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A model for a second order polymorphic lambda calculus is sketched. Some category 
theoretical questions appearing in the model construction are extensively treated. 
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1. INTRODUCTION AND MODEL DESCRIPTION 

Consider a typed A-calculus, where type expressions are generated by production rules 
of the form 

Texp ::= Tconst I Tvar I Texp -+ Texp I ViA Tvar I Texp) . 

Here Tconst generates a set of type constants (for instance int, bool) and Tvar generates 
a set of type variables. The other two possible type expressions correspond to function 
types and polymorphic types. Other type constructors like +, x, v and L (correspond
ing to sum types, product types, recursive types and abstract data types) can easily be 
added and do not affect the following essentially. 

Expressions are generated by 

Exp ::= Const I Var I (A Var : TexplExp) I (ExpExp) I 
(A TvarlExp) I ExpTexp, . 

snpplied with a type deduction system. Const yields a set of constants (for instance 0, 
Stice, true), while Var generates a set of variables. The next two rules are the introduc
tion and elimination rules for expressions with function types. The last two rules are 
the introduction and elimination rules for expressions with a polymorphic type. 

A generalized version of this language (where type expressions are constructor expre&
sions of kind T) can be found in Bruce, Meyer and Mitchell [BMM] or Hemerik and Ten 
Eikelder [HTE]. 

The type deduction system strongly resembles the one given in Ten Eikelder and Mak 
[TEM]. The type dednction rules for expressions are given by 

A I> Cte : te 

Al I> tx 

A I> tx, te 
A; x : tx I> e : te 
A I> (AX : tx I e) : tx -+ te 

A I> f : te -+ tel, e : te 
A I> fe : tel 

A; t I> e : te 
A I> (At.e) : V(At.te) 

A I> e : V(At.te), tel 
A I> e tel: telel 

Cte E Const, FTV (te) = 0 

x If FV(A2 ) 

FTV(A2) n FTV(tx) = 0 
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Here A is a syntactic type assignment, i.e. a sequence consisting of type variables and 
type assignments (x : tx). The functions FV and FTV yield the free variables and free 
type variables of their arguments (!). 

In the remaining part of this section we shall briefly indicate how a model for the 
polymorphic A-calculus, given above, can be constructed. The model described below 
can easily be seen to fit with the general model definition given by Bruce, Meyer and 
Mitchell [BMMJ. In the model definition we shall meet some technical, category theoret
ical problems. In Sections 2, 3, 4 and 5 of this note these problems will be extensively 
treated. 

Let Texp(V) be the set of type expressions with free type variables in the set V. An 
important aspect of a model construction is to associate a suitable domain to each type 
expression. As ultimately all free type variables will be bound to a closed type expres
sion (using a type environment 1) : Tvar -; Texp(0)), we shall associate a domain (in 
fact a C.P.O.) DOM'e to each closed type expression teo 

The domain associated to a function type tel -; te2 should be equal or isomorphic 
to a sufficiently large subset (denoted by square brackets) of the functions of Dom'e! to 
DOmte2, i.e. 

(1.1) 

The domain DomV(A'.'e) related to a polymorphic type should be equal or isomorphic 
to the product of the domains Dom'e' ,where tel runs over all closed type expressions. 

"j In fact tel corresponds to the possib e "type arguments" of an expression with type 
V(At.te). Hence 

DomV(A'.'e) '" II (1.2) 
tel E Texp(0) 

It is easily seen that the domain in the left-hand side in general also appears in the 
right-hand side, take for instance V(At.t -; t) (the type of the polymorphic identity). 
This means that (1.1) and (1.2) can only be solved simultaneously, i.e. we compute 
a "vector of domains" Dom = < Dom'e I te E Texp(0) > as a solution of a system of 
isomorphic domain equations. 
More precisely Dom will be found as (the domain part of) the initial fixed point of an 
w-continuous endofunction F on a product category II J(, where J( is some 

te E Texp(0) 
suitable category. Since type expressions contain function types, the function space 
functor will be used in the definition of F (see (1.3)). On the w-categories SET and 
QEQ.L, the function space functor is contravariant in its first argument, so J( cannot 
be one of these categories. The function space functor FS on the category .QEQpRis an 
w-continuous (covariant) bifunctor, which leads to this choice for J(. 

From now on we shall write II CPOPR instead of II (CPOpR). With every 
te E Texp(0) 
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object D ofQEQpR is associated a constant functor CD : IIQEQPR --+ QEQPR. Let GP, 
"Trte : IIQEQPR --+ QEQPR, be the generalized product functor (see Sections 4 and 5) 
and the projection functor on component teo The function F : IIQEQPR --+ II QEQPR is 
defined by its components F te : IIQEQPR --+ QEQPR, i.e. F = < F te I te E Texp(0) >. 
We now give these components. Let p be a function which maps type constants to 
C.P.O.'s. Then 

(C E Tconst) 

Ftel_te2 = FS 0 < 7rtell7rte2 > (1.3) 

FV(At.te) = GP 0 < "Tr te' I tel E Texp > .. , 
If the function F is w-continuous and IIQEQPR is an w-category, there exists an initial 
fixed point (Dom,<I» of F (see for instance [SP]). The components of the isomorphism 
<I> : Dom --+ F(Dom) are isomorphisms <I>'e : Dom'e --+ Fte(Dom). In particular, this 
means 

<Pte1 ->te2 

and 

<I>V(At.te) DomV(A'.'e) --+ FV(A'.'e) (Dom) = II 
tel E Texp(0) 

in accordance with (1.1) and (1.2). The construction above can easily be extended to 
allow recursive types and abstract data types. This leads to components of F given by 

Fv(Atl'e) 

FI;(Atl'e) 

= 1T"t t 
ev(Atlte) , 

GS 0 < "Tr'e' I tel E Texp(0) > , ,.1 

where GS : II CPOPR --+ CPOPR is the generalized sum functor. 

The semantics of expressions can now easily be given. Recall that we have introduced 
a mapping p : Tconst --+ obj(QEQ), which maps every type constant to a c.p.o. Note 
that the construction of Domte (for closed type expressions te) depends only on p. We 
also have to associate a point of a suitable c.p.o. to each (expression-) constant. Hence, 
we extend p to a function on Tconst U Const, such that 

pi Const : Const--+ U Dom'e 
te E Texp(0) 

with 

p( c'e) E Dom'e for every C'e E Const . 
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Of course the semantics of an expression depends also on the values of the appearing 
type variables and (expression) variables. An environment is a mapping", with domain 
Tvar U Var such that 

Tvar -+ Texp(0) 

Var -+ U 
te E Texp(0) 

Let te be an arbitrary type expression. The closed type expression obtained by substi
tuting ",(t) for every free type variable t of te will be denoted by {",}te. An environment '" 
will be called consistent with respect to a syntactic type assignment A if for all variables 
x and type expressions tx such that A I> x : tx 

Let", be an environment which is consistent with respect to a syntactic type assignment 
A. The semantics of expressions typable under A in the environment", is defined in the 
following way: 

[A l> "te : teh = p( Cte) , 

[A l> x : txh = ",(x) , 

[A l> (oXx:txle) : tx -+ te]", = 
<l>{ij\(tx~te) (). dE Dom{ij}tx I [A; x : tx l> e : te] ",[d/xl) . 

Note that if '" is consistent with respect to A, then for every d E Dom{ij}tx, '" [d/xl is 
consistent with respect to A; x : tx. 

[A l> e1e2 : te] '" = 

(<l>{"}(te2~te)([A l> e1 : te2 -+ teh)) [A l> e2 te2h 

[A l> (At.e) : If(At.te)h = 

<l>{ij\V(At.te) ( < [A; t l> e : te] '" [te1/tll tel E Texp(0) > ) 

Again if '" is consistent with respect to A, then", [te1/tl is consistent with respect to 
A;t. 

[A l> e tel: teled '" = 

(<l>{ij}V(At.te)[A l> e : If(At.te)h) . 
tel 

The proof that the semantics of expressions is correctly defined and satisfies 
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will not be given here. 

In the construction of the c.p.o.'s Dom" various category theoretical questions arise. 
For instance: 

i) Is II.cEQPR an w-category? 

ii) Under which conditions is a functor F : II.cEQPR --+ II.cEQPR w-continuous? 

iii) What is the definition of the generalized product and generalized sum functors 
GP, GS : II.cEQPR --+ .cEQPR? 
Are these functors w-continuous? 

The questions i) and ii) are studied extensively in Section 2. 
In Section 3 an alternative proof is given of the property that an arbitrary product of 
an w-complete category is w-complete. This proof requires some more category theory. 
In Section 4 we define generalized product and generalized sum functors II.cEQ --+ .cEQ 
and show that they are locally continuous. 
Finally, in Section 5 we define the generalized product and generalized sum functors 
GP, GS : II.cEQPR --+ .cEQPR and show that they are w-continuous. 
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2. INITIAL FIXED POINTS IN PRODUCT CATEGORIES 

2.1. Introduction 

In [SP,LS,BH] a solution method is described for equations of the form 

X"'!F· X 

where X ranges over the objects of a category ]( and F : ]( _ ]( is an endofunctor 
of that category. When]( is an w-complete category (Le. a category that has an initial 
object and in which each w-chain has a colimit) and F is an w-cocontinuous functor 
(Le. a functor that preserves colimits), the method yields a fixed point, Le. a pair 
(A, iP) such that 

A E obj(]() 

iP : A _ F . A is an isomorphism. 

Moreover, the fixed point (A,iP) is initial in the category of fixed points of F. The 
construction method is a systematic generalization of the least fixed point construction 
for w-continuous functions on w-cpo's. 

In this section we consider the solution to a system of equations 

where Xi ranges over the objects of a categorY](i and Fi : ](1 X ... X ](i X .•. - ](i. 

Such a system of equations can be handled as a single equation 

in the product categorY](l X •.. X ](i X .... We are interested in conditions 
on the categories ](i and the functors Fi that imply solvability of the above equation. 
It will turn out that the conditions that each ](i is an w-category and that each Fi 

is w-continuous are sufficient. Although this is intuitively clear ("properties smoothly 
generalize to products if everything is defined pointwise") a full proof turns out to 
be rather involved and to contain some unexpected swaps of universal and existential 
quantifications, reason why it has been recorded in this note. 

2.2. Preliminaries 

The notation < Eli E I > will be used instead of (~i E I I E) for functions with 
parameter i ranging over domain I. 
Sequences will be considered as functions with domain IN. Function application will 
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be denoted by subscripting; so if x is a function with domain I, then x = < Xi liE I>. 
In some cases the domain will not be mentioned explicitly to reduce notational clutter. 
In such cases the variable named i is always assumed to range over a set I mentioned in 
the context; the variable j is always assumed to range over IN. So < Eli> abbreviates 
< Eli E I>, and < Elj > abbreviates < Elj E IN >. 
Functor application will be denoted by·. 
The symbol II will be defined for categories and functors. In all other cases it denotes 
generalized Cartesian product of sets. II {Vi liE I} will be written II Vi, or just 

iEI 

II Vi, Note that if (IIi E I : Vi E Vi), then < Vi liE I >E II Vi. 
i . 

In some proof steps use will be made of the following marked equivalences: 

(Eq. 1) (IIi E I : (IiVi E Vi : P( Vi))) 

~ 

(liv E II Vi (IIi E I P( Vi))) 

(Eq. 2) (IIi E I (3! Vi E Vi P(Vi))) 

~ 

(3!v E II Vi (IIi E I P( Vi))) 

As for many of the properties we consider, the equivalence 

P(v)~(lIiEI : P(Vi)) 

also holds, these equivalences might be considered the formal rendering of the afore
mentioned phrase that "properties defined pointwise generalize to products". 

2.3. Product of categories 

Given a collection {Ki liE I} of categories, we can form a new category, which 
has as objects tuples < Ai liE I > of obj~cts Ai E obj(Ki). For two such objects 
< Ai liE I > and < Bi liE I > the set of morphisms consists of tuples < Ii liE I > 
where, for all i, J; is a morphism from Ai to Bi. The category thus obtained is called 
the product of {Ki liE I} and is denoted by II {Ki liE I}. In this section we consider 
relations between properties of the categories Ki and of their product. The most im
portant one is Lemma 3.5 which states that the product is an w- category iff each Ki 
is an w-category. 

Definition 2.3.1 [product of categories]. 

Let I be a set; 
K = {Ki liE I} a collection of categories. 

The product category II K is the category M with 



- obj(M) = II obj(Ki). 
iEI 

- for all A, B E obj(M) : homM(A, B) = II homKi(Ai, Bi). 
iEI 

- for all A E obj(M) : IA = < h liE I >. 
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- for all A,B,G E obj(M); I E hom(A,B); 9 E hom(B,G) go 1= < g, 0 Ii Ii E I >. 

o 

Definition 2.3.2 [projection functors]. 

Let I be a set; 
K = {Ki liE I} a collection of categories. 

The projection functors 1I:i (i E I) are given by 

1I:i : II K --> Ki. 

1I:i . U = Ui, where U is either an object or a morphism. 

o 

Lemma 2.3.3. 

Let I be a set; 
K = {K, liE I} a collection of categories; 
For all i: 

let Ui, A, E obj(K,); 
for all j: 

let Dij E obj(Ki); 
J;j E hom(D,j,Di,j+1); 
Ci'ij E hom(Dij,Ai). 

1. (Vi Ui is initial in K,) ¢} « U, Ii> is initial in IT K,). 

2. (Vi : < (D,j ,Jij) I j > is w-chain in K,) 

¢} 

< « Dij Ii >,< J;j Ii »Ij > is w-chain in II Ki. 

3. (Vi: (Ai,<Ci',j!i»iscoconefor«Dij,Jij)lj> 

¢} 

« Ai Ii>, < < Ci'ij Ii> I j » is cocone for < « Dij Ii>, < J;j Ii» I j >. 

4. As 3, with cocone replaced by colimit. 

5. (Vi : K, is w-category) ¢} II Ki is w-category. 



6. The projection functors IT; II ](i --t ](i are w-( co )continuous. 

Proof. 

1. (Vi : U; is initial in K;) 
[def. initiality] 
(Vi : ('IV; E obj(K;) : (3!!; E hom(U;, V;)))) 

= [Eq. 1] 
('IV E obj( II K;) : (Vi : (3! f; E hom(U;, V;)))) 

; 

= (Eq. 2, Def. 2.3.1] 
('IV E obj( II K;) (3! f E hom( < U; Ii>, V))) 

[def. initiality] 
< U;I i > is initial in II K;. 

2. (Vi: < (Dij,!;j)lj > is w-chain in I(;) 
[def. w-chain] 
(Vi: (Vj Dij E obj(K;) and fij E hom(D;j,Di,j+tl)) 

(Vj : (Vi D;j E obj(K;) and fij E hom(D;j,D;,j+tl)) 
[Def. 2.3.1] 
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(Vj : < D;j Ii >E obj( II K;) and < !;j I i >E hom( < D;j Ii>, < D;,j+1 Ii> )). 
; 

[def. w-chain] 
< « D;j Ii>, < !;j Ii> ) I j > is w-chain in II K;. 

3. (Vi : (Ai, < a;j I j » is cocone for < (D;j, f;j) I j » 
[def. cocone] 

= 

(Vi : (Vj aij = a;,j+1 of;)) 

(Vj : (Vi a;j = ai,j+! a !;)) 

(V j : < aij Ii> = < a;,j+! a f; Ii> ) 
[Def. 2.3.1] 
(V j : < a;j Ii> = < ai,j+! Ii> a < f; Ii» 
[def. cocone] 
« Ad i >, < < a;j Ii> I j > ) is cocone for < « D;j Ii>, < fij Ii> ) I j >. 

4. (Vi: (A;,< aij Ij » is colirnit for < (Dij,f;j)lj » 
= [def. colirnit] 

(Vi: (V(B;,< f3;j Ii » E cocones for < (Dij,fij) Ij > 
(3!!; E hom(A;, Bi) : (Vj : f3ij = !; a aij)) 

) 
) 

= [Eq. 1] 



(1;/( < Bd i >, < < f3i; I j > Ii» E cocones for < « Di; Ii>, < h; Ii> ) I j > 
: (I;/i : (3! hE hom(Ai, Bi) : (I;/j : f3i; = Ii 0 <>i;))) 

) 
= [Eq.2] 

(1;/( < Bi Ii>, < < f3i; I j > Ii» E co cones for < « Di; Ii>, < h; Ii» I j > 
: (3! IE hom( < Ai Ii>, < Bi Ii» 

(I;/i, j : f3i; = Ii 0 <>i;) 
) 

) 
= [Def. 2.3.1] 

(1;/( < Bd i >, < < f3i; I j > Ii» E cocones for < ( < Di; Ii>, < Ii; Ii> ) I j > 
: (3! I E hom( < Ad i >, < Bi Ii» 

(1;/ j : < f3i; Ii> = < Ii Ii> 0 < <>i; Ii> ) 
) 

) 
= [def. colimitJ 

« Ai Ii>, < < <>i; Ii> I j > ) is colimi t. 

5. From 1 and 4. 

6. From 4. 

o 

2.4. Product and tupling of functors 
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Given two collections {I(i liE I} and {Li liE I} of categories and a collection 
{Fi : I(i -+ Li liE I} of functors, we can form a new functor II Fi, called the 

i 

product of the Fi, which is defined "pointwise". 
Similarly, given a category I(, a collection {Li liE I} of categories and a collection 
{Fi : I( -+ Li liE I} of functors, we can form a functor tuple < Fi liE I >, which 
maps an object or a morphism u of I( to the tuple < Fi . u liE I > in II Li. 

Continuity of < Fi liE I > is important for solving systems of equations. In Lemma 
2.4.7 it is related to continuity of the Fi' The proof is based on relations with the 
continuity of II Fi, stated in Lemma 2.4.6. 

i 

Definition 2.4.1 [product of functors]. 

Let I be a set; 
I( = {I(i liE I} and L = {Li liE I} collections of categories; 
F = {Fi : I(i -+ Li liE I} a collection 'of functors. 

The product functor II F is given by 

- IIF : III( -+ IIL 

- (II F). < Ui liE I > = < Fi . Ui liE I >, 
where < Ui liE I > is either an object or a morphism. 

o 



Definition 2.4.2 [tupling of functors]. 

Let I be a set; 
J( a category; 
L = {L; liE I} a collection of categories; 
F = {F; : J( -+ L, liE I} a collection of functors. 

The functor tuple < F, liE I > is given by 

<FdiEI>: J(-+IIL 

o 

<FdiEI> u= <F;. uliEI>, 
where u is either an object or a morphism. 

Definition 2.4.3 [diagonal functor]. 

Let I be a set; 
J( a category. 

The diagonal functor 2>.[(,I is given by 

2>.[(,[ : J( -+ II J( 

2>.[{,I . u = < u liE I >, 
where u is either an object or a morphism. 

o 

Lemma 2.4.4. 

Let I be a set; 
J( a category; 
L = {L, liE I} a collection of categories; 
F = {F, : J( -+ L, liE I} a collection of functors. 

Then 
< F, liE I > = II F 0 2>. [{,I. 

Proof. 
Let u be an object or a morphism in J(. 

< F; liE I > . u = < F, . u liE I > = II F· < u liE I > = (II F 0 2>.[(,[) . u. 
o 

Lemma 2.4.5. 
2>.[{,l is w-cocontinuous. 

Proof. 

Let I be a set; 
J( a category; 
< (Dj,/j)lj > and w-chain in J(; 
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1. (A,< <>j Ij » a coli mit for < (Dj,/j) Ii >. 

Then 
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2. « A liE I >,« <>j liE I >,j » is a colimit for < « Dj liE I >, < Ij liE I » Ij >. 
[1, Lemma 2.3.3( 4)J 

3. (t.K,lA, < t.K,l<>j I j » is a colimit for < (t.K,lDj, t.[(,J/j) Ii >. 

o 

Lemma 2.4.6. 

Let I be a set; 
J( = {J(i liE I} and L = {Li liE I} collections of categories; 
F = {Fi : J(i --> Li liE I} a collection of functors. 

Then 
(IIi : Fi is w·cocontinuous) ¢} II F is w-cocontinuous. 

Proof. 

(IIi : Fi is w-cocontinuous) 
= [def. continuityJ 

(IIi : (II( Bi, < flij I j > ) E colimits of w-chain < (Dij, f;j) I j > 

[2, Def. 2.4.3J 

: (Fi' Bi,< Fi · flijlj » E colimitsof< (Fi' Dij,Fi · f;j)lj > 
) 

) 
= [Eq. 1J 

(II( < Bi Ii>, < < flij Ii> I j » E colimits of < « Dij Ii>, < lij Ii» I j > 
: (IIi : (Fi . Bi, < Fi . flij I j > E colimits of < (Fi . Dij, Fi . f;j) I j > 

) 
) 

= [Lemma 2.3.3(4)J 
(11« Bdi >,« flij Ii> Ij » E colimits of < « Dij Ii >,< f;j Ii »Ij > 

( < Fi . Bi Ii>, < < Fi . flij Ii> I j » E colimits of 

) 
< « Fi . Dij Ii>, < Fi . lij Ii> ) I j > 

= [def. 2.4.1J 
(II( < Bd i >, < < fl;j Ii> I j > ) E colimits of < « Dij Ii>, < f;j Ii> ) I j > 
(II F· < Bi Ii>, < II F· < (3ij Ii> Ij » E colimits of 

) 
<: (II F· < Dij Ii>, 1r F· < lij Ii» Ii > 

= [def. continuityJ 
7r F is w-cocontinuous. 

o 
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Lemma 2.4.7. 

Let I be a set; 
J( a category; 
L = {Li liE I} a collection of categories; 
F = {Fi : J( ..... Li liE I} a collection of functors. 

Then 
(Vi : Fi is w-cocontinuous) {} < Fi liE I> is w-cocontinuous. 

Proof. 
Immediately from Lemmas 2.4.4, 2.4.5, 2.4.6 and the fact that composition preserves 
w-cocontinuity. 
o 

2.5. The initial fixed point theorem for product categories 

In the introd uction we set out to solve a system of equations 

Xi "" Fi(Xt,···,X;,···) 

U sing the notions an notations of the previous sections we can reformulate the system 
as 

< Xi liE I >~< Fi liE I > . < Xi liE I > 

for a suitably chosen index set I. So < Xi liE I > should be a fixed point of the 
endofunctor < Fi liE I > on the category II J(i. This equation can be solved by 

means of the initial fixed point construction described in [SP,LS,BH] provided II J(i 
i 

is an w- category and < Fi liE I > is an w-cocontinuous functor. By means of Lemmas 
2.3.3.(5) and 2.4.7 these requirements can be reduced to requirements for the categories 
J(i and the functors Fi. The result is stateq formally in Theorem 2.5.1. 

Theorem 2.5.1 [initial fixed point theorem for product categories]. 

Let I be a set; 
For all i E I: Let J(i be an w-category; 

Fi : II J(i ..... J(i an w-continuous functor; 
i 

Ui an initial object of J(i; 
Ui the unique arrow from Ui to Fi· < Ui liE I >. 

Let F = < Fi liE I >; 
U = < U;I i E I>; 
U = < u;l i E I>; 

Let « Ai Ii>, < O'j I j » be a colimit of the w-chain 
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< (Fi . U,Fi . u)jj >. 

Let < iJ>i Ii> be the mediating morphism from 
« Ai Ii>, < "'j Ij » to (F· < Ai Ii>, < F . "'j Ij ». 

Then « Ai Ii>, < iJ>i Ii> -1) is an initial fixed point of < F; Ii>, i.e. 

< iJ>;,i > : < Adi >-->< Fi,i > . < Ai,i > is an isomorphism 

and consequently, 

for all i E I iJ>; A; --> F;· < Ai Ii> is an isomorphism. 

Proof. 

1. II J(i is an w-category. 

2. U is initial in II J(i. 
i 

3. u is the unique arrow from U to F . U. 

4. F is w-cocontinuous. 

5. « Ad i >, < iJ>d i > -1) is i.f.p. of F. 

o 

[Lemma 2.3.3.(5)J 

[Lemma 2.3.3.( 1)J 

[Lemma 2.3.3.(1)J 

[Lemma 2.4.7J 

[1-4, iJ.p. theoremJ 



3. COMPLETENESS OF PRODUCT CATEGORIES 

Let I be an arbitrary set. The discrete category J corresponding to I is defined by 

i) obj(J) = I. 

ii) HomJ( i,j) = { 
o 
{id;} 

ifi-lj 
if i = j 

Let K be an arbitrary category. 

Lemma 3.1. 
The categories K J and II K are isomorphic. 

iEI 

Proof. 
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An object of the functor category K J is a functor F : J -+ K. Since the only 
morphisms of J are identities, the functor F is completely defined by a mapping 
F' : obj(J) = I -+ obj(K). F' can also be considered as an element of II obj(K) = 

iEI 

A morphism 'r/ : FI -+ F2 of the functor category KJ is a natural transformation be
tween the functors FI and F2 • This means that 'r/ is a family of morphisms ('r/;);Eobj(J), 
such that for each morphism ( : i -+ j of the category J the following diagram 
commutes. 

i 

J 

Fl(i) 

FI(j) - F2(j) 
'r/j 

Since ~ : i -+ j is only possible if i = j and ( = id;, the condition on the family 
('r/;);Eobj(J) reduces to: for all i E obj(J) 'r/; is a morphism Ft(i) -+ F2(i) in the 
category K. Hence, 'r/ can be seen as a morphism of II K. 

iET 

After these preliminaries it is clear that we can define a functor H KJ -+ II K 

by 

H(F) = < F( i) liE I>, for F E obj(I(J) ; 

H('r/) = < 'r/; liE I > for 'r/ E mor(I(J). 

iEI 



It is easily proved that H is a functor, and that its inverse H-l 

exists. 
o 

A category is called w-( co )complete if every w-chain has a (co )limit. 
As a consequence of this lemma we now have 

Lemma 3.2. 
If a category J( is w-( co )complete, then also II J( is w- (co )complete. 

iEI 

Proof. 
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If J( is w-( co )complete, then J(A is w- (co )complete for every category A, see for instance 
Rerrlich & Strecker [RS, §25.7]. The result now follows from Lemma 1 and the remark 
that if a category is w-( co )complete, the same holds for isomorphic categories. 
o 



4. LOCAL CONTINUITY OF GENERALIZED PRODUCT AND SUM 
FUNCTORS 

4.1. Introduction 
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In this section we define a generalized sum functor and a generalized product functor. 
Moreover, we give a detailed proof of the local continuity of these functors. Recall 
that (see for instance Bos & Hemerik [BH] or Smyth & Plotkin [SP]), if J( and L are 
O-categories, J( is localized and F : J( ---> L is a locally continuous functor, the 
corresponding functor FpR : J(PR ---> LpR is w- continuous. 

4.2. Definition of the generalized sum and generalized product functors 

Let A be some nonempty (index) set. 
jects and morphisms of the category 

In this note we shall frequently work with ob
IT . CPO. Objects of IT CPO are tuples 

aEA aEA 

< Da I a E A >, where each Da is an object of CPO. The set of morphisms between 
the objects < Da I a E A > and < Ea I a E A > consists of tuples < ma I a E A >, 
where each ma is a morphism in the category CPO between Da and Ea. 

The generalized sum functor Gs 

way. 

IT CPO ---> CPO is defined in the following 
aEA 

i) For an object < Da I a E A > of IT CPO 
aEA 

Gs« Dala E A » = L: Da E obj(CPO). 
aEA 

Here L: Da is the c.p.o. which consists of the disjoint sum of the c.p.o.'s Da. 
aEA 

Elements of L: Da which are different from .lEDa, are of the form < b, db >, 
aEA 

with b E A and db E Db. 

ii) For a morphism < ma I a E A > : < Da I a E A > ---> < Ea I a E A > of IT CPO 
aEA 

Gs« ma la E A » = Sum ma E mor(CPO). 
aEA 

Here Sum ma is the morphism between L: Da and L: Ea defined by: 
aEA aEA aEA 

(Sum ma) .lED. = .lEEa , 
aEA 

(Sum ma) <b,db> = < b,mb(db) > 
aEA 

It is easily verified that Gs is indeed a functor. Next we define the generalized product 



functor GP II CPO --+ CPO. 
aEA 

i) For an object < Da I a E A > of II CPO 
aEA 

GP( < Da I a E A » = II Da. 
aEA 
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Here II D. is the c.p.o. which is the Cartesian product of the c.p.o.'s D •. 
'EA 

Elements of II D. are tuples < d. I a E A > where da E D. for all a E A . 
• EA 

ii) For a morphism < m. I a E A > : < Da I a E A > --+ < E. I a E A > of II CPO 
.EA 

GP( < ma I a E A » = Prod m. E mor(CPO) . 
'EA 

Here Prod m. is the morphism between II D. and II E. defined by: 
aEA aEA aEA 

(Prod ma)«d.laEA»=<m.(d.)laEA> . 
• EA 

It is also easily seen that GP is a functor. 

4.3. Technical results 

Recall (see for instance Bos & Hemerik [BH] or Smyth & Plotkin [SP]) that an O. 
category is a category such that 

i) every hom set is a poset in which every w·chain has a lub, 

ii) composition of morphisms is w-continuous. 

For the category CPO the hom sets have a natural c.p.o. structure that satisfies i) and 
ii). For the category II CPO the hom sets consist of tuples of continuous mappings, 

.EA 

which by the componentwise ordering, also have a c.p.o. structure satisfying i) and ii). 
More precisely, if mi = < mi,. I a E A > (i E IN) is an w-chain in HomIl CPO « D. I a E 
A >, < Ea I a E A », then for all a E A mi,a is an w-chain in Homcpo(D., E.). The 
lub m of the w-chain mi is then given by 

00 

m = < m. I a E A > = < U mi,. I a E A > . 
i=O 

(4.3.1) 

Next we derive some properties of the mappings Prod and Sum, as defined in Section 
4.2. 
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Let D = < Da I a E A > and E = < Ea I a E A > be two objects of II CPO. Let 
aEA 

m; = < m;,a I a E A > be an w-chain in Hom(D, E) with lub m = < ma I a E A >. 
Suppose b E A, db E Db and so d = < b,db >E I: Da. 

Then 

00 

( Sum m;,a)(d)) U 
i:;;;o a 

00 

« b, m;,b(db) » U 
i=O 

00 

= < b, U m;,b(db) > 
i=o 

00 

< b, ( U 
i=O 

m;,b) (db) > 

= < b,mb(db) > 

( Sum 
a 

ma) (d) 

Also 

00 

m;,a)(.l.EDa)) U (( Sum 
i=O a 

00 

U ..LEEa 
i::;;o 

= .lEEa 

( Sum 
a 

ma) .lDa 

a 

[def. Sum] 

flubs in I: Ea are computed 
in a component (Eb)] 

flubs of functions are 
computed pointwise] 

[(4.3.1)] 

[def. Sum] 

[def. Sum] 

[def. Sum] 

From these two computations and the fact that lubs offunctions are computed pointwise 
00 

(i.e.: ( U 
i=O 

Sum 
00 

m;,a) (d) = U 
1=0 

(( Sum mi,a)(d))) we conclude that 
a a 

00 

U Sum m;,a = Sum ma. 
i=O a a 

A similar result holds for "Prod". Let d =< da I a E A >E II Da. Then 
aEA 

(4.3.2) 



00 

(( mi,a)(d)) U Prod 
i=O a 

00 

U « mi,a(da)la E A » 
i=O 

00 

= < U (mi,a(da)) I a E A > 
i;:;O 

00 

< ( U 
i=O 

mi,a) (da) I a E A > 

= < ma(da) I a E A > 

= ( Prod 
a 

ma)(d) 
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[def. Prod] 

flubs in product c.p.o.'s 
are computed componentwise] 

~ubs of functions are 
computed pointwise] 

[(4.3.1)] 

[def. Prod] 

Together with the fact that lubs of functions are computed pointwise 
00 

(i.e. ( U 
i=O 

00 

Prod mi,a) (d) = .u 
a ,:=0 

(( Prod mi,a)(d))), this implies 
a 

00 

U Prod mi,a = Prod ma. ( 4.3.3) 
i=O a a 

4.4. Local continuity 

A functor F : II CPO __ CPO is locally continuous iffor all objects D, E 
aEA 

of II CPO, F, viewed as a map: HomIlcpo(D,E) -- Homcpo(F(D),F(E)) is 
aEA 

w- continuous. Note that this definition is only useful since II CPO and CPO are 
aEA 

O-categories. Using the results of Section 3 the following two theorems can easily be 
proved. 

Theorem 4.4.1. 
The generalized sum functor CiS is locally continuous. 

Proof. 
Let D and E be objects of II CPO and let mi =< mi,a I a E A > be an w-chain in 

aEA 

HomIlcpo(D, E) with lub m = U mi. 

Then 



00 

U Gs(mi) 
i=O 

00 

( Sum mi,a) = U 
i=O a 

= Sum ma 
a 

Gs(m) 

o 

Theorem 4.4.2. 
The generalized product functor GP is loca.jly continuous. 

Proof. 
In the same setting as in the proof of the previous theorem we have 

00 

U GP(mi) 
i=O 

00 

( Prod mi,a) U 
i=O a 

Prod ma 
a 

= GP(m) 

o 
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[def. GsJ 

[( 4.3.2)J 

[def. GsJ 

[def. GPJ 

[( 4.3.3)J 

[def. GPJ 
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5. w-CONTINUITY OF GENERALIZED PRODUCT AND SUM 
FUNCTORS 

5.1. Introduction 

In Section 4 we described generalized sum and product functors Gs, ill II CPO-> 
aEA 

CPO and proved their local continuity. Since local continuity implies local monotoni
city, there exist functors 

In this section we show how these functors can be used to construct w-continuous 
functors 

GS,GP 

First we show that the categories ( II CPO) and II (CPOPR) are isomorphic. 
aEA -- PR aEA 

Since for an arbitrary O-category K obj(KpR) = obj(K), the objects of both catego
ries are identical. 
Next suppose D =< Da I a E A> and E =< Ea I a E A > are objects of ( II CPO) 

aEA PR 

and suppose m E Hom( II ) (D, E). This means that m is a projection pair 
CPO PR 

and 

aEA 

mL E Hom II cpo(D,E) , 
aEA 

mR E Hom II cpo(E,D) 
aEA 

m L a mR [;; idE, 

mR a mL = idv . 

Because II CPO is a product category, m L and m R consist of tuples: 
aEA 

m L = < m~ I a E A > , 

m R = < m!; I a E A > , 



where 

and 

m~ E Homcpo(Da,Ea) , 

m~ E Homcpo(Ea, Da) 

L R ~ 'd ma 0 rna I:::: Z Ea , 

m~ 0 m~ = idDa . 

Hence, 

and 

«m~,m~)laEA>EHom II (CPOPR)(D,E). 
aEA 

The above implies that we can define a functor S 

in the following way 

i) for an object D of ( II CPO )PR 
aEA 

S(D) = D. 

ii) for a morphism m = « m~ I a E A >, < m~ I a E A » of ( II 
aEA 

S(m) = «m~,m~)laEA>. 
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II 
aEA 

CPO) 
PR 

It is easily seen that S is a functor. Moreover, S is an isomorphism, its inverse is the 
functor T: II (CPOPR) --+ ( II CPO) , defined by 

aEA aEA PR 

i) for an object D of II (CPOPR ) 
aEA 

T(D) = D. 

ii) for a morphism m =< (m~, m~) I a E A > 
T(m) = « m~ I a E A >, < m~ I a E A ». 

The generalized sum and product functors on the PR categories are defined by 



GS = GsPR 0 T II (CPO PR) -+ CPOPR ; 
aEA 

GP = GPPR 0 T: II (CPOPR) -+ CPOPR . 
aEA 

For an object D =< Da I a E A > of II (CPOPR) this means 
aEA 

GS(D) = GsPR(T(D)) = GsPR(D) = Gs(D) = L Da, 
a 

GP(D) = GPPR(T(D)) = GPPR(D) = GP(D) = II Da. 
a 

For a morphism m =< (m~, m~) I a E A > of II (CPOPR) this means 
aEA 

GS(m) = GsPR(T(m)) = GsPR(( < m~ I a E A >, < m~ I a E A ») 

(Gs( < m~ I a E A », Gs( < m~ I a E A ») 

(Sum m~, Sum m:;) , 
aEA aEA 

GP(m)= GPPR(T(m)) = GPPR((< nt~la E A >,< m~la E A») 

(GP« m~la E A »,GP« m~laE A») 

= (Prod m~, Prod m~) . 
aEA aEA 

For the definitions of Prod and Sum, see Section 4. 

5.2. w-Continuity 
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(5.1.1) 

(5.1.2) 

The functor T is an isomorphism, so it is w-continuous. Hence, to prove the w-continuity 
of GS and GP, it is sufficient to show that GsPR and GPPR are w- continuous. 
Recall that GsPR and GPPR are "PR versio;'s" of the locally continuous functors (see 
Section 4) 

Gs,GP II CPO -+ CPO. 
aEA 

From the continuity theorem (see for instance Bas & Hemerik [BH, Th. 3.15]) it fol
lows that it remains to be shown that II CPO is localized. In [BH, Prop. 3.18J it 

aEA 
is shown that an O-category is localized if every idempotent is split. 
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Theorem 5.2.1. 
Let K be an O-category in which every idempotent is split. Then every idempotent in 
the O-category II K is split. 

aEA 

Proof. 
Let f E HomllK(D, D) be such that f 0 f = f. Then for all components fa E 
HomK(Da,Da) we have fa 0 fa = fa. Since every idempotent in K is split, this means 
that there exists an object Ea of K and morphisms ga : Da --t Ea and ha : Ea --t Da 

such that fa = ha 0 ga and ga 0 ha = idE •. Let D =< Dala E A >E obj( II K), 
aEA 

and let h = < ha I a E A > : E --t D and g =< ga I a E A >: D --t E. Then clearly 
f = hog and g 0 h = idE, so f is split in II K. 

aEA 
o 

In the proof of Theorem 3.2.2 in [BH], it is shown that every idempotent in CPO 
is split. Hence, every idempotent in II CPO is split, which implies (see [BH, Prop. 

aEA 

3.18]) that II CPO is a localized O-category. The discussion at the beginning of 
aEA 

this section now yields: 

Theorem 5.2.2. 
The functions GS,GP: II (CPOPR) --t CPOPR , as given in (5.1.1) and (5.1.2) are 

w-continuous. 
o 

aEA 
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