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Chapter 1 

INTRODUCTION 

1.1. Production to order 

A type of situation that occurs frequently in process industry is the following one. A 

finn manufacturing a wide variety of products has a production process with one 

capacity bottle-neck with large set-up times. Demand for the products is highly 

uncertain and there is no possibility for having substantial stocks on hand. At the same 

time it is requested to deliver at short notice. Since no orders can be delivered from 

stock a due date has to be set for every order. This due date results from an agreement 

between the firm and the customer. By a proper scheduling of the production, these 

due dates should be met as close as possible, avoiding too many set-ups by clustering 

orders for the same product type. Clearly, in thi~ kind of situation the control of the 

production and the way in which lead times can be determined is very important. 

Since these problems are not well covered by common planning methods, it would be 

interesting to investigate what kind of control frameworks can be set-up in situations 

like this. 

One example of such a situation was found during a study concerning a company 

producing welded steel pipes (Dellaert and Wessels (1986)). These steel pipes are too 

voluminous to be stored in large amounts for a longer period. In fact no products are 

stocked at all, because the average amount that is ordered is quite substantial and the 

assortment of pipes that has to be manufactured is large and changing regularly. This 

company has clients with different priorities. The bottle-neck of the production 
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process in this company appears to be the welding process. There are several parallel 

welding machines which are partially different. They all have to be reset every time 

another type of steel pipe is produced. To avoid too much loss of time for set-ups, one 

produces steel pipes belonging to the same type consecutively on the same machine. 

This clustering of course influences the production planning and the control of the 

lead times and the order acceptance considerably. Other examples of situations in 

which this combination of production to order, parallel machines with set-ups and a 

wide variety of products can be observed are generally found in process industry. 

Chemical industries, for instance, may use the same machines to produce different 

products. Every time another product is made on a machine, this machine has to be 

cleaned. Especially if the products are perishable and the demand is strongly varying 

and voluminous, it will make sense to produce to order. Similar problems can also be 

found in industries, like the truck industry and industries in telecommunication, where 

the products are manufactured in a way that is usually called assembly-to-order. 

1.2. Description of the problem 

According to a recent Swedish study (Mattsson et al. (1988)), about 80 percent of 

Swedish companies manufacture mainly on a make-to-order basis. Most of these 

companies have increased the degree of make-to-order production in the last seven 

years. Of course, production to order is only one element of a production situation: 

large vessels and aircraft will usually be manufactured on a make-to-order basis, but 

this equally holds for printed matter and for birthday cakes. Out of the many problem 

areas that manufacturing firms are faced with, we have chosen to study the problems 

concerning the production planning and the control of the lead times. 

The form of the control rules with respect to the lead times depends on the situation. 

We may have a situation in which the firm uses rules to propose a lead time for every 

order, but we can also have a situation in which there are rules to accept or to refuse 

an order for which a certain lead time is asked by the client. According to the control 

rules for the production planning, the accepted orders are scheduled on the bottle-neck 

machine(s). In this monograph we want to find good control rules for situations in 

which the characteristics on market demand and on the production facilities are given. 

In particular, we are interested in the performance of these control rules in rather 

complex situations, for instance with different sorts of clients and a complex 
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stochastic demand pattern and also different parallel machines, possibly with a partly 

flexible capacity. The set of control rules that can be used for the control in complex 

situations will be built up from the control rules for the typical simple situations. By 

considering the performance of the rules in these typical simple situations, we hope to 

get a better insight into the relations between the market demand and the production 

capabilities on the one hand and the control rules for planning production and lead 

times on the other. This knowledge can help us find good control rules for complex 

situations. 

The quality of the control rules depends on the degree of satisfaction for both the firm 

and the clients. Of course, we will consider the same performance indices in the 

simple situations. This satisfaction, or performance, can be measured according to the 

wishes of the firm with regard to the demand, the smoothness of production, the 

amount of idle time and the number of set-ups. The performance can also be measured 

according to the wishes of the clients with regard to the length and accuracy of the 

lead times as well as the quality of the products. The wishes of the company and the 

wishes of the clients largely influence the rules that should be used for production 

planning or for controlling lead times. If, for instance, the firm wishes to produce the 

different types of products once every three weeks and the clients require a maximum 

delivery time of three weeks, a cyclic production rule seems obvious. However, if the 

firm considers a minimum level of demand necessary to justify a set-up and if the 

wishes of the clients concerning delivery times and lead times vary, some non-cyclic 

production rule has to be chosen. 

1.3. The control rules 

1.3.1. The control rules for the lead times 

In order to avoid ambiguities, we first give some definitions. In Figure 1.1. these 

definitions will be illustrated. The arrival date of an order is the moment at which the 

order gets available for the production on the bottle-neck machine. The delivery date 

of an order is the moment at which the order is finished on the bottle-neck machine. 

The due date is the promised delivery date. The delivery time is the amount of time 

between the arrival date and the delivery date of an order. The lead time is the amount 
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of time between the arrival date and the due date of an order. The residual lead time of 

an order at a certain moment is defined as the difference between this moment and the 

due date of the order. The residual lead time can have a negative value if the order has 

not been produced at the due date. 

arrival date due date 

lead time --------------

delivery date 

Figure 1.1 The process for an arbitrary order. 

We can achieve a lead time for an order in three different ways. In the first place, the 

firm and the client may have a long-term agreement according to which the lead time 

of the order is fixed, the so-called fixed lead times. This implies that every time a 

client orders a certain item, the lead time for the order will be the same. In the second 

place, the firm can offer the client a lead time for the order, to which the client can 

agree or disagree, the so-called firm-initiated lead time. And in the third place, clients 

can ask the firm for a certain lead time for an order, the client-initiated lead time. The 

firm can refuse the order with this lead time or accept it. 

In this monograph we will not consider any rules for making agreements about fixed 

lead times. In Dellaert (1987) this has been done for several examples. The lead time 

that the firm offers a client can depend on several factors: 

1) the expected production date of the order based on the schedule at the arrival 

date; 

2) the moment that gives the highest expected profit, based on the wishes of the 

client and consequences of production at that moment, both on the costs and on 

future orders. 

If a client is not satisfied with the lead time that is offered, the order can be withdrawn 

or a new due date can be given, reconsidering the wishes of the client. 
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In the situation with client-initiated lead times the acceptance of an order with a 

certain required due date can also depend on the expected production date or on the 

expected profit of the order. In the expected profit not only the direct costs for holding, 

set-ups etc. should be considered, but also the effect of the order on future orders. In 

this study we will not consider situations with client-initiated lead times, because the 

modelling of these situations can be done in the same way as the modelling of the 

firm-initiated lead times. 

Once the order and its due date are accepted, either by the firm or by the client, the 

due date has to be met as accurately as possible in order to avoid large costs and 

dissatisfied clients. It is the task of the production planning department to realise a 

delivery date that is close to the due date. In Chapter 2 we will consider the aspect of 

the difference between the due date and the delivery date, the so-called due date 

deviation, more closely. 

1.3.2. The control rules for the production planning 

The primary purpose of a production planning rule is to make sure that all orders are 

scheduled for production in such a way that the due dates are met as well as possible, 

while the set-up costs and overtime costs are kept low. Also possible negative effects 

on the delivery times of future orders should be avoided as much as possible. In the 

production planning the structure of the types, based on the set-up times, play an 

important role. Producing the same typ'!l too long leads to long delivery times for the 

other types, but on the other hand if the series is too small, too much capacity may be 

lost due to set-ups. 

Regularly, decisions about the production have to be taken. These decisions can be 

taken at different levels in a hierarchical way. First we can do the capacity load 

planning and decide whether we will produce in a certain period or not. For this 

decision the demand forecasts at an aggregated level will be the most important 

element. For the periods in which we have decided to produce, we have to decide 

which type(s) will be produced. This decision will be called the type planning. The 

type that will be chosen may be the type that we have been working on most recently, 

especially if no set-up is needed in that case. It can also be the type for which the 

orders are the most urgent, possibly measured according to the demand forecasts. If 

we have chosen the type that will be produced, we have to select the orders to be 
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produced and their sequence. This decision will be called order planning and it is 

based on the same elements as the choice of the type: the importance of the orders and 

the expected future demand. 

The production planning can be done in the hierarchical way described above, but we 

can also combine two planning levels or even all three levels. If we do the scheduling 

in a hierarchical way, decisions about the work force level can be taken some weeks 

in advance. At a later moment, the sequence in which the types will be produced can 

be determined, for instance as soon as the number of orders is sufficient to justify a 

set-up for such a type. Again later, we must decide upon the orders within the type to 

produce. By taking the decisions about the production at different moments, it will be 

easier to organise the work, because a lot of uncertainty in the work can be removed. 

By combining two or three planning levels there is an increasing uncertainty about the 

products that will be produced at short notice, but we can gain flexibility by this 

combination. We can schedule the orders at the latest possible moment: if the previous 

order is finished we decide which order should be the following one to be produced. 

This way of scheduling is more flexible than the hierarchical way and therefore it 

offers more possibilities for short delivery times for urgent orders. Due to this 

flexibility the due dates can not be very accurate. The choice of the orders is based on 

the same aspects as the choice of the types: time lost due to a set-up, the urgency and 

importance of the order and the effect on future orders. Usually, making decisions 

about the orders is less complicated than making decisions about the types. 

In this study we will concentrate us on the type planning. In a lot of practical 

situations the available capacity will be (almost) fixed. The capacity planning in such 

a situation can be considered as being a consequence of the type planning. The 

decision to produce a type will imply that we produce all orders for this type or a 

certain subset of the orders depending on the elements described above. Since the 

rules for the decisions about the orders will usually be quite simple, the type planning 

is the most interesting part of the planning. 

1.4. The performance of the control rules 

If we want to study the performance of a control rule in a certain situation, there are 

several elements of interest by which the performance can be measured. The demand 

process may depend on the acceptance of the proposed lead times. The length, the 
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stability and the accuracy of the lead times can be importhnt as well as the number of 

set-ups and the amount of extra capacity that is used. In the next chapter these 

elements are modelled as costs, enabling us to measure the performance by one single 

element: the total costs. 

The first element of interest in the performance evaluation': of a situation is the demand 

process. The demand can be realised in different ways. In the situation with client

initiated lead times the demand depends on the number of accepted orders by the firm. 

In the situation with firm-initiated lead times, the demand depends on the number of 

orders for which the proposed lead times are accepted by,the clients. The firm and the 

clients can also make long-term agreements about deliveries over a longer period. The 

degree of uncertainty about the demand process depends of course on the fraction of 

orders for which long-term agreements have been made and on the choices for the 

delivery times. Since the resulting stochastic demand process determines the utility 

rate of the machines as well as the income for the cdrnpany, the features of this 

process can be a very interesting part of the performance of a control rule. 

The second interesting element is given by the lead times that are offered by the firm 

or that are accepted by the firm. The length and the stability of the firm-initiated lead 

times determine the demand process over a longer periOd, in combination of course 

with the realised delivery times. Most of the clients of a firm will stop ordering if they 

are not content with the long-term average of the length and the stability of the lead 

times. The same arguments will also be valid for the client-initiated lead times. A lot 

of orders with short lead times accepted by the firm mllf' have an advertising effect, 

but if it. is only orders with long lead times that are accepted, the clients may become 

discontent. 

The third interesting performance measure is given by the accuracy of the lead times. 

The lead time that results from an agreement between thq firm and the client should be 

met quite accurately. However, this will not always be possible, due to other, more 

urgent orders or due to reasons that have nothing to do with the production planning, 

such as machine breakdowns. Clients can react to the accuracy of the lead times in the 

same way as they did with the firm-initiated lead times: they can stop ordering if they 

are discontent or there can be an advertising effect if the~ are satisfied. 

The fourth element in the evaluation of a control rule is the.1;1se of capacity. In a lot of 

situations we will be very interested in the percentage of time that is lost due to set

ups and the costs due to set-ups. The amount of ~ufred capacity may also be 
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important, but more often the amount of extra capacity that is used will be an 

interesting result of a rule. The amount of extra capacity is especially interesting if the 

overtime costs are high and if the normal available capacity is tight. 

1.5. Influences on the control rules 

1.5.1. Influence of the market 

At the level of strategic planning (see Anthony (1965)), one of the decisions a finn has 

to make is the decision about the group of clients it wants to serve. By focusing on 

the right groups of clients, the finn can offer these clients some long-term certainty. 

One of the most important decisions with a long-term effect is the decision whether to 

have client-initiated lead times, firm-initiated lead times or fixed lead times. These 

fixed lead times can be achieved sometimes with regular clients; i.e. clients that are 

always or very often supplied by the firm, who may have a good insight into their 

future need for products of the firm. 

The choice of the clients and especially the choice of the way in which the lead times 

are determined is of course very important for the rule with respect to the lead times. 

A lot of elements of this control rule will be determined by these choices. Therefore 

the type of rule will be fixed for a long time. 

In the situation of fixed lead times we have to make agreements, but also in other 

situations in which the clients have some insight into their future demand it might be 

recommendable to make some agreements with regular clients about the future 

demand and thus decrease the uncertainty for the firm and also for these clients. These 

agreements may contain different elements: 

1) agreements in which the due dates, prices and the amounts to be delivered are 

fixed for a long term, in combination with fixed lead times; 

2) agreements in which the client is obliged to order a fixed amount for a fixed price 

a number of times and in which the finn guarantees a maximum lead time for 

these orders (firm-initiated or client-initiated lead times); 
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3) agreements in which the client is obliged to order a certain amount during a 

period of 12 months, possibly in different quantities, and in which the firm gives 

some guarantees about the lead times (firm-initiated or client-initiated lead 

times). 

As a result of these agreements there is less demand uncertainty, which makes the 

planning of the production easier. Because of the knowledge about the future 

production the firm will be able to calculate the effect of a certain price and a certain 

lead time for an order from an irregular client more precisely. Apart from the 

regularity of clients and the wishes about the length and stability of their lead times, 

another important aspect of the market, especially forithe production planning, is 

given by the accuracy of the lead times clients are content with. For some clients it is 

important that the delivery date that is realised should not deviate more than for 

instance one day from the due date, while for other clients the critical margin may be 

one week, maybe because of a different pricing. 

1.5.2. Influence of the production facilities 

In this study we will consider production processes which have exactly one bottle

neck process. The bottle-neck part, in which this bottle-neck process takes place, may 

consist of one machine, several identical parallel machines or several parallel 

machines with slightly different features. Having a bottle-neck usually implies that 

this part of the production process is the most important part concerning the machine

availability, the variability of the delivery times and probably also concerning the 

variable part of the production costs. In our models we will consider no other 

production processes outside the bottle-neck process. Of course this largely simplifies 

the production planning problem. 

Manufacturing a large variety of products makes a frequent change ofproduction 

from one product to another inevitable. A change of production implies that a part of 

the bottle-neck machine has to be changed or has to be cleaned. Sometimes this may 

not take up much time, but large set-up or change-over times, with additional costs, 

are unavoidable. The products that are manufactured on the bottle-neck machine can 

be divided into groups, in such a way that between the products belonging to the same 

group only minor set-up times are necessary. We will refer to such a group as a type 

of product (see Bitran et al.(1981)). These groups will play an important role in the 
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rules for production planning and therefore they will also be important in the rules for 

the lead times, because the due dates usually depend on the expected production 

moment. In many situations the influence of the minor set-ups is restricted to the 

sequence of the families of items. Therefore they will have little influence upon the 

delivery times. For this reason and because of the reduction of the complexity we will 

neglect the minor set-ups in our models. 

1.6. The methods 

Depending on the situation, we will model the demand process and the rules for 

planning production in such a way that the important features can be analysed. Some 

of the situations can be analysed in an exact way, but for others we will use an 

approximative analysis and in some situations the only analysing instrument will be a 

simulation study. It will often happen that an exact analysis is possible if the number 

of order states can be limited. The analysis of these small problems can help us 

develop intuition for the rules that should be used for larger problems, but the larger 

problems themselves have to be solved by approximative methods. The approximative 

analysis will of course be compared with the exact analysis, if possible. Otherwise, we 

can compare the approximative analysis with the simulation results. However, 

simulation studies of complex situations will be time consuming, especially if we 

want reliable results and if we consider many possible options for the decision 

variables. Therefore, we hope to determine the values of some of the decision 

variables by means of analysis. 

Methods that will be used in this study are partially derived from well-known methods 

in the fields of production/inventory models, the queuing theory and Markov Decision 

Processes. The other methods that will be used, apart from simulation, are all based on 

the use of Markov chains. In a continuous review situation queuing models using 

Markov processes can be of much help. Queuing models assume that only the jobs or 

clients present in the system can be served, the main principle of production to order. 

Furthermore, all kinds of priority rules and distributions for demand and service times 

have been considered in literature. Therefore we will use a queuing model in a 

continuous review situation. 



1.7. Overview of the text 11 

1.7. Overview of the text 

In Chapter 2 we will model the situation in general and discuss some instruments for 

making decisions. Then we give types of control rules for the production planning and 

for the generation of the lead times and order acceptance. In every situation we can 

use a cyclic production rule for the production planning, although the performance of 

such a rule may be very bad. By using a production cycle in which the sequence of the 

types and the available capacity is fixed for a long period, proposing lead times for 

orders becomes very simple. Since this way of production planning is used a lot in 

practical situations, it will be considered in Chapter 3. 

In Chapter 4 we study some of the interesting aspects in a rather isolated situation. 

Throughout this chapter we will assume that there are no capacity restrictions. This 

allows us to consider single type problems, because we can consider each type of 

product separately. This assumption can help us find good rules for more complex 

situations with capacity constraints. First we will study a situation with fixed lead 

times for different groups of clients. In this situation some analysis is possible. We 

will also develop a number of production rules that can be used in different situations. 

One of these rules is rather promising. This (x,T)-role offers low average costs, it is 

easy to use and to analyse and it can be adapted to all kind of difficulties. We 

continue with a situation with fixed lead times, in which the level of demand depends 

on the lateness of previous orders, that is the demand level drops if many orders have 

been delivered too late. Afterwards, a situation is described in which the firm proposes 

lead times for the orders. The acceptance of the lead times happens according to a 

stochastic process. 

A more complex situation will be considered in Chapter 5. We will consider a 

situation in which several types of products are produced on one machine, with a 

limited capacity. The capacity is fixed in one situation and can be extended by making 

overtime in another situation. In both situations the (x, 7)-role will be extended and 

compared with a more complex production rule, based on well-known methods. There 

will be different groups of clients with different fixed lead times. In some examples 

we will compare the two production rules with the cyclic production rules that have 

been described in Chapter 3. 

In Chapter 6 we will again consider a situation with different types of products on one 

machine, with a limited capacity. By assuming some simple rules for the production 
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planning, based on the (x,1)-rnle, we can perform an approximative analysis. This 

analysis yields a distribution of the delivery times for orders of different types and 

priorities in the periodic review model. We will also consider a queuing model with 

exponentially distributed service and interarrival times. In this model, the 

approximative analysis yields average delivery times for orders of different types. 

The insight into the different problem aspects will be combined in Chapter 7. In this 

chapter we shall consider the most complex situations, with orders with different 

priorities and for different types. Firm-initiated lead times are proposed for the orders, 

based on a preliminary production plan. There is a given probability that the customer 

withdraws an order if the proposed lead time is too long. The orders will be produced 

on several machines. Some types of products can be produced on one machine, other 

types on two machines. This complicates the production planning, but even in this 

situation we can use a simple production rule, based on the (x, n-rnle, in combination 

with some special extensions. Finally, we will give the conclusions of our study in 

Chapter 8. 



Chapter 2 

PRELIMINARIES 

2.1. The situation and the model 

The situation we will consider is that of a firm, possibly in the process industry, 

manufacturing a wide variety of products on a make-to-order basis. We are 

particularly interested in those production processes which have exactly one bottle

neck, not only because this situation is quite common, but also because it is the 

situation that can be analysed best. In our models we will only consider the bottle

neck process and exclude the other processes. In a practical situation there will be a 

lot of aspects that have some importance for the production. We will ignore many of 

these aSpects, because they would complicate the problem considerably, without being 

an essential element for the control rules for production planning and for the lead 

times. 

We make the following simplifying assumptions. Raw material is always available, 

machines have no breakdowns and their speed is constant. The set-up times between 

orders for the same type will be ignored and the set-up time and the set-up costs 

between different types are independent of the types. The normally available capacity 

is fixed and if extra capacity is available, the available amount is unrestricted. We can 

distribute the clients over several groups, with more or less the same wishes about the 

delivery times and, except in some special situations, the distribution of the demand of 

each of these groups is known and stationary. 
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2.2. Costs as instruments for decision making 

Our objective is to find good control rules for the production planning and for 

establishing the lead times. The results of these rules must satisfy both the firm and 

the client. The performance of a control rule, which can also be seen as a degree of 

satisfaction, can be expressed in financial terms. The financial aspects may consist of 

both costs and revenues. The costs can be divided into holding costs, production costs, 

set-up costs, costs of disservice and costs due to changes in capacity. Some of these 

costs may be real costs, but they can also be management variables which are used to 

indicate a level of satisfaction. According to this definition the best control rule is the 

control rule with the highest 'profit' for the firm. because this rule offers the highest 

level of satisfaction. First we will describe the different costs, using some of the 

descriptions given by Silver and Peterson (1985). 

The holding costs, also described as the costs of carrying items in inventory, include 

the opportunity cost of the money invested, the expenses incurred in running a 

warehouse, the costs of special storage requirements and material handling costs, 

deterioration of stock, obsolescence, insurance and taxes. According to Silver and 

Peterson the largest portions of the costs are usually made up by the opportunity costs 

of the capital tied up in the stock, that could otherwise be used elsewhere in the firm 

and the opportunity costs of warehouse space claimed by inventories. Neither of these 

costs can be measured exactly. Although estimating the holding costs may be 

possible, we consider it to be reasonable, as Brown(1967) argued, that the carrying 

costs are a top management policy variable, which can be changed from time to time 

to meet changing environmental conditions. In the situation in which have production 

to order, holding costs only occur if an order has been produced too soon. Then the 

order has to be stored until the due date, or it can be delivered earlier to the client. 

Therefore we will not have large holding costs in the situations that we consider. In 

our models we will assume the holding costs to be constant over time and to be linear 

to the number of (unit) items that will be stored. 

The production costs can be divided into two parts: the fixed costs and the variable 

costs. The fixed costs are the costs that would also be charged if no production took 

place, that is the costs of machines, the warehouse and the personnel. The variable 

costs are the extra costs due to the production. This may include the costs for energy, 

for raw material and costs for the deterioration of the machines. As with the holding 

costs, the calculation of the real production costs will also be difficult. Since most of 
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the production costs will be either constant or linear and therefore not influenced by 

the production rule or the control rule for lead times, we will ignore the production 

costs in our models and assume that they are included in the revenues for the orders. 

The set-up costs will be considered apart from the production costs. They also contain 

several elements, such as the costs of the administrative work, the wages of skilled 

people who have to adjust the machine for the production of another type of product, 

higher scrap costs and costs due to the lower effectiveness of the machine just after 

the set-up. Of course no production takes place during the set-up. Therefore the loss of 

revenues during that period can also be considered as set-up costs. In our models we 

will assume that the set-up costs and the set-up time do not depend on the product 

types that are involved. Both the costs and the average set-up time will be constant 

overtime. 

If a product is not finished by the due date, costs for disservice are incurred. We will 

refer to these costs as penalty-costs. In these costs several expenses may be included: 

costs of administrative work, a price reduction for the client, direct loss of revenues 

through lost sales, buying the product somewhere else or substitution of a less 

profitable item. Furthermore, costs are involved because of the goodwill that is lost as 

a result of the inability to serve. The disservice can affect the future demand of the 

customer and also the future demand of his colleagues. Because of the rather vague 

notion of the real cost, the penalty-costs are often considered to be a management 

decision variable, by means of which the level of disservice can be influenced. In our 

models we will assume that the demand is always backordered and that the penalty

costs will depend on the priority of an order, which can be type dependent. 

Furthermore, the costs will be linear to the number of items and to the lateness, the 

amount of time between the due date and the delivery date. 

If the capacity is fixed at a particular level, the wages for the labour forces and the 

costs for using the shop floor are fixed. These costs are usually considered to belong to 

the fixed part of the production costs. If the capacity is not used to its full extent, the 

variable costs of production will be smaller. However, if there is not enough fixed 

capacity in a certain period, it is sometimes possible to extend this capacity. By doing 

this, penalty-costs can be avoided, but of course there are also hiring costs related to 

the temporary enlargement of the capacity. Labour forces have to be paid extra for 

working overtime, paper work has to be done, meals should be paid for and of course 

the variable costs of production have to be paid for. In some of our models the level 
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of capacity is fixed and in other models an unlimited amount of extra capacity is 

available at a fixed price per time unit. 

The structure of the revenues is much more simple than the cost structure. In most 

cases the revenues will be the price that customers have to pay for their orders. This 

price will depend on the amount ordered and also on the priority class of the order. 

This priority class sets requirements for the length.and the accuracy of the lead times 

and therefore also influences the penalty-costs. The demand itself may also depend on 

the lead times or on delivery times. In our models we will assume that the revenues 

depend on the length and the accuracy of the lead times, whereas the revenues can be 

different for different priority classes. 

The ultimate purpose of the control rules for generating due dates, order acceptance 

and production planning will be the maximising of the 'profit', that is the sum of the 

revenues minus the sum of the costs. Maximising the profit can also be considered as 

giving the shortest possible lead times, with maximum accuracy avoiding too many 

set-ups with the lowest possible level of capacity and a minimum of overtime. The 

control rules that will be used for achieving this goal, will now be described more 

closely. 

2.3. Control rules for production planning 

Numerous rules for production planning have been studied in the literature. We may 

distinguish continuous review and periodic review rules, rules for capacitated and 

uncapacitated situations and for deterministic and stochastic demand. These control 

rules have been developed to serve different purposes: some rules are intended to 

smooth the production level, others are developed to minimise the costs or to 

minimise the lead times. Now which of the well-known rules could be of any help to 

us in the situation with production to order? 

Most of the rules in periodic review situations are based on a deterministic demand or 

a demand that is known completely for several periods. We assume the demand to be 

stochastic and that new orders can be placed in all but the current period. Therefore 

we need rules that make decisions on a rolling-schedule basis: every period the 

scheduling for a number of periods is done, but only the schedule for the first period is 

implemented. A lot of work has been done on this dynamic lot-sizing. The names of 
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Baker (1977), Carlson and Kropp (1980), Dixon and Silver (1981), Dogramaci et al. 

(1981) and Maes and Van Wassenhove (1986) should be mentioned in this context. 

One of the most simple production control rules, the Silver-Meal rule (Silver and 

Meal (1973)), can be adapted for our situation, by adding costs for backordering and 

by replacing the unknown future demand by the expected future demand. The same 

can be done with the well-known Wagner-Whitin rule (Wagner and Whitin (1958)). 

Now we will come to the method which will be used most to deal with the problem 

and which can be used in all situations, continuous review and periodic review, 

capacitated or with flexible capacity. In this method, we replace the complex state, 

being the demand for one type, distributed over several periods and possibly over 

several priority classes, by one aggregated variable: the number of penalty points. The 

number of penalty points for a certain type indicates the urgency of the production of 

the type. The number is based on the demand for that type and it can be a function of 

the number and size of the orders, the residual lead time and the priority of the orders. 

These penalty points are used to make decisions about the type that has to be 

produced. The decision rule will, in general, take a very simple form: if we have to 

choose between different types, we shall choose the type with the highest number of 

penalty points. For types with the same number of penalty points we will use a fixed 

sequence, depending on the average demand. Usually, a second rule will be added to 

this choice-criterion: we will only consider those types for which the number of 

penalty points is sufficient to justify a set-up. This sufficiency will be expressed in a 

single value, the penalty-minimum, which can be different for different types. 

2.4. Control rules for lead times and order acceptance 

Only very simple decision rules will be used for the lead times and the order 

acceptance. We shall not consider any rules for making agreements about fixed lead 

times. In the situations in which we have fixed lead times we assume that we have 

different groups of 'clients' and that every group obtains a different fixed lead time, 

according to an agreement that was made beforehand. 

In the situation in which we have firm-initiated lead times, the due dates will usually 

be based upon the expected production date, but there can also be a maximum lead 

time. This maximum lead time offers the client some certainty and its value may be 

different for different groups of clients. For the acceptance of the promised lead times 
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we will consider two models. In the first model all lead times are accepted by the 

clients and we shall use the average lead time as an element for the performance of the 

control rule. In the second model the acceptance of a lead time is a stochastic process 

in which the probability that a client belonging to a certain priority group accepts a 

certain lead time for his order is given and depends on the group and on the lead time. 

In this second model the revenues will depend upon the number of orders, for which 

the lead times are accepted. 



Chapter 3 

A FIXED PRODUCTION CYCLE 

3.1. Introduction 

In a situation that is ideal considering the reduction of uncertainty in production, 

agreements are made with all customers about all deliveries over a longer period, for 

instance a year. The amount and the delivery date have been settled for all orders and 

this has been done with respect to a production plan in which the production has been 

organised in such a way that the number of set-ups will be limited and the available 

capacity will be sufficient. This ideal situation is of course very difficult to realise, 

since most of the customers do not have sufficient insight into their future demands 

and they want to be able to cope with unforeseen situations. The supplying firm may 

have to face unforeseen situations too, such as strikes, long-lasting machine repairs 

and unexpected new clients. Therefore the ideal situation, with no uncertainty for a 

long period, can only be seen as a goal and not as a real-life situation. 

For both the supplying firm and its customers, the next best thing to this ideal 

situation, considering the reduction of uncertainty in the production, is perhaps a 

situation with a fixed production cycle. In this text, the following definition of a fixed 

production cycle will be used. A fixed production cycle is a cycle such that the 

sequence in which the types will be produced as well as the available capacity for the 

production of a type is fixed. The production cycle is repeated over and over again. A 

production cycle may contain every type exactly one time, but it is also possible that 

some of the types are produced several times during one cycle. Every occurrence of a 
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type in a cycle will be called a production opportunity for the type. A production 

opportunity is preceded by a set-up for the type. The available capacity for the 

production of a type, the so-called length of the production interval, is the same every 

cycle, but may be different for different types. A similar cycle for the deterministic 

case with production to stock has been considered by Silver and Peterson (1985, pp. 

433-435). 

In order ro obtain good results with a fixed production cycle, it is necessary that the 

demand is stationary, not too irregular or lumpy and that a lot of customers are able to 

give good estimates of their future orders, thus enabling the firm to determine a 

production cycle based on the expected demand. A smooth demand, which does not 

deviate much from its forecast, ensure.s the accuracy of the allocations for capacity 

and raw material and the avoidance of extra amns fM :£hortages, working overtime and 

storage. The effect of this smooth demand is aiSI(!) ~ lllhe 'Cti10mers know when they 

have to order and when the orders will be ,de~ The aoc~~tmey of the demand 

forecast depends on the percentage of the capacil:y fm ·WlilU contracts are concluded 

and on the disturbance by irregular clients. 

Using a fixed production cycle may have advantages for both the clients and the 

supplying firm. Clients have more certainty about when they have to order and 1Nhen 

an accepted order will be completed. The delivery date may be during the first 

production opportunity or during one of the following production opportunities. The 

firm knows when the product types will be produced and this may be an advantage for 

controlling the inventory level of the raw material and for planning repairs and 

maintenance. Another positive effect is that the production planning wiU be much 

easier and therefore can be done at lower costs. 

Of course, there are also disadvantages in the use of a fixed production cycle, 

especially if there is a widely varying demand. A widely varying demand leads to an 

ineffective use of the machines: very often there will be no more orders for the type 

for which the capacity reservation was made, whereas at the same time a lot of orders 

for other types of products may be waiting. This leads to fluctuating delivery times 

and uncertainty for the clients, because some of the orders will only be delivered after 

several cycles. Therefore, they do not know when they have to order. Another 

disadvantage of the fixed production cycle is the impossibility to deal with priority 

orders in the correct way. If a very urgent order is placed, it will not be produced until 

the next production opportunity and this production opportunity is independent of the 
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demand. 

In later chapters the use of a fixed production cycle will be compared with non-cyclic 

production rules. To make a reasonable comparison possible, the optimal fixed 

production cycle has to be detennined. Therefore the optimal values for the available 

capacity for all product types have to be determined, with respect to profit 

maximisation or cost minimisation. An important element in this optimisation is that 

the use of the machines can be improved by making the fixed cycle longer, but this 

has a negative effect upon the delivery times. In the following subsections the delivery 

times and the costs of the fixed cycle production rule will be analysed for three 

different service disciplines with different demand and service time distributions. 

3.2. Analysis of fixed production cycles 

In the analysis of the fixed production cycles we will study the situation with one 

machine, on which M different types of products will be manufactured. The machine 

is assumed to be perfect, that is to have no breakdowns, and the set-up cost and the 

set-up time are independent of both the previous type which is produced and the next 

type that will be produced. The set-up time will be deterministic. Due to the 

production rule it is known exactly when a particular type will be produced. This 

knowledge can be used for determining exact due dates. Therefore the arriving orders 

will be scheduled according to the first-come-first-served rule (FCFS) and the due date 

will be based on this schedule. Since this schedule will not be changed, there will be 

no due date deviation and therefore no holding costs or penalty costs. The analysis of 

the production rule will be quite difficult if the last order at the end of a production 

interval is always finished, the so-called non-pre-emptive service discipline. Because 

of these difficulties we will assume that the work on the last order continues in the 

next production interval of the same type, the so-called pre-emptive service discipline. 

A lot of research has been done on problems with cyclic production rules. The 

difficulty of the analysis depends on the service discipline. Problems where service 

continues until a queue is empty, the so-called exhaustive service, have been treated 

by Eisenberg (1970), Swartz (1980), Watson (1984) and others. These authors have 

found general results on average delivery times and on the average amount of work in 

process. Problems with other service disciplines, for instance where only one 

customer of each type is served per cycle (ordinary service), seem to present 
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considerable analytical problems. Some special cases, with only one or two different 

types, have been analysed exactly, for instance by Cohen and Boxma (1983). In the 

situation we shall discuss here, we assume that for every type of product a fixed time 

slot is available during one production cycle. Therefore the analysis of our situation 

will be different from the analysis presented in the papers that deal with the problems 

with either exhaustive service or ordinary cyclic service. 

Suppose that during one production cycle work can be done on type s 1 during a time 

interval with length c 1, then there is a set-up, after which work can be done on type s2 

during a time interval with length c2 and so on until finally after working on type sm 

and a set-up, the sequence is repeated and the work on type s 1 can start again. Of 

course every type of product should occur at least once in this sequence, but a 

sequence may also contain some types more than once, interrupted by other types. In 

this way a fixed production cycle can be described by two sets, both containing m 

elements, with m?.M. The first set is the sequence set S={si>s 2 , ••. ,s,J describing the 

sequence in which the types are produced during one production cycle . The second 

set is the capacity set C={CJ.Cz, ... ,cm} in which the available capacity for the 

production of the corresponding element in the sequence set is described. 

These two sets S and C are not the only important characteristics of the fixed cycle. 

The service discipline is also very important. During the production interval of a type 

we can only work on orders of that type. The orders of that type will be produced 

according to the FCFS-rule. Because of the exact due dates this rule is the same rule 

as the earliest-due-date rule (EDD). If there are no (more) orders of a type we have to 

wait for new orders of this type or for the end of the production interval. This way of 

service, in which we stop working on orders from a certain type at the end of a 

production interval, is usually called gating service. We will consider two different 

ways of gating service. 

In the first situation with gating service we can work on all orders of a type during the 

production interval of this particular type. In the second situation we can work only on 

those orders for this type that arrived before the decision moment. The decision 

moment is the moment just before starting the set-up to that particular type. The first 

situation will be called extended gating service and the second situation normal gating 

service. Extended gating service yields shorter delivery times, because orders that 

arrive during the production interval may be served immediately and therefore this 

kind of service will be preferred. In many situations however, extended gating service 
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is impossible or very expensive. Possible reasons for this may be that the sequence in 

which the orders of the same type will be produced should be known at the decision 

moment, possibly because there are small set-ups between these orders or for quality 

reasons, or because decisions on raw material needed for the production of the orders 

have to be made at the decision moment. 

If we consider extended gating service, a set-up will always be performed before the 

beginning of a new production interval even if there are no orders, because it is 

possible that new orders will arrive during the production interval. In the situation of 

normal gating service we have no set-up if there are no orders, because here only 

those orders will be produced, that are known at the decision moment. We shall 

consider two different production models with normal gating service, one in which 

working overtime is possible and one without this possibility. Working overtime 

means here that work can be done on a type after the end of the production interval if 

not all orders are finished that should be finished by the end of the interval. This work 

will be done outside the normal working hours or may even be performed by another 

firm. In any case, there are no consequences for the available capacity and for the start 

of the production interval for the following type that will be produced. Next we will 

describe the analysis of the different service disciplines. 

3.2.1. Extended gating cyclic service model 

In this subsection we shall consider the situation in which we have extended gating 

service with no possibilities for overtime. During the production interval of a type we 

can work on any order of this type, but not on orders of another type. If somewhere 

during the production interval there are no (more) orders of the type, we must wait 

until the interval is finished or until new orders arrive. Jobs that are not finished by the 

end of the production interval have to wait until the next production opportunity. In 

the next production interval the work on these orders will be continued, so no extra 

work outside the normal working hours will be done. The set-up will be done just 

before the production interval. We are especially interested in the average delivery 

times for the different types. Therefore we must make some assumptions about the 

demand and service time distribution and about the sequence set S, which may enable 

us to calculate the delivery times. 
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For every type of product the orders are supposed to arrive according to a Poisson 

process with parameter A.;, i=l,..,M and the service time for an order of type i is, for 

simplicity, supposed to be exponentially distributed with parameter IJ.i• i=l, .. ,M. Also 

for simplicity it is assumed that the sequence set is given by S={1,2, .. ,M), implying 

that every type of product is produced exactly once during a production cycle. The 

time needed for one set-up is a fixed constant s and the capacity set is given by 

C={c1, ... ,cM). One production cycle consists of M set-ups and M production intervals, 

one for every type. Thus the length of a production cycle is given by 

M 
T=sM+I;ci 

i=l 
(3.2.1) 

We want to avoid that the queue length for some of the types becomes infinitely long. 

Therefore it is necessary that for every type the available capacity per cycle is large 

enough to produce the average demand during one cycle. This can be described by the 

following restriction for the capacity set. 

i=l,2, .. ,M (32.2) 

For this situation we first want to determine the average delivery time for every type 

of product for a given set C for which (3.2.2) holds. Then an approximation method 

will be presented by which we can estimate the average delivery times for a given set 

C. This approximation method can help us to determine an optimal set C, for which 

we have the highest profits or the lowest average costs. One element in the costs will 

usually be a weighted combination of average delivery times. 

Suppose the process started at minus infinity, so we are in a stationary situation. Let us 

consider one type of product during one arbitrary cycle starting at 0. Omitting the 

subscripts, we denote the time we are not working on the type by X, X =T-C. This will 

be the first part of the cycle; the second part, the interval with length C between X and 

T, is the time we can work on the type. The set-up time is included in X. This is 

illustrated in Figure 3.1. 

0 
I 

X T 

~- -~---- -4 
s c 

Figure 3.1 The production cycle for a single type 

time 
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Let L be the average (long run) number of orders in the queue. For an order arriving in 

the arbitrary interval [O,n, the delivery time can consist of three parts: 

(1) if it arrives at time ye [O,X) it has to wait, X -y until the first production 

opportunity comes; 

(2) if it finds k other orders of the same type in the queue upon arrival, k+ 1 services 

have to be completed before the order is finished; 

(3) if the order is finished in the l-th production interval after its arrival, then l-1 

times X should be added to the sum of (1) and (2). 

Although these three parts are not independent, we may consider them separately in 

order to determine the expected delivery time of an arbitrary order arriving in the 

[O,T)-interval. 

Since the orders arrive according to a Poisson process, we can use the following 

property, stated for instance by Ross (1972). This property says: suppose that we 

know that n events, n~l of a Poisson process have occurred by during the interval 

[O,T). Then the set of n arrival times has the same distribution as a set of n random 

variables which are independent and uniformly distributed on the interval [O,T). 

Therefore, the contribution of (1) to the expected delivery time of an arbitrary order, 

written as /E(l), is given by: 

1 X X'J. 
/E(l)=- I (X-y)dy=-

To 2T 
(3.2.3) 

The contribution of (2) to the expected delivery time, written as /E(2), can easily be 

calculated using Wald's equation and thus gives: 

E(2)= L+l 
J.1 

The contribution of (3) to the expected delivery time, written as /E(3), can be 

determined in the following way. If the expected number of unfinished orders at the 

end of the production interval, is given by E, then the average contribution of element 

(3) to the sum of the delivery times of all previous orders is given by XE. But since 

this contribution returns every cycle, the expected contribution of element (3) to the 

sum of the delivery times of .all orders arrived in [0, T) is given by XE. The expected 

number of orders that arrive during a production cycle is given by f..T. Using Little's 

formula, the contribution of (3) to the expected delivery time of an arbitrary order will 
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be given by: 

JE(3)= XE 
A:r 

Using the results for JE(l), JE(2) and JE(3), the expected delivery time for an arbitrary 

order, denoted by D, is given by: 

D- (L+l) X2 XE 
- J.L + 2T + /..T' (3.2.4) 

Since we have Poisson arrivals, we can use Little's formula for the average number of 

orders in the queue: 

L="AD (3.2.5) 

and the only remaining problem is the calculation of E. 

In order to calculate E, we introduce Pt. the equilibrium probability that the number of 

unfinished orders for the type equals k at the end of an arbitrary production interval. If 

these probabilities are known, we can determine E by: 

(3.2.6) 

Suppose there are i unfinished orders at the end of an arbitrary production interval and 

suppose that j new orders arrive before the beginning of the next production interval. 

We will write pf+j,k for the probability that, starting with the i +j orders at the 

beginning of the next production interval, there will be k unfinished orders at the end 

of this next production interval. Here the superscript C comes from the length of the 

production intervaL Using this probability, Pt should satisfy: 

P~c= ~ P· ~ (J,;xy e<-AX.>p9 · k 
~ ~~ ., t+], 
idJ jdJ J. 

(3.2.7) 

The probability pf+j,k is by its definition the same probability as the probability that 

the number of orders in the queue equals kat time C, given that it equals i +j at time 0, 

P(Xc=k IX0=i+j), in an MIMI! queue with O<p = ~<1. A lot of expressions have been 
J.L 

derived for this probability, for instance by Asmussen (1987) and Prabhu (1965). The 

most common expression is given by 

with 

-i-j-k-2 
Pf+j,k=l~c-•-j+p-i-j-tzi+j+k+t +(1-p)pk 1: 1,. 

fl=-<>0 

(3.2.8) 
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(3.2.9) 

where /,.(x) is the modified Bessel function of integer order n, defined by 

.. (x/2)2k+n 
I,.(x)= L k'(k )'. l_,(x)=l,.(x), 

k=O • +n . 
neN (3.2.10) 

and fl=-5;. From these formulae the steady-state probabilities P~r. can be calculated 

as accurately as we want. 

Due to the complicated form of E, it will be very difficult to minimise the costs for a 

given situation and to find the optimal capacity set C. Of course some capacity sets 

can be tried, but it would be nice if we had some reasonable set to siart with. 

Therefore we have to approximate E by something that is much easier to calculate. 

There are several options for this approximation. For a short production cycle the 

average will tend to be like the average found in the so-called shadow approximation. 

Let p * be defined as 

(3.2.11) 

Then the average number of orders in the shadow approximation, E,, is given by 

= 

At the end of the production interval, it is reasonable to expect that E will be smaller 

than the value E, suggested by the shadow approximation, but due to the delayed 

service E will always be larger than the average number of orders, EM in the MIMil-

.th A. hi h. . b queue Wl p=Ji• w c 1s glVen y 

EM= 1-p 

From several examples we learned that the value of E is usually situated between the 

two averages suggested by these approaches. Therefore we choose to replace E by E, a 

combination of the average number of orders Es and EM of the following form 

(3.2.12) 

For these examples we tried several logical choices for p, all containing in some 

simple form the elements A, J.l, T , X and C. The best choice found for p was: the 

expected length of the busy period divided by the length of the production interval, 

i.e.: 
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A. X 
p= (J.L-A.)C 

(3.2.13) 

Using (3.2.12) and (3.2.4), we now have a simple expression for an approximation of 

the average delivery time, which can be used to determine a reasonable capacity set if 

we want to minimise the average costs or maximise the profit. Comparing the average 

delivery times with the estimated delivery times using E and the shadow 

approximation for several examples, results in the following table. 

Average delivery times 

Example • Exact E approx. shadow p p 

1 .250 .891 4.006 4.373 2.736 

2 .333 .888 4.875 5.085 3.973 

3 .250 .830 5.746 5.815 4.888 

i 4 .333 .927 4.173 4.493 3.184 

5 .250 .906 4.327 4.671 3.195 

6 .167 .865 4.425 4.792 3.207 

7 .083 .766 4.465 4.772 3.266 

8 .150 .429 0.391 0.400 0.250 

Table 3.1 Comparison between exact and approximated delivery times 

The difference between the approximated time using (3.2.12) and the exact average 

delivery time is in all examples between 2 and 9 percent, whereas the shadow

approximation leads to a difference between 15 and 36 percent, always in the opposite 

direction. From this random set of examples, we can already conclude that by using E 
as an approximation, we can estimate the delivery times quite well. Another important 

aspect is that the value of several cost functions containing the weighted sum of the 

delivery times of the different types could be estimated very well by the approximated 

delivery times using E. Although the values of the approximated delivery times are 

not exactly correct, the capacity sets C, for which the approximated cost functions are 

minimal, do yield almost minimal costs, due to smoothness of the cost function in the 

direction in which the capacity set is different from the optimal capacity. 
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3.2.2. Normal gating cyclic service with strict capacity 

This model shows much resemblance with the extended gating service model and we 

will use the same demand process, the same service time distribution and the same 

sets S and C. There are two main differences between both models. The set-up for a 

type will only be performed if there are orders for that type at the decision moment, 

that is the moment at which the set-up would start. During the production interval 

only the orders known at that decision moment will be produced. If there are no orders 

at the decision moment, we will wait during the time needed for one set-up, which is 

the fixed constants, and the reserved production interval for the type with no demand, 

before considering a set-up for the next type at the following decision moment. The 

main reasons for this kind of service is that we want to consider a fixed cycle that is 

really fixed and we do not want penalty costs and holding costs. Thus the length of the 

production cycle, T, will still be given by (3.2.1) and inequality (3.2.2) should still 

hold for the capacity set. 

As well as in the extended gating service model, the delivery time consists of three 

parts, but these parts are slightly different from the parts in the extended gating 

service model. Again we shall consider one type of product during an arbitrary 

production cycle starting at 0. This time the cycle starts with an interval of length s, 

intended for a set-up, but if there are no orders for this type it can also be waiting 

time. The second part of the cycle is an interval with length C, during which we can 

work on orders of the type. The last part of the cycle, with length X -s, with X =T -C, 

is meant for the set-ups and production of the other types. Now the three parts of the 

delivery time of an order arriving in this arbitrary interval [O,T) are: 

(1) an order arriving in this interval has to wait until the first production opportunity 

comes atT+s. 

(2) the orders whose service times contribute to the delivery time of the arriving 

order at time ye [O,T) are the orders that arrived before 0, which are not finished at 

the end of the production interval, that is at C +s, and the orders that arrived 

between 0 andy. 

(3) if the order is finished in the production interval [ lT +s, lT +C +s ), then l-1 times X 

should be added to the sum of (1) and (2). 
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To determine the expected delivery time of an arbitrary order arriving in the [O,T) 

interval, we will consider the three parts separately, as we did in the previous model. 

Then the contribution of (1) to the expected delivery time, written as /E(l), is given 

by: 

1 T T - J (T+s-y)dy = -+s 
T 0 2 

/E(l) 

To describe the contribution of (2) to the expected delivery time, written as /E(2), we 

will define E, now denoting the average number of unfinished orders at the end of the 

production interval, in this case at C+s, that arrived before the decision moment 

preceding this interval, in this case at time 0. In this normal gating service model, 

orders arriving during the production interval or during the set-up, that is between 0 

and C +s, do not have to wait for all orders that are present on arriving, but only for 

those orders that have not been produced by the end of the interval, at C+s. Now the 

expected sum of those service times which have an influence upon the delivery time is 

given by: 

/E(2) = _E_+_I + J y dy = -'-'-E_+-'-1 +_0'--.5'--A.'--T 
Jl J.LT o Jl 

Using the same reasoning as in the extended gating service model, the contribution of 

(3) to the expected delivery time, written as /E(3), can be described by: 

/E(3)= XE 
A.T 

Using the results for /E(l), /E(2) and /E(3), the expected delivery time for an arbitrary 

order, denoted by D, is given by: 

D =I_ +s + (E+O.SA.T+l) + XE 
2 Jl A.T' 

(3.2.14) 

The remaining problem is again the calculation of E. 

To determine E, we introduce again P~c, now defined as the steady state probability that 

the number of orders present at the decision moment, but not produced at the end of 

the production interval, equals k. If these probabilities are known, we can determine E 

by (3.2.6). During one production cycle the number of unfinished orders increases due 

to new arrivals during an interval with length T and it decreases due to services during 

an interval with length C. These two processes can be considered apart, with only one 

exception: the resulting number of unfinished orders cannot be negative. Now if we 

write lj for the probability that during one production cycle the number of orders will 
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increase by j, under the assumption that the machine produces during the complete 

production interval. Then P~; should satisfy: 

and 

.. 
P~:=}:P;l~:-i• 

i.O 

.. -i 

Po=}:P; l: li 
i.O ;-

k=1,2,... (32.15) 

(3.2.16) 

The expression for 1;. which can be seen at the probability that the difference between 

two Poisson processes takes the value j, shows much resemblance with (3.2.9) and is 

given by Asmussen (1987): 

with 

'A.T 
p=-

I!C 

(3.2.17) 

(3.2.18) 

and l;(x) is the modified Bessel function of integer order J, defined by {3.2.10), now 

with 

(3.2.19) 

From these formulae, we can calculate the steady-state probabilities P~r. as accurately 

as necessary and thereby E and the expected delivery time D. The calculation of E is 

much easier than in the extended gating situation. Therefore we will not give an 

approximative method for estimating E in this situation, although we expect that the 

method for estimating E will be quite similar to the method described in 3.2.2. 

3.2.3. Normal gating service with flexible capacity 

In a situation with normal gating service and strict capacity, clients do not quite know 

when they have to order their products. Sometimes their order will be delivered during 

the next production cycle, but it may also take several cycles before they will be 

delivered. If it happens rather frequently that an order will not be delivered during the 

next production cycle, the clients may become dissatisfied and they may prefer 

another supplier. The supplying firm can avoid this kind of situation and guarantee, 

for instance, that all orders will be delivered no later than after the first complete 
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production intexval of their type. This means that all orders for a type which are 

present at the decision moment will be produced during the production intexval, or if 

not all orders are finished by the end of the production intexval, extra work will be 

done for those orders that were already present at the decision moment. This extra 

work will be done outside the normal working hours, or maybe by another firm. We 

assume that the available capacity and the start of the production intexvals for other 

types of products are not influenced by this extra work. 

In later chapters, we will also consider the possibility of doing extra work in 

combination with a non-cyclic production rule. In those situations we will assume that 

the available capacity is the same constant for every production intexval. This means 

that the capacity set C takes the form: (c,c, .. ,c). Therefore we will use the same form 

for the capacity set in this situation with normal gating sexvice with flexible capacity. 

In this situation we also consider different forms for the set S, such that some types 

occur more than once during a production cycle. The most obvious choice for the set S 

in the situation with a fixed length for the production intexval is the choice in which 

the frequency in which a type occurs in a production cycle is linear to the demand for 

that type. We can use this kind of choice if we want to minimise the costs of set-ups, 

overtime and the delivery times. 

The calculation of the amount of extra work and the average delivery times for given 

sets C and S is not very difficult. An example may clarify this. As an example, we can 

consider the length of the sum of the production intexval and one set-up as one period. 

We assume that the required capacity for an order is fixed and that in the production 

intexval exactly C orders can be manufactured, independent of the type. Suppose a 

type occurs three times in the sequence set S, so we may work on this type three times 

during one production cycle, and the number of periods between the production 

intexvals is n 1, n2 and n3 • If the probability that the total demand during n periods for 

the type equals k, denoted by P"", is given, then we can compute the interesting 

aspects. The probability that we do not have a set-up after n; periods is given by Pon,· 

Therefore, the expected number of set-ups during one cycle for the type that we 

consider, Utype, is given by 

3 
U type=3-I;P On, 

i=l 

Assuming that the delivery time of an order is expressed in an integer number of 

periods, so it may take the values 1,2, .. ,max(nhn2,n3), the average delivery time for 
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this type, Dtype expressed in periods, is given by 

3 ~ 3 

:L :Li :Lnr 
i=l j=l 0 5 i=l 

D~ype=-3--= · +-3-
Lni 2:Lni 
i=l i=l 

and the average amount of extra work per production cycle, Wtype expressed in number 

of orders, is given by 

3 .. 

W1we=:L :L (k-c)P~cn, 
i=l k=c+l 

Of course there may be situations which are more complicated than this example, but 

as long as it is possible to produce all the demand that is present at the beginning of 

the production interval, if necessary by doing extra work, the analysis will only be as 

difficult as in this example. The situations with the fixed production cycle we have 

considered in this chapter are on the one hand illustrations of cyclic production rules 

which seem to us both useful and interesting to analyse, because cyclic rules are often 

used in practical situations and on the other hand they can serve very well as some 

kind of measure for the comparison of non-cyclic production rules in the following 

chapters. 



Chapter 4 

NON CYCLIC METHODS FOR ONE 

PRODUCT TYPE 

4.1. Introduction 

In certain cases the capacity restrictions are not very important, for instance if the 

products have to be put into a chemical bath and the size of the bath is much larger 

than the average batch that is produced. It is also possible that the extra costs for 

working overtime or extra capacity are very small compared to the set-up costs. Also 

in practical situations in which there are capacity restrictions it can be wise to at first 

ignore these restrictions in order to get some insight into the other problems. We have 

assumed that raw material is always available. Therefore, the only way in which the 

production planning of different product types is related, is through the capacity 

restrictions. If these restrictions are rather unimportant, it is not necessary to consider 

all product types together, but the product types can be considered separately in order 

to analyse the problem. In this chapter, we will consider the production planning for a 

single type of product, where the problem of our interest is the balance between a 

limited number of set-ups and short delivery times or a limited number of late orders. 

This problem is particularly interesting if the set-up costs are large. Different from the 

cyclic production rule, a set-up will only be started if there is a sufficient number of 

jobs to be produced. We will assume that the decisions concerning production are 

made periodically. The element of periodic review is introduced here because it is 
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helpful in the analysis and because this element is a practical given in a lot of 

production planning systems. The length of the review period will be fixed. We will 

assume that the decisions will be made at the end of a review period. At that time all 

new orders are known. The decision about the production concerns the production in 

the next period of orders known at the end of the review period. The decisions are not 

changed during that period, so in the first period we never produce orders that have 

been arrived during this first period. We have found the same element in the gating 

service model. 

In this chapter we shall consider one rule for determining the lead times and several 

rules for the production planning of a single type of product on one machine, with 

large set-up costs. Other costs that occur are holding costs, for orders that are 

produced too early, and penalty costs for orders that are produced too late. Late orders 

will be backlogged. In this chapter we will study three different situations. Maybe 

some elements of these situations will not be very realistic, especially the independent 

demand, but there are certainly situations where the proposed decision rules can be 

used. First we will study the situation in which the lead times for the orders are fixed 

according to a long-term agreement. The distribution of the demand is assumed to be 

stationary. The firm has to manufacture the orders at minimal costs. We will start with 

the assumption that the penalty costs are the same for all clients and later on we will 

give an extension for clients with different penalty costs. 

Next, we consider a situation where the lead times are again fixed, but the demand is 

no longer stationary. The number of clients, and thereby the demand, fluctuates due to 

the lateness of previous orders. Usually such fluctuations will be included in the 

variance of the demand and for the late orders penalty costs are assumed. In our model 

the number of clients is varying according to a stochastic process, which depends 

upon the number of orders that have been delivered too late. 

In the third situation we consider firm-initiated lead times. The length of the lead time 

for the orders that arrive in a certain period depends on the due dates of the previous 

orders, which have not been produced yet, and on the number of orders that have been 

arrived during the period. We assume a simple stochastic model for the acceptance of 

the proposed lead times by the customers. The probability that a client accepts a lead 

time will be a decreasing function of the proposed lead time. The decisions about the 

lead times are based on the probabilities for the acceptance, which are supposed to be 

known to the firm. 
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4.2. Fixed lead times 

4.2.1. Introduction 

In this situation clients place an order and the lead time of the order is fixed according 

to a long-term agreement. Every order consists of one unit of product, where the size 

of the units is chosen according to the holding costs and the penalty costs. The lead 

time of an order can be the next period or one of the N -1 later periods. Therefore, in 

an arbitrary period t, orders may obtain a due date in one of the periods t+ 1, t+2, .. , 

t+N. The probability distribution of this demand, for each of theN periods, is a given 

distribution which is independent of t. For our model, we assume that the orders are 

placed by N groups of clients, where the lead time for orders placed by clients 

belonging to group i is also equal to i. The demand during period t of the different 

groups of clients are assumed to be stochastically independent. 

A typical element for a situation where we have production to order and fixed lead 

times, is a gradually decreasing level of knowledge about the required deliveries for 

future periods. At the end of an arbitrary period, say period t, the required deliveries 

for period t+l are known exactly, nearly all required deliveries are known for period 

t+2, except the orders that will arrive during period t+ 1. Furthermore there is a 

decreasing knowledge about the required deliveries for the periods t+3 until t+N. 

Clients can still place orders for these periods during the following 2 or more periods. 

With this knowledge about the required deliveries and with the knowledge of the 

demand distribution, a decision about the production has to be made. 

At the end of period t we can decide to produce a subset of the known orders, to 

produce all the known orders, or we can decide to delay production. If we produce in 

period t+l, then we have set-up costs s and if we produce orders that have to be 

delivered during one of the periods t+2, ... ,t+N, we have holding costs h per order per 

period for the orders that are manufactured too early. If there are required deliveries 

for period t+l or even earlier, and we decide to delay the production, then we have 

penalty costs at the end of period t+ 1. The penalty costs at the end of this period will 

be p units per order for the required deliveries for period t+l or earlier. We have 

chosen for this linear form because this allows a tremendous simplification of the state 

space, due to an aggregation of all late orders. The late orders are not lost, but 

backlogged. 
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The objective is to minimise the long term average costs per period. First we will 

model the problem as a Markov Decision Problem. Using the method of successive 

approximations, the optimal production rule can be determined as well as the average 

costs of this rule. Then we will describe some heuristic methods and consider their 

performance in a few examples, as well as the performance of a cyclic service rule. In 

these examples all heuristics will turn out to perform reasonably well. The main 

differences between the heuristics are in the complexity of the decision rules and the 

possibility to compute the average costs. 

4.2.2. Description of the model 

In order to give a good description of the problem, we shall model it as a Markov 

Decision Problem (MDP). Markov Decision Processes have been studied initially by 

Bellmann (1957) and Howard (1960). We will first give a short description of an MDP 

in general. Suppose a system is observed at discrete points of time. At each time point 

the system may be in one of a finite number of states, labeled by 1,2, .. , M. If, at time t, 

the system is in state i, one may choose an action a, from a finite space A. This action 

results in a probability Pij of finding the system in state j at time t+ 1. Furthermore 

costs qf have to be paid when in state i action a is taken. 

Returning to our problem, we find that we can only give an adequate description of 

the state if we use a state vector instead of a single integer value. In this state vector 

we want to express the required deliveries for the various periods. However, at the 

end of period t, there is no difference in future costs between required deliveries for 

period t+l and required deliveries for earlier periods, such as t, t-1, etc .. Therefore we 

can limit the order state vector to N components. At the end of an arbitrary period t, 

the first component denotes the required deliveries for period t+l and earlier periods, 

the second component denotes the required deliveries for period t+2, and so on, until 

the N-th and last component, which denotes the required deliveries for period t+N. We 

will denote the state we observe, r=(ri>r2, .. ,rN). the order state vector. The set of all 

the possible states is denoted by R. 

The second element of the MDP is the action space A (r ). Each state reR is associated 

with a finite non-empty set of actions A (r ). Since we have no capacity constraints, we 

will always produce the demand for an integral number of periods. Therefore, the 

meaning of action a is that we produce the orders with a residual lead time of a 
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a 
periods or less, that is :Eri products. Action 0 means that we do not produce. To 

i=l 

determine the action space, we choose A (r), reR, in a reasonable way: 

A (r )={ 0} if r 1 equals 0, since it is clearly optimal to delay production; 

A (r )={ l, .. ,N} if r 1 p >s, since it is clearly not optimal to delay production, because 

the penalty costs are larger than the set-up costs; 

A (r)={O, .. ,N} for all other reR. 

The transition probabilities from a state vector r to a state vector z are more difficult to 

describe than in an MDP with single integer valued states. In every period t, clients 

belonging to group i can order for period t+i with i=l, .. ,N. The probability that they 

together order j units during an arbitrary period t for period t+i is known and this 

probability is denoted by dii. We assume that the demand for different groups is 

independent. Let J f;;;.NN be the set of possible one-period demands (h.h ..... jN). Let 

Q,.(r) be the state at the end of the next period, just before the new orders are added to 

the order state, if we have taken action a in state r. This implies that the first a 

components will be given the value 0 and a left-shift afterwards, for instance 

Qo(r)=(r 1+rz,r3•··•rN,O) and Q3(r)=(O,O,r4 , •. ,rN,O). The probability P':.z, that on 

observing stater and choosing action aeA (r) we enter state z given by 

z = Qa(r)+ Vt•h•·· .. ,jN) 

N 
is therefore given by IJd1j, for all (j1,j2, •. ,jN)eJ, and 0 elsewhere. 

i=1 

(4.2.1) 

Now we consider the one stage costs of taking action a on observing state r. If we 

produce, we pay set-up costs and also holding costs if a ;a. We assume that all holding 

costs for orders that are produced more than 1 period too early will be paid 

immediately. This assumption is necessary for the transition probabilities described 

above. If we do not produce than we have penalty costs. Penalty costs for orders that 

have been delivered more than 1 period too late will be paid separately in each of the 

periods. Therefore, the one stage costs of taking action a on observing state r have the 

following form. 

a-1 
if:=s+h ,:Eiri+l 

1=1 
if a>O (4.2.2) 

ifa=O (4.2.3) 
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4.2.3. The optimal production policy 

By the choice of the action space, all stationary policies have transition probability 

matrices representing recurrent aperiodic Markov chains. If the number of possible 

states is limited, i.e. if the one-period demand is bounded, we can determine the 

optimal production policy. The optimal policy can be determined by a policy iteration 

method, but we will use the method of successive iteration, as described by 

Odoni(1969), since this method is faster in our situation. The optimal policy is the 

policy which achieves the minimum expected costs per transition, which will be 

denoted by g. Defining the quantity v,.(r) as the total expected costs from the next n 

transitions if the current state is r and if an optimal policy is followed, the iteration 

scheme takes the form described in the optimality principle by Bellman (1957): 

re R, n=O,l,.. (4.2.4) 

Definex11(r) by: 

(4.2.5) 

Then according to Odoni for any choice of starting conditions v0(r): 

(i) v,(r)=ng+v(r)+O,.(r),reR, where O,.(r) ~ 0 and where the v(r) satisfy: 

(ii) 

(iii) 

(iv) 

(v) 

v(r)= min [q~+ I: P~ v(z) -g]. 
aeA(r) zeR 

(4.2.6) 

This function v (r) will be called the relative costs of a state r. 

x,.(r) ~ g, reR. 

L 2(n) =max x,.(r) is monotone decreasing inn to g. 
reR 

L 1(n) =minx,.(r) is monotone increasing inn to g. 
reR 

Any production rule achieving the minima in (4.2.4) for all reR for all n:<! 

some no achieves the minima in (4.2.6) for all reR and has minimal costs per 

transition. 

It is not necessary to consider all possible values for first component of the order state 

vector r 1• If for some state reR, action a>O is optimal, then the same action will be 

optimal for all states (y,r 2,r3 , •• ,rN) with y>r~o because r 1 is not involved in the 

holding costs. Beginning with v0(r)=0 for all reR, we repeat (4.2.4) until a satisfactory 
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degree of convergence is achieved. It follows that g may be estimated from 

L 1(n)$g5L2(n) as g-[L 1(n)+L 2(n)]t2. The range decreases by n and the estimate 

becomes nearly exact for large n. 

4.2.4. Heuristic procedures. 

If the number of states we have to consider is very large, it will become very difficult 

or impossible to determine the optimal policy. Therefore we will also consider three 

heuristic approaches: a Silver-Meal-like approach, a Wagner-Whitin-like approach 

and a production rule that we will call the (x, T)-rule. Before a description of the three 

different rules is given, some variables that will be used in the sequel will be defined. 

4.2.4.1. Notation 

The following variables are defined: 

- X1w is the number of orders arriving during period t for period w, w=t+l,t+2, .. ,t+N, 

(see Figure 4.1). 

lead time 

arrival date 1 2 I 3 N 

I t Xt,t+t Xt,t+2 
I v 

x1,1+N 

t+l Xt+l,t+2 Xt+l,t+3 Xt+l,t+N+I 

t+2 li xt+2,t+3 [ xl+2,1+4 xl+2,t+N+2 

Figure 4.1 The demand for the various periods 

- u1,t+i is the expected number of orders during an arbitrary period t for period t+i: 

since we have stationary demand, we will write Ut,t+i =IE X1,1+i = L jd;i = u;. 
j>O 
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- b111 is the probability that during the last i periods before an arbitrary period t, 

clients order a total number of l orders for this period t: 
t-l 

bar =IP{ :.E Xn~=l} 
n=t-i 

In Figure 4.1. we can see that the separate parts of the demand for period t+3 

are placed diagonally. Let Ja be the set of all possible one-period demands 

(j ~oiz, .. ,jN) for which the sum of the first i components equals l. Due to the 

stationary demand we can write: 
j 

but= :.E II dk;. = b,,,. 
J, k-1 

- eu is the expected value of the i-th component of the order state vector at the end 

of period t, if no required deliveries for period t+i have been produced. The 

separate parts of the demand are placed diagonally in Figure 4.1. 
I I N 

eit =IE( L Xn,t+iJ = L Un,t+i = L u,.. 
n-t+i-N n-t+i-N m-i+l 

4.2.4.2. The Silver-Meal approach 

Applying the idea of the Silver-Meal algorithm (Silver and Meal (1973)), we divide 

the expected costs of an action by the number of periods involved in this action and 

we choose that action for which the quotient is minimal. Unlike Silver and Meal we 

will not stop at the first minimum, but we consider the quotient for all possible 

actions .. The direct costs of action a are given by q~. However, this are not the only 

costs during the first a periods if a ~2. If we produce the required deliveries, say in 

period t+ 1 for two or more periods (a;::;2), it is reasonable to suppose that we will not 

produce during the next a-1 periods, i.e. in the periods t+2,t+3, .. ,t+a. This implies that 

the required deliveries for these periods that arrive during the periods t+l,t+2, .. ,t+a-1 

will be delivered too late, so we will have to pay penalty costs for these orders. 

Therefore we will not only consider the direct costs q~ of action a, but also the indirect 

costs. It would be difficult to calculate the indirect costs exactly, because in some 

situations we will not wait a periods before we produce again. However, the indirect 

costs can be estimated easily by the expected penalty costs during the first a periods, if 

we only produce in the first period and not in the a-1 following periods. Due to this 

estimation the indirect costs depend on a only and they will be described by the 

penalty functionp(a): 
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a k i-1 a k i-l 

p(a)=p!E L L LXji=P L L L"i-j= 
1<=2 i=2 j=l k=2 i=2 j=l 

a i-l 
=p L(a+l-i) L uj for a=2,3, .. ,N (4.2.7) 

i=2 j=l 

If we do not produce, we may have penalty costs, but then these costs are in the direct 

costs. If action 1 is taken there are no penalty costs until the next decision moment. 

p(a)=O for a=O,l (42.8) 

Using this penalty function, q~ for the direct costs and o(a) as a function that equals 1 

for a= 0 and 0 elsewhere, the production rule takes the following form: 

if we observe a state reR we take that action a for which 

q~ +p(a) 
a+ S(a) 

is minimal over aeA (r). 

4.2.4.3. The Wagner-Whitin approach 

(4.2.9) 

Wagner and Whitin (1958), developed an algorithm for a finite horizon production 

model where the demand for H periods is known completely and terminates at the 

horizon H. This algorithm guarantees that the best possible actions are taken during H 

periods. Compared with this deterministic scheduling problem with known demand 

and a fixed horizon, we have two extra problems: a part of the required deliveries for 

the next H periods are still unknown and we have a moving horizon, which implies 

that it might be profitable to produce orders with a due date after the horizon during 

one of the first H periods. Baker (1977), Carlson and Kropp (1980) and van Nunen 

and Wessels (1978) have studied the implementation of finite horizon models, such as 

the Wagner-Whitin algorithm, in a dynamic situation. In their methods, they solve a 

multi-period problem and implement the first period decision. This process is repeated 

every period, thus creating a so-called rolling schedule. 

Using the Wagner-Whitin algorithm on a rolling schedule base will generally not lead 

to an optimal schedule. The interesting result however is that the longest possible 

forecast horizon is not necessarily the best (Baker (1977)). Carlson and Kropp confirm 

this result, although many of their examples point towards a conclusion that more 

information leads to better results. Although in their problem description the gradually 



4.2.4.3. The Wagner-Whitin approach 43 

decreasing level of knowledge of the demand is not present, it seems likely that some 

characteristic elements of their results will also appear in our problem. Therefore we 

will consider different values for the horizon H. Another reason for this is that by 

choosing a horizon H which is smaller than N, the algorithm will be faster. In our 

version of the Wagner-Whitin approach, we shall use a branch-and-bound method and 

consider all possible action sequences al>a 2 , .. ,an during the firstHperiods (Hg{). We 

shall choose the first action of the action sequence with minimal projected costs to be 

taken this period. 

The two extra problems, the partly unknown demand and the moving horizon, will be 

approached in the following way. In our algorithm we do not consider the demand 

distribution, but we will replace the unknown future demands by their expected value, 

still assuming that we can not produced expected orders before their arrival date. The 

second problem is known as the effect of terminal conditions in the rolling schedule. 

Baker (1981) studies this problem in a special quadratic production-inventory model. 

In his solution the terminal conditions are based on the profile of states that occurs in a 

deterministic finite horizon model. Implemented in a situation with uncertain demand, 

this solution achieves a near-optimal performance. Although we do not have this 

quadratic production-inventory model, we will also consider terminal conditions. 

Therefore we assume some simple production rule to be used after the horizon to 

measure the effect of an action sequence on later periods. 

The production rule we will assume to be used after the horizon is a cyclic strategy 

which will be denoted by lt. This strategy is the equivalent of the Period Order 

Quantity lot-sizing technique proposed by Gorham (1968) in which the optimal 

production schedule in the case of constant demand requires a set-up every T periods. 

We also assume a set-up every T periods for our cyclic production rule 1t and of 

course, in periods in which we produce the required deliveries for the first T periods 

will be produced. The expected costs during one cycle are the costs of one set-up, 

holding costs for orders that are produced too early and penalty costs which are given 

by the penalty function in (4.2.7) and (4.2.8): p(T). Therefore, the average costs per 

period for this rule, written as g 11 , are given by: 

T-1 
s +h· I;iei+l +p(D 

i=l 
gx=----~~T------- (4.2.10) 

where Tis chosen over the values 1,2, .. ,N in such a way that it yields the minimum for 

g'l!. 
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In our Wagner-Whitin approach we want to find the action sequence (at.a 2, .. ,aH) with 

minimal costs. The costs of an action sequence consist of three parts: the direct costs 

in the first period, the expected costs in periods 2,3, .. ,H and the indirect costs: the 

effect of the action sequence on the costs in later periods. The effect of the production 

of orders with a due date after the horizon will be measured by determining the 

marginal costs for the expected order state at the end of the H-th period. Therefore we 

introduce a salvage function L(.), which can be compared with the function vn(r) in the 

optimal policy (cf. (4.2.4)). 

Let AH be the set of all the possible action sequences with H elements. Let z; be the 

projected order state vector during the i-th period for an action sequence Ae AH. 

Hence: 

-1 z1 = r = (r~or2 , .. ,rN) is the order state vector in the first period. 

-2 z; = Qa,_
1 

(z;_1) + (u 1, .. ,uN) i=2, .. ,H, is the projected order state vector during the 

i-th period (cf. (4.2.1)). 

Now the production rule takes the following form: given a state reR determine the 

action sequence AeAH for which: 

H 
l:.q~: +L(A) (4.2.11) 
i=l 

is minimal over the elements of AH. The first action of the optimal action sequence is 

taken for the first period. 

In this paragraph we will consider the indirect costs. Let Ae AH be a given action 

sequence. Then we denote by l(A)=max{i I a;>O) the last period in which we produced 

and by j(A)=max{ i +a; I i=l, .. ,H) the last period for which some orders have been 

produced, or H. We will define a salvage function L(A), which depends on A only by 

the values l(A) and j(A). If no orders have been produced with a due date after the 

horizon, that is if j(A)91., we assume that we will produce the first period after the 

horizon. For an action sequence A for which j(A)91. the value of the salvage function 

L(A) is chosen to be 0. 

If in an action sequence A some orders have been produced with a due date after the 

horizon, that is if j(A)>H, we assume that the next production will take place in the 

j(A)+l-th period and not in periodH +1, the first period after the horizon. The expected 

costs during the periods H + 1 until j(A) will consist of penalty costs only and using the 



42.43. The Wagner-Whitin approach 45 

penalty cost function defined in (4.2.7) and (4.2.8), the penalty costs are given by: 

C(A) = p (j (A}-l (A)+l)-p(H -l(A)+l). 

Comparing this with the cyclic strategy 1t in which we have costs Kx per period during 

j(A)-H periods, yields the value of the penalty function L(A). 

L(A) = C(A)-(j(A)-H)·glt 

L(A)=O 

ifj(A) >H (42.12) 

ifj(A) ~H (42.13) 

By using a branch-and-bound method it is not necessary to consider all the possible 

action sequences. The number of action sequences we have to consider will be limited 

in three ways: 

1) during the first period the action should belong to the action space A (r) of the 

order state vector r. 

2) we do not produce during periods for which a part of the required deliveries have 

already been produced; 

3) we remove action sequences in which we produced a smaller amount at higher 

costs than in one of the others. 

According to the first two restrictions, the following should hold for an action 

sequence a~oa2 , .. ,aHeAH: 

1) a 1 e A (r) is the action during the first period; 

2) a;=O ifmaxU +aj]>i, which implies that we do not produce during the i-th 
]<I 

period because some of the orders with this due date period have already been 

produced; 

3) a;e{O,l, .. ,N} otherwise. 

With these restrictions, we can easily determine the best action sequence Ae AH, which 

gives the minimal projected costs in (4.2.11). 
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4.2.4.4. The {x,T)-rule 

By examing the optimal policy closely in some examples, we observed the following 

two properties. Firstly, the decision whether a production takes place or not, depends 

almost exclusively on the number of orders for the first period (r 1) and not on the 

required deliveries for later periods. Secondly, for a given demand distribution, the 

number of periods for which the orders are produced is nearly always the same. An 

example may illustrate these properties. 

Consider a situation with a maximum lead time of 4 periods, penalty costs p=3, 

holding costs h=l, set-up costs s=6.5 and a binary demand per period: 

d; 1 = l-d10 =0.5 for i=l,2,3,4. The number of possible order states is limited in this 

example and therefore we can determine the optimal policy. The resulting optimal 

policy has the following features: 

1) Wedoneverproduceifr 1 Sl. 

2) The optimal action if r1 ~2 is always a=2, produce the required deliveries for the 

first two periods, except for the order states (2,3,0,0), (2,3,0,1), (2,3,1,0) and 

(2,3,1,1). In these four states we do not produce. The probability of finding the 

demand in one of these states is quite small. 

Also in other examples, we observed the same two properties. These two elements 

seem to be very important if we want to look for a production rule which is simple, 

but close to optimal. Therefore, we shall propose the following approach. If the 

number of orders required for the first period or one of the earlier periods, r1 is 

smaller than a decision variable x, then we do not produce during that period. If r 1 is 

equal to or larger than x, then we will produce during that period and we produce all 

orders with a residual lead time of T periods or less, where T is also a decision 

variable. Decisions on the production are made at the end of every period, so 

production may take place less than T periods after the previous one. This rule will be 

called the (x,7)-rule. 

In the unconstrained capacity situation it is rather easy to determine the average costs 

for given values of x and T. The optimal values for x and T can be found by computing 

the average costs per period for several values of x and T. First we will show how this 

calculation is done. Afterwards two properties will be given, which can help us 

determine the optimal values of x and T. 
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In order to compute the average cost per period, g (x,T), for any pair (x,T), we consider 

the order state during one production cycle. The decision whether to produce or not 

depends exclusively on r 1• This means that there are regeneration points in the 

stochastic process that represents the order state. These regeneration points can be 

found at the end of a period in which the required deliveries for the first T periods 

have been produced. The probabilities for each of the different order state vectors are 

the same in every regeneration point. Therefore we can determine the average costs by 

considering the order state during the periods between two regeneration points. 

The state description r=(r 1,r2 , ••• ,rN) provides all necessary information about the 

order state, but it is not suited for the analysis of situations in which the number of 

possible order state vectors is large. Defining a state simply by (r 1) is sufficient for the 

decision, but it does not provide the necessary information about the transition 

probabilities. The changes in the r 1 value depend on the time past since the last 

production. Suppose that we have produced the orders with a due date of t+3 or earlier 

during period t. Then the probabilities for the r 1 value at the end of period t are given 

by the distribution for the stochastic variable X1,t+l· If the r 1 value at the end of period 

t is smaller than the decision variable x, then the following period the value of two 

stochastic variables, X1,1+2 and X1+t,1+2, will be added to the r 1 value. If at the end of 

period t+l the r 1 value is still smaller than x, then the following period the value of 

three stochastic variables, X1,t+3• X1+t,t+3 and Xr+2,t+3• will be added. If at the end of 

period t+2 or one of the later periods the r 1 value is still smaller than x, then the value 

of N stochastic variables will be added. The probability that the sum of the k stochastic 

variables, which value is added to the r 1 value, is equal to l, is given by b~c, 1 which we 

have defined in Subsection 4.2.4.1. From this discussion we can conclude that a state 

description (time since last production ,r1) provides all necessary information for the 

analysis of this rule. 

If we use this state description, the number of possible states may be infinite, if there 

is a probability that there are no orders during a period, or if the demand can be 

infinitely large. However, both the decision and the costs of the decision are the same 

for ri =x and for 'I >x. Furthermore, both the costs of an action and the transition 

probabilities for the component 'I are the same for all periods, except the T-1 first 

periods. Therefore we can limit the state space: for the ri-component to the values 

(O,l, .. ,x} and for the time-component to the values {1,2, .. ,T-l} or {1} ifT=l. 
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In order to detennine the average costs per period, we consider the finite state 

recurrent Markov chain, with the states (time,r 1) described above. In this chain we 

have the following transition probabilities. 

P{ (i,x)-+ (l,k)} =b1,k i=1,2, .. ,T-1; k=0,1,..,x-1 

{ } 

.x-1 
P (i,x)-+ (l,x) = 1- I: bu 

k=O 
i=1,2, .. ,T-1 

p{ (i-l,j)-+ (i,k)} = bi,k-j i=2, .. ,T-1; k=j, .. ,x-1 

{ } 

.x-1-j 
P (i-l,j)-+ (i,x) = 1- k~ bi,k i=2, .. ,T-1; j=O, .. ,x-1 

P{ (T-l,j)-+ (T-l,k)} =bN,k-j k=j, .. ,x-1 

{ } 

.x-1-j 
P (T-l,j)-+(T-l,x) =1- k~ bN,k j=O, .. ,x-1 

In Figure 4.2. an illustration of the Markov chain is given. 

Figure 42 The states of the Markov chain for the (x,T)-rule, (T2::1). 

In order to detennine the average costs per period, we have to detennine the expected 

costs c;1 in every possible state (i,j). In most of the states, the only costs are penalty 

costs and these costs depend on the j-value of the state (i,j): 

()S;j<x., 1~i~T-1 (4.2.14) 

In the states (i,x), in which we produce, we have set-up costs and usually also holding 
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costs. The holding costs are paid immediately to avoid a complicated state space. The 

expected holding costs depend on the i-value of the state (i,x), that is on the time past 

since the last production period, with a maximum of T -1. Obviously, at least for T > 2, 

if we have just produced in the previous period, the expected number of orders for the 

future periods will not be as high as they would be after T -1 periods, because some of 

the orders for these periods have already been produced. Thus we can write the 

expected costs in state (i,x) as: 

T-1 T-i-l 

cix=s+h "£jei+l -h "£ j ei+i+l 
j=l j=l 

T-1 
=s+h "£ei+l min(i,j) 

j=l 

Hi§-1 (4.2.15) 

Let q;1 be the expected number of visits to the state (i,j) during one production cycle. 

We can stay in the states (T -I,O),(T -1,1), .. , (T -1,x-l) longer than one period. In all 

other states we can stay only on period. Therefore the expected number of visits to 

these states is the same as the steady-state probability to visit this state during one 

production cycle. Due to this definition of %• the sum of the expected number of visits 

to all states, is the expected time between two production periods. Hence: 

T-1 X 

T(x,T)= "£ "£q;i 
i=lj=O 

(4.2.16) 

Because of the special structure of the Markov chain we can determine the values for 

q,1 very easily. In the first period after a production period, we are either in state (l,x) 

or in one of the states (l,j): 

x-1 
qlx = 1 "£bu (4.2.18) 

k=O 

From state (i-l,k) we move to state (i,j) with probability bi,j-k: 

j 

Qij = "£q;-u b;,j-t. 
k=O 

0:5.j<x,2:5.i§-2 (4.2.19) 

We move to state (i,x) if the number of orders was less than x in period i -I and at least 

x in period i: 

2:5.i§-2 (4.2.20) 
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State (T-l,j) is a state which we can visit during period T-1, but also in later periods. 

We can enter this state both from a state (T-2,k) as well as from a state (T-l,k) and 

furthermore, we can also stay in the same state with probability bN,O• the probability 

that during the N previous periods no deliveries have been ordered with this specific 

due date. 

j j 

qT-Ij l:.qT-2/c ~-IJ-Ir:+ LqT-Ik bN,j-/r: fY.;.j<.x (42.21) 
k=O .1:=0 

During one 'cycle' there will be exactly one production period, so if we do not 

produce during the first T -2 periods, we will do it in one of the later periods. 

T-2 
qT-lx l-Lqix 

i=t 
(4.2.22) 

By the formulae (4.2.17)-(4.2.22) the values of% are determined. Now the expected 

costs between two production periods are given by: 

T-1 X 

c (x,T) = L LqijCij 
i•lj=O 

The average costs of the production rule for this pair (x,T) are now given by: 

g(x,T)= T(x,T) 

(4.2.23) 

(4.2.24) 

To determine the optimal pair (x,T), it is not necessary to determine the value of 

g(x,T) for all possible pairs (x,T). We can limit the number of pairs we have to 

consider, making use of the following two properties: 

Property 4.1 : for a given value of T the optimal value of x satisfies: 

xs[ g(;T)j +1. (4.2.25) 

Property 4.2 : for a given value of x and an arbitrary upper bound g • for the average 

costs g(x,n, the optimal value of Tisless than or equal to kif fork the following 

holds: 

.r-1 
z:.qJci(g • -c.~:)>(k-l)e~c 

j=O 
(4.2.26) 

Here ck is the average cost in the k-th period after the last production period. Now we 

will give the proofs of the properties. 
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Proof property 4.1 : We want to show that if y does not satisfy (4.2.25) for a given T, 

(y,T) cannot be optimal. The expected costs between two production periods in the 

(y-l,T)-rule, C(y-l,T), are less than C(y,T), because in the (y-l,T)-rule the penalty 

costs are less than in the (y,T)-rule and maybe the holding costs are also less, because 

in the (y-l,T)-rule we can produce earlier. Expressed in the q;/s associated with the 

pair (y,T) we have 

and 

T-1 T-2 T-1 
C(y-l,T)=C(y,T)-p ,:E(y-l)q;y-l -h ,:Eq;y-t( :E e;+tJ 

i=l i=l j=i+l 

T-1 
T(y-l,T) =T(y,T)- ,:Eqiy-l 

i=1 

If p (y-l)>g(y,T), that is y does not satisfy (4.2.25), we have that 

T-1 
C(y,T)-p ,:E(y-l)q;y_1 

(y-l T)= C(Y-l,T) < i=l 
g • T(y-l,T)- T-1 

T(y,T)- L qiy-1 
i=l 

T-1 
T(y,T)C(y,T)-C(y,T) ,:Eq;y-1 

i•l 
<----------~T~-~~-----

T(y,T)(T(y,T)- ,:Eqiy-1) 
i=l 

C(y,T) (y T) 
= T(y,T) =g • 

(4.2.27) 

(4.2.28) 

We see that if y does not satisfy (4.2.25), y-1 yields lower average costs. Therefore y 

can only be optimal if it satisfies ( 4.2.25). 0 

Note: A result that follows immediately from Property 4.1. is the following. Let 

g(y,T) be the average costs of the (x,T)-rule for an arbitrary pair (y,T). Since for the 

optimal value x the average costs g(x,T) will be smaller than or equal to g(y,T), we 

also have that the optimal value x satisfies: 

x~[ g(;T)] ~[ g~T)J (4.2.29) 

This result can be used to determine the optimal x value. 
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Note: For TSZ we also have that if (y-l)p<g(y,T) then 

T-1 
C(y,T)-p L(y-l) qiy-1 

i=1 
g(y-1,T)= T-1 

T(y,T)- Lqiy-1 
i=1 

T-1 
C(y,D(T(y,T)- Lq;y-t) 

i=l 
> T-1 

T(y,T)(T(y,T)- Lqiy-1) 
i=l 

g<Y.n 

This implies that for TSZ the optimal value of x satisfies: 

X= [ g(:T)J +1. 

(4.2.30) 

(4.2.31) 

Proof property 4.2: Let q;j(K) be the %-value based on the (x,K)-rule and let Pu(K) 

be the probability that between two production periods the state (i,j) is visited, if we 

do not limit the state space in the time-direction. For these Pij(K) we thus allow i';d<.. 

Then 

K X X 

b ==T(x,K+l)-T(x,K)= I: Lq;j(K)-l:;qK-tj(K-1) 

x-1 x-1 

i=K -1j=O j=O 

x-1 
<LPKi(K) 

j={) 

because LPii(K -1)> LPi+tj(K) for all i';d<.. 
j=O j=O 

x-1 x-1 

(4.2.32) 

(4.2.33) 

Let cx=(pLiPx;(K)) <LPx;(K)r1 be the expected costs in the K-th period after 
i={) i=O 

production. Then in periods later than K -l, if we still do not produce, the expected 

costs per period will be higher than cK. Therefore: 

C (x,K + 1 )>C (x,K)+Kex +1 +bCK. (4.2.34) 

Then 

C(x,K+l) C(x,K)+KeK+I +bCx 
g(x,K+l)= T(x,K+l) > T(x,K)+b (4.2.35} 

Now, if g * is an arbitrary upper bound for minimal average costs of the optimal 

(x.T)-rule, for instance the average costs of the (x,T)-rule for another pair, then we 

have 



42.4.4. The (x,T)-rule 

then 

and thus 

Therefore 

KeK+l 
b<---. -g -CK 

C(x,K)+bg* 
g(x,K+l)> T(x,K)+b 

Now there are two possibilities: 

1) g (x,K)'?.g •, resulting in: 

( K+l) g*(T(x,K)+b) = • 
g X, > T(x,K)+b g 

2) g (x,K)<g •, resulting in: 

( K+l) C(x,K)(T(x,K)+b) = C(x,K) = (xK) 
g x, > T(x,K)+b T(x,K) g ' 

and clearly the pair (x,K +1) cannot be optimal. 
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(4.2.36) 

(4.2.37) 

(4.2.38) 

(4.2.39) 

(4.2.40) 

(4.2.41) 

D 

Now, to find the optimal pair Q;, T), we can start for instance with g • =s and with 

x=[ !._] + 1. Starting with k = 1, we determine the first k-value for which (4.2.26) holds. 
p 

Then we set T=k and we determine g(x,T) for this pair using (4.2.24) and we set 

g • = g (x,T). For this T value we determine the optimal x value. Therefore we use 

( 4.2.29) and we choose x = [ L ]+ 1. If this is a new x value, then we determine g Q:, T), 
p 

set g • = g (x, T) and we choose the next x-value. If the x value is not changed by the 

new choice, then we decrease the x value by one and determine g (x, T). This is 

repeated until a further decrease yields a higher g (x, T) value. Now we have 

determined the best x value for the first choice ofT. 

Let g* be the minimal value of g(x,T), that is determined until now. For the x value 

associated with this minimal value we will now determine the optimal T value. We 

can start with k = T and decrease k until (4.2.26) no longer holds. Then we give T the 

minimal value of k for which (4.2.26) holds. We determine g(x,T) and decrease Tuntil 
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a further decrease yields a higher g(x,T) value. Now we have determined the best T 

value for the second choice of x. If the new T value is different from the first T value, 

we determine a new best x value in the same way as the best x value for the first choice 

of T. If this yields another x value, we continue with determining the new best T value. 

This procedure is repeated until a further decrease of x or T yields higher costs. 

Determining the average costs for a new pair (x,T) is usually quite simple, since most 

of the q1rvalues are not affected by decreasing one of the two components, x or T, by 

one unit. 

An alternative starting pair (x, n can be found by considering the cyclic production 

rule 1t. Using (4.2.10) we determine T and Cn· Then the starting value for x will be 

[g n J p] + 1 and the starting value for T will be the same value as the T-value found in 

(4.2.10). The ultimate optimal value of x will be smaller than or equal to this starting 

value, assuming that for the optimal pair we have average costs g(x,T)!;grt, but the 

optimal value of T can also be larger than the starting value. This can be checked by 

using (4.2.26). 

4.2.5. Numerical results 

The average costs of the optimal policy can be detertnined by means of dynamic 

programming. The average costs of the Wagner-Whitin approach and the average 

costs of the Silver-Meal approach can be determined by calculating the probabilities 

for all possible orders state vector. Just as the computation of the average costs of the 

optimal policy, this may take a lot of computational efforts, because the state space 

will usually be very large (see Dellaert (1986)). Sometimes we can obtain a 

considerable reduction of the computational efforts if some of the components of the 

order state vector can be ignored. This tnay occur in the Wagner-Whitin approach, 

but it is more likely to happen in the Silver-Meal approach, if we always produce only 

orders with a residual lead time that is smaller than N. Despite this reduction, for 

problems of a normal size the computation will still be rather difficult. The average 

costs of the optimal (x.D-rule can be determined with very little effort, especially if 

we use the properties 4.1 and 4.2. 

In order to study the performance of each of the rules, we will determine the average 

costs for some examples. The size of the examples is small, so we can compute the 

costs of each production rule. We will consider the following rules: 
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OPT, the optimal policy; 

SM, the Silver-Meal-like production rule; 

WW(H), the Wagner-Whitin-like production rule with H periods; 

XT, the optimal (x,n-rule; 

CYC, a cyclic production rule, in which we produce every T periods if there is 

any demand for the first T periods. 

We have considered two sets of simple examples. In the first set we have a maximum 

lead time N=4i, penalty costs p=3, holding costs h=l and a binary demand 

dil=l-diO=d for i=1, .. ,4. For some different values of d and s we have the following 

results: 

d-value 0.25 0.25 0.50 0.50 0.75 0.75 

s-value 3.25 8.00 6.50 16.00 9.75 24.00 

rule average costs per period 

OPT 1.8895 3.7147 4.5357 8.1705 7.0425 12.6002 

SM 1.9002 3.7173 4.5392 8.1793 7.0445 12.6054 

WW(1) 1.8954 3.7830 4.5384 8.2135 7.0432 12.6054 

WW(2) 1.8940 3.7770 4.5384 8.1910 7.0432 12.6020 

WW(3) 1.9002 3.7815 4.5438 8.1861 7.0425 12.6020 

WW(4) 1.9002 3.7815 4.5438 8.2002 7.0425 12.6020 

XT 1.9074 3.7326 4.5392 8.1965 7.0451 12.6125 

CYC 2.2123 4.1655 4.7373 8.4987 7.1249 12.7500 

Table 4.1 The average costs of the rules in the first set of examples. 

In the second set of examples we have a maximum lead time N = 2, penalty costs p = 3, 

holding costs h = 1 and a Poisson-distributed demand with parameter 1 for both lead 

times. For three different values of the set-up costs s the results are given in Table 4.2. 

From these examples one might get the impression that the SM-rule is always better 

than the optimal (x,n-rule. This however, is not the case: if in the second set of 

examples we take a Poisson-distributed demand with parameter 1.01 and set-up costs 

s=9 then the average costs of the SM-rule are 5.9308, whereas the average costs of the 
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s-value 7 8 9 

rule average costs per period 

OPT 4.8498 5.3335 5.8113 

SM 4.8537 5.3365 5.8261 

WW(l) 4.8574 5.3335 5.8258 

WW(2) 4.8574 5.3335 5.8258 

XT 4.8767 5.3807 5.8847 

CYC 5.4359 5.9267 6.4176 

Table 4.2 The average costs of the rules in the second set of examples. 

optimal (x,n-rule are 5.9082. 

4.2.5.1. Conclusions 

The examples showed us that the heuristic rules perform very well, especially 

compared with the fixed production cycle rule. The difference in average costs 

between the heuristics and the optimal policy is always less than a few percent. It 

might be interesting to see how the differences between the optimal policy and the 

heuristics arise. Observations of the examples that have been described, learned us the 

following elements: 

1) in the SM-rule we produce less often than in the optimal policy: we delay 

production too long and if we produce, we produce too much; 

2) the (x,n-rute contains the same elements as the SM-rule, but usually even 

stronger; 

3) in the WW-rule we delay production too long and if we produce, we produce less 

than the optimal amount. 

4) in the cyclic rule we produce too often; even in the situation in which r 1 equals 0. 

Now which of the heuristic approaches must be preferred in more practical or in more 

complex situations? The Wagner-Whitin algorithm as it is used for the deterministic 

situation suffers already from a lack of acceptance, merely because of its complexity. 
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The WW-rule we have considered is even more complex, so this will never be the 

ideal approach. The decision rules for SM are not complex at all and its performance 

is usually slightly better than the best (x,T)-rule. The disadvantage of the SM-rule is 

that we are usually unable to compute the average costs of this production rule. This 

makes it less useful for situations in which we have to take decisions about long-term 

agreements with clients or other problems in which we are interested in the average 

costs. In those situations one would need simulation to get a reasonable insight into 

the average costs. 

The (x,7)-rule however, offers a very simple decision rule with known average costs. 

Especially if we want to analyse or change a situation, the (x,T)-rule must be 

preferred. As a basis for a production rule in a more complex situation the SM-rule 

and (x,7)-rule can both be useful, as we will see later on. The use of the WW-rule in 

more complex situations will be restricted to an extended version of the WW(l)-rule. 

In Dellaert (1987) some examples of the use of the (x,T)-rule for making agreements 

with clients are given. In that paper we also present simple rules for the uncapacitated 

situation to improve the (x,7)-rule until it is nearly optimal and a method to estimate 

the average costs of the SM-rule. 

4.2.6. Orders with different priorities 

4.2.6.1. Introduction 

Until now, we have assumed that all orders were of equal importance. In a practical 

situation, this is not always the case. Some clients may find a shorter lead time more 

important than others and therefore willing to pay a higher price. Other clients may be 

content with a longer lead time, but nevertheless they will not allow orders to be 

delivered too late. Obviously, orders for which different prices have to be paid, will be 

treated differently. In Chapter 6 orders with different priorities will have different 

average delivery times and in Chapter 7 the proposed lead times will be different. In 

this subsection we will consider a simple way for the different treatments. Orders with 

different priorities will have different penalty costs, but equal holding costs. If the 

holding costs are proportional to the penalty costs, for the different priorities, we can 

simply replace an order with a high priority by a number of orders of the lowest 

priority. In this proportional costs situation, no changes would be necessary in the 
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production rules described so far. In this subsection we will assume that the holding 

costs are not proportional to the penalty costs. We will observe that the Silver-Meal 

approach and the (x.D-rule can easily be adapted to this kind of situation. 

4.2.6.2. Model 

In Chapter 2, we have listed a number of different elements of the penalty costs. Part 

of these costs can be considered to be real costs, but another, often much larger part, 

consists of speculative elements or simply represent management policies. Therefore 

it will be no problem to choose the penalty costs for orders with different priorities as 

an integer number multiplied by p. For example, in a certain situation for some of the 

orders the penalty costs will be p, for some other orders 2p and for another category of 

orders 3p or 4p. In the production rules which we have considered until now, we base 

the decisions upon the state vector r={r 1,..,rN}. If we distinguish orders with for 

instance three different priorities, a possible state description is given by denoting the 

number of orders of priority j with a residual lead time of i periods by r;i· This would 

imply that the state vector contains 3N components and this will soon lead to an 

immense state space. 

Due to the increased state space, the use of the Wagner-Whitin approach and the use 

of the optimal policy will become much more complex, because in these production 

rules we have to consider the order state during a number of periods. In the Silver

Meal approach and in the (x,D-rule we only consider the action for the first period. In 

order to determine the penalty costs, if we do not produce during this first period, we 

have to know the sum of the r 1 values for the different priorities weighted with the 

penalty costs per order. In case of a set-up, the holding costs do not depend on the 

number of orders for each type separately. Therefore, for the decisions in both the 

Silver-Meal approach and in the (x.D-rule, we can consider the aggregated order state 

vector, where the first component is the weighted sum of the orders for the different 

priorities and the other components simply are the sum of the orders for the different 

priorities with a certain residual lead time. 

The weighting of the orders that contribute to the first component of the aggregated 

order state vector can be done in the following way. We define the penalty points of an 

order as the penalty costs for that order divided by p, so the penalty points may be 

1 ,2,3 etc. Now we define r; as the sum of the penalty points of those orders that have 
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to be produced by the end of the period or in previous periods. The other elements of 

the order state vector, r;, .. ,r~, are defined as the sum of the number of orders with a 

particular residual lead time. For instance, r; is the sum over all priorities of the 

number of orders with a residual lead time of 2 periods. The description of the 

transition probabilities for this order state vector r' will be slightly more complex, but 

on the other hand, there is a large state space reduction. 

The new state vector r' does not provide the necessary information for a good use of 

the optimal policy and for the Wagner-Whitin approach. For these rules it is indeed 

necessary to know the order state vector for each of the different priorities separately. 

The (x,T)-rule and the Silver-Meal approach can be used straightforwardly in this 

situation. Of course the fixed cycle production rule 1t (cf. (4.2.10)) can also be used 

without any complications. The use of these rules is now exactly the same as 

described in 4.2.4.2. and 4.2.4.4. 

4.3. A fluctuating demand rate 

4.3.1. Introduction 

In the previous section, we assumed that orders that are delivered too late had no 

influence upon future demand. The effect of unsatisfied clients was expressed in the 

penalty costs p, but not in the demand. This way of modelling unsatisfied clients is 

very common, and it can be found in many production-inventory models. 

Nevertheless, in a practical situation orders that are delivered too late may have an 

influence upon the future demand. In this subsection, we consider a situation in which 

there is a finite population of clients. The number of clients in the population is 

subject to changes due to the lateness of some of the orders and also to other changes 

which have nothing to do with the lateness. We will assume that we have fixed lead 

times, so we do not need a rule for the lead times. The main element of interest to us 

is to see whether or not it should be allowed to replace a situation with a fluctuating 

number of clients by a stationary demand distribution and to estimate the loss of 

orders due to unsatisfied clients by means of penalty costs. There are two important 

reasons for our interest in this replacement: we are interested in the behaviour of the 

(x,T)-rule and the SM- rule in a situation in which the demand distribution is not 

completely known and we are interested in the error in the results of the analysis of 
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the (x,1)-rule in such a situation. 

4.3.2. Model 

The situation in which the population of clients is subject to different kinds of 

changes, as described above, is modelled in the following way: 

- clients can leave the population, independent of the lateness of the orders, according 

to a stochastic process where the number of clients, in other words the size of the 

population, is one of the parameters. 

- clients can leave the population, depending on the lateness of the orders, according 

to a stochastic process where the number of late orders is one of the parameters. 

- new clients can join to the population according to a stochastic process that is 

independent of the size of the population and of the number of late orders. 

Let N(t) be the population size at the beginning of period t, D(t) the decrease in the 

population size during period t, which is independent of the lateness of the orders, L(t) 

the lateness-dependent decrease in the population size and /(t) the number of new 

clients during period t. The stochastic processes are independent of each other, except 

that in every period the total decrease cannot exceed the number of clients in the 

population. Therefore the population size in period t+ 1 cannot be less than the number 

of new clients during period t. Hence the number of clients in the population can be 

described by the following formula 

N(t+l)=max(N(t)-D (t)-L(t)+l(t),l(t)), (4.3.1) 

For a firm, the population size is not that important. Much more important is the 

resulting demand by these clients. In our model, all clients have the same properties 

with respect to leaving, arriving as a new client and with respect to the demand they 

order. This implies that the distribution of the demand for a certain period, having n 

clients is then-fold convolution of the distribution of the demand with 1 client. We 

will assume that every client can order products in every period for each of the N 

possible lead times. 

For a given distribution of the demand with 1 client and given distributions for the 

stochastic processes D(t), L(t) and /(t), we have to determine the action as a function 

of the population size N(t). The object should be the maximisation of the profit. The 
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profit is given by the revenues of the orders minus the costs for set-ups and the 

holding costs. We do not have penalty costs in this situation, since the costs of 

lateness are now expressed in the demand and the number of clients. 

In order to determine the best actions in every situation we will consider the two 

heuristics we preferred in Section 4.2.: the Silver-Meal-like production rule and the 

(x,D-rule. The use of the optimal policy becomes much more complicated than in the 

previous section, because of the introduction of a more complicated state which has to 

include the population size and therefore more complicated transition probabilities, all 

together leading to a production rule which can hardly be of practical use. In the 

heuristics, the penalty costs again are a basic element. The penalty costs are now 

defined as the expected volume of missed revenues as a result of departed customers if 

an order is delivered one period too late. If the revenues and the stochastic processes 

which govern the decrease and increase of the population size are known, the penalty 

costs can be estimated in a simple way and the heuristics can be used in the same way 

as in Section 4.2. We will explain this by studying an example. 

4.3.3. Example of lateness-dependent demand 

Suppose that the probability that an arbitrary client leaves at the end of a period, 

independent of the lateness of any of his orders, equals a. Suppose that any late order 

leads to a departure of one of the remaining clients with probability ~· The reason for 

this second assumption is that it simplifies the analysis without having a large effect 

upon the results. We assume that all demand ordered will also be delivered, 

independent of a possible departure of the client. New clients will arrive according to 

a Poisson process, with intensity A. per period, independent of any of the other 

stochastic processes. Writing E(t) as the number of late orders during period t, we 

have the following formulae forD (t), L (t) and I (t): 

P{D(t)=n}=[ N~t)] an(l-af<t)-n, n=O,l, .. ,N(t) (4.3.2) 

P{L(t)=n}=[ E~t)] ~n(l-~)E(trn, n=O,l, .. ,E(t) (4.3.3) 

A.n 
P{l(t)=n}=-

1 
e-i.. 

n. 
n eN (4.3.4) 
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From (4.3.2) we can learn that an arbitrary client will stay on average a-1 periods if 

lateness does not occur. The process of leaving is memoryless, for geometrical, 

implying that if a client decides to stay for one more period, the expected time of his 

stay is again a-1 periods. If however, an order is delivered one period too late, then the 

expected staying time for one of the clients will decrease to ...!.=fi, leading to a loss of 
a 

revenues during 1!. periods. The penalty costs p, used in the heuristics, will be 
a 

determined according to this loss. 

Suppose that in the situation in which there is exactly one client, the probability that 

during an arbitrary period t the demand for period t+i equals j is given by d;1, 

i=1,2, .. ,N. The expected demand for each of the periods t+i is given by 

U;=l:,kdilc 
k=l 

and the average amount ordered per period per client is given by 

N u= L,u; 
i=! 

i=l,2, .. ,N (43.5) 

(4.3.6) 

If the revenues per ordered item are given by w, then the expected revenues per period 

per client are wit. The penalty costs p, being the expected loss of revenues for one late 

order during one period, are then given by w!Ju . This enables us to describe the 
a. 

penalty function p(a), which can be used in the Silver-Meal approach. This function 

has been defined in (4.2.7) and (4.2.8). For a situation with n clients we have: 

,.,R.~ a i-l 
p(a) ~l:,(a+1-i)l:,nu1 

a i=2 J=l 
for a=2,3, .. ,N (4.3.7) 

p(a)=O for a=O,l (4.3.8) 

4.3.4. Numerical results 

Now that we have found alternative values for the penalty costs and the penalty 

function, we can use the heuristics from the previous section again. In this subsection 

we will demonstrate the use of the Silver-Meal approach and of the (x,n-ruie and 

compare the results of these rules with a fixed cycle rule. Therefore we will do a 

simulation for two examples, in which we assume that the population size is known at 
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the end of every period. For these two examples we will also consider the (x, 1)-rule 

and the SM-rule in combination with the assumption that the population size is not 

known at the end of a period. In this situation with incomplete information, we 

assume that the long-term average population size is known. Furthermore we will 

compare the results with two different ways of analysis: the analysis of the (x.n-ruie 

with the incomplete information about the population size and the analysis of the 

(x,T)-rule with the exact knowledge of the population size. The computation time of 

the analysis of the (x,T)-rule with the exact knowledge, depends on the maximum 

number of clients in the population and on the penalty costs. If the penalty costs are 

large enough the decision variable x in the (x,T)-rule will be rather small. First we will 

describe the use of both heuristics in the situation with a fluctuating population size. 

The Silver-Meal approach can be used in the same way as described in 4.2.4.2., that 

is: if we observe a order state vector reR, we take that action a for which 

q~ +p(a) 
a+ 

(4.3.9) 

is minimal over aeA (r). Notice that in (4.3.9) the penalty function p (a) is the only 

element that depends on the population size. In the simulation of the Silver-Meal 

approach with the incomplete information, we will replace the element N(t) in the 

penalty function by a constant N. 

The (x,T)-rule in itself is not much different from the one described in 4.2.4.4. Now 

for every number of clients n, the probabilities for the demand, bij(n) are different and 

therefore the optimal set of (x(n),T(n)) has to be determined for every possible value 

of nand then stored. The use of the (x,n-rule .becomes very simple: for a given value 

of n we have to check whether the number of orders that would be too late, if we do 

not produce during the period, is at least equal to x(n) and if so, we will produce all 

the required deliveries for the first T (n) periods. 

Using the method described in (4.2.17)-(4.2.22) for certain values of nand (x(n),T(n)), 

we can determine the expected number of visits q;; during one production cycle to 

each of the states (i,j). By dividing these values% by T(x(n),T(n)), the average length 

of one production cycle, we obtain the probabilities Pii to be in state (i,j), 

l~i~T-l,lli;;jSx. From these probabilities we can determine the probability that the 

number of late orders during an arbitrary period t, in which we have n clients, equals j: 

T-1 
P{E(t)=k} = LPik 

i=l 
k=l , .. ,x-1 (4.3.10) 
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These probabilities for E(t) and the probabilities for a normal departure and for 

joining the population can be used to detennine the distribution of N(t), the population 

size in an arbitrary period. In the (x,T) analysis we will detennine this distribution and 

also the average costs and revenues per period. This analysis can only be performed 

under the assumption that the number of late orders in subsequent periods is 

independent. We will also perform the analysis of an (x, 1)-rule in which the 

population size is fixed. In Table 4.3. this analysis is denoted by the term 'inc. (;x,T)

analysis', where inc. stands for incomplete information, or in other words, we do not 

use the exact information about the population size to detennine the action. 

In Table 4.3. we will also give the simulation results for the (x,1)-rule and the Silver

Meal approach, once with the decisions based on the real population size and once 

with the decisions based on the average population size. The simulation of the 

production rules with the decisions based on the average population size will be 

denoted by 'inc. (x,T) simulation' and 'inc. SM simulation' respectively. We will also 

perform a simulation with the cyclic strategy n:, in which we produce every Tperiods. 

In Table 4.3. we will give the results for two examples. In both examples we have 

used a normal departure probability (X;:::().Ol, a departure probability for a late onler 

j3=0.20, a maximum lead time N of 4 periods, set-up costs 50, holding costs 1 per unit 

per period and revenues of 10 per item ordered. In both examples the demand per 

client per lead time is Poisson distributed. In Example 1, the demand rates are ui=O.Ol 

for the lead times i=l, .. ,4 and in Example 2 the demand rates are u;=O.Ol for the lead 

times i=l,2,3 and u4=0.02 for a lead time of 4 periods. These demand rates result in 

penalty costs p = 8 in Example 1 and p = 10 in Example 2. The values for the average 

population size have been chosen according to results of the simulation of the two 

production rules with the exact knowledge of the population size, which has yielded 

an average N of 82 in Example 1 and 87.5 in Example 2. In both examples, the fixed 

cycle production rule implied that we produce every three periods. 

From Table 4.3. we can learn that the difference between the analysis and the 

simulation of the rules with the complete information, which is partly due to the 

assumption ofindependentE(t)'s and partly due to the inaccuracy of the simulation, is 

very small. In the analysis of the (x,1)-rule with incomplete information the average 

costs per period and the profit are quite near to the values found for the rules with the 

complete information. This implies that some lack of information, or some wrong 
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rule N(t)-average costs profit 

(x, T)-analysis 82.60 87.53 19.00 23.07 14.04 20.70 

(x, T)-simulation 82.19 87.82 18.93 23.31 13.94 20.61 

SM-simulation 82.10 87.53 18.86 23.11 13.98 20.66 

inc. (x,T)-analysis 82.00 87.50 18.86 23.59 13.94 20.16 

inc. (x,T)-simulation 82.38 87.58 19.03 23.18 13.93 20.62 

inc. SM-simulation 82.44 88.53 19.02 23.73 13.96 20.54 

fixed cycle 78.72 79.56 18.50 19.31 12.99 20.47 

Table 4.3 Results with left Example 1 and right Example 2 

information about the demand will not be very harmful for the results of the analysis 

of the (x, 7)-rule. The same holds for the use of the (x, 7)-rule and also for the use of the 

Silver-Meal approach. For both examples the difference between the rules with a full 

knowledge of the population size and the rules with incomplete information are very 

small and for example, much smaller than the difference between the rules and the 

fixed cycle production rule. We can also see that the profit in the fixed cycle 

production rule is less than the profit in the other rules. 

4.4. A decision rule for lead times 

4.4.1. Introduction 

Clients can react upon the accuracy of the due dates, but also upon the length of the 

promised lead times. If an order is delivered too late, the client can withdraw the order 

or stop ordering for some time. Usually the order will not be withdrawn and thus the 

reaction of the clients towards the accuracy of the due dates can be considered as a 

long-term process. The reaction of a client upon the length of the promised lead time 

can be much more direct. If a client is not content with the lead time he can address 

another company, where he may obtain the required lead time. In this section we will 

consider firm-initiated lead times. The lead times for orders are determined at the end 

of a period, followed by a decision about the production, where all the orders that 
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arrived during a period obtain the same lead time. We assume that all orders have the 

same priority. The firm-initiated lead time depends on the number of previous orders 

which have not been produced, and on the residual lead times of these orders and also 

on the number of new orders placed during the period. Some of the clients may not be 

content with the proposed lead time and therefore they may withdraw the order. In this 

situation, we want to maximise the profit by generating the best lead times. 

4.4.2. The model 

The firm offers lead times from 1 period up to N periods. The probability that a client 

accepts a certain lead time k, is denoted by At. l5,kg{, and these probabilities are 

known to the firm; they are the same for all clients. The withdrawal of an order will 

have no effect upon future orders of a client and we will assume a stationary process 

of ordering. The probability that the number of orders in an arbitrary period equals i is 

denoted by d1, with ~"SM. E denotes the average number of orders. We want to 

concentrate on the decision rule for the lead times and therefore we want to simplify 

the production planning as much as possible. It will be required that all accepted 

orders are produced in time, thus avoiding penalty costs and unsatisfied clients. 

Sometimes orders will be produced too early and this will lead to holding costs h per 

order per period. Again, the set-up cost is given by s, the revenues per order by w and 

there are no capacity restrictions. 

First, we shall consider a cyclic production rule in combination with a cyclic rule for 

the lead times and determine the average profit of this approach. Then we will give a 

description of a dynamic programming rule (DPR) for the lead times. This DPR is 

based te reduction and the decision rule itself is determined by means of dynamic 

programming. We will conclude this section with the description of a simplified 

version of the DPR, which will be denoted as the SDPR. Then some examples will be 

given to compare the performance of the different decision rules. 

4.4.3. A cyclic approach 

A simple indication of the profit can be obtained by applying a cyclic production rule 

to the situation and by basing the lead times for the orders upon the production plan. 
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We will consider the production rule 1t where we produce every T periods if there is 

any demand. Orders that arrive k periods before the next scheduled production period 

will have a proposed lead time of k periods, lSk~T. Because of the knowledge of the 

production schedule, the due dates will be exact and there will be no holding costs. 

Every T periods we will have set-up costs, at least if there is any demand. The 

probability that there are no orders to be produced after the cyclic interval T will be 

denoted by Pflf• which can be written as 

TM . 
Pflf= LLdi(l-AtY 

t=lj=O 

The average profit of the approach is now given by 

T 
:EwEAi -s(l-pfiT) 
i=l Ktc = ..:_.: ___ T __ _ 

(4.4.1) 

(4.4.2) 

where the length of the cyclic interval T is chosen in such a way that it yields the 

maximum for Ktc· Of course, this approach will not be the optimal approach, but it 

offers an indication of the possible profit and it can also be used for a comparison with 

other rules. 

4.4.4. The dynamic programming rule 

At the end of every period, we have to take a decision about the lead times for the new 

orders that have been arrived during the period. Then the clients can accept these lead 

times or withdraw the order. If the process of acceptance has taken place, still at the 

end of the period, a decision about the production has to be made. The production rule 

for this situation can be rather simple. If there are no required deliveries for the first 

period, then it makes no sense to produce already and therefore action a = 0 is the only 

reasonable option. Because of the assumption that all accepted orders will be 

produced in time, we have to produce if there are required deliveries for the first 

period. Usually most of the orders will have about the same due date. A reasonable 

action in this situation is to produce all orders, in other words action a = N, where N is 

the maximal lead time of an order. However, we can also think of a situation in which 

there are clearly two groups of orders: one group with a residual lead time of one 

period and another group of orders, which is not too small, with a residual lead time of 

three or more periods. In this situation the most reasonable action can be the 
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production of only the orders that have to be delivered by the end of the first period, or 

in other words: take action a= 1. Of course, we can only come to a situation like this 

if the rules for the lead times make an occurrence of such a situation possible. 

If we use this production rule, . the two most imponant elements for the rules for 

generating lead times are the total number of orders and the minimal value of the 

residual lead times of the accepted orders. ·If the lead time for the new orders is the 

same as the minimal value of the residual lead times, the lead time decision does not 

imply extra holding costs. If the lead time for the new orders is shoner than the 

minimal value, then we have to pay holding cost for the difference in periods. In the 

situation in which we decide only to produce the new orders, as far as they are 

accepted, in the first period, then we do not have holding costs. From this discussion it 

follows that the original state space, with the state space vector r=(rt.rz, .. ,rN), where 

r; denotes the number of other with a residual lead time of i periods, can be limited to 

the two most imponant elements: the total number of accepted orders and the minimal 

values of the residual lead times of the accepted orders. We will denote a state by (y,t), 

where y is the total number of orders, yeN, and t the number of periods, OSJW. The 

state in which there are no orders will be denoted by (O,N). In the states with t = 0 we 

have produced all orders during the period. 

Now we come to the description of the DPR. In this rule we make the decision about 

the lead times and the action for the production simultaneously. In a situation where 

we have decided to produce and where all orders for the first period have been 

withdrawn, the decision to produce will be cancelled. If no new orders have arrived 

during a period, the possible actions for the production will be a = N if there are 

required deliveries for the first period, or a = 0 otherwise. In the DPR we have to make 

a choice for every state (y,t) in combination with j new orders. This choice will be 

denoted by Ch (y,t,j). If there are no new orders during a period, no decision has to be 

made. The value of Ch(y,t,j) will be the offered lead time to the j new orders, if this 

lead time is 2 periods or more. If the offered lead time to the j new orders is equal to 

1, then we will write Ch(y,t,j) = l if the lead time decision is combined with the 

decision to produce all orders, or Ch (y,t,j) = 0 if the lead time decision is combined 

with the decision to produce only the new orders, as far as they are accepted. In the 

states (y,t) with t=0,1,2, the production rule does not allow the choice Ch (y,t,j) = 0. If 

the choice Ch (y,t,h) = 0 is made, the cost effect of the new orders will be calculated 

immediately. Therefore, the effect of this choice upon the future periods is the same as 

the effect of having no new orders during a period. 
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In order to make the correct choices Ch(y,t,j), we will use a value function v(y,t) 

which denotes the marginal profit until the next production period. In the DPR we 

choose this value function similar to the relative cost function v(r) in (4.2.6): 

v(r)= m~ [q~+ L P~, v(z)-g] 
act1on.s 2 

There are some differences between our v(y,t) and this relative cost function v(r). 

Instead of considering the possible 'actions', we will consider the possible choices. 

We will maximise the profit instead of minimise the costs. Due to our state space, the 

holding costs have to be paid as soon as it becomes clear that an order will be 

produced earlier. If the holding costs have been paid, we can treat all orders as if they 

have the same due date. The revenues will be received in the periods in which the 

orders are produced, that is in the states (y, 0). In the same states (y, 0) we will pay the 

set-up costs. An exception is the choice Ch(y,t,j) 0. If this choice is made, the 

revenues for the orders that will be produced in the first period and the set-up costs 

will charged immediately. Let gdpr denotes the average profit per period if we use the 

optimal DPR. The value of Cdpr is not known at the beginning and will be detennined 

in an iterative way by using a policy iteration method, starting with an arbitrary value 

CO· 

Due to the cost structure where the holding costs are paid immediately, where the 

revenues are received in the production period and where the set-up costs are paid in 

the production period, we have the following direct costs. If in the state (y,t) j new 

orders have arrived and the choice Ch is made, the 'direct costs' of this choice, 

analogue to the direct costs q~ in (4.2.6), will be denoted by dc(y,t,j,Ch). The value of 

dc(y,t,j,Ch) is given by: 

dc(y, O,j,Ch) =yw-s 

dc(y,t,j,Ch) = h y·(t-1-Ch) 

dc(y,t,j, 0) = jwA 1-s 

dc(y,t,j,Ch) = 0 

y~.j?:.O, Ch20 

y?.l,j?.l, l~Ch~-2 

y?.l, 3~t<gV, j?.l 

otherwise 

The probability that the lead times for i out of j orders will be accepted if the proposed 

lead time equals l is denoted by Plj· This is of course a function of the probability A1 

that a client accepts lead time l for an order: 

P~j = [ {] Aj (1-Al)i-i i=O, .. j; 1=2, .. ,N (4.4.3) 
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Using this probability we can calculate the probabilities for moving to state (x,k) if in 

the state (y,t) j new orders have arrived and the choice Ch has been made. These 

probabilities will be denoted by Q(y,t;x,k): 

Q(y,t;x,Ch-1) =Pf~Y.i 

Q(y,t;y,t-1) = p~; 

Q(y,t;y,t-1) = 1 

Q(y, O;x,Ch-1) =P~; 

Q(y,O;O,N)=P~; 

Now we can give the definition ofv(y,t): 

x>y;fc.l; Ch=l, .. ,t 

y-:z.l; J'c.O; Ch=l , .. ,t 

y-:z.l; J'c.l; Ch=O; t~ 

21; J'c.l; Ch=l , .. ,N 

J'c.O; Ch=l , .. ,N 

v(y,t)= idi{max[dc(y,t,j,Ch)+'L Q(y,t;x,k)·v(x,k)-go]} 
j=O Ch x,k 

(4.4.4) 

Since these values indicate relative profits, we can choose the value for one of the 

states freely, for instance: 

v(l,O) =w-s 

Due to this choice, we also have: 

v(y,O)=yw-s yeN (4.45) 

If a choice for g0 has been made, for instance g0 =g1t, (cf. (4.4.2)), we can determine 

all values v(y,t), starting with t=l and then increase t. In this process of calculating 

the v (y,t) values, we also have found values for Ch (y,t,j), where Ch (y, O,j) = Ch (O,N,j) 

for all t and j. From the calculated v(y,t) values we can determine a new value for g0 

and determine the optimal DPR by means of this value iteration. However, in this 

situation we will choose for the policy iteration method, because this method offers 

more information about the different cost elements. First we will consider the policy 

based on the choices Ch(y,t,j). By determining the steady-state probabilities to be in 

state (y,t), given the rule based on these choices, we can learn the average time 

between two production periods, the average profits, set-up costs and holding costs per 

period. In an analogue way to 4.2.4.4. we define q (y,t) as the average time spent in 

state (y,t) between two normal production periods. Normal production periods are 

defined as periods in which we produce all orders. The production periods in which 

we produce only the orders with a residual lead time of 1 period will be called 

inbetweenies, since this production is performed between two normal production 

periods. For notational reasons we introduce the set V (y,t,k), the set of values for the 
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demand, where in state (y,t) the choice Ch(y,t,j) = k has been made: 

V(y,t,k)={ j ICh(y,t,j) =k} (4.4.6) 

Now the probability to enter state (x,k) coming from state (y,t) is given by 

P{(y.t)~(x,k)}= :£ djP~?:jJ 
je V(y,t,k+l) 

Furthermore we have 

and 

P{(y,t) ~ (y,t-1)} =do+± :£ djP~j+ 
/r.EI i• V(y,t,k.) 

+ :£ di (1-Pbj) 
jeV(y,t,O) 

{ } 

N-1 
P (O,N) ~ (O,N) =do+ :£ :£ di P~i 

k=l je V(O,N):) 

x>y. k<t (4.4.7) 

y>O, t>O (4.4.8) 

(4.4.9) 

(4.4.10) 

With the use of (4.4.7)-(4.4.10) we can calculate the average time spent in each of the 

states (y,t) in a straightforward way and from these q(y,t) values we can determine the 

elements of interest The average time between two normal production periods, 

denoted by T, is simply the sum of all q ry,t) values: 

T = :£:£q(y,t) (4.4.11) 
y I 

The average number of inbetweenies between two normal production periods, denoted 

by lb, can be found by considering the j values for which in the states (y,t) with 

2'!it=>N -1 the choice Ch (y, t,j) = 0 has been made and where at least one of the orders 

has not been withdrawn: 

N-1 
Jb = :£ :£ q(y,t) L dj (1-Pbj) (4.4.12) 

y>Ot=2 jeV(y,t,y+I,O) 

The average storage costs between two normal production periods, denoted by H, can 

be found by considering the j values for which in the states y,t); with 2'!it:>N-1 a 

choice l'!iCh (y,t,j)<t has been made and where at least one the orders has not been 

witdrawn. In this situation the holding costs are h·y·(t-Ch(y,t,j)). Hence His given 
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by: 

N-l 1-2 
H=hZ:, Z:,yq(y,t) L L djP~j(t-1-k) (4.4.13) 

y>01=2 .1:=1 j.V(y,l,y+l,k) 

The expected revenues during one cycle is found by summing the expected number of 

accepted orders for each of the states: 

R = w[ Z:, N i:,
1 
q (y, t) fjdjAcn (y,tj)+q (O,N) fjdjACh(O,N,j)] 

y>Ot=O j•l j=l 

(4.4.14) 

where we use for notational convenience A 0=A 1• Now the profit per period, g0 , is 

given by: 

R-H-(1+/b)s 
Eo= T (4.4.15) 

With this value we can repeat (4.4.4) and determine g0 again, until the rule does not 

change any more and we have found gdr Usually this occurs after a few steps. 

Note: the value of N, the maximum lead time that is offered, may be subject to 

changes, because of the changes in the v(y,t) values. The value of N can be found by: 

N =min {neNiv(O,n+l)=v(O,n+2)} (4.4.16) 

4.4.5. Simplified dynamic programming rule 

The calculation of Edpr requires a lot of work, especially if N and M, the maximum 

number of orders per period, are quite large. Some of this work can be avoided by 

making some assumptions about the possible choices in a state, as we will do in the 

properties 4.3 and 4.4. Much more work can be avoided if we do not use the relative 

costs v(y,t) as defined in (4.4.4), but a simplified version for these costs. In this 

simplified version, the values of v (y,t) with respect to the expected profit until the first 

(normal) production no longer depend on the DPR, but on the cyclic rule n:. Therefore, 

this profit does not change if the production rule changes during the iteration. The 

only element subject to changes in v(y,t) is the average profit of this simplified rule, an 

element that can change as long as the rule changes. Thus we can write 

l-1 
v(y,t) =yw+EwZ:,A.t -s -(t-l)go 

k•l 
(4.4.17) 

This simplified version of the dynamic programming rule will be called SDPR. The 



4.4.5. Simplified dynamic programming rule 73 

profit of the SDPR may be a little smaller than the profit of the DPR, but the choices 

for each state and number of new orders can be found much easier. Again we can start 

for instance with g 0=g n and determine the choices Ch (y, t,j) in the same way as in the 

DPR, although now the values of v(y,t) are not directly influenced by this choice. 

From this set of choices we can determine the average costs of the rule in exactly the 

same way as in the DPR by using (4.4.7)-(4.4.15) and then use this value g0 in 

(4.4.17) and repeat this procedure again. 

As we already suggested, it is not necessary to consider all the possible choices in a 

particular state, with a particular demand. Therefore we can use the following 

properties. 

Property 4.3: for a given demandj the proposed lead time in state (y 1,t), Ch(yJ,t,j) 

will be no longer than the proposed lead time in the state (y2,t),Ch(y 2,t,j), withy 1 <y2. 

Property 4.4: for a given state (y,t) the proposed lead time for demand h. Ch(y,t,h) 

will be no longer than the proposed lead time for demand h. Ch (y,t,h), with h > jz. 

Proof property 4.3: For given values of the state y,t and the demand j, the lead time 

Ch(y,t,j) is determined in formula (4.4.4) by finding the k for which the function 

W(j,y,k) is maximised. This function W(j,y,k) is the same as 

dc(y,t,j,Ch)+ L Q(y,t;x,k)·v(x,k) in (4.4.4) and is defined as 
x,k 

j 
W(j,y,k) =P~jV (y,t-1)+ l:;Pfj(v(y+i,k)-hy (t-1-k)) (4.4.18) 

i=l 

In the SDPR, v(y,t) is given by (4.4.17). Suppose that for given values of y,t and j the 

proposed lead time is given by Ch (y,t,j)=k, with 2::;k~-1. This implies that for this 

state and demand 

W(j,y,k)~W(j,y,kt) 

Using (4.4.17), the difference W(j,y,k)-W(j,y,k 1) can be written as 

k-l 
W(j,y,k)-W(j,y,k 1) = jw(Ak-Ak,)+Ew l:;Adk-kt)(go-hy) 

l=k, 

1-2 
+P~j(Ewl:;Adt-1-k)(go-hy)) 

l=k 

1-2 
-P~j(Ew l:;AI-(t-1-kt)(go-hy)) 

l=k, 

l~kl < k (4.4.19) 

(4.4.20) 
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In the state (y+n,t), with nEN, we will prefer a lead time k above a lead time k 1 <kif 

W(j,y+n,k)~W(j,y+n,k 1 ). Replacing y by y+n in (4.4.20) yields: 

W(j,y+n,k)-W(i,y+n,k 1) = W(j,y,k)-W(i,y,k 1)-hn(k-k1) 

+P~j(t-l-k)hn-P~j(t-1-k 1 )hn 

=W (j,y,k)-W (i,y,k 1)+ 

+hn(k-k 1 )(1-P~j)+ 

+(P~rP~j)(t-1-k)hn 

Since all terms in the last equation are non-negative or positive, we have that for the 

state (y+n,t) and the demandj 

W (j,y+n,k)-W (i,y+n,k 1 )>0 

which completes the proof of property 4.3. 0 

Proof property 4.4: In this proof we use the same function W(i,y,k) as defined in 

(4.4.18), but now we are interested in the best lead time k for different values of the 

demand. Suppose that for given values of y,t and j the proposed lead time is given by 

Ch (y,t,j)=k, with t::;kg-2. This implies that for this state and demand 

W(j,y,k)~W(j,y,k+1) 

Using (4.4.20), the difference W(i,y,k)-W(i,y,k+l) can be written as 

W(i,y,k)-W(i,y,k+l) = jw(Ak-Ak+t)-EwA,~:+go-hy 

t-2 
+P~j(Ew LAdt-1-k)(g 0-hy)) 

l=k 

t-2 
-P~j1 (EwL+ 1 Adt-1-k+l)(go-hy)) 

l=k 

which we rewrite, for notational reasons, as 

where all terms are non-negative and O<x<y<l. We also define 

Now if 

VW(j)=W(j,y,k)-W(i,y,k+l)-W(j-l,y,k)+W(i-l,y,k+1) 

=C o+(x-l)xj-t(C 1 +C 2)-(y-l)yj-J C 2 
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k=Ch (y,t,l)<Ch (y,t,l-1) 

for some leN, then VW(l)>O, implying that 

C0>(1-x)x1- 1(C t+Cz)-(1-y)yl-lCz 

Multiplying the right-hand side by ym,meN, we have 

Co>(l-x)x1+m-t(CI+Cz)[ ~=j -(1-y)yl+m-1Cz 

and since y >x, we have 

C o>(l-x)x1+m-1 (C 1+C z)-(1-y)y1+m-1 C 2 

=Co-VW(l+m) 

which implies that 

VW(l+m)>O 
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(4.4.21) 

for all me N (4.4.22) 

and because of the definition of VW (.) and because of ( 4.4.21 ), we have that 

W(l+m,y,k}-W(l+m,y,k+l)>O 

and thus Ch(y,t,l+m)'5"dc=Ch(y,t,l) which completes the proof of property 4.4. D 

By using these two properties we can avoid much of the work for determining the 

values of Ch (y,t,j). In the next subsection we will compare this rule with the DPR and 

with the cyclic rule 1t. 

4.4.6. Numerical results 

In the subsection we want to compare the rules we discussed for the generation of the 

lead times. Therefore, we consider several examples and compare the average profit, 

the average storage costs, the percentage of withdrawals and the average time between 

set-ups (TBSU). We will consider a situation with set-up costs s=lOO, holding costs 

h=l, revenues per item ordered w=40 and A;= 1.1-0.li;i=l, .. , 10 and 0 elsewhere. In all 

examples we will have E=2, but the variance of the demand will be different in the 

examples. For different values of M, the demand will be distributed as: do= M - 3 and 
M+l 

dj M(;+l) for j=l, .. ,M. The values of M that will be considered are 5,8,10,12 and 

15. The results for the rules will be given in Table 4.4,4.5 and 4.6. 
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M-value profit TBSU max.N % withdr. 

5 44.140 5.035 5 20.00 

8 45.574 4.459 4 15.00 

10 47.435 4.071 3 10.00 

12 50.063 3.855 2 5.00 

15 55.000 4.000 1 0.00 

Table 4.4. the results for the cyclic rule 1t 

M-value profit TBSU storage %withdr. 

5 45.174 4.770 0.007 17.32 

8 47.801 4.707 0.037 13.64 

10 50.439 4.243 0.059 7.41 

12 53.309 4.322 0.050 4.38 

15 57.075 4.687 0.024 1.96 

Table 45. the results for the SDPR 

M-value profit TBSU storage % withdr. 

5 45.174 4.770 0.007 17.32 

8 47.801 4.707 0.037 13.64 

10 50.514 4.308 0.070 7.76 

12 53.379 4.367 0.062 4.58 

15 57.186 4.839 0.046 2.63 

Table 4.6. the results for the DPR 

In the role 1t we have no storage costs, so these costs are not given in the Table 4.4. 

The maximum lead time N is always 5 when we use the DPR and the SDPR, so theN

value is not given in the last two tables. Comparing the three roles we see that the 

SDPR and the DPR are only different for large M. The reason for this is that for 

smaller M the values of v(y,t) are nearly the same in both rules, because most of the 

orders arriving in state (y,t) will obtain a promised lead time that equals t-1. If the 

number of orders is large, a smaller lead time can be proposed, but this will only be 

done for larger values of M. There is a clear difference between the cyclic rule and the 
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other two rules for the lead time proposals with respect to the profit but the patterns 

for the profit and for the percentage of withdrawals show a lot of resemblance. 



ChapterS 

SEVERAL TYPES OF PRODUCTS ON 

ONE MACHINE 

5.1. Introduction 

In Chapter 4 we have observed that in a situation with no capacity restrictions a rather 

simple production rule can be used, the (x, T)-rule. In the (x,1)-rule the dimension of 

the state space is largely reduced before the production decision is made. This 

reduction allows a simple production rule. We are interested whether in a more 

complex situation such a type of rule can also be used. In this chapter and in the next 

chapter, we will consider a situation in which several types of products are produced 

on one machine. The amount of work that can be done on the machine is restricted, 

due to the machine speed and to the time the machine is available for production. If 

the production is changed from one type of product to another, a set-up is needed. By 

performing a set-up, capacity is lost Loosing too much capacity due to set-ups will 

lead to large delivery times for the ordered goods, but on the other hand, waiting too 

long with a set-up will also lead to large delivery times. By controlling the production, 

a balance has to be found such that the clients can be satisfied by limiting the number 

of late orders or by limiting the lateness of the orders, while on the other hand also the 

manufacturer can be satisfied by limiting the set-up costs, the holding costs and in 

some situations also the costs for working overtime. 
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In Section 4.2. we have studied a situation with fixed lead times and with no capacity 

restrictions. The problem for the manufacturer was to produce the orders such that the 

requested lead times were realised with limited costs and in a way that was 

satisfactory for the customers. In this chapter we will consider an extension of this 

situation. The orders will again have fixed lead times, but now there are capacity 

restrictions. Therefore we can now study the situation in which the customers may 

order products of several different types. This extension makes the production rules 

more complex because now several types compete for the same capacity. We will 

consider two possibilities for the available capacity. The available capacity can be 

fixed or there may be possibilities for working overtime or other ways of flexible 

capacity. We will model this situation as a multi-type capacitated problem with 

periodic review. 

5.1.1. Description of the model 

In the model we assume that M types of products can be produced on the same 

machine. The length of a period is C time units and we will express the delivery times 

and the lead times in an integer number of periods. The maximum lead time will be N 

periods. The service time, that is the time to produce one order, is supposed to be one 

time unit for all types. Every set-up takes S time units. Producing a type of product 

implies a set-up, disregarding the possibility that the same type may have been 

produced in the previous period. This assumption is made because this element is 

quite common in periodic review models, for instance in the uncapacitated Wagner

Whitin approach. The assumption has also a large influence upon the production rules, 

but the rules that will be presented can easily be adapted to a situation in which no 

set-up would be needed if production continues in the next period. By these 

assumptions, the maximum number of orders that can be produced in one period, 

without working overtime, is equal to C -s. 

We assume a gating service discipline, implying that only those orders can be 

produced, that were ordered before the production period. In the situation in which 

extra capacity is available, this extra capacity will only be used for the production of 

goods that were ordered before the start of the production period. The demand is 

supposed to be stationary and independent of the schedule and of the delivery times 

that have been realised previously. Although it is not very essential for the production 
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rules, we will assume that the orders will be placed by N xM groups of clients, where 

the demand from different groups of clients is assumed to be independent, with lead 

times varying from 1 toN. 

At the end of a period we know the exact required deliveries for the next period, this 

period will be called the first period, and we know a part of the required deliveries for 

later periods. Apart from this order state vector, we also know the distribution of the 

future demand. Based on this knowledge, we can decide to produce the required 

deliveries for one or more types of products, or decide to delay the production at least 

one period. The direct costs of such an action are about the same as in Section 4.2. 

Every set-up takes set-up costs s. In those periods in which we produce, the total 

amount of capacity that is needed is the sum of the set-up times Sand the number of 

orders we want to produce. If this amount exceeds C and if we can do extra work then 

we have to pay overtime costs of z per unit of extra capacity. For orders that are 

manufactured before the due date period we have holding costs h per order per period 

and for orders that are delivered too late we have penalty costs p per order per period. 

Late orders are not lost, but they are backlogged. 

In Section 5.2. we will assume that no extra capacity is available, whereas in Section 

5.3. extra work can be done, involving extra costs. We will consider the same 

production rules for situations in 5.2. and 5.3., since the possibility of using extra 

capacity will be the only difference between the two situations. For these situations 

we want to use simple production rules. We will start with an extension of the 

(x,T)-rule. Then we will give a production rule that is inspired by well-known 

production rules for multi-type capacitated lot sizing problems. We will also consider 

a cyclic production rule. The performance of the production rules will be measured by 

the average costs per period. These average costs will be compared in a simulation 

study in which we will also consider the computation time that is needed for use of the 

different production rules. Before we describe the rules, we will start with some 

notations. 

5.1.2. Notation 

In an arbitrary period t, goods may be ordered for the periods t+l,t+2, .. , t+N. For each 

type of product and for each of the N periods the distribution of this demand is 

independent oft and of any of the other demands for other types or other periods. Now 
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we use the following notations with lSiSM, lSjSN: 

- r;i is the order state for products of type i for period j. The order state 

contains all unfinished orders for this period. Because backlogging is 

permitted, r; 1 also contains orders from earlier periods which are not yet 

produced. We write R for the MxN matrix containing the complete order 

state. 

- lnii = f rik is the cumulative order state for products of type i up to and including 
k=t 

periodj. 

- e;i is the expected value of the j-th component of the order state vector for 

products of type i, if no jobs ordered for this period and type have been 

produced,(cf. 4.2.4.1). 

- a; is the action we take for type i during the first period. The meaning of 

action r1i is that we produce a; orders of type i. If there is no extra capacity 

available, a1 cannot be larger than c-s. Action 0 means that we do not 

produce. We write A for the vector containing the actions for all types of 

products. 

- q (r;, a;) is the one-stage cost of taking action a; on having the order state vector r1 

for type i and has the following form: 

N-l 
q (r;,a;) = p (rn -a;t + s (l-S (a;))+ h I: (a; -m;j)l(o ... )(a;-m;i). 

j=l 

Here S(a;) = 1 for a;= 0 and 0 elsewhere, (xt =x if x>O and 0 if xSO, and 

l(O.oo)(x) equals 1 if xe(O,oo) and 0 otherwise. The total one-stage costs of 

taking the actions according to vector A for the complete order state R in 

the situation in which there are no possibilities for working overtime, 

have the following form: 

M 
q(R,A) = I;q(r;,a;) 

i=l 

In the situation in which extra work can be done, the total one-stage costs 

are given by: 
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M M M 
q(R,A) = Eq(r;,a;) +z (La;+S :E(l-a(a;))- ct 

i=l i•l i•l 

5.2. No possibilities for working overtime 

5.2.11ntroduction 

In this section we will consider the dynamic multi·type, capacitated problem with no 

possibilities for working overtime. The objective of the manufacturing firm is to 

minimise the long term average costs per period. Since finding the optimal policy will 

be very hard for large problems, because of the enormous number of possible order 

states, we will concentrate our attention on finding a good heuristic, that is a heuristic 

with low average costs which is also very fast to use. 

Next to the cyclic production rule, the (x,7)-rule has proven to be such a simple and 

fast rule in the uncapacitated situation. The (x, 1)-rule in the form in which it has been 

described in 4.2.4., should be adapted a bit to the extra problems of a restricted 

capacity and the variety of types competing for the same capacity on one machine. 

We will deal with these problems in a simple way and the resulting production rule 

will be called the extended (x,1)-rule. In order to judge the performance of this 

extended (x,7)-rule, we want to compare it with a more complex production rule 

which contains several elements ofwell·known production rules. 

The static version of this problem, where the demand is known completely for a 

number of periods, the ~called capacitated, multHype, time-varying demand 

problem, has been one of the most favourite topics in the area of production 

scheduling and a number of heuristics have been developed to solve this problem (see, 

for example, Dixon and Silver (1981), Dograrnaci et al. (1981), Florian and Klein 

(1971) and Lambrecht and Vanderveken (1979) and Maes and Van Wassenhove 

(1986)). Although Dixon and Silver also use a two-step approach, the procedure 

presented by Van Nunen and Wessels (1978) has been the most inspiring heuristic for 

the second production rule we will consider for this problem, the so-called two-step 

rule. The Van Nunen and Wessels approach is to first ignore the capacity restrictions 

and solve the problem for each individual type independently, using an extension of 

the Wagner and Whitin method like we have done in Section 4.2 .. The resulting 
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overall solution is usually unfeasible, violating the capacity restrictions in one or more 

of the production periods. The next step is to adjust the solution until it is feasible, 

trying to make the increase in the costs as small as possible. 

The fixed cycle production rule can be used directly in the multi-type capacitated 

situation. However, in this rule we assume that we have a production interval of a 

fixed length for every type of product Since the length of a period is also fixed, this 

may lead to problems. Usually it makes sense to produce more than one type of 

product in one period. This cyclic rule in which we can produce different types of 

products during one period with a given length for the period will be called a semi

fixed cycle rule. The performance of this rule, the extended (x, 1)-rule and the two

step approach will be compared in a few examples at the end of this subsection. 

5.2.2. Extended (x, T)-rule 

5.2.2.1. Introduction to the extended (x, T)-rule 

In this section we will describe the adaptation of the (x,1)-rule in the form in which it 

has been described 4.2.4. to the extra problems of a restricted capacity and the variety 

of types competing for the same capacity on one machine. We would like the resulting 

production rule, which will be called the extended (x,1)-rule, to be a simple and fast 

heuristic, like the original (x,1)-rule. We will adapt the uncapacitated (x,1)-rule to the 

capacity restrictions by using penalty points. These penalty points indicate how urgent 

the production of an order or the production of a type is. Penalty points can be 

allocated to orders in every thinkable way, it may be a function depending on the type, 

on the arrival period, on the due date and so on. In general, the penalty points for a 

type will be the sum of the penalty points of all orders that type, but an additional 

element can be added. 

The idea behind the production rule is now, to produce the known orders that should 

be delivered within a certain number of periods, T say, if the number of penalty points 

of the type is large enough, for instance, at least x. If several types are competing for 

the same capacity, capacity is allocated to the types according to a decreasing number 

of penalty points. If capacity has been allocated to one or more types and the 

remaining available capacity is too small to make an allocation to one of the other 
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types profitable, we can try to produce some extra orders for one of the types, to which 

capacity has been allocated. In this way, it is possible to produce orders with a 

residual lead time which is more than the usual maximum of T periods ahead, thus 

avoiding possible penalty costs due to future capacity shortages. 

5.2.2.2. Formulation of the extended (x,T)-rule 

In order to determine good values for the penalty points and for the pair (x,n, we can 

first study the uncapacitated situation. For instance, we can determine the optimal pair 

(x;.T;) for every type of product i=l,2, .. ,M. In the uncapacitated situation of Section 

4.2.4.4. we have chosen the penalty points to be l for the orders that should be 

produced by the end of the period, the component r 1, and 0 for all other orders. An 

alternative is to choose the penalty points to be p for the orders that should be 

produced by the end of the period and 0 for all other orders and to choose the 

minimum level for production x; equal to g;(x;,T;), being the average costs of the 

uncapacitated (x,7)-rule for type i. According to property 4.1. this alternative will 

usually be the same as the original (x;,T;)-rule. In the multi-type capacitated situation 

the choice of x and its dependence on the penalty costs p differs somewhat from the 

uncapacitated situation; 

1) Because of the competition with the other types, there is not always capacity 

available for a type for which the number of penalty points would justify a set

up. Therefore, it will be wise to choose the penalty points and the level x; in such 

a way that. if they were chosen the same in the uncapacitated situation, they 

would lead to a more frequent production. 

2) In the situation with the restricted capacity and set-up times, future shortages can 

be avoided best by producing large lots for a few types. Therefore we give 

penalty points to all orders of which production seems profitable from the point 

of view of total costs and not only to the orders that should be delivered before 

the end of the period. The effect of this is more or less the same as in a 

production rule where we select the types on the costs per produced order. 

Analogous to the previous rule, the penalty points can be seen as the difference 

between on the one hand the direct and future penalty costs reduction and on the 

other hand the extra holding costs. Of course, the penalty points for orders that 

should be delivered before the end of the period, should be much higher than for 
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orders with due dates in later periods. 

3) In the competition for the available capacity, we prefer the type(s) with the 

highest number of penalty points. To avoid discrimination of the types with a 

small average demand, the penalty points for these types should be chosen larger 

than those of the types with a high average demand. Maes and Van Wassenhove 

(1986) suggest several criteria, such as time-between-set-ups, to set priorities for 

the different types. Graves (1980) uses the demand rate as a scaling factor. It is 

often impossible to determine the best choice for such a scaling factor, but in 

general a scaling factor will be used which is between 1 (no scaling) and the 

demand rate (equal time-between-set-ups). 

The elements sketched above will give an indication for the choice of the penalty 

points and the required minimum x;. Finding a good choice will now be a question of 

trial-and-error combined with some intuition. Now we will describe the extended 

(x,n-rule for a given set of penalty points, with Iii• i=l, .. ,M, j=l, .. ,N, the penalty 

points for an order of type i with a residual lead time of j periods. We also assume that 

the values forT;, i=l,2, .. ,M are determined according to the uncapacitated (x,n-rule 

according to the method described in 4.2.4.4. 

The penalty points for a type, written as K(i), are defined by: 

N 
K (i) = "'£/;,irii 

i'' 
(5.2.1) 

If K (i)<x; for all i, then we do not produce at all during the period. Otherwise, we 

determine the sequence of types {i ~oi 2 , •. ,tk}, with kSM, in which the types with a 

sufficient amount of penalty points are placed according to a decreasing amount of 

penalty points, K (i 1):?!K(i2J:<! •• :?!K(it). Types with an equal number of penalty points are 

placed according to an increasing average demand. In the uncapacitated situation we 

would produce all the types in this sequence and the amount for type i1 would be: 

r., 
a;,= "'£r;J 

j,l 
(5.2.2) 

In the multi-type capacitated situation the actions may be different. We start with a 

capacity allocation of max(C,a;, +S) for type i 1 leading to a remaining capacity 

C1 =C-a;, -S or C1 =0. If the remaining capacity is less than a certain minimum 

capacity level mel, the remaining capacity will not be spent on a set-up and an 

allocation for the following type in the sequence. The idea is that in the situation in 
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which the remaining capacity is small, it will be better to use the capacity for 

production than for a set-up. If C1ancl then we continue with the second type i2 and 

make an allocation ofmax(CI>ai, +S) for type i 2 leading to a remaining capacity C2• 

In this way we continue until either an allocation has been made for all types in the 

sequence, which gives the combination of uncapacitated actions, or until the 

remaining capacity is less than mel. If the remaining capacity after the first set of 

capacity allocations is larger than 0 and less than the extended capacity level, denoted 

by eel, with eel <!mel, we start a second round of the capacity allocations. eel and mel 

are both decision variables, which can be chosen freely. In this second allocation 

round we will consider the production of orders with a residual lead time of one 

period after the horizon T;. This will be done only for the types, for which a capacity 

allocation has been made, following a sequence based on an increasing average 

demand. If there is still remaining capacity after the second round or if the remaining 

capacity after the first round is at least eel, then we do not use the remaining capacity. 

5.2.3. The two-step rule 

5.2.3.1. Introduction to the two-step rule 

Following the Van Nunen-Wessels approach, we split the rule in two parts: a part for 

the individual types and a part on the aggregated level. In the first part we detennine 

the expected marginal costs of all possible actions for each type separately, thereby 

assuming capacity restrictions for the first period only. We choose a good combination 

of actions based on the sum of the separate costs, the so-called base costs. In the 

second part, which is only necessary if there is still capacity available after the first 

part, we consider the possibility of producing extra orders to avoid the future costs due 

to capacity shortages. These future costs are calculated on a higher aggregation level, 

thus avoiding much computational work. 



52 .3 .1. Introduction to the two-step rule 87 

5.2.3.2. Formulation of the first part 

In the first part of the rule we determine the marginal costs for the possible actions for 

each of the types. Therefore we use the Wagner-Wbitin like approach for the 

individual types, as described in 4.2.4.3. This rule uses the expected total costs as its 

only criterion for determining the best action, unlike for instance the (x,T}-rule and the 

Silver-Meal approach. This is a big advantage, since we want to compare actions for 

different types and in the second part also costs on an aggregated level. We will only 

consider the first periods action. Therefore the Wagner-Whitin approach will be used, 

including a salvage function, with a horizon of 1 period. Of course, we can produce 

orders with a residual lead time of more than 1 period. 

To measure the effect of the first period action upon the costs during the following 

periods, we will use a salvage function, as introduced in Section 4.2.4.3. As an 

important element in the salvage function we determine the average costs per period, 

g~, of the best cyclic production rule 1t;, for every type i, i=1,2, .. ,M. The average costs 

can be found by determining the best value for Ti> the time between set-ups, in 

formula (4.2.10). Now the marginal costs of an action a; for type i can be described as 

the sum of the direct costs, q(r;,a;), and the salvage function L;(a;). 

Let zt(a;) be the expected value for the j-th component of the order state vector for 

product type i at the beginning of the k-th period, if in the first period action a; has 

been taken for type i and if in later periods no production has taken place, (cf. (4.2.1) 

and (4.2.11)). Let H(a;) be the first period for which the penalty costs for type would 

be larger than g 1e,: 

H(a;)=min{ k=2,3,.Jp·zft (ai)>g1t.} 

The salvage function is now defined as the expected sum of the costs during the 

periods 2, .. ,H(a;) reduced withH(a;) times glt;, under the following assumptions: 

1) During the first period a; orders are produced for type i. 

2) If H (a1)>2 we do not produce during the periods 2, .. ,H(a;)-1. 

3) In period H (a;) we produce the required deliveries for the first T; periods. 
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The salvage function L;(a;) thus defined, is slightly different from the salvage function 

L(A) defined in (4.2.12) and (4.2.13). Now, the salvage function for type i is given by: 

H (a,)-1 lc T, H (a,) . 
4(a;) = ~ p zn (a;)+ s+ ~(k-l)zii (ai)-H(ai)g~ (5.2.3) 

k=2 j=2 

In the first step of the rule we start with the calculation of the sum of the direct costs 

and the salvage function, the so-called base costs, for every type and every possible 

action. 

Determine Co(i,a•>=q(r;,a;)+Li(a;) fori= l, .. ,M, a; =O, ..• c-s. 

We define Co(i,j)=oo if a;>miN, that is, if there are not enough orders for type ito 

make action ai possible. In the situation we consider, it is possible to produce more 

than one type during a period. Therefore it is better to consider the total use of 

capacity instead of an action. For action ai the use of capacity is ai+S. Now we define 

the base cost reduction K o(i,j) as the difference in base costs between the use of j 

units, i.e. action ai = j-8, and the use of 0 units of capacity for type i. Here the 

subscript '0' indicates the number of types to which capacity has been allocated. 

Determine K0(i,j)=Co(i,j-8}-Co(i,O) for i=l, .. ,M,j=S, ... c. 

We define K 0(i,j)=s if O<j'!!'.S and K0(i, 0)=0 for i=l, .. ,M. Now the capacity 'action' 

for which the base cost reduction K 0(i,j) is minimal is the best 'action', at least as 

long as we restrict ourselves to the production of one type. 

Determine the pair(ij)for whichK0(i,j) is minimal with i=l, • .,M, j=l, .. ,C. 

Assume that the base cost reduction is minimal for the pair (i0,j0). If it is optimal to 

use no capacity, that is if the minimum value is larger than 0, then we continue with 

the second part of the rule. Otherwise, j 0 units of capacity are allocated for a set-up 

and the production of j 0-s orders for type i 0 • If all capacity is used in this way, that is 

if j 0 =C, then we are finished for this period. If not, we determine the remaining 

capacity Co= C-j 0 and we adapt the base cost reduction for the type i 0 : 

Determine K tOo.j)=Ko(io.j+jo)-Ko(io.io) forj=O, .. ,Co. 

Notice that the values K 1 (io,j) are all non-negative, so a type can be chosen only once 

in this first part of the rule. However, these values can be important in the second part 
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of the rule. For the other types the base cost reduction K 1 (i,j) is not different from 

K 0(i,j). Now the production of orders for one of the other types will be considered. 

Determine the pair (iJ)for whichK 1(i,j) .is minimal with i=l, .. ,M, j=l, .. ,C0 • 

Let the base cost reduction be minimal for the pair (iJ.h). Now we can make the same 

decisions as for the previous pair: continue with the second part if the minimal value 

is larger than 0, stop if j 1 equals C 0 or continue with the first part after adapting the 

capacity values for the type i 1 and the remaining capacity C 1 = C 0 - h. Finally we 

come to a situation, in which either all available capacity is used, or in which the base 

cost cannot be reduced any more. 

5.2.3.3. Formulation of the second part 

If the available capacity is not allocated completely in the first part of the rule we 

continue with the second part. In this second part we shall consider the possibility of 

producing some extra orders to avoid capacity problems in the future and we 

determine the effect of this production on the costs on the aggregated level. 

Galculating this effect exactly is usually impossible, because of the complex state and 

.ac:tion spaces. Therefore the first step is to simplify the state and action space by 

means of aggregation. The order state on the aggregated level takes the form: 

M M M 
(ra 1 ,ra2•··•'..t~~);:: (l:,r; 1, I,ri2•··• I,riN) 

i=l i=l i=l 

and the action on the aggregated level is defined as 

M 
aa == I,a; 

i=l 

Let eai be the expected number of orders on the aggregated level that arrive during the 

last i periods before their due date period t: 

M M 
ea;= I,ejl- I,eji+l i=l,2, .. ,N-1 (52.4) 

j=l j=l 

M 

eaN= I,eil (5.2.5) 
i=l 

Then we can describe the expected number of orders that should be produced before 

the end of the i-th period, denoted by F;, in the following way: 
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F2 =rat+ r,.2 +eat (5.2.6) 

i=3, .. N (5.2.7) 

F; = F;-t + eaN i>N (52.8) 

The maximum number of orders that can be produced during a period is C -s. So, if 

r,. 1 +ra2 >aa+(C -S), we are certain of having penalty costs due to capacity shortages 

in the second period. In order to keep the production rule quite simple and fast, we 

want to avoid that the aggregated action is an N-dimensional vector. Therefore we 

assume that the aggregated action influences Fi for all }'22, of course allowing 

aa>rat+ra2· Due to this assumption, increasing aa by 1 unit, decreases the expected 

penalty costs in the second period by p units. However, in many situations the effect 

of increasing a4 will not be as clear as in this situation. A reason for this is that the 

maximum value of a,. depends on the number of types that will be produced. If in the 

cyclic rules n:; we have an average of u set-ups per period, where u is possibly rounded 

to the nearest integer, it is more reasonable to assume that the maximum action on the 

aggregated level is Cmn=C-uS. It may even be so that by producing some extra 

orders of a type, the penalty costs increase, due to a delay of the next production of 

this type for one or more periods. Therefore, to our belief, it makes no sense, to 

calculate the expected penalty costs due to capacity shortages in a very accurate way, 

by considering the demand distribution for the future periods and considering the 

probabilities on certain losses of capacity due to more than one set-up in a period. 

Instead of this accurate estimation, we advocate a much more simple estimation, 

which can be performed for example in one of the following three ways: 

1) We do not consider any variability, but we just consider the penalty costs we 

would have if the number of orders would equal F; and if, from the second period 

on, we would use all available capacity, by taking the maximum action C mn. The 

penalty cost function in this model is given by: 

Pt(aa)=p ~[F;-(i-l)Cmax -a~+ 
•=2 

(5.2.9) 

In the summation we can stop after H periods, where H can be chosen freely, or 

as soon as we have a non-positive term fori >N. 

2) In the second method of estimating future penalty costs we will consider the 

original variability for the cumulative number of orders in future periods. We 

estimate the penalty costs by assuming that the number of orders is distributed 
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according to a uniform distribution and that every period the maximum action 

C max is taken. We have to determine the lower limit and the upper limit for the 

cumulative number of orders for 'every' period and compare this with the sum of 

the available capacity and a,.. By using a positive multiplying constant me for the 

deviation of the number of orders we can influence the effect of the second part 

of the rule. The best value for this constant depends on the tightness of the 

capacity and on the values for p,h and s. Writing v,.1 for the known variance, x,.1 

for the maximum deviation, lm for the lower limit during period i and uai for the 

upper limit, and assuming the uniform distribution, we have: 

x,.1 =mc~(12±,v,.i) 
j•2 

(5.2.10) 

(5.2.11) 

(5.2.12) 

For every period there are three possibilities for the penalty cost function: if the 

sum of the available capacity and the aggregated action exceeds the upper limit 

for the cumulative number of orders, there are no penalty costs, if the sum is 

between the lower and the upper limit, there are partial penalty costs and if the 

sum is less than the lower limit, the penalty costs are complete, that is like in 

(5.2.9): 

Pz(a,.) = p f ( (F; -(i-l)Cmax- a,.)l(O,I.nJ((i-l)Cmax+a11 )+ 
i=2 

(5.2.13) 

We can stop the summation as soon as the sum of the available capacity and the 

aggregated action exceeds the upper limit, (i -1) C max +a, > U11; and i >N or after a 

fixed number of periods H. 

3) In this third method we do not consider any variability in the demand, but instead 

we assume that the value of the penalty cost function decreases with every order 

that is produced. For every period we determine the expected number of orders. 

As long as the expected number of orders is larger than the available capacity 

minus set-up times, a multiple ofCmax, the penalty function decreases with an 

amount p. If the expected number of orders is k units smaller than the multiple of 

Cmax, then the penalty function decreases with an amount p rl, where a is a 
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constant that can be chosen freely between 0 and 1. The choice for the value of a 

that yields the smallest average costs depends on the tightness of the capacity and 

on the the values for s, h and p. This results in the following penalty function: 

P3(tla)=p L ((F;-((i-l)Cmax+aa)+ 1~)l(o,F,]((i-l)Cmax+aa)+ i=O., •• ,H 

(5.2.14) 

In the summation we can stop after H periods, where H can be chosen freely, or 

as soon as we have a very small term for i >N. 

Now we return to the description of the algorithm. If in the first part available capacity 

is not allocated entirely, we come to this second part to consider the effect of the 

aggregated action aa. Because we have taken already some decisions about the 

production in the first part, we do not have to consider all possible values for aa. If in 

the first part capacity has been allocated to k different types and the remaining 

available capacity is Ct-h then the lower value we have to consider for aa, written as 

amin is the sum of the actions taken in the first part: 

k-1 
amin= 1:(i;-S) 

i=O 
(5.2.15) 

and the upper value, a malt is determined by adding the remaining capacity to a min: 

(5.2.16) 

For these values of a,, we determine the penalty cost value P 1 (aa), or as an alternative, 

P 2(aa) or P 3(aa). Since we are merely interested in the differences in penalty cost 

value between different values of aa, we define the marginal penalty costs, written as 

P*(j). 

This non-negative function p* (j) gives the reduction in the penalty cost function value 

if we take the aggregate action j+amin instead of a min. The remaining part of the rule is 

quite easy. If the minimum value of the extra base costs minus the marginal penalty 

costs, K~r;(ia:.ia:)-P*(ja:), is positive, then we stop. If the minimum is zero or negative, 

then the best 'action' (i~r;ojJt) will be taken, which implies that j" units of capacity are 

allocated to type ia:. Then we adapt the remaining capacity, Ct=Ct_1-j", the values for 

the base costs for the type i~r; and the marginal penalty costs P*(j). If there is no more 
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remaining capacity, we stop, but otherwise we continue with the next pair. 

Determine the pair (iJ) for which Kk+! (i,j) is minimal with i==l, .. ,M, j=l, .. ,Ck. 

Finally, if the extra base costs are larger than the penalty cost reduction or if all 

available capacity is used, the planned actions can be performed and the procedure 

can be repeated the next period. 

In Section 5.2.5. some examples are given. From these examples we will learn the 

performance of the penalty cost functions for different parameter values and we will 

also consider the CPU-time for the simulation with the three penalty cost functions. 

5.2.4. A semi-fixed cycle rule 

5.2.4.1. Introduction 

A production rule that is even more simple than the extended (x,1)-rule is the fixed 

cycle production rule. As described in Chapter 3, a fixed production cycle is a cycle in 

which both the sequence in which the types will be produced as well as the available 

capacity for the production of a type is fixed. The fixed cycle rule follows this 

production cycle, which is repeated over and over again. In the situation with a 

normal gating service discipline without possibilities for working overtime, which we 

are considering now, the fixed cycle rule assumes that during a period only one type 

of product can be produced. Sometimes this is not a problem, for instance if we find 

that the best value for the time between set-ups, T; in the cyclic production rule 1t, 

which can be found by formula ( 4.2.10), is for all types equal toM periods, where M is 

the number of different types. In that situation it is very logical that in a fixed cycle we 

produce exactly one type every period. 

If we find however, that for even M the best value for the time between set-ups, T;, is 

equal to lhM for every type i, then it is not logical to produce exactly one type every 

period. In that situation, we have two options: we split up the original period in two 

equal parts, which become the new periods, or we decide to produce two different 

types in one period, dividing the available capacity according to the (varying!) 

capacity requirements for both types. A rule in which the production takes place 

according to the second option, that is with a cycle in which we can produce a number 
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of different types during one period with a given length for the period, will be called a 

semi-fixed cycle rule . We can consider the fixed cycle production rule as a special 

case of the semi-fixed cycle rule, with only one type of product every period. 

5.2.4.2. Determining a semi-fixed cycle 

If we want to determine the production cycle in this multi-type capacitated situation, 

two elements are important: the (maximum) number of types we can produce during a 

period, the so-called multi -type level, and the relative frequency of a type. If we denote 

the multi-type level by Land the relative frequency for type i by if;, then the absolute 

frequency of type i, denoted by a/;, is given by: 

if; 
afi.=L~ 

"£if; 
j=l 

The absolute frequency of a type represents the average number of production 

opportunities for a type during one period. The two important elements, the multi-type 

level and the relative frequency, can both be chosen freely. 

We can determine the multi-type level in a simple way by calculating Ti, the average 

time between set-ups for type t, using for instance the cyclic production rule 1ti or the 

uncapacitated (x,1)-rule. From these T-values we can determine the average number of 

set-ups. Then we set the multi-type level equal to the rounded value of the average 

number of set-ups. Of course we have to verify that the available capacity C is large 

enough to allow the multi-type level we have chosen. 

We can choose the relative frequency of a type in a production cycle proportional to 

the average demand for that type, or to a rounded value of the average demand. An 

alternative is to choose the relative frequency equal to the inverse of Ti, the time 

between set-ups. If we choose for this alternative, we have to be careful and check 

whether the available capacity is sufficient for each of the types. If the capacity 

restrictions are not too tight, the best choice seems to be the alternative relative 

frequency based on the absolute frequency in an uncapacitated situation, because this 

frequency also considers the average costs. In a situation with a strongly restricted 

capacity the average costs based on the uncapacitated situation are not very important, 

whereas the 'traffic intensity' becomes a much more important element in the costs. 
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The next question considers the orders we have to produce if there is capacity 

available for a type. Logically, for type i, we will at least produce all orders which 

have to be delivered within T; periods. However, if the next production opportunity 

for type i is more than T; periods later, it will be profitable to produce all orders which 

have to be delivered before the next production opportunity, especially if the holding 

costs for an order are much less than the penalty costs. Of course the number of orders 

we can produce from a type is bounded by the available capacity. The restricted 

capacity leads to an extra problem in the situation in which we have to divide the 

insufficient capacity over several types. In that case we shall use a strategy that Maes 

and Van Wassenhove (1986) call a South-East strategy, in which we start with the 

orders that should be delivered by the end of the current period, starting with the type 

whose next production opportunity is the most far away, then the other types and then 

we continue with the orders that should be delivered by the end of the next period and 

soon. 

5.2.5. Numerical results 

In order to find out whether the extended (x,T)-rule performs well, its performance 

will be compared with the two-step rule and the semi-fixed cycle rule. In the 

simulation we will consider three examples, in which we compare the CPU-time as 

well as the average costs per period. One example has a multi-type level of one, once 

with tight capacity restrictions and once with a lot of capacity available and a third 

example in which usually two types of products will be produced in a period and in 

which the capacity restrictions are rather tight again. In all examples, the orders arrive 

according to independent Poisson processes. 

Example5.1 

In this example we have 3 types of products (M = 3), a maximum lead time of 4 

periods (N=4), a capacity C=12, set-up time S=l, set-up costs s=50, penalty costs 

p = 10 and holding costs h = 1. Orders arrive according to independent Poisson 

processes, with intensity d;i for type i and lead time period J. The matrix D with the 

elements d;i is given by: 

[ 
0 0.25 0.50 l.OOJ 

D = 0 0.50 1.00 2.00 
0 0.50 l.OO 3.00 

(5.2.17) 
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For the cyclic rules 'It;, i=1,2,3, and the corresponding time between set-ups T; and 

average costs g~. which we use in the salvage function L;(a1) in the first step of the 

two-step rule, we find the following values: 

[ 

T1 gil [ 4 17.56] 
Tz g~ = 3 21.50 
r 3 gi 3 22.50 

(5.2.18) 

The average demand per period in this example is 9.75. With one set-up every period 

we find that about 90 percent (10.75 out of 12) of the available capacity will be used. 

Therefore we set the multi-type level in the semi-fixed cycle equal to one and the 

relative frequency proportional to the average demand. We find a cycle with a length 

of 39 periods, in which the absolute frequency for the types is 7/39,14/39 and 18/39 

respectively. In the extended (x,n-rule we also produce one type in most of the 

periods, now by choosing mel= 3 and ecl=4. We have chosen the matrix of penalty 

points and the .x1 values by a trying some different values based on intuition. Along the 

lines described in 5.2.2.2., every order has been given penalty points. Of course, the 

orders with a residual lead time of one period or less, have been given a much larger 

number of penalty points. For the orders with longer residual lead times, the number 

of penalty points decreases more or less exponentially. Furthermore, orders for the 

type with the smallest average demand have been given more penalty points. The x1 

values are slightly less than the g~ values in (5.2.18). The choices presented in 

(5.2.19) and (5.2.20) were reached after only two trials. Further changes did not yield 

better results. 

[ 
10 4 2 1] 

Q= 8 3 1 1 
6 3 1 1 

The pairs (x1,T1), i=1,2,3 are chosen as 

[
Xl T1] [ 16 4] Xz T2 = 20 3 
x3 T3 20 3 

(5.2.19) 

(5.2.20) 

For the penalty cost functions P 2 (.) and P s (.) we have used different values for me and 

a respectively. These values are given between the brackets of the penalty costs 

function in the Table 5.1. 

In this table we see that by making the right choices for a and for me we can obtain 

much better results with the penalty cost functions P 2 and P 3 than with the penalty 

cost function P 1• The increase of the CPU-time is quite small. The average costs of 
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set-up holding total cost CPU(ms) 

50.75 30.20 4.39 85.34 1973 

51.55 24.66 5.53 81.74 2086 

Pz(l) 52.40 18.54 6.49 77.43 2141 

Pz(2) 56.20 10.16 8.90 75.26 2164 

59.85 5.71 11.37 76.93 2201 

P 2(4) 61.95 4.91 12.24 79.10 2302 

P3(0.ZS) 51.95 21.00 6.09 79.04 2233 

52.60 18.49 6.63 77.72 2225 

55.60 11.40 8.21 75.21 2283 

63.00 4.93 12.50 80.43 2239 

ext. (x,T) 51.80 12.65 8.92 73.37 544 

cycle 50.00 53.02 9.36 112.38 457 

Table 5 .I The performance of the production rules 

the semi-fixed cycle rule are very high and this rule does not seem very useful for 

practical situations. Quite surprising in this example are of course the average costs of 

the extended (x,T)-rule. We expected that the average costs would be the same as for 

instance the average costs of P 1, but the average costs are lower than for any other 

rule. Moreover, the CPU-time is only a little more than the CPU-time for the semi

fixed cycle. The CPU-time for the semi-fixed cycle rule is only based on the 

generation of the random demand and the administration. 

In the Pz rule with high me-values as well as in the P 3 rule with high a values and the 

extended (x,T)-rule we are almost not interested in savings on holding costs and 

therefore we have an advantage of a few orders if we come to a number of periods in 

which there are severe capacity shortages. We now are curious whether the same 

elements can be observed in the results of Example 5.2. 
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Example5.2 

The second example has the same structure as the first one. Now we have 7 product 

types (M=7), a maximum lead time of 5 periods (N=5), a capacity C=30, set~up time 

S=l and the same costs: set~up costs s=50, penalty costs p=lO and holding costs 

h = 1. Orders arrive according to independent Poisson processes and the matrix D with 

the elements dii is given by: 

0 0.25 0.50 0.75 0.75 
0 0.50 0.50 0.75 0.75 
0 0.50 0.75 0.75 1.00 

D= 0 0.50 0.75 1.00 1.25 (5.2.21) 
0 1.00 1.00 1.00 1.50 
0 1.00 1.00 1.50 1.50 
0 1.00 1.50 1.50 2.00 

For the cyclic rules x;, i=l, .. ,7, and the corresponding time between set-ups T; and 

average costs g~, we find the following values: 

18.31 
20.25 
21.00 
21.50 
23.83 
24.33 
25.33 

(5.2.22) 

The average demand per period in this example is 26.75. With two set~ups every 

period we have that about 96 percent (28.75 out of 30) of the available capacity will 

be used. This is rather a high percentage, but with a multi~type level of one the time 

between two production periods is too long. Therefore we set the multi-type level for 

the semi-fixed cycle equal to two and the relative frequencies again proportional to the 

average demands. We find a cycle with a length of 107 periods, in which the absolute 

frequencies for the types are given by 18/107,20/107,24/107,28/107,36/107,40/107 

and 48/107 respectively. 

In the extended (%,7)-rule, we now choose mel =6 and eel =6. The matrix Q with the 

penalty points Iii for type i and residual lead time j is chosen in more or less the some 

way as in Example 5.1., where orders which cannot yet be produced, and also some of 

the orders with a small probability for production, are given no penalty point The best 
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choice is given by: 

10 5 3 1 1 
9 5 3 1 1 
8 4 3 1 0 

Q= 8 4 2 1 0 (5.2.23) 
7 3 2 1 0 
6 3 2 1 0 
6 3 1 0 0 

The pairs (;x;;,T;). i=l, .. ,7 are chosen as 

X1 T, 
22 4 xz Tz 22 4 

X3 T3 23 4 
X4 T4 24 3 (5.2.24) 
xs Ts 23 3 
X6 T6 

23 3 

X7 T1 24 3 

The results of the simulation of this second example are given in Table 5.2. 

Strategy set-up penalty holding total cost CPU(ms) 

PI 100.75 90.05 15.64 206.44 7123 

P 2(0.5) 106.05 5~07~ 179.24 7646 

Pz(l) 106.75 48.25 177.45 7756 

P2(2) 112.60 28.27 27.53 168.40 7993 
! 

P2(3) 120.00 18.17 33.38 171.55 8074 

P 2(4) 124.05 14.30 36.86 175.21 8265 

P3(0.25) 107.00 52.38 20.91 180.29 8166 

P3(0.5) 106.85 46.82 21.96 175.63 8153 

P3(0.75) 108.65 40.78 23.60 173.03 8212 

P3(0.9) 115.30 24.54 29.58 169.42 8147 

P3(0.95) 127.50 12.75 38.22 178.47 8221 

ext. (x,T) 110.50 38.74 28.14 177.38 1441 

cycle 100.00 139.53 20.19 259.72 1289 

Table 5.2 Performance of the production rules 
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The results in Table 5.2 show a lot of resemblance with the results in Table 5. I: again 

the average costs of the two-step rule are minimal for good choices of ex and me in P 2 

and P 3 and again the average costs of the semi-fixed cycle rule are very high. But this 

time the extended (x,1)-rule no longer is the production rule with the smallest average 

costs. We have tried about ten different sets of Q values for this rule and almost every 

time the average costs per period has been in the interval [177.5,180]. Therefore we 

expect that we cannot do much better in the extended (x,1)-rule than the choice we 

have made. Of course it should be noticed that the CPU-time for this rule is much 

smaller than the CPU-time for the two-step rule. Without the random demand 

generator and the administration, the extended (x,1)-rule may be up to 40 times faster 

than the two-step rule. 

Example5.3 

In the Examples 5.1 and 5.2 the capacity restrictions were very tight. In order to see 

whether the differences in average costs also appear in the situation in which the 

capacity is rather loose, we will consider a third example. Therefore we take again 

Example 5.1, but now with an available capacity of 15 instead of 12. With one set-up 

every period, about 72 percent (10.75 out of 15) of the available capacity will be used. 

The cyclic rules 1t; are not affected by the change in capacity, therefore (5.2.18) still 

holds and we can also use the same semi-fixed cycle. For the extended (x,1)-rule we 

used the same set of values for the pairs (x;,T;) as in (5.2.20). Because it will not be 

very profitable to produce orders with a longer residual lead time, the penalty points 

for these orders have been decreased and after some trials we have found the 

following set of values for the penalty points: 

[ 
10 3 1 0~ 

Q= 8 2 0 0 
6 2 0 0 

(5.2.25) 

We used the values mcl=6 and ecl=6. In Table 5.3. the results of the simulation of 

Example 5.3 are given. 

In Table 5.3 we see that the differences between the three penalty functions are much 

smaller than in the previous situations. In this situation, the capacity is usually enough 

to produce those orders that give a base cost reduction for one of the types, but the 

remaining capacity is not enough to produce orders for another type. On the 

aggregated level capacity shortages hardly occur, therefore there is almost no 

difference between the penalty functions. Only in the situation with a=0.9, we 
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Strategy set-up penalty holding total cost CPU(ms) 

PI 46.60 16.49 6.29 69.38 2141 

Pz(0.5) 46.65 13.32 7.41 67.38 2202 

Pz(l) 46.70 13.23 7.41 67.34 2209 

P2(2) 47.05 12.49 7.60 67.14 2229 

P2(3) 48.50 8.15 8.97 65. 2295 

P 2(4) 52.85 3.46 11.66 67.97 2505 

P3(0.25) 47.10 12.36 7.70 67.16 2283 

P3(0.S) 47.45 10.93 7.97 66.35 r--nm-
P3(0.?S) 6.61 9.52 64.93 2271 

P3(0.9) 56.90 1.51 14.65 73.06 2379 

ext (x,T) I 43.70 11.86 9.81 65.37 542 

cycle 50.00 10.22 19.95 80.17 464 

Table 5.3 Performance of the production rules 

overestimate the future penalty costs enormously and therefore the holding costs and 

the set-up costs are much higher than with the other choices. 

It is not very difficult to draw a conclusion from these examples. The extended 

(x,T)-rule performs quite well in all examples, using only very little computation time 

and leading to average costs which are about as good as the average costs for the best 

choices of a or me in the two-step rule, especially in situations in which the capacity 

restrictions are not extremely tight. Finding optimal values for the matrix Q containing 

the penalty points and for the pairs (x;,T;) may seem very difficult, but the production 

rule is not very sensitive for small changes in these values, allowing us to use almost 

the same values in both Example 5.1 and Example 5.3. Therefore it will be quite easy 

to find good values for Q and (x;,T;). 
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5.3. Situation in which extra capacity is available 

5.3.1. Introduction 

In this section we shall consider the dynamic multi-type, capacitated problem in 

which extra capacity is available. The extra capacity may be the result of the hiring of 

extra labour forces for the production unit or it also may be the result of buying 

products from another fum. In both cases the costs will be higher than the normal 

production costs. We will assume that the extra costs are linear with the amount of 

extra capacity that is used. Once again the performance will be measured by the long 

term average costs per period. This problem is even more complicated than the 

problem of minimising the average costs in the situation in which we cannot use extra 

capacity. Therefore we will again concentrate our attention on finding a good 

heuristic, with low average costs and with small computational efforts. 

If there is usually enough capacity available or if the extra costs for extra capacity are 

very small, then the situation will be much like the situation in Section 4.2. and we 

can use the heuristics described in that section. In most of the practical situations 

however, the capacity will be restricted and hiring extra labour forces will be 

expensive. Therefore we shall consider the same heuristics as in the previous 

subsection and adapt these heuristics to the possibility of using extra capacity. 

Extra capacity can be used to produce some extra orders of a certain product type. 

Due to the production of some extra orders the next set-up for the type can be delayed 

and in this way we can save on set-up costs. But the savings due to the production of 

some extra orders cannot be larger than one extra set-up, at costs s. If the cost for the 

extra capacity is z per unit of capacity, this implies that it will not be profitable to 

produce more than .!. extra orders, at least not for the reason of saving on set-up costs. 
z 

Due to the production of some extra orders we can also save on the penalty costs. This 

will be profitable for potential late orders, for which penalty costs have to be paid if 

the orders are not produced by the end of the period. For other orders however, 

production will only be profitable in the situation in which we are (almost) certain of 

capacity shortages. If we know that extra capacity will be necessary during the next 

periods, the extra capacity can be used immediately, but even then it will only be 

profitable if we can use the capacity for orders that have to be delivered in one of the 

periods during which capacity shortages occur. Keeping all this in mind, the heuristics 
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from Section 5.2. will be adapted to the possible use of extra capacity. 

5.3.2. Extended overtime (x, T)-rule 

5.3.2.1. Introduction to the extended ovel1iDE (x, T)-rule 

In the situation in which there is no possibility for working overtime the extended 

(x,1)-rule has proven to be .a .simple and fast heuristic with small average costs per 

period. Therefore we will adapt this production rule to the possibility of working 

overtime. This results in the extended overtime (x,7)-rule. There will be only one big 

difference with the extended (x,1)-rule from Section 5.2.2. and this difference is of 

course that in some situations we will use more capacity than the normal available 

amount. The decision about the use of extra capacity will be taken according to a 

simple rule. 

5.3.2.2. Formulation of the extended overtime (x, T)-rule 

In this rule we also use penalty points that give an indication for the urgency of an 

order and to determine the most urgent type. Finding good choices for the penalty 

points and for the required minimum amount x; will again be a matter of trial-and

error combined with intuition. Now we will describe the extended overtime (x,1)-rule 

for a given set of penalty points, with fii• i=l, .. .M, j=l, .. ,N, the penalty points for an 

order of type i with a residual lead time of j periods. In this description we assume that 

we have a given set of pairs (x;,T;), i=l, .. ,M. 

The penalty points for a type, written as K(i), are defined as in (5.2.1) by: 

N 
K(i)= 'I;J;i r;i 

j=l 
(5.3.1) 

If K(i)<x; for all i, then we do not produce at all during the period. Otherwise, we 

place the types with a sufficient amount of penalty points in a sequence {i.,i 2, .. ,i,J, 

with HM, such that K(i 1 )'~K(i2J~.~(i1). Types with an equal number of penalty 

points are placed according to an increasing average demand. In the uncapacitated 

situation we would produce all types in this sequence and the amount for type i1 would 
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be: 

T~ 

ai, = I,ri.i 
j=l 

SEVERAL TYPES OF PRODUCTS ON ONE MACHINE 

(5.3.2) 

The first part of the extended overtime (x,D-rule is now exactly the same as the first 

part of the extended (x,D-rule. Following the sequence we allocate capacity to the 

various types. We do not allocate capacity to the next type if the remaining capacity is 

less than the minimum capacity level mel and we can possibly produce some extra 

orders for some of the types if the remaining capacity level is less than the extra 

capacity level eel and if capacity has been allocated to all product types in the 

sequence. 

The difference with the extended (x,D-rule happens in the situation in which there is 

no more capacity available after the first round. Usually this implies that for one of the 

types, type i say, we have not planned to use the uncapacitated amount ai+S in the 

first round but a smaller amount, say Ck. If we have the situation in which only a 

subset of the orders for period k, with k <Ti, are planned to be produced, we will at 

least produce all orders for type i with a residual lead time of k periods. In all other 

situations we produce all orders for type i with a residual lead time no longer than Ti, 

for which the sum of the holding costs and overtime costs is less than the penalty costs 

for one period: 

h(residuallead time in periods)+zSp (5.3.3) 

We will not use extra capacity to produce orders with a residual lead time later than 

Ti. 

5.3.3. The two-step overtime rule 

First we shall consider the extension of the the two-step rule described in Section 

5.2.3 .. Both steps of the heuristic have to be changed if we allow the possibility of 

working overtime. In the first part we no longer can restrict the number of possible 

actions for a type by considering only the actions O,l, .. ,C-S. H there are enough 

orders for a type any action is possible now. Not all actions however, have a chance 

to be chosen as one of the best actions in the first step. The most obvious candidates 

for being the best action for a type, are those actions in which we produce all the 

orders for an integer number of periods and of course, if there are enough orders for 
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the type, also the action C -S, in which no extra capacity is used In order to limit the 

computation times only these obvious actions are considered Unlike the marginal 

penalty costs, the costs for working overtime will be included in the so-called base 

cost reduction. Therefore the values for the base cost reduction have to be recalculated 

after every step in the first part of the heuristic. 

Except for the case in which all orders will be produced according to the allocations in 

the first step in the heuristic, we will always come to the second step, even if all 

normally available capacity has been used In this second step we consider the 

production of some extra orders in order to avoid future penalty costs due to capacity 

shortages. Due to the possible extra capacity we are no longer interested in the sum of 

the capacity shortages, like we did in the penalty functions P 1, P 2 and P 3, but more in 

the maximum shortage. Disregarding the variability in the demand it is clear that if we 

produce an extra amount of orders in this period which is equal to the maximum 

shortage, there will be no shortages. Therefore we have to use other penalty functions 

in this situation. Again these functions use the variability of the demand differently: 

1) We do not consider any variability, but we just consider the costs for working 

overtime we would have if the number of orders would equal Fi and if, from the 

second period on, we would take the maximum action Cmax. The 'penalty' costs 

is this model are given by: 

Q,(a4 )=z .max [Fi-(i-l)Cmax -aa] + 
t:}.. •. ,N 

(5.3.4) 

We only have to consider the firstNperiods, since we assume that Cmax>eaN. 

2) In the second method we will consider the same variability as in the penalty 

function P 2 , by assuming a uniform distribution with the same mean and 

variance as the original distribution. We have to determine the lower limit and 

the upper limit for the cumulative number of orders for the first N periods and 

compare this number with the sum of the available capacity and a4 • Following 

(5.2.10)-(5.2.12) we write again Xai for the maximum deviation, lai for the lower 

limit during period i and Uai for the upper limit. During every period there are 

three possibilities for the extra overtime costs: if the sum of the available 

capacity and the aggregated action exceeds the upper limit for the cumulative 

number of orders, there are no extra costs, if the sum is between the lower and 

the upper limit, there are some extra costs and if the sum is less than the lower 

limit, the extra costs for working overtime are complete, that is, like in the 
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penalty function Q 1 : 

Qz(aa)=z .max {<Fi-(i-l)Cmax -a.,)l(o,l .. J((i-l)Cmax+aa)+ 
•='l, .. ,N 

+ (u.,;-(i-l)Cmax- a.,)2 l(l.,.,u,.,)((i-1) Cmax+a.,)) 

4Xai 
(5.3.5) 

We also consider the first N periods, because we cannot produce extra orders for 

later periods. 

3} In this third method we do not consider any variability in the demand, but instead 

we assume that the penalty function decreases with for every order that is 

produced. Therefore we also assume 'penalty' costs if the available capacity is 

large enough. As long as the expected number of orders is larger than the normal 

available capacity minus set-up times, a multiple of Cmax• it decreases with an 

amount z, the costs for 1 unit of extra capacity. If the expected number of orders 

is k units smaller than the multiple of c max' than the penalty function decreases 

with an amount z ci, where a is a constant between 0 and 1 which can be chosen 

freely. Again we will consider the period in which the available capacity is the 

most tight. This results in the following penalty function: 

(5.3.6) 

The two-step overtime rule is not much different from the two-step rule.· In the first 

part we calculate the base cost for every type and for those actions that consist of 

producing all orders for a type for an integer number of periods (including 0) or the 

action in which the normal available completely. This set of possible actions is 

denoted by A;, where i is the type of product we consider. 

Determine Co(i,ai)=q(r;,ai)+L;(ai)+z(at-e+S) for i=l, .. ,M, a;eA;. 

We define Co(i,j)=oo if a,-EA;, that is for those actions we expect to be non-optimal or 

actions which are siniply impossible, because there are not enough orders for the type 

we consider. As in the two-step rule we now determine the base cost reduction Ko(i,j), 

defined as the difference in the base costs between the use of j units and 0 units of 

capacity for type i. Using j units of capacity implies that action a;= j-S is taken. The 
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subscript '0' indicates the number of steps in the algorithm. Let Bi be the maximum 

use of capacity for type i, that is the sum of Sand the largest element of A;. 

Determine K 0(i,j)=Co(t,j-s)-Co(i, 0) for i=l, .. ,M,j=S, .. ,B1 • 

We defineK0(i,j)=s ifO<jSS andK0(i,0)=0 for i=l, .. ,M. Now the capacity 'action' 

for which the base cost reduction K 0(i,j) is minimal is the best one-step 'action'. 

Determine the pair (ij) for which K0(i,j) is minimal with i::l, .. ,M. 

Assume that the base cost reduction is minimal for the pair (i0,j0). If it is optimal to 

use no capacity, that is if the minimum value is larger than 0, then we continue with 

the second part of the rule. Otherwise, at least j 0 units of capacity will be used for a 

set-up and the production of orders of type i0 • Now we set C 0 =C- j 0 , the remaining 

capacity, and we adapt the base cost reduction for the type io for the values up to the 

new maximum B1• which is defined as the old maximum minus j 0 • 

Determine Kt(io,j)=Ko(io,j+jo)-Ko(io,jo) forj=O, .. ,BI •• 

For the other types the base cost reduction K 1 (t,j) can be different from K 0(i,j). If 

j ::;;c 0 we do not have overtime costs. For the values j>C 0 we have extra overtime 

costs of min(zj0 ,z(j-G0)). If the action C0-s does not belong toA1 we also determine 

the base costs and the base cost reduction for this action. 

Determine K ,(i,j)=Ko(i,j+jo)+zmin(jo,j-Go)+ forj=O, .. ,Bj, i :F:io. 

Now we will consider the production for one of the other types. 

Determine the pair (ij)for whichK 1(i,j) is minimal with i=l, .. ,M, j=l, .. ,B1 • 

As long as we can reduce the base costs we repeat the procedure of determining the 

best one-step action, adapting the base cost reduction and adapting the remaining 

capacity. Finally we come to a situation in which the base cost cannot be reduced any 

more. Then we determine the new values for B; and we calculate the base costs and 

the base cost reduction for all values between 0 and B;, which have not been 

considered in the first part The new value for B; may be different from its previous 

value, because now we also consider the fact that, regardless of the penalty function 

that is used, the production of an extra order yields a penalty cost reduction which 
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cannot be larger than the extra costs for one unit of extra capacity. For this reason 

some of the actions may never be the most profitable ones and therefore the new value 

for B1 may be smaller than the previous value. In this production rule we always 

continue with the second part. 

In this second part we will consider the possibility of producing some extra orders to 

avoid capacity problems in the future. Therefore we consider the effect of the 

aggregated action a,.. Because we have taken already some decisions about the 

production in the first part, we do not have to consider all possible values for a,. The 

lower value for a,. we have to consider is the sum of all actions in the first step of the 

rule minus the set-up times and is given by a min in (5.2.15). The upper value we have 

to consider, a 111ax, is now different from the one that is defined in (5.2.16). Now the 

upper value is given by the sum of a min and the maximum amount of extra capacity B1 

for all types: 

M 
alllOX =a min+ L Bt 

i=l 
(5.3.7) 

For these values of a,., we determine the penalty cost function Q1(a,.), or as an 

alternative, Q2(a .. ) or Q3(a,). Since we are merely interested in the differences in 

penalty cost values between different values of a12 , we define the marginal penalty 

costs, written as Q * (}). 

This non-negative function Q•(J) gives the reduction in penalty costs if we take the 

aggregate action j+amin instead of a min. The remaining part of the rule goes along the 

same lines as before. We determine the pair (i~c,j~c) that yields a minimum value for the 

extra base costs minus the marginal penalty costs, K~c(i~c,ii.)-Q* (J~r.). If this difference 

is positive, then we stop. Otherwise, the 'action' (i"'hc) will be taken and we will adapt 

the values for the base cost reduction for all types and we also adapt the marginal 

penalty costs Q"(J). Then we continue with the next pair. 

Determine the pair (iJ)for whichKk.+l(i,j) is minimal with i=l, .. ,M, j=l, .. ,Bt. 

Fmally, if the extra base costs are larger than the penalty cost reduction, the planned 

actions can be performed and the algorithm can be repeated the next period. 
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5.3.4. The semi-fixed cycle rule 

The semi-fixed cycle rule does not change very much if there becomes a possibility 

for working overtime. As well as in the situation with a strict capacity we choose the 

relative frequency for all types in a production cycle and we will produce the different 

types according to their sequence in this production cycle. The difference between the 

rule in the strictly capacitated situation and the rule in this situation is found in the 

orders that we produce for a type if there is a production opportunity for this type. 

Now we always produce at least all known orders that have to be delivered before the 

next production opportunity. Possibly some extra capacity is necessary for this 

production. However, if there is still available capacity and if the next production 

opportunity for the type we produce, type i say, is less than T; periods later, then it 

may be profitable to produce some extra orders and thus avoid future capacity 

problems. This extra production will only be done for those orders that have to be 

delivered within T; periods. In the situation in which the available capacity has to be 

divided over more than one type, this will be done according to the so-called South

East strategy, that has been described in 5.2.4.2. 

5.3.5. Numerical results 

We will study the performances of the production rules using some examples. 

Because we also want to study the effect of the possibility of performing work in 

overtime we shall consider the same situations as in the Examples 5.1 and 5.2 in 

5.2.5., once with high costs for working overtime and once with low costs for working 

overtime. 

Example5.4 

In this example the situation from Example 5.1 is considered, with 3 types of products 

(M = 3), a maximum lead time of 4 periods (N =4), a capacity C = 12, set-up time S = 1, 

set-up costs s =50, penalty costs p = 10 and holding costs h = 1. The costs for working 

one extra unit are the same as the penalty costs: z = 10. Orders arrive according to 

independent Poisson processes, for which the intensities are given by (5.2.17). 
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The semi-fixed cycle we use in this Example is the same one as the cycle in Example 

5.1. For the extended overtime (x,1)-rule, we use the same penalty points and the same 

pairs (x;,T;) for all types as well as the same values for mel and eel. The results for 

these choices and for the rules with the penalty costs function QI> Q2(mc) and Q3(a.) 

are given in Table 5.4 .. 

penalty holding overtime 

30.60 3.99 2.27 86.56 

Qz(4) 49.60 20.25 5.55 2.76 78.16 

Qz(6) 51.15 14.43 6.79 3.31 75.68 

Qz(8) 53.85 9.92 7.77 3.52 75.06 

Qz( 76.73 

81.25 

Q3(0.75) 50.55 17.94 6.38 3.25 78.12 

Q3(0.8) 53.30 13.95 6.95 4.19 78.39 

ext. (x,T) 51.25 8.50 9.68 3.03 72.46 

cycle 50.00 16.81 7.35 9.63 83.79 

Table 5.4 The results of the simulation of Example 5.4. 

Comparing the results from Table 5.4. with the results from Table 5.1. we find that the 

effect of the possibility of working overtime only has a very small effect upon the 

average costs for the different rules, except for the semi-fixed cycle rule. For both Q1 

and Q3 it would even be better not to use the possibility of working overtime. For Q2 

and for the extended overtime (x,1)-rule the average costs have decreased a little. 

Obviously the costs of one unit of extra time are too high to make the use of extra 

time very profitable and we see that in all production rules except in the semi-fixed 

cycle rule the average use of extra capacity is only about 3 percent of the normal 

available capacity. 

Example5.5 

In this example we will consider the situation from Example 5.4 but now the costs for 
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working one extra unit are much less than the penalty costs: z = 3. This change has no 

effect upon the semi-fixed cycle that we use, but for the extended overtime (x,T)-rule 

we use a different set of penalty points. Due to the small costs for overtime, it gets 

more important to avoid direct penalty costs than to avoid future penalty costs. 

Therefore, we decrease the penalty points for orders with a residual lead time of 2 and 

more periods and we increase the penalty points for the orders with a residual lead 

time of 1 period or less. 

[ 
13 3 1 OJ 

Q= 11 3 0 0 
1l 2 0 0 

(5.3.8) 

The pairs (x;,T1), i=l,2,3 are also chosen differently. The x1 values have been increased 

to decrease set-up costs. 

[ ~~~~]=[~~;] X3 T3 28 3 
(5.3.9) 

The best results have been obtained for the values mcl=4 and ecl=4. This result and 

the results for the other rules are given in Table 5.5. 

Strategy I set-up penalty holding overtime total cost 

Ql 45.10 13.64 6.08 5.12 69.94 

Q2(4) 45.~ 12.24 6.47 4.81 69.02 

Q2(6) 46.05 10.51 6.98 4.90 68.44 

Q2(10) 47.40 6.48 8.79 4.55 67.22 

51.50 3.41 10.26 4.15 69.32 

Q3(0.75) 44.90 11.66 7.25 5.31 69.12 

Q3(0.85) 45.35 9.26 8.23 5.52 68.36 

Q3(0.90) 48.45 5.60 9.45 5.03 68.63 

ext. (x,T) 43.65 12.21 8.72 3.26 67.84 

cycle 50.00 16.81 7.35 2.89 77.05 

Table 5.5 The results of the simulation of Example 5.5. 
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From Table 5.5. we learn that working overtime indeed can be profitable. The average 

costs are now much smaller for most of the production rules and the choice of the 

parameter for Q2 and Q3 becomes relatively unimponant. In the two-step rule the use 

of extra capacity has increased to about 15 percent. Due to our definition of the 

extended overtime (x,T)-rule and of the semi-fixed cycle rule, the use of extra capacity 

in these rules is still less than 10 percent. In the following example we will study the 

effect of flexible capacity on the situation described in Example 5.2. 

Example5.6 

This example considers the situation from Example 5.2 with 7 types of products 

(M =7), a maximum lead time of 5 periods (N =5), a capacity C =30, set-up timeS= I 

and the same costs as in Example 5.4: set-up costs s =50, penalty costs p = 10, holding 

costs h = 1 and overtime costs per unit which are equal to the penalty costs: z = 10. The 

orders arrive according to independent Poisson processes for the intensities are given 

by (5.2.21). 

The semi-fixed cycle we will use in this example is the same cycle as the one in 

Example 5.2 with 107 periods. The penalty points for the extended overtime (x,1)-rule 

and the pairs (xi,Ti) and the level of mel and eel are also the same as in Example 5.2, 

not because this would be the best choice, but to illustrate the robustness of this rule. 

The results for this example are given in Table 5.6. 

In Table 5.6. we can recognise the same elements as in Table 5.4. but now even 

stronger. The results for the penalty functions Q2 and Q3 are much worse than in 

Example 5.2. In Example 5.2. the available capacity was used almost completely by 

overestimating the future penalty costs. But now this overestimation results in a 

negative effect, such as unnecessarily high overtime costs. The average costs of the 

(x,1)-rule are less than in Example 5.2. due to a limited use of extra capacity. 
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Strategy set-up penalty holding overtime total cost 

Ql 100.95 79.47 15.74 2.41 198.57 

! Q2(4) 104.25 48.11 19.85 5.19 177.40 

Qz(6) 105.15 43.87 20.86 7.02 176.90 I 

Q2(8) 104.65 45.70 20.88 7.43 178.66 

Q3(0.75) 103.15 49.88 19.94 5.25 178.22 

Q3(0.85) 103.15 47.01 20.62 7.12 177.90 

Q3(0.90) 104.65 45.70 20.88 7.43 178.66 

ext. (x,T) 113.90 25.13 29.87 2.30 171.20 

cycle 99.25 50.50 24.25 16.90 190.90 

Table 5.6 The results of the simulation of Example 5.6. 

Example5.7 

Consider once again the situation of Example 5.6, but with costs for working overtime 

that are less than the penalty costs: z =5. Again the semi-fixed cycle is not affected by 

this change, but the extended overtime (x,1)-rule is. For this rule we have found the 

following set of penalty points: 

14 5 3 1 0 
14 5 3 1 0 
12 4 3 1 0 

Q= 11 4 2 1 0 (5.3.10) 
10 3 2 1 0 
9 3 2 1 0 
9 3 1 0 0 

The pairs (xi,T;), i=l, .. ,7 are chosen as 

Xt Tl 29 4 x2 Tz 30 4 
XJ T3 32 4 
X4 T4 32 3 (5.3.11} 
xs Ts 32 3 
X6 T6 32 3 
X7 T1 33 3 

and we have found mcl=6 and ecl=8 as being the best choices for these two levels. 
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Table 5.7. contains the results of this Example. 

Strategy set-up penalty holding overtime total cost 

Ql 103.60 ~ 16.82 5.34 181.95 

Qz(4) 104.55 39.32 20.51 5.70 170.08 

Q2(6) 104.90 34.23 22.09 6.87 168.09 

Qz(8) 105.25 35.73 21.87 7.73 170.58 

Q3(0.75) 102.65 44.08 20.13 5.97 172.83 

Q3(0.90) 105.25 34.39 22.25 7.15 169.04 

Q3(0.95) 105.50 33.90 22.25 7.15 168.80 

ext. (x,T) 106.50 28.93 28.84 4.41 168.68 

1 cycle 99.25 50.50 24.25 8.45 182.45 

Table 5.7 The results of the simulation of Example 5.7. 

In Table 5.7. the lowest average costs are about the same as in Example 5.2. From 

this we can learn that for the more complicated rules such as Q2 and Q3 , the 

possibility of working overtime does not have much advantages unless the extra 

capacity is very cheap. For the simple production rules such as the (x,1)-rule and 

especially the semi-fixed cycle rule, the use of extra capacity is much more 

interesting. 



Chapter 6 

ANALYSIS OF MULTI-TYPE MODELS 

6.1. Introduction 

In Chapter 5 we have studied multi-type models and we have detennined the average 

costs of various production rules for a few examples by means of simulation. In this 

chapter we want to consider some simple production rules which can be used to 

calculate the performance of the production system in certain situations. For example: 

what can be the expected delivery time for orders of a particular type and priority. 

The relevance of the production rules is less in the rules themselves than in the 

information they may give about costs and the elements that contribute to the total 

costs: penalty-costs, holding costs, set-up costs and costs for working overtime. By 

using these rules we want to examine which delivery times and which lead times are 

reasonable. Like in the queuing theory, we do this by accepting orders in the system 

without specifying a lead time at all on arrival, but by considering the number of 

periods or the time that they are in the system. 

In this chapter we will develop two production rules for two different situations. In 

both situations we will consider a production situation with one machine on which M 

different types of products are manufactured. We start with a situation where we have 

periodic review as in Chapter 4 and Chapter 5. In every period a decision has to be 

made about the production during that period. Before starting the production of a new 

type a set-up has to be done. Doing work in overtime is possible. There are not many 

good production rules for which we can calculate the performance in this situation. 
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One production rule that allows an almost exact calculation of the performance is the 

rule in which we produce every product type according to a separate (x,T}-rule, 

independent of the production of other types. If the capacity restrictions are tight or if 

the costs for working overtime are not very small, this production rule will not yield 

very satisfying results. Therefore we will add some of the ideas from Chapter 5 to this 

rule, in order to make it more sensible. We will call the resulting production rule the 

multi (x,1)-rule. 

The second situation that we will consider is a situation in which we have continuous 

review: we can change the production plan whenever we like and we can continue the 

production of a type as long as there are orders for this type. It is not so difficult to 

think: of a production rule for this situation: produce the most urgent type until all the 

orders for this type have been produced. Of course, a production rule for this situation 

may also contain other elements, such as a minimum number of orders that is 

necessary for justifying a set-up, or producing only a maximum number of orders, but 

the suggested production rule yields a good basis for more elaborated rules. In the 

production situation we have a restricted capacity and no extra work can be done in 

overtime. The analysis of the production rule will be executed by using techniques for 

queuing models. In order to simplify the analysis we will assume an extended service 

discipline, which means that during the production 'period' of a certain type, we will 

always produce all the orders for that type, even those arriving during the production. 

The performance of this rule will be compared with .the performance of the fixed 

production cycle rule. 

6.2. The multi (X; T)-rule 

As we have already indicated in the introduction of this chapter, this decision rule is 

based on a separate (x,T}-rule for every type. Some characteristic elements from other 

rules will be added. For every type the urgency is measured by the number of penalty 

points. A minimum number of penalty points is necessary before the production of a 

type is considered. Of course, the order states for the different types will be 

dependent. We will consider a special form of dependence. Therefore, from the semi

fixed cycle production rule the so-called multi-type level will be added, introduced in 

5.2.4. If the number of types with a sufficient number o( penalty points is less than the 

multi-type level, then we produce the orders for all of these types. If the number of 
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types is larger than the multi-type level, we produce a number of types that is equal to 

this level. By limiting the number of types that can be produced during one period, we 

can create a special form of dependence. We can also limit the average amount of 

extra capacity that is needed and of course also the number of set-ups per period. 

From the extended overtime (x,1)-rule, introduced in 5.3.2., we will use the element of 

producing the type(s) with the highest number of penalty points and the element that 

we will not produce one more type if the remaining capacity is too small. If two types 

have the same number of penalty points, we will prefer the one with the smallest 

average demand. One element that remains from the original uncapacitated (x,1)-rule 

is that we will always produce all known orders of the type that we produce. This 

element is essential for the simplicity of the analysis. 

Resuming the elements described above, the scheduling rule takes the following form: 

at the beginning of each period we determine the most important type(s), in terms of 

penalty points, among those types for which the number of penalty points is at least 

the minimum level. If no such type can be found, there will be no production during 

that period. Otherwise we will produce all demand of the most important type(s), 

except the demand that arrives during the production period. The maximum number 

of types we produce during a period is given by the multi-type level. 

The analysis of this rule will be done by using a decomposition approach, which may 

give a lot of information without too much effort, at least when the multi-type level is 

very small. The choice of the multi-type level can be done in the same way as we have 

described in Section 5.2. If the level is too high, we can shorten the length of the 

periods and thus decrease the level. The analysis of the production rule will be 

described in the next subsection, where we will use a multi-type level of one and a 

multi-type level of two. 

6.2.1. Analysis of the multi (x,T)-rule 

The analysis of this production rule will be done in much the same way as the analysis 

of the uncapacitated (x,1)-rule. For every type of product we consider a Markov chain 

in which the state is given by the number of penalty points. The interaction between 

the different states is found in the transition probabilities. We will consider the 

situation in which there are orders with different priorities. Every order has a fixed 
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number of penalty points, which will not be changed. None of the orders has a lead 

time. In order to simplify the analysis, we make the following assumptions: 

1) the demand per period per type and priority is integer valued, finite, independent 

of the demand for other periods or types and stochastically stationary. 

2) the penalty points of an order depend on the type and priority only and they are 

integer valued, preferably with one penalty-point for an order of the lowest 

priority class, in order to keep the state space as small as possible. 

3) the penalty points of a product type is defined as the sum of the penalty points of 

all orders for that type and a second element. This second element is the product 

of a type dependent constant C; and the number of periods that has elapsed since 

the first arrival of an unfinished order for this type. The number of penalty points 

of the product type is the states in the Markov chain for that type. 

4) the types are ordered according to an increasing average demand, in order to 

simplify the choice of the type in situations in which two types have the same 

number of penalty points. 

The time that is spent in a state depends on the demand of the type, but also on the 

probability that the type is produced. According to the production rule we produce a 

type if the number of penalty points for all other types is smaller ( or equal if the index 

of that type is higher) than the number of penalty points for this type. If the multi-type 

level L is larger than one, then we produce a type if at least M -L out of the M -1 other 

types have a smaller (or equal) number of penalty points. In our calculation we will 

use the assumption that the number of penalty points is independent of the number of 

penalty points for other types. Simulation showed that this assumption does not lead 

to large errors, especially if the number of types is not too small. We will use this 

assumption of independence to determine the probability that we produce a type for a 

given number of penalty points. 

In order to calculate the steady state probabilities for a certain state (type, penalty 

points), we consider one production cycle, just as in the analysis of the uncapacitated 

(x,7)-rule in 4.2.4.4. In this cycle there is one period in which we produce. 

Furthermore, we can be in state 0 during some time, in state 1 during some time and so 

on. The average time that we are in state j during one production cycle will be denoted 

by q (i,j), where i is the type of product that we consider. Thus T(i) = I,q (i,j) is the 
j?.O 
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average time between two production periods for type i. 

In the description of the calculation of the steady state probabilities, we use the 

following notations: 

b;j is the probability that in an arbitrary period the sum of the penalty points of 

the orders for product type i arriving in that period equals j. 

C; is a positive integer, indicating the extra penalty points per period if we do 

not produce type i, while there is demand for this type, independent of the 

arrival times of the orders. 

x; is a positive integer, indicating the minimum number of penalty points that is 

needed to consider the production of type i. 

y (i,j) is the probability that we do not produce type i if there are j penalty points for 

this type. 

The probability y (i,j) depends on the q values for the other types. Since these values 

are not known initially, the value for y(i,j) will be determined in an iterative way. 

Independent of the multi-type level L, we can set for a start: 

y(i,j)= 1 

y(i,j)=O 

These choices result in: 

q(i, 

j-C, 

q(i,j) = {l+q(i, O))b;j+ ~ q(i,k)y (i,k)b;,j-k-C, 
k=l 

for j=0,1 , .. ,xi -1 

for j=x. x. +1, .. 
'· l 

(6.2.1) 

(6.2.2) 

(6.2.3) 

(6.2.4) 

The first part of (6.2.4) originates from two elements: we can move to a state (i,j) 

coming from the state (i, 0) or from one of the states in which we have produced 

(~q (i,j)(l-y {i,j)) = 1 !) with probability bij· In the second part of (6.2.4) we describe 
j?x 

that coming from the state (i,k), we can move to the state (i,j) with probability 

b;,j-1<-C,· From the q values the new y values can be determined in the following way. 

If L=l we can determine the new values y(i,j) for r~x;, using the assumption that we 

produce orders from type i if the number of penalty points for the other types is 

smaller (or equal) or not sufficient for production, by the following formula: 
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where 

g(k.IJ) 
:E q(k,l) 
1=0 

'(i,J> = t-n _:....;r=-<-k>-
~=·'" 

g (k,i,j)=ma:xU-1, x~:-1) 

g(k.i,j)=ma:xu. x~:-1) 
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(6.2.5) 

if k<i (62.6) 

ifk>i (62.7) 

If L=2 then the new values y(i,j) are given by the probability given in (6.2.5) minus 

the probability that exactly one of the other types will be produced: 

y(i,j)= 1-

:E q(k,l) 
1 + !: l>g(k.i,j) 

hi' g(~j)q(k,l) 
1=0 

g(k,i,j) 
:E q(k,l> 
1=0 

!}, T(k) 
(6.2.8) 

with the same definition for g(k,i,j). Like in the extended (x,1)-rule described in 

Chapter 5, we can extend the rule for a multi-type level of two with another element. 

If the number of penalty points for the most important type is very large then we 

produce only one type. In Chapter 5 we have used the maximum capacity level mel for 

a similar purpose. The idea behind this element is that a large number of penalty 

points will usually imply that a lot of capacity will be used and that producing a 

second type would lead to a lot of work in overtime. The maximum number of penalty 

points for type i for which the production of another type is possible will be denoted 

by v1• This new element of the rule has of course also an influence upon the 

calculation of they (i,j)-values. Now the new values can be determined by: "• l :E q(k,I) 

y(i,J)=l- l+!:.l~~~t~l 
hi !: q(k.l) 

1=0 

g(k.i,j) 
!: q(k,l) 
1=0 

T(k) 
(6.2.9) 

Using the new y-values, which we have found in (6.2.5), (6.2.8) or (6.2.9), we 

determine the new values q(i,j) for j';:x; for every type by (6.2.4) and then again the 

new y-values. This procedure is repeated until the changes in the q- and y-values are 

neglectable. We can limit the state space and thereby the computational efforts by 

assuming that there is somexmax for which: y(i,j)=O for all i and for allJ';:xmax· 

The y-values yield the probability that orders for a particular type will be produced the 

next period for a given number of penalty points. From these probabilities and the 



62.1. Analysis of the multi (x,T)-rule 121 

transition probabilities, we can easily calculate the probability that orders for a 

particular type will be produced ink periods, k>l, for a given number of penalty 

points. From the q-values we can easily calculate the distribution for the number of 

penalty points at the end of the arrival period of an order of a certain type and priority. 

Combining this distribution with the probabilities that orders for a particular type will 

be produced in k periods, yields the distribution for the delivery times for all types and 

priorities. From the transition probabilities we can also calculate the probability that 

for a certain type k penalty points correspond with l orders. From these probabilities 

and the y values we can determine the probability that during one period j orders are 

produced, which yields the need for extra capacity. The average number of set-ups 

per period is given by: 

M 
l:CTCi>r1 

i=i 

6.2.2. Numerical results 

(6.2.10) 

In this subsection we will consider two examples, with orders of two different 

priorities, in which we will use the multi (x,1)-rule. In these examples we are 

interested in the delivery times for the different types and priorities. The performance 

of the rule will be measured by the set-up costs, the costs for working overtime and by 

the length of the delivery times. We will assume, arbitrarily, that the revenues will 

decrease linearly with the length of the average delivery times. If S;i is the average 

delivery time of an order of type i and priority j and e;j is the average demand per 

period for these orders and the revenue for an order of type j is Ri, the average 

revenues per period are given by 

M 2 
R = LL Rjeij(S-Sij) 

i=ij=i 
(6.2.11) 

In both examples we will assume a geometrical distribution for the demand. To 

simplify the analysis, we will set a maximum for the number of orders per period for a 

certain type and priority, but neither this maximum nor the distribution will be an 

essential element in the analysis. We will assume that a set-up takes one unit of time. 

In the examples we will measure the performance of the rule with a given set of 

penalty points in three situations with different costs: 
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a) set-up costs s = 100, costs for working overtime z=20 per unit and the reward per 

order R 1 = 10 and R 2 =30. 

b) set-up costs s = 100, costs for working overtime z = 100 per unit and the reward per 

order R1 =10 andR2=30. 

c) set-up costs s=lOO, costs for working overtime z=20 per unit and the reward per 

order R 1 =20 and R l = 30. 

Example 6.1. 

In this first example we shall consider a situation with four types of products (M = 4), 

with an average demand per period that is given by 

[ :~: ::] = [ ~~ g~gl 
e41 e42 1.875 0.625J 

For this example, we will only consider an (x,T)-IUle with a multi-type level L = 1 and 

with no extra penalty points per period, C; =0, i = 1,2,3,4. The choices for the penalty 

points for an order of type i and priority j are denoted by /;.j. We will consider three 

different choices for the matrices XF, which contains the values for the minimum level 

and the penalty points for the different types. 

XF 1 = [ ~~ ~~: ~~]- [ ! ~ ~] 
X3 f3t /32 - 4 1 7 
X4 /41 f42 6 1 5 

and also 

XF, • [ i ! ~]· XF, = u ! i] 
For the calculation of the average amount of work in overtime we will assume that the 

normal available capacity will be 8 units of time, implying that the extra capacity is 

only needed for the variations in the capacity requirements. The analysis of this 

example for the various sets of penalty points provided us with much useful 

information, such as the probability that we produce 6 units of products in one period, 

the percentage of the orders of type 1 and priority 2 with a delivery time of 3 periods, 

the average time between two production periods of type 4 and so on. This 
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information will be summarised in Table 6.1. 

XF-values XFt XF2 XF3 

Su 2.81 3.85 3.22 

S21 2.66 3.44 3.01 

S31 2.42 2.16 1.93 

S41 2.23 1.95 1.95 

s,2 1.68 1.82 

1.66 1.94 

s32 1.61 1.58 1.70 

S42 1.62 1.39 1.80 

set-up costs 98.82 96.50 99.99 

overtime 1.60 1.43 1.27 

profit a 140.30 141.96 148.98 

profit b 12.57 27.28 47.03 

profitc 287.55 285.10 306.19 

Table 6.1 The (x,1)-rule in Example 6.1. 

In Table 6.1. we see that the average delivery times for the different types and 

priorities can be very different. By making other choices for XF we can obtain various 

ratios for the average delivery times. Considering the profit, XF 3 is the best choice in 

all three profit situations. By using these penalty points, the amount of work in 

overtime is limited, a set-up is done every period and the average delivery times are 

about the same for all types and priorities, except for the orders of priority one of the 

types 1 and 2. 
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Example 6.2. 

In this second example we consider a situation with six types of products (M = 6). 

Again, we will consider an (x,7)-rule with a multi-type level L= 1 and with no extra 

penalty points per period, Ci=O, i = 1,2,3,4., but we will also consider some choices 

with a multi-type level of two, in combination with extra penalty points and a 

maximum level, vi for the production of more than one type in a period. The average 

demand per period in this example is given by 

en e12 0.900 0.100 
e21 en 0.750 0.250 
e31 en 2.250 0.250 = 1.875 0.625 e41 e42 
est es2 4.500 0.500 
e61 e62 3.750 1.250 

We will consider one choice for the matrix XF for the multi-type level L = 1 and three 

choices for the matrices XFCV for L = 2. The matrices XFCV contain the values for the 

minimum level x, the penalty points for the different types and priorities q, the extra 

penalty points per period C and the maximum level v that allows another production. 

We will consider the following choices: 

1 1 7 
1 1 6 

XF= 1 1 5 
1 1 4 
1 1 3 
1 1 2 

and 

Xt /n ft2 Ct Vt 2 2 7 3 45 
X2 hl In c2 \12 2 2 6 2 44 

XFCV 1 = X3 ht 132 C3 \13 1 1 5 2 30 
X4 /41 142 c4 = 1 1 4 1 30 \14 
xs !st fst Cs vs 1 1 4 1 28 
X6 /61 /62 c6 \16 1 1 3 1 28 

and also 

1 1 5 1 30 2 2 9 3 

45] 1 1 5 1 30 2 2 8 3 44 

XFCV2 = 1 1 5 1 30 , XFCV3 = 4 1 8 2 30 
1 1 5 1 30 4 1 6 1 30 
1 1 5 1 30 6 1 6 1 28 
1 1 5 1 30 6 1 4 1 28 

For the calculation of the average amount of work in overtime we will assume that the 
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normal available capacity will be 19 units of time. This is the average capacity 

requirement if we have two set-ups per period. The information of the analysis with 

the different values for XF and XFCV will be summarised in Table 6.2. First we will 

give the average delivery times for the orders from the different types and the average 

delivery time for the orders with priority one and for the orders with priority two. 

Then we will give the set-up costs, the average amount of extra capacity that is used 

and finally the profit in the three different situations. 

XFCV-values XF XFCVt XFCV2 XFCV3 

St. 6.63 2.07 3.21 

s2. 2.11 2.84 

s3. 3.64 2.05 2.17 

s4. 3.15 2.03 1.92 2.24 

Ss. 2.48 1.68 1.63 1.91 

s6. 2.42 1.58 1.44 1.77 

S.t 3.24 1.86 1.94 2.12 

S.z 2.64 1.55 1.48 1.66 

192.72 188.62 172.80 

overtime 2.51 2.36 2.46 

profit a 313.82 505.46 507.48 479.88 

profit b 141.04 304.60 318.57 283.07 

profit c 560.19 946.13 936.31 883.31 

Table 6.2 The (x, 1)-rule in Example 6.2. 

In Table 6.2. we can observe that a multi-type level of one leads to average delivery 

times that are much longer then the delivery times with a multi-type level of two. 

Only if the costs for a set-up would be very high a multi-type level of one can be 

profitable. The three choices for XFCV show some different configurations for the 

average delivery times. In order to obtain the largest profit it appears to be necessary 

that the values for the minimum levels Xi are very small. Obviously, waiting for more 
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orders only makes sense if the set-up costs are very high. 

6.2.3. Other possibilities and conclusions 

If we are not satisfied with the outcome of the delivery times or the profit, we can 

change: 

x1 increasing x1 leads to a less frequent production of type i and less set-ups, 

decreasing x; to a more frequent production and usually shorter delivery times. 

C; increasing C; leads to a more frequent production of type i. Increasing C; for all 

types at the same time leads to a more cyclic production pattern. 

v; increasing v1 (if L = 2 ) makes it more often possible to produce more than one 

type of product in one period. This leads to shorter delivery times, but also to an 

increasing amount of work in overtime. 

/;j by changing the penalty points of the different priorities and different types, the 

delivery times can get nearer to the desired value. 

Other possible situations to analyse are for instance the change of the length of the 

period, the possibility to refuse orders if the number of penalty points is higher than 

some maximum, producing different types in one period or on different machines and 

using and estimating the (negative) correlation between the penalty points of different 

types. It should be mentioned that this method of approximative analysis is not always 

faster than simulation, especially not if L = 2 and if the number of possible states is 

large. 

6.3. Continuous review model 

6.3.1. Introduction 

Until now, we have assumed that the service time of an order and the set-up time can 

be expressed in an integer number of units of capacity. We also have assumed that a 

set-up has to be done if a type is manufactured during a period and that the decisions 
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about the production and the delivery times are taken periodically, for instance every 

day or every C time units. In this section we will consider a situation with continuous 

review: every time that the order state changes, either by the production of an order or 

by the arrival of a new order, we can take a decision about the production or about the 

delivery times. 

In some production processes the lifetimes of some parts of the machine are given. 

After such a time interval these parts have to be replaced, cleaned or repaired. In other 

production processes there is a working shift of for instance eight hours and after this 

time the machine is stopped. The next working day the machine has to be started and 

this may take some time. In these situations, periodic review makes sense. It can also 

be sensible because of organisational reasons. However, in other cases it may be 

profitable to have a continuous review planning system. In this way, we can use other 

service disciplines than normal gating service. Now we can consider extended service, 

in which continuation of the production of a type may take place until all orders have 

been produced, or even extra extended service, in which we can delay the set-up for 

the next type and wait for further orders of the type we have produced. 

In order to analyse a situation with continuous review and extended service, we 

assume that the orders for the different types arrive according to independent Poisson 

processes. Furthermore we assume, for simplicity, that the service time of an order is 

exponentially distributed. We consider the situation with one machine on which M 

types of products can be produced, each with a service rate J.l.; and an arrival rate A;, 

(i=l, .. ,M). The set-up time is also exponentially distributed with mean s-1• We also 

assume that all orders have the same priority and that the available capacity and speed 

is large enough, that is: 

M A; 
I;-<1 
i=l J.l.i 

(6.3.1) 

In this situation we want to study two service disciplines in combination with a simple 

production decision rule. Similar to the analysis of the (x,7)-rule, we will not consider 

lead times, but instead delivery times that are realised with the production decision 

rule. We will measure the performance by considering the average delivery times for 

the different types of products and we will assume that the revenues will depend 

linearly on these average delivery times. In the performance we will also consider the 

set-up costs. We do not have holding costs, penalty costs or costs for working 

overtime. First we describe the production decision rule in combination with the 
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extended service and consider the solution: an approximative method to determine the 

average delivery time for the various types of products for different values in the 

production decision rule. 

6.3.2. Production model 

Also in the continuous review situation a natural element of the production scheduling 

is the clustering of orders for the same type. Every time a certain type is produced, we 

will produce all demand for that type in order to avoid set-ups. Another element that is 

quite obvious is that we will schedule the most important or most urgent type first. 

The most important type is the one for which the number of orders, or the number of 

penalty points, is the highest among all types. We can use these penalty points as an 

instrument for controlling the delivery times, but the use of penalty points leads to a 

larger and more complex state space. Therefore we will consider another instrument 

for the control of the delivery times. This production rule shows much resemblance 

with the (x,1)-rule: we will only start the production of a type, type i say, if the 

number of orders for that type equals at least a minimum level, x1• By this rule we can 

both limit the number of set-ups and favour the most profitable types. 

Summing up, the scheduling rule takes the following form: each time when the 

production of a type is finished, we determine the most important type among those 

types for which the demand is at least the minimum level x;. If there is such a type 

then we produce all demand of the most important type, including the demand that 

arrives during the production. Otherwise, if no such type can be found, the reaction 

depends upon the service discipline. In the situation with normal extended service, we 

wait until the demand for one of the types is at least the minimum level x;. If the first 

type for which this minimum level is reached is the same as the type that was 

produced previously, a new set-up is necessary. In the situation with extra extended 

service we will also wait for further demand, but now this may lead to a continued 

production of the type that was produced last without doing a set-up. Usually a firm 

cannot choose freely between normal extended service and extra extended service, for 

instance if the products are manufactured in an oven. Therefore we will consider both 

service disciplines. 

The purpose of this production model is not to arrive at optimal production rules, 

although it seems reasonable to assume that an optimal scheduling system will show 
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much resemblance with this model. Our production model however, will give 

information about the average delivery times that are possible for the different types 

and information about the number of set-ups and about the required capacity. In this 

subsection we limit ourselves to the situation in which the importance of a type is 

solely measured by the number of orders, whereas in some optimal scheduling model 

the arrival date of an order, the required capacity and the urgency of an order will also 

be important elements in the planning. Because we will base the decisions only upon 

the number of orders for the different types, we simply have to solve one problem in 

our production model, namely to determine the optimal value of the vector 

X={Xtt··•xM}, which contains the minimum levels for the production of the different 

types. 

Determining the optimal value of X exactly by means of analysis will be impossible in 

complex situations. Simulation studies on the other hand may be very time 

consuming. Therefore we will describe a decomposition approach, which may give 

much of the required information without too much effort. We start with the extra 

extended service discipline. The results for the normal extended service discipline are 

then easily found by substitution in the formulae that will be obtained for the extra 

extended service discipline. 

6.3.3. Decomposition model 

In the decomposition model, we will consider each type separately, using the 

following approximations of the scheduling model: 

1) if for type i the minimum number of orders, x;, is reached, it will take an 

exponentially distributed time, with average (b;J.L;r1, before the production of the 

type starts. This time includes a set-up and the waiting for the production of other 

types that will be produced before type i; 

2) if the production of type i is finished, the probability that for no other type the 

demand is sufficient, is c;; 

3) if the production of type i is finished and the demand for the other types is 

insufficient, it will take an exponentially distributed time, with avem.ge (d;J.L;)-1, 

before the demand of one of the other types reaches its minimum. 
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Using these approximations, we can model the demand for each type separately as a 

continuous-time Markov chain. Let us consider one type, with arrival rate J.., service 

rate f.1. and a production minimum x. In the Markov chain two elements are playing a 

role: the number of orders for the type and the state of the machine. The machine can 

be set for the production of the type or not set for the production. The states will be 

denoted by k or k •, where k denotes the number of orders for the type and * indicates 

that the machine is ready to produce orders for the type. The steady-state probabilities 

for the states will be denoted by Pt or PZ respectively. We now have to solve the 

following set of equations: 

Apo=J.L(dp(J+(l-c)p';) 

Ap~c=Apk-1 

('J..+bf.l.)pt=Apk-1 

(A+df.l.)po=cWJ~ 

('}..+J.L)p;=Ap:-1 +W'~+I 

(A+f.l.)p;=A.p~-t +WJ~+l +bf.l.P!c 

k;;:.;J,2, .. ,x-1 

k=x;x+l, ... 

k=l,2,..;x-1 

k=x;x+l, ... 

The states and the traffic intensities for this set are given in the following figure: 

Figure 6.1. The possible states for one type in the production model. 

Solving this system yields the following solution: 

- b(l-p)(d+p(l-c)) 
Po- (xb+p)(d+p(l-c))+bcp 

and for the average number of orders of the type in the queue: 

(6.3.2) 

(6.3.3) 

(63.4) 

(6.3.5) 

(6.3.6) 

(6.3.7) 

(6.3.8) 
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(6.3.9) 

where p = .!. . Since we have Poisson-arrivals the average delivery time is given by 
11 

L 
S=

A. 

and the set-up rate by 

u=/..:po 

(6.3.10) 

(6.3.11) 

Of course the choice of b, cand dis very important for the accuracy of this model. In 

the examples that we will consider, the demand rates for the various types are not very 

different. We have tried several formulae for b and compared the results of the 

approximative analysis with simulation results for a large number of examples. 

According to these examples, the best choice for b;, the b value for type i, is given by: 

bi = [J.li(.Ewi+s -1 )rl 
j'#i 

(6.3.12) 

where wi is a measure for the waiting time due to the production of orders for type j, 

were we count all orders for type j, except for the orders in the states 0,1,2,x-1: 

w· = (Lr{).5xj(xrl)Poj) 
1 

lir"-i 
(6.3.13) 

Due to the assumption of independence, an obvious choice for c; is found by the 

product of the probabilities for each of the types to be in one of the states O,l, .. ,x-1: 

C; = flXjPOi 
j'#i 

(6.3.14) 

The choice for d; is based on the sum of the transitions rates, to the state Xj for type j. 

We have multiplied the transition rate with 1/xi, which is the probability to be in the 

state xr 1, under the assumption of an equal probability for each of the states 

O,l, .. ,xrl, all for type j. 

A.· :2::<2.> 
d.- j>f<i Xj .- J.li 

(6.3.15) 
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For a given set of {xl>···xM} the values of b;, c; and d; will be determined by means of 

iteration, because their value depends on the value of p 01 and L;. 

6.3.4. Results for the normal extended service 

If we have a normal extended service discipline, then we can simplify the formulae 

obtained in the previous subsection. In this service discipline we cannot wait for 

further orders of a type if we have produced all the orders for this type. This implies 

that we cannot go from the state 1• to the state o•; if the last order is finished a set-up 

will be necessary before we can continue the production. Usually we will produce one 

or more other types of products before we start a set-up for the type that is just 

finished. The effect of this on the formulae is very simple: by substituting c; = 0 for 

every type i, we can find the formulae for the normal extended service discipline. By 

choosing this value for c;, we will also find that the elements containing d; disappear 

completely from the formulae. This is of course not a surprise, because the state o• 
simply disappears. 

The probability that there are no orders for a type with a given p and x is now given 

by: 

-~ 
Po- xb+p 

and for the average number of orders of the type in the queue we find: 

L = _b_[ x(x+2p-1) + +.!e_+_L+ p2l 
xb+p 2 1-p b b(l-p) b2J 

(6.3.16) 

(6.3.17) 

From this probability and from the average number of orders in the queue, we can 

calculate the average delivery time and the set-up rate. Again the choice of b; is 

important, but we have found that we can use the same approximation as in (6.3.12) 

and determine b; by means of iteration. 
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6.3.5. Numerical results and comparison with fixed cycle 

In the examples we will consider in this section, we want to maximise the profit. The 

elements we consider in this arbitrary profit function P, are the average delivery times 

S; for the various types and the set-up rates, ui = AJJiO• for the various types: 

M 
P = ~ (5'A.;(2-S;)-20u;) 

i=l 

In order to maximise this profit, we will try different sets of { x " .. ,XM}, for instance 

starting with increasing the x for the types with the smallest A. or decreasing the x for 

the types with the largest A.. 

We will compare this production model with the extended gating cyclic service model 

that has been described in Subsection 3.2.1. In a production cycle we have a fixed 

time T; available for the production of type i including one set-up. Sometimes this 

time may not be used entirely, but at other times the time will not be enough to 

produce all orders, leading to orders that have to wait until the next cycle. By means 

of iteration, we can determine the optimal values for T;. i=l, .. ,M and the 

corresponding values for the average delivery time of the orders and the profit. 

Now we will compare the results of the decomposition method, with normal extended 

service and with extra extended service, with the fixed cycle. For two different 

examples we will determine the set of values Xop~ with the highest profit. We will 

compare the profit with the maximum profit for the fixed cycle production rule. 

Example63. 

In the first example we will consider three different types of products, for which the 

arrival rates and service rates are given by: 

[ 
A.1 111] [ 5 18] A.z f.l2 = 4 15 
~ J.l.3 3 12 

The expected time for a set-up is 1/18. In Table 6.3. we will give the choices for Xop~ 

which give the optimal set according to the decomposition method, as well as the 

optimal set of available production times in the cyclic model. For these optimal values 

we will give the average delivery times and the profit P. 
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: 

X0pt or Topt St s2 s3 profit 

extra ext {3,3,3} 0.67 0.73 0.83 42.29. 

normal ext. {3,3,3} 0.72 0.78 0.87 39.64! 

fixed cycle { 0.99,0.95,0.90} 1.22 1.39 1.65 15.881 

Table 6.3 The results of Example 6.3. 

Example 6.4. 

In the second example we will consider four different types of products, for which the 

arrival rates and service rates are given by: 

[ 

At ILtl [ 5 18] '-2 IL2 4 15 
~ IL3 = 3 12 
A..t J.4 2 18 

The expected time for a set-up is again 1/18. In Table 6.4. we will give the choices for 

Xopt, which give the optimal set according to the decomposition method and also Topt• 

the optimal set of available production times in the cyclic modeL For these optimal 

values we will give the average delivery times and the profit P. 

Xopt orTopt St s2 s3 s4 profit 

extra ext {2,2,1,2} 1.16 1.20 1.20 1.49 16.68 

normal ext {2,1,1,2} 1.15 1.15 1.19 1.47 16.20 

fixed cycle { 1.88,1.81,1.71,0.82} 3.38 3.87 4.64 5.71 -161.45 

Table 6.4 The results of Example 6.4. 

From these tables we may conclude that the difference between the extra extended 

service and the normal extended service is very small, but that the difference between 

the fixed production cycle and the other production rule is very large, especially if the 

system is heavy loaded, as in Example 6.4. The length of the fixed cycle has to be 

very long to avoid that too much time is lost on set-ups. In a heavily loaded situation 

there will nearly always be a sufficient number of orders for one of the other types if 

the production of a type is finished and therefore the difference between the two ways 
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of extended service disappears almost completely. 

The purpose of analysing situations in this way is to get an impression of the average 

delivery times that are possible for the various types of products and also an 

impression of the number of set-ups per time unit The average delivery times may be 

important for the profit like in the examples above and they can influence the demand 

and the profit. From Examples 6.4 we can learn that it would be better not to have the 

orders for type 4, because they only lead to a decreasing profit. Starting from the 

analysis of the simplified situation we can add other elements, such as orders with 

different priority, a realistic distribution for the arrival of orders and for the service 

times and we may consider decision rules for lead times. Some of these extensions can 

be treated with an analysis similar to the one that we have described or by using a so

called Mean Value technique. For other extensions the performance can only be 

measured by a simulation study. 



Chapter 7 

THE (x,T)-RULE IN COMPLEX SITUA

TIONS 

7.1. Description of the problem 

In Chapter 4 we have introduced the (x,T)-rule for an uncapacitated situation. In 

Chapter 5 we have extended the rule for a multi-type capacitated situation with fixed 

lead times. In this chapter we want to study the necessary extensions for the use of the 

(x,n-rule in more complex situations with firm-initiated lead times. The situations in 

this chapter are combinations of the more simple situations that we have considered in 

the previous sections: several product types with different demand rates, set-ups 

between types, orders with different priorities, backlogging, capacity constraints and 

overtime possibilities. 

The different priorities of the orders imply that the reaction upon the proposed lead 

times will be different and that the penalty costs and the revenues will be different. 

The decisions about the lead times and about the production are made periodically, 

but different from the periodic review models in Chapter 4 and Chapter 5, the 

production of a type can be continued in the next period without an extra set-up at the 

beginning of a period. This assumption allows us to treat non-stop production 

processes in the same way as production processes with only one or two working 

shifts per day. It will be required that the average amount of capacity that is used for 

working overtime will be less than a few percent of the fixed capacity that is available 
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and it will also be required that the number of late orders is limited, for instance no 

more than a few percent for the most urgent orders. Due to this assumption it is not 

unreasonable to assume that the demand is not influenced by the lateness of the 

previous orders, so that we can consider a stationary demand process. 

The lead times that are proposed by the firm will be based on a preliminary production 

plan. The lead times for the orders of different priorities will be bounded by a 

maximum number of periods, which depends on the priority, thus offering the clients 

some certainty. Of course, the lead times have to be met quite accurately. 

First we will consider the use of an extended (x.n-rule in the situation containing the 

elements described above for one machine and assuming that all lead times are 

accepted by the clients. This situation will be extended by assuming probabilities that 

the lead times for the orders are accepted, just as in Section 4.4. These probabilities 

will depend upon the priority and the lead time that is offered for the order. The 

second extension which we will consider is the extension to different machines. 

Different types of products can be produced on different machines, some types on 

only one machine and other types on two or more machines. This complicates the 

production planning and the rnles for the lead times, but we will notice that applying 

an extended (x.D-rule is still quite simple and leads to a good performance. 

7.2. The elements of the extended (x, T)-rule 

The extended (x.n-ruie for this situation contains a lot of well-known elements from 

the various (x, n-rules described in the previous chapters. Again, the basis is a 

separate (x,7)-rule for evecy type which says that we can produce the orders which 

have to be delivered within T periods if there is a sufficient number of penalty points 

for the type. Due to the firm-initiated lead times it will often happen that the due date 

is the same for almost all the orders for a specific type. The first orders for the type 

obtained for instance a lead time of 4 periods, the orders arrived in the next period a 

lead time of 3 periods, then 2 periods and so on. This reduces the importance of the 

choice ofT quite a lot, because usually most of the orders that are produced are orders 

that have to be delivered by the end of the period and the number of orders that will be 

produced will depend more on the capacity limitations than on the choice of T. The 

choice of the penalty points is important for the differences in delivecy times for the 

various types and priorities and for the set-ups. This choice will be described more 
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closely in the next subsection. If there are more types for which the number of penalty 

points is sufficient for production, we will choose the type(s) with the highest number 

of penalty points. If two types have the same number of penalty points we will prefer 

the type with the smallest average demand. 

Another element of the (x,1)-rule for this situation is the maximum number of types 

that will be produced on one machine during one period, the so-called multi-type level 

L. This level has been introduced to avoid that the number of set-ups will be too large. 

In this chapter it will merely be used in the preliminary production plan to avoid 

capacity problems in future periods. An element that is related with the multi-type 

level is the minimum capacity level, introduced as mel in Chapter 5. If we have 

allocated capacity to one or more types and the remaining capacity is less than mel, we 

do not allocate this capacity to another type. In Chapter 5 this element has been 

introduced because in the situation in that chapter we assumed that it was better to use 

the capacity for production than for a set-up. In this situation we can continue the 

production in the next period. Therefore the set-up is not wasted. However, in the next 

period we will have a lot of new information and therefore it may be better to wait 

with the production until the beginning of the next period instead of starting it at the 

end of period. In a practical situation a lot of the new information may be present at 

the end of the period and then a set-up can be started. 

7.2.1. The penalty points 

The penalty points are intended to give a measure for the urgency of the production of 

a type or the urgency of the production of a certain order. In a simple situation this 

urgency can be measured by estimating the future costs, but in a more complex 

situation this will be impossible and we can consider the penalty points to be decision 

variables. We can choose the penalty points for the orders in different ways: in 

Chapter 4 every order that should be delivered by the end of the first period has 1 

penalty point, in Chapter 5 the number of penalty points can take several values, 

depending on the time until the due date and in Chapter 6 the number of penalty 

points for an order does not change at all, although this choice has only been made to 

simplify the analysis. In our opinion a very reasonable way to choose the penalty 

points for an order in a practical situation is the following one. Like in the (x,T)-rules 

described in Chapter 5, the penalty points of an order will depend on the residual lead 
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time. The number of penalty points for an order is a constant, q 1, until one period 

before the due date d. This one period has proven to be sufficient in order to avoid 

large penalty costs. Furthermore, it yields little holding costs. From the period before 

the due date on, the penalty point function increases rapidly to avoid that the order 

will be much too late. Therefore, from the due date on this constant is multiplied 

every period with a constant q2 , with q2 > 1. This results in the following function for 

the penalty points of an order if we consider the production in period t: 

pp(order) = ql·q2(t-d+l)'· (7.2.1) 

An advantage of using this formula is that we can describe the penalty points for an 

order of a certain type and priority by two parameters q 1 and q 2 instead of a larger 

vector containing a different value for every value of the residual lead time (d-t-1). 

For every type, two extra elements will be included in the penalty points. These 

elements will be described in the next paragraph. The choice of the values for q 1 and 

q2 has to be made by trying several values in a simulation study, although some 

elements are already clear beforehand. Orders for types with a small average demand 

can be given more penalty points in order to keep their delivery times acceptable and 

orders with a higher priority can also be given more penalty points to ensure that their 

delivery time is not too long. If the situation is not too complicated we can first do an 

approximation analysis as in Subsection 6.2. and use the values from this analysis as a 

start. We will illustrate this in Example 7 .1. 

The penalty points for a type will be the sum of the penalty points of all the orders for 

the type and an additional constant for every period after the last production period in 

which there has been orders for this type. This is similar to the production model in 

Subsection 6.2., where we have introduced the extra constant for type i as C;. In the 

model in this chapter the extra points are lost as soon as the production of the type has 

been started, even if not all the orders for the type have been produced. In order to 

promote a further production of the type for which not all of the orders have been 

produced in the previous period one more element is added to the penalty points for a 

type. This element is the sum of the penalty points of all the orders for the type which 

have to be delivered by the end of the first period multiplied by a constant which we 

will denote by D. For this type the penalty points are given by 

pp(type) = 2, pp(order)+D 2, q,-qq-d+W ·l[o,oo)(t-d+l) 
orders orders 
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7 .2.2. The allocation of capacity 

The capacity will be allocated to one or more types of products in several steps. First 

we determine which of the types is the most important type, of course with a sufficient 

number of penalty points. If the number of orders for this most important type is less 

than or equal to the available capacity, then all the orders for this type will be 

produced. If not, then we will start with the orders with the earliest due date and if 

orders have the same due date we will start with the orders with the highest priority. 

The allocation of the capacity stops if all the normal available capacity has been 

allocated and if the number of periods until the due dates of the remaining orders is 

larger than some priority-dependent constant. If there are remaining orders for which 

the number of periods until the due date is not larger than this priority-dependent 

constant, then extra capacity will be used to produce these orders. In Example 7 .1. we 

will consider orders with two different priorities: normal and urgent orders. For the 

'normal' orders we will use extra capacity for all orders with a residual lead time that 

is less than or equal to one period. For the urgent orders we will use extra capacity for 

all orders with a residual lead time that is less than or equal to two periods. 

First we will consider the situation with one machine. After the capacity allocation 

for the most important type, there can be some capacity available for the production of 

another type. If the amount of available capacity is at least mel and if there is another 

type with a sufficient number of penalty points, then we will allocate capacity to the 

most important type among the other types. This allocation will be done in exactly the 

same way as the allocation for the first type. The allocation continues with other types 

until either the available capacity is less than mel, or until there are no more types with 

a sufficient number of penalty points or until the multi-type level L has been reached. 

In the situation with several identical machines the allocation of capacity can be done 

in a similar way. If there are several different machines the allocation will be made 

differently. We have to determine the most important type for every machine. Now, 

the most important types are not simply the types with the highest number of penalty 

points, but they have to be found by considering the production possibilities on the 

different machines. This will be worked out in the next subsection. If the most 

important types have been determined then the available capacity for the important 

types is allocated in the same way as in the situation with one machine. The capacity 

allocation for the other types which may be produced in the same period is determined 

in a slighdy different way. This will also be discussed in the next subsection. 
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7.2.3. Planning on different machines 

If the product types are manufactured on several different machines then we have to 

consider the production possibilities on the different machines. This can be done in 

several ways. We have chosen for an approach in which we aim for a use of capacity 

that is more or less equal for all machines. We determine a set of important types in 

such a way that we can allocate exactly one type to each machine, or if there are not 

enough types with a sufficient number of penalty points a maximum of one type to 

each machine. This set is determined in the following way. First we determine the 

most important type. Of course, this type can be allocated to one of the machines, but 

this will only be done if we have determined the complete set. After the most 

important type, we determine the second most important type. Only if it can be 

manufactured on another machine than the first type, it will be added to the set. We 

continue determining the next important type and add it to the set if it is possible to 

produce the new type together with all the types that are already in the set during one 

period, without allocating more than one type to each of the machines. The test for 

this possibility is not very difficult. The set is determined if either the number of types 

in the set is equal to the number of machines or if there are no more types with a 

sufficient number of penalty points. 

If we have determined the set of important types that can be produced in one period 

then these types are allocated to the different machines. This allocation starts with the 

types that can only be allocated to one machine, 'removing' the machines to which a 

type has been allocated, continuing with the types that can only be allocated to two 

machines and so on. If there are enough types with a sufficient number of penalty 

points we end up with a situation in which one type has been allocated to each 

machine. It is possible that after this allocation all capacity has been allocated on 

some of the machines, whereas there is still capacity available at some of the other 

machines. We want to use the available capacity as good as possible. Therefore we 

will try to allocate other typeS to the machines on which some available capacity is 

left (at least mel). This will be done in two steps. 

In the first step we allocate a type to a machine if all the orders of the type can be 

produced without exceeding the nonnal available capacity. We consider the machines 

in a lexicographical sequence and the types are selected by considering the number of 

penalty points. In the second step we allocate the types that will be produced one 

period later, but for which the production can already start in the next period. The 
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choice of the set of important types that will be produced one period later has to be 

made by making a preliminary allocation of the remaining types to the machines, 

using the test for the production possibilities. We only consider the types that have not 

yet been allocated to one of the machines and types for which the expected number of 

penalty points in the second period is sufficient. On the machines on which the 

remaining capacity in the firt period is less than the minimum capacity level mel this 

next type will not be manufactured in the first period. The next type will also not be 

manufactured if the number of penalty points in the first period is not sufficient. 

Otherwise we will start the production of the next type and use the capacity in the 

same way as described for the situation with one machine. The preliminary allocation 

of the types for the second period will also be used for the determination of the lead 

times. Every period we will determine the importancy of the different types all over 

again and we will again determine a set of important types. 

7 .3. Determination of lead times 

In Section 4.4. we have considered a situation with no capacity constraints in which 

the firm offered the customers lead times. In that section the choice of the lead times 

was primarily based on the avoidance of set-up costs and holding costs and on the 

probability that the customers accept the proposed lead time. In this chapter the 

capacity constraints will have a large influence upon the decision rules for the lead 

times. In order to avoid high storage costs or high penalty costs the decisions about 

the lead times will be made according to a preliminary production plan. Using the 

extended (x,T)-rule that has been described in Section 7.2. we plan the types that will 

be produced during the first periods. This plan is a preliminary plan and therefore it 

can be changed in later periods. We suppose that the decision about the production 

and about the lead times is made at the end of a period. The production planned for 

the first period can of course not be changed in later periods. 

A logical choice is to propose the lead time for an order according to the production 

period in the preliminary production plan. If we have a maximum lead time of Lmax 

we do not have to make decisions about the production in periods later than Lmax 

periods. All types, for which there are some newly arrived orders, have to be planned 

in the preliminary production plan, or otherwise it has to be known that the type will 

not be produced during the first Lmax periods. Usually we will have to make a 
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preliminary decision about the production in the first period and in a number of later 

periods. For the first period the decisions in the production plan will be made 

according to the rules described in Section 7 .2. and these decisions will indeed be 

performed. For the later periods we want a very simple way of capacity planning and 

therefore we will use a multi-type level in these periods. Because of the uncertainty of 

the use of capacity, the lead times for these periods can be different from the delivery 

times. For the first period we know the exact use of the capacity. Therefore we can 

give orders for the type(s) that will be produced in this first period a lead time of one 

period. If the available capacity is not enough for the production of all orders, we 

assume that the production will be continued in the following period and that the new 

orders will be given a lead time of two periods. If the available capacity in one of the 

later periods is not large enough for the production of all the orders, the new orders 

with the smallest priority will be given a longer lead time. A constant cL will then be 

added to the lead time. The value of this decision variable can be roughly the same as 

the time between set-ups averaged for all types. By limiting the batch size in this way, 

we can avoid that a large demand for one of the types has a very large influence upon 

the available capacity for the other types. 

In order to make a decision about the types that will be produced in the following 

periods, we have to consider the expected number of penalty points during those 

periods. This expected amount will be described in the penalty point function, one for 

each product type, depending on the period t, containing the sum of the penalty points 

of all planned orders at time t, the constant C; multiplied by a number of periods and 

the sum of the penalty points of the expected future orders until t. We will assume that 

the future orders will all obtain a lead time that is equal to t+l, so the penalty points 

for these orders will only be q 1, where q 1 may have different values for different types 

and priorities. Once the type has been allocated to one of the machines, the only 

penalty points are due to the future orders that arrive after the preliminary production 

period. 

The lead time that the newly arrived orders obtain is that period in which the 

production of their type is planned, or the maximum lead time if their type is not 

planned. The type(s) planned to be produced in the first period, will indeed be 

produced that period, but for later periods, the decisions will be reconsidered every 

period. 
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7.3.1. Acceptance of the lead times 

The acceptance of the lead time that the firm offers for an order may depend on a lot 

of elements different from the lead time itself. There may be a long term agreement 

between the firm and the client, according to which the client accepts all lead times 

that are less than or equal to an agreed maximum. But also the quality of previous 

products and the price that is offered will have an influence upon the reaction of the 

client with respect to a possible withdrawal of an order. 

In the examples in this chapter we will consider two simple models. In both models 

the maximum lead time that is proposed for orders of priority 1 will be 5 periods and 

for orders of priority 2 it will be 3 periods. In the first model we will assume that the 

offered lead times will all be accepted. In the second model we will assume a linearly 

decreasing probability for the acceptance of an order. In Section 4.4. we have 

considered the same model. The probabilities are slightly different for the different 

priorities. For orders of priority 1 we assume that the probability that a client accepts a 

lead time k for an order is given by: 

At= 1.1-0.lk 

and for orders of priority 2 we have 

At= 1.2-0.2/r, 

For both priorities a lead time of 1 period is always accepted. 

7.4. Numerical results 

k=l, .. ,5 (73.1) 

k=l, .. ,3 (7.32) 

In this subsection we will consider two examples, with orders of two different 

priorities, in which we will use the decision rule described in this chapter. In the 

performance evaluation we will consider the proposed lead times and the way in 

which the lead times are met We will also measure the performance by the revenues 

and the costs: set-up costs, penalty costs, holding costs and costs for working 

overtime. We will use two different models for the revenues. In the situation in which 

all clients accept the lead time that is offered, we will assume that the revenues will 

depend linearly on the length of the lead times. This is similar to the situation in 

Section 6.2. in which the revenues depend linearly on the average delivery time. If S;i 

is the average lead time of an order of type t and priority j and e;i is the average 
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demand per period for these orders and the revenue for an order of type j is Ri, the 

average revenues per period are given by 

N 2 
R = LL Rieii(5-Sij)J4, 

i=lj=l 

(7.4.1) 

where S is the maximum lead time and 4 a scaling factor, giving the revenues a 

similar form as in (7.4.2). In the situation in which not all clients accept the lead time 

that is offered, the revenues will depend on the number of orders that are indeed 

placed. This is similar to the situation in Section 4.4. If A;i is the average acceptance 

percentage of orders for type i and priority j, the average revenues per period are 

given by 

N 2 -
R = LL RieiiAii 

i=lj=l 
(7.4.2) 

In both examples we will assume a geometrical distribution for the demand, but 

different from Section 6.2. there is no maximum level for the number of orders during 

one period for a certain type and priority. We will assume that a set-up takes one unit 

of time. The multi-type level for the second period and later periods will be set equal 

to one. In the first example we will not consider a multi-type level for the first period 

and in the second example the maximum number of types that will be produced on 

one machine during one period is set equal to three. In both examples we will use the 

same costs to measure the performance of the rule with a given set of penalty points. 

We have chosen the set-up costs to be s=30, costs for working overtime z=30 per 

unit, penalty costs p 1 = 10 per period for orders of priority 1 and p 2 = 30 per period for 

orders of priority 2, holding costs h = 1 per period and per order and the revenues per 

order R 1 =10 andR 2 =30. 

Example 7.1. 

This first example considers the same situation as Example 6.2. with six types of 

products (N = 6). The average demand per period in this example is given by 

en el2 0.900 0.100 
e21 e22 0.750 0.250 
e31 e32 2.250 0.250 
e41 e42 1.875 0.625 
est es2 4.500 0.500 

e61 e62 3.750 1.250 
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For this example we want to find good values for the parameters q 1 and q 2 in the 

penalty point functions for the different types and priorities. For the values of q 1 we 

will start with one of the best choices for the penalty points in Example 6.2. In this 

example we will use only one value for q2 which is choosen arbitrarily q2 =2 for all 

types and priorities. This means that starting from the due date period, the penalty 

points for an order are doubled every period. We start with an arbitrary value for the 

minimum number of penalty points that is necessary for the production: x; = 10 for 

every type i. The extra points per period are chosen to be C;=3 for every type. These 

choices have been placed in a matrix XQC 1, where q1i indicates the q 1 value for orders 

for type i and priority j. The q2 values are not included in this matrix. 

For the calculation of the average amount of work in overtime we will assume that the 

normal available capacity will be 20 units of time. This is one unit more than the 

average capacity requirement if we have two set-ups per period. First we perform a 

simulation with the elements of XQC 1 and the additional elements cL = 3, D = 3 and 

mel =4. In the second simulation we will make some changes that should promote 

shorter lead times, however at the cost of more set-ups and more work in overtime. 

Therefore we replace in XQC 1 the x; values by 3, giving us the penalty matrix XQC 2 

and for the additional elements we choose D = 1 and mel =2, all leading to shorter lead 

times. From Table 7 .3. we can learn that the lead times indeed have decreased, but 

with high set-up and overtime costs. Therefore the profit does not increase due to this 

change. We have tried several other sets of values for the penalty point parameter q 1 , 

but the profit of these sets was never more than one unit higher than the profit of the 

set XQC 1 • Therefore we will not consider the details of these sets. As a last choice we 

will consider a set XQC 3, which is intended to reduce the number of set-ups and the 

volume of work in overtime. Therefore we increase the x; values and also the value of 

mel. For the additional elements we have cL = 3, D = 2 and mel= 5. The values of the 

matrix XQC 3 are given by: 

[ 

15 2 8 3 
15 2 7 3 
15 1 6 3 

XQC 3 = 15 1 5 3 
15 1 5 3 
15 1 5 3 
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The information of the simulation with the different values for the additional elements 

and XQC will be summarised in the following tables. In Table 7.1. we will give the 

percentage of the orders with a certain lead time for the different priorities. In Table 

7 .2. we will give the differences between the delivery times and the lead times, again 

in percentages for the different priorities. Finally in Table 7.3. the costs and the profit 

is given. 

XQCV-values XQCt XQCz XQC3 

priority 1 2 1 2 1 2 

lead time 1 28.2 45.1 53.1 69.4 20.3 41.8 

lead time 2 15.2 21.3 13.5 13.6 14.7 19.9 

lead time 3 17.2 33.6 8.3 17 16.5 38.3 

lead time4 20.9 0.0 12.2 0.0 22.1 0.0 

lead time 5 18.4 0.0 12.9 0.0 26.3 0.0 

Table 7.1 The lead times in percents in Example 7.1. 

XQCV-values XQC1 XQCz XQC3 

priority l 2 1 2 1 2 

:<:!2. too late 4.5 2.8 3.6 1.5 7.2 4.4 

1 too late 10.2 7.6 11.1 3.4 13.0 8.8 

exact 59.8 81.5 69.2 90.3 57.2 78.3 

1 too soon 15.7 8.2 7.5 4.8 

* :<:!2. too soon 9.8 0.0 8.5 0.0 0 

Table 7.2 The accuracy of the lead times in percents in Example 7.1. 

From these tables we can learn that it is possible in this situation to have very short 

lead times, on average less than 2 periods for orders of priority 1 and less than 1.5 for 

orders of priority 2, that it is also possible to have rather accurate lead times and also 

to have very small overtime costs. However it is difficult to have all these nice 
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XQCV-values XQCt XQCz XQC3 

set-up costs 52.38 79.20 45.48 

holding costs 5.77 4.17 5.17 

penalty costs 41.72 33.24 60.63. 

overtime costs 8.40 6.52 5.16 

revenues 144.43 177.07 131.07 

profit 36.16 33.94 14.63 

Table 7.3 The costs and revenues of the penalty sets in Example 7.1. 

elements together in this situation in which the machine is occupied more than 90 

percent. The choice XQC 1 offers lead times that are not too long and quite accurate, 

with few set-ups and less than 1.5 percent of work in overtime. The result is that this 

choice yields the largest profit. From this example we can learn that making a good 

choice for the penalty points is not very difficult and also that small changes in the 

penalty points only have little consequences. 

Example 72. 

In this second example we consider an extension of the situation of Example 7 .1, with 

two additional types added to the original six types (N = 8). There are three different 

machines available for the production of these types. Some of the types can be 

produced on one machine and other types on two machines. The average demand per 

period for the types in this example is given by 

eu e12 
0.900 0.100 

e21 e22 0.750 0.250 
e31 e32 1.800 0.200 
e41 e42 2.250 0.250 
est esz 1.875 0.625 
e61 e62 2.250 0.750 
e71 en 4.500 0.500 

3.750 1.250 
es1 esz 

The production possibilities are given in the matrix B, where b;i = 0 if type i cannot be 

produced on machine J and b;j = 1 is type i can be produced on machine j. 
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1 0 0 
1 1 0 
1 0 0 

B = 0 1 0 
0 1 1 
0 1 0 
0 0 1 
1 0 1 

In this example the lead times that the fum proposes are accepted with a certain 

probability A1• The values of these probabilities have been given in the formulae 

(7.3.1) and (7.3.2). The normal available capacity on each machine will be 9 units. If 

no orders would be withdrawn and if we have one set-up on each machine every 

period, the machines would be occupied more than 90 percent (25 out of 27 units). 

Due to the withdrawals the real occupancy rate will be around 85 percent. For this 

example we will first make an arbitrary choice for the penalty points and for the 

additional elements. We start with cL = 3, D = 3 and mel= 3. The q 2 value is chosen 

arbitrarily as q2 = 2 for all types and priorities. The choices for the other parameters 

are given in the matrix XQC 4• 

X) qu q,z c) 
Xz qzt qzz Cz 10 1 5 1 

10 1 5 1 X3 q31 q32 C3 10 1 5 1 
XQC4 = 

X4 q41 q42 c4 10 1 5 1 
xs q51 qsz Cs = 10 1 5 1 
X6 q61 q62 c6 10 1 5 1 
X7 q1l qn c1 10 1 5 1 

xs qg) qgz Cs 
10 1 5 1 

From the simulation swdy of this choice we learned the following things. For the 

types with a small average demand, a lot of orders of priority 2 have been withdrawn. 

This implies that the penalty points for orders for these types and this priority have to 

be increased. We also notice that the lead times for orders of priority 1 are quite long 

for all types. This can be avoided in two ways: by increasing the C; values, the number 

of extra penalty points per period and by decreasing cL from 3 to 2. For types that can 

be produced on two machines we have chosen C; = 3 and for types that can only be 

produced on one machine C; = 4. The value of D and the value of mel remains 

unchanged. The choice for XQC s is thus given by: 

10 1 8 4 
10 1 8 3 
10 1 7 4 

XQCs = 10 1 7 4 
10 1 6 3 
10 1 6 4 
10 1 5 4 
10 1 5 3 
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fu the simulation study of this choice we can indeed observe the changes that we have 

expected. The remaining problem after this simulation is that the types that can be 

produced on two machines still have a better performance than the other types. 

Therefore we change the x; values: types that can be produced on one machine get an 

x; value of 8 and the other types a value of 12. We do not change any of the other 

penalty points or any of the additional elements. The choice for XQC 6 is thus given 

by: 

8 8 4 
12 8 3 
8 7 4 

XQC6 = 8 7 4 
12 6 3 
8 6 4 
8 5 4 
12 5 3 

The results of the simulation of this choice are already very satisfying. After this 

simulation we have tried some other choices, with other values forD, cL and mel, but 

none of the changes yielded a higher profit. Finally we have tried some different 

values for the q 1 values and made some small changes on the C; and x; values. The set 

of values that yields the highest average profit per period is the set given by XQC1. 

Compared with XQC 6 we have reduced the number of set-ups a little by increasing x; 

for the types that can only be produced on one machine, we have promoted the types 1 

and 2, both with a small average dem!ffid, by giving them a C; value of 5 and we have 

decreased the C; value for the types 5 and 8, both with a high average demand and 

both with production possibilities on two machines. The resulting matrix XQC 7 is 

given by: 

9 8 5 
12 8 5 
9 7 4 

XQC1 = 9 7 4 
12 6 2 
9 6 4 
9 5 4 
12 5 2 

We will summarise the information of the simulation with these four choices for XQC 

and the corresponding additional elements in the following tables. fu Table 7 .4. we 

will give the percentage of the orders for which the lead times have been accepted and 

the percentages for the different lead times for the accepted orders for the different 

priorities. fu Table 7 .5. we will give the differences between the delivery times and 

the lead times, again in percentages for the different priorities. Finally in Table 7 .6. 

the costs and the profit will be given. 
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XQCV-values X~QCs XQC6 XQC1 

priority 1 2 1 2 1 2 

lead time 1 33.2 77.7 31.7 80.7 31.7 79.3 31.2 76.7 

lead time 2 21.5 18.3 23.3 17.5 22.1 19.0 22.0 21.0 

lead time 3 9.9 4.0 34.0 1.8 34.2 1.6 35.6 2.3 

lead time4 26.2 0.0 10.0 0.0 11.2 0.0 10.4 0.0 

I lead time 5 9.4 0.0 0.9 0.0 0.7 0.0 0.9 0.0 

accepted 81.9 92.1 86.6 93.7 86.5 92.8 85.9 93.9 

Table 7.4 The lead times in percents in Example 7 2. 

XQCV-values XQC4 XQCs XQC6 XQC, 

priority 1 2 1 2 1 2 1 2 

~too late 1.1 0.0 1.0 0.0 1.3 0.0 1.0 0.0 

1 too late 7.5 0.7 7.1 1.0 9.0 1.1 8.3 1.3 

exact 61.6 98.0 66.0 97.3 64.2 97.6 65.2 97.1 

I too soon 10.8 1.3 16.7 1.7 16.4 1.4 16.6 1.6 

~too soon 19.1 0.0 9.3 0.0 9.2 0.0 8.9 0.0 

Table 7.5 The accuracy of the lead times in percents in Example 7.2. 

In this example we have seen that using the extended (x, 7)-rule for the decisions about 

the production works out very well. Also the use of this rule as a basis for the 

preliminary production plan on which the lead times can be based works very well. 

From the results of Table 7 .4. we can learn that about 80 percent of the most urgent 

orders can be produced the next period and that 98 percent can be delivered within 

two periods. The promised lead times for the most urgent orders are nearly always 

correct and the number of late orders with priority 1 can be limited within the 10 

percent The percentage of the work that is done outside the normal available capacity 

is less than 2 percent and this percentage has been reached by only a very simple rule. 
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XQCV-values XQC4 XQCs XQC6 XQC1 

set-up costs 89.88 100.92 96.90 94.63 

holding costs 8.45 5.63 5.52 5.44 

penalty costs 15.41 15.66 19.49 17.57 

overtime costs 19.08 16.50 12.18 13.03 

revenues 256.34 266.70 265.52 265.67 

profit 123.52 127.99 131.42 134.99 

Table 7.6 The costs and revenues of the penalty sets in Example 7.2. 

We also have seen that an arbitrary choice for the penalty points and the additional 

elements yields a performance that is already quite well. Most of the changes that we 

have considered have been quite obvious. Therefore we expect that a similar approach 

can be used in a lot of practical situations in which a firm produces to order. 



Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1. Summary and conclusions 

In this monograph we have studied several production rules and several rules for 

proposing due dates, for some different situations. The situations that have been 

considered share some important elements. The most important one is the element of 

production to order: the products are manufactured according to customer 

specifications and they will not be manufactured unless they have been ordered. Other 

important elements are the set-ups on the machines, which make a clustering of orders 

for the same product types necessary, the backlogging of late orders and a production 

process with one bottle-neck. 

The objective of this study was to find a simple production rule, which offers 

possibilities for a simple adaptation to the varying wishes and demands and which can 

be extended for additional complications. We have concentrated our attention on 

periodic review models, with usually a time-independent stochastic demand. 

In the situation with no capacity restrictions we have considered a number of 

production rules inspired by two well-known heuristics, the Silver-Meal heuristic and 

the Wagner-Whitin heuristic, and we have introduced a new, simple rule: the 

(x,T)-rule. In this (x,D-rule we do not produce if the number of late orders will be less 

than x. Otherwise we produce all orders that have to be delivered, according to their 

due date, within T periods. The x value and the T value are decision variables. If costs 
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for due date deviation and for set-ups are given and if the distribution of the demand is 

known and stationary, the best pair (x,T) can be determined. The performance of the 

heuristics and of the (x,1)-rule has been compared with the optimal policy. The 

difference in average costs per period showed to be very small, whereas the (x,1)-rule 

is easier to be used and different from the other rules, the (x,1)-rule allows a simple 

and exact calculation of the average costs. 

Because of its performance in uncapacitated situations, the (x,1)-rule seemed to be the 

best candidate for the simple production rule. Therefore we studied the application of 

a similar kind of rule in a situation with strict capacity constraints. In this rule, the so

called extended (x,1)-rule, the decisions on production are also based on a largely 

reduced state space, in which the order state is reduced by a weighting procedure to 

one simple element: the number of penalty points for this type. For a good use of the 

capacity, some minor elements have been added to this extended (x,1)-rule. The 

performance of this rule has been compared with the performance of a more complex 

rule, inspired by well-known heuristics. This has been done for a situation with strict 

capacity constraints and also for a situation with possibilities for overtime. In both 

situations the extended (x,1)-rule performed well compared to the more complex rule. 

By assuming such a simple rule we have found several situations in which the 

performance could be analysed by exact or approximative calculations. This can be 

done for instance in uncapacitated situations, if the client population depends on the 

due date deviation or if the clients withdraw their orders if they are dissatisfied by the 

proposed lead times. The calculation is also possible in situations with capacity 

restrictions and overtime possibilities, where we assume that only one or only a few 

product types can be produced during one period. 

An extended (x,1)-rule can also be used for proposing lead times for the newly arrived 

orders. This can be done by making a preliminary production plan, which is based on 

the expected number of penalty points for the various types in future periods. In the 

rule for proposing lead times, the basic element is the preliminary production plan, but 

we can also have additional rules taking into account the capacity constraints, 

maximum lead times and probabilities for acceptance of the lead · times. Some 

examples of such rules have been discussed in this monograph. 

Although the presented (x,T)-rules have been considered for only a limited number of 

modeled situations, we have obtained the impression that they can be a basis for the 

solution of a large number of problems, with respect to the production planning and 
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the due date proposals, in situations with production to order. The most important 

reasons for this belief are the following: the presented rules are simple and clear, they 

offer a lot of possibilities for direct control, such as the control of lot-sizes and 

delivery times, and they offer a possibility for an (approximative) analysis in a lot of 

different situations. With the help of this analysis a lot of changes, for instance a 

changing market or changing production facilities, can be judged much better. 
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Sam en vatting 

We beschouwen een bedrijfssituatie, waarin een bedrijf produkten Ievert aan diverse 

ldanten. Deze produkten worden binnen bet bedrijf geproduceerd en wei op een 

machine(-groep). Transport- en grondstofproblemen worden buiten beschouwing 

gelaten. Volgens een trend, die de laatste jaren steeds sterker wordt, moeten de 

gevraagde produkten aan steeds nauwkeuriger specificaties voldoen. Iedere ldant 

heeft hierbij een eigen, wisselend eisenpakk:et, zodat vrijwel alle geleverde produkten 

verschillend zijn. Naast andere voorraadbeperkende redenen, heeft deze ontwikkeling 

ertoe geleid, dat een steeds groter deel van de produktie plaats vindt op een manier die 

we produktie op order noemen, d.w.z. uitsluitend de bestelde produkten worden 

geproduceerd en de zgn. vrije voorraad wordt afgeschaft. 

Volgens een andere trend, moeten de levertijden voor de gevraagde produkten steeds 

korter zijn. Tevens moeten ze nauwkeurig bekend zijn op het moment van bestelling 

en mogen ze niet te veel fluctueren in de tijd. Een machine met een beperkte 

capaciteit, die bovendien veelal omgesteld moet worden bij een veranderende 

produktie, maakt het plannen van de produktie, in samenspel met het afgeven van 

levertijden voor offertes, tot een complexe bezigheid. In Hoofdstuk 1 wordt een 

inleiding gegeven en hierin worden begrippen geintroduceerd die een rol spelen in de 

produktieplanning en de levertijdafgifte. Ook worden invloeden van buitenaf 

beschouwd. In Hoofdstuk 2 wordt de praktijksimatie vertaald naar een modelsimatie. 

Dit gebeurt voor de vraag naar produkten, bet produktieproces en voor de kosten en 

opbrengsten. Verder wordt een typering gegeven van de beslissingsregels voor de 

produktie en voor de levertijdafgifte en orderacceptatie. In veel praktijksituaties wordt 

een min of meer vaste produktiecyclus gebruikt. Dit maakt het mogelijk om zeer 

nauwkeurige levertijden af te geven, maar vooral bij hoge bezettingsgraden kan er erg 

veel variantie optreden in de levertijden. Deze wijze van produktieplanning wordt 

bestudeerd in Hoofdstuk 3. 

In Hoofdsmk 4 beschouwen we een situatie zonder capaciteitsbeperkingen, met 

verschillende, vaste levertijden. In deze situatie is exacte analyse mogelijk. Uit deze 

analyse blijkt dat de resultaten van sommige heuristieken vrijwel optimaal zijn. Een 

van deze produktieregels lijkt veelbelovend. In deze (x,T)-regel (beschreven in 

paragraaf 4.2.4.4) worden we beslissingen op zeer eenvoudige wijze genomen en we 

vermoeden dat de regel gemakk:elijk is uit te breiden voor meer complexe simaties en 

tevens te gebruiken is voor een, eventueel benaderende, analyse van complexe 
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situaties. 

Een situatie waarin meerdere produkttypen worden geproduceerd op een machine met 

beperkte capaciteit is bet hoofdbestanddeel van Hoofdstuk 5. Ook in deze situatie 

blijkt een eenvoudige (x,T)-regel, uitgebreid met enkele zeer eenvoudige 

beslissingsregels, bet uitstekend te doen, zowel qua snelheid als qua resultaten. 

In Hoofdstuk 6 wordt een benaderende analysemethode gegeven voor het bepalen van 

de interessante grootheden, zoals kosten en levertijden, in een situatie waarin 

meerdere produkttypen volgens eenvoudige produktieregels worden geproduceerd op 

een machine. Met behulp van deze methode kunnen voorlopige beslissingen worden 

genomen over benodigde produktiecapaciteit, bet verrichten van overwerk en over bet 

afgeven van levertijden. 

De verkregen inzichten worden gecombineerd in Hoofdstuk 7. Hier bekijken we de 

meest complexe situatie, met orders voor verschillende typen, met verschillende 

prioriteiten. De verschillende produkttypen kunnen op verschillende machines worden 

gemaakt. De levertijden die worden afgegeven voor de orders, hangen af van bet 

voorlopige produktieplan, wat hun nauwkeurigheid sterk bevordert. Klanten kunnen 

hun bestelling ook weer intrekken als ze ontevreden zijn met de beloofde levertijd. 

Ook in deze situatie blijkt bet mogelijk om met behulp van een (x,T)-regel met enkele 

eenvoudige uitbreidingen zeer goede resultaten te behalen, zowel voor de lengte van 

de beloofde en gerealiseerde levertijden als voor de nauwkeurigheid. 

Hoewel de gepresenteerde regels voor produktie en levertijdafgifte slechts voor een 

beperkt aantal modelsituaties zijn uitgewerkt, hebben we de indruk gekregen dat ze 

een basis kunnen vormen voor bet oplossen van een groot aantal problemen bij 

produktie en levertijdafgifte in situaties waarin produktie op order plaatsvindt. De 

blangrijkste redenen hiervoor zijn dat de gepresenteerde regels eenvoudig en duidelijk 

zijn, zeer veel mogelijkheden bieden tot direkte sturing, dus bet direkt beinvloeden 

van produktiehoeveelheden e.d., en tevens in veel situaties een benaderende analyse 

mogelijk maken. Met behulp van deze benaderende analyse kunnen veranderingen 

zoals capaciteitsuitbreidingen en veranderend marktgedrag beter beoordeeld worden. 
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Production to order 
Models and rules for production planning 

Nico P. Dellaert 

Stellingl 

In Cox en Ernst [1] is bewezen dat gestuurd afronden van tweedimensionale tabellen 

altijd mogelijk is. Ret gestuurd afronden van een tweedimensionale tabel A met rij~ en 

kolomtotalen naar gehele veelvouden van een positief getal b, houdt in dat wordt 

voldaan aan de volgende voorwaarden: 

1) van ieder element van A wordt de waarde, zeg a, afgerond naar een veelvoud van 

b; als alb geheel is, dan wordt een element met waarde a afgerond naar li·[alb ], in 

de overige gevallen naar een van de dichtst bij gelegen veelvouden van b: d.w.z. 

naar b·[alb] of naar b·([alb ]+1), met[.] de entier functie. 

2) de som van de afgeronde waarden uit iedere rij (of kolom) van A is gelijk aan de 

afgeronde waarde van bet desbetreffende rij-(kolom-)totaal. 

Ret stochastisch afronden van een tabel houdt in, dat met behulp van een 

kansexperiment een afrondingstabel B wordt gekozen, zodanig dat 

3) /E(B)=A 

Iedere tweedimensionale tabel kan stochastisch gestuurd afgerond worden, d.w.z. 

zodanig afgerond worden dat voldaan is aan de voorwaarden 1) tim 3). 

[1) Cox L.R. and L.R. Ernst (1982), Controlled Rounding. INFOR, Vol. 20, pp. 

423-432. 

Stelling 2 

Bij sommige statistieken worden op verzoek van de informatieverstrekkers bepaalde 

gegevens niet in de tabellen vermeld, maar vervangen door een kruisje (x). Dit heeft 

uiteraard slechts zin als de kruisjes niet terugrekenbaar zijn uit de rij- en kolomtotalen. 

Zij A een tweedimensionale tabel met kruisjes, inclusief rij- en kolomtotalen, zoals 

gedefinieerd in [2] en zoals hieronder gegeven in Voorbeeld 1. Zij X de verzameling 



van elementen (l,J) waatvan de WIUlfde in de tabel is vetvangen door een kruisje. 

Verder noemen we een cykel C een geordende rij elementen van X van het type 

{(io,Jo),(it.Jo).(iJoh) •..• (iL,JL),(io,i£)1 met lille ic's en J~.:'s verschillend, OSA:::>L, L;::l. 

X 16 X X -6 42 
2 8 X X -3 18 
X -5 4 2 X 16 

X 3 9 -8 X 24 

10 22 7 13 48 100 

V oorbeeld 1 Een tabel met kruisjes. 

Nu geldt: een element (i,J) van X is terugrekenbaar dan en slechts dan als er geen 

cykel Cis met (i,J)eC. 

[2] Dellaert N.P. (1984), Onderdrukking in tweedimensionale tabellen, Interne 

CBS-nota, (Centraal Bureau voor de Statistiek), Voorburg. 

Stelling 3 

Bekijk de situatie zoals in Stelling 2. De volgende eigenschap kan goed gebruikt 

worden om een tabel te beveiligen met een minimaal aantal kruisjes. 

Zij C 1 een cykel, zoals gedefinieerd in Stelling 2, met tenminste 4 elementen en C 2 

een cykel met precies 4 elementen. Indien IS I C 1 r~C 2 I S3, dan vormt het symmetrisch 

verschil C 1 uC 2\ C t r~C 2 precies een cykel of deze verzameling bestaat uit de 

vereniging van twee cykels. 

Stelling 4 

Analoog aan een tweedimensionale tabel met kruisjes, zoals in Stelling 2, kunnen we 

ook een drie-dimensionale tabel met kruisjes definieren (zie [3]). Zij X de verzameling 

van elementen (i,J,k) waarvan de tabelwaarde vetvangen is door een kruisje. Het feit 

dat het een kruisje in ieder van de drie tweedimensionale tabellen niet terugrekenbaar 

is, geeft geen garantie dat het in de driedimensionale tabel niet terugrekenbaar is. 

[3] Dellaen N.P. (1984), Onderdrukking in tabellen van dimensie 3 en hoger, 

Interne CBS-nota, (Centraal Bureau voor de Statistiek), Voorburg. 
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In de wachtrijtheorie wordt onvoldoende aandacht besteed aan het feit dat bij een 

systeem met meerdere loketten het gevoel van de klant de foute rij te hebben gekozen, 

vaak een grotere bron van ergernis is dan de wachttijd zelf. 

Stelling 6 

De in [4] geponeerde Tweede Wet van Den Uylluidt als volgt: "De vormen van de 

nederigste gebruiksvoorwerpen tot aan die van bouwwerken en vervoermiddelen toe, 

ontwikkelen zich eindeloos, daanoe door mode, nieuwe technieken en uitvindingen, 

winstbejag en pure onnozelheid gedreven. Ergens in die ontwikkelingsgang wordt de 

meest ideale vorm van het ding benaderd, even gehandhaafd en vervolgens weer 

verlaten. En het treurige is dat de dichtste benadering van de ideale vorm van vele 

zaken en dingen reeds achter ons ligt." 

Door de inspanningen van achtereenvolgende bewindslieden op bet ministerie van 

onderwijs blijkt nu dat ook belangrijke delen van bet nederlandse onderwijsstelsel 

zich volgens deze wet ontwikkelen, waarbij de ideale fase al voorbij. is. 

[4] Den Uyl, Bob (1983), Het onbereikbare ideaal uit De Illusie van Gisteren, 

Uitgeverij Stichting Ravenberg Pers, Oosterbeek, pag. 31. 

Stelling 7 

Het bestraffen van een snelheidsovertreder gebeurt thans door rniddel van een 

geldboete waarvan de hoogte lineair afhangt van de overschrijding van de snel

heidslirniet. Een geldboete die evenredig is met de potentiele schade van een 

dergelij.ke overtreding, voor zover mensenlevens en verwondingen in geld uit te 

drukken zijn, zou door de ongetwijfeld aanwezige termen van hogere orde een veel 

beter preventief effect hebben. 

Stelling 8 

Het is wenselijk dat bij de rijksbegroting behalve de verwachte waarden voor de 

diverse uitgaven- en inkomstenposten ook de mogelijke afwijkingen of een 

betrouwbaarheidsinterval wordt gegeven. Zowel de grootte van het betrouw

baarheidsinterval als de achteraf geconstateerde afwijking vormen dan een maat voor 

het functioneren van de bewindslieden. 



Stelling9 

V oor bet schatten van aantallen studenten in bepaalde studiefasen ten behoeve van een 

Plaatsen-Geld-Model is een tijdreeksmodel, zoals het CARIMA-model van de Beer 

[5}, beter geschikt dan een Markov-model met vaste overgangskansen per cohort, 

zoals beschreven door Vos en Vander Drift [6]. 

[5) De Beer J. (1983), Het CARIMA-model: een tijdreeksmodel voor colwrt

gegevens, Interne CBS-nota, (Centraal Bureau voor de Statistiek), V oorburg. 

[6] Vos P. en K. Van der Drift (1977), Numerieke en jmancfele gevolgen van de 

herstrukturering in het W.O., Rapport 17 van Bureau Onderzoek van Onderwijs 

Rijks Universiteit, Leiden. 

Stelling 10 

De emancipatie van de vrouw zal in Nederland pas echt van de grond komen wanneer 

mannen worden gedwongen om tenminste een gelijk deel van de opvoeding van de 

eigen kinderen voor hun rekening te nemen. Dit kan bijvoorbeeld gebeuren door een 

beperking van de arbeidsduur voor mannen met kinderen jonger dan de leerplichtige 

leeftijd. 


