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Abstract. Existing grid applications commonly use workflows for the
orchestration of grid services. Existing workflow models however suf-
fer from the lack of adaptivity. In this paper we define Adaptive Grid
Workflow nets (AGWF nets) appropriate for modeling grid workflows
and allowing changes in the process structure as a response to trigger-
ing events/exceptions. Moreover, a recursion is allowed, which makes the
model especially appropriate for a number of grid applications. We show
that soundness can be verified for AGWF nets.

Keywords: workflows, Petri nets, grid computing, coordination, mod-
eling, verification.

1 Introduction

The notion of workflow appeared first in the world of enterprize information
systems, where the execution of business processes is divided over several com-
ponents, each with its own task. One of these components is a workflow engine
that takes care of the control flow only. This separation of concerns is very fruitful
and allows designers to prove (partial) correctness of the designed system.

Almost all the existing grid applications currently also use the idea of workflow
to model processes. From the grid point of view, a workflow is a mean for the
automation of processes, which involves the orchestration of a set of grid services,
agents and actors that must be combined together to solve a problem or to define
a new service [5]. The most common model used for grid workflows is the Directed
Acyclic Graph (DAG). Although DAGs are intuitive for process descriptions,
their modeling power has limitations (e.g. they does not support loop patterns
and does not allow dynamic process changes driven by events happened in the
system).

In [6], we introduced Adaptive Workflow Nets (AWF nets), an extension of
workflow Petri nets [2,3] with the nesting concept [10]. AWF nets allow to in-
clude dynamic process changes and a fault handling mechanism into a model
without forcing the user to get into implementation details. In this paper we
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define Adaptive Grid Workflow nets (AGWF nets), a subclass of AWF nets ap-
propriate for modeling grid workflows. AGWF nets allow changes in the process
structure as a response to triggering events/exceptions (adaptivity). They make
use of a pattern library, which easies reusability. Exception transitions are used
as a solution to the robustness problem. Moreover, a (restricted form of) re-
cursion is allowed, which makes it especially appropriate for a number of grid
applications.

An important correctness property of workflow nets is soundness [2,3], which
means that each computation can always terminate without leaving garbage1.
In this paper we show that soundness can be checked for AGWF nets.

Related work. The advantages of the use of colored Petri nets for modeling grid
workflows are considered in [9]. Tokens represent there real data and the net
is used to model the interactions between different software resources. Similar
graph representations can be found in [4,11]. Neither one however considers
flexibility and adaptivity aspects.

The rest of the paper is organized as follows. In Section 2 we give basic
definitions. In Section 3 we introduce the notion of adaptive grid workflow nets
and formulate the soundness criterium for them. In Section 4 we discuss the
obtained results and indicate directions for future work.

2 Preliminaries

N denotes the set of natural numbers. A bag (multiset) M over a set P is a
mapping M : P → N. The set of all bags over P is also denoted by N

P . We
use + and − for the sum and the difference of two bags and =, <, >, ≤, ≥ for
comparisons of bags, which are defined in the standard way. We overload the set
notation, writing ∅ for the empty bag and ∈ for the element inclusion. We write
e.g. M = 2[p] + [q] for a bag M with M(p) = 2, M(q) = 1 and M(r) = 0 for all
r ∈ P \ {p, q}.

A Petri net is a tuple N = 〈P, T, F, l〉, where: (1) P and T are two disjoint
non-empty finite sets of places and transitions respectively, elements of the set
P ∪T are called nodes of N ; (2) F ⊆ (P ×T )∪(T ×P ) is a flow relation between
places and transitions and conversely; (3) l is a labeling function for transitions
mapping each t ∈ T to some label l(t) ∈ Σ, where Σ is a finite set of labels.

Let N = 〈P, T, F, l〉 be a Petri net and T ′ ⊆ T . The projection N|T ′ of N on
T ′ is the net 〈P, T ′, F ′, l′〉, where F ′ = {(x, y)|(x, y) ∈ F ∧ x, y �∈ T \ T ′} and
l′ : T ′ → Σ with l′(t) = l(t) for all t ∈ T ′.

Markings are states (configurations) of a net interpreted as bags over P . A
marked net is a tuple (N, M), where N is a net and M is its marking.

Given a node n ∈ (P ∪ T ), the preset •n and the postset n• of t are the sets
{n′|(n′, n) ∈ F} and {n′′|(n, n′′) ∈ F} respectively. We will say that a node n

1 Note that soundness differs from the halting problem, which is the property that a
computation will always terminate.
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is a source node iff •n = ∅ and n is a sink node iff n• = ∅. A path of a net is a
sequence 〈x0, . . . , xn〉 of nodes such that ∀i : 1 ≤ i ≤ n : xi−1 ∈ •xi.

We define the firing relation −→ as M +•t t−→ M +t• for any marking M and
transition t. M

t−→ is an abbreviation of ∃M ′ :: M
t−→ M ′. For σ = t1 . . . tn,

we write M
σ−→ M ′ iff M

t1−→ · · · tn−→ M ′. Next, M
∗−→ M ′ iff ∃σ :: M

σ−→ M ′

and R(N, M) denotes {M ′ | M
∗−→ M ′}, the markings of N reachable from M .

A workflow net is a Petri net with one initial (source) place i and one final
(sink) place f and every place and transition of the net being on a directed path
from the initial to the final place. The initial marking of a workflow net is [i]
and the (desired) final marking is [f ].

3 Adaptive Grid Workflow Nets

In this section we define Adaptive Grid Workflow nets (AGWF-nets) and for-
mulate the soundness criterium for them. We start with introducing a notion of
Extended Workflow nets (EWF-nets), which form the basis for AGWF-nets.

Extended Workflow nets [6,7] are an extension of Workflow nets [2,3] that
simplifies the modeling of exceptions by making a clear distinction between nor-
mal termination and termination caused by an exception. When an exception
occurs, it is observed by some upper layer, which handles it. The execution of
the EWF net is then terminated.

We consider a partition of the set of transitions T = Te ∪ Tn, where Te is the
set of exception transitions and Tn is the set of non-exception transitions. The
set Σ of labels is partitioned into Σe ∪ Σn accordingly.

Definition 1 (Extended workflow net). A net N = 〈P, Te ∪ Tn, F, l〉 is an
extended workflow net (EWF net) iff (1) the net N|Tn

is a workflow net; (2) for
all t ∈ Te, t• = ∅, •t �= ∅, and •t ⊆ P \ {f}; (3) for all t ∈ Te, l(t) ∈ Σe, and for
all t ∈ Tn, l(t) ∈ Σn.

As usual, the state of the net is given by its marking. The initial marking consists
of a single token on the initial place. The only change in the semantics w.r.t.
the standard semantics of Petri nets is that exception transitions terminate the
execution of the net.

We allow standard algebraic operations on EWF nets: Two (unmarked) nets
can be combined to produce a new net by means of sequential (·) and parallel (‖)
composition and choice (+). Parallel composition can also be applied to marked
nets, and sequential composition to a marked net and an unmarked net.

Adaptive workflow nets. In [6], we introduced a class of nets, called adaptive
workflow nets (AWF nets), allowing more flexibility and adaptivity than existing
workflow systems. By adaptivity we understand an ability to modify processes in
a structured way as response to some triggering events, for instance by extending
a process with a subprocess. In [7] we considered a non-recursive subclass of AWF
nets from [6] that is well-suited for modeling business workflows and showed how
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to verify their soundness using abstractions. Recursion is however essential for
a number of grid applications. Here we describe a recursive subclass of adaptive
workflow systems appropriate for grid applications for which soundness is still
decidable.

Let Var = {v, . . . } be a finite set of variable names and Con a finite set of
constant names. We assume a given library of process descriptions to be used
as basic building blocks for constructing more complex processes by using net
expressions. A net expression e and a token expression te are inductively defined
as: e := c | e + e | e||e | e.e, te := b | ce and ce := v | ce||ce | ce.e | init(e),
where v ∈ Var , c ∈ Con . The sets of all net expressions and token expressions
are denoted by Expr and CExpr , respectively. The expressions in Expr will be
interpreted as adaptive workflow nets while the expressions in CExpr denote
either black tokens (b) or marked adaptive workflow nets. Given an expression
e ∈ CExpr , the set of variables appearing in it is denoted Var(e) and the set of
constants in it is denoted by Con(e).

Firings of the adaptive net can depend on firings in the net tokens, which
is modelled by the guards of transitions expressed in the guard language G. A
guard g is defined as g := � | final(v) | e(v), where v ∈ Var and e ∈ Σe. A guard
final(v) is called termination guard and e(v) ∈ G is called an exception guard. The
set of all guards is denoted by G. Intuitively, the guard � of a transition t means
that the firing of t does not depend on the internal states of the net tokens, e(v)
means that the firing of t is conditioned by the firing of an exception transition
with label e in the token net v, whereas final(v) means that it is conditioned by
the token net v having reached the final marking [(f, b)].

We define now nested workflow nets as extended EWF nets.

Definition 2 (Adaptive workflow net). A Adaptive Workflow net N is a
tuple 〈P, T, F, E , g, l〉, where 〈P, T, F, l〉 is an EWF net called system net and the
extensions E , g are defined by:

– E : F → CExpr are arc expressions such that
1. All input arcs for transitions are mapped either to the black token or to

variables, i.e. for every (p, t) ∈ F , E(p, t) ∈ Var ∪ {b};
2. Every two variables on two different input arcs of a transition are dis-

tinct, i.e. for all (p, t), (p′, t) ∈ F with p �= p′, Var(E(p, t)) ∩ Var
(E(p′, t)) = ∅;

3. Every variable on the outgoing arc of a transition also occurs in the
expression of some incoming arc of this transition, i.e. for all (t, p) ∈ F ,
v ∈ Var(E(t, p)) implies v ∈ Var(E(p′, t)) for some (p′, t) ∈ F ;

4. All outgoing arcs of the initial place and incoming arcs of the final place
are mapped to the black token, i.e. for all t ∈ i•, E(i, t) = b and for all
t ∈ •f , E(t, f) = b.

– g is a function that maps transitions from T to expressions from G such that
the variable of a guard g(t) (t ∈ T ) appears in the expression of some incom-
ing arc of t and does not appear in any outgoing arc of t, i.e. Var(g(t)) ⊆⋃

p∈•t Var(E(p, t)) and Var(g(t)) ∩
⋃

p∈t• Var(E(t, p)) = ∅.
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For the sake of brevity, we define the semantics of AWF nets at an informal level.
An adaptive workflow net can be seeing as a special colored EWF net (the system
net), whose tokens can be either (marked) adaptive workflow nets themselves,
called token nets, or black tokens. Transitions with true as a guard may fire
if there are enough tokens on their input places, like in classical Petri nets. A
transition t guarded by final(x) may fire if there are enough tokens on its input
places and the place connected to t by the arc with variable x contains a token
net that has reached its final state [(f, b)]. This token will then be consumed
from p during the firing. A transition t guarded by e(x) may fire if there are
enough tokens on its input places and some transition with label e is enabled
in a token net contained in the place connected to t by the arc with variable
x. Again, it is this token that will be used in the transition firing. Note that
since we require that the output arc expressions do not contain variables from
the transition guard, the net token x gets destroyed. The output token nets are
computed according to the corresponding arc expressions where variables are
substituted by the token nets from the input places, participating in the firing.

Soundness. Soundness is an important property of adaptive workflow nets stat-
ing that at any moment of system run there is a chance to terminate properly
by reaching the final marking, also when no exception occurs in token nets.
We define soundness for adaptive nets as proper termination of every reach-
able marking by firing only non-exceptional transitions without synchronizing
on exceptions:

Definition 3 (Soundness for AWF nets). An AWF net N is called sound
iff N is quasi-live, and for all M such that [(i, b)] σ−→ M , for some transition

sequence σ ∈ T ∗
n , there exists σ′ such that M

σ′
−→ [(f, b)], and for all t from σ′,

t ∈ Tn and g(t) ∈ {final(v), �}.

In [7] we defined a non-recursive subclass of AWF-nets for which soundness can
be algorithmically checked:

1. N1 and M1 are the sets of all EWF nets and marked EWF nets, respectively;
2. 〈P, T, F, E , g, l〉 ∈ Nk+1, for k ≥ 1, iff for all a ∈ F and c ∈ Con(E(a)),

�(c) ∈ Nk. A marking M of N ∈ Nk+1 is a multiset over P × (Mk ∪ {b}).
Mk+1

def= {(N, M)|N = 〈P, T, F, E , g, l〉 ∈ Nk+1 ∧ M ∈ N
P×(Mk∪{b})} is

called the set of marked nets of level at most k.

Note that Nj ⊆ Nj+1 and Mj ⊆ Mj+1, for all j ≥ 1.
Since we want to have at least a restricted form of recursion for grid ap-

plications and still have an analyzable class of models, we introduce a form of
well-foundedness for the recursion in Adaptive Grid Workflow nets.

Let N be a given AGWF net. We define the net collection Coll (N ) of N as
the union of the set of constants (nets) used on the arc expressions of N and
the net collections of these constant nets. The net collection of an AGWF net
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can be computed by using standard fixed point algorithms. By inspecting the
net collection, one can easily check whether a net belongs to ∪j∈NMj .

Definition 4 (Adaptive Grid Workflow net). An Adaptive Grid Workflow
net (AGFW net) is an AWF net such that every net from Coll(N ) allows a
firing sequence [(i, b)] σ−→ [(f, b)] such that for any transition t from σ, we have
g(t) ∈ {final(v), �} and for any (t, p) ∈ F , Con(Expr (t, p)) ⊆ ∪j∈NMj.

Note that the property required is checked at the level of EWF-nets, i.e. classical
Petri nets, and not at the nested level. Intuitively, we require that there is at
least one execution with bounded nesting allowed in every net involved in the
process.

Now we show that soundness can be checked for AGWF nets. To reduce the
verification of soundness to a finite problem, we introduce the abstraction α
that replaces every token net in the AGWF net by a colored token with the
set of exceptions of the net token as its color. An adaptive workflow net is thus
abstracted by a colored EWF net whose color set is finite since the number of
exceptions is finite. The guards of the type final(v) are replaced by � in the
abstract net, and the guards e(v) are replaced by the guards e ∈ α(v). Parallel
and sequential composition, as well as choice, are abstracted to the union of the
sets of exceptions, and constants in the arc expressions are substituted by their
sets of exceptions. Now we can formulate our main result:

Theorem 5 (Soundness check). An AGWF net N is sound iff for every net
N ′ ∈ Coll(N ) the following properties hold: (1) α(N ′) is quasi-live, and (2)
for all abstract markings Mα reachable by firings of non-exception transitions

in α(N ′), i.e. [(i, b)] σ−→ Mα with σ ∈ T ∗
n , we have Mα

σ′
−→ [(f, b)], where

gα(t) = � for all t ∈ σ′.

4 Conclusion

In this paper, we introduced adaptive grid workflow nets. Exceptions transition
are used to model faults (e.g. failure of a job). The idea of nested nets is used
to make models adaptable. A library of workflow nets is used to increase the
reusability and achieve separation of concerns in process modeling. We showed
that an important correctness property called soundness can be verified on this
class of nets by using abstraction techniques. We conjecture that another im-
portant property of adaptive workflow systems called circumspectness2 is also
decidable for AGWF nets.

Our next step is to extend the workflow engine YASPER [8] for handling
AGWF nets, and extend the existing translation of classical workflow nets to WS
BPEL [1] for our model by incorporating the nesting mechanism and patterns
for standard exception handling mechanisms.
2 Circumspectness ensures that whenever an exception happens, the upper layer net

is able to handle it.
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