

Some category theoretical properties related to a model for a
polymorphic lambda-calculus
Citation for published version (APA):
Eikelder, ten, H. M. M., & Hemerik, C. (1989). Some category theoretical properties related to a model for a
polymorphic lambda-calculus. (Computing science notes; Vol. 8903). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ffe6c6f4-04db-42e7-8750-0290eb2413d5

Some category theoretical properties
related to

a model for a polymorphic lambda-calculus

by

H.M.M. Ten Eikelder
C. Hemerik

89/3

February, 1989

SOME CATEGORY THEORETICAL PROPERTIES
RELATED TO

A MODEL FOR A POLYMORPHIC A-CALCULUS

Abstract.

H.M.M. Ten Eikelder
C. Hemerik

A model for a second order polymorphic lambda calculus is sketched. Some category
theoretical questions appearing in the model construction are extensively treated.

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

CONTENTS

1. INTRODUCTION AND MODEL DESCRIPTION

2. INITIAL FIXED POINTS IN PRODUCT CATEGORIES
2.1. Introduction
2.2. Preliminaries
2.3. Product of categories
2.4. Product and tupling of functors
2.5. The initial fixed point theorem for

product categories

3. COMPLETENESS OF PRODUCT CATEGORIES

4. LOCAL CONTINUITY OF GENERALIZED PRODUCT AND
SUM FUNCTORS :
4.1. Introduction
4.2. Definition of the generalized sum and

generalized product functors
4.3. Technical results
4.4. Local continuity

5. w-CONTINUITY OF GENERALIZED PRODUCT AND
SUM FUNCTORS
5.1. Introduction
5.2. w-Continuity

G. REFERENCES

1

6
6
6
7

10

13

15

17
l7

17
18
20

22
22
24

26

I

1. INTRODUCTION AND MODEL DESCRIPTION

Consider a typed A-calculus, where type expressions are generated by production rules
of the form

Texp ::= Tconst I Tvar I Texp -+ Texp I ViA Tvar I Texp) .

Here Tconst generates a set of type constants (for instance int, bool) and Tvar generates
a set of type variables. The other two possible type expressions correspond to function
types and polymorphic types. Other type constructors like +, x, v and L (correspond
ing to sum types, product types, recursive types and abstract data types) can easily be
added and do not affect the following essentially.

Expressions are generated by

Exp ::= Const I Var I (A Var : TexplExp) I (ExpExp) I
(A TvarlExp) I ExpTexp, .

snpplied with a type deduction system. Const yields a set of constants (for instance 0,
Stice, true), while Var generates a set of variables. The next two rules are the introduc
tion and elimination rules for expressions with function types. The last two rules are
the introduction and elimination rules for expressions with a polymorphic type.

A generalized version of this language (where type expressions are constructor expre&
sions of kind T) can be found in Bruce, Meyer and Mitchell [BMM] or Hemerik and Ten
Eikelder [HTE].

The type deduction system strongly resembles the one given in Ten Eikelder and Mak
[TEM]. The type dednction rules for expressions are given by

A I> Cte : te

Al I> tx

A I> tx, te
A; x : tx I> e : te
A I> (AX : tx I e) : tx -+ te

A I> f : te -+ tel, e : te
A I> fe : tel

A; t I> e : te
A I> (At.e) : V(At.te)

A I> e : V(At.te), tel
A I> e tel: telel

Cte E Const, FTV (te) = 0

x If FV(A2)

FTV(A2) n FTV(tx) = 0

2

Here A is a syntactic type assignment, i.e. a sequence consisting of type variables and
type assignments (x : tx). The functions FV and FTV yield the free variables and free
type variables of their arguments (!).

In the remaining part of this section we shall briefly indicate how a model for the
polymorphic A-calculus, given above, can be constructed. The model described below
can easily be seen to fit with the general model definition given by Bruce, Meyer and
Mitchell [BMMJ. In the model definition we shall meet some technical, category theoret
ical problems. In Sections 2, 3, 4 and 5 of this note these problems will be extensively
treated.

Let Texp(V) be the set of type expressions with free type variables in the set V. An
important aspect of a model construction is to associate a suitable domain to each type
expression. As ultimately all free type variables will be bound to a closed type expres
sion (using a type environment 1) : Tvar -; Texp(0)), we shall associate a domain (in
fact a C.P.O.) DOM'e to each closed type expression teo

The domain associated to a function type tel -; te2 should be equal or isomorphic
to a sufficiently large subset (denoted by square brackets) of the functions of Dom'e! to
DOmte2, i.e.

(1.1)

The domain DomV(A'.'e) related to a polymorphic type should be equal or isomorphic
to the product of the domains Dom'e' ,where tel runs over all closed type expressions.

"j In fact tel corresponds to the possib e "type arguments" of an expression with type
V(At.te). Hence

DomV(A'.'e) '" II (1.2)
tel E Texp(0)

It is easily seen that the domain in the left-hand side in general also appears in the
right-hand side, take for instance V(At.t -; t) (the type of the polymorphic identity).
This means that (1.1) and (1.2) can only be solved simultaneously, i.e. we compute
a "vector of domains" Dom = < Dom'e I te E Texp(0) > as a solution of a system of
isomorphic domain equations.
More precisely Dom will be found as (the domain part of) the initial fixed point of an
w-continuous endofunction F on a product category II J(, where J(is some

te E Texp(0)
suitable category. Since type expressions contain function types, the function space
functor will be used in the definition of F (see (1.3)). On the w-categories SET and
QEQ.L, the function space functor is contravariant in its first argument, so J(cannot
be one of these categories. The function space functor FS on the category .QEQpRis an
w-continuous (covariant) bifunctor, which leads to this choice for J(.

From now on we shall write II CPOPR instead of II (CPOpR). With every
te E Texp(0)

3

object D ofQEQpR is associated a constant functor CD : IIQEQPR --+ QEQPR. Let GP,
"Trte : IIQEQPR --+ QEQPR, be the generalized product functor (see Sections 4 and 5)
and the projection functor on component teo The function F : IIQEQPR --+ II QEQPR is
defined by its components F te : IIQEQPR --+ QEQPR, i.e. F = < F te I te E Texp(0) >.
We now give these components. Let p be a function which maps type constants to
C.P.O.'s. Then

(C E Tconst)

Ftel_te2 = FS 0 < 7rtell7rte2 > (1.3)

FV(At.te) = GP 0 < "Tr te' I tel E Texp > .. ,
If the function F is w-continuous and IIQEQPR is an w-category, there exists an initial
fixed point (Dom,<I» of F (see for instance [SP]). The components of the isomorphism
<I> : Dom --+ F(Dom) are isomorphisms <I>'e : Dom'e --+ Fte(Dom). In particular, this
means

<Pte1 ->te2

and

<I>V(At.te) DomV(A'.'e) --+ FV(A'.'e) (Dom) = II
tel E Texp(0)

in accordance with (1.1) and (1.2). The construction above can easily be extended to
allow recursive types and abstract data types. This leads to components of F given by

Fv(Atl'e)

FI;(Atl'e)

= 1T"t t
ev(Atlte) ,

GS 0 < "Tr'e' I tel E Texp(0) > , ,.1

where GS : II CPOPR --+ CPOPR is the generalized sum functor.

The semantics of expressions can now easily be given. Recall that we have introduced
a mapping p : Tconst --+ obj(QEQ), which maps every type constant to a c.p.o. Note
that the construction of Domte (for closed type expressions te) depends only on p. We
also have to associate a point of a suitable c.p.o. to each (expression-) constant. Hence,
we extend p to a function on Tconst U Const, such that

pi Const : Const--+ U Dom'e
te E Texp(0)

with

p(c'e) E Dom'e for every C'e E Const .

4

Of course the semantics of an expression depends also on the values of the appearing
type variables and (expression) variables. An environment is a mapping", with domain
Tvar U Var such that

Tvar -+ Texp(0)

Var -+ U
te E Texp(0)

Let te be an arbitrary type expression. The closed type expression obtained by substi
tuting ",(t) for every free type variable t of te will be denoted by {",}te. An environment '"
will be called consistent with respect to a syntactic type assignment A if for all variables
x and type expressions tx such that A I> x : tx

Let", be an environment which is consistent with respect to a syntactic type assignment
A. The semantics of expressions typable under A in the environment", is defined in the
following way:

[A l> "te : teh = p(Cte) ,

[A l> x : txh = ",(x) ,

[A l> (oXx:txle) : tx -+ te]", =
<l>{ij\(tx~te) (). dE Dom{ij}tx I [A; x : tx l> e : te] ",[d/xl) .

Note that if '" is consistent with respect to A, then for every d E Dom{ij}tx, '" [d/xl is
consistent with respect to A; x : tx.

[A l> e1e2 : te] '" =

(<l>{"}(te2~te)([A l> e1 : te2 -+ teh)) [A l> e2 te2h

[A l> (At.e) : If(At.te)h =

<l>{ij\V(At.te) (< [A; t l> e : te] '" [te1/tll tel E Texp(0) >)

Again if '" is consistent with respect to A, then", [te1/tl is consistent with respect to
A;t.

[A l> e tel: teled '" =

(<l>{ij}V(At.te)[A l> e : If(At.te)h) .
tel

The proof that the semantics of expressions is correctly defined and satisfies

5

will not be given here.

In the construction of the c.p.o.'s Dom" various category theoretical questions arise.
For instance:

i) Is II.cEQPR an w-category?

ii) Under which conditions is a functor F : II.cEQPR --+ II.cEQPR w-continuous?

iii) What is the definition of the generalized product and generalized sum functors
GP, GS : II.cEQPR --+ .cEQPR?
Are these functors w-continuous?

The questions i) and ii) are studied extensively in Section 2.
In Section 3 an alternative proof is given of the property that an arbitrary product of
an w-complete category is w-complete. This proof requires some more category theory.
In Section 4 we define generalized product and generalized sum functors II.cEQ --+ .cEQ
and show that they are locally continuous.
Finally, in Section 5 we define the generalized product and generalized sum functors
GP, GS : II.cEQPR --+ .cEQPR and show that they are w-continuous.

6

2. INITIAL FIXED POINTS IN PRODUCT CATEGORIES

2.1. Introduction

In [SP,LS,BH] a solution method is described for equations of the form

X"'!F· X

where X ranges over the objects of a category](and F :](_](is an endofunctor
of that category. When](is an w-complete category (Le. a category that has an initial
object and in which each w-chain has a colimit) and F is an w-cocontinuous functor
(Le. a functor that preserves colimits), the method yields a fixed point, Le. a pair
(A, iP) such that

A E obj(]()

iP : A _ F . A is an isomorphism.

Moreover, the fixed point (A,iP) is initial in the category of fixed points of F. The
construction method is a systematic generalization of the least fixed point construction
for w-continuous functions on w-cpo's.

In this section we consider the solution to a system of equations

where Xi ranges over the objects of a categorY](i and Fi :](1 X ... X](i X .•. -](i.

Such a system of equations can be handled as a single equation

in the product categorY](l X •.. X](i X We are interested in conditions
on the categories](i and the functors Fi that imply solvability of the above equation.
It will turn out that the conditions that each](i is an w-category and that each Fi

is w-continuous are sufficient. Although this is intuitively clear ("properties smoothly
generalize to products if everything is defined pointwise") a full proof turns out to
be rather involved and to contain some unexpected swaps of universal and existential
quantifications, reason why it has been recorded in this note.

2.2. Preliminaries

The notation < Eli E I > will be used instead of (~i E I I E) for functions with
parameter i ranging over domain I.
Sequences will be considered as functions with domain IN. Function application will

7

be denoted by subscripting; so if x is a function with domain I, then x = < Xi liE I>.
In some cases the domain will not be mentioned explicitly to reduce notational clutter.
In such cases the variable named i is always assumed to range over a set I mentioned in
the context; the variable j is always assumed to range over IN. So < Eli> abbreviates
< Eli E I>, and < Elj > abbreviates < Elj E IN >.
Functor application will be denoted by·.
The symbol II will be defined for categories and functors. In all other cases it denotes
generalized Cartesian product of sets. II {Vi liE I} will be written II Vi, or just

iEI

II Vi, Note that if (IIi E I : Vi E Vi), then < Vi liE I >E II Vi.
i .

In some proof steps use will be made of the following marked equivalences:

(Eq. 1) (IIi E I : (IiVi E Vi : P(Vi)))

~

(liv E II Vi (IIi E I P(Vi)))

(Eq. 2) (IIi E I (3! Vi E Vi P(Vi)))

~

(3!v E II Vi (IIi E I P(Vi)))

As for many of the properties we consider, the equivalence

P(v)~(lIiEI : P(Vi))

also holds, these equivalences might be considered the formal rendering of the afore
mentioned phrase that "properties defined pointwise generalize to products".

2.3. Product of categories

Given a collection {Ki liE I} of categories, we can form a new category, which
has as objects tuples < Ai liE I > of obj~cts Ai E obj(Ki). For two such objects
< Ai liE I > and < Bi liE I > the set of morphisms consists of tuples < Ii liE I >
where, for all i, J; is a morphism from Ai to Bi. The category thus obtained is called
the product of {Ki liE I} and is denoted by II {Ki liE I}. In this section we consider
relations between properties of the categories Ki and of their product. The most im
portant one is Lemma 3.5 which states that the product is an w- category iff each Ki
is an w-category.

Definition 2.3.1 [product of categories].

Let I be a set;
K = {Ki liE I} a collection of categories.

The product category II K is the category M with

- obj(M) = II obj(Ki).
iEI

- for all A, B E obj(M) : homM(A, B) = II homKi(Ai, Bi).
iEI

- for all A E obj(M) : IA = < h liE I >.

8

- for all A,B,G E obj(M); I E hom(A,B); 9 E hom(B,G) go 1= < g, 0 Ii Ii E I >.

o

Definition 2.3.2 [projection functors].

Let I be a set;
K = {Ki liE I} a collection of categories.

The projection functors 1I:i (i E I) are given by

1I:i : II K --> Ki.

1I:i . U = Ui, where U is either an object or a morphism.

o

Lemma 2.3.3.

Let I be a set;
K = {K, liE I} a collection of categories;
For all i:

let Ui, A, E obj(K,);
for all j:

let Dij E obj(Ki);
J;j E hom(D,j,Di,j+1);
Ci'ij E hom(Dij,Ai).

1. (Vi Ui is initial in K,) ¢} « U, Ii> is initial in IT K,).

2. (Vi : < (D,j ,Jij) I j > is w-chain in K,)

¢}

< « Dij Ii >,< J;j Ii »Ij > is w-chain in II Ki.

3. (Vi: (Ai,<Ci',j!i»iscoconefor«Dij,Jij)lj>

¢}

« Ai Ii>, < < Ci'ij Ii> I j » is cocone for < « Dij Ii>, < J;j Ii» I j >.

4. As 3, with cocone replaced by colimit.

5. (Vi : K, is w-category) ¢} II Ki is w-category.

6. The projection functors IT; II](i --t](i are w-(co)continuous.

Proof.

1. (Vi : U; is initial in K;)
[def. initiality]
(Vi : ('IV; E obj(K;) : (3!!; E hom(U;, V;))))

= [Eq. 1]
('IV E obj(II K;) : (Vi : (3! f; E hom(U;, V;))))

;

= (Eq. 2, Def. 2.3.1]
('IV E obj(II K;) (3! f E hom(< U; Ii>, V)))

[def. initiality]
< U;I i > is initial in II K;.

2. (Vi: < (Dij,!;j)lj > is w-chain in I(;)
[def. w-chain]
(Vi: (Vj Dij E obj(K;) and fij E hom(D;j,Di,j+tl))

(Vj : (Vi D;j E obj(K;) and fij E hom(D;j,D;,j+tl))
[Def. 2.3.1]

9

(Vj : < D;j Ii >E obj(II K;) and < !;j I i >E hom(< D;j Ii>, < D;,j+1 Ii>)).
;

[def. w-chain]
< « D;j Ii>, < !;j Ii>) I j > is w-chain in II K;.

3. (Vi : (Ai, < a;j I j » is cocone for < (D;j, f;j) I j »
[def. cocone]

=

(Vi : (Vj aij = a;,j+1 of;))

(Vj : (Vi a;j = ai,j+! a !;))

(V j : < aij Ii> = < a;,j+! a f; Ii>)
[Def. 2.3.1]
(V j : < a;j Ii> = < ai,j+! Ii> a < f; Ii»
[def. cocone]
« Ad i >, < < a;j Ii> I j >) is cocone for < « D;j Ii>, < fij Ii>) I j >.

4. (Vi: (A;,< aij Ij » is colirnit for < (Dij,f;j)lj »
= [def. colirnit]

(Vi: (V(B;,< f3;j Ii » E cocones for < (Dij,fij) Ij >
(3!!; E hom(A;, Bi) : (Vj : f3ij = !; a aij))

)
)

= [Eq. 1]

(1;/(< Bd i >, < < f3i; I j > Ii» E cocones for < « Di; Ii>, < h; Ii>) I j >
: (I;/i : (3! hE hom(Ai, Bi) : (I;/j : f3i; = Ii 0 <>i;)))

)
= [Eq.2]

(1;/(< Bi Ii>, < < f3i; I j > Ii» E co cones for < « Di; Ii>, < h; Ii» I j >
: (3! IE hom(< Ai Ii>, < Bi Ii»

(I;/i, j : f3i; = Ii 0 <>i;)
)

)
= [Def. 2.3.1]

(1;/(< Bd i >, < < f3i; I j > Ii» E cocones for < (< Di; Ii>, < Ii; Ii>) I j >
: (3! I E hom(< Ad i >, < Bi Ii»

(1;/ j : < f3i; Ii> = < Ii Ii> 0 < <>i; Ii>)
)

)
= [def. colimitJ

« Ai Ii>, < < <>i; Ii> I j >) is colimi t.

5. From 1 and 4.

6. From 4.

o

2.4. Product and tupling of functors

10

Given two collections {I(i liE I} and {Li liE I} of categories and a collection
{Fi : I(i -+ Li liE I} of functors, we can form a new functor II Fi, called the

i

product of the Fi, which is defined "pointwise".
Similarly, given a category I(, a collection {Li liE I} of categories and a collection
{Fi : I(-+ Li liE I} of functors, we can form a functor tuple < Fi liE I >, which
maps an object or a morphism u of I(to the tuple < Fi . u liE I > in II Li.

Continuity of < Fi liE I > is important for solving systems of equations. In Lemma
2.4.7 it is related to continuity of the Fi' The proof is based on relations with the
continuity of II Fi, stated in Lemma 2.4.6.

i

Definition 2.4.1 [product of functors].

Let I be a set;
I(= {I(i liE I} and L = {Li liE I} collections of categories;
F = {Fi : I(i -+ Li liE I} a collection 'of functors.

The product functor II F is given by

- IIF : III(-+ IIL

- (II F). < Ui liE I > = < Fi . Ui liE I >,
where < Ui liE I > is either an object or a morphism.

o

Definition 2.4.2 [tupling of functors].

Let I be a set;
J(a category;
L = {L; liE I} a collection of categories;
F = {F; : J(-+ L, liE I} a collection of functors.

The functor tuple < F, liE I > is given by

<FdiEI>: J(-+IIL

o

<FdiEI> u= <F;. uliEI>,
where u is either an object or a morphism.

Definition 2.4.3 [diagonal functor].

Let I be a set;
J(a category.

The diagonal functor 2>.[(,I is given by

2>.[(,[: J(-+ II J(

2>.[{,I . u = < u liE I >,
where u is either an object or a morphism.

o

Lemma 2.4.4.

Let I be a set;
J(a category;
L = {L, liE I} a collection of categories;
F = {F, : J(-+ L, liE I} a collection of functors.

Then
< F, liE I > = II F 0 2>. [{,I.

Proof.
Let u be an object or a morphism in J(.

< F; liE I > . u = < F, . u liE I > = II F· < u liE I > = (II F 0 2>.[(,[) . u.
o

Lemma 2.4.5.
2>.[{,l is w-cocontinuous.

Proof.

Let I be a set;
J(a category;
< (Dj,/j)lj > and w-chain in J(;

11

1. (A,< <>j Ij » a coli mit for < (Dj,/j) Ii >.

Then

12

2. « A liE I >,« <>j liE I >,j » is a colimit for < « Dj liE I >, < Ij liE I » Ij >.
[1, Lemma 2.3.3(4)J

3. (t.K,lA, < t.K,l<>j I j » is a colimit for < (t.K,lDj, t.[(,J/j) Ii >.

o

Lemma 2.4.6.

Let I be a set;
J(= {J(i liE I} and L = {Li liE I} collections of categories;
F = {Fi : J(i --> Li liE I} a collection of functors.

Then
(IIi : Fi is w·cocontinuous) ¢} II F is w-cocontinuous.

Proof.

(IIi : Fi is w-cocontinuous)
= [def. continuityJ

(IIi : (II(Bi, < flij I j >) E colimits of w-chain < (Dij, f;j) I j >

[2, Def. 2.4.3J

: (Fi' Bi,< Fi · flijlj » E colimitsof< (Fi' Dij,Fi · f;j)lj >
)

)
= [Eq. 1J

(II(< Bi Ii>, < < flij Ii> I j » E colimits of < « Dij Ii>, < lij Ii» I j >
: (IIi : (Fi . Bi, < Fi . flij I j > E colimits of < (Fi . Dij, Fi . f;j) I j >

)
)

= [Lemma 2.3.3(4)J
(11« Bdi >,« flij Ii> Ij » E colimits of < « Dij Ii >,< f;j Ii »Ij >

(< Fi . Bi Ii>, < < Fi . flij Ii> I j » E colimits of

)
< « Fi . Dij Ii>, < Fi . lij Ii>) I j >

= [def. 2.4.1J
(II(< Bd i >, < < fl;j Ii> I j >) E colimits of < « Dij Ii>, < f;j Ii>) I j >
(II F· < Bi Ii>, < II F· < (3ij Ii> Ij » E colimits of

)
<: (II F· < Dij Ii>, 1r F· < lij Ii» Ii >

= [def. continuityJ
7r F is w-cocontinuous.

o

13

Lemma 2.4.7.

Let I be a set;
J(a category;
L = {Li liE I} a collection of categories;
F = {Fi : J(..... Li liE I} a collection of functors.

Then
(Vi : Fi is w-cocontinuous) {} < Fi liE I> is w-cocontinuous.

Proof.
Immediately from Lemmas 2.4.4, 2.4.5, 2.4.6 and the fact that composition preserves
w-cocontinuity.
o

2.5. The initial fixed point theorem for product categories

In the introd uction we set out to solve a system of equations

Xi "" Fi(Xt,···,X;,···)

U sing the notions an notations of the previous sections we can reformulate the system
as

< Xi liE I >~< Fi liE I > . < Xi liE I >

for a suitably chosen index set I. So < Xi liE I > should be a fixed point of the
endofunctor < Fi liE I > on the category II J(i. This equation can be solved by

means of the initial fixed point construction described in [SP,LS,BH] provided II J(i
i

is an w- category and < Fi liE I > is an w-cocontinuous functor. By means of Lemmas
2.3.3.(5) and 2.4.7 these requirements can be reduced to requirements for the categories
J(i and the functors Fi. The result is stateq formally in Theorem 2.5.1.

Theorem 2.5.1 [initial fixed point theorem for product categories].

Let I be a set;
For all i E I: Let J(i be an w-category;

Fi : II J(i J(i an w-continuous functor;
i

Ui an initial object of J(i;
Ui the unique arrow from Ui to Fi· < Ui liE I >.

Let F = < Fi liE I >;
U = < U;I i E I>;
U = < u;l i E I>;

Let « Ai Ii>, < O'j I j » be a colimit of the w-chain

14

< (Fi . U,Fi . u)jj >.

Let < iJ>i Ii> be the mediating morphism from
« Ai Ii>, < "'j Ij » to (F· < Ai Ii>, < F . "'j Ij ».

Then « Ai Ii>, < iJ>i Ii> -1) is an initial fixed point of < F; Ii>, i.e.

< iJ>;,i > : < Adi >-->< Fi,i > . < Ai,i > is an isomorphism

and consequently,

for all i E I iJ>; A; --> F;· < Ai Ii> is an isomorphism.

Proof.

1. II J(i is an w-category.

2. U is initial in II J(i.
i

3. u is the unique arrow from U to F . U.

4. F is w-cocontinuous.

5. « Ad i >, < iJ>d i > -1) is i.f.p. of F.

o

[Lemma 2.3.3.(5)J

[Lemma 2.3.3.(1)J

[Lemma 2.3.3.(1)J

[Lemma 2.4.7J

[1-4, iJ.p. theoremJ

3. COMPLETENESS OF PRODUCT CATEGORIES

Let I be an arbitrary set. The discrete category J corresponding to I is defined by

i) obj(J) = I.

ii) HomJ(i,j) = {
o
{id;}

ifi-lj
if i = j

Let K be an arbitrary category.

Lemma 3.1.
The categories K J and II K are isomorphic.

iEI

Proof.

15

An object of the functor category K J is a functor F : J -+ K. Since the only
morphisms of J are identities, the functor F is completely defined by a mapping
F' : obj(J) = I -+ obj(K). F' can also be considered as an element of II obj(K) =

iEI

A morphism 'r/ : FI -+ F2 of the functor category KJ is a natural transformation be
tween the functors FI and F2 • This means that 'r/ is a family of morphisms ('r/;);Eobj(J),
such that for each morphism (: i -+ j of the category J the following diagram
commutes.

i

J

Fl(i)

FI(j) - F2(j)
'r/j

Since ~ : i -+ j is only possible if i = j and (= id;, the condition on the family
('r/;);Eobj(J) reduces to: for all i E obj(J) 'r/; is a morphism Ft(i) -+ F2(i) in the
category K. Hence, 'r/ can be seen as a morphism of II K.

iET

After these preliminaries it is clear that we can define a functor H KJ -+ II K

by

H(F) = < F(i) liE I>, for F E obj(I(J) ;

H('r/) = < 'r/; liE I > for 'r/ E mor(I(J).

iEI

It is easily proved that H is a functor, and that its inverse H-l

exists.
o

A category is called w-(co)complete if every w-chain has a (co)limit.
As a consequence of this lemma we now have

Lemma 3.2.
If a category J(is w-(co)complete, then also II J(is w- (co)complete.

iEI

Proof.

16

If J(is w-(co)complete, then J(A is w- (co)complete for every category A, see for instance
Rerrlich & Strecker [RS, §25.7]. The result now follows from Lemma 1 and the remark
that if a category is w-(co)complete, the same holds for isomorphic categories.
o

4. LOCAL CONTINUITY OF GENERALIZED PRODUCT AND SUM
FUNCTORS

4.1. Introduction

17

In this section we define a generalized sum functor and a generalized product functor.
Moreover, we give a detailed proof of the local continuity of these functors. Recall
that (see for instance Bos & Hemerik [BH] or Smyth & Plotkin [SP]), if J(and L are
O-categories, J(is localized and F : J(---> L is a locally continuous functor, the
corresponding functor FpR : J(PR ---> LpR is w- continuous.

4.2. Definition of the generalized sum and generalized product functors

Let A be some nonempty (index) set.
jects and morphisms of the category

In this note we shall frequently work with ob
IT . CPO. Objects of IT CPO are tuples

aEA aEA

< Da I a E A >, where each Da is an object of CPO. The set of morphisms between
the objects < Da I a E A > and < Ea I a E A > consists of tuples < ma I a E A >,
where each ma is a morphism in the category CPO between Da and Ea.

The generalized sum functor Gs

way.

IT CPO ---> CPO is defined in the following
aEA

i) For an object < Da I a E A > of IT CPO
aEA

Gs« Dala E A » = L: Da E obj(CPO).
aEA

Here L: Da is the c.p.o. which consists of the disjoint sum of the c.p.o.'s Da.
aEA

Elements of L: Da which are different from .lEDa, are of the form < b, db >,
aEA

with b E A and db E Db.

ii) For a morphism < ma I a E A > : < Da I a E A > ---> < Ea I a E A > of IT CPO
aEA

Gs« ma la E A » = Sum ma E mor(CPO).
aEA

Here Sum ma is the morphism between L: Da and L: Ea defined by:
aEA aEA aEA

(Sum ma) .lED. = .lEEa ,
aEA

(Sum ma) <b,db> = < b,mb(db) >
aEA

It is easily verified that Gs is indeed a functor. Next we define the generalized product

functor GP II CPO --+ CPO.
aEA

i) For an object < Da I a E A > of II CPO
aEA

GP(< Da I a E A » = II Da.
aEA

18

Here II D. is the c.p.o. which is the Cartesian product of the c.p.o.'s D •.
'EA

Elements of II D. are tuples < d. I a E A > where da E D. for all a E A .
• EA

ii) For a morphism < m. I a E A > : < Da I a E A > --+ < E. I a E A > of II CPO
.EA

GP(< ma I a E A » = Prod m. E mor(CPO) .
'EA

Here Prod m. is the morphism between II D. and II E. defined by:
aEA aEA aEA

(Prod ma)«d.laEA»=<m.(d.)laEA> .
• EA

It is also easily seen that GP is a functor.

4.3. Technical results

Recall (see for instance Bos & Hemerik [BH] or Smyth & Plotkin [SP]) that an O.
category is a category such that

i) every hom set is a poset in which every w·chain has a lub,

ii) composition of morphisms is w-continuous.

For the category CPO the hom sets have a natural c.p.o. structure that satisfies i) and
ii). For the category II CPO the hom sets consist of tuples of continuous mappings,

.EA

which by the componentwise ordering, also have a c.p.o. structure satisfying i) and ii).
More precisely, if mi = < mi,. I a E A > (i E IN) is an w-chain in HomIl CPO « D. I a E
A >, < Ea I a E A », then for all a E A mi,a is an w-chain in Homcpo(D., E.). The
lub m of the w-chain mi is then given by

00

m = < m. I a E A > = < U mi,. I a E A > .
i=O

(4.3.1)

Next we derive some properties of the mappings Prod and Sum, as defined in Section
4.2.

19

Let D = < Da I a E A > and E = < Ea I a E A > be two objects of II CPO. Let
aEA

m; = < m;,a I a E A > be an w-chain in Hom(D, E) with lub m = < ma I a E A >.
Suppose b E A, db E Db and so d = < b,db >E I: Da.

Then

00

(Sum m;,a)(d)) U
i:;;;o a

00

« b, m;,b(db) » U
i=O

00

= < b, U m;,b(db) >
i=o

00

< b, (U
i=O

m;,b) (db) >

= < b,mb(db) >

(Sum
a

ma) (d)

Also

00

m;,a)(.l.EDa)) U ((Sum
i=O a

00

U ..LEEa
i::;;o

= .lEEa

(Sum
a

ma) .lDa

a

[def. Sum]

flubs in I: Ea are computed
in a component (Eb)]

flubs of functions are
computed pointwise]

[(4.3.1)]

[def. Sum]

[def. Sum]

[def. Sum]

From these two computations and the fact that lubs offunctions are computed pointwise
00

(i.e.: (U
i=O

Sum
00

m;,a) (d) = U
1=0

((Sum mi,a)(d))) we conclude that
a a

00

U Sum m;,a = Sum ma.
i=O a a

A similar result holds for "Prod". Let d =< da I a E A >E II Da. Then
aEA

(4.3.2)

00

((mi,a)(d)) U Prod
i=O a

00

U « mi,a(da)la E A »
i=O

00

= < U (mi,a(da)) I a E A >
i;:;O

00

< (U
i=O

mi,a) (da) I a E A >

= < ma(da) I a E A >

= (Prod
a

ma)(d)

20

[def. Prod]

flubs in product c.p.o.'s
are computed componentwise]

~ubs of functions are
computed pointwise]

[(4.3.1)]

[def. Prod]

Together with the fact that lubs of functions are computed pointwise
00

(i.e. (U
i=O

00

Prod mi,a) (d) = .u
a ,:=0

((Prod mi,a)(d))), this implies
a

00

U Prod mi,a = Prod ma. (4.3.3)
i=O a a

4.4. Local continuity

A functor F : II CPO __ CPO is locally continuous iffor all objects D, E
aEA

of II CPO, F, viewed as a map: HomIlcpo(D,E) -- Homcpo(F(D),F(E)) is
aEA

w- continuous. Note that this definition is only useful since II CPO and CPO are
aEA

O-categories. Using the results of Section 3 the following two theorems can easily be
proved.

Theorem 4.4.1.
The generalized sum functor CiS is locally continuous.

Proof.
Let D and E be objects of II CPO and let mi =< mi,a I a E A > be an w-chain in

aEA

HomIlcpo(D, E) with lub m = U mi.

Then

00

U Gs(mi)
i=O

00

(Sum mi,a) = U
i=O a

= Sum ma
a

Gs(m)

o

Theorem 4.4.2.
The generalized product functor GP is loca.jly continuous.

Proof.
In the same setting as in the proof of the previous theorem we have

00

U GP(mi)
i=O

00

(Prod mi,a) U
i=O a

Prod ma
a

= GP(m)

o

21

[def. GsJ

[(4.3.2)J

[def. GsJ

[def. GPJ

[(4.3.3)J

[def. GPJ

22

5. w-CONTINUITY OF GENERALIZED PRODUCT AND SUM
FUNCTORS

5.1. Introduction

In Section 4 we described generalized sum and product functors Gs, ill II CPO->
aEA

CPO and proved their local continuity. Since local continuity implies local monotoni
city, there exist functors

In this section we show how these functors can be used to construct w-continuous
functors

GS,GP

First we show that the categories (II CPO) and II (CPOPR) are isomorphic.
aEA -- PR aEA

Since for an arbitrary O-category K obj(KpR) = obj(K), the objects of both catego
ries are identical.
Next suppose D =< Da I a E A> and E =< Ea I a E A > are objects of (II CPO)

aEA PR

and suppose m E Hom(II) (D, E). This means that m is a projection pair
CPO PR

and

aEA

mL E Hom II cpo(D,E) ,
aEA

mR E Hom II cpo(E,D)
aEA

m L a mR [;; idE,

mR a mL = idv .

Because II CPO is a product category, m L and m R consist of tuples:
aEA

m L = < m~ I a E A > ,

m R = < m!; I a E A > ,

where

and

m~ E Homcpo(Da,Ea) ,

m~ E Homcpo(Ea, Da)

L R ~ 'd ma 0 rna I:::: Z Ea ,

m~ 0 m~ = idDa .

Hence,

and

«m~,m~)laEA>EHom II (CPOPR)(D,E).
aEA

The above implies that we can define a functor S

in the following way

i) for an object D of (II CPO)PR
aEA

S(D) = D.

ii) for a morphism m = « m~ I a E A >, < m~ I a E A » of (II
aEA

S(m) = «m~,m~)laEA>.

23

II
aEA

CPO)
PR

It is easily seen that S is a functor. Moreover, S is an isomorphism, its inverse is the
functor T: II (CPOPR) --+ (II CPO) , defined by

aEA aEA PR

i) for an object D of II (CPOPR)
aEA

T(D) = D.

ii) for a morphism m =< (m~, m~) I a E A >
T(m) = « m~ I a E A >, < m~ I a E A ».

The generalized sum and product functors on the PR categories are defined by

GS = GsPR 0 T II (CPO PR) -+ CPOPR ;
aEA

GP = GPPR 0 T: II (CPOPR) -+ CPOPR .
aEA

For an object D =< Da I a E A > of II (CPOPR) this means
aEA

GS(D) = GsPR(T(D)) = GsPR(D) = Gs(D) = L Da,
a

GP(D) = GPPR(T(D)) = GPPR(D) = GP(D) = II Da.
a

For a morphism m =< (m~, m~) I a E A > of II (CPOPR) this means
aEA

GS(m) = GsPR(T(m)) = GsPR((< m~ I a E A >, < m~ I a E A »)

(Gs(< m~ I a E A », Gs(< m~ I a E A »)

(Sum m~, Sum m:;) ,
aEA aEA

GP(m)= GPPR(T(m)) = GPPR((< nt~la E A >,< m~la E A»)

(GP« m~la E A »,GP« m~laE A»)

= (Prod m~, Prod m~) .
aEA aEA

For the definitions of Prod and Sum, see Section 4.

5.2. w-Continuity

24

(5.1.1)

(5.1.2)

The functor T is an isomorphism, so it is w-continuous. Hence, to prove the w-continuity
of GS and GP, it is sufficient to show that GsPR and GPPR are w- continuous.
Recall that GsPR and GPPR are "PR versio;'s" of the locally continuous functors (see
Section 4)

Gs,GP II CPO -+ CPO.
aEA

From the continuity theorem (see for instance Bas & Hemerik [BH, Th. 3.15]) it fol
lows that it remains to be shown that II CPO is localized. In [BH, Prop. 3.18J it

aEA
is shown that an O-category is localized if every idempotent is split.

25

Theorem 5.2.1.
Let K be an O-category in which every idempotent is split. Then every idempotent in
the O-category II K is split.

aEA

Proof.
Let f E HomllK(D, D) be such that f 0 f = f. Then for all components fa E
HomK(Da,Da) we have fa 0 fa = fa. Since every idempotent in K is split, this means
that there exists an object Ea of K and morphisms ga : Da --t Ea and ha : Ea --t Da

such that fa = ha 0 ga and ga 0 ha = idE •. Let D =< Dala E A >E obj(II K),
aEA

and let h = < ha I a E A > : E --t D and g =< ga I a E A >: D --t E. Then clearly
f = hog and g 0 h = idE, so f is split in II K.

aEA
o

In the proof of Theorem 3.2.2 in [BH], it is shown that every idempotent in CPO
is split. Hence, every idempotent in II CPO is split, which implies (see [BH, Prop.

aEA

3.18]) that II CPO is a localized O-category. The discussion at the beginning of
aEA

this section now yields:

Theorem 5.2.2.
The functions GS,GP: II (CPOPR) --t CPOPR , as given in (5.1.1) and (5.1.2) are

w-continuous.
o

aEA

26

6. REFERENCES

BH

BMM

HTE

HS

LS

SP

TEM

Bos, R. and Hemerik, C., "An introduction to the category theoretical solution
of recursive domain equations", Computing Science Note 88/15, Eindhoven
University of Technology.

Bruce, K.B., Meyer, A.R. and Mitchell, J .C., "The semantics of second order
lambda calculus", to appear in Information and Computation.

Hemerik, C. and Ten Eikelder, H.M.M., "A model for a second order lambda
calcul us with recursion", to appear.

Herrlich, H. and Strecker, G.E., "Category Theory", Allyn and Bacon, Inc.,
Boston (1973).

Lehmann, D.J. and Smyth, M.B., "Algebraic specification of data types: a
synthetic approach", Math. Syst. Theory 14,97-139 (1981).

Smyth, M.B. and Plotkin, G.D., "The category theoretic solution of recursive
domain equations", SIAM J. Comput. 11, 761-783 (1982).

Ten Eikelder, H.M.M. and Mak, R.H., "Language Theory of a A-calculus with
Recursive Types", Computing Science Note 88/14, Eindhoven University of
Technology.

In this series appeared:

No. Author(s) Title
85/01 RH. Mak The fonnal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out'of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films ,

85/04 T. Verhoeff Delay insensitive directed trace
H.M.J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R Koymans Specifying message passing and
real-time systems

86{02 G.A. Bussing ELISA, A language for fonnal
K.M. vanHee specifi~ations of infonnation
M. Voorhoeve systems ,

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an infonnation
J. Paredaens system in several parallel systems
K.M. vanHee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86{06 Tom Verhoeff Nondeterminism and divergence
createq by concealment in CSP

86/07 R Gerth On pr()ving communication
L. Shira closedness of distributed layers

86/08 R Koymans Compositional semantics for
RK. Shyamasundar real-time distributed
W.P. de Roever compuling (Inf.&Control 1987)
R Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for reaj-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responqer's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R Gerth
W.P. de Roever

86/14 R Koymans

87/01 R Gerth

87/02 Simon I. Klaver
Chris F.M. Verberne

87/03 G.I. Houben
I.Paredaens

87/04 T.Verhoeff

87/05 RKuiper

87/06 R.Koymans

87/07 RKoymans

87/08 H.M.I.L. Schols

87/09 I. Kalisvaan
L.RA. Kessener
W.I.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 I.C.S.P. van der Woude

87/14 I. Hooman

Provil1g monitors revisited: a
fIrst step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requin,s extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

I

Federatieve Databases

A formal approach to distri
buted information systems

Delay-insensitive codes -
An overview

Enforcing non-determinism via
linear time temporal logic specifIcation.

Temporele logica specifIcatie van message
passinli en real-time systemen (in Dutch).

Specifying message passing and real-time
systerns with real-time temporal logic.

The maximum number of states after
projection. ,

Language extensions to study structures
for raster graphics.

Three families of maximally nondeter
ministic automata.

Eldorado ins and outs.
Specifications of a data base management
toolkit according to the functional model.

OR and AI approaches to decision support ,
systems.

Playing with patterns,
searching for strings.

A compositional proof system for an occam
like real-time language

I

87/15 C. Huizing A compositional semantics for statecharts
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eike1der Normal forms for a class of formulas
I.C.F. Wilmont

87/17 K.M. vanHee Modelling of discrete dynamic systems
G.-I.Houben framework and examples
I.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.I.Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Houben The R2 -Algebra: An extension of an
I. Paredaens algebra for nested relations

87/21 R Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the
Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
I.Paredaens Structured Information
D.Tahon

88/05 K.M. vanHee Executable Specifications for Information Systems
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.I.L. Schols Notes on Delay-Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
RGerth abstract way
W.P. de Roever

88/08 K.M. vanHee A Formal model for System Specification
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. vanHee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive
Circuits

88/11 G.J. Houben A graphical interface formalism: specifying nested
J.Paredaens relational databases

88/12 A.E. Eiben Abstr<\ct theory of planning

88/13 A. Bijlsma A unified approach to sequences, bags, and trees

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types

88/15 R.Bos An introduction to the category theoretic solution
C. Hemerik of recursive domain equations

88/16 C.Hemerik BottoqI-up tree acceptors
J.P.Katoen

88/17 KM. vanHee Execuiable specifications for discrete event
G.J. Houben systems
L.J. Somers

,

M. Voorhoeve

88/18 KM. van Hee Discre~e event systems: concepts and basic
P.M.P. Rambags results.

88/19 D.K Hammer
KM. vanHee

Fasering en documentatie in software engineering.

88/20 KM. vanHee
L. Somers

EXSPECf, the functional part.

M. Voorhoeve

89/1 E.Zs.Lepoeter-Molnar Reconstruction of a 3-D surface from its normal
vectors.

89/2 R.H. Mak A systolic design for dynamic programming.
P.Struik

89/3 H.M.M. Ten Eikelder Some category theoretical properties related to
C. Hemerik a model for a polymorphic lambda-calculus.

	Abstract
	Contents
	1. Introduction and model description
	2. Initial fixed points in product categories
	2.1 Introduction
	2.2 Preliminaries
	2.3 Product of categories
	2.4 Product and tupling of functors
	3. Completeness of product categories
	4. Local continuity of generalized product and sum factors
	4.1 Introduction
	4.2 Definition of the generalized sum and generalized product functors
	4.3 Terchnical results
	4.4 Local continuity
	5. o-mega-continuity of generalized product and sum functors
	5.1 Introduction
	5.2 o-mega-continuity
	6. References

