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1. INTRODUC'TION

In early 1972, shortly after the results ~n Forrester's book "World Dynamics"

(Forrester (1971» had arosed the interest of many people in the study of world models,

a project group, named "Global Dynamics" was started in the Netherlands (cf.Rademaker

(1972» which set itself as one of its goals to study the effects of the incorporation

of controls into the world models considered by the ~l.I.T. groups of Forrester and

Headows under sponsorship of the Club of Rome (cf. Headows (1972».

One way to get a better understanding of a controlled system ~s to determine the

optimal controls given suitably chosen optimization criteria and to study the

sensitivity of these optimal controls to changes in model and,criterion parameters. An

essential tool ~n such a study is an efficient algorithm (or better: computer program)

for the numerical solution of optimal control problems of the particular type at hand.

In case of the "Global Dynamics" project, in which several Dutch universities and

companies cooperated, several groups set out to test different classes of known

numerical optimal control algorithms ~n order to select the one best suited to generate

the many optimal solutions required for the project. Two of these groups already

reported their results (cf. Olsder & Strijbos (1973), Dekker & Kerckhoffs (1974».

At Eindhoven University of Technology a special experimental program was set up

to compare the performance of different known gradient type algorithms. These were

applied to the common test problem of the project which consisted of a simplified

vers~on of the controlled world model of Forrester (with 4 instead of 5 state variables

and with linear approximations of the sectionally linear table functions in Forrester's

model). The results of this experimental program as well as the results of the

application of the better algorithms to the complete controlled World 2 model are

presented in this paper.
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The outline of the paper is as follows: In Chapter 2 a precise statement is given

of the complete controlled ''''orld 2 model and of the test problem, the simplified

controlled World 2 model. In Chapter 3 an outline is given of the different gradient

algorithms considered in the experimental prop,ram together ,,,ith a discussion of the

two different techniques tried out to take into account the bounds on the values of

the control variables. Also ~n this chapter some remarks are made on the scaling of

the variables. In Chapter 4 the numerical results for the different applications of

the algorithms are presented and discussed. A short summary of the conclusions. an

acknowledgement. a list of references, 5 tables and 4 figures conclude the paper.

2. THE CONTROLLED I-lORLD 2 MODEL

The World 2 model which Forrester developed for the Club of Rome and which formed

the basis of the results in his book "World Dynamics" (Forrester (1971» consists of a

set of 5 interacting nonlinear difference equations which describe the evolution of 5

"level" or state variables:

P

CI

CIAF

POL

NR

Population

Capital Investment

Capital Investment in Agriculture Fraction

Pollution

Natural Resources

Differential equations in a notation more common to control engineers and equivalent

to the difference equations of Forrester were given in Cuypers (1973)

.
P

.
CI

CIAF.
POL =.
NR

O.04.P.F3(MSL).FI6(CR).FI7(FR).FI8(POLR)

-0.028.P.FII(MSL).FI2(POLR).FI3(FR).F14(CR)

-0.025.CI + 0.05.P.F 26 (HSL)

-(CIAF - F36(FR).F43[F38(MSL)/F40(FR)])/15

- POL/F
34

(POLR) + P.F
32

(ClR)

- P.F
42

(MSL)

(2. 1 )

The functions Fk (') in these equations are coupZ'inp functions given by Forrester as

sectionally linear functions of their arguments. (The index k corresponds to the number

of the section in Chapter 3 of Forrester (1971) in which the corresponding coupling

function is presented). The arguments of these functions are, respectively, the

normalized variables:

(POLS = Pollution Standard = 3.6.10
9

)
. . 1 0 1 I)(NRl = Natural Resources ln~t~a = 9.1

CR .. PIPS

CIR Clip

POLR P.OL/POLS

NRFR NR/NRI

(PS Population Standard
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and the auxiliary variables MSL (= Material Standard of Living) and FR (= Food Ratio)

defined as

and

MSL (CI/P)«I-CIAF)/(I-CIAFN».F
6

(NRFR) (2.2)

where

FR

ClRA = (CI/P)(CIAF/CIAFN) (CIAFN = CIAF Normal = 0.3)

(2.3)

Initial conditions for the differential equations (2. I) were specified by Forrester

for the year 1900. Integration of the differential equations up to the year 1970 yields

the following initial conditions for the year 1970 (cf. Cuypers (1973».

P(1970)

CI(l970)

CIAF( 1970)

= 3.67830938.109

3.83097633.109

0.28031694

POL(1970)

NR( 1970)

2.88957159.109

7.7680742.101 I (2.4)

The most natural way to introduce regulating or control variables into this model

(cf. Burns & Malone (1974» is to assume that the magnitude of some of the coefficients

~n the differential equations (2.1) can be manipulated within certain bounds. The basis

of the introduction of control variables into the World 2 model in case of the "Global

Dynamics" project was the assumption that fractions Up' UCI' UpOL and UNR of the total

amount of goods and services not designated for agriculture, which amount was defined

as

ISO

•
CI.(I-CIAF).F6(NRFR)·~r

P.MSL.(I-CIAFN).U
r

(2.5)

(where ISO stands for Industrial and Service Output and where U ~s an efficiency
r

factor (= the reciprocal of the capital coefficient with the standard value U = 1/3),r
can be allocated for respectively i) birthcontrol, ii) reinvestment, iii) pollution

control and iv) protection of the natural resources. In addition, it was assumed that

for the items i), iii) and iv) a law of diminishing returns would apply. Thus, the

following control multipliers were postulated.

G1(Up) = exp (-yl.Up.MSL)

G3 (UpOL ) exp (-Y3,UpOL.(MSL/F32(CIR»)

G4 (UNR ) = exp (-Y4'UNR)

where Y
1

, Y
3

and Y4 are constants with the standard values

(2.6)

y = 25
I

10 3.5 (2.7)
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The assumed possibility to control the fraction of the ISO for reinvestment was

realized by replacing the second differential equation of (2.1) by

.
CI -0.02S.CI + ISO,U

CI
-0.02S.CI + P.MSL.(I-CIAFN),Ur,UCI

(2.8)

Given the standard values CIAFN

controlled World 2 model become

0.3 and U
r

1/3, the state equations of the

.
P = O.04.P.F3(MSL).FI6(CR).FI7(FR).FI8(POLR).exp(-YIUp.MSL)

- 0.028 P.FIl(MSL).FI2(POLR).FI3(FR).FI4(CR)

CI = -O.02S.CI + (0.7/3).P.MSL,U
CI. (2.9)

CIAF = -(CIAF - F36(FR).F43[F38(MSL)/F40(FR)])/IS.
POL = -POL/F 34 (POLR) + P.F32(CIR).exp(-Y3UpOL(MSL/F32(CIR»).
NR = -P.F42 (MSL). exp(-y4UNR)

As part of the numerical investigations of the "Global Dynamics" project polynomial

approximations were determined of the coupling functions F
k
(') which could replace the

sectionally linear functions of Forrester in the ranges of interest for the optimization

The coefficients of these polynomials are given in Tabte 2.1.

Given the meaning of the control variables the following control constraints are

self evident

(2.10)

and

(2. I I)

In addition, in order to prevent the optimization procedures to generate unrealistic

values, the only control variable appearing linearly in the differential equation was

given a simple upper and lower limit

0.19B , UCI ' 0.242 (2.12)

To m~asure the quality of different controls a performance criterion should be

defined. In case of the "Glohal Dynamics" project several criteria were considered of

which the followinR, Bolza-type criterion hecafle the standard one

2100
J[u] = J QL(T)P(T)dT + Ap .P(2100) + ApOL .POL(2100) + ANR .NR(2100) (2.13)

1970

In this expression the symbol QL (= Quality of Life) stands for almost the same

performance measure as introduced by Forrester

(2.14)
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the difference being that the argument of the coupling function F
38

(') is not MSL but

CMSL (= Consumption Material Standard of Living) which was defined by

The constants Ap ' ApOL and ANR in (2.13) were given the standard values

(2.15)

A = 10
P

-0.5P(1970)/POLS A
NR

= 100P(1970)/NR(1970) (2.16)

The optimal control problem thus derived, which will be called the comp~ete control­

led Wor~d 2 model to distinguish it from the simplified controlled World 2 model to be

discussed in the next section, can now be summarized as follows:

"Given the state equations (2.9) with the initial conditions (2.4), find the control

variables Up' UCI ' UpOL and UNR as functions of the time which satisfy the control

constraints (2.10), (2.11) and (2.12) and which maximize (or minimize the negative of)

the performance criterion (2.13)".

The presence in the state equations (2.9) of the coupling functions, the values of

which are to be determined by interpolation or polynomial approximation,considerably

increase the computer time required for integration. For that reason, it was decided in

an early phase of the numerical optimization experiments to make use of a simpler model

which should have roughly the same characteristics as the original model but would be

much easier to integrate. This object was realized by first linearizing all coupling

functions around the standard uncontrolled trajectory and thereafter simplifying the

complex of linear coupling functions in such a way, that in the uncontrolled case the

results of Forrester were reasonably reproduced. Following this approach it was found

that the state variable CIAF, which stayed fairly constant under standard conditions,

could be replaced by a constant. Thus, the number of state equations was reduced from

5 to 4. Similarly, a number of coupling functions could be omitted as their values under

standard conditions hardly differed from 1.0. This led to the following simple state

equations

where

.
P.
CI.
POL.
NR

0.04.P.f
l

(POL).f
2

(CMSL).exp(-25Up .MSL)-0.028.P.f
3

(POL).f4 (CMSL)

-0.025 CI + P.MSL,U
CI

-POL/f
7

(POL) + P.f
6

(CI/p).exp(-IOUpOL )

-p.MSL.exp(-3.5U~R)

(2.17)

f I (POL) 1.015 - 0.015 POL f
4

(CMSL) 2.6 - 1.6 CMSL

f 2 (CMSL) 1.15 - O. IS CMSL f
6

(CI/P) = -1 .0 + 2(CI/P) (2.18)

f
3

(POL) 0.95 + 0.05 POL f
7

(POL) 0.8333 + O.1667.POL

and



and

MSL (CI/P)(NRjNR(1970»

6

(2.19)

The corresponding initial conditions became

(2.20)

P(1970) = 1.0 CI(1970) = 1.0 POL(1970) =1.0 NR(1970) 800/3.6 (2.21)

and the control constraints

(2.22)

0.04027 , U
C1

~ 0.05527

and

As performance criterion was chosen

2100
J[u] = J QL(T)P(T)dT + 5.P(2100) - 0.05.POL(2100) + 0.4NR(2100)

1970

where QL was defined as

QL = (0.8+0.2CMSL)(1.5-0.5P)(I.02-0.02P)

(2.23)

(2.24)

(2.25)

(2.26)

Thus, in summary, the following optimal control problem, to be called the simplij'ied

controlled World 2 model resulted

"Given the state equations (2.17) and the initial conditions (2.21), find the control

variables Up' UCI ' UpOL and U
NR

as functions of time which satisfy the control con­

straints (2.22) - (2.24) and which maximize (or minimize the negative of) the performance

criterion (2.25)".

It should be noted that although the standard (uncontrolled) behavior of this

simplified model compared quite well with the results of Forrester. the optimal behavior

turned out to be quite different from the optimal behavior of the complete controlled

I World 2 modeL One of the main reasons for this was the coupling function f 4 (MSL). which

for values of MSL larger than 1.625 have unrealistic negative values. This turned out to

have a large influence on the optimal behavior. After the discovery of the imperfection

the use of the model was continued for reason of its good properties as a test problem.

3. ]UTLINE OF TEiE ALGORITHMS TESTED

Both optimal control problems specified in the preceding sections were of the

following basic form:

"Given the state equations

x = f(x,u)
(3.1 )
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and the initial conditions

x(t
b

) = x
b

find the control vector u(t),tE[tb,t
f

] which satisfies the constraints

(3.2)

u, . ~ u,(t) ~ u,
1,mln 1 1 ,max

(3.3)

and which generates the least value of the performance criterion

J [u1 " (3.4)

From a computational point of view this type of optimal control problem is rather simple:

The initial and final times are fixed and there are no terminal constraints. Except for

the presence of the constraints on the values of the control variables, a problem which

will be dealt with below in a special section, this control problem formulation is well

suited for the gradient type of algorithms, as will be seen.

Gradient methods for solving optimal control problems are iterative methods ln

which the control vector function is modified in each iteration so as to improve the

performance criterion. Most of the algorithms contain the following basic steps

(0 )

(i)

(ii)

assume u(O)(t),tdtb,tf]. given and set i: = 0;

( , (i)
evaluate the performance criterion J[u 1)] corresponding to u

(by integrating the state equations (3.1) forward) and the gradient

yuJ(i)(t),tE[tb,tfl as to be discussed below (i.e. by integrating

the costate equations (3.7) backward);

'f (i) . 1 .test: 1 U optlma, stop; otherWlse:

(1'1'1') d' , . (i)() [ ]etermlne a new search dlrectlon d t ,tE tb,t f

(iv) set u(t): u(i)(t)+ad(i)(t) and determine the scalar value a(i) of

a for which the performance criterion considered as a function of a

reaches its minimum value (or ln some algorithms: reaches a lower

value which satisfies certain specifications)

(v) set u(i+l)(t): = u(i)(t)+a(i)d(i)(t), set i: = i+1 and return to

step (i).
/

The step in this algorithm by which the different algorithms are distinguished is step

(iii). Over the years a great number of search directions have been proposed, most of

which, however, have in common that they make use of the gradient (with respect to the

control) of the performance criterion (considered as a functional of the control only).

This gradient is, as is well known (cf. Bryson & Ho (1969», at each time instant equal

to

v J(i)(t) =
u

H (i)T(t) =
u

(3.5)
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where H is the partial derivative with respect to the control of the Hamiltonian,which
u

lS defined as:

TH(X,U,A) = ~(X,U)+A f(x,u) (3.6)

and where A(t),te:[tb,tfJ is the costate or adJoint vector which a the solution of the

costate or adjoint equation

T TA = -f A - ~
x x

(3.7)

with the "initial" condition

d ' '1 (i) b d bcorrespon lng to a partlcu ar u can e compute y one
. ( d' h (i»costate equations correspon lng to t at u •

T
A( t f) = kx (x ( t f) )

The gradient 7 J(i)(t)
u

backward integration of the

3.2 Methods tested--------------

(3.8)

Most gradient methods in use for solving optimal control problems may be considered

the infinite dimensional equivalents of the better known gradient methods for solving

unconstrained finite dimensional minimization problems. The methods actually tested in

the numerical experiments to be described were the infinite dimensional equivalents of

the following finite dimensional methods (cf. Murray (1972), Jacoby, Kowalik & pizzo

(1972»:

a) SD(= Steepest Descent) method

b) PARTAN (= Parallel Tangents) method

c) CGI (= Conjugate Gradient I) method (of Fletcher-Reeves)

d-e) CGII (= Conjugate Gradient II) method (of Hestenes-Stiefel)

f) DFP (= Davidon-yletcher-Powell) method

Given the definitions of the infinite dimensional lnner product and the corresponding

norm (in :.. 2
m

[tb , t fJ )

J (i) h(i)."g , .> =
Ilvll <v, v>! (3.9)

the search directions of the infinite dimensional counterparts of the methods a) - e)

are, respectively, given by

a') ~Q:~~E~~~ (cf. Kelley (1962) Bryson & Denham (1962»:

(3.10)

b') ~~~r~~:~~!9~2 (cf. Wong, Dressler & Luenberger (1971»:

d(2i)(t): = - V j(2i) (t) 1 = 0,1,2, •••
u

d(2i+l)(t): II'V j(20 11

(u(2i+I)(t)_u2(i-I)(t»
1 1,2 , •••

1Iu (2 i + 1) -u2 ( i-I ) I Iu

= 0 1 = 0

(3.11)

(3.12)
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c') ~QI:~~!~~~ (cf. Lasdon, Mitter & Waren (1967»:

(3.]3)

where

(3.14)

d') ~Q!!~:~~~h2~ (cf. Pagurek & Woodside (1968»

(3.15)

0.16)

with
<V j(i) ,v(i»

B( i): == _;:.u..,..--,----,,...,..,._

d
(i-I) (0

< ,v >

h (i)( ) ( h' h' h . f" d' , 1 . 1 f h t' twere v t w lC is t e in lnlte lmenSlona equlva ent 0 t e ma rlx-vec or

product G(i)d(i-1) where G(i) is the local Hessian), can be determined from

(3.J7)

where z(i)(t) is the solution of

and w(i)(t) is the solution of

(3.18)

• (i)
w (3.19)

e') gQ!!~:~~!~~~ (cf. Sinnott & Luenberger (1967»:

As CGII-A-method with the replacement of H H in (3.17) and Hand H in
ux' uu xx xu

(3.19) by respectively ~ ,~ ,t and t
ux uu xx xu

f') ~K~:~~!!:£~ (d. Tripathi & Narendra (1968»:

i-1 <s(k) ,V j(i»
d(i)(t) == -v j(i)(t) - L u

u k==O <s(k) ,y(k»

(k) V J(i)
<a, > ()
_..-,......,...-,;:"u..,-..,._ a k (t)

(k) (k)
<a ,y > (3.20)

where

a(k)(t):
k-I

== /k)(t) + L
j==O

< (j) (k»
s ,y <a(j) ,/k\

<a(j) ,y(i»

In the process of executing this DFP-algorithm, it
, (i) (i)

tion two new vector functions, set) and a (t), are

with

y(j)(t): == V j(j+I)(t)-V j(j)(t)
u u

0.22)

is required that in each itera-

stored. This implies that the
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required computer memory increases with the number of iterations. To cure this, it is

customary to restart the algorithm periodically after a fixed number of iterations.

It may be noticed that in both methods, the CGlIA method and the CGIlB method, one

extra forward integration (of (3.18» and one extra backward integration (of (3.19»

are required to evaluate 8(i). The CGIIB method has as advantage over the CGlIA method

that no second order partial derivatives of the state equations are required which

implies less programming effort and less computing time for integration.

The first technique which was used for taking care of bounds on the values of the

control components is known as the clipping-off-technique (cf. Quintana & Davison (1974»

and amounts to setting the control components back at their bounds as soon as these are

violated in the search for a line minimum. This implies the following modification in

step (iv) of the standard algorithm: Evaluate

u. l' d(t):J,unc lppe

and set

(3.23)

u.(t):
J

u.
J ,max

u. l(t)J,unc

u. .
J ,mln

if

if

if

u. l(t) ~ u.J ,unc J ,max

u. . < u. l(t)
J ,mln J ,unc

uj,uncl (t) ~ uj,min

< u.
J ,max

(3.24 )

In case of no bounds on the values of the control components, the gradient tends to

zero when the minimum is approached. Most gradient algorithms make implicitly use of

this fact. When the minimum is attained at the boundary of the feasible region, the

corresponding gradient (component) does not become small. This may spoil the search

direction calculations. For instance, without modification, the values of the inner

d . (i). d'pro ucts ln 8 ln (3.14) would almost completely be determined by the large gra lent

components corresponding to the control components at their bounds, and 8(i) erroneously

would get the value of approxi.mately 1.0 in all iterations. In order to cure that

situation the algorithms a') - i') were modified with the aid of clipped functions

which are defined as

q. (i)(t): = a
J

q.(i)(t)
J

if ~. (i)(t) and ~. (i-I)(t) at boundary
J J

(3.25 )
otherwise

With this definition the modified search directions may be written as:

a') method of steepest descent--------------------------
no change



d(2i)(t):

I I

-9 J(2i)(t)
u

~ "" 0,1,2, •••

d(2i+l)(t):

= 0

(u(2i+I)(t)_u2(i-I)(t»

II (u(2i+l) (t)_u 2(i-l) (t) II i=I,2, •..

~ = 0

(3.26)

-9 J(i)(t) +
u ---(i-I) ---(i-I)

<9 J ,9 J >
u u

(3.27)

where

s(i-I)(t) (3.28 )

( i) T (0) (t) "'(0. (l!.) (' 1)
~ (t): = f ~ 1 (t) + H z ~)(t) + H s 1- (t)

u ux uu

W~th "'Z(il(t) 0 f 0.. sat~s y1ng

,~ ( i) 'c, ( i) ( i-I )
z = f z +f s

x u

'" (i) 0 0and w (t) sat~sfy~ng

~(i) (t )
b

(3.29)

°(3.30)

o\,(i)
w = k ~(i).( t )

xx f
(3.31)

-(k) -(i')
a , \l J

u
-(k) -(k)
a ,y

with

a(k)(t):

(i-I) (i-I)
It may be remarked that, in line with the replacement of d (t) by s (t) ~n

the formulae (3.28)-(3.31) of the CGII-methods, the replacement of d(i-l)(t) by

(a(i-I»-l s (i-l)(t) in the CGI-method would have been logical (and conform the essence

of one of the suggestions of Quintana and Davison (1974». However, numerical experi­

ments with this alternative showed that the convergence behavior was worse with re-
(i-I)placement of d. . (t) than without. The numerical evidence of this will be presented

in the next chapter,
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The second well-known technique (cL Jacoby, Kowalik & Pizzo (1972» for taking

care of bounded controls in gradient algorithm is the transformation technique. This

technique consists of replacing the original control variables by new variables by

means of a transformation which guarantees that the bounds on the original variables

are autonlatically satisfied while the new variables are unconstrained. In particular,

in case of a lower bound only, e.g. u.(t) ~ 0, a common transformation is
J

2u.(t) = k.v. (t)
J J J

(3.34 )

and similarly, in case of a lower and an upper bound, e.g. a ~ u.(t) ~ b, a common
J

transformation ~s

u.(t) = ~(a+b)-!(b-a)cos(nk.v.(t»
J J J

(3.35 )

~n which expressions the kj~s are arbitrary scale factors. The transformations ~n these

cases have the property that whenever a control component approaches its bound ~n the

original system, the corresponding gradient component with respect to the new variables

tends to zero.

Against the advantage of having unconstrained instead of constrained variables,the

transformation technique was found to have three smaller disadvantages for application

~n connection with control problems:

i) whenever a control component is at its boundary on a particular time interval

at some instant during the iteration process, then there is no way when using

gradient methods to leave that boundary. This property eliminates in particu­

lar a number of otherwise useful start solutions

ii) the transformation "distorts" the object function (3.4) very severely in the

neighborhood of the bounds which impairs the rate of convergence whenever the

optimum happens to be near or partly on the boundary.

iiD the transformation implies an extra programming effort, which, especially in

case of the CGII methods, is considerable.

One aspect of the minimization procedure which became clear when using the transforma­

tion technique was the importance of good scaling for the convergence behavior. This

will be discussed in more detail in the next section.

The convergence behavior of gradient algorithms depends, as is well known, very

much on the scaling of the variables relative to the function to be minimized. This

phenomenon may be explained with the observation that in gradient algorithms steps are

taken which are more or less proportional to the gradient. Whenever a certain gradient
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vector component 1S large relative to the other components, which means that the object

function is very sensitive to changes in the corresponding variable, then a step

proportional to the gradient implies a large change in that particular variable, while

the opposite would be desirable. The idea behind scaling is therefore to try to make all

gradient components of the same order of magnitude, or equivalently, to make the object

function equally sensitive to changes 1n all the variables.

In the simplified controlled World 2 model the original control variables turned

out to be reasonably well scaled and no effort was put in to obtain a better scaling. As

soon as the transformed variables v(t) (3.34)-(3.35) were introduced instead of the

original control variables u(t), the need for scaling became more apparent: The gradient

components relative to the new variables become

and

(V J(t)). = (V J(t) .. 2k.v.
v J u ] J J

j = 1,3,4

J = 2

(3.36 )

(3.37)

(3.38 )

Given the situation that the original gradient vector components (V J(t)). are of
u J

roughly the same size, the new gradient vector will also be of the same size if

2v.
k /k. ", J

2 J ! (b-a)TI

for the simplified controlled World 2 model, where v. ", 0.1 and (b-a) = 0.015 a reason­
J

able scaling was obtained with the scale factor values

k = k = k = I
I 3 4

k 2 = 10 (3.39)

In the complete controlled World 2 model the gradient components were no longer of

the same order of magnitude. In particular, the gradient component corresponding to the

population control variable Up turned out to become much larger than the other componen~.

A closer look at the control multipliers (2.6) explained this: With MSL ", 12 and

F32 (CI/P) "'8 in the neighborhood of the optimal solution, these control multipliers

became

GI (Up)

G
2

(U
CI

)

G
3

(U pOL)

G4 (U NR )

exp(-yIUpMSL) ", exp(-300 Up)

UCI

= exp(-Y3UpOL(MSL/F32 )) ", exp(-15 UpOL )

= exp (-Y4UNR) = exp(-3.5 UNR)

(3.40)

An obvious way to scale the control variables in this particular case was to reformulate

the optimal control problem with as new control variables
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'"u 3 10 UpOLMSL/F32(CI/P)

tV
u

4
= 3.5 UNR

0.41)

This approach, which will be called the reformulation t-echnique, used in conjunction

with the clipping-off technique to take into account the translated bounds on the ~­

variables. turned out to improve the convergence of the application of the gradient al­

gorithms considerably. Numerical evidence of this will be discussed in the next chapter.

4. NUMERiCAL RESULTS

The optimal control histories and the corresponding optimal state space trajectories

are given in Fig.4.1 for the simplified model and in Fig.4.2 for the complete model.The

optimal state space trajectories can be compared with the trajectories in case of ·no

control (i.e. Forrester's standard results) which are presented by dotted curves in the

same figures. A discussion of these results falls outside the scope of this paper: for

this the reader is referred to Rademaker (1972). One remark should be made, however, and

that is, that a comparison of the optimal control and state space trajectories for the

two different models shows that at most only the tendencies in the behaviors roughly

compare. The actual results are quite different. In fact, the optimal criterion values

of the simplified model satisfies

(4. 1)

whereas for the complete model

(4.2)

For the larger part this difference between the results for the two models can be attri­

buted to the difference in coupling functions. In the case of the complete model much

larger values of the CMSL (2.17), and through the CMSL much larger values of the

QL(2.16), are generated than in the case of the simplified model. This underlines the

fact that the models are indeed quite different.

4.2 ~~~~~i~~~_~[_!~~_~Ii~~!i~~£[_4fii~~~~!_~~!~~4~_!~_!~~_~i~Ii[i~4_~~~!~~ff~4

E:!~~f4_!2.J2£~!2f~'!!

In order to compare their relative efficiency all methods to be applied on the

simplified model were programmed as special subroutines within one general computer

program for solving optimal control problems. Two versions of this general program were

used, one of which made use of the clipping-off technique for taking into account the

bounds on the values of the control variables, the other one making use of the trans­

formation technique. The aim of this approach was to obtain a comparison of the methods

which should be independent of the particular way of programming of the algorithm. The

drawback of such an approach was of course the fact that none of the methods was pro-
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grammed 1n an optimally efficient way.

In the general program the integration of the differential equations was carried

out by a standard fourth order Runge-Kutta routine. After some experimentation a step­

size of 2 years was found to be the best compromise between accuracy and required com­

puter time. For the Zine sea2'ch use was made of a quadratic search routine in which

first three points on the line are determined which include the line minimum. For the

initial stepsize in this search routine, which influences of course the number of

function calls, two strategies were tried out, the first one consisting of using in

every new line search the same small initial stepsize (a = 0.001 in the clipping-
start

off-version and a 0.01 in the transformation-version of the general program),the
start

second one consisting of using an initial stepsize which was equal to half the optimal
. (i-I), ... f h' . ., ,steps1ze ~ 1n the preced1ng 1terat10n. The result 0 t 1S exper1ment 1S glven 1n

Table 4.6 which will be discussed in more detail below. As convergence criterion for

terminating the iterative process use was made of the criterion that in two successive

steps the performance criterion should not change 1n absolute value more than

£ = 0.0001. Whenever this criterion is satisfied dne extra line minimization is per-
conv

formed with as search direction the negative of the local gradient. Only in the case

that the convergence c~iterion is satisfied again the iterative process is terminated,

otherwise the process is continued.

The results of the application of the different methods to the simplified controlled

World 2 model are given in the Tables 4.3 to 4.6, in which the number of iterations, the

number of function (= performance criterion) evaluations, the value of the performance

criterion, the total computer time (on a Burroughs B 6700 multiprocessing system), the

average number of calls per interation and the average amount of computer time per call

are listed. The computer times given should not be taken as hard figures but only as an

indication for the relative performance. The computer used being a multiprocessing

machine, the actual process time may differ from case to case up to 30% depending on

what other programs are processed simultaneously.

The numbers in the individual tables apply to iteration processes with the following

initial controls:

In case of Table 4.3 and 4.5

u (o)(t) - 0 u
2
(o)(t) - 0.04777

I

I and 1n case of Table 4.4 and 4.6

vI (0) (t) -- O. I v (o)(t) - 0.05
2

which, with the actual transformations used

V
3

(o)(t) -

0.05

O. I v (o)(t)
4 -

(4.3)

O. I
(4.4)

0.04777-0.0075

2
v

4
(t)

cos(n.lO.v (t»
2 (4.5)
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are equivalent to initial controls in terms of u equal to

u (o)(t) = 0.01
I

(0) _
U z (t) = 0.04777 (4.6)

Table 4.3 shows the results of the tests with the different methods in combination

with the use of the clipping-off technique. As known in the literature (cf. Pierson &

Rajtora (1970» it is advantageous to periodically restart the iteration process. To

determine the best number after which to restart as well as to get more data on the same

method all methods were tried with periodic restarts after respectively 6, 1Z and 18

iterations (In the PARTAN method application periodic restarts were made after respecti­

vely 6, IZ and 18 PARTAN directions of search, i.e. after respectively 13, 25 and 37

line searches following (3.26». From the results listed in the table it is immediately

clear that the most efficient method 1n terms of number of iterations, number of function

evaluations as well as computer time 1S the CGI method. The second best method in terms

of number of iterations is the CGIIA method. Unfortunately, however, this method also

requires the most computer time per iteration, which makes it into the most time consu­

ming method. The third best method in number of iterations and at the same time the

second best in terms of computer time is the DFP method, which makes this method a good

second choice. Of interest in Table 4.3 is furthermore the relative poor performance of

the CGIIB method in comparison with the CGIIA method mentioned above and the similarly

poor performance of the PARTAN method in comparison even with the SO method. It should

be remarked in this context that the number of iterations of the PARTAN method in the

present case is defined as the number of search directions, a definition which is diffe­

rent from the one used by Wong, Dressler and Luenberger (1971). In addition to the re­

sults for the different methods of Section 3.2, Table 4.3 also lists the results for

an experimental method, in which the search direction is calculated in the same way as

1n the CGI method (following (3.13» but with a fixed value of ~(i) 1.0. The results

show clearly that such a simple-minded method is much inferior to the hardly more com­

plicated CGI method and also inferior to the other methods of Section 3.2.

Table 4.4 shows results similar to Table 4.3 for the case that the transformation

technique is used instead of the clipping-off technique. Again the CGI method is the

most efficient method in terms of the amount of computer time. On the average the CGIIA

method requires less iterations, however, with the highest amount of computer time per

call, the method is at the same time one of the most time consuming methods.The second

best method in terms of computer time is in this case the PARTAN method with the DFP­

method being third. Again, the poorer performance of the CGIIB method re13tive to the

CGIIA method in terms of number of iterations and number of function evaluations is

evident.

In order to make a comparison possible of the application of the transformation

technique versus the application of the clipping-off technique,Table 4.4 also lists the

results for the CGI method with the clipping-off technique applied to a case with initial
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controls (4.6) equivalent to the initial controls (4.5) used to generate the other re­

sults in the table. Comparison shows that the clipping-off technique requires less

iterations, less function evaluations and less computer time. Also the clipping-off

technique leads in general to higher values of the performance criterion than the trans­

formation technique. From detailed results on the convergence behavior not given here,it

appeared that the initial convergence using the transformation technique was faster than

using the clipping-off technique, whilst the final convergence on the other hand was

much slower. Reasons for this phenomenon may be on one hand the simplification of the

optimization problem in case of the clipping-off technique caused by the elimination of

all control variable components on their bounds and on the other hand the distortion of

the equi-cost surfaces by the transformation from the u-variables to the v-variables.

Table 4.5 shows the results of some more experiments to determine the best reset ~r

restart value for the two most efficient methods, the CGI method and the DFP method,both

with the clipping-off technique. In addition results are presented for a modification of

the CGI method (cf •• Section 3.3), in which the previous search direction d(i-l)(t) in

(3.27) is replaced by s(i-l)(t)/a(i-l). It follows that the best reset value for both

versions of the CGI method is 18, whereas for the DFP method a reset value of 30 or

higher is best. Both these reset values are higher than commonly suggested in the lite­

rature (cf. Pierson & Rajtora (1970, Keller & Sengupta (1973». It also follows that the

CGI method with d(i-I)(t) is superior to the same method with si-I)(t)/a i - 1) replacing

d(i-I)(t). This result is of interest since it contradicts the suggestion of Quintana

and Davison (1974). It may be remarked in this context that in the CGIIA method as well

as in the CGIIB method the use of s(i-I)(t) instead of dCi-1)Ct) as prescribed by the

algorithm (3.28)-(3.31) turned out to be almost imperative: In a number of, though not

all, tests with the CGIIA and CGIIB methods with d(i-l)(t) instead of s(i-l)(t), the

iterative process did not converge at all.

Table 4.6 lists the results of some extra experiments with a different stepsize

strategy in the line search procedure. In particular, for three cases listed in Table 4.4

land repeated here, i.e. the CGr method and the DFP method with the transformation

Itechnique and the CGI method with the clipping-off technique the results are presented

I
WhiCh were gene:ated while using as initial stepsize in the line search procedure

O 5 (~-1). , h h'l ha : = • a ~nstead of a constant f~xed value. The table shows t at w ~ e on t estart
average the number of iterations does not differ too much, the total number of function

evaluations as well as the average number of function evaluations per iteration are

considerably less. The result clearly indicates the superiority of the strategy to let

h ... l' d . 1 . (i-I) U f 1t e ~n~t~a steps~ze astart epend on the preceding opt~ma steps~ze a • n ortunate y,

however there ~s one important proviso and that is that in no iteration such large steps

are generated that computer overflow results. In fact, in a great number of trials this

happened, for which reason the strategy was not used for the comparison runs presented in

the preceding tables.
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After the numerical experiments described in the preceding section had indicated

the superiority of the CGr algorithm for solving optimal control problems of the type of

the controlled World 2 model. only a limited number of comparison runs (with the same

initial controls and the same overall conditions) were tried out with the complete World

2 model. (The computer time for one function (= performance criterion) evaluation was

roughly 2.5 times as long as in case of the simplified model). One set of comparison

runs which was tried was concerned with four runs with respectively the SD method. the

PARTAN method, the CGr method and the DFP method, all four in combination with the

transformation technique, restarting the process after every 6 iterations. The conver~

gence histories of these runs are presented (up to the 40th iteration) in Figure 4.7.

From this figure it follows that the CGr method ~s again the fastest converging method

followed by the PARTAN method, the SD method and the DFP method, which order is

reasonably well in agreement with the results presented in Table 4.4. The dotted line

segments in the figure show the convergence behavior of the PARTAN method for the case

that the iteration definition of Wong, Dressler and Luenberger (1971) is followed. (One

iteration is then defined to consist of one search along the negative gradient followed

by one search along the PARTAN direction). It is of interest to note the little diffe­

rence between the convergence histories of the CGr method and the thus defined PARTAN

method (in which per iteration roughly twice as much work has to be done).

A second set of comparison runs which was tried was concerned with four runs with

the CGr method, with restarts after every 6 iterations, in combination with four diffe­

rent strategies for taking care of the bounds on the values of the control variables:the

use of the clipping-off technique, the use of the transformation technique, the use of a

mixture of these techniques (first 15 iterations with the clipping-off technique, there­

after the transformation technique) and finally the use of the clipping-off technique

after a reformulation or rescaling of the control variables as discussed in Section 3.4.

The convergence histories of these runs are presented in Figure 4.8. It follows that the

best convergence behavior is obtained through the use oE rescaling or reformulation in

combination with the clipping-off technique. The second best strategy is to alternate

between the clipping-off technique and the transformation technique.The pure strategies,

i.e. using the transformation technique of the clipping-off technique for all interations

produced a less good convergence behavior.

5. CONCLUSIONS

Numerical experiments have been carried out with s~x different gradient methods for

the determination of the optimal control of a simplified version of the controlled

World 2 model of Forrester. The main conclusion of these experiments was that the most

efficient method in terms of computer time and generally also in terms of number of

iterations and number of function evaluations was the CGr method (i.e. the infinite
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dimensional equivalent to the Conjugate Gradient method of Fletcher and Reeves, first

suggested by Lasdon, Mitter & Waren (1967)) in combination with a clipping-off

technique (as described by Pagurek and Woodside (1968)) to take care of bounds on the

values of the control variable components and periodically restarted every 18 iterations.

A good second choice proved to be the DFP method (i.e. the infinite dimensional

equivalent of the Davidon-Fletcher-Powell method following the algorithm of Tripathi­

Narendra (1968)) in combination with the clipping-off technique, which in general

turned out to be a more efficient method to take care of bounded controls than the

transformation of variables technique.

The results of numerical experiments with the determination of the optimal control

of the complete controlled World 2 model of Forrester showed in general good agreement

with the results obtained for the simplified model. Again the CGr method in combination

with the ciipping-off technique turned out to be the most efficient method when the

problem first had been rescaled by means of a reformulation of the control variables.

Scaling proved in this case to be one of the most important factors for convergence.
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Table 2.1. Coefficients of the nonnegative powers of the polynomial approximations of the coupling functions of Forrester.
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624 5.3 1.8

CGlIA 6

12

18

50

44

48

260

233

244

.910909

.911205

.910993

1493 5.2 5.7

1262 5.3 5.4

1358 5.1 5.6

CGlIA 6

12

18

46

> 46

49

294

300

315

.907522

.910353

.910747

1539

2000

1783

6.4 5.2

6.5 6.7

6.4 5.6

".;:
.908684 1393 6.0 3.7

.906983 1882 5.8 5.7

.905315 1989 5.3 5.8

373

333

343

62

57

> 65

6

12

18

CGlIE

DFP I 6 59 319 .910806 611 5.4 1.9

12 > 94 459 .908187 907 4.9 2.0

I i 18 > 89 413 .904944 905 4.6 2.2

l ~-------------------------~-------------------------1
I CGl I 6, 40 214 .910855 430 5.3 2.0

(clip) I 12 37 196 .910946 394 5.3 2.0
\

18 35 191 • 91 1046 371 5 . 5 1. 9

1.4

4.85. I

6.2459

1464

I I 28 4.9 4. 1

1182 4.7 3.9

.910996

.910523

.910754

.910923

271

300

308

317

CGIlB 6 61

i 12 56
j

I 18 64

DFP I 6 51

12 51 339 .910856 668 6.6 2.0

18 48 312 .910846 627 6.5 2.0

--------r--------------------------------------------------
SCi)=I'f 6 56 268 .910480 480 4.8 1.8

12 77 310 .910704 704 4.0 2.3
i

18 92 360 .910848 848 4.0 2.4

Table 4.3: Simplified controlled World 2 model: Numerical
results of the application of different methods
in combination with the clipping-off technique.
(">": convergence conditions not yet satisfied).

Table 4.4: Simplified controlled World 2 model: Numerical
results of the application of different methods
in combination with the transformation technique.
(">": convergence conditions not yet satisfied).



METHOD RESET ITER-5 CALLS CRITERION TIME CII Tic METHOD RESET ITER-5 CALLS CRITERION TIME CII Tic

CGr 3 64 316 178.910590 556 4.9 1.8 A CGI 6 43 185 178.909905 364 4.3 2.0

6 42 226 .910866 376 5.4 1.7 (trsf) 12 47 203 .910616 512 4.3 2.5
I

I
12 38 204 .910802 338 5.4 1.7 18 59 251 .911060 516 4.2 2. I !

3

6

12

18

24

30

100

3

6

12

18

24

30

100

263 5.7 1.4

268 5.6 1.3

357 5.6 1.6

480 5.3 2.0

12 37 196 .910946 394 5.3 2.0 :

! I I 8 35 I 91 . 9 I I 046 37 I 5 . 3 1. 9 I
i I I

I I .

I I

t--:
lJ'

670 4.7 2.5

997 5.4 2.4

905 4.9 2.3

373 4.6 1.9

409 4.5 2.3

365 4.6 2.2

611 5.4 1.9

907 4.9 2.0

905 4.6 2.2

.908612

.909496

.903749

.908535 350 6.0 1.5

.910531 686 6.0 1.7

.910400 624 5.3 1.8

.910806

.908187

.904944

.910855 430 5.3 2.0

.91 1001

910982

911382

201

181

167

214

279

438

352

228

413

340

319

459

413

44

40

36

40

38

69

64

52

90

> 74

59

> 94

> 89

6

6

12

18

6

12

18

6

12

18

CGI I 6

(clipp.- 12

off) I 18

CGr

DFP

(trsf)

DFP

(trsf)

B CGI

(trsf)

2.0

1.9

1.6

1.9

1.8

1.9

2.2

1.9

1.4

2.0

2.0

1.5

2.0

2. I

604 5.0

550 4.7

400 5.0

476 5.0

444 4.7

515 4.7

814 3.8

706 5.8

459 6.2

668 6.6

627 6.5

476 6.6

594 6.6

637 6.7

.910624

.910701

.910836

.910747

.910519

.910976

.910996

.910926

.910782

.910942

.910984

.910694

.910923

.910856

.910846

.910921

.910964

.910965

188

207

223

237

252

372

317

339

312

323

295

302

341

368

371

304

293

253

33

37

40

45

61

62

51

50

51

57

98

64

51

51

48

49

45

45

18

24

30

100

DFP

CGI
I

(modif.)

I

Table 4.5: Simplified controlled World 2 model: Comparison
of different reset values for three methods in
combination with the clipping-off technique.

Table 4.6: S~plifieri controlled World 2 model:Comparison of
different initial stepsize strategies in linesearch:

(i-l )
(A) :a =0. Sa • (B):a = fixed.

Start 'start
(">" : convergence conditions not yet satisfied.)



(3) = PAKTAN - method

(1) = Drr

(2) = SD

(4) = l"G I

- method

- method

- method

2b

(5)

(5) = PAKTA.'J .. method (l.uenbf'.rger)

"

(4)

4b0

450

440

430
5 10 15 20 25 30

(3)

( 1)

35 40
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ITERATIONS

Fig.4.7 Complete controlled World 2 model: Convergence histories of 4 gradient
methods in combination with the transformation technique with
(k J=k2=k3=k4=J·O)
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Fig.4.8 Complete controlled World 2 model: Convergence histories of the CGI­
method in combination with different techniques for taking into
account bounds on the values of the control variables.


