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THE CAPACITATED MULTI-ECHELON INVENTORY
SYSTEM WITH SERIAL STRUCTURE:

1. THE 'PUSH AHEAD'-EFFECT

C.J. Speck and J. van der Wal

Eindhoven University of Technology

This paper considers a multi-echelon, periodic review inventory model with

discrete demand. We assume finite capacities on various production/order

sizes and backordering of excess demand. We show that under the average

cost criterion the optimal order strategy may be characterized by a so-called

'push ahead'-effect. Further we shall find that a modified base-stock policy

approximates the optimal policy quite well.

1. Introduction. In this paper we consider a basic production (or inven
tory) model, in which the stock of a single item must be controlled under
periodic review. We assume demands in each period to be independent,
nonnegative, and integer-valued. Further, all stockouts are backordered and
production, holding, and shortage costs are linear. There are no fixed order
costs. Handling an infinite planning horizon we operate the long-run-average
cost criterion.

In the past few decades several excellent results have been achieved con
cerning production/inventory systems. Assuming infinite production capac
ity Langenhoff and Zijm[1990] and Van Houtum and Zijm[1991] e.g. have
shown in a Clark and Scarf(1960]-like approach that a so-called base-stock, or
critical-number, policy is the optimal production strategy under the average
cost criterion for a multi-echelon inventory system with serial or assembly
structure: If the echelon stock has dropped below a certain level, enough
should be produced to raise total stock to that level; otherwise, nothing
should be produced.

Addition of finite production capacities to these models gives rise to
complications: In the uncapacitated case large demands in some periods can
be corrected immediately in the next period; now a buildup of backorders
is possible due to the finite production capacity. Another issue induced
by the limited production sizes is the state-dependency on formerly taken
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decisions. Nevertheless, Federgruen and Zipkin have established a modified
base-stock policy to be the optimal policy under the average cost criterion
in a discrete demand model ([2]), as well under the discounted cost criterion
in a continuous demand model ([3]) for the capacitated N -echelon inventory
system with N =1.

Exact calculation of the average cost respectively discounted cost associ
ated with the optimal modified base-stock policy happens to be a very diffi
cult issue. But already a few approximation methods have been developed,
that successfully cope with the incomplete convolutions arising from the cost
calculation, such as an application of the moment-iteration method of De
Kok[I989], and a related method of Zijm (unpublished manuscript). Both
methods however are as yet only applicable to the capacitated I-echelon se
rial system. The development of an average cost approximation method for
the N -echelon serial system with N ~ 2 will be presented in a companion
paper (Speck and Van der Wal[I99I]).

In this paper the capacitated N -echelon production/inventory system
with serial structure and N ~ 2 is regarded, see figure.

We had in mind to demonstrate the Federgruen and Zipkin result still to
be valid for the N -echelon serial system with N ~ 2. But slowly we got
the conviction that a combination of former executed replenishments yet
to arrive, a certain demand course, and finite ordering/production capaci
ties might induce a so-called 'push ahead'-effect to be observable within the
optimal periodic review policy. That is, it might be profitable in certain
circumstances to ship more items than prescribed by a modified base-stock
policy in order to prevent being restricted next period. We will implement
successive approximations in order to give numerical evidence to our con
jecture.

In section 2 we introduce notation, definitions, and required assump
tions, by means of which in section 3 the central conjecture of this paper
will be demonstrated on the basis of the capacitated 2-echelon serial system.
In section 4 finally this conjecture will be confirmed by a numerical proof.

2. Definitions and assumptions. We will restrict ourselves to the ca
pacitated 2-echelon serial system. The results however can be extended
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straightforwardly to the capacitated N -echelon problem with N > 2.

First of all we shall give some definitions:

1. We define the echelon stock of a given installation as the stock at that
installation plus all the stock in transit to or on hand at any installation
downstream minus the backlogs at the most downstream installation.

2. Next, the echelon inventory position of an installation denotes the
echelon stock plus all items heading for that installation, that already
left the preceding installation (or the external supplier).
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Let us consider the model for the capacitated 2-echelon serial system as
depicted above, in which

Ui = maximal production/order size, i = 1,2.
I} = leadtime of the route from installation 2 to installation 1.
Iz = leadtime of the route from external supplier to installation 2.
p = shortage cost per unit per period at echelon 1.

hi = additional holding cost per unit per period at echelon i, i = 1,2.
Xi = stock at echelon i at the beginning of a period, i =1,2.
Yi = inventory position at echelon i at the beginning of a period, i = 1,2.

D t = demand in period t, t E IN.
q(w) = IP{Dt =w}, w =0,1, ... , the demand probabilities.
F(u) = l::~=o q(w), u E IN, the demand distribution.

The leadtimes Ii are deterministic and equal to an integer. The capacities
Ui are assumed to be finite for i = 1,2. Furthermore, Xi and Yi are always
integer-valued and may be negative since stockouts are backordered.

In every period the following actions take place: At the beginning of the
period ordered items arrive at installations and after inspecting each eche
lon inventory position every installation places an order with the preceding
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installation or external supplier; next the external demand in that period is
met, followed by a cost determination at the end of the period.

The expected costs at the end of a period consist of linear holding and
shortage costs. By the way, linear production/ordering costs are not taken
into account; they can be disregarded because of the average cost criterion.
Hence, the expected costs at the end of a period associated with an echelon
stock Xi, i::;: 1,2, at the beginning of that period are described by the well
known Newsboy-formulas, here displayed in the discrete form:
For Xi E Zl, i::;: 1,2,

00

LI(xd L q(w)[(h l +h2)(XI - w)+ +P (Xl - w)-] - h2XI (1)
w=o

L2(X2) .- h2X2' (2)

Notice the shifting of the term h2XI from the expected cost associated with
the stock of echelon 2 to the expected cost associated with the stock of
echelon 1, thus creating L 2 to be independent of Xl.

3. Analysis. A first observation we make is that, while searching for an
optimal periodic review policy under the average cost criterion, the optimal
replenishment amount for the inventory position of echelon 2 will not exceed
the finite capacity U2 (rather trivial), neither the finite capacity UI ! Clearly,
when a replenishment larger than UI on the echelon inventory position 2
is carried out at the beginning of a period t, then this amount arrives at
installation 2 at the beginning of period t + 12 • Since at most UI can be
shipped per period from installation 2 to installation 1, that replenishment
larger than UI definitely implies a positive stock at installation 2 during
period t +12 , and thus extra holding costs.
We have thus stated a necessary optimality condition for the optimal policy:

The optimal replenishments of echelon inventory position 2 are
restricted to the upper bound min(U2 , Ud.

Therefore, suppose without loss of generality

(3)

Now we are about to advance our central conjecture which we illustrate
on the basis of the capacitated 2-echelon serial system in which 12 ::;: 2 and
It ~ O. We characterize states as the possible system states at the beginning
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of a period before meeting external demand: Let i 3 denote the shipment that
arrives next period at installation 2, i 2 the fysical stock at installation 2,
and i 1 the echelon stock of installation 1 (which of course may be negative).

QU \J \i1 7 D

V VI VU2

h2 hI +h2, P

At the beginning of every period two decisions have to be taken concern
ing the replenishments of both echelon inventory positions. The first one,
denoted by k1 , regards the shipment from installation 2 to installation 1,
whereas the second one, indicated by k2 , is the amount to be shipped from
the external supplier to installation 2.

A possible conjecture is that a modified base-stock policy is optimal for
the capacitated N -echelon serial system with N ;::: 2 as well. That means
that the replenishments of both echelon inventory positions depend on an
aggregated state description: Decision k1 would depend on i 1 only, and
decision k 2 would depend on the sum of ill i2 , and i3 only.

Due to a combination of the already known shipment i3 , demand fluc
tuations, and the finite capacity U1 however, decision k1 might as well be
influenced by the shipment i3 arriving at installation 2 next period. So
another conjecture would be that a so-called 'push ahead'-effect might be
perceptible within the optimal periodic review policy. Let us illustrate this
by an example.

Example

Suppose demand per period varies from 17 to 23 items, while the holding
and shortage costs are such that the ideal inventory level of echelon 1 (or
installation 1 in this case) equals 20. Now assume the system is in state
(i3 ,i2 ,i1 )=(20,20,1). Further U2 = VI = 20.
Suppose we would act according to a base-stock policy and therefore ship
19 items from installation 2 to installation 1. Then at the beginning of the
next period 21 items are in stock at installation 2: The one left plus the 20
arriving next period. If during that period at most 20 items are sold, then
there is no problem. But when more than 20 items are sold we are handi-
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capped in the next period by Ut : Only 20 items can be shipped, while at
least 21 items are needed in this case. If we had shipped 20 items instead of
those 19 we would have achieved a better situation by having the possibility
of shipping all 20.
Comparing this situation with the situation in which only i 3 has a different
value (i3=19) the latter cannot lead to any difficulty coming from the finite
capacity Ut •

4. A numerical proof. In order to confirm the possible appearance of a
'push ahead'-effect we have implemented a successive approximation method
tailored to the considered capacitated 2-echelon model. To that end we have
to arrange by truncation a finite state space S of triples i = (i3 , i 2 , i l ), a set
A(i) of actions k = (k2, kl ) per state i E S, a collection offeasible transitions
per state, and the expected costs attached to an action in a state.

We suffice by presenting the algorithm we applied (for further informa
tion concerning successive approximation, see e.g. Heyman and Sobel[1984]).

Algorithm 1 (Successive Aproximation)

Let there be given a finite state space S and an action set A(i) for every
state i E S.

Initialisation: Choose vo.

Iteration: Determine for n = 0,1, ... and for any i E S an action k E A(i)
and a value vn+! (D such thatl

{

Dma:r }

Vn+l (D = l£~j(D r(i,k) +E q(w) vn (k2 , i3 +i 2 - kll i l +kl - w)

Termination: Stop as soon as

~~(vn+! - vn)(i) - ~i~(Vn+! - vn)(i) < Csp

for some prespecified Csp > o.
o

In every iteration of the successive approximation algorithm a lower bound

1 Possibly invoking feasibility measures on the edges.
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giow and an upper bound g~P are computed for the average cost g* going
with the generated policy; in its turn g* serves as an upper bound for the
minimum average cost g*:

in which

-*guP

-*glow

= Te3f(Vn+l - vn)(i)

= ~isn(Vn+l - vn)(i).
!e

In order to keep the instance manageable we have chosen the following
model parameters:

U1 = 2
U2 =2
lt~O

12 = 2
Esp = 10-4

Dmax = 4,

where Esp indicates the maximum length of the calculated interval after
termination, and Dmax specifies the largest possible demand per period.

We have already characterized the states i = (is, i2 , it> E 72s . Keeping
in mind the influence of the number of states on the calculation time and
taking into account the values of the model parameters we take as finite
state space

Next, the set of allowed decisions per state i E S is given by

A(i) = { 1£ E IN2 I 0 ~ k2 ~ min(U2 , Ut>'

max(O, is + i2 - 6) ~ k1 ~ min(Ut, i2 ) },

in which we necessarily imposed an artificial lower bound on k1 to avoid
finding the system itself outside its state space S. This manipulation is
accompanied by a penalty cost; one could think of destroying stock, which
is expensive. Notice also the modified upperbound on k2 , coming from our
preliminary result.
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Further, to avoid pathological situations we require Dmax and the proba
bilities q(O), ... , q(Dmax) to be chosen such that Dmax > min(U2 , UI ), but
.lE{D} < min(U2 , Ut}.
State transitions are evident: Sitting in (i3 , i 2 , i l ) and taking decision (k2 , kl )

in a period leads to state (k2 , i3 + i2 - kl , i l +kl - w) with probability q(w)
in the next period. Again we have to truncate the action set, but only for
the extreme states, i.e. with i l close to -10: By eliminating absurd actions
and/or absorbing probability mass we prevent transitions to states outside
S. In this case one could think of invoking emergency measures to quickly
correct the backlog situation which again involves penalty costs. These
inevitable truncations are made in such a way that they are of negligible
influence on the optimal policy generating process. This has been checked
by moving the range of i l in (4).
Finally, the expected costs associated with state i E S and action k E o4(i)
are given by

In order to prove the existence of a 'push ahead'-effect we have to com
bine values concerning the parameters hI, h2 , P, and q(O), ... ,q(Dmax ).

Most combinations we tried yielded problems with a modified base-stock
policy being optimal. But we succeeded in constructing a few optimal pe
riodic review policies exhibiting the 'push ahead'-effect. One of them is
displayed in table 1. We see that as long as the total amount of items head-

( Po, PI, P2, P3, P4 ) = ( .1, .6, .2, 0, .1 )

( hI, h2, P ) =( 1, 1, 1 )

states generated policy giow -*guP

i3 + i2 < 3 (4,1 ) 1.95358 1.95367

i3 + i2 ~ 3 (4,2)

Table 1: Generated optimal policy

ing for and on hand at installation 2 does not exceed UI , the optimal policy
is formed by the modified base-stock policy (4,1). That is, at the beginning

8



of each period the inventory position of echelon 2 and 1 has to be raised to
4 respectively 1, if possible. But as soon as i 3 +i 2 exceeds UI the optimal
replenishments are according to the modified base-stock policy (4,2). It ap
pears that whenever i 3 +i 2 ~ 3 and for instance i l = 0 it is profitable to
exploit the possibility of transshipping 2 from installation 2 to installation
1, and thus creating a fysical stock of 2 items in this case instead of 3 (when
handling (4,1)) at installation 2 at the beginning of next period. In other
words, we obtained an optimal policy containing a 'push ahead'-effect.

Next we determined the average cost interval belonging to nearby modi
fied base-stock policies, see table 2. Now, since all of these intervals do not

nearby modified base-stock policies

(d2 ,dl )
-(d2.dl) -(d2,d1 )

giow g~Pglow gup

(4,1) 1.96089 1.96099 1.95358 1.95367

(4,2) 1.98657 1.98665

Table 2: Comparison to base-stock policies

intersect [giow' g:p] we numerically proved a modified base-stock policy not
to be the optimal one. .

5. Conclusions In this case, and also in many other parameter combi
nations we examined, the optimal periodic review policy is not a modified
base-stock policy. In all cases we found a nearby modified base-stock pol
icy which was nearly optimal. That is, the difference in average cost was
marginal (in the case II = 1 we even could not numerically prove a mod
ified base-stock policy to be inoptimal). Therefore, we are interested in a
method for approximating the average cost associated with a modified base
stock policy. Then an optimal modified base-stock policy can be obtained,
which in its turn serves as an approximation of the optimal periodic review
policy. This will be the topic of a forthcoming paper.
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