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I. INTRODUCTION AND MAIN RESULTS

Let (X, Y), (XI, Yd, "', (Xn , Yn ) be LLd. random vectors from a distribution fJ, on
JRd+t, Xi E JRd, Yi E JR (i = 1, "', n). The marginal distribution of the X's is de
noted by J.lj let S be the support of J.l.
In this paper we are concerned with the conditional distribution of Y given X = x, deter
mined by (a version of) the conditional distribution function (dJ) Fx . The corresponding
conditional quantiles

Qx(p) = inf {y : Fx(Y) ~ p}, P E (0,1) ,

can be used to describe the location of Y given X = x, as employed in median regression.
Dispersion characteristics will be measured by means oflengths of shortest t-fractions (shortt) j

see e.g. Rousseeuw and Leroy (1988), Grubel (1988), and Einmahl and Mason (1992). For
any df G and any interval [c, d] c JR we use the notation G([c, dj) for G(d) - G(c-).
The conditional length of a shortt is now defined by

Ux(t) = inf {b - a : Fx([a, b]) ~ t}, t E (0,1) .

It is our aim to provide new tests for independence, constant location, and homoscedasticity
through Fx, Qx(p) and Ux(t) respectively. More precisely, the following hypotheses will be
considered for 0 < p, t < 1 fixed:

H~l) : Fx is independent of xES (J.l a.e.) j

H~2) : Qx(p) is independent of xES (J.l a.e.) ;

H~3) : Ux(t) is independent of xES (J.l a.e.) .

Our statistical test procedures will be based on an appropriately chosen partition
{Aj,n : j = 1" .. ,mn} of S, with for convenience,

Empirical estimates of

Fj(Y) := P(Y ~ Y I X E Aj,n) ,

and

Uj(t) := inf {b - a: Fj([a, b]) ~ t}
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are given by

Qj,n(P) := inf {y : Fj,n(Y) ~ p} ,

and

Uj,n(t) := inf {b - a: Fj,n([a, b)) ~ t} .

Throughout we assume Fj (j = 1"", mn) to be continuous on JR. Let fln denote the
empirical measure based on Xl, X 2,"', Xn, and set

Note that the common values of Fx ,Qx(p) under Hal), Ha2
) respectively are equal to F, Q(p),

the marginal df and p-th quantile of the Y-distribution. Hence they are appropriately esti
mated by Fn and Qn(P), with

n

Fn(y) = n- l EI<-oo,y](Yi) , y E JR ,
i=l

Qn(P) =inf {y : Fn(y) ~ p} .

Concerning the hypothesis H~3), observe that the common value of Ux(t), denoted by U.(t),
is not necessarily equal to the length of the marginal shortt of the Y -distribution. We will
estimate U.(t) by

mn

U.n(t) = Lflj,nUj,n(t) .
j=l

Now we are ready to state our main results.

Let

A(x) = exp( _e- X
), xE m,

be the standard Gumbel df, r a rv with df A, and write
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THEOREM 1. If nILmn /((1og n )2 log mn) -t 00 and ILl log m n -t 0 as n -t 00, then we have
under JI~l) that

Let Ca be such that 1 - A(ca ) = a, a E (0,1). Our asymptotic test for independence can
now be specified.

COROLLARY 1. The test which rejects H~1) when

has asymptotic significance level a if the assumptions of Theorem 1 are satisfied.

The following corollary can be applied when the X-distribution is known and continuous.

COROLLARY 2. If mn -t 00, ILl = ILmn' and nILtI(logn)3 -t 00, then

In the statement of our next result we make use of the following conditions:

(C.1) for some constant Cl > 0,

limsup max sup h(Y)<Cl
n.....oo l~j~mn yER

where Ii denotes the derivative of Fj ;

(C.2) the derivative f of F exists at Q(p) and satisfies f(Q(p)) > O.

Furthermore, let

1
ca,n = J2logmn + (ca - "2(loglogmn +log7l"))/J2Iogmn •

THEOREM 2. Let p E (0,1) be fixed. The test which rejects H~2) when for some
j E {1,2," ·,mn }
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has asymptotic significance level a if (C1) and (C2) are satisfied and if nJLmnj«log n)Z log mn)
~ 00 and JLl log m n ~ 0.

In order to establish our last result some additional regularity conditions are required. The
first one reads as follows:

(C.3) for large n, every Fj (1 ~ j ~ mn ) has a density Ii which is continuous on JR and has
support ({3j, ,j), -00 ::; {3j < Ij ::; 00, is strictly increasing on ({3j, Yo,il and strictly
decreasing on [Yo,j"j) for some YO,j E ((3j,lj).
Moreover, every Ix, XES, satisfies this unimodality assumption.

Let t E (0,1) be fixed. Under (C.3) we have for large n that there exists a unique interval
[aj,t, bj,t] (the shortt) such that Fj([aj,t, bj,t]) = t, !i(aj,t) = !i(bj,t), and /j(y) > !i(aj,t) for
every Y E (aj,t, bj,t) (1 ~ j ~ m n ).

We also need that

(C.4) there exist constants C2, 62 > 0 such that the derivatives I; of !i satisfy

Introducing the derivative Uj of Uj (1 ~. j ::; mn) we assume

(C.5) there exist constants C3, C4 > 0 such that for every s E (0,1)

lim sup max uj(t) < C4 •
n--+oo l$J$mn

Finally we will assume

(C.6)

THEOREM 3. Let t E (0,1) be fixed. The test which rejects H~3) when for some
j E {1,2,· ·.,mn }

U.n(t) fI [Uj,n(t - ca,n t(l ~ t», Uj,n(t +ca,n t(l - t»)
nJLJ,n nJLj,n

has asymptotic significance level a if (C.l), (C.3) - (C.6) are satisfied and if JLllog mn ~ 0,
mn 1

JLt<LJLj)8(logn)4(logmn)5j(nJLmn) ~ O.
j=1
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For any xES, let mt(x) be defined as the midpoint of the interval pertaining to Ux(t).
This robust regression curve is strongly related to the least median of squares regression
estimator introduced in Rousseeuw (1984) (see also Rousseeuw and Leroy (1988». The
following smoothness conditions on mt and Fx (x E S) can be used instead of assumption
le.6), as shown by the following corollaries:

(C.7) for some constant Cs > 0,

for any Xl,X2 E S;

(C.8) the second order derivatives f~ of Fx exist, and for some C6 > 0,

sup sup If~(Y)1 < C6 •
XES yER

Let diam(A):= sup{llxI-X211: XI,X2 E A}, where IlxI-X211 denotes the Euclidian distance
between Xl and X2'

COROLLARY 3. The test which rejects ng3
) when for some j E {1, 2, .. " mn }

[
t(l - t) t(l - t) )

U.n(t)ct Uj,n(t-cOI,n nIL" ), Uj,n(t+cOI,n nil' )
J,n r-J,n

has asymptotic significance level a if (C.1), (C.3) - (C.5), (C.7) and (C.8) are satisfied, and if
mn 1

nJ1,tlog mn ( lTJ.ax diam (Aj n»4 - 0, J1,l log mn - 0, and J1,f(L J1,j)8(log n)4(log mn )5 /(nJ1,m n) - O.
l~J~mn' j=l

COROLLARY 4. If mn - 00, J1,l = J1,m n' nJ1,tI(logn)9 - 00, and
nJ1,l log mn ( II!-ax diam (Aj n»4 - 0, then it follows under (C.1), (C.3) - (C.5), (C.7) and

l<J<mn '

(C.8) that th~ ~est which rejects ng3
) when for some j E {1, 2" ", m n }

has asymptotic significance level a.

REMARKS

1. The choice of Qx(p), resp. Ux(t), rather than mp(x), resp. the interquartile range

Qx(lf!) - Qxet2t
), to produce tests for ng2

) , resp. ng3
) , was motivated in part by
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considerations of statistical relevance. Indeed, mp(x) (x E Aj,n) can only be estimated

at a rate of (nJ.tj )-t (see e.g. Kim and Pollard (1990», whereas interquartile ranges
have a lower breakdown point than the corresponding shortt measures when t > ~ (see
Rousseeuw and Leroy (1988) for the case t = !).
The techniques we use to derive our results however, can also be applied to other testing
procedures, e.g. those based on mp(x) and interquartile ranges.

2. In the cases considered in Theorems 2 and 3, similar results on sup-norm statistics where
t, p vary over non-degenerate intervals can be obtained with the technique of proof intro
duced in the next section.

3. Our statistic In discussed in Theorem 1 is somewhat similar to the V- quantities in Kiefer
(1959) to test equality of distributions in a one-way layout of several populations. (See
also the references in that paper.) The situation considered here provides a generalization
of Kiefer's result to the case where the number of groups increases with the sample size.

4. In a non-regression setting an analogue of our type of test statistics is the goodness-of-fit
test statistic in Dijkstra, Rietjens and Steutel (1984). In case S is compact, these authors
propose to reject uniformity on S when Pn = II).ax J.tj,n becomes too large, where the

l<J<mn
partition is taken to be such that under the null hypothesis the J.tj are all equal. Their
simulation study shows that the power of this test is at least comparable to the power of
the classical x2-test for uniformity against peaked alternatives.
A 'continuous' version of this 'peak-test' is given by the scan statistic (see e.g. Naus
(1966,1982) and Cressie (1980, 1987» which uses a maximal type statistic obtained from
continuous scanning of S with a fixed window. In case d = 1, Deheuvels and RElVesz
(1987) derived asymptotics for the scan statistic using a similar condition as in Corollary
2; i.e. (nan)/(logn)3 -+ 00, where an is the window length.
When J.t1 = J.tm n one can also derive the following result for Pn:
if (nJ.td / (log n? -+ 00 and J.t1 -+ 0, we have under the hypothesis of uniformity that

V2 log m n {/i£(Pn - J.td - V2logmn +~(loglogmn +log 41l")/(2logmn)t } ~ r .

5. The condition nJ.tl (log mn )( II).ax diam (Aj n»4 -+ °specifies to nh~+d log hI -+ °in
l~J~mn' n

case X possesses a uniform distribution on [O,I]d, say, and the partition is taken to be
cubic with diam (Aj,n) f'V hn (j =1,,", m n). This rate condition of hn lies close to the
optimal rate of the window size in kernel density estimation when minimizing the mean
squared error.

6. If one wants to restrict attention to a subset of the support S of X, all of our results can
still be used by translating them in terms of conditional distributions given X belongs to
that subset.

II. PROOFS

The proofs of our main results rely on the following proposition which states that jointly over
all elements Aj,n of the partition of S, we can approximate the different empirical processes
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by independent Gaussian processes, and this, per j, at a rate which is comparable to the
one attained by the KomI6s-Major-Tusmidy (1975) approximation of the (one-dimensional)
uniform empirical process.

Denoting the joint distribution of (X, Y) by j1" and the empirical measure based on (Xl, Yl),' . " (Xn , Yn )

by rt l' , w~ will use the followinll; quantities:

j1,j(Y) = P(X E Aj,n and Y ~ y) = j1,(Aj,n X(-00, y]) ,

so that

PROPOSITION. If m n -+ 00 and (nJLmJ/(logn)2 -+ 00, then there exists a triangular
scheme of rowwise independent Brownian bridges {Bj,n(t), °~ t ~ 1} (1 ~ j ~ mn, n ~ 1)
such that

logn
sup ~ax \OJ,n(Y) - Bj,n(Fj(Y))1 =Ope ).
yER l~J:5mn JnJLmn

Proof. We consider the transformation from S X JR to [0, 1]

mn j-l

(x, y) -+ T(x, y) = E 1Aj,n(x)[E J1.k + JLjFj(Y)] ,
j=l k=l

and the transformed rv's

,i=1,2,···,n.

On easily checks that Zl, Z2,' . " Zn are independent uniformly (0,1) distributed rv's. Let
{en(t),°:$ t :$ 1} denote the empirical process based on Zl, Z2,"', Zn. The approximation
theorem of Koml6s, Major and Tusnady (1975) entails then the existence of a sequence of
Brownian bridges {Bn(t),O:$ t :$ 1} such that as n -+ 00

- logn
sup len(t) - Bn(t)1 = Ope .r.; ) .
099 v n

It follows that (in the obvious notation)

.~ - ~n
IfJ~~n Ivn(JLj,n - JLj) - Bn(T(Aj,n X (-00,00]))\ =Ope vn )
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and that

Now uniformly in j E {I, .. " m n } and y E lR we have

Qj,n(Y) = v'nJLj,n C·t;.~) - ;'~j!l»)

= y'n({lj,n(Y) - {lj(y»/v'JLj,n - y'n(JLj,n - JLj)({lj(Y)/(JLjy'Jij,n»

- 1 _1 -
= {{Bn(T(Aj,n x (-00, y])) +Ope ~)}JLj 2 - {Bn(T(Aj,n X (-00,00]))

1 1

+0p(l~)}Fj(Y)JLj2 }Tj~;

where

(2.1) T ' - JL' IJL' - 1 +n-tJL-1B- (T(A' X( 00 00]» +JL-10 (~)J,n - J,n J - j n J,n -, j P n .

We can define a sequence of Wiener processes {Wn(t),O ~ t ~ I} such that En = Wn 
IWn(l), where I denotes the identity function. Hence, as (with'x denoting Lebesgue measure)
'x(T(Aj,n X (-00, y])) = JLjFj(Y), we find that

1

Qj,n(Y) = {{Wn(T(Aj,n X (-00, y])) - Fj(y)Wn(T(Aj,n X (-00, oo]))}JLj'2

We now set

1 1

+JL-:- 2 0 (1~)}T:-2J P n J,n (n-+oo).

One easily checks that the Bj,n are indeed independent in j E {I, 2, .. " m n } and distributed
as Brownian bridges.

Now as n --+ 00

For a function c.p on [0,1], write 11c.p11 = sup 1c.p(t)l. First remark that as the Fj are assumed
°9:9

to be continuous
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as, because of the independence of the rv's II Bi,n II (1 :::; j :::; m n ), we have for any M > 0,
that

P( max liB· II > M ~gm) < 2m e-2M2logmn = 2ml -
2M2

l$i$mn J,n V lUg Tf£n _ n n'

1
which tends to zero as mn -t 00 when M > 2-2". (Here we also used the fact that for a
Brownian bridge B we have P(IIBII > u) ~ 2e-2u2

.)

Furthermore,

i-I i
since Wn((E Pk, E Pk])/y'jLj (1 ~ j ~ mn) are m n independent standard normal rv's

k=l k=l
whose maximum is well known to he of order Ope-/log mn ) as n -t 00.

Hence,

(2.2)

and

(ffi!:0g n log n )
II).ax ITj,n - 11 = Op -- +-- ,

1$J:S;mn nlJmn npmn

Finally, with

the result follows. o

Proof of Theorem 1. First remark that by the well known fact that

...;n sup IFn(y) - F(y)1 = Op(l) (n -t 00) ,
yER
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we have,

since, as in the proof of the Proposition we find that uniformly in j E {1,· .. , m n }

Hence since fLllog m n ~ 0, it suffices to show that, under H~l),

V8logmn (sup max ylnfLj,n IFj,n(Y) - F(y)1 - . 1-21l0g(2mn)) ~ r (n - 00) .
yER l$J$mn V

Under H~l) it now follows from the Proposition that

if n ~ 00 and nfLmn/«logn?logmn ) ~ 00.

Finally, remark that by the independence of the IIBj,nll (1 ~ j ~ m n) we can apply standard
extreme value theory to show that

(2.3)

since P(IIBj,nll > u) f"J 2e-2u2 (see Proposition 1.19 in Resnick (1987)). o

Proof of Corollary 2. If fLl = J.L2 =... = fLmn' then m n = fLIl .

The condition fLl log m n ~ 0 is then automatically satisfied when m n - 00. 0

Proof of Theorem 2. Observe that, under H~2),

~a asn~oo

if

10



(2.4) y'210gmn{ IfJ~n (y'nP,j,n IFj,n(Qn(P)) - pi /Vp(l- p)) - yf2logmn

+~(loglogmn + 10g1l")(2logmn)-t} ~ r .

Indeed, for any df G on the real line and any p E (0,1) we have

G(x) ~ p if and only if G-1(p) ~ x

and hence

G(x) < p if and only if G-1(p) > x .

We first show that under (C.1), (C.2), np,mn/«10gn)2logmn) -+ 00 and p,tlogmn -+ 0

(2.5)

where {Bj,n} (1 ~ j ~ mn, n ~ 1) is the sequence of Brownian bridges described in the
Proposition. Now (2.5) follows from the Proposition if we can show that under our assump
tions

(2.6)

The well-known central limit theorem for quantiles yields that under H~2) and (C.2)

when n -+ 00. Hence by the mean value theorem we have under H~2) that

(2.7)

so that it remains to check that (logmn)( II).ax p'j,n) ~ 0 (n -+ (0) for (2.6) (and hence
l<J<mn

(2.5)) to hold. - -
However, using Tj,n in (2.1) again, we get that

11



which tends to zero in probability as n -+ 00 and JL1log m n -+ 0 because of (2.2).
Next, it follows from (2.7), and the modulus of continuity behaviour of Brownian bridges (see
e.g. Lemma 1.1.1 in Csorgo and Revesz (1981)) that

(2.8)
1 1

0ogmnl~~n I IBj,n(Fj(Qn(p)))j-IBj,n(p)1 I= Op(n-"i((1ogn)(logmn))2)

=op(l) (n -+ 00) .

As Bj,n(P) (1 ~ j ~ mn ) are independent N(O,p(l - p)) rv's, standard techniques form
extreme value theory yield that

(2.9)
1· 1

v'2logmn {(p(l- p))-2 II).ax IBj,n(P)I- V2logmn + -2(loglogmn + log1r)
l~J~mn

_1 d
·(2logmn) 2} -+ r (mn -+ 00) .

Limit statement (2.4) now follows from (2.5), (2.8) and (2.9). 0

Proof of Theorem 3.

We introduce the functions

Hj(z) =sup{Fj([a, b]) : b - a ~ z} .

Note that Hj is the inverse of Uj (for n large enough). The derivative of Hj is denoted by
hj. Remark that condition (C. I) implies

(2.10) lim sup II).ax sup hj(z) < 00,
n.....oo l~J~mn z~O

as for each j E {I", ',mn } we find that hj is non-increasing and hj(O) = maxfj(y).
yER

Analogously we define the inverse function Hj,n of Uj,n by

Hj,n(z) = inf{t: Uj,n(t) 2: z}

and note that

Hj,n(z) = sup{Fj,n([a,b]): b - a ~ z}, 1 ~ j ~ mn .

To prove Theorem 3 it now suffices to show that under Ra3
)

(2.11)

for some triangular scheme of rowwise independent Brownian bridges {Bj,n} (1 ~ j ~ mn, n 2: I);
cf. the proof of Theorem 2. We derive (2.11) in three steps by showing that under the given
conditions

12



(2.12)

(2.13)

and

p
---+ 0,

(2.14) (n---+oo).

First, we prove the existence of a sequence {Bj,n} of Brownian bridges for which (2.12) holds.
Remark that from the Proposition it follows that

(2.15) sup II}.ax laj,n([a, b]) - (Bj,n(Fj(b» - Bj,n(Fj(a»)1 = Ope logn ),
[a,b] 1:53:5m n ,;n/-Lmn

as Bj,n([Fj(a), Fj(b)]) = Bj,n(Fj,n(b» - Bj,n(Fj,n(a». To derive (2.12) from (2.15) we apply
and refine the method of proof of Proposition 3.1 in Einmahl and Mason (1992). We define

As the intervals [aj,t, bj,t] are nested for different values of t, one easily checks that the Bj,n
are distributed as Brownian bridges for every j E {I, 2,···, mn } and large nj moreover,.
B1,n, ... , Bmn,n are clearly independent.
Notice that for any j E {I, ... , mn } and 0 < t < 1

(2.16) Bj,n(t) - vn/-Lj,n(Hj,n(Uj(t» - t) ~ (Bj,n(Fj(bj,t» - Bj,n(Fj(aj,d»

-aj,n([aj,t, bj,t])

which, by (2.15), is seen to be Op(Jogn ), uniformly in j E {1,··., mn}.nJLmn

Next, we also have for any j E {I, ... , mn } and any sequence en t 0

(2.17) ,;n/-Lj,n(Hj,n(Uj{t» - t) - Bj,n(t)

~ {,;n/-Lj,n sup (Fj,n([a, b]) - t) - Bj,n(t)}
b-a~Uj(f)

f-<n<Fj([a,b))9

v {,;n/-Lj,n sup (Fj,n([a,b])-t)-Bj,n(t)}.
Fj ([a,b])9-En

The second term on the right hand side of (2.17) is
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:$ .,jnJ1.j,n sup (Fj,n([a, b]) - Fj([a, b))) + IBj,n(t)1 - en.,jnJ1.j,n
Fj([a,b])9

:$ 2 ~ax sup IBj,n([c, d])1
l~J~mn [e,d]

+ ~ax sup laj,n([a,b]) - (Bj,n(Fj(b» - Bj,n(Fj(a»)I- en ~in .,jnJ1.j,n.
l~J~mn [a,b] l~J~mn

From (2.3), (2.15) and (2.2) it now follows that the second term on the right hand side of (2.17)
can be asymptotically bounded from above by 0 in probability, by making the appropriate
choice

with M a large enough positive constant.

The first term on the right hand side of (2.17) is

(2.18) :$ .,jnJ1.j,n sup
b-a$U)<t)
t-<n<Fj([a,b))$t

:$ sup laj,n([a, b]) - (Bj,n(Fj(b» - Bj,n(Fj(a»)1
b-a$Uj(t)
t-<n<Fj([a,b])$t

+ sup (Bj,n(Fj(b» - Bj,n(Fj(a») - Bj,n(t) .
b-a$Uj(t)
t-<n<Fj([a,b])9

The first term on the right hand side of(2.18) is of order Ope ~), uniformly in j E {1, 2,,,,, mn },
, vn~mn

by (2.15).

Finally observe that for any j E {1,"', m n }

(2.19) sup
b-a$Uj(t)
t-<n<Fj([a,b])9

max sup
l~j~mn b-a$Uj(t)

t-cn<Fj([a,b))9

+ IBj,n(Fj(a» - Bj,n(FiCaj,t»! } .

For any interval [a, b] with b - a = Uj(t) and t - en < Fj([a, b]) :$ t, we find by (CA) that
(uniformly in j) la - aj,tl and Ib - bj,tl become arbitrarily small as n -+ 00. We then find,
with 02 as in (CA), that eventually as n -+ 00 whether a E [aj,t, aj,t +02) or b E [bj,t - 02, bj,tl.
In case a < aj,t < YO,j < b < bj,t, we have that

On the other hand, if en ~ Fj([aj,t, bj,t]) - Fj([a, b]) ~ 0, then
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with ~j,t E (bj,t 1\ b,bj,t V b), so that (C.4) implies that for n large enough F;(bj,t) - F;(b)

:::; Cc~, for some C > O. Also in the other possible cases we can obtain this same bound for
IFj(bj,t) - Fj(b)1 V IFj(aj,t} - Fj(a)\. Hence the expression on the right hand side of (2.19)
can be bounded by

(2.20)

By Lemma 1.1.1 in Csorgo and Revesz (1981), the representation of Brownian bridges in
terms of Wiener processes, and the independence of the Brownian bridges Bj,n (1 :::; j :::; mn),
we obtain that for any K > 0 there exist constants Kt, K 2 > 0 such that

Choosing

one easily checks that

choosing K > 0 large enough. This together with (2.16) - (2.20) implies (2.12).

To derive (2.13), note that under HJ3) we have for any j E {I" .. , mn}

(2.21) IH;(U.n(t» - t\

:::; IHj(U.n(t» - Hj(U.(t))1 + IH;(U.(t)) - Hj(U;(t»\

< lU.n(t» - U.(t)1 hj(Un(t)) + IU.(t) - Uj(t)1 hj(Uj(t))

where Un(t) E (U.n(t)I\U.(t), U.n(t)VU.(t)) and Uj(t) E (Uj(t)I\U.(t), Uj(t)VU.(t», 1 :::; j :::; mn.

Now using (2.2) and (2.10), and the fact that under HJ3) from (C.6) and Uj(t) ~ U.(t) it
follows that

(2.22) Jnp,t 10g mn max IUj(t) - U.(t)1 - 0
t:S3:Sm n

(n- (0),

we now find that as n _ 00

(2.23) 00gmn max (JnlLjn IU.(t) - Uj(t)1 )h;(Uj(t»
t:S3:Sm n '

=OpeJnp,t 10g mn max IUj(t) - U.(t)1 ) = op(l).
t:S3:Sm n

On the other hand, by (2.2) and (2.10), as n _ 00

15



(2.24) 00g m n II}ax (y'nJ.tj,nhj(Un(t))) lU.n(t) - U.(t)1
1~3~mn

= Op(1)y'nJ.t1log m n lU.n(t) - U.(t)1 .

Furthermore,

mn ffin

(2.25) lU.n(t) - U.(t)1 ~ LJ.tj,nl Uj(t) - U.(t)j + ILJ.tj,n(Uj,n(t) - Uj(t»I·
j=l j=l

Now

(2.26)

which tends to zero by (2.22).

The mean value theorem yields that for some lj,n E (Hj(Uj,n(t» /\ t, Hj(Uj,n(t» V t)

mn mn

(2.27) LJ.tj,n (Uj,n(t) - Uj(t» = LJ.tj,n (Uj(Hj(Uj,n(t») - Uj(t»
j=l j=l

mn
= L J.tj,n Uj(lj,n)(Hj(Uj,n(t» - t) .

j=l

We now show that in this last expression we can replace J.tj,nUj(tj,n) by y'iTjUj(t)y'J.tj,n.

To this end we first remark that using (2.2) and (2.12) we have as n -+ 00 that

(2.28) II}ax sup IHj(Uj,n(t)) - tl = II}ax sup IHj,n(Uj(t» - tl
1~3~mn tE(O,l) 1~3~mn tE(O,l)

1 - 5 1 1= (nJ.tmn)-2 II}ax IIBj,nll + Op«nJ.tmn)-i(logmn)i(1ogn)2)
1~3~mn -

1 1 5 1 1
= Op«nJ.tmn)-'2 (logmn )'2 + (nJ.tmn)-i (logmn)i (logn)'2)

1 1= Op«nJ.tmn)-'2(logmn )'2) .

A similar argument yields that

(2.29)
1

II}ax y'nJ.tj,n sup IHj(Uj,n(t)) - tl = Op«logmn)2) (n -+ (0).
1~3~mn tE(O,l)

Using (C.5) we obtain that

IUj(tj,n) - uj(t)1 ~ C3 Itj,n - tl ~ C31J1]~n IHj(Uj,n(t» - tj
1 1

= Op«nJ.tmn)-'2(logmn )'2) (n -+ (0).

Hence with (2.29) and the rate condition in the statement of the theorem we have that
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mn

(2.30) ...;r-nJ-L-1.......1o-g-m-nI: J-Lj,n IUj(ij,n) - uj(t)1 IHj(Uj,n(t)) - tl
j=1

= Op(J-Ll(nJ-Lmn )-! logmn ) EJ-LJ.n(VnjLj,n IHj(Uj,n(t)) - tl )
;=1
1 m,:, 1

=Op«log mn)~(nJ-Lmn)-tJ-LlCI: J-LJ,n))
j=1

= op(l) (n --+ 00) .

1. 1. 1 1

Next, using (C.5), (2.29), and II).ax IJ-L],n - J-LII = Op«logn)2n- 2 ) (n --+ 00) we find
1~J~mn

mn 1 1 1

(2.31) VnJ-L1Iog mn II: J-LJ,n (J-LJ,n - J-Lj)Uj( t)(Hj(Uj,n(t)) - t)1
j=1

mn

=Ope JI'11og~nlogn) E Uj(t) IvnJ-Lj,n(llj(Uj,n(t)) - t)1
j=1

= Op(log mnJ1'1 ~gn mn)

mn 1

= 0 p(log mnJ I'~~:gnn E J-Lj) (n --+ 00) ,
j=1

which is Ope 1) as n --+ 00 because of the rate conditions in the statement of the theorem.

From (2.27), (2.30) and (2.31) it now remains to show that

mn 1

(2.32) VJ-Ltlogmn IEJ-LjUj(t)vnJ-Lj,n(HiCUj,n(t)) - t)1 !: 0
j=1

as n --+ 00 in order to verify (2.13).
To this end, as IHj,n(Uj,n(t)) - tl $ (nJLj,n)-1 a.s., the expression in the left hand side of
(2.32) is equal to

Now, by (2.11),

mn 1

(2.34) VJ-L11og mn IE J-L] Uj(t)VnJ-Lj,n(.ilj(Uj,n(t)) - Hj,n(Uj,n(t)))1
j=1

mn 1

= VJ-L1 1og mn IEJ-L]Uj(t)Bj,n(Hj(U;,n(t)))1
;=1

1. mn 1. 1 5 1

+0p(JLHE JLl) (nJ-Lmn )-8 (log mn)8 (log n)2) .
;=1

17



Using the modulus of continuity behaviour of Brownian bridges together with (2.27), we get

mn 1

= ,j--J.t-,tl"""og-m-nIL f.LJUj(t).8j,n(t) I
j=1

! mn ! 1 1 3

+Op(J.tl<LJ.tj) (nJ.tmnr 4 (log np(log mn)"i) .
j=1

Observe that because of the independence of the .8j,n we have that

mn 1 mn

L J.t] Uj(t)Bj,n(t) rv N(O, t(l - t) L f.LjU~(t)) .
j=1 j=1

With (C.5)

mn

t(l- t) LJ.tjU~(t) = 0(1) (n -+ 00)
j=1

and hence

Statements (2.33) - (2.36) yield (2.32), and (2.13) follows from (2.21) - (2.27) and (2.30) 
(2.32).

Finally, statement (2.14) follows by (2.13), the behaviour of the modulus of continuity of
Brownian bridges, and the independence of the Bj,n (j = 1,"" mn). This concludes the
proof of Theorem 3. 0

Proof of Corollary 3.

It suffices to show that, under H~3), ,jnJ.ttlogmn ~ax (U;(t) - U.(t)) -+ 0 (n -+00) is
I<J<mn

implied by (C.7), (C.8) and the rate nf.Lllogmn( ~~- diam (Aj,n))4 -+ 0 (n -+ 00).
1~3~mn

Let J(x = [ax, bxJ denote the shortt pertaining to Fx, let Ct.j = infax, /3j = sup bx, and
xeAj.n xeAj,n

set

Pj = Ct.j +U.(t), OJ = /3j - U.(t) .

18



.'

Let a be such that (Xj ~ a < a +U.(t) ~ ~j. A Taylor expansion, using fx(ax) = fx(bx ) and
(C.8), yields that for some ax E (ax /\ a, ax V a) and bx E (bx /\ (a +U.(t», bx V (a +U.(t»)
we have

t - Fx([a,a +U.(t))) = (Fx(a) - Fx(ax) - (Fx(a +U.(t» - Fx(bx»
=!(a - ax?f~(ax) - !(a +U.(t) - bx?f~(bx)

~ C6«(Xj - aj)2 ,

and hence,

Set "l = (Uj(t)- U.(t»/lln. Since Uj(t);::: U.(t), we have "l;::: O. Observe that for Yl E [aj,.8jl
and Y2 ~ (Xj or Y2 ;::: ~j we have h(Yl) ;::: h(Y2). Hence it readily follows that [aj,.8j] c Kj.
This means that we can find an a as above such that Kj = [a - "llln, a +U.(t)] or such that
Kj = [a, a+U.(t) +"llln].

Without loss of generality assume the first equality holds. Observe that the second condition
in (C.5) implies that

Hence

liminf min
n--+oo l~j~mn

inf /i(y) > 1/c4 .
yE[aj,I,b"I)

which (when lin > 0) implies "l ~ C4. This, in combination with IInVnJ-Ldog mn
-+ 0 (n -+ 00), completes the proof. 0
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