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For a general Hz optimal control problem, at first all Hz optimal measurement feedback
controllers are characterized and parameterized, and then attention is focused on controllers
with observer based architecture. Both full order as well as reduced order observer based Hz
optimal controllers are characterized and parameterized. Also, systematic methods ofdesigning
them are presented. An important problem that can be coined as an Hz optimal control problem
with simultaneous pole placement, is formulated and solved. That is, since in general there exist
many Hz optimal measurement feedback controllers, utilizing such flexibility and freedom, we
can solve the problem of simultaneously placing the closed-loop poles at desirable locations
whenever possible while still preserving Hz optimality. All the design algorithms developed
here are easily computer implementable.
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1. Introduction

A general H2 optimal control problem which utilizes measurement feedback is considered. The
problem is to find an internally stabilizing controller which attains the infimum of the H2 norm
of a transfer function from an exogenous disturbance to a controlled output of a given linear time
invariant system, while utilizing the measured output. For such a problem, two main aspects are
addressed in this paper. The first one deals with the characterization and parameterization of all
H2 optimal measurement feedback controllers. The second aspect focuses attention on controllers
with observer based architecture, and for such controllers, it characterizes and develops methods
of constructing all H2 optimal controllers. Also, it investigates the freedom and constraints that
arise in closed-loop pole placement while preserving H2 optimality; and in so doing, it solves what
can be coined as an H2 optimal control problem with simultaneous pole placement. Note that this
problem studies among optimal H2 controllers, the available flexibility in the location of the closed
loop poles. It does not compromise H2 performance in favour of better pole locations.

In recent years, there has been a renewed interest in H2 optimal control utilizing state or measure­
ment feedback. In [12] the necessary and sufficient conditions under which the infimum of the
H2 norm of the concerned transfer function can be attained while utilizing the measured output
were developed, Le. they developed the necessary and sufficient conditions under which an H2

optimal measurement feedback controller exists. Moreover, they showed that whenever an H2
optimal measurement feedback controller exists, there exists as well an H2 optimal controller with
observer based architecture. Furthermore, they made an attempt to characterize a subset of all
H2 optimal measurement feedback controllers, and investigated the flexibility such a class of H2
optimal controllers offer regarding the closed-loop pole placement.

Subsequent to [12], in [2] a complete treatment of the H2 optimal control problem was provided for
the case that the state is available for feedback. More specifically, it completely characterizes all H2
optimal state feedback controllers including static as well as dynamic ones. Moreover, it solves the
H2 optimal control problem with simultaneous pole placement for the case that the state is available
for feedback. In order to do so, for the set ofall H2 optimal state feedback controllers, it constructed
an associated set of complex numbers that point out explicitly the freedom and constraints one has
in closed-loop pole placement. This set is called the set of H2 optimal fixed mndes. Its elements
must be included among the closed-loop poles whatever is the H2 optimal state feedback controller
used. A significant aspect of this work is the development of a computationally feasible step by
step algorithm called 'Optimal Gains and Fixed Modes', abbreviated as (OGFM). Given a matrix
quintuple that specifies the given H2 optimal state feedback control problem, (OGFM) algorithm
computes among other things, the set ofall H2 optimal static state feedback gains, and the associated
set of H2 optimal fixed modes. A software package implementing the (OGFM) algorithm in Matlab
is given in [7] and [8].

Although considerable work has been done in H2 optimal control by various researchers, there still
remains a gap regarding the complete characterization of all H2 optimal controllers with observer
based architecture, and the investigation of the freedom and constraints they offer in closed-loop
pole placement. The intention of this paper is to fill this gap. In fact, the spirit of this paper is
to capture, while using measurement feedback controllers rather than state feedback controllers,
all the aspects of H2 optimal control that were developed in [2]. More specifically, our goals in
this paper are, to completely characterize all the H2 optimal measurement feedback controllers
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with observer based architecture, and for such controllers to solve the H2 optimal control problem
with simultaneous pole placement. To do so, we construct explicitly the set of all H2 optimal
measurement feedback controllers with a chosen observer based architecture, and some associated
sets of H2 optimal fixed nwdes. All the theoretical aspects of these sets are developed in such a
way that the explicit construction of these sets can be computationally accomplished by merely
using the (OGFM) algorithm.
The above task of investigating all the aspects of H2 optimal control while utilizing observer based
controllers, turns out to be complex and involved. The basic reason for complexity arises from
the fact that the traditional separation principle does not hold in general. To expand on this, let us
note that in the literature on control, the notion of a controller with observer based architecture is
very much tied with the notion of separation principle. Two implications arise from the traditional
separation principle. The first one relates to the existence of an H2 optimal measurement feedback
controller. It says that whenever an H2 optimal static state feedback controller and an H2 optimal
state estimator or otherwise called an observer t exist, there exists as well an H2 optimal observer
based measurement feedback controller. This first implication of the traditional separation principle
is in generalfalse as pointed out in [11]. The second implication of the separation principle relates
to the actual construction of an H2 optimal measurement feedback controller. Suppose there exists
an H2 optimal measurement feedback controller. Then, the traditional separation principle implies
that an H2 optimal measurement feedback controller can be obtained by cascading together any

H2 optimal observer and any H2 optimal static state feedback controller. It is shown here that this
second implication of the separation principle is in general not true either.
This paper is organized as follows. In the next section, we recall some preliminaryresults needed for
our development. Section 3 contains problem statement and our main results regarding controllers
with full order observer based architecture, while Section 4 contains the results for controllers with
reduced order observer based architecture. Finally, Section 5 draws the conclusions.
Throughout the paper, A' denotes the transpose of A, I denotes an identity matrix, while It denotes
the identity matrix of dimension kxk. ce, ce-, c> and c+ respectively denote the whole complex
plane, the open left half complex plane, the imaginary axis, and the open right half complex plane.
'A(A) denotes the set of eigenvalues of A. A matrix is said to be stable if all its eigenvalues are in
ce-. Similarly, a transfer function G(s) is said to be stable if all its poles are in ce-. Ker[V] and
1m [V] denote respectively the kernel and the image of V. Given X a subspace of IRn or C' and a
matrix N E IRnxm

, we define

Given a stable transfer function G(s), as usual, its H2 norm is defined by

IIGII2 = (2~ tr [I: G(jw)G'(- jw)dw])1/2.

tThe precise notion of H2 optimal observer is discussed later on in the text.
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2. Preliminaries

(2.1)
+ Ew
+ DIW

We consider the following system ~ characterized by,

{

X = Ax + Bu
~ : y = CIX

Z = Czx + Dzu,

where x E Rn is a state, u E Rm is a control input, W E R1 is an exogenous disturbance input,
y E RP is a measured and z E Rq is a controlled output. Without loss of generality, we assume
that the matrices [Cz, Dz], [CJ, Dd, [B' , D~]' and [E' , D~]' have full rank. Next, we describe a
proper controller ~c described by

(2.2)~ .{iJ=JV+LY
c· u = Mv + Ny.

We note that ~c, as given in (2.2), is strictly proper when N = O.

We use the following notations. The closed-loop system consisting of the plant ~ and a controller
~c is denoted by ~ x ~c. A controller ~c is said to be internally stabilizing the system ~, if
the closed-loop system ~ x ~c is internally stable, Le., if ~ x ~c has all its poles in C-. Also,
a controller ~c is said to be admissible if it provides internal stability for the closed-loop system
~ x ~c. The transfer matrix from W to z of ~ x ~c is denoted by Tzw(~ x ~c).

Next, whenever we say that a system ora subsystem ~* is characterized by a quadruple (A, B, C, D),
we mean by it that the dynamic equations of it are given by,

~ . {X = Ax + Bu
*. Y = Cx + Du,

(2.3)

where u and y are respectively some input (control input or disturbance) and output (measured or
controlled output) of ~*'

Often in our development, we use two subsystems of the given system ~. These subsystems are,
~l which is characterized by the matrix quadruple (A, E, CI , Dl), and ~z which is characterized
by the matrix quadruple (A, B, Cz, Dz). Also, often in our development, we use two geometric
subspaces which are defined below:

Definition 2.1. Consider a linear system ~* characterized by the matrix quadruple (A, B, C, D).
Then,

1. The Cg-stabilizable weakly unobservable subspace Vg(~*) is defined as the maximal sub­
space ofRn which is (A + BF)-invariant and contained in Ker[C + DF] such that the
eigenvalues of (A + B F) IVg are contained in Cg c C for some F.

2. The Cg-detectable strongly controllable subspace Sg(~*) is defined as the minimal (A +
KC)- invariant subspace oflRn containinginJm [B + K D] such that the eigenvalues of the
map which is induced by (A + K C) on the factor space Rn/ Sg are contained in Cg c C for
some K.
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For the case when Cg = C, Vg and Sg are denoted by V* and S*, respectively. Similarly, for the
case when Cg = C- , Vg and Sg are denoted by V- and S-, respectively.

Next, we have the following definitions regarding H2 optimal control.

Definition 2.2. Let a system ~ of the form (2.1) be given. The H2 optimal control problem is to
find an internally stabilizing proper controller ~c which minimizes the H2 norm of the closed loop
transfer matrix. The infimum of the performance index is denoted by y*, that is

y* := inf{ II ~w(~ x ~d 112 1~c is proper and internally stabilizes ~}. (2.4)

An internally stabilizing proper controller ~c is said to be an H2-optimal controller ifit achieves a
closed loop H2 norm y*.

The above definitions correspond to the case when the class of controllers considered are proper
and are of the form (2.2). One can also consider only strictly proper controllers which are again
of the form (2.2) but with the additional condition that N = O. Although the conditions for the
existence of a strictly proper H2 optimal controller are different from those of a non-strictly proper
H2 optimal controller, it turns out that in the case of continuous-time systems (but not in discrete­
time systems) the value of the infimum y* is the same whether proper or strictly proper controllers
are considered (see for details [10]).

Next, as discussed in detail in [10] and in [11], the H2 optimal control problem for a given system ~

can be reformulated as a disturbance decoupling problem via measurement feedback with internal
stability (DDPMS) for an auxiliary system denoted here by ~PQ. In what follows, we first state the
dynamic equations of ~PQ; recall the definition of a DDPMS; and then recall a lemma that connects
the H2 optimal control problem for ~ to the DDPMS for ~PQ'

The auxiliary system ~PQ is described by

~PQ: { ~: ~l;: + BuPQ

ZPQ = CpxPQ + DpuPQ.

Here Cp, Dp, EQ and DQ are such that [Cp, Dp] and [E~, D~]' have full rank, and

Moreover,

(2.5)

(2.6)

F(P).= (A'P+PA+C~C2 PB+C~D2) (2.7)
. B' P + D~C2 D~D2'

G(Q) .= (AQ + QA' + EE' QCl + EDi) (2.8)
• C1Q+ D1E' D1Di '

and furthermore, P and Q are positive semi-definite, rank minimizing (see [10]), and are the
largest among all symmetric solutions of the respective linear matrix inequalities F(P) ~ 0 and
G(Q) ~ O.

The following is the definition of the DDPMS for ~PQ.
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Definition 2.3. Consider a system I:PQ as in (2.5). The disturbance decoupling problem with mea­
surement feedback and internal stability (DDPMS) for I:PQ is the problem of finding a proper con­
troller I:c of the form (2.2) such that the closed-loop system I:PQ x I:c is internally stable, while the
resulting closed-loop transfer function is identical to O.

The following lemma recalled from [10] connects the Hz optimal control problem for I: with the
DDPMS for I:PQ. Such a reformulation plays a significant role in the development of next two
sections.

Lemma 2.1. Consider an Hz optimal control problem as defined by Definition 2.2 for a system I:
as in (2.1). Assume that (A, B) is stabilizable and (A, Cd is detectable. Also, consider the auxil­
iary system I:PQ as given in (2.5), and a proper controller I:c as in (2.2). Then, the following two
statements are equivalent.

1. I:c is an Hz optimal controller for I:, i.e., the closed-loop system I: x I:c is internally stable,
and the Hz norm of the closed-loop transfer function from w to z is equal to the infimum y* .

2. I:c solves the DDPMS for I:PQ, i.e., the closed-loop system I:PQ x I:c is internally stable, and
the resulting transfer function from WPQ to ZPQ is equal to zero.

Moreover, the above equivalence holds even if one considers a strictly proper controller, i.e. a con­
troller I:c as in (2.2) with N = O.

To proceed further, let I: IPQ and I:zPQ be subsystems of I:PQ which are respectively characterized by
the matrix quadruples (A, EQ, CI , DQ) and (A, B, Cp , Dp). Then, the following theorems recalled
from [10] develop the necessary and sufficient conditions under which an Hz optimal proper
controller I:c of the form (2.2) or an Hz optimal strictly proper controller I:c of the form (2.2) with
N = 0, exists for the given system I:.

Theorem 2.1. Consider an Hz optimal control problem as defined by Definition 2.2 for a system
I: as in (2.1). Then, the following two statements are equivalent:

1. There exists a proper controller I:c of the form (2.2) such that

(a) the closed-loop system I: x I:c is internally stable, and

(b) the closed-loop transfer function Tzw(I: x I:d has the Hz norm y*.

2. (A, B) is stabilizable, (A, Cd is detectable and

(c) 1m [EQ] c V-(I:zPQ) + B Ker [Dp],

(d) Ker [Cp] ::> S-(I:IPQ) n C11{lm [DQ]},

(e) S-(I: 1PQ) £; V-CI: zPQ).

For the class of strictly proper controllers we already noted that we can achieve the same closed­
loop Hz norm. The following theorem is the equivalent of theorem 2.1 for the class of strictly
proper controllers. (
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Theorem 2.2. Consider an Hz optimal control problem as defined by Definition 2.2 for a system
E as in (2.1). The following two statements are equivalent:

1. There exists a strictly proper Hz optimal controller, namely, there exists a controller E c of
the form (2.2) with N = 0 such that

(0) the closed-loop system ExEc is internally stable, and

(b) the closed-loop transfer function Tzw(E x Ed has the Hz norm y*.

2. (A, B) is stabilizable, (A, Cd is detectable and

(c) 1m [EQ] ~ V-(EzPQ),

(d) Kef [Cp] ~ S-(E IPQ),

(e) S-(E IPQ) C V-(EzPQ),

if) AS-(EIPQ) ~ V-(EzPQ).

Remark 2.1. In view ofTheorem 2.2, it can be seen easily that the first implication ofthe traditional
separation principle does notholdin general for an Hz optimalcontrolproblem. An Hz optimal state
feedback is amatrix F such that A + BFis stable and:

- - III(Cz + DzF)(sI - A - BF)- Ellz

= inf { II(Cz + DzF)(sI - A - BF)-l Ellzi A + BF is stable}.
F

Similarly an Hz optimal observer gain is amatrix K such that A + KCI is stable and:

- I -
IICz(s[- A - KCI )- (E + KDI)lh

= i~f { IICz(sI - A - KCd-I(E + K Ddllzl A + KCI is stable}.

We can show that the conditions of Theorem 2.2 guarantee the existence ofHz optimal state feed­
backs and observers. Howeover, the converse is not true. There might exist an optimal Hz state
feedback and an Hz optimal observerand yet there does not exists an Hz optimal measurement feed­
back controller.

The following system illustrates that property:

x (~ ~)x
E: y - (2 2)x

z - (1 O)x

+ w
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Clearly, the condition (e) of theorem 2.2 is not satisfied. Hence there does not exist an optimal
measurement feedback controller. On the other hand, an H2 optimal state feedback gain is given
by

F=(-1 -I),
while an H2 optimal observer gain is given by

- (-1)K = -1 .

Traditionally, an H2 optimal observer based measurement feedback controller whenever it exists,
is designed by designing separately an H2 optimal state estimator or observer and an H2 optimal
state feedback controller, and then cascading them to form a measurement feedback controller.

Let ~*(A, B, E, Cp , Dp) denote the set ofall H2 optimal static state feedback controllers (or gains),
i.e. the set of matrices F such that A + B F is asymptotically stable and

Equivalently this is the set of H2 optimal static state feedback controllers (or gains) for the state
feedback problem associated with the quintuple (A, B, E, C2, D2).

Similarly, we define the set of optimal observer gains ~*(A, EQ , Ct , C2 , DQ ) as the set of matrices
K such that A + KCt is asymptotically stable and

C2(S[ - A - KCt)-t(EQ + KDQ ) =O.

Clearly K is in ~* (A, EQ, Ct, C2, DQ) if and only if K' is in the set F/ (A', q, C~, E~, D~).

We have the following additional definitions:

Definition 2.4. A scalar A E C- is said to be an H2 optimal fixed mode ifA is an eigenvalue of
A + BF for every state feedback which is in .F;*(A, B, E, C2, D2). Obviously, we can also define
fixed modes for the set of H 2 optimal observer gains as the scalars A E C- which are eigenvalues
ofA +KCt forevery observergain which is in ~*(A, EQ, Ct , C2, D Q ). We will use the following
notation:

n*(A, B, E, Cp , D p) := the set of H2 optimal fixed modes \V.r.t. ~*(A, B, E, Cp , D p)

qi*(A, EQ, CIt C2, DQ) := the set of H2 optimal fixed modes W.r.t. ~*(A, EQ , CIt C2, DQ)

Utilization of the sets F;;* and ~* to form an appropriate H2 optimal measurement feedback
controller is discussed in the next section. However, at this time, we like to emphasize that an
algorithm called (OGFM) is developed in [2] to construct explicitly the set of state feedbacks ~*,

and its associated fixed modes n*. By duality this algorithm can also be used to construct the set
of optimal observers ~*, and its associated fixed modes qi*.
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3. The H2 control problem with measurement feedback

We have a characterization and parameterization of all Hz optimal proper dynamic measurement
feedback controllers which involves the following steps:

1. Find a matrix F E Rmxn and a matrix K E Rnxp such that the following equations hold,

A(A + BF) c C-, Ker[(Cp + DpF)(sl - A - BF)-l] = V-(~zPQ)' (3.1)

A(A + KCl) c C-, 1m [(s! - A - KCl)-l(EQ + KDQ)] = S-(~lPQ). (3.2)

2. Define a set N* as,

N* := { N E Rmxp I N satisfies the LME (3.4) } , (3.3)

(~) N (CIY DQ ) = - (~: xgQ
). (3.4)

In (3.4) X and Y are any constant matrices such that V-(~zPQ) = Ker[X] and S-(~lPQ) =
1m [Y]. We note that (3.4) can equivalently be written as:

3. Define a set <L as,

Qs := { Qs E RHz I Qs satisfies GIQsGz = O},

where RH2 denotes the set of strictly proper and stable rational matrices and

GI(s) = [(Cp + DpF)(sl- A - BF)-l B + Dp],

Gz(s) = [CI(s! - A - KCI)-I(EQ + KDQ) + DQ].

4. Define a set Q as,

Q := { Q = Qs + N I Qs E <L and N E N* } .

(3.6)

(3.7)

(3.8)

(3.9)

5. One can define now a set ofproper dynamic measurement feedback controllers parameterized
in Q(s) as

{
~ = (A+BF+KCI)~-Ky+BYl

~c U = F~ + YI (3.10)
YI = Q(s)(y - CI~),

where F and K satisfy (3.1) and (3.2) and Q(s) E Q with Q as defined in (3.9).

We have the following theorem.
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Theorem 3.1. Consider an H2 optimal controlproblem as defined byDefinition 2.2 for asystem ~

as in (2.1). Assume that the given system ~ satisfies the necessary and sufficient conditions for the
existence ofan H2 optimal proper measurement feedback controller as given in the second part of
Theorem 2.1. Then the set ofcontrollers of the form ~cgiven in (3.10) with Q as in (3.9), coincides
with the set ofall H2 optimal proper dynamic measurement feedback controllers; i.e. ~c internally
stabilizes ~ and II Twz(~ x ~c) 112 = y*. Moreover, any H2 optimal proper dynamic measurement
feedback controller can be written as in (3.10) for some Q(s) E Q which is given by (3.9).

Proof: See [10]. •

Based on the above one can easily derive conditions under which the optimal H2 controller is
unique.

Theorem 3.2. Consider an H2 optimal control problem as defined byDefinition 2.2 for asystem ~

as in (2.1). Assume that the given system ~ satisfies the necessary and sufficient conditions for the
existence ofan H2 optimal proper measurement feedback controller as given in the second part of
Theorem 2.1, ~2 is left-invertible, and ~l is right-invertible. Then there exists a unique H2 optimal
controller.

Proof: See [3]. •

A natural question arises as to what happens if the H2 optimal controller is not unique. In particular
we can enquire what freedom is left and how we can use it for our controller design. We have the
following theorem:

Theorem 3.3. Consider an H2 optimal control problem as defined byDefinition 2.2 for asystem 'E
as in (2.1). Assume that the given system ~ satisfies the necessary and sufficient conditions for the
existence ofan H2 optimal proper measurement feedback controller as given in the second part of
Theorem 2.1. Then, the closed-loop transfer matrix from w to z is unique, i.e. for each H2 optimal
controller we obtain the same closed loop transfer matrix.

Proof: This is a direct consequence of the parameterization of all H2 optimal stabilizing controllers
as given in the beginning of this section. It is easy to check that all these controllers when applied
to ~PQ yield a closed loop transfer matrix equal to O. In the same way as in [13] for the Hoo control
problem, it can be shown that there is a one to one relationship between the closed loop transfer
matrix of 'E x ~c and the closed loop transfer matrix of 'EPQ x 'Ec. •

The above theorem shows that we cannot use the additional freedom to shape the input-output
behaviour. However, in general we have quite a bit of freedom left in placing the closed loop poles.
It is the latter flexibility we would like to study in this paper. Note that we presented a complete
characterization of all H2 optimal controllers in this section. However, that parameterization is
not very transparent in its effect on closed loop poles. Moreover, the structure of the controller
is not very clear. In the following we will study full order and reduced order observer based
controllers. These two classes of controllers have a desirable and clear structure and we will
completely characterize the freedom we have to place the closed loop poles.

The design methodology for H2 optimal controllers is the following. We have a complete charac­
terization of all optimal H2 state feedbacks, namely the set ~*. We take an element out of this
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set which has desirable properties (for instance with respect to pole location) and then we look for
an observer such that the interconnection of this observer and the optimal state feedback yields an
H2 optimal dynamic controller.

We first study the following basic question. If we have an optimal state feedback F from
the set F;;*, does there exist an observer such that the interconnection is an H2 optimal dy­
namic controller? Note that the set of H2 optimal state feedbacks for the system :E is given
by F;;*(A, B, E, Cp , Dp). On the other hand the set of 82 optimal state feedbacks for the system
:EPQ is given by F;;*(A, B, EQ, Cp , Dp).

Theorem 3.4. Assume the system :E2 is left-invertible and an optimal strictlyproper H2 controller
exists for the system :E, i.e. the conditions in the second part of theorem 2.2 are satisfied. Then we
have,

F;;*(A, B, EQ , Cp , Dp) ~ F;;*(A, B, E, Cp , Dp) (3.11)

and for each element F1 in F;;*(A, B, EQ , Cp , Dp) there exists an output injection K 1 such that

:E {~= A~ + Bu + K1(Cl~ - y)
c U = Fl~

is an H2 optimal dynamic controller for the system :E.

(3.12)

{

X =
:E : y =

z =

Proof: Let F and K satisfy (3.1) and (3.2) respectively. We then have:

0= (Cp + DpF)(sf - A - BF)-l EQ,

0= Cp(sf - A - KC})-l(EQ + K DQ),

0= (Cp + DpF)(sf - A - BF)-l(sf - A)(sf - A - KCI)-I(EQ + K DQ). (3.13)

Next, take an arbitrary element F1 in F;;*(A, B, EQ , Cp , Dp). Hence we have:

0= (Cp + DpF})(sf - A - BF})-l EQ.

After some extensive algebriac manipulations on the equation (3.13) we find:

0= G(s) [(Ql(S)C1 - F1) (sf - A - KC})-I(EQ + KDQ) + Ql(s)DQ]

where

G(s) = (Cp + DpF})(sI - A - BF1)-1 B + Dp ,

QI(S) = (F - F})(sf - A - BF)-l K .

Since :E2 is left-invertible, it is not hard to show that G(s) has full column rank as a rational matrix
and hence we find:

This implies that the disturbance decoupling problem with measurement feedback and stability is
solvable by a strictly proper controller for the following system:

(A + KCl)X + (EQ+ K DQ)w
C1x + DQw
-FIX + U,
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Using the results from [14] we find:

(3.14)

This implies ~*(A, EQ, Ct, Ft , DQ) is non-empty and hence there exists a matrix Kt such that
A + Kt Ct is stable and:

But then it is straightforward to check that for this pair (Ft , Kt) the controller (3.12) stabilizes 1:PQ
and achieves disturbance decoupling. According to lemma 2.1 this implies that (3.12) is an H2
optimal controller for the system 1:.

It remains to show the inclusion (3.11). We have (3.14) and

This implies
EQE~ = EE' + (A + BFt - s/)Q + Q(A' + F{ B' + s/).

and then it is trivially checked that

0= (Cp + DpF.)(sI - A - BF.)-t EQE~(A'+ F{B' + s/)-t(C; + F{D;)

= (Cp + DpFt)(sI - A - BF.)-t EE'(A' + F{ B' + s/)-t(C; + F{D;).

This shows that Ft E ~*(A, B, E, Cp , Dp). •

The above theorem identifies a class of state feedback controllers which, when combined with
a suitable observer, yield H2 optimal dynamic controllers. Also, the above theorem shows the
intuitive fact that these state feedback controllers are a subset of all H2 optimal state feedbacks.

Also, the above theorem shows us the available flexibility for the state feedback in a full order
observer based controller. Before we point this out in detail, we still have to consider the case that
the subsystem 1:2 is not left-invertible. By choosing an appropriate basis for u we can guarantee
that B and Dp have the following form:

(3.15)

such that 1m B nV- (1:2PQ) = 1m B2 and Bt has full row rank and satisfies 1m Bt nV- (:E2PQ) = {OJ.
We define EQ and r by:

EQ = (EQ B2), r = (II Ol-m) (3.16)

where I is the normal rank of :E2 and m the number of inputs, in other words II is an identity matrix
with the same number of rows as Bt and Ol-m is a zero matrix with the same number of rows as B2.
Note that r = I if 1:2 is left-invertible.

We will investigate feedbacks in the set ~*(A, B, EQ , Cp , Dp). We have the following (obvious)
properties:

Lemma 3.1. The set ~*(A, B, EQ, Cp , Dp) satisfies the following properties:

1. ~*(A, B, EQ , Cp , Dp) c ~*(A, B, EQ , Cp , Dp).
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2. n*(A, B, EQ, Cp , D p) = n*(A, B, EQ, Cp , D p)

3. ~*(A, B, EQ , Cp , Dp) equals ~*(A, B, EQ, Cp , Dp) if and only if ~2 is left invertible (or
equivalently ~2PQ is left invertible).

Proof: Part 1. and 2. are straightforward to check. Part 2. is the tricky part. However, looking at
the construction of the set n* in the (OGFM) algorithm it is straightforward to establish this fact.
I

We then obtain an equivalent of theorem 3.4 for non-left-invertible systems:

Theorem 3.5. Assume an optimal strictlyproper H2 controllerexists for the system ~, i.e. the con­
ditions in the second part of theorem 2.2 are satisfied. Then, we have,

~*(A, B, EQ , Cp , Dp) ~ ~*(A, B, E, Cp , Dp)

and for each element FI in ~*(A, B, EQ, Cp , Dp ) there exists an output injection KI such that

~ {~= A~ + Bu + KI (CI~ - y)
c U = FI~

is an H2 optimal dynamic controller for the system ~.

Proof: FI in ~*(A, B, EQ, Cp, D p) implies that r FI is in ~*(A, BI , EQ, Cp, Dp,l). Using the
proof of theorem 3.4 we obtain that

On the other hand it is easy to check that

This implies ~*(A, EQ , CI , r FI , DQ) is non-empty and hence there exists a matrix KI such that
A + KICI is stable and:

Together with

0= (Cp + DpF)(sl - A - BF)-l EQ ,

0= (Cp + DpF)(sl - A - BF)-l B2,

this implies that the controller (3.12) stabilizes ~PQ and achieves disturbance decoupling. According
to lemma 2.1 this implies that (3.12) is an H2 optimal controller for the system ~. I

The next theorem gives the flexibility one has in selecting the observer gain for a given H2 optimal
state feedback in the set ~*(A, B, EQ, Cp , Dp).



14

Theorem 3.6. Assume that an optimal strictly proper Hz controllerexists for the system :E, i.e. the
conditions in the second part of theorem 2.2 are satisfied. Also, let FI E J:*(A, B, EQ , Cp , Dp) be
given. Then, the set ~*(FI) := ~*(A, EQ, CI , rFI , DQ) is equal to the set ofoutputinjections
K I for which

:E {~= A~ + Bu + KI(CI~ - y) (3.17)
c u = FI~

is an Hz optimal controller for:E. Moreover, given FI , the set of Hz optimal full order observer
fixed modes associated with FI , is given by \I1*(A, EQ, CI , r FIt DQ).

Proof: Given FI in J:*(A, B, EQ, Cp , Dp) and an output injection K I such that A + KCI is stable
we know that the controller (3.17) stabilizes the system:E. It is an Hz optimal controller if it
achieves disturbance decoupling when applied to :EPQ. Using that FI is in J:*(A, B, EQ, Cp , Dp)

we find that (3.17) achieves disturbance decoupling if

Since the system characterized by (A, BI , Cp, Dp,l) is left invertible, we find the following necessary
and sufficient condition:

The rest of the theorem is then a trivial consequence of earlier results. •
Step by Step Sequential Design Procedure:

Consider an Hz optimal control problem for the system (2.1), while using measurement feedback
controllers. Also, assume that an Hz optimal strictly proper measurement feedback controller
exists. Then we have the following steps.

Step 1: Determine P and Q and transform the system :E to :EPQ.

Step 2: Using the quintuple (A, B, EQ , Cp , Dp ) that characterizes the Hz optimal static state
feedback control problem for :EPQ, as the input to the (OGFM) algorithm, construct the set of Hz
optimal fixed modes n*(A, B, EQ, Cp , Dp). ChooseasetAofdesiredpoleswhichisselfconjugate
and includes n*(A, B, EQ , Cp , Dp). Then, following the procedure given in (OGFM), determine
the static state feedback gain F E .E;*(A, B, EQ , Cp , Dp) such that A(A + BF) equals A. This is
always possible.

Step 3: Consider the quintuple (A, EQ, CI , r F, DQ ) where F is as chosen in Step 2. Using this
quintuple as the input to the dual (OGFM) algorithm, construct the Hz optimal full order observer
fixed modes, namely,

\I1*(F) := \I1*(A, EQ, CI , rF, DQ).

Next, as in Step 2, first selecting a set of n desired poles which is self conjugate and includes
\I1*(F), choose a gain K E ~*(A, EQ, CI, r F, DQ) such that A(A + KCI ) coincides with the n

desired poles. This is always possible.

Step 4: Form a full order observer based controller as in (3.12) with FI = F and KI = K selected
as in Steps 2 and 3.
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It is obvious in view of Theorem 3.6 that the full order observer based controller formed in Step
4, is indeed H2 optimal and places the closed-loop poles at the locations of A(A + BF) and
A(A + KCt ). Lemma 3.1 shows that restricting ourselves to the set ~*(A, B, EQ, Cp , Dp ) does
not restrict our flexibility in placing the poles of A + B F. However, we might have had more
flexibility in the observer poles (the poles of A + KCt) if we were able to vary F over the larger
class ~*(A, B, EQ, Cp , Dp). Nevertheless, we do have:

n Fe F,*(A,B,EQ,Cp,Dp) W*(F) = nFe F,*(A,B,F:Q.,Cp,Dp) W*(F)

which leaves us to believe that we do not loose much flexibility by this restriction.

The above development pertains to H2 optimal full order observers associated with a given H2
optimal static state feedback gain F E ~*(A, B, EQ , Cp , Dp). An interesting extension we can
pursue next would be to identify a set of full order observers each one of which can be considered
as an H2 optimal observer for any F E ~*(A, B, EQ, Cp , Dp). More specifically, we would like

- * - *to identify next a set of full order observer gains, say K , such that K C K*(F) for any

F E ~*(A, B, EQ, Cp , Dp). Then, any full order observer with its gain in k*, can be utilized to
implement any H2 optimal static state feedback law such that the resulting control law would be
an H2 optimal observer based measurement feedback law. To identify the set k*, we first let T

- *be any matrix such that Ker(T) = S-(I:1PQ). Then, the set K can be defined as follows,

- *K = ~*(A, EQ, Ct , T, DQ). (3.18)

We have the following theorem.

Theorem 3.7. Consider an H2 optimal control problem for asystem I: as in (2.1). Assume that the
given system I: satisfies the necessary and sufficient conditions for the existence ofan H2 optimal
strictlyproper measurement feedback controller as given in the second part ofTheorem 2.2. Then,
for any F E ~*(A, B, EQ, Cp , Dp), we have,

k* C K*(F).

Proof: It simply follows from the fact that Ker (T) = S-CEtPQ). •

- *We would like to remark that when one is restricted to the set ofobservers with theirgains in K , one
looses some freedom in assigning the observer poles. That is, the observer poles must include the
fixed modes given by w*(A, EQ, C1, T, DQ). It is easy to see that, for any ~*(A, B, EQ, Cp , Dp),

W*(A, EQ, C1, T, DQ) ::> w*(A, EQ, C1, rF, DQ).

It is also interesting to see how the above development carries over to full order proper controllers
of the form:

I: {~= Ag + Bu + Kt(Ctg - y) (3.19)
c u = Ftg - N(Ctg - y).

It is easy from the parameterization of all H2 optimal controllers that N must be an element of the
set N* defined by (3.3). By applying the preliminary feedback u = Ny + Vt we see that (3.19) is
an H2 optimal controller for I: if and only if:

t
c
{~= ~g + Bu + Kt (Ctg - y) (3.20)

u = Ftg
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is an H2 optimal controller for

E- Ax + Bu + Ew
l:: Ctx + Dtw

- C2X + D2U ,

where

(3.21)

Kt = Kt - BN,

E= E + BNDt •

Ft = F - NCt ,

A =A+BNCt

C2 = C2 + D2NCt

The set of solutions of the linear matrix inequalities F(P} 2: 0 and G(Q} 2: 0 do not change by
this step. However, the system l:PQ takes the following form:

where

{

XPQ = AXPQ + BuPQ
l:PQ: YPQ = l.:txPQ

ZPQ = CpxPQ + DpuPQ.

(3.22)

EQ= EQ+BNDQ

Cp= Cp+ DpNCt .

We assume Band Dphave the form (3.15) and r is given by (3.16). We define EQ by:

EQ = (EQ B2)

We can then apply the previous results since for a fixed N we are looking for a strictly proper
controller. Nevertheless, we are naturally interested in the question of how ~* and ~* depend
on the preliminary output feedback No

We have:

~*(A, B, EQ, Cp, Dp) = {F - NCt I F E F;*(A, B, EQ+ BNDQ, Cp, Dp} } (3.23)

~*(A, EQ, Ct , rF.. DQ) = {K - BN IKE ~*(A, EQ, Ct , r(Ft - NCd, DQ) } •

Therefore, the additional flexibility by choosing N E N* has an effect on both ~* and ~*. We
would like to remark that there is no obvious choice for N which is optimal with respect to pole
placement.

4. Reduced Order Observer Based Controller

Let a static state feedback gain F be given. Then, in what follows, we develop a reduced order
observer based controller of dynamic order n - rank[Ct , Dtl + rank[Dtl where n as usual is the
dynamic order of l:. At first, without loss of generality, we assume that the matrices Ct and DQ

have already been transformed to the following form,

(
0 CO2 ) (DO)Ct = I

p
-

mo
0 and DQ = 0 . (4.1)
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Thus, the system ~PQ as in (2.5) can be partitioned as follows,

(~~) (All A l 2 ) (~~) + (~~) UPQ + ( E
tQ

) WPQ-
A21 A22 E2Q

(~~) ( Ip~mo C32 ) (~~) + (~o) WPQ
(4.2)

-

ZPQ - ( CPt C p2 ) XPQ + Dp uPQ.

The idea behind the construction of a reduced order observer based controller is that we only need
to build an observer for X2 as Xt (or equivalently Yt) is available as a measurement. Our techniques
to do so are based on the method discussed in Section 7.2 of [1]. The differential equation for X2

is given by

X2 = A 22 X2 + [A21 B2 ] ( :~ ) + E2Q WPQ

where YI is known, and UPQ is temporarily assumed known. Observations of X2 are made via Yt and
y, where

y := A 12x2 + EtQwPQ = )7t - Allxt - BtuPQ. (4.3)

Ifwe do not worry about the differentiation for a moment, we note that we have to build an observer
for the following system,

[ ACOt22 ] X2 + [ E
Do

]
IQ

(4.4)

In order to construct an observer for ~r, we need to enquire whether ~r is detectable whenever the
given system ~ is detectable. The following lemma does this among others.

Lemma 4.1. Let the system ~re be defined by the quadruple given below,

(4.5)

Then we have,

1. ~re is detectable ifand only if ~tQ is detectable.

2. The invariant zeros of ~re are the same as the invariant zeros of ~tQ.

3. The infinite zeros of ~re are the infinite zeros of ~tQ with order larger than 1. Their order is
reduced by 1 when compared with the order ofzeros of ~tQ.

4. ~re is left invertible if and only if ~tQ is left invertible.
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Proof: See Proposition 2.2.2 on p.32 of [9]. •

Next, we build a full order observer for the system I:r defined by (4.4). In fact, we find the following
observer which utilizes a gain Kr.

.£2 = A22X2 + A21 Yl + B2UPQ + Kr [(AC02 ) X2 - ( . A Yo B )] •
12 Yl - llXl - lUPQ

We partition Kr = [Kro Krl ] so as to be compatible with the sizes of (Yo, y). Then, using the
change of variables v := X2 + Kr1Yl results in a reduced order observer,

iJ = (A 22 + KrOC02 + Kr1A12)V + (B2+ KrlBl)UPQ

+ [-Kro, A2l + KrlA ll - (A22 + KrOC02 + Krl A12)Kr1 ]yPQ
(4.6a)

,.. (0) (0 In-r)
XPQ - I r v+ 0 -Kr1 YPQ'

where r is the dimension of X2 or equivalently the dimension of v. We use this reduced order
observer to obtain the control law as,

(4.6b)

Equation (4.6) defines the reduced order observer based controller.

As seen in (4.6), two parameters F and K r characterize a reduced order observer based controller.
In other words, prescribing a pair (F, Kr ) is tantamount to prescribing a reduced order observer
based controller. Suppose a proper H2 optimal measurement feedback controller exists. Then, our
basic question is how to choose F and Kr so that (4.6) is an H2 optimal measurement feedback
controller.

Again the traditional separation principle does not hold and hence we cannot separate the choice
of an observer gain K r from the choice of a state feedback gain F when trying to construct an H2
optimal measurement feedback controller.

Given F E ~*, we construct the set K;(F), such that the given F and any K r E K;(F)
together specify an H2 optimal reduced order observer based controller. Again we treat the non­
left-invertible case by restricting the state feedback F to the set ~·(A, B, EQ, Cp , Dp). Remember
that this set is equal to ~*(A, B, EQ, Cp , Dp) if the system I:2 is left-invertible.

Theorem 4.1. Assume an H2 optimal strictlypropercontrollerexists for the system I:, i.e. the con­
ditions in the second part of theorem 2.2 are satisfied. Then, for each F in ~*(A, B, EQ , Cp , Dp)

there exists an output injection Kr = [Kro Krl] such that the controller (4.6) is an H2 optimal
dynamic controller for the system I:.
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Proof: Given F in ~*(A, B, EQ, Cp , Dp) we first factorize r F = (F1 Fz ) Then, using the fact
that the system (A, B1, Cp, Dp,l) is left invertible, we find that a reduced order controller of the
form (4.6) is optimal if and only if A22 + K rOC02+ K rl A 12 is stable and

0= F2[(sI - A 22 - K rOC02 - K rl A 12)-I(E2Q + KroDo+ KrIE1Q). (4.7)

Since s- (~IPQ) C Ker [rF] (as was shown in the proof of theorem 3.4) we find in combination
with lemma 4.1 that S-(~re) C Ker[F2]. This guarantees that the existence of a matrix K r such
that (4.7) is satisfied. •

Theorem 4.2. Assume an H2 optimal optimal strictly proper controller exists for the system ~,

i.e. the conditions in the second part of theorem 2.2 are satisfied. LetF be in ~*(A, B, EQ, Cp , D p).

Then the class of output injections K r = [Kro K rl ] such that the controller (4.6) is an internally
stabilizing H 2 optimal dynamic controller for the system ~ is given by

K;(F) := K/ (A22' E2Q' (~:~) ,F2, (~~)) .

Also, given F, the set ofH2 optimal reduced order observer fixed modes associated with F is char­
acterized by

W*(F) := w* (Azz , E2Q, (~:~) , F2, ( ~~ ) ) .

Proof: This is an immediate consequence of the fact that suitable observer gains are characterized
by the stability of A 22 + K rO C02 + K rl A 12 and (4.7).

Step by Step Sequential Design Procedure:

Consider an H2 optimal control problem for the system (2.1), while using measurement feedback
controllers. Assume that an Hz optimal strictly proper measurement feedback controller exists.
Then we have the following steps.

Step 1: Determine P and Q and transform the system ~ to ~PQ and make sure that CI and DQ have
the special form as in 4.1.

Step 2: Using the quintuple (A, B, EQ, Cp , Dp) that characterizes the H2 optimal static state
feedback control problem for ~PQ' as the input to the (OGFM) algorithm, construct the set of H2
optimal fixed modes n*(A, B, EQ, Cp , Dp). Choose a set A of desired poles which is self conjugate
and includes n*(A, B, EQ, Cp , Dp). Then, following the procedure given in (OGFM), determine
the static state feedback gain F E ~*(A, B, EQ, Cp , Dp) such that )"(A + BF) equals A. This is
always possible.

Step 3: Partition F, the one chosen in Step 2, as F = [F1 , F2] in conformity with the partitioning
of x = [xi, X2]'. Use the dual (OGFM) algorithm, at first construct the set of Hz optimal reduced
order observer fixed modes, namely,

W;(F) := w* (A2Z' E2Q' (~:~) , F2, ( ~~ )) .

Next, choose K r E K;(F) such that A 22 + K rOC02 + K rI A 12 has all its eigenvalues at r desired
locations in C-. This is possible only if the r desired locations in C- include the set w;(F).
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Step 4: Form a reduced order observer based controller as in (4.6) with F and K r selected as in
Steps 2 and 3.

It is obvious in view of Theorem 4.2 the reduced order observer based controller formed in Step
4, is indeed Hz optimal and places the closed-loop poles at the locations of )"(A + B F) and
)"(Azz + KroCoz + Krt A12).

We now proceed to identify a set of reduced order observers or equivalently a set of reduced
order observer gains k; such that any element of it can be paired with any Hz optimal static
state feedback gain F so that the resulting observer based controller is an Hz optimal measurement
feedback controller. Thus, for this set ofreduced order observers, the traditional separation principle
holds.

Consider the following set of gains,

k;:= ~*(F) := ~* ( A22 , EzQ , (~~~) , Tr , ( ~~ ) ) (4.8)

where Tr is any matrix such that Ker (Tr) = S- (bre).

We have the following theorem.

Theorem 4.3. Consider an Hz optimal control problem as defined by Definition 2.2 for a system
b as in (2.1), while using measurement feedback controllers. Assume that an Hz optimal strictly
proper measurement feedback controller exists. Then, the reduced order observer based controller

- - *described by (4.6) where F is any element of F;* (A, B, EQ , Cp , Dp) and K r is any element of K r'

is an Hz optimal measurement feedback controller.

Proof: It follows along the same lines as the proof of Theorem 3.7. •

In the above development, it is indeed odd to assume that an optimal strictly proper controller
exist and then we construct a reduced order controller which is no longer strictly proper. However,
this situation can be rectified in the same way as in section 3. First we assume that there exists a
proper Hz optimal controller, and then choose N in the set N* defined by (3.3). Then, we design
a reduced order Hz optimal observer for the system (3.21). Note that the existence of an optimal
proper controller for (2.1) implies the existence of an optimal strictly proper controller for (3.21).
Suppose we have an Hz optimal, reduced order observer based controller for the system (3.21).
This controller is basically of the form (2.2). Combined with the preliminary static output feedback
given by N we then obtain the following Hz optimal controller for b:

b . { iJ = J v + L Y _ (4 9)
c· u = M v + (N + N) y. .

There is a clear relationship between (3.21) and (2.1). Namely, (4.9) is an Hz optimal controller for
(2.1) if and only if (2.2) is an Hz optimal controller for (3.21). Moreover, a controller (2.2) applied
to (3.21) yields the same closed loop poles as (4.9) applied to (2.1). The flexibility in placing
the closed loop poles of (3.21) by strictly proper controllers is clearly described in this section.
However, it is not very transparent how this flexibility is influenced by our choice of N in N*. The
influence on the state feedback gain is clearly depicted by (3.23). On the other hand the influence
of our choice for N on the reduced order observer gain is much less transparent.
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5. Conclusions

At first we characterize and parameterize all H2 optimal measurement feedback controllers. Then
our attention is focused on controllers with observer based architecture. Both full order as well as
reduced order observer based H2 optimal controllers are considered. Our design of an H2 optimal
observer based controller follows a traditional sequential design philosophy. That is, in the first
stage ofa design, a static H2 optimal state feedback law is designed. In the second stage, an observer
is designed to implement the given H2 optimal state feedback law so that the resulting measurement
feedback controller is H2 optimal. A complication that arises in such a design philosophy is that
the traditional separation principle does not always hold. For a given H2 optimal state feedback
law, one has to isolate a set of observers that can be termed as H2 optimal observers associated
with that particular H2 optimal state feedback law. Any observer in such a set of observers can be
used to implement that particular H2 optimal state feedback law so that the resulting measurement
feedback controller is H2 optimal. Here, we characterize, parameterize and develop methods of
constructing the set of all H2 optimal observers associated with any given H2 optimal static state
feedback law.

Since there are in general many H2 optimal observers associated with a given H2optimal static state
feedback law, one can formulate a design problem of utilizing such a freedom to assign observer
poles to desired locations in the left half complex plane whenever such an assignment is possible.
We refer to this problem as an H2 optimal control problem with simultaneous closed-loop pole
placement. As is known, the poles of a closed-loop system comprising of the given system and an
observer based controller, are the union of observer poles and the poles of the closed-loop system
under the state feedback control law alone. In view of this, the problem of assigning the poles of
the closed-loop system under an H2 optimal observer based controller translates into two problems
which must be treated sequentially. The first problem is to design a "desired" H2 optimal state
feedback control law that yields a closed-loop system with poles in desired locations whenever it
is possible. This problem was studied extensively in an earlier paper [2] and an algorithm called
(OGFM) was developed there to facilitate the construction of an H2 optimal state feedback control
law with simultaneous closed-loop pole placement. The second problem is to design an H2 optimal
observer associated with the H2 optimal state feedback control law obtained in the first problem
such that its poles are in desired locations. However, it turns out, one cannot in general assign all
the poles of an H2 optimal observer associated with a given H2 optimal state feedback control law
arbitrarily. Some of the poles must be located in certain locations in the left half complex plane
in order to guarantee the H2 optimality of an observer. Obviously, such poles can be refered to as
H2 optimal observer fixed modes associated with a given H2 optimal state feedback control law.
We develop here a method of constructing the set of all such H2 optimal observer fixed modes
associated with a given H2 optimal state feedback control law in order to identify the freedom
that exists in assigning the H2 optimal observer poles. This finally leads us to a procedure of
designing an H2 optimal measurement feedback controller that places the closed-loop poles at
desired locations whenever it can be done.

We also construct here a set of full order as well as reduced order H2 optimal observers such that
any element of it can be paired with any H2 optimal static state feedback control law so that the
resulting observer based controller is H2 optimal. When one is restricted to such a set of observers,
the traditional separation principle is valid. However, obviously, if we are restricted to use only an
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observer in such a set, we will have only some (but not the entire possible) freedom in assigning
the observer poles.
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