}}, \mathbf{x} \in S$, satisfies this unimodality assumption.
Let $t \in(0,1)$ be fixed. Under (C.3) we have for large n that there exists a unique interval $\left[a_{j, t}, b_{j, t}\right]$ (the shortt) such that $F_{j}\left(\left[a_{j, t}, b_{j, t}\right]\right)=t, f_{j}\left(a_{j, t}\right)=f_{j}\left(b_{j, t}\right)$, and $f_{j}(y)>f_{j}\left(a_{j, t}\right)$ for every $y \in\left(a_{j, t}, b_{j, t}\right)\left(1 \leq j \leq m_{n}\right)$.
We also need that
(C.4) there exist constants $c_{2}, \delta_{2}>0$ such that the derivatives f_{j}^{\prime} of f_{j} satisfy

$$
\liminf _{n \rightarrow \infty} \min _{1 \leq j \leq m_{n}} \inf _{y \in\left[a_{j, t}, b_{j, t}\right] \backslash\left[a_{j, t}+\delta_{2}, b_{j, t}-\delta_{2}\right]}\left|f_{j}^{\prime}(y)\right|>c_{2} .
$$

Introducing the derivative u_{j} of $U_{j}\left(1 \leq j \leq m_{n}\right)$ we assume
(C.5) there exist constants $c_{3}, c_{4}>0$ such that for every $s \in(0,1)$

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \max _{1 \leq j \leq m_{n}}\left|u_{j}(s)-u_{j}(t)\right| \leq c_{3}|s-t|, \\
& \limsup _{n \rightarrow \infty} \max _{1 \leq j \leq m_{n}} u_{j}(t)<c_{4} .
\end{aligned}
$$

Finally we will assume

$$
\begin{equation*}
\sqrt{n \mu_{1} \log m_{n}} \max _{1 \leq j \leq m_{n}}\left(U_{j}(t)-\sup _{\mathbf{x} \in A_{j, n}} U_{\mathbf{x}}(t)\right)^{+} \rightarrow 0 \tag{C.6}
\end{equation*}
$$

THEOREM 3. Let $t \in(0,1)$ be fixed. The test which rejects $H_{0}^{(3)}$ when for some $j \in\left\{1,2, \cdots, m_{n}\right\}$

$$
U_{\cdot n}(t) \notin\left[U_{j, n}\left(t-c_{\alpha, n} \sqrt{\frac{t(1-t)}{n \mu_{j, n}}}\right), U_{j, n}\left(t+c_{\alpha, n} \sqrt{\frac{t(1-t)}{n \mu_{j, n}}}\right)\right)
$$

has asymptotic significance level α if (C.1), (C.3) - (C.6) are satisfied and if $\mu_{1} \log m_{n} \rightarrow 0$, $\mu_{1}^{4}\left(\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right)^{8}(\log n)^{4}\left(\log m_{n}\right)^{5} /\left(n \mu_{m_{n}}\right) \rightarrow 0$.

For any $\mathbf{x} \in S$, let $m_{t}(\mathbf{x})$ be defined as the midpoint of the interval pertaining to $U_{\mathbf{x}}(t)$. This robust regression curve is strongly related to the least median of squares regression estimator introduced in Roussecuw (1984) (see also Rousseeuw and Leroy (1988)). The following smoothness conditions on m_{t} and $F_{\mathbf{x}}(\mathbf{x} \in S)$ can be used instead of assumption (C.6), as shown by the following corollaries:
(C.7) for some constant $c_{5}>0$,

$$
\left|m_{t}\left(\mathbf{x}_{1}\right)-m_{t}\left(\mathbf{x}_{2}\right)\right| \leq c_{5}\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|
$$

for any $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$;
(C.8) the second order derivatives $f_{\mathbf{x}}^{\prime}$ of F_{x} exist, and for some $c_{6}>0$,

$$
\sup _{\mathbf{x} \in S} \sup _{y \in \boldsymbol{R}}\left|f_{\mathbf{x}}^{\prime}(y)\right|<c_{6}
$$

Let $\operatorname{diam}(A):=\sup \left\{\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|: \mathbf{x}_{1}, \mathbf{x}_{2} \in A\right\}$, where $\left\|\mathbf{x}_{1}-\mathbf{x}_{2}\right\|$ denotes the Euclidian distance between \mathbf{x}_{1} and \mathbf{x}_{2}.

COROLLARY 3. The test which rejects $H_{0}^{(3)}$ when for some $j \in\left\{1,2, \cdots, m_{n}\right\}$

$$
U_{\cdot n}(t) \notin\left[U_{j, n}\left(t-c_{\alpha, n} \sqrt{\frac{t(1-t)}{n \mu_{j, n}}}\right), U_{j, n}\left(t+c_{\alpha, n} \sqrt{\left.\frac{t(1-t)}{n \mu_{j, n}}\right)}\right)\right.
$$

has asymptotic significance level α if (C.1), (C.3) - (C.5), (C.7) and (C.8) are satisfied, and if $n \mu_{1} \log m_{n}\left(\max _{1 \leq j \leq m_{n}} \operatorname{diam}\left(A_{j, n}\right)\right)^{4} \rightarrow 0, \mu_{1} \log m_{n} \rightarrow 0$, and $\mu_{1}^{4}\left(\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right)^{8}(\log n)^{4}\left(\log m_{n}\right)^{5} /\left(n \mu_{m_{n}}\right) \rightarrow 0$.

COROLLARY 4. If $m_{n} \rightarrow \infty, \mu_{1}=\mu_{m_{n}}, n \mu_{1} /(\log n)^{9} \rightarrow \infty$, and
$n \mu_{1} \log m_{n}\left(\max _{1 \leq j \leq m_{n}} \operatorname{diam}\left(A_{j, n}\right)\right)^{4} \rightarrow 0$, then it follows under (C.1), (C.3) - (C.5), (C.7) and (C.8) that the test which rejects $H_{0}^{(3)}$ when for some $j \in\left\{1,2, \cdots, m_{n}\right\}$

$$
U_{\cdot n}(t) \notin\left[U_{j, n}\left(t-c_{\alpha, n} \sqrt{\frac{t(1-t)}{n \mu_{j, n}}}\right), U_{j, n}\left(t+c_{\alpha, n} \sqrt{\left.\frac{t(1-t)}{n \mu_{j, n}}\right)}\right)\right.
$$

has asymptotic significance level α.

REMARKS

1. The choice of $Q_{\mathbf{x}}(p)$, resp. $U_{\mathbf{x}}(t)$, rather than $m_{p}(\mathbf{x})$, resp. the interquartile range $Q_{\mathbf{x}}\left(\frac{1+t}{2}\right)-Q_{\mathbf{x}}\left(\frac{1-t}{2}\right)$, to produce tests for $H_{0}^{(2)}$, resp. $H_{0}^{(3)}$, was motivated in part by
considerations of statistical relevance. Indeed, $m_{p}(\mathbf{x})\left(x \in A_{j, n}\right)$ can only be estimated at a rate of $\left(n \mu_{j}\right)^{-\frac{1}{3}}$ (see e.g. Kim and Pollard (1990)), whereas interquartile ranges have a lower breakdown point than the corresponding shortt measures when $t>\frac{1}{3}$ (see Rousseeuw and Leroy (1988) for the case $t=\frac{1}{2}$).
The techniques we use to derive our results however, can also be applied to other testing procedures, e.g. those based on $m_{p}(\mathbf{x})$ and interquartile ranges.
2. In the cases considered in Theorems 2 and 3 , similar results on sup-norm statistics where t, p vary over non-degenerate intervals can be obtained with the technique of proof introduced in the next section.
3. Our statistic I_{n} discussed in Theorem 1 is somewhat similar to the V-quantities in Kiefer (1959) to test equality of distributions in a one-way layout of several populations. (See also the references in that paper.) The situation considered here provides a generalization of Kiefer's result to the case where the number of groups increases with the sample size.
4. In a non-regression setting an analogue of our type of test statistics is the goodness-of-fit test statistic in Dijkstra, Rietjens and Steutel (1984). In case S is compact, these authors propose to reject uniformity on S when $P_{n}=\max _{1 \leq j \leq m_{n}} \mu_{j, n}$ becomes too large, where the partition is taken to be such that under the null hypothesis the μ_{j} are all equal. Their simulation study shows that the power of this test is at least comparable to the power of the classical χ^{2}-test for uniformity against peaked alternatives.
A 'continuous' version of this 'peak-test' is given by the scan statistic (see e.g. Naus $(1966,1982)$ and Cressie $(1980,1987))$ which uses a maximal type statistic obtained from continuous scanning of S with a fixed window. In case $d=1$, Deheuvels and Révész (1987) derived asymptotics for the scan statistic using a similar condition as in Corollary 2; i.e. $\left(n a_{n}\right) /(\log n)^{3} \rightarrow \infty$, where a_{n} is the window length.
When $\mu_{1}=\mu_{m_{n}}$ one can also derive the following result for P_{n} :
if $\left(n \mu_{1}\right) /(\log n)^{3} \rightarrow \infty$ and $\mu_{1} \rightarrow 0$, we have under the hypothesis of uniformity that

$$
\sqrt{2 \log m_{n}}\left\{\sqrt{\frac{n}{\mu_{1}}}\left(P_{n}-\mu_{1}\right)-\sqrt{2 \log m_{n}}+\frac{1}{2}\left(\log \log m_{n}+\log 4 \pi\right) /\left(2 \log m_{n}\right)^{\frac{1}{2}}\right\} \xrightarrow{d} \Gamma
$$

5. The condition $n \mu_{1}\left(\log m_{n}\right)\left(\max _{1 \leq j \leq m_{n}} \operatorname{diam}\left(A_{j, n}\right)\right)^{4} \rightarrow 0$ specifies to $n h_{n}^{4+d} \log \frac{1}{h_{n}} \rightarrow 0$ in case \mathbf{X} possesses a uniform distribution on $[0,1]^{d}$, say, and the partition is taken to be cubic with $\operatorname{diam}\left(A_{j, n}\right) \sim h_{n}\left(j=1, \cdots, m_{n}\right)$. This rate condition of h_{n} lies close to the optimal rate of the window size in kernel density estimation when minimizing the mean squared error.
6. If one wants to restrict attention to a subset of the support S of \mathbf{X}, all of our results can still be used by translating them in terms of conditional distributions given \mathbf{X} belongs to that subset.

II. PROOFS

The proofs of our main results rely on the following proposition which states that jointly over all elements $A_{j, n}$ of the partition of S, we can approximate the different empirical processes

$$
\alpha_{j, n}=\sqrt{n \mu_{j, n}}\left(F_{j, n}-F_{j}\right) \quad, j=1, \cdots, m_{n}
$$

by independent Gaussian processes, and this, per j, at a rate which is comparable to the one attained by the Komlós-Major-Tusnády (1975) approximation of the (one-dimensional) uniform empirical process.

Denoting the joint distribution of (\mathbf{X}, Y) by $\tilde{\mu}$, and the empirical measure based on ($\left.\mathbf{X}_{1}, Y_{1}\right), \cdots,\left(\mathbf{X}_{n}, Y_{n}\right)$ by $\tilde{\mu}_{n}$, we will use the following quantities:

$$
\begin{aligned}
& \tilde{\mu}_{j}(y)=P\left(\mathbf{X} \in A_{j, n} \text { and } Y \leq y\right)=\tilde{\mu}\left(A_{j, n} \times(-\infty, y]\right), \\
& \tilde{\mu}_{j, n}(y)=\tilde{\mu}_{n}\left(A_{j, n} \times(-\infty, y]\right)
\end{aligned}
$$

so that

$$
F_{j, n}(y)=\frac{\tilde{\mu}_{j, n}(y)}{\mu_{j, n}}
$$

PROPOSITION. If $m_{n} \rightarrow \infty$ and $\left(n \mu_{m_{n}}\right) /(\log n)^{2} \rightarrow \infty$, then there exists a triangular scheme of rowwise independent Brownian bridges $\left\{B_{j, n}(t), 0 \leq t \leq 1\right\}\left(1 \leq j \leq m_{n}, n \geq 1\right)$ such that

$$
\sup _{y \in \boldsymbol{R}} \max _{1 \leq j \leq m_{n}}\left|\alpha_{j, n}(y)-B_{j, n}\left(F_{j}(y)\right)\right|=O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}\right)
$$

Proof. We consider the transformation from $S \times \mathbb{R}$ to $[0,1]$

$$
(\mathbf{x}, y) \rightarrow T(\mathbf{x}, y)=\sum_{j=1}^{m_{n}} 1_{A_{j, n}}(\mathbf{x})\left[\sum_{k=1}^{j-1} \mu_{k}+\mu_{j} F_{j}(y)\right]
$$

and the transformed rv's

$$
Z_{i}=T\left(\mathbf{X}_{i}, Y_{i}\right) \quad, i=1,2, \cdots, n
$$

On easily checks that $Z_{1}, Z_{2}, \cdots, Z_{n}$ are independent uniformly (0,1) distributed rv's. Let $\left\{e_{n}(t), 0 \leq t \leq 1\right\}$ denote the empirical process based on $Z_{1}, Z_{2}, \cdots, Z_{n}$. The approximation theorem of Komlós, Major and Tusnády (1975) entails then the existence of a sequence of Brownian bridges $\left\{\tilde{B}_{n}(t), 0 \leq t \leq 1\right\}$ such that as $n \rightarrow \infty$

$$
\sup _{0 \leq t \leq 1}\left|e_{n}(t)-\tilde{B}_{n}(t)\right|=O_{P}\left(\frac{\log n}{\sqrt{n}}\right)
$$

It follows that (in the obvious notation)

$$
\max _{1 \leq j \leq m_{n}}\left|\sqrt{n}\left(\mu_{j, n}-\mu_{j}\right)-\tilde{B}_{n}\left(T\left(A_{j, n} \times(-\infty, \infty]\right)\right)\right|=O_{P}\left(\frac{\log n}{\sqrt{n}}\right)
$$

and that

$$
\max _{1 \leq j \leq m_{n}} \sup _{y \in \boldsymbol{R}}\left|\sqrt{n}\left(\tilde{\mu}_{j, n}(y)-\tilde{\mu}_{j}(y)\right)-\tilde{B}_{n}\left(T\left(A_{j, n} \times(-\infty, y]\right)\right)\right|=O_{P}\left(\frac{\log n}{\sqrt{n}}\right) .
$$

Now uniformly in $j \in\left\{1, \cdots, m_{n}\right\}$ and $y \in \mathbb{R}$ we have

$$
\begin{aligned}
\alpha_{j, n}(y)= & \sqrt{n \mu_{j, n}}\left(\frac{\tilde{j}_{j, n}(y)}{\mu_{j, n}}-\frac{\tilde{\mu}_{j}(y)}{\mu_{j}}\right) \\
= & \sqrt{n}\left(\tilde{\mu}_{j, n}(y)-\tilde{\mu}_{j}(y)\right) / \sqrt{\mu_{j, n}}-\sqrt{n}\left(\mu_{j, n}-\mu_{j}\right)\left(\tilde{\mu}_{j}(y) /\left(\mu_{j} \sqrt{\mu_{j, n}}\right)\right) \\
= & \left\{\left\{\tilde{B}_{n}\left(T\left(A_{j, n} \times(-\infty, y]\right)\right)+O_{P}\left(\frac{\log n}{\sqrt{n}}\right)\right\} \mu_{j}^{-\frac{1}{2}}-\left\{\tilde{B}_{n}\left(T\left(A_{j, n} \times(-\infty, \infty]\right)\right)\right.\right. \\
& \left.\left.+O_{P}\left(\frac{\log n}{\sqrt{n}}\right)\right\} F_{j}(y) \mu_{j}^{-\frac{1}{2}}\right\} \tau_{j, n}^{-\frac{1}{2}}
\end{aligned}
$$

where

$$
\begin{equation*}
\tau_{j, n}=\mu_{j, n} / \mu_{j}=1+n^{-\frac{1}{2}} \mu_{j}^{-1} \tilde{B}_{n}\left(T\left(A_{j, n} \times(-\infty, \infty]\right)\right)+\mu_{j}^{-1} O_{P}\left(\frac{\log n}{n}\right) . \tag{2.1}
\end{equation*}
$$

We can define a sequence of Wiener processes $\left\{W_{n}(t), 0 \leq t \leq 1\right\}$ such that $\tilde{B}_{n}=W_{n}-$ $I W_{n}(1)$, where I denotes the identity function. Hence, as (with λ denoting Lebesgue measure) $\lambda\left(T\left(A_{j, n} \times(-\infty, y]\right)\right)=\mu_{j} F_{j}(y)$, we find that

$$
\begin{aligned}
\alpha_{j, n}(y)= & \left\{\left\{W_{n}\left(T\left(A_{j, n} \times(-\infty, y]\right)\right)-F_{j}(y) W_{n}\left(T\left(A_{j, n} \times(-\infty, \infty]\right)\right)\right\} \mu_{j}^{-\frac{1}{2}}\right. \\
& \left.+\mu_{j}^{-\frac{1}{2}} O_{P}\left(\frac{\log n}{\sqrt{n}}\right)\right\} \tau_{j, n}^{-\frac{1}{2}} \quad(n \rightarrow \infty) .
\end{aligned}
$$

We now set

$$
B_{j, n}\left(F_{j}(y)\right):=\mu_{j}^{-\frac{1}{2}}\left\{W_{n}\left(T\left(A_{j, n} \times(-\infty, y]\right)\right)-F_{j}(y) W_{n}\left(T\left(A_{j, n} \times(-\infty, \infty]\right)\right)\right\}
$$

One casily checks that the $B_{j, n}$ are indeed independent in $j \in\left\{1,2, \cdots, m_{n}\right\}$ and distributed as Brownian bridges.
Now as $n \rightarrow \infty$

$$
\left|\alpha_{j, n}(y)-B_{j, n}\left(F_{j}(y)\right)\right| \leq\left|B_{j, n}\left(F_{j}(y)\right)\right|\left(\tau_{j, n}^{-\frac{1}{2}}-1\right)+\mu_{j}^{-\frac{1}{2}} \tau_{j, n}^{-\frac{1}{2}} O_{P}\left(\frac{\log n}{\sqrt{n}}\right) .
$$

For a function φ on $[0,1]$, write $\|\varphi\|=\sup _{0 \leq t \leq 1}|\varphi(t)|$. First remark that as the F_{j} are assumed to be continuous

$$
\max _{1 \leq j \leq m_{n}} \sup _{y \in \mathbb{R}}\left|B_{j, n}\left(F_{j}(y)\right)\right|=\max _{1 \leq j \leq m_{n}}\left\|B_{j, n}\right\|=O_{P}\left(\sqrt{\log m_{n}}\right),
$$

as, because of the independence of the rv's $\left\|B_{j, n}\right\|\left(1 \leq j \leq m_{n}\right)$, we have for any $M>0$, that

$$
P\left(\max _{1 \leq j \leq m_{n}}\left\|B_{j, n}\right\|>M \sqrt{\log m_{n}}\right) \leq 2 m_{n} e^{-2 M^{2} \log m_{n}}=2 m_{n}^{1-2 M^{2}}
$$

which tends to zero as $m_{n} \rightarrow \infty$ when $M>2^{-\frac{1}{2}}$. (Here we also used the fact that for a Brownian bridge B we have $P(\|B\|>u) \leq 2 e^{-2 u^{2}}$.)

Furthermore,

$$
\begin{aligned}
& n^{-\frac{1}{2}} \max _{1 \leq j \leq m_{n}} \mu_{j}^{-1}\left|\tilde{B}_{n}\left(\left(\sum_{k=1}^{j-1} \mu_{k}, \sum_{k=1}^{j} \mu_{k}\right]\right)\right| \\
& \leq n^{-\frac{1}{2}} \mu_{m_{n}}^{-\frac{1}{2}} \max _{1 \leq j \leq m_{n}}\left(\mu_{j}^{-\frac{1}{2}}\left|W_{n}\left(\left(\sum_{k=1}^{j-1} \mu_{k}, \sum_{k=1}^{j} \mu_{k}\right]\right)\right|+\mu_{m_{n}}^{\frac{1}{2}}\left|W_{n}(1)\right|\right) \\
& =\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}} O_{P}\left(\sqrt{\log m_{n}}\right),
\end{aligned}
$$

since $W_{n}\left(\left(\sum_{k=1}^{j-1} \mu_{k}, \sum_{k=1}^{j} \mu_{k}\right]\right) / \sqrt{\mu_{j}}\left(1 \leq j \leq m_{n}\right)$ are m_{n} independent standard normal rv's whose maximum is well known to be of order $O_{P}\left(\sqrt{\log m_{n}}\right)$ as $n \rightarrow \infty$.

Hence,

$$
\begin{equation*}
\max _{1 \leq j \leq m_{n}}\left|\tau_{j, n}-1\right|=O_{P}\left(\sqrt{\frac{\log n}{n \mu_{m_{n}}}}+\frac{\log n}{n \mu_{m_{n}}}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\max _{1 \leq j \leq m_{n}} \sup _{y \in \boldsymbol{R}}\left|B_{j, n}\left(F_{j}(y)\right)\right|\left|\tau_{j, n}^{-\frac{1}{2}}-1\right|=O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}+\frac{(\log n)^{3 / 2}}{n \mu_{m_{n}}}\right) \quad(n \rightarrow \infty) .
$$

Finally, with

$$
\left(\max _{1 \leq j \leq m_{n}}\left(\mu_{j} \tau_{j, n}\right)^{-\frac{1}{2}}\right) O_{P}\left(\frac{\log n}{\sqrt{n}}\right)=O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}\right)
$$

the result follows.
Proof of Theorem 1. First remark that by the well known fact that

$$
\sqrt{n} \sup _{y \in \mathbb{R}}\left|F_{n}(y)-F(y)\right|=O_{P}(1) \quad(n \rightarrow \infty)
$$

we have,

$$
\sqrt{\log m_{n}} \sup _{y \in \boldsymbol{R}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|F_{n}(y)-F(y)\right|=\left(\mu_{1} \log m_{n}\right)^{\frac{1}{2}} O_{P}(1) \quad(n \rightarrow \infty)
$$

since, as in the proof of the Proposition we find that uniformly in $j \in\left\{1, \cdots, m_{n}\right\}$

$$
\mu_{j, n}^{\frac{1}{2}}=\mu_{j}^{\frac{1}{2}}\left(1+O_{P}\left(\sqrt{\frac{\log m_{n}}{n \mu_{m_{n}}}}\right)\right)
$$

Hence since $\mu_{1} \log m_{n} \rightarrow 0$, it suffices to show that, under $H_{0}^{(1)}$,

$$
\sqrt{8 \log m_{n}}\left(\sup _{y \in \boldsymbol{R}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|F_{j, n}(y)-F(y)\right|-\sqrt{\frac{1}{2} \log \left(2 m_{n}\right)}\right) \stackrel{d}{\rightarrow} \Gamma \quad(n \rightarrow \infty) .
$$

Under $H_{0}^{(1)}$ it now follows from the Proposition that

$$
\begin{aligned}
& \sqrt{8 \log m_{n}}\left|\sup _{y \in \mathbb{R}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\right| F_{j, n}(y)-F(y)\left|-\sup _{y \in \mathbb{R}} \max _{1 \leq j \leq m_{n}}\right| B_{j, n}\left(F_{j}(y)\right)| | \\
& =O_{P}\left(\frac{\log n \sqrt{\log m_{n}}}{\sqrt{n \mu_{m_{n}}}}\right)=o_{p}(1)
\end{aligned}
$$

if $n \rightarrow \infty$ and $n \mu_{m_{n}} /\left((\log n)^{2} \log m_{n}\right) \rightarrow \infty$.
Finally, remark that by the independence of the $\left\|B_{j, n}\right\|\left(1 \leq j \leq m_{n}\right)$ we can apply standard extreme value theory to show that

$$
\begin{equation*}
\sqrt{8 \log m_{n}}\left\{\max _{1 \leq j \leq m_{n}}\left\|B_{j, n}\right\|-\sqrt{\frac{1}{2} \log \left(2 m_{n}\right)}\right\} \xrightarrow{d} \Gamma \tag{2.3}
\end{equation*}
$$

since $P\left(\left\|B_{j, n}\right\|>u\right) \sim 2 e^{-2 u^{2}}$ (see Proposition 1.19 in Resnick (1987)).

Proof of Corollary 2. If $\mu_{1}=\mu_{2}=\cdots=\mu_{m_{n}}$, then $m_{n}=\mu_{1}^{-1}$.
The condition $\mu_{1} \log m_{n} \rightarrow 0$ is then automatically satisfied when $m_{n} \rightarrow \infty$.

Proof of Theorem 2. Observe that, under $H_{0}^{(2)}$,

$$
\begin{aligned}
& P\left(Q_{n}(p) \notin\left[Q_{j, n}\left(p-c_{\alpha, n} \sqrt{\frac{p(1-p)}{n \mu_{j, n}}}\right), Q_{j, n}\left(p+c_{\alpha, n} \sqrt{\frac{p(1-p)}{n \mu_{j, n}}}\right)\right), \text { for some } j \in\left\{1, \cdots, m_{n}\right\}\right) \\
& \rightarrow \alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

if

$$
\begin{align*}
\sqrt{2 \log m_{n}}\{ & \max _{1 \leq j \leq m_{n}}\left(\sqrt{n \mu_{j, n}}\left|F_{j, n}\left(Q_{n}(p)\right)-p\right| / \sqrt{p(1-p)}\right)-\sqrt{2 \log m_{n}} \tag{2.4}\\
& \left.+\frac{1}{2}\left(\log \log m_{n}+\log \pi\right)\left(2 \log m_{n}\right)^{-\frac{1}{2}}\right\} \xrightarrow{d} \Gamma .
\end{align*}
$$

Indeed, for any $d f G$ on the real line and any $p \in(0,1)$ we have

$$
G(x) \geq p \text { if and only if } G^{-1}(p) \leq x
$$

and hence

$$
G(x)<p \text { if and only if } G^{-1}(p)>x
$$

We first show that under (C.1), (C.2), $n \mu_{m_{n}} /\left((\log n)^{2} \log m_{n}\right) \rightarrow \infty$ and $\mu_{1} \log m_{n} \rightarrow 0$

$$
\begin{equation*}
\sqrt{2 \log m_{n}}\left\{\max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|F_{j, n}\left(Q_{n}(p)\right)-p\right|-\max _{1 \leq j \leq m_{n}}\left|B_{j, n}\left(F_{j}\left(Q_{n}(p)\right)\right)\right|\right\} \xrightarrow{P} 0 \tag{2.5}
\end{equation*}
$$

where $\left\{B_{j, n}\right\}\left(1 \leq j \leq m_{n}, n \geq 1\right)$ is the sequence of Brownian bridges described in the Proposition. Now (2.5) follows from the Proposition if we can show that under our assumptions

$$
\begin{equation*}
\sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|F_{j}\left(Q_{n}(p)\right)-p\right| \xrightarrow{P} 0 \tag{2.6}
\end{equation*}
$$

The well-known central limit theorem for quantiles yields that under $H_{0}^{(2)}$ and (C.2)

$$
Q_{n}(p)=Q(p)+O_{P}\left(n^{-\frac{1}{2}}\right)=Q_{j}(p)+O_{p}\left(n^{-\frac{1}{2}}\right)
$$

when $n \rightarrow \infty$. Hence by the mean value theorem we have under $H_{0}^{(2)}$ that

$$
\begin{aligned}
F_{j}\left(Q_{n}(p)\right) & =F_{j}\left(Q_{j}(p)+O_{P}\left(n^{-\frac{1}{2}}\right)\right) \\
& =p+O_{P}\left(n^{-\frac{1}{2}}\right) f_{j}\left(\tilde{Q}_{j, n}(p)\right)
\end{aligned}
$$

with $\tilde{Q}_{j, n}(p) \in\left(Q_{n}(p) \wedge Q_{j}(p), Q_{n}(p) \vee Q_{j}(p)\right)\left(1 \leq j \leq m_{n}\right)$. Hence by (C.1) and under $H_{0}^{(2)}$,

$$
\begin{equation*}
\sqrt{n} \max _{1 \leq j \leq m_{n}}\left|F_{j}\left(Q_{n}(p)\right)-p\right|=O_{P}(1) \quad(n \rightarrow \infty) \tag{2.7}
\end{equation*}
$$

so that it remains to check that $\left(\log m_{n}\right)\left(\max _{1 \leq j \leq m_{n}} \mu_{j, n}\right) \xrightarrow{P} 0(n \rightarrow \infty)$ for (2.6) (and hence (2.5)) to hold.

However, using $\tau_{j, n}$ in (2.1) again, we get that

$$
\log m_{n}\left(\max _{1 \leq j \leq m_{n}} \mu_{j, n}\right) \leq \mu_{1}\left(\log m_{n}\right)\left(\max _{1 \leq j \leq m_{n}} r_{j, n}\right)
$$

which tends to zero in probability as $n \rightarrow \infty$ and $\mu_{1} \log m_{n} \rightarrow 0$ because of (2.2).
Next, it follows from (2.7), and the modulus of continuity behaviour of Brownian bridges (see e.g. Lemma 1.1.1 in Csörgö and Révész (1981)) that

$$
\begin{align*}
& \sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}}| | B_{j, n}\left(F_{j}\left(Q_{n}(p)\right)\right)\left|-\left|B_{j, n}(p)\right|\right|=O_{P}\left(n^{-\frac{1}{4}}\left((\log n)\left(\log m_{n}\right)\right)^{\frac{1}{2}}\right) \tag{2.8}\\
& =o_{P}(1)(n \rightarrow \infty)
\end{align*}
$$

As $B_{j, n}(p)\left(1 \leq j \leq m_{n}\right)$ are independent $\mathcal{N}(0, p(1-p))$ rv's, standard techniques form extreme value theory yield that

$$
\begin{align*}
& \sqrt{2 \log m_{n}}\left\{(p(1-p))^{-\frac{1}{2}} \max _{1 \leq j \leq m_{n}}\left|B_{j, n}(p)\right|-\sqrt{2 \log m_{n}}+\frac{1}{2}\left(\log \log m_{n}+\log \pi\right)\right. \tag{2.9}\\
& \left.\cdot\left(2 \log m_{n}\right)^{-\frac{1}{2}}\right\} \xrightarrow{d} \Gamma \quad\left(m_{n} \rightarrow \infty\right)
\end{align*}
$$

Limit statement (2.4) now follows from (2.5), (2.8) and (2.9).

Proof of Theorem 3.

We introduce the functions

$$
H_{j}(z)=\sup \left\{F_{j}([a, b]): b-a \leq z\right\}
$$

Note that H_{j} is the inverse of U_{j} (for n large enough). The derivative of H_{j} is denoted by h_{j}. Remark that condition (C.1) implies

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \max _{1 \leq j \leq m_{n}} \sup _{z \geq 0} h_{j}(z)<\infty \tag{2.10}
\end{equation*}
$$

as for each $j \in\left\{1, \cdots, m_{n}\right\}$ we find that h_{j} is non-increasing and $h_{j}(0)=\max _{y \in \boldsymbol{R}} f_{j}(y)$.
Analogously we define the inverse function $H_{j, n}$ of $U_{j, n}$ by

$$
H_{j, n}(z)=\inf \left\{t: U_{j, n}(t) \geq z\right\}
$$

and note that

$$
H_{j, n}(z)=\sup \left\{F_{j, n}([a, b]): b-a \leq z\right\}, 1 \leq j \leq m_{n}
$$

To prove Theorem 3 it now suffices to show that under $H_{0}^{(3)}$

$$
\begin{equation*}
\sup _{t \in(0,1)} \max _{1 \leq j \leq m_{n}}\left|\sqrt{n \mu_{j, n}}\left(H_{j, n}\left(U_{\cdot n}(t)\right)-t\right)-\tilde{B}_{j, n}(t)\right|=O_{P}\left(\left(n \mu_{m_{n}}\right)^{-\frac{1}{8}}\left(\log m_{n}\right)^{\frac{1}{8}}(\log n)^{\frac{1}{2}}\right) \tag{2.11}
\end{equation*}
$$

for some triangular scheme of rowwise independent Brownian bridges $\left\{\tilde{B}_{j, n}\right\}\left(1 \leq j \leq m_{n}, n \geq 1\right)$; cf. the proof of Theorem 2. We derive (2.11) in three steps by showing that under the given conditions

$$
\begin{equation*}
\sup _{t \in(0,1)} \max _{1 \leq j \leq m_{n}}\left|\sqrt{n \mu_{j, n}}\left(H_{j, n}\left(U_{j}(t)\right)-t\right)-\tilde{B}_{j, n}(t)\right|=O_{P}\left(\left(n \mu_{m_{n}}\right)^{-\frac{1}{8}}\left(\log m_{n}\right)^{\frac{1}{8}}(\log n)^{\frac{1}{2}}\right) \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}}\left|H_{j}\left(U_{\cdot n}(t)\right)-t\right| \xrightarrow{P} 0 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}}\left|\tilde{B}_{j, n}\left(H_{j}\left(U_{\cdot n}(t)\right)\right)-\tilde{B}_{j, n}(t)\right| \xrightarrow{P} 0 \quad(n \rightarrow \infty) \tag{2.14}
\end{equation*}
$$

First, we prove the existence of a sequence $\left\{\tilde{B}_{j, n}\right\}$ of Brownian bridges for which (2.12) holds. Remark that from the Proposition it follows that

$$
\begin{equation*}
\sup _{[a, b]} \max _{1 \leq j \leq m_{n}}\left|\alpha_{j, n}([a, b])-\left(B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}(a)\right)\right)\right|=O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}\right) \tag{2.15}
\end{equation*}
$$

as $B_{j, n}\left(\left[F_{j}(a), F_{j}(b)\right]\right)=B_{j, n}\left(F_{j, n}(b)\right)-B_{j, n}\left(F_{j, n}(a)\right)$. To derive (2.12) from (2.15) we apply and refine the method of proof of Proposition 3.1 in Einmahl and Mason (1992). We define

$$
\tilde{B}_{j, n}(t)=B_{j, n}\left(F_{j}\left(b_{j, t}\right)\right)-B_{j, n}\left(F_{j}\left(a_{j, t}\right)\right), 1 \leq j \leq m_{n}
$$

As the intervals $\left[a_{j, t}, b_{j, t}\right.$] are nested for different values of t, one easily checks that the $\tilde{B}_{j, n}$ are distributed as Brownian bridges for every $j \in\left\{1,2, \cdots, m_{n}\right\}$ and large n; moreover, $\tilde{B}_{1, n}, \cdots, \tilde{B}_{m_{n}, n}$ are clearly independent.
Notice that for any $j \in\left\{1, \cdots, m_{n}\right\}$ and $0<t<1$

$$
\begin{align*}
& \tilde{B}_{j, n}(t)-\sqrt{n \mu_{j, n}}\left(H_{j, n}\left(U_{j}(t)\right)-t\right) \leq\left(B_{j, n}\left(F_{j}\left(b_{j, t}\right)\right)-B_{j, n}\left(F_{j}\left(a_{j, t}\right)\right)\right) \tag{2.16}\\
& -\alpha_{j, n}\left(\left[a_{j, t}, b_{j, t}\right]\right)
\end{align*}
$$

which, by (2.15), is seen to be $O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}\right)$, uniformly in $j \in\left\{1, \cdots, m_{n}\right\}$.
Next, we also have for any $j \in\left\{1, \cdots, m_{n}\right\}$ and any sequence $\varepsilon_{n} \downarrow 0$

$$
\begin{align*}
& \sqrt{n \mu_{j, n}}\left(H_{j, n}\left(U_{j}(t)\right)-t\right)-\tilde{B}_{j, n}(t) \tag{2.17}\\
& \leq\left\{\sqrt{n \mu_{j, n}} \sup _{\substack{b-a \leq U_{j}(t) \\
t-\epsilon_{n}<F_{j}([a, b]) \leq t}}\left(F_{j, n}([a, b])-t\right)-\tilde{B}_{j, n}(t)\right\} \\
& \vee\left\{\sqrt{n \mu_{j, n}} \sup _{F_{j}([a, b]) \leq t-\epsilon_{n}}\left(F_{j, n}([a, b])-t\right)-\tilde{B}_{j, n}(t)\right\} .
\end{align*}
$$

The second term on the right hand side of (2.17) is

$$
\begin{aligned}
& \leq \sqrt{n \mu_{j, n}} \sup _{F_{j}([a, b]) \leq t}\left(F_{j, n}([a, b])-F_{j}([a, b])\right)+\left|\tilde{B}_{j, n}(t)\right|-\varepsilon_{n} \sqrt{n \mu_{j, n}} \\
& \leq 2 \max _{1 \leq j \leq m_{n}} \sup _{[c, d]}\left|B_{j, n}([c, d])\right| \\
& +\max _{1 \leq j \leq m_{n}} \sup _{[a, b]}\left|\alpha_{j, n}([a, b])-\left(B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}(a)\right)\right)\right|-\varepsilon_{n} \min _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}} .
\end{aligned}
$$

From (2.3), (2.15) and (2.2) it now follows that the second term on the right hand side of (2.17) can be asymptotically bounded from above by 0 in probability, by making the appropriate choice

$$
\varepsilon_{n}=M\left(\log m_{n} /\left(n \mu_{m_{n}}\right)\right)^{\frac{1}{2}}
$$

with M a large enough positive constant.
The first term on the right hand side of (2.17) is

$$
\begin{align*}
& \leq \sqrt{n \mu_{j, n}} \sup _{\substack{b-a \leq U_{j}(t) \\
t-\epsilon_{n}<f([a, b) \leq t}}\left(\left(F_{j, n}(b)-F_{j, n}(a)\right)-\left(F_{j}(b)-F_{j}(a)\right)\right)-\tilde{B}_{j, n}(t) \tag{2.18}\\
& \leq \sup _{\substack{b-a \leq V_{j}(t) \\
t \rightarrow e_{n}<F_{j}([a, b]) \leq t}}\left|\alpha_{j, n}([a, b])-\left(B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}(a)\right)\right)\right| \\
& +\sup _{\substack{b-a \leq \bigcup_{j}(t) \\
t-\iota_{n}<F_{j}(a, b) \leq t}}\left(B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}(a)\right)\right)-\tilde{B}_{j, n}(t) .
\end{align*}
$$

The first term on the right hand side of (2.18) is of order $O_{P}\left(\frac{\log n}{\sqrt{n \mu_{m_{n}}}}\right)$, uniformly in $j \in\left\{1,2, \cdots, m_{n}\right\}$, by (2.15).

Finally observe that for any $j \in\left\{1, \cdots, m_{n}\right\}$

$$
\begin{align*}
& \sup _{\substack{b-a \leq V_{j}(t) \\
t \rightarrow e_{n}<F_{j}((a, b) \leq t}}\left\{B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}(a)\right)\right\}-\tilde{B}_{j, n}(t) \leq \tag{2.19}\\
& \max _{1 \leq j \leq m_{n}}^{\substack{b-a \leq \sum_{j}(t) \\
t-t_{n}<F_{j}(1 a, b) \leq t}} \sup \left\{\left|B_{j, n}\left(F_{j}(b)\right)-B_{j, n}\left(F_{j}\left(b_{j, t}\right)\right)\right|\right. \\
& \left.+\left|B_{j, n}\left(F_{j}(a)\right)-B_{j, n}\left(F_{j}\left(a_{j, t}\right)\right)\right|\right\} .
\end{align*}
$$

For any interval $[a, b]$ with $b-a=U_{j}(t)$ and $t-\varepsilon_{n}<F_{j}([a, b]) \leq t$, we find by (C.4) that (uniformly in j) $\left|a-a_{j, t}\right|$ and $\left|b-b_{j, t}\right|$ become arbitrarily small as $n \rightarrow \infty$. We then find, with δ_{2} as in (C.4), that eventually as $n \rightarrow \infty$ whether $a \in\left[a_{j, t}, a_{j, t}+\delta_{2}\right.$) or $b \in\left[b_{j, t}-\delta_{2}, b_{j, t}\right]$. In case $a<a_{j, t}<y_{0, j}<b<b_{j, t}$, we have that

$$
F_{j}\left(\left[b, b_{j, t}\right)\right) \leq\left|b_{j, t}-b\right| f_{j}\left(y_{0, j}\right) \leq c_{1}\left(b_{j, t}-b\right) .
$$

On the other hand, if $\varepsilon_{n} \geq F_{j}\left(\left[a_{j, t}, b_{j, t}\right]\right)-F_{j}([a, b]) \geq 0$, then

$$
\varepsilon_{n} \geq F_{j}\left(\left[b, b_{j, t}\right]\right)-\left(b_{j, t}-b\right) f_{j}\left(b_{j, t}\right)=-\left(\left(b_{j, t}-b\right)^{2} / 2\right) f_{j}^{\prime}\left(\tilde{b}_{j, t}\right)
$$

with $\tilde{b}_{j, t} \in\left(b_{j, t} \wedge b, b_{j, t} \vee b\right)$, so that (C.4) implies that for n large enough $F_{j}\left(b_{j, t}\right)-F_{j}(b)$ $\leq C \varepsilon_{n}^{\frac{1}{2}}$, for some $C>0$. Also in the other possible cases we can obtain this same bound for $\left|F_{j}\left(b_{j, t}\right)-F_{j}(b)\right| \vee\left|F_{j}\left(a_{j, t}\right)-F_{j}(a)\right|$. Hence the expression on the right hand side of (2.19) can be bounded by

$$
\begin{equation*}
\omega\left(n, \varepsilon_{n}\right):=2 \max _{1 \leq j \leq m_{n}} \sup _{0 \leq s \leq 1-C \sqrt{\varepsilon_{n}}} \sup _{0 \leq t \leq C \sqrt{\varepsilon_{n}}}\left|B_{j, n}(s+t)-B_{j, n}(s)\right| \tag{2.20}
\end{equation*}
$$

By Lemma 1.1.1 in Csörgö and Révész (1981), the representation of Brownian bridges in terms of Wiener processes, and the independence of the Brownian bridges $B_{j, n}\left(1 \leq j \leq m_{n}\right)$, we obtain that for any $K>0$ there exist constants $K_{1}, K_{2}>0$ such that

$$
P\left(\omega\left(n, \varepsilon_{n}\right)>K \gamma_{n}\right) \leq K_{1} m_{n} \varepsilon_{n}^{-\frac{1}{2}} \exp \left(-K_{2} K^{2} \gamma_{n}^{2} \varepsilon_{n}^{-\frac{1}{2}}\right)
$$

Choosing

$$
\gamma_{n}=\varepsilon_{n}^{\frac{1}{4}}(\log n)^{\frac{1}{2}}=M^{\frac{1}{4}}\left(\log m_{n}\right)^{\frac{1}{8}}\left(n \mu_{m_{n}}\right)^{-\frac{1}{8}}(\log n)^{\frac{1}{2}}
$$

one easily checks that

$$
P\left(\omega\left(n, \varepsilon_{n}\right)>K \gamma_{n}\right) \rightarrow 0 \quad(n \rightarrow \infty)
$$

choosing $K>0$ large enough. This together with (2.16) - (2.20) implies (2.12).
To derive (2.13), note that under $H_{0}^{(3)}$ we have for any $j \in\left\{1, \cdots, m_{n}\right\}$

$$
\begin{align*}
& \left|H_{j}\left(U_{\cdot n}(t)\right)-t\right| \tag{2.21}\\
& \leq\left|H_{j}\left(U_{\cdot n}(t)\right)-H_{j}\left(U_{.}(t)\right)\right|+\left|H_{j}(U .(t))-H_{j}\left(U_{j}(t)\right)\right| \\
& \left.\leq \mid U_{\cdot n}(t)\right)-U .(t)\left|h_{j}\left(\tilde{U}_{n}(t)\right)+\left|U_{.}(t)-U_{j}(t)\right| h_{j}\left(\tilde{U}_{j}(t)\right)\right.
\end{align*}
$$

where $\tilde{U}_{n}(t) \in\left(U_{\cdot n}(t) \wedge U .(t), U_{\cdot n}(t) \vee U .(t)\right)$ and $\tilde{U}_{j}(t) \in\left(U_{j}(t) \wedge U .(t), U_{j}(t) \vee U .(t)\right), 1 \leq j \leq m_{n}$. Now using (2.2) and (2.10), and the fact that under $H_{0}^{(3)}$ from (C.6) and $U_{j}(t) \geq U .(t)$ it follows that

$$
\begin{equation*}
\sqrt{n \mu_{1} \log m_{n}} \max _{1 \leq j \leq m_{n}}\left|U_{j}(t)-U .(t)\right| \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.22}
\end{equation*}
$$

we now find that as $n \rightarrow \infty$

$$
\begin{align*}
& \sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}}\left(\sqrt{n \mu_{j, n}}\left|U .(t)-U_{j}(t)\right|\right) h_{j}\left(\tilde{U}_{j}(t)\right) \tag{2.23}\\
& =O_{P}\left(\sqrt{n \mu_{1} \log m_{n}} \max _{1 \leq j \leq m_{n}}\left|U_{j}(t)-U .(t)\right|\right)=o_{P}(1)
\end{align*}
$$

On the other hand, by (2.2) and (2.10), as $n \rightarrow \infty$

$$
\begin{align*}
& \sqrt{\log m_{n}} \max _{1 \leq j \leq m_{n}}\left(\sqrt{n \mu_{j, n}} h_{j}\left(\tilde{U}_{n}(t)\right)\right)\left|U_{\cdot n}(t)-U .(t)\right| \tag{2.24}\\
& =O_{P}(1) \sqrt{n \mu_{1} \log m_{n}}\left|U_{\cdot n}(t)-U .(t)\right|
\end{align*}
$$

Furthermore,

$$
\begin{equation*}
\left|U_{\cdot n}(t)-U .(t)\right| \leq \sum_{j=1}^{m_{n}} \mu_{j, n}\left|U_{j}(t)-U .(t)\right|+\left|\sum_{j=1}^{m_{n}} \mu_{j, n}\left(U_{j, n}(t)-U_{j}(t)\right)\right| . \tag{2.25}
\end{equation*}
$$

Now

$$
\begin{equation*}
\sqrt{n \mu_{1} \log m_{n}} \sum_{j=1}^{m_{n}} \mu_{j, n}\left|U_{j}(t)-U .(t)\right| \leq \sqrt{n \mu_{1} \log m_{n}} \max _{1 \leq j \leq m_{n}}\left|U_{j}(t)-U .(t)\right| \tag{2.26}
\end{equation*}
$$

which tends to zero by (2.22).
The mean value theorem yields that for some $\tilde{t}_{j, n} \in\left(H_{j}\left(U_{j, n}(t)\right) \wedge t, H_{j}\left(U_{j, n}(t)\right) \vee t\right)$

$$
\begin{align*}
& \sum_{j=1}^{m_{n}} \mu_{j, n}\left(U_{j, n}(t)-U_{j}(t)\right)=\sum_{j=1}^{m_{n}} \mu_{j, n}\left(U_{j}\left(H_{j}\left(U_{j, n}(t)\right)\right)-U_{j}(t)\right) \tag{2.27}\\
& =\sum_{j=1}^{m_{n}} \mu_{j, n} u_{j}\left(\tilde{t}_{j, n}\right)\left(H_{j}\left(U_{j, n}(t)\right)-t\right) .
\end{align*}
$$

We now show that in this last expression we can replace $\mu_{j, n} u_{j}\left(\tilde{t}_{j, n}\right)$ by $\sqrt{\mu_{j}} u_{j}(t) \sqrt{\mu_{j, n}}$. To this end we first remark that using (2.2) and (2.12) we have as $n \rightarrow \infty$ that

$$
\begin{align*}
& \max _{1 \leq j \leq m_{n}} \sup _{t \in(0,1)}\left|H_{j}\left(U_{j, n}(t)\right)-t\right|=\max _{1 \leq j \leq m_{n}} \sup _{t \in(0,1)}\left|H_{j, n}\left(U_{j}(t)\right)-t\right| \tag{2.28}\\
& =\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}} \max _{1 \leq j \leq m_{n}}\left\|\tilde{B}_{j, n}\right\|+O_{P}\left(\left(n \mu_{m_{n}}\right)^{\left.-\frac{5}{8}\left(\log m_{n}\right)^{\frac{1}{8}}(\log n)^{\frac{1}{2}}\right)}\right. \\
& =O_{P}\left(\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}}\left(\log m_{n}\right)^{\frac{1}{2}}+\left(n \mu_{m_{n}}\right)^{-\frac{5}{8}}\left(\log m_{n}\right)^{\frac{1}{8}}(\log n)^{\frac{1}{2}}\right) \\
& =O_{P}\left(\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}}\left(\log m_{n}\right)^{\frac{1}{2}}\right) .
\end{align*}
$$

A similar argument yields that

$$
\begin{equation*}
\max _{1 \leq j \leq m_{n}} \sqrt{n \mu_{j, n}} \sup _{t \in(0,1)}\left|H_{j}\left(U_{j, n}(t)\right)-t\right|=O_{P}\left(\left(\log m_{n}\right)^{\frac{1}{2}}\right) \quad(n \rightarrow \infty) \tag{2.29}
\end{equation*}
$$

Using (C.5) we obtain that

$$
\begin{aligned}
& \left|u_{j}\left(\tilde{t}_{j, n}\right)-u_{j}(t)\right| \leq c_{3}\left|\tilde{t}_{j, n}-t\right| \leq c_{3} \max _{1 \leq j \leq m_{n}}\left|H_{j}\left(U_{j, n}(t)\right)-t\right| \\
& =O_{P}\left(\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}}\left(\log m_{n}\right)^{\frac{1}{2}}\right) \quad(n \rightarrow \infty)
\end{aligned}
$$

Hence with (2.29) and the rate condition in the statement of the theorem we have that

$$
\begin{align*}
& \sqrt{n \mu_{1} \log m_{n}} \sum_{j=1}^{m_{n}} \mu_{j, n}\left|u_{j}\left(\tilde{t}_{j, n}\right)-u_{j}(t)\right|\left|H_{j}\left(U_{j, n}(t)\right)-t\right| \tag{2.30}\\
& =O_{P}\left(\mu_{1}^{\frac{1}{2}}\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}} \log m_{n}\right) \sum_{j=1}^{m_{n}} \mu_{j, n}^{\frac{1}{2}}\left(\sqrt{n \mu_{j, n}}\left|H_{j}\left(U_{j, n}(t)\right)-t\right|\right) \\
& =O_{P}\left(\left(\log m_{n}\right)^{\frac{3}{2}}\left(n \mu_{m_{n}}\right)^{-\frac{1}{2}} \mu_{1}^{\frac{1}{2}}\left(\sum_{j=1}^{m_{\dot{n}}} \mu_{j, n}^{\frac{1}{2}}\right)\right) \\
& =o_{P}(1) \quad(n \rightarrow \infty)
\end{align*}
$$

Next, using (C.5), (2.29), and $\max _{1 \leq j \leq m_{n}}\left|\mu_{j, n}^{\frac{1}{2}}-\mu_{j}^{\frac{1}{2}}\right|=O_{P}\left((\log n)^{\frac{1}{2}} n^{-\frac{1}{2}}\right)(n \rightarrow \infty)$ we find

$$
\begin{align*}
& \sqrt{n \mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j, n}^{\frac{1}{2}}\left(\mu_{j, n}^{\frac{1}{2}}-\mu_{j}^{\frac{1}{2}}\right) u_{j}(t)\left(H_{j}\left(U_{j, n}(t)\right)-t\right)\right| \tag{2.31}\\
& =O_{P}\left(\sqrt{\frac{\mu_{1} \log m_{n} \log n}{n}}\right) \sum_{j=1}^{m_{n}} u_{j}(t)\left|\sqrt{n \mu_{j, n}}\left(H_{j}\left(U_{j, n}(t)\right)-t\right)\right| \\
& =O_{P}\left(\log m_{n} \sqrt{\frac{\mu_{1} \log n}{n}} m_{n}\right) \\
& =O_{P}\left(\log m_{n} \sqrt{\frac{\mu_{1} \log n}{n \mu_{m_{n}}}} \sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right)(n \rightarrow \infty),
\end{align*}
$$

which is $o_{P}(1)$ as $n \rightarrow \infty$ because of the rate conditions in the statement of the theorem.
From (2.27), (2.30) and (2.31) it now remains to show that
(2.32) $\sqrt{\mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \sqrt{n \mu_{j, n}}\left(H_{j}\left(U_{j, n}(t)\right)-t\right)\right| \xrightarrow{P} 0$
as $n \rightarrow \infty$ in order to verify (2.13).
To this end, as $\left|H_{j, n}\left(U_{j, n}(t)\right)-t\right| \leq\left(n \mu_{j, n}\right)^{-1}$ a.s., the expression in the left hand side of (2.32) is equal to
(2.33) $\quad \sqrt{\mu_{1} \log m_{n}} \left\lvert\, \sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \sqrt{n \mu_{j, n}}\left(H_{j}\left(U_{j, n}(t)\right)-H_{j, n}\left(U_{j, n}(t)\right) \mid\right.\right.$

$$
+O_{P}\left(\left(\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right) \sqrt{\frac{\mu_{1} \log m_{n}}{n \mu_{m_{n}}}}\right)(n \rightarrow \infty)
$$

Now, by (2.11),

$$
\begin{align*}
& \sqrt{\mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \sqrt{n \mu_{j, n}}\left(\dot{H}_{j}\left(U_{j, n}(t)\right)-H_{j, n}\left(U_{j, n}(t)\right)\right)\right| \tag{2.34}\\
& =\sqrt{\mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \tilde{B}_{j, n}\left(H_{j}\left(U_{j, n}(t)\right)\right)\right| \\
& +O_{P}\left(\mu_{1}^{\frac{1}{2}}\left(\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right)\left(n \mu_{m_{n}}\right)^{-\frac{1}{8}}\left(\log m_{n}\right)^{\frac{5}{8}}(\log n)^{\frac{1}{2}}\right) .
\end{align*}
$$

Using the modulus of continuity behaviour of Brownian bridges together with (2.27), we get

$$
\begin{align*}
& \sqrt{\mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \tilde{B}_{j, n}\left(H_{j}\left(U_{j, n}(t)\right)\right)\right| \tag{2.35}\\
& =\sqrt{\mu_{1} \log m_{n}}\left|\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \tilde{B}_{j, n}(t)\right| \\
& +O_{P}\left(\mu_{1}^{\frac{1}{2}}\left(\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}}\right)\left(n \mu_{m_{n}}\right)^{-\frac{1}{4}}(\log n)^{\frac{1}{2}}\left(\log m_{n}\right)^{\frac{3}{4}}\right) .
\end{align*}
$$

Observe that because of the independence of the $\tilde{B}_{j, n}$ we have that

$$
\sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \tilde{B}_{j, n}(t) \sim \mathcal{N}\left(0, t(1-t) \sum_{j=1}^{m_{n}} \mu_{j} u_{j}^{2}(t)\right)
$$

With (C.5)

$$
t(1-t) \sum_{j=1}^{m_{n}} \mu_{j} u_{j}^{2}(t)=O(1) \quad(n \rightarrow \infty)
$$

and hence

$$
\begin{equation*}
\sqrt{\mu_{1} \log m_{n}} \sum_{j=1}^{m_{n}} \mu_{j}^{\frac{1}{2}} u_{j}(t) \tilde{B}_{j, n}(t) \xrightarrow{\dot{P}} 0 \quad(n \rightarrow \infty) . \tag{2.36}
\end{equation*}
$$

Statements (2.33) - (2.36) yield (2.32), and (2.13) follows from (2.21) - (2.27) and (2.30) (2.32).

Finally, statement (2.14) follows by (2.13), the behaviour of the modulus of continuity of Brownian bridges, and the independence of the $\tilde{B}_{j, n}\left(j=1, \cdots, m_{n}\right)$. This concludes the proof of Theorem 3.

Proof of Corollary 3.

It suffices to show that, under $H_{0}^{(3)}, \sqrt{n \mu_{1} \log m_{n}} \max _{1 \leq j \leq m_{n}}\left(U_{j}(t)-U .(t)\right) \rightarrow 0 \quad(n \rightarrow \infty)$ is implied by (C.7), (C.8) and the rate $n \mu_{1} \log m_{n}\left(\max _{1 \leq j \leq m_{n}} \operatorname{diam}\left(A_{j, n}\right)\right)^{4} \rightarrow 0 \quad(n \rightarrow \infty)$.
Let $K_{\mathbf{x}}=\left[a_{\mathbf{x}}, b_{\mathbf{x}}\right]$ denote the shortt pertaining to $F_{\mathbf{x}}$, let $\alpha_{j}=\inf _{\mathbf{x} \in A_{j, n}} a_{\mathbf{x}}, \tilde{\beta}_{j}=\sup _{\mathbf{x} \in A_{j, n}} b_{\mathbf{x}}$, and set

$$
\beta_{j}=\alpha_{j}+U .(t), \tilde{\alpha}_{j}=\tilde{\beta}_{j}-U .(t) .
$$

Let a be such that $\alpha_{j} \leq a<a+U .(t) \leq \tilde{\beta}_{j}$. A Taylor expansion, using $f_{\mathbf{x}}\left(a_{\mathbf{x}}\right)=f_{\mathbf{x}}\left(b_{\mathbf{x}}\right)$ and (C.8), yields that for some $\tilde{a}_{\mathbf{x}} \in\left(a_{\mathbf{x}} \wedge a, a_{\mathbf{x}} \vee a\right)$ and $\tilde{b}_{\mathbf{x}} \in\left(b_{\mathbf{x}} \wedge(a+U .(t)), b_{\mathbf{x}} \vee(a+U .(t))\right)$ we have

$$
\begin{aligned}
t-F_{\mathbf{x}}([a, a+U .(t)]) & =\left(F_{\mathbf{x}}(a)-F_{\mathbf{x}}\left(a_{\mathbf{x}}\right)\right)-\left(F_{\mathbf{x}}(a+U .(t))-F_{\mathbf{x}}\left(b_{\mathbf{x}}\right)\right) \\
& =\frac{1}{2}\left(a-a_{\mathbf{x}}\right)^{2} f_{\mathbf{x}}^{\prime}\left(\tilde{a}_{\mathbf{x}}\right)-\frac{1}{2}\left(a+U .(t)-b_{\mathbf{x}}\right)^{2} f_{\mathbf{x}}^{\prime}\left(\tilde{b}_{\mathbf{x}}\right) \\
& \leq c_{6}\left(\alpha_{j}-\tilde{\alpha}_{j}\right)^{2}
\end{aligned}
$$

and hence,

$$
t-F_{j}([a, a+U .(t)]) \leq \max _{1 \leq j \leq m_{n}}\left(\alpha_{j}-\tilde{\alpha}_{j}\right)^{2} c_{6}=: \nu_{n}
$$

Set $\eta=\left(U_{j}(t)-U .(t)\right) / \nu_{n}$. Since $U_{j}(t) \geq U .(t)$, we have $\eta \geq 0$. Observe that for $y_{1} \in\left[\tilde{\alpha}_{j}, \beta_{j}\right]$ and $y_{2} \leq \alpha_{j}$ or $y_{2} \geq \tilde{\beta}_{j}$ we have $f_{j}\left(y_{1}\right) \geq f_{j}\left(y_{2}\right)$. Hence it readily follows that $\left[\tilde{\alpha}_{j}, \beta_{j}\right] \subset K_{j}$. This means that we can find an a as above such that $K_{j}=\left[a-\eta \nu_{n}, a+U .(t)\right]$ or such that $K_{j}=\left[a, a+U .(t)+\eta \nu_{n}\right]$.

Without loss of generality assume the first equality holds. Observe that the second condition in (C.5) implies that

$$
\liminf _{n \rightarrow \infty} \min _{1 \leq j \leq m_{n}} \inf _{y \in\left[a_{j, t}, b_{j, t}\right]} f_{j}(y)>1 / c_{4}
$$

Hence

$$
0=t-F_{j}\left(\left[a-\eta \nu_{n}, a+U .(t)\right]\right) \leq \nu_{n}-F_{j}\left(\left[a-\eta \nu_{n}, a\right]\right) \leq \nu_{n}\left(1-\eta / c_{4}\right)
$$

which (when $\nu_{n}>0$) implies $\eta \leq c_{4}$. This, in combination with $\nu_{n} \sqrt{n \mu_{1} \log m_{n}}$ $\rightarrow 0(n \rightarrow \infty)$, completes the proof.

Acknowledgement. We thank Arthur van Soest for a useful conversation.

REFERENCES.

Cressie, N. (1980). The asymptotic distribution of the scan statistic under uniformity. Ann. Probab. 18, 828-840.

Cressie, N. (1987). Using the scan statistic to test for uniformity. In: Goodness-of-Fit. Colloquia Mathematica Societatis Janós Bolyai 45, 87-100. North Holland, Amsterdam.

Csörgö, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York.

Deheuvels, P. and Révész, P. (1987). Weak laws for the increments of Wiener processes, Brownian bridges, empirical processes and partial sums of i.i.d. rv's. In: Mathematical Statistics and Probability Theory, Vol. A (M.L. Puri et al. eds.) 69-88. Reidel, Dordrecht.

Dijkstra, J.B., Rietjens, T.J.M. and Steutel, F.W. (1984). A simple test for uniformity. Statist. Neerlandica 38, 33-44.

Einmahl, J.H.J. and Mason, D.M. (1992). Generalized quantile processes. Ann. Statist. 20, 1062-1078.

Grübel, R. (1988). The length of the shorth. Ann. Statist. 16, 619-628.
Kiefer, J. (1959). K-sample analogues of the Kolmogorov-Smirnov and Cramér-von Mises tests. Ann. Math. Statist. 30, 420-447.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18, 191-219.
Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrsch.Verw. Gebiete 32, 111-131.

Naus, J.I. (1966). A power comparison of two tests of nonrandom clustering. Technometrics 8, 493-517.

Naus, J.I. (1982). Approximations for distributions of scan statistics. J. Amer. Statist. Assoc. 77, 177-183.

Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.

Rousseeuw, P. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 70, 871-880.

Rousseeuw, P. and Leroy, A. (1988). A robust scale estimator based on the shortest half. Statist. Neerlandica 42, 103-116.

Dept. of Mathematics
Catholic University Leuven
Celestijnenlaan 200 B
3001 Heverlee
Belgium

Dept. of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven
The Netherlands

List of COSOR-memoranda - 1993

Number	Month	Author	Title
93-01	January	P. v.d. Laan C. v. Eeden	Subset selection for the best of two populations: Tables of the expected subset size
93-02	January	R.J.G. Wilms J.G.F. Thiemann	Characterizations of shift-invariant distributions based on summation modulo one.
93-03	February	Jan Beirlant John H.J. Einmahl	Asymptotic confidence intervals for the length of the shortt under random censoring.
93-04	February	E. Balas J. K. Lenstra A. Vazacopoulos	One machine scheduling with delayed precedence constraints
93-05	March	A.A. Stoorvogel J.H.A. Ludlage	The discrete time minimum entropy H_{∞} control problem
93-06	March	H.J.C. Huijberts C.H. Moog	Controlled invariance of nonlinear systems: nonexact forms speak louder than exact forms
93-07	March	Marinus Veldhorst	A linear time algorithm to schedule trees with communication delays optimally on two machines
93-08	March	Stan van Hoesel Antoon Kolen	A class of strong valid inequalities for the discrete lot-sizing and scheduling problem
93-09	March	F.P.A. Coolen	Bayesian decision theory with imprecise prior probabilities applied to replacement problems
93-10	March	A.W.J. Kolen A.H.G. Rinnooy Kan C.P.M. van Hoesel A.P.M. Wagelmans	Sensitivity analysis of list scheduling heuristics
93-11	March	A.A. Stoorvogel J.H.A. Ludlage	Squaring-down and the problems of almost-zeros for continuous-time systems
93-12	April	Paul van der Laan	The efficiency of subset selection of an ε-best uniform population relative to selection of the best one
93-13	April	R.J.G. Wilms	On the limiting distribution of fractional parts of extreme order statistics

Number	Month	Author	Title
$93-14$	May	L.C.G.J.M. Habets	On the Genericity of Stabilizability for Time-Day Systems
$93-15$	June	P. van der Laan C. van Eeden	Subset selection with a generalized selection goal based on a loss function
$93-16$	June	A.A. Stoorvogel A. Saberi	The Discrete-time H_{∞} Control Problem with B.M. Chen
		Strictly Proper Measurement Feedback	

[^0]: ${ }^{1}$ Research performed while the author was research fellow at the Eindhoven University of Technology.

