
 

A Fortran subroutine for column reduction of polynomial
matrices
Citation for published version (APA):
Geurts, A. J., & Praagman, C. (1994). A Fortran subroutine for column reduction of polynomial matrices. (EUT
report. WSK, Dept. of Mathematics and Computing Science; Vol. 94-WSK-01). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f3667739-0951-411e-9613-e15c1f50cf32


Eindhoven University of Technology

Department of Mathematics and Computing Science

A Fortran subroutine for column reduction

of polynomial matrices

by

A.J. Geurts and C. Praagman

EUT Report 94-WSK-01

Eindhoven, June 1994



Authors' affiliations:

A.J. Geurts, Department of Mathematics and Computing Science,

Eindhoven University of Technology, P.O. Box 51:3,56001113 Eindhovell, The Netherlands;

E-mail address:wstasli@urc.tue.nl

C. Praagman, Department of Econometrics,

University of Groningell, P.O. Box 800,9700 AV Groningen, 1'h(' Netherlands;

E-mail address: c.praagmall@eco.rug.lll

Department of Mathematics and Computing Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISSN 0167-9708

Coden: TEUEDE



A Fortran subroutine for column reduction

of polynomial matrices

by

A.J. Geurts and C. Praagman

Abstract

In this report we describe a subroutine that takes an arbitrary polynomial matrix P as

input, and yields on output a unimodular polynomial matrix (I and a column reduced poly

nomial matrix R such that PU = R. The subroutine is hased 011 the algorithm described in

the paper by Neven and Praagman. The subroutine was run on foUl" different computers,

with comparable results. \Ve found examples iu which the routhle behaves well, a.s well as

examples in which the routine performs poorly, if no precautions a.re takeu. \Ve provide both

kinds of examples and discuss the cause of the beha.vior of the routine. From these consider

ations a guideline for the use of the routine is derived.
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1 Introduction 

In systems theory polynomial matrices playa. dominant role, for instance in the description 

of input-output systems: 

where Ql and Q2 are polynomial matrices of appropriate size, or in AR-descriptions: 

Q(ft)w = 0 . 

In general the information these polynomial matrices cont.ain can be redundant, in which case 

the polynomial matrices may be replaced by others of lower degree or smaller size without 

changing the behavior of t.he systems, i.e. wit.hout changing the set of trajectories satisfying 

the equations. 

For reasons of simplicity, or for the possibility of fiuding state space descriptions, a min

imal description can be convenient. Depending all the goal one has in mind, minimality 

can of course have a different meaning, but ill important situatiolls row or column reduced 

descriptions supply these minimal descriptions. This motivates t.he search for column re

duced polynomial matrices equivalent to a. nOll-column reduced original one. Examples of 

the importance of column or row reduced polynomial matrices may be found in the book of 

Kailath[6] or in the work of Willems [14,15,16] 011 beha.viors. Note that P is row reduced if 

and only if its transpose pI is column reduced, so the problems of row reduction and column 

reduction are equivalent. 

The algorithm underlying the subroutine has heell developed in several stages: the part 

of the algorithm in which a minimal basis of til<' right null space of a. polynomial matrix is 

calculated is an adaptation of the algorithm desnilH'd in Bed<'n[l]. TIH' origina.l idea of the 

algorithm is described in Beelen, van den lTlIrk, a.lId Praagman [2], and sllccessive improve

ments have been reported in Neven[7], Praagman [10,11]. The paper by Neven and Praa.gma.n 

[8] gives the algorithm in the most general form, using iterations and exploiting the specia.l 

structure of the problem in calcula.t.ing t.he kernel of a. polynomial matrix. The subroutine 
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we describe here is an implementation of the algorithm in the latter paper.

The algorithm was supposed to perform well in all cases. But it turned out that the routine

has difficulties in some special cases, in which the original polynomial matrix contains entries

of different magnitude. We give examples in Section 7, and discuss the difficulties in detail

in Section 8.

2 Preliminaries

Let us start with introducing some notations: Let P E Rmx1\[s]. Thf'n d( P), the degree of

P, is defined as the maximum of the degrees of the entries of P, and rl j ( P), the j-th column

degree of P, as the maximum of the degrees in the j-th column. b(P) is the array of integers

obtained by arranging the column degrees of P in non-decreasing order.

The leading column coefficient matrix of P, r c( P), is the constant matrix obtained by taking

f ffi I J) ~di(P) P -Ie I hrom column j the coe dents of the term with degree rlj ( P). ,et j = LJk=O jkS >e t e

j-th column of P, then the j-th column of r c( P) equals

Definition 1. Let P E Rmxn[s]. P is called column reduced, if there exists a permutation

matrix T, such that P = (0, Pi )T, where r c( Pi) h08 full column rank.

Remark. Note that we do not require r c( P) to he of full column rank. In the litera

ture there is some ambiguity ahout column properness and colmnn reducedness. 'vVe follow

here the definition of WillemR [14]: P is column propfT if r c( P) has full column rank, and

column reduced if the conditions in the definition ahove are s<l,tislied.

A square polynomial matrix U E Rnxn[s] is unimodular' if det(U) E R\{O} 01', equivalently,

if U-1 exists and is also polynomiaL

It is well known that every regular polynomial matrix is unilllodularly f'quivalent to a column
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proper matrix, see Wolovich (17]. I\ailath [6] states that the <lhO\"e result can be extended

to polynomial matrices of full column rank without changing til(' proof. In fact the proof in

(18l is sufficient to establish that any polynomial matrix is eqlli,"alPllt to a. wlumn reduced

matrix. Furthermore, Wolovich' proof implies imnwdiatdy that till' column degrees of the

column reduced polynomial matrix do not exceed those of the origina.l ma.trix, see Neven and

Praagman (8l.

Theorem 1. Let P E Rmxn[s], then there exists a U E Rnxn(s], unimodular, such that

R := PU is column reduce(l. Furthermore 6(R) ::; b(P) totally.

Although the proof of this theorem in the above sonrccs is constructive, it is not suited

for practical computations, for reasons explained in a paper by Van DOOl"en [13]. In Section

7 we give an example (example 3) that iIlustra.tes this point. In Neven and Praagman [8l an

alternative, constructive proof is given on which the algorit.hm, underlying the subroutine we

describe here, is based.

The most importa.nt ingredient of the algori th m is the ca.lculation of a minimal basis of

the right null space of a polynomial matrix associated to P.

Definition 2. Let AI be a submodule of Rn[s]. Then Q E Rnx,.[s] is called a minimal

basis of M if Q is column proper and the colU171ns of Q span ill.

Note that if Q(s) has full column rank for all .~ E C, then M is a direct summand of

Rn[s], so in that case Q is a minimal polynomial hasis in the scnse of Forney (4] or Beelen

[ll·

In the algorithm a. minimal hasis is calculated for the module

ker(P, -lm ):= {{v E Rn+m[s] I (P, -lm )v == O} ,

see [2]. Here and in the sequel 1m will denote the identity matrix of size 1n.

The first observation is that if (U', R')' is such a basis, with U E Rnxn[s], then U IS
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unimodular, see [2,8].

Of course, R = PU, but although (U', R')' is minimal and hence column reduced, this

does not necessarily hold for R. Take for example

(0
1 sl)pes) =

Then

(
U(s) )

R(s)

1 0

o 1

1 s

o 1

is a minimal basis for ker(P, -1m ), but R is clearly not columll reduccd.

The next observation is that if (U', R')' is a, minimal basis for kpr( P, -1m ), then (U', sbR')'

is a basis for ker(sbp, -1m ), but not necessarily a. lninimal basis. Especially, if b > d(U),

(U', sbR')' is minimal if and only if R' is column reduced. On the other hand, for any minimal

basis (U~, R~)' of ker(sbP, -1m ), R~ is divisible by 8b, and PUb = .s-bRI,. In [8] it is proved

that for b > (n - l)d(P), the calculation of a minimal basis of ker(,sb P, -1m ) yields a pair

(Ub, Rb) in which Rb is column reduced.

3 Linearization

The calculation of ker(sb P, -Jm ) is dOlle in the spirit of tIl!' procedure explained in [1]: we

calculate a minimal basis of the kernel of the followiug Ii Ill'arization of (.sb P, -1m ).

Let P be given by pes) = Pdsd +Pd_1Sd-1 +... +Po. Ddine



Hb(S) = SAb - Eb

SPd -1m 0 ()

8Pd-l slm -1m

0

= sPo slm -Im

0

0

0 81m -1m

With

1m 0

81m 1m

Cb(S) :=

8b+d- 11m

we see that

o

o

o

o o

o

o -1m

so if V is a basis of ker(Hb), then

o

o
o ). V

1m

is a basis for ker(sbp, -1m ) [1]. In [8] it is proved that b(V) = li((U' , R')') and. that V is

minimal if and only if (U' , R' )' is minima.l. So the problem is to calcula.te a minimal basis

for ker(Hb)'
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4 The calculation of a minimal basis

A minimal basis is calculated by transforming the pencil Ih by orthogonal pre- and post

transformations to a form where Eb has not changed and .'h is in upper staircase form.

Definition 3. A matrix A E Rm"xna is in upper staircase f01'm if the7'e exists an increasing

sequence of integers 8i, 1 ~ S1 < 82 < , .. < .s" ~ Tla , such that Ai••; ::j:. 0 and .4ij =0 if i > l'

or j < Si. The elements Ai,.; are called the pivots of the .~t(/.irclts( fol'1//..

Note that i ~ Si and that the submatrix of the first i rows a.ud thl' first ."Ii (or more) columns

of A is right invertible for 1 ~ i ~ 1',

In [1,8] it has been shown that there exist orthogonal, sYllImetric. matrices Q1, Q2, ... , Q"

such that

A- '- Q Q 4 Q<n> Q<n>b·- ". .. 1· b 1 ' .. "

is in upper staircase form. The matrices (he are elementary [[olls(,lIold('l' reflections, and we

define Q~n> := diag(Jn, Qk)' Note that Eb is not changed by this transformation:

E .- Q Q E Q<n> Q<n>b·- " .. , 1 b 1 . "" .

We partition Ab as follows:

All A 12 A13

0 A 22 A 23

Ab= 0

0

0

All AI,I+1 AI,l+2

o .11+1,1+2

with Ajj E RmjXmj-l right invertible and in uppPr staircase forlll, j = 1, .. . ,t, and Aj,j+1 a

square matrix, for j = 1, .. . ,t + 1. We ta.ke lito = '/I. '1'11<'11 the dillH'llsiolls rnj,j = 1, ... ,1,

are uniquely determined and
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sAn sA12 - I

o

o
o

o

2A1 ,1+2

sAil 8AI,/+1 - I SAI,I+2

o .9.4/+1 ,1+2 - I

Let Abbe the submatrix of A~k-1) := Qk-1 ... Q1Abq~n> .. .Q~{ obtained by deleting the

first k - 1 rows, and let Sk be the column index of the first nonzero column in Ab. Then Qk

transforms this (sub)column into the first unit vector and lets the first k - 1 rows and the

first Sk - 1 columns of A~k-1) invariant. Consequently, postmultiplication with Q~n> leaves

the first n + k - 1 columns of .4~k-l) unaltered.

Because of the staircase form of ih it is easy to see tha.t the equation HbY = 0 has mi-l - mi

independent solutions of the form

Yn Y12 ... Yli
1

0 Y22
~

y'-.-

Yii i-1

0 0

where Yii E Rmi-l is a null vector of Aii, and Yjk E Rmj-l, k~ = j, ... , i. Clearly v :=

Q~n> ... Q~n>Y is then a null vector of 1h and taking the top and bottom part of v yields a

column of Ub and Rb, respectively, of degree i - 1. Note that this implies that I ~ b + d + 1,

since (In, sbP')' is a basis of ker( sbP, -1m ) and the degrees of the minimal bases of ker( Hb)

and ker(sbp, -1m ) are the same, see the end of Section 3.

5 Increasing b

The computational effort to calculate a. minimal basis for ker(sbp, -1m ) increases quickly

with the growth of b. From experiments, however, we may assume that in many cases a
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small b already leads to success. Thercforc the a.lgorithm starts wit.h b = 1 and increases b

by one until a column reduced Rb has been found. Wit.h til(' trallsition from b to b + 1 the

computations need not start from scratch, as we will explain in this section.

The transformation of Ab into Ab is split up into steps, where in the j-th step the diag

onal block matrix Ajj is formed, j = 1, ... ,1. Let Jt; denote the row index of the first

row of Ajj. Then A jj is formed by the Householder reflections Q/Ai' ••• ,Q/Ai+l- 1 • Let

NIc E Rmx(n+(d+lc)m) denote the matrix ( 0 , ... , 0, 1m ). Then

as well as

Observe that the first n columns of Ab+1 are just the first n rolurnns of .'11 a.ugmented with

zeros. Since postmultiplication with any Q<n> does not affect t.he first 11 columns, it is clea.r

that the reflection vectors ohhe first Jl2 -1 Householder reflpctions of ..-1&+1 (the ones involved

in the computation of All) are the reflection vect.ors of the first Jl2 -1 Householder reflections

of .'11 augmented with zeros. Let ](1;1 := Q1-'2-1 ' . "Q1 be the orthogonal transformation of the

first step of the transformation for .'11 , Then 111;b+1 := diag(l\"1;1. hm) is the corresponding

transformation for Ab+l and the first step can be descri bed by

(Y Av<n> 0 :)\1:1 1 \1;1
J( A y<n> = N1](~r> 0\ 1;b+1 b+1 \ 1;b+1 ,

0 I(b-1)m

(K 4 y<n> 0

~ )
\ 1;2' 2 \ 1;2

= N2 0

0 l(b-2)m 0

where ](~j> has the obvious mea.ning. From this \\If' sec that aflN the first step the second

block column of width JI'2 - 1, i.e. the block COIUlIlll from which /h2 will he acquired, is

10



exactly the correspondi11g block column of 11 2 after the first step a.ugmented with zeros, if

b ~ 2. In the second step, postmultiplication with the Householder reflections Q~n>, for

k = 1t2,"" Ita -1, does not affect the first n + Jl2 - 1 columns. Therefore, the argumentation

for the first step appli!:'s, mutatis mutandis, for the s('cond st!:'p, if b ~ :3. As a consequence,

it can be concluded by induction that the transformations for the j-th step for Ab+1 and Ab

are related by

j = 1, .. . ,b,

and that we can start the algorithm for Ab+1 with Ab transformed by l(i,b' for j = 1, ... , b,

augmented with Nbl\~b> at the bottom and m zero columns on the right.

6 Description of the algorithm

The algorithm consists of:

An outer loop in b, running from 1 to (n - l)ei + 1 at most. The termina.tion criterion is

that the calculated Rb is column reduced.

An intermediate loop in i, running from b to Ii +rl +1 at most. in which Aii is determined

and the null vectors of Hb of degree i - 1 are calculated. The precondition is that .-iii

and the null vectors of lh of degree j - 1, for j = 1, .... i - L hav!:' been computed and

are available. The termination criterion is that the suhmatrix of computed columns of

Rb is not column reduced, or that all the null vectors of lh ha.ve been found.

An inner loop in k, running from n + I£i-l to 'II +Pi - 1. (PO := -'/I.) indexing the columns

of Aii. For each k, either a Householder reflection is genNated and applied or a null vector

of degree i-I is computed. If a null vector has I)('en found, then Ub and Rb are extended

with one column and Rb is checked on column reducedlless. The loop is terminated after

k = n + Pi - 1 or if the ext(-']Hled Rb is not column reduced.

The algorithm uses a tolerance below which the matrix elements arp considered to be zero.

Thus the tolerance is used to determine tlw rank of the diagonal blocks Aii from which the
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null vectors of Hb and consequently the comput,('d solution follows. The choice of the toler

ance does not influence the accumcy of the computed solution.

The algorithm has been implemented in the subroutine COLRED. The subroutine is written

according to the standards of SLICOT, see [9], with a Humber of auxilia.ry routines. It is

based on the BLAS [3,5], and on similar routines from the NAG library [12, Chapter F06].

For programming details the reader is referred to the Appendix which contains the full text

of the routines as well as an example program. The example program uses also two gen

eral routines: MULTPM, for the addition and multiplication of polynomial matrices, and

PRMAPO, for printing a polynomial matrix.

7 Examples

In this section we describe a few examples. All examples were run on four computers, a

VAX-VMS, a VAX-UNIX, a SUN and on a 386 personal computer. The numerical values

that we present here were produced on the VAX-VMS computer. Its machine precision is

2-56 ~ 1.4 *10-17•

The first example is taken from the book of Kailath [6], and has been discussed before

in [2] and [8].

Example 1. The polynomial matrix P is given by

(

84 + 6s3 + 138
2 + 128 + 4 _8

3
- 482

- 58 - 2 )
P(s) =

o .s+2

In Kailath [6, p.386] we can find (if we correct a small typo) that PUo = Ro, with

Uo(s) = ( 1 0 )
s +2 1

Ro(s) = ( 0
S2 +4s +4

-(s3+482 +58+2) )

s+2

12



Clearly Ro is column reduced, and Vo unimodular. This example was also treated in [2]. The

program, with a prescribed tolera.nce of 10-12 , yields the following solution

U(8) =
(

a -(305- 7 )

a(8 +2) -(382 - {js

R(8) = ( 0
a(82 +48 +4)

-27(05
3 + 405

2 .+ 58 + 2) )

(-(382 - {jo5)(o5 + 2)

with a = 7.302027, (3 =37.4323405, 7 =31.87083 and {j =2(3 + "'Y.

It is easily checked that PU - R = 0(10-13), and that U is unimodular:

This solution is found without iterations, so for b = 1, and equals the solution found in [2].

As already mentioned in [2] one of the main motivations for the iterative procedure, that

is starting with a small b and increasing b until the solution is found, is the (experimental)

observation that in most examples increasing b is unnecessary. The following example, also

treated in [2,8] is constructed especially to show that sometimes a larger b is required.

Example 2.

Note that this matrix is unimodular and hence unilllodlllarly equivalent to a constant, in

vertible matrix. The program, run with the tolerance set to 0.6 X 10-14, yields no column

reduced R for b :s 4. For b =5 the resulting U and Rare

U(s) ~ (

1 -1 a82

J
-82

-05
4 + 05

2 a( -05
6 + 05

4 - 1)

0 1 as2

1:3



where a = 1.702939 .... The residual matrix satisfies: PU - R = 0(10-15 ).

The above examples behave very well, in fact they are so 'regular' that also the algorithm

based on Wolovich's proof of Theorem 1 (from now on called the Wolovich algorithm) yields

reliable answers. In a forthcoming report we will compare the r('~;ults of both algorithms

to a greater extent. Here we restrict ourselves to giving two more examples, for which the

Wolovich algorithm yields nonsensical answers.

Example 3. In the third example we take for P:

(

83 + 8
2

e8 +1 1)
P(8) = 282 -1 -1

382 1 1

with e a small parameter. Calculation by hand immediately shows that ta.king U equal to

: :),
-6 1

with 6 = e-1 , yields an R (equal to PU) given by

Clearly, R is column reduced, and U unimodular. Note tha.t U contains large elements as e

is small, a feature that will also be seen in the answers provided by the program.

For small values of e the \Volovich algorithm beha.ves badly (sp(' 0111' forthcoming report).

If we take e = 10-2 and set the tolerance to 10-14 , ollr algol'itllllJ yields
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U(s) = ( :
6

o
-3m'!

as

2(3 )
_(38(2,52 + 8)

(3«(26 - 1),<;2 +268)

-0'(2s + 38) (38s )

-0'(s+38) (3(5s 2 -88) ,

O'(s - 38) (3(5s 2 + 68)

with 0' = 0.4082483 and (3 = 0.14144214.

For smaller c the tolera.nce has to be increased to obtain an answer with the same struc-

ture as above, e.g. for e = 10-4 and e = 10-6 the tolerance must at least be 10-12 and 10-1°,
respectively. In an ca.ses PU - R = 0(1O-16 11U11). In the next section we will analyze this

example in more detail.

Of course the first thought is that the occurrence of the small parameter c is the cause

of the problem, but the next example shows that not in all cases the occurrence of a small

parameter leads to phenomena as in the previous example.

Example 4. In the fourth example we take for P:

S3 + S2 +2s +1 e8
2 +28 +3 8

2 +8 +1 8 - 1

8 - 1 -8 +2 28
2 + s - 1 28 +1

P(8) =
_82 - 28 + 1s+3 28 - 1 -s - 2

1 -1 38 +1 3

For an c with 0 < e S; 10-8 , and the tolerance set to 10-16 , the program yields good results

with PU - R = 0(10-16). For instance, with e = 10-8 the results are
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The residual matrix PU - R has entries smaller than 10-15 . In the next section we also

revisit this example.
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We also investigated the sensitivity of the algorithm to perturbations in the data. The

conclusion, based on a number of experiments, is that if the tolenwce is chosen such that the

perturbations lie within the tolerance, then the program retrieves the results of the unper

turbed system. This is well in agreement with the general feeling. We give one example.

Example 5.

(

83 + 8 2 + 8

P(8) = 8 3 + 282 +38

8
3 + 38

2 + 8 + 1

The resulting R has column degrees (0,0,2). Disturbing P with qua.ntities in the order of 10-8

leads to the result that the disturbed P is column reduced if the tolerance is less than 10-8 .

Setting the tolerance to 10-7 gives again an outcome in accordance with the unperturbed

case:

(
0.0 0.0 0.7335386 )

U(8) = -0.6324555 -0.5071715 0.0 +
0.0 0.7513652 0.0

(0.0 0.0 0.3221301 )

0.0 0.0 0.1527825 s +
0.0 0.0 -1.285900

( 0.0
0.0

0.0 )
0.0 0.0 0.1256059 8

2 +
0.6324555 0.5071715 -1..517319

c·
o 0.0 0.0

0.0 0.0 00 ) s' +
0.0 0.0 -0.8863210

CO 0.0
00 )

0.0 0.0 0.0 8
4

0.0 0.0 -0.1256059

17



(

-0.6324555 0.2441937 0.0 J
R(s) = 0.0 0.7513652 0.0 +

-0.6324555 0.2441937 0.7335386

(
::: ::: -:::::~:::) s +
0.0 0.0 -0.3995791

(::: ::: =:::::~:::) s2 •

0.0 0.0 0.8089021

8 Discussion

First we examine example 3 of Section 7, namely

The Uc and Rc that will result from the algorithm, if ca.lculations are performed exactly, are

2(3 J-(36(282 +s)

(3«26 - 1)82 +26s)

R.(s) ~ ( ~6
-0'(2s + 36) (36s )

-0'(8+36) (3(.58 2 -08) ,

0'(8 - 36) (3(5s 2 + 6s)

with 0' = lvl6, (3 = 110 ..;2 and 6 = c 1 •

In Section 7 we saw that the tolerance for which this result is obtained by the routine is

proportional to c:-1 • Close examination of the computa.tions reveals that the computed Ab
(see Section 4) gets small pivots, which canse growing numbers in the compnta.tion of the

right null vectors until overflow occurs, a.nd a. breakdown of the process if the tolera.nce is too
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small. Scaling of a null vector, which at first sight suggests itself, may suppress the overflow

and thereby hide the problem at hand. In this example the effect of scaling is that if € tends

to zero, then Ue tends to a singular matrix and He to a constant matrix of rank 1.

Is there any reason to believe that there exists an algorithm which yields an R continuously

depending on € in a neighborhood of o? Observe that

det(Pe)(s) == -50:s3 , so Pe is singular for 0: == 0;

the column degrees of Re are (0,1,2) if 0: i 0 and (-1,0,3) if E = 0 (We use the convention

that the zero polynomial has degree -1).

We conclude that the entries of lie and He do not depend continuously on E in a neighborhood

of e == O. Even stronger: There do not exist families {Ve}, {S'e} , continuous in e = 0 such

that for all e, Ve is unimodular, Se column reduced, and PeVe = Se'

Example 4, though at first sight similar, is quite different from example 3. Due to the

fact that the third column of P minus s times its fourth column equals (2s + 1, -1, 1, l)t,

the term es2 in the element P12 is not needed to reduce the first column. As a consequence,

the elements of Ue and He depend continuously on £- and no large entries occur. This feature

is not recognized by the Wolovich algorithm. Perturbation of Pe, for instance changing the

(4,4) entry from 3 to 3 + 6, destroys this property. The resulting matrix behaves similarly

to example 3. To compare examples 3 and 4 we observe that in example 4

det(Pe,6) i 0 for aU values of e and fI, so this property is not characteristic;

in the unperturbed case, /j == 0, the column degrees of He are (1.1,1,2) for all e. If b i 0,

then the column degrees of Re are (1,1,2,2) for e i 0 and (1,1,1,3) if e == O. So here

again we can conclude that in this case no algorithm can yield Ue•6, Re .6 continuous in

e == O. This is what we caJl a. singular case.

Remark. Singularity in the sense just mentioned may appear in a more hidden form.

For instance, if in example 4 the third column is added to the second, resulting in P12 =
(1 +e)s2 + 3s +4, we get a similar behavior depending on the values of 6 and e. Though
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€ in P12 is likely to be a perturbation, its effect is quite different from the effects of the

perturbations in example 5.

For perturbations as in example 5 the tolerance should at least be of the order of magni

tude of the uncertainties in the data to find out whether there is a non-column reduced

polynomial matrix in the range of uncertainty. In cases like example 5 it may be wise to run

the algorithm for several values of the tolerance.

9 Conclusions

In this report we described a subroutine which is a.n implementation of the algorithm de

veloped by Neven and Praagman [8]. The routine asks for the polynomial matrix P to be

reduced, and a tolerance. The tolerance is used for rank determination within the accuracy

of the computations. Thus the tolerance influences whether or not the correct solution is

found, but does not influence the accuracy of the solution.

We gave five examples. In all cases the subroutine performs satisfactorily, Le. the computed

solution has a residual matrix PU - R = O(11U11 *E PS), where BPS is the machine precision.

Normally the tolerance should be chosen in accordance with the a.ccuracy of the elements of

P, with a lower bound (default value) of the order of EPS times the Frobenius norm of P. In

some cases the tolerance has to be set to a la.rger va.lue than the default value in order to get

significant results. Therefore, in case of failure, or if there is doubt about the correctness of

the solution, the user is recommended to run the program with several values of the tolerance.

At this moment we are optimistic about the performance of the routine. The only cases

for which we had some difficulties to get the solution were what we called singular cases. As

we argued in the last section, the nature of this singularity will frustrate in fact all algorithms.

We believe, although we cannot prove it at this moment that the algorithm is numerically

stable in the sense that the computed solution satisfies IIPU - RII =O(IIPIIIIUIIEPS).
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The example program

C

C COLRED EXAMPLE PROGRAM TEXT
C

C Version dd February 15, 1994.
C

IMPLICIT NONE
C .. Parameters

INTEGER NIN, NOUT
PARAMETER (NIN = 5, NOUT = 6)
DOUBLE PRECISION ONE
PARAMETER (ONE = 1.0DO)

C

INTEGER DPMAX, MPMAX, NPMAX
PARAMETER (DPMAX = 6, MPMAX = 10, NPMAX = 10)
INTEGER ND1, LIWORK, LRWORK, ORMAX
PARAMETER (NDl = NPMAX * DPMAX + 1,

* LIWORK =2 * NOl * MPMAX + NPMAX + 1,
* LRWORK = (2*MPMAX+l) * MPMAX * N01**2 +
* (2*MPMAX*NPMAX + 4*MPMAX +NPMAX) * ND1 +
* (2*MPMAX+3) * NPMAX,
* DRMAX = (NPMAX+1)*DPMAX + 1)

INTEGER LOP1, LDP2, LOR1, LDR2, LDU1, LDU2
PARAMETER (LOP1 = MPMAX, LOP2 = NPMAX, LDR1 = MPMAX,

* LDR2 = NPMAX, LOUl = NPMAX, LDU2 = NPMAX)
C ., Local Scalars ..

INTEGER MP, NP, OP, DR, OU, I, J, K, IERR
DOUBLE PRECISION TOL

C .. Local Arrays ..
INTEGER IWORK(LIWORK)
DOUBLE PRECISION P(LOP1,LDP2,DPMAX+1), R(LOR1,LDR2,ORMAX),

* U(LDU1,LDU2,ND1), RWORK(LRWORK)
LOGICAL ZERCOL(NPMAX)

C " External Subroutines/Functions
EXTERNAL COLRED, MULTPM, PRMAPO

C
C .. Executable Statements .,
C
C Read MP, NP, DP, TOL and next P(k), k = O, .... ,DP row after row.
C

WRITE (NOUT, FMT = 99999)
READ(NIN, FMT = '()')
REAO(NIN, FMT = *) MP, NP, OP, TOL

C
DO 20 K = 1, OP + 1

READ(NIN, FMT = 'C)')



DO 10 I = 1, MP
READ(NIN, FMT = *) (P(I,J,K), J = 1, NP)

10 CONTINUE
20 CONTINUE

C
WRITE(NOUT, FMT = 99998) OP, MP, NP, TOL
CALL PRMAPO(MP, NP, OP, 5, NOUT, P, LOP1, LOP2, 'P', IERR)

C
CALL COLREO(MP, NP, OP, P, LDP1, LDP2, DR, OU, R, LDR1, LOR2,

* U, LDUi, LOU2, ZERCOL, IWORK, RWORK, TOL, IERR)
C

IF (IERR .EQ. 0) THEN
WRITE (NOUT, FMT = 99997)
CALL PRMAPO(NP, NP, OU, 5, NOUT, U, LOUi, LOU2, 'U', IERR)

C
WRITE (NOUT, FMT = 99996)
CALL PRMAPO(MP, NP, DR, 5, NOUT, R, LORi, LOR2, 'R', IERR)
WRITE (NOUT, FMT = 99995) (ZERCOL(J), J = i, NP)

C
CALL MULTPM(-ONE, MP, NP, NP, OP, OU, DR, P, LOPi, LOP2,

* U, LDUi, LDU2, R, LORi, LOR2, RWORK, IERR)
IF (DR .GE. 0) THEN

WRITE (NOUT, FMT = 99994)
CALL PRMAPO(MP, NP, DR, 5, NOUT, R, LOR1, LOR2, '(PU-R)',

* IERR)
ELSE

WRITE (NOUT, FMT = 99993)
END IF

ELSE
WRITE (NOUT, FMT = 99992) IERR

END IF
STOP

C
99999 FORMAT (, COLREO EXAMPLE PROGRAM RESULTS', liX)
99998 FORMAT (, The input polynomial matrix:', II,

* ' pes) = P(O) + P(l) * s + ... + P(dp-l) *s**(dp-l)',
* + P(dp) * s**dp', II, , with degree OP =', 12,
* ' and size MP =',12, " NP =',12, '.', II,
* ' The tolerance is:', DiO.3, liX)

99997 FORMAT (, The unimodular polynomial matrix U(s):')
99996 FORMAT (' The column reduced polynomial matrix R(s):')
99995 FORMAT (' ZERCOL(j), j = i, NP: I, iO(L2»
99994 FORMAT (' The residual matrix pes) * U(s) - R(s):')
99993 FORMAT (' PU - R is the ZERO polynomial matrix.')
99992 FORMAT (' COLREO has failed: IERR =',12)

END



The routine COLRED

SUBROUTINE COLREO(MP, NP, OP, P, LOP1, LOP2, DR, OU, R, LOR1,
* LOR2, U, LOU1, LOU2, ZERCOL, IWORK, RWORK,
* TOL, IERR)

c
C PURPOSE
C
C To compute for a given polynomial matrix
C dp-l dp
C pes) =P(D) + P(l) * s + . . . + P(dp-l) * s + P(dp)* s
C

C a unimodular polynomial matrix U(s) such that R(s) = pes) * U(s) is
C column reduced.
C

C ARGUMENTS IN
C

C MP - INTEGER.
C The number of rovs of the polynomial matrix pes).
C MP >= 1.
C NP - INTEGER.
C The number of columns of the polynomial matrix pes).
C NP >= 1.
C OP - INTEGER.
C The degree of the polynomial matrix pes).
C OP >= 1.
C P - DOUBLE PRECISION array of DIMENSION (LOP1,LOP2,OP+l).
C The leading MP by NP by (OP+l) part of this array must contain
C the coefficients of the polynomial matrix pes). Specifically,
C P(i,j,k) must contain the coefficient of s**(k-l) of the
C polynomial vhich is the (i,j)-th element of pes), where
C i = 1,2, ... ,MP, j = 1,2, ... ,NP and k = 1,2, ... ,OP+1.
C LOP1 - INTEGER.
C The leading dimension of array P as declared in the calling
C program.
C LOP1 >= MP.
C LOP2 - INTEGER.
C The second dimension of array P as declared in the calling
C program.
C LDP2 >= NP.
C

C ARGUMENTS OUT
C

C DR - INTEGER.
C The degree of the column reduced polynomial matrix R(s).
C DU - INTEGER.
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C The degree of the unimodular polynomial matrix U(s).
C R - DOUBLE PRECISION array of DIMENSION (LDR1.LDR2.DP+1).
C The leading MP by NP by (DR+l) part of this array contains
C the coefficients of the column reduced polynomial matrix R(s).
C Specifically. R(i.j.k) contains the coefficient of s**(k-1) of
C the polynomial which is the (i.j)-th element of R(s). where
C i = 1.2 •...• MP. j = 1.2 •...• NP and k = 1.2 •...•DR+1.
C LDR1 - INTEGER.
C The leading dimension of array R as declared in the calling
C program.
C LDR1 >= MP.
C LDR2 - INTEGER.
C The second dimension of array R as declared in the calling
C program.
C LDR2 >= NP.
C U - DOUBLE PRECISION array of DIMENSION (LDU1.LDU2.NP*DP+1).
C The leading NP by NP by (DU+l) part of this array contains
C the coefficients of the unimodular polynomial matrix U(s).
C Specifically, U(i,j.k) contains the coefficient of s**(k-1) of
C the polynomial which is the (i.j)-th element of U(s). where
C i = 1.2, ...• NP, j = 1.2 •...• NP and k = 1.2•...• DU+1 .
C LDUl - INTEGER.
C The leading dimension of array U as declared in the calling
C program.
C LDUl >= NP.
C LDU2 - INTEGER.
C The second dimension of array U as declared in the calling
C program.
C LDU2 >= NP.
C ZERCOL - LOGICAL array of DIMENSION at least (NP).
C If ZERCOL(j) = .TRUE .• then the j-th column of R(s) is zero;
C otherwise the j-th column belongs to R1(s) (see METHOD).
C

C WORKSPACE
C

C IWORK - INTEGER array of DIMENSION at least (liwork).
C where liwork = 2*ND1*MP + NP + 1.
C and NDl = NP*DP + 1.
C RWORK - DOUBLE PRECISION array of DIMENSION at least (lrwork).
C where 1rwork = (2*MP+1)*MP*ND1**2 + (2*MP*NP+4*MP+NP)*NDl +
C MP*NP + 3*NP.
C

C TOLERANCES
C

C TOL - DOUBLE PRECISION.
C A tolerance below which matrix elements are considered to be
C zero. If the user sets TOL to be less than
C EPS * «(DP+l) * MP)**2 * MAX(P(i,j.k»). then the tolerance is
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C taken as EPS * «(OP+l) * MP)**2 * MAX(P(i,j,k»), i = 1, ... ,MP,
C j =1, ... ,NP, k =1, ... , OP + 1, where EPS is the machine
C precision.
C
C ERROR INDICATOR
C
C IERR - INTEGER.
C Unless the routine detects an error (see next section),
C IERR contains 0 on exit.
C
C WARNINGS AND ERRORS DETECTED BY THE ROUTINE
C
C IERR = 1 On entry, MP < 1 or NP < 1 or DP < 1 or
C LDPl < MP or LDP2 < NP.
C IERR =2 No column reduced R(s) has been found
C
C METHOD
C
C Let GAMC(P) be the constant matrix such that each of its columns
C contains the coefficients of the highest power of s occurring in the
C corresponding column of pes), the so-called leading column coefficient
C matrix. Then pes) is called column reduced if there exists a permutation
C matrix T such that pes) = ( Z , Pl(s) ) * T, where Z is a zero matrix
C and GAMC(Pl) has full column rank.
C
C Let (U(s),Z(s»' be a minimal polynomial basis (MPB) for
C b
C Ker(s pes), -I), for some b > O. It has been proved, see [1], that if
C b is greater than d'c(P), the sum of all but the smallest column
C -b
C degrees of pes), then U(s) is unimodular and R(s) =s Z(s) is column
C reduced and pes) * U(s) = R(s).
C b
C The routine uses a linearization of (s pes), -I) to compute an MPB
C for b = 1,2, ... and checks for each b whether R(s) is column reduced,
C i.e. whether GAMC(R1) has full column rank. The algorithm finishes
C with U(s) and R(s) as soon as R(s) is column reduced.
C
C REFERENCES
C
C [1] Neven, W.H.L. and Praagman, C.
C Column Reduction of Polynomial Matrices.
C Linear Algebra and its Applications 188, 189, pp. 569-589, 1993.
C
C NUMERICAL ASPECTS

C
C The algorithm used by the routine involves the construction of a



C b
C special staircase form of a linearization of (s pes). -I) with
C pivots considered to be non-zero when they are greater than or equal
C to TOL. These pivots are then inverted in order to construct the
C b
C columns of keres pes). -I).
C The user is recommended to choose TOL of the order of the relative
C error in the elements of pes). If TOL is chosen to be too small. then
C a very small element of insignificant value may be taken as pivot.
C As a consequence. the correct null-vectors. and hence R(s). may not be
C found. In the case that R(s) has not been found and in the case that
C the elements of the computed U(s) and R(s) are large relative to the
C elements of pes) the user should consider trying several values of TOL.
C
C CONTRIBUTORS
C
C A.J. Geurts (Eindhoven University of Technology).
C C. Praagman (University of Groningen).
C
C REVISIONS
C
C 1994. February 11.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO, ONE. EPS
PARAMETER (ZERO = O.ODO, ONE = 1.000, EPS = 1.0DO/2.0DO**56)

C .. Scalar Arguments
INTEGER MP. NP, OP, LOP1, LDP2, DR. DU. LDR1, LDR2. LDU1. LDU2.

* IERR
DOUBLE PRECISION TOL

C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION P(LDP1,LDP2.*). R(LDR1.LDR2,.). U(LDU1.LDU2.*).

* RWORK(*)
LOGICAL ZERCOL(*)

C .. Local Scalars ..
INTEGER LOA, LDAB, LOQ. LDY, LDG, MU. S, SK. A. AB. Q. Y. YI.

• GAMC, BMAX, DP1, K, MAMAX, NAMAX
DOUBLE PRECISION TOLER
LOGICAL COLRDC, PKZERO

C .. External Subroutines/Functions
EXTERNAL F06QFF, F06QGF, F06QHF, COLRD1, CKCOLR
DOUBLE PRECISION F06QGF
LOGICAL CKCOLR

C .. Intrinsic Functions
INTRINSIC OBLE, MAX

C
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C .. Executable Statements ..
C

C Check the input parameters.
C

IF (MP.LT.1 .OR. NP.LT.1 .OR. OP.LT.1 .OR. LOP1.LT.MP .OR.
* LOP2.LT.NP) THEN

IERR = 1
RETURN

ENO IF
C

IERR =0
C

C Computation of the tolerance. EPS is the machine precision of the
C double precision floating-point arithmetic of a VAX computer.
C For an other computer the value of EPS should be adapted.
C

TOLER = ZERO
00 10 K = 1, OP + 1

TOLER = MAX (TOLER, F06QGF('M', 'G', HP, NP, P(1,1,K), LOP1»
10 CONTINUE

C

TOLER = OBLE«(OP+1) * MP)**2) * TOLER * EPS
IF (TOLER .LT. TOL) TOLER = TOL

C
C Computation of the true degree of pes).
C

K = OP + 2
PKZERO = .TRUE.

C WHILE (P(k) is a zero matrix) 00
20 IF (PKZERO .ANO. (K.GT.1» THEN

K = K - 1
PKZERO = (F06QGF('M' ,'G', HP, NP, P(1,1,K), LOP1) .EQ. ZERO)
GO TO 20

ENO IF
C ENO WHILE 20

OP1 = K - 1
C
C Check whether pes) is already column reduced.
C

Q = MP + 1

LOQ = HP
COLROC = CKCOLR(MP, NP, OP1, P, LOP1, LOP2, ZERCOL, RWORK(Q), LOQ.

* RWORK, TOLER, IERR)
IF (COLROC) THEN

OR = OP1
00 30 K = 1, OR + 1

CALL F06QFF('G', MP, NP, P(1,1,K), LOP1, R(1,1,K), LOR1)
30 CONTINUE

:\0



OU = 0
CALL F06QHF('G', NP, NP, ZERO, ONE, U, LOU1)
RETURN

END IF
C

BMAX = (NP - 1) * OPl + 1
MAMAX = (OP1 + BMAX) * MP
NAMAX = MAMAX + NP
LDA = MAMAX + 1
LOAB = LOA
LOY = NAMAX
LOG = MP
MU =1
S = MU + MAMAX + 1
SK = S + MAMAX
A = 2 * MAMAX + 1
AB = A + (MAMAX + 1) * NAMAX
Q = AB + (MAMAX + 1) * NAMAX
Y = Q + MP * NP
YI = Y + NAMAX * (NP * DP + 1)
GAMC = YI + NP

C

CALL COLR01(MP, NP, OP1, P, LOP1, LOP2, DR, OU, R, LOR1, LOR2,
* U, LOU1, LOU2, ZERCOL, IWORK(MU), IWORK(S), IWORK(SK),
* RWORK(A) , LOA, RWORK(AB), LOAB, RWORK(Q), LOO,
* RWORK(Y), LOY, RWORK(YI), RWORK(GAMC), LOG, RWORK,
* TOLER, IERR)

C

C Check whether the computed R(s) is column reduced.
C

IF (IERR .EQ. 0) THEN
Q = MP + 1

COLROC = CKCOLR(MP, NP, OR, R, LOR1, LOR2, ZERCOL, RWORK(Q),
* LOQ, RWORK, TOL, IERR)

IF (.NOT. COLROC) IERR = 2
ELSE

IERR = 2
ENO IF
RETURN

C *** Last line of COLREO ***
ENO

;II



CKCOLR

*
LOGICAL FUNCTION CKCOLR(MP, NP, DP, P, LDP1, LDP2, ZERCOL, Q, LDQ,

W, TOL, IERR)

WORKSPACE

ARGUMENTS OUT

PURPOSE

ZERCOL - LOGICAL array of DIMENSION at least (NP).
If ZERCOL(j) = .TRUE., then the j-th column of pes) is zero;
otherwise the j-th column belongs to Pl(s) (see METHOD).

dp
+ P(dp) * s

dp-l

MP - INTEGER.
The number of rows of the polynomial matrix pes).
MP >= 1.

NP - INTEGER.
The number of columns of the polynomial matrix pes).
NP >= 1.

DP - INTEGER.
The degree of the polynomial matrix pes).
DP >= O.

P - DOUBLE PRECISION array of DIMENSION (LDP1,LDP2,DP+l).
The leading MP by NP by (DP+l) part of this array must contain
the coefficients of the polynomial matrix pes). Specifically,
P(i,j,k) must contain the coefficient of s**(k-l) of the
polynomial which is the (i,j)-th element of pes), where
i = 1,2, ... , MP, j = 1,2, ... , NP and k = 1,2, ... , DP+ 1 .

LDPl - INTEGER.
The leading dimension of array P as declared in the calling
program.
LOPl >= MP.

LDP2 - INTEGER.
The second dimension of array P as declared in the calling
program.
LOP2 >= NP.

pes) = P(O) + P(l) * s + . . . + P(dp-l) * s

ARGUMENTS IN

is column reduced.

To check whether the polynomial matrix

C

C
C

C

C
C
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C
C

C
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C Q - DOUBLE PRECISION array of DIMENSION (LDQ,NP).
C LDQ - INTEGER.
C The leading dimension of array Q as declared by the calling
C program.
C LDQ >= MP.
C W - DOUBLE PRECISION array of DIMENSION (MP).
C
C TOLERANCES
C
C TOL - DOUBLE PRECISION.
C A tolerance below which matrix elements are considered to be
C zero. If the user sets TOL to be less than
e EPS * «(DP+l) * MP)**2 * MAX(P(i,j,k»), then the tolerance
e is taken as EPS * «(DP+l) * MP)**2 * MAX(P(i,j,k»),
C i = 1, ... ,MP, j = 1, ... ,NP, k = 1, ... ,DP+l, where EPS is the
C machine precision.
e
C ERROR INDICATOR
e
C IERR - INTEGER.
C Unless the routine detects an error (see next section),
C IERR contains 0 on exit.
e
C WARNINGS AND ERRORS DETECTED BY THE ROUTINE
C
e IERR = 1 : Invalid input parameter(s).
C
C METHOD
C
C Let GAMC(P) be the constant matrix such that each of its columns
C contains the coefficients of the highest power of s occurring in the
C corresponding column of pes), the so-called leading column coefficient
C matrix. Then pes) is called column reduced if there exists a
e permutation matrix T such that pes) = ( Z , Pl(s) ) * T, where Z is a
C zero matrix and GAMC(Pl) has full column rank.
C
C The algorithm used, which is in fact the QR decomposition of the
C leading column coefficient matrix, is as follows:
C The columns of the leading column coefficient matrix of Pl(s) are
C determined one by one, where a column is considered zero if its
C Euclidean norm is less than TOL. To each new column the Householder
C transformations are applied that have transformed the submatrix of the
C former columns in upper triangUlar form. If the new column is
C independent of its predecessors, then a new Householder transformation
C is generated and applied such that the augmented matrix is upper
C triangUlar.
e The routine terminates after the last column of pes) has been treated
C or when the new column is dependent of its predecessors.



C

C CONTRIBUTOR
C

C A.J. Geurts (Eindhoven University of Technology).
C C. Praagman (University of Groningen).
C
C REVISIONS
C

C 1993, November 4.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO, EPS, FACTOR
PARAMETER (ZERO =O.ODO, EPS = 1.0DO/2.000**56, FACTOR = 1.002)

C .. Scalar Arguments ..
INTEGER MP, NP, DP, LDP1, LDP2, LOQ, IERR
DOUBLE PRECISION TOL

C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LOP2,*), Q(LOQ,*), W(*)
LOGICAL ZERCOL(*)

C .. Local Scalars ..
INTEGER H, J, J1, K
DOUBLE PRECISION TOLER, NORM, ZETA
LOGICAL FULLRK, NOTCJ

C ., External Subroutines/Functions .,
EXTERNAL DCOPY, DNRM2, F06FSF, F06FUF, F06QGF, F06QHF
DOUBLE PRECISION DNRM2, F06QGF

C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN

C

C .. Executable Statements
C
C Check input parameters
C

IF (MP.LT.1 .OR. NP.LT.1 .OR. DP.LT.O .OR. LOP1.LT.MP .OR.
* LDP2.LT.NP) THEN

IERR = 1
RETURN

END IF
C

C Computation of the tolerance. EPS is the machine precision of the
C double precision floating-point arithmetic of a VAX computer.
C For an other computer the value of EPS should be adapted.
C

TOLER = ZERO
DO 10 K = 1, DP + 1

TOLER = MAX(TOLER, F06QGF('M', 'G', MP, NP, P(1,1,K), LOP1))
10 CONTINUE
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TOLER = DBLE«(DP+1) * MP))**2 * TOLER * EPS
IF (TOLER .LT. TOL) TOLER = TOL

C
CALL F06QHF('G'. MP. NP. ZERO. ZERO. Q. LDQ)
J = 1

J1 = 1
FULLRK = .TRUE.

C WHILE (FULLRK and J1 <= NP) DO
20 IF (FULLRK .AND. J1.LE.NP) THEN

C

C Find the j-th column of the leading column coefficient matrix of
C P1(s) and put it in W.
C

C

C
C

C

C

C

C

C

C

C

30

K = DP + 1
NOTCJ = .TRUE.
WHILE (j-th column not found) DO
IF (NOTCJ .AND. K.GE.1) THEN

NORM = DNRM2(MP. P(1.J1.K). 1)
IF (NORM .GE. TOLER) THEN

CALL DCOPY(MP. P(1.J1.K). 1. w. 1)
NOTCJ = .FALSE.

END IF
K = K - 1
GO TO 30

END IF

END WHILE 30

Check whether the j-th column is linearly independent of the
preceding columns.

IF (NOTCJ) THEN
ZERCOL (J 1) = .TRUE.
J1 = J1 + 1

ELSE
ZERCOL(J1) = .FALSE.

Apply the Householder transformations Qh. h = 1•... ,min(mp,j) - 1,
to W.

C

DO 40 H = 1. MIN(MP.J) - 1
CALL F06FUF(MP-H. Q(H+1.H). 1. Q(H,H), W(H), W(H+1), 1)

40 CONTINUE
NORM = DNRM2(MP-J+1. W(J). 1)
IF (NORM .LT. TOLER) THEN

FULLRK = .FALSE.
ELSE



C

C
Generate the Householder transformation Qj.

IF (J .LT. MP) THEN
CALL F06FSF(MP-J, W(J), W(J+1), 1, TOLER, ZETA)
CALL DCOPY(MP-J, W(J+1), 1, Q(J+1,J), 1)
QCJ ,J) = ZETA

ELSE
QCJ , J) = ZERO

END IF
END IF
J = J + 1
J1 = J1 + 1

END IF
GO TO 20

END IF
C END WHILE 20

CKCOLR = FULLRK
RETURN

C *** Last line of CKCOLR ***
END

CKGAMC

LOGICAL FUNCTION CKGAMC(MP, INV, GAMC, LOG, Q, LDQ, RWORK, TOL)
C

C PURPOSE
C

C To check whether the leading coefficient matrix has still full column
C rank after a new column has been appended.
C REMARK: This auxiliary routine is intended to be called only from the
C routine COLRED.
C

C ARGUMENTS IN
C

C MP - INTEGER.
C The number of rows of the matrix GAMC.
C MP >= 1.
C INV - INTEGER.
C The number of columns of the matrix GAMC.
C INV >= 1.
C GAMC - DOUBLE PRECISION array of DIMENSION (LDG,INV)
C The leading MP by INV part of this array must contain the
C leading coefficient matrix GAMC of which the first INV - 1
C columns have been transformed in upper triangular form.
C Note: this array is overwritten
C LDG - INTEGER.
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C The leading dimension of array GAMC as declared in the calling
C program.
C LDG >= MP.
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,INV)
C The leading MP by INV - 1 part of this array must contain the
C vectors of the elementary Householder transformations by which
C the first INV - 1 columns of GAMC have been transformed into an
C upper triangular matrix.
C Note; this array is overwritten.
C LDQ - INTEGER.
C The leading dimension of array Q as declared in the calling
C program.
C LDQ >= MP.
C
C ARGUMENTS OUT
C
C GAMC - DOUBLE PRECISION array of DIMENSION (LDG,INV)
C The leading MP by INV part of this array contains the leading
C coefficient matrix GAMC transformed in upper triangular form.
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,INV)
C The leading MP by INV part of this array contains the vectors
C of the elementary Householder transformations by which GAMe has
C been transformed into an upper triangular matrix.
C
C WORKSPACE
C
C RWORK - DOUBLE PRECISION array of DIMENSION (MP)
C
C TOLERANCES
C
C TOL - DOUBLE PRECISION.
C A tolerance below which matrix elements are considered to be
C zero.
C
C METHOD
C
C Let the first INV - 1 columns of GAMC be linearly independent, which
C has been checked by former calls of CKGAMC. A new column is appended.
C To this column the Householder transformations are applied that have
C transformed the matrix of the former columns in upper triangular form.
C If the new column is independent of its predecessors, then a new
C Householder transformation is generated and applied such that the
C augmented matrix is upper triangular.
C
C CONTRIBUTOR
C
C A.J. Geurts.
C
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C REVISIONS
C
C 1993, October 29.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO
PARAMETER (ZERO =0.000)

C .. Scalar Arguments .,
INTEGER MP, INV, LOG, LDQ
DOUBLE PRECISION TOL

C .. Array Arguments ..
DOUBLE PRECISION GAMC(LDG,*), Q(LDQ,*), RWORK(*)

C .. Local Scalars
INTEGER J
DOUBLE PRECISION NORM, ZETA

C .. External Subroutines/Functions
EXTERNAL DCOPY, DNRM2, F06FBF, F06FSF, F06FUF
DOUBLE PRECISION DNRM2

C
C .. Executable Statements
C

IF (INV .LE. MP) THEN
CALL F06FBF(MP, ZERO, Q(1,INV), 1)

C
C Check whether the INV-th column is linearly independent of the
C preceding columns by applying the Householder transformations Q(h),
C h = 1, ... ,INV-1, to the INV-th column.
C

CALL DCOPY(MP, GAMC(1,INV), 1, RWORK, 1)
DO 10 J = 1, INV - 1

CALL F06FUF(MP-J, Q(J+1,J), 1, Q(J,J), RWORK(J), RWORK(J+1),
* 1)

10 CONTINUE
NORM = DNRM2(MP-INV+1, RWORK(INV), 1)
IF (NORM .LT. TOL) THEN

CKGAMC = .FALSE.
ELSE

C
C Generate the Householder transformation Q(INV) if INV < MP.
C

CALL DCOPY(MP, RWORK, 1, GAMC(1,INV), 1)
IF (INV .LT. MP) THEN

CALL F06FSF(MP-INV, RWORK(INV), RWORK(INV+1), 1, TOL,
* ZETA)

GAMC(INV,INV) = RWORK(INV)
CALL F06FBF(MP-INV, ZERO, GAMC(INV+1,INV), 1)
CALL DCOPY(MP-INV, RWORK(INV+1), 1, Q(INV+1,INV), 1)



Q(INV,INV) = ZETA
ELSE

Q(INV,INV) = ZERO
END IF
CKGAMC = .TRUE.

END IF
ELSE

CKGAMC = .FALSE.
END IF
RETURN

C *** Last line of CKGAMC ***
END

COLRDI

SUBROUTINE COLRD1(MP, NP, DP, P, LDP1, LDP2, DR, DU, R, LDR1,
* LDR2, U, LDU1, LDU2, ZERCOL, MU, S, SK, A, LDA,
* AB, LDAB, 0, LDQ, Y, LDY, YI, GAMC, LDG, W,
* TOL, IERR)

ARGUMENTS IN

PURPOSE

To compute for a given polynomial matrix

which is not column reduced, a unimodular polynomial matrix U(s) such
that R(s) = pes) * U(s) is column reduced.
REMARK: This auxiliary routine is intended to be called only from the

routine COLRED.

dp-1 dp
. . + P(dp-1) * s + P(dp) * spes) = P(D) + P(1) * s +

MP - INTEGER.
The number of rows of the polynomial matrix pes).
MP >= 1.

NP - INTEGER.
The number of columns of the polynomial matrix pes).
NP >= 1.

DP - INTEGER.
The degree of the polynomial matrix pes).
DP >= 1.

P - DOUBLE PRECISION array of DIMENSION (LDP1,LDP2,DP+1).
The leading MP by NP by (DP+1) part of this array must contain
the coefficients of the polynomial matrix pes). Specifically,
P(i,j,k) must contain the coefficient of s**(k-1) of the

C

C

C
C

C
C

C

C

C

C

C

C

C

C

C

C
C

C
C

C

C

C

C

C

C

C

C



C polynomial which is the (i.j)-th element of pes). where
C i = 1.2 •...• MP. j = 1.2 •...• NP and k = 1.2 •...• DP+ 1 .
C LDPi - INTEGER.
C The leading dimension of array P as declared in the calling
C program.
C LDPi >= MP.
C LDP2 - INTEGER.
C The second dimension of array P as declared in the calling
C program.
C LDP2 >= NP.
C

C ARGUMENTS OUT
C
C DR - INTEGER.
C The degree of the column reduced polynomial matrix R(s).
C DU - INTEGER.
C The degree of the unimodular polynomial matrix U(s).
C R - DOUBLE PRECISION array of DIMENSION (LDRi.LDR2.DP+i).
C The leading MP by NP by (DR+i) part of this array contains
C the coefficients of the column reduced polynomial matrix R(s).
C Specifically. R(i.j.k) contains the coefficient of s**(k-l) of
C the polynomial which is the (i.j)-th element of R(s). where
C i = 1.2 .....MP. j = 1.2 ..... NP and k = 1.2 ..... DR+1.
C LDRi - INTEGER.
C The leading dimension of array R as declared in the calling
C program.
C LDRi >= MP.
C LDR2 - INTEGER.
C The second dimension of array R as declared in the calling
C program.
C LDR2 >= NP.
C U - DOUBLE PRECISION array of DIMENSION (LDUi.LDU2.NP*DP+i).
C The leading NP by NP by (DU+i) part of this array contains
C the coefficients of the unimodular polynomial matrix U(s).
C Specifically, U(i.j.k) contains the coefficient of s**(k-i) of
C the polynomial which is the (i.j)-th element of U(s). where
C i = 1.2, ...• NP. j = 1.2 •...• NP and k = 1,2 •... , DU+ 1 .
C LDUl - INTEGER.
C The leading dimension of array U as declared in the calling
C program.
C LDUl >= NP.
C LDU2 - INTEGER.
C The second dimension of array U as declared in the calling
C program.
C LDU2 >= NP.
C ZERCOL - LOGICAL array of DIMENSION at least (NP).
C If ZERCOL(j) = .TRUE .• then the j-th column of R(s) is zero;
C otherwise the j-th column belongs to Ri(s) (see METHOD).
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C
C WORKSPACE
C
C MU - INTEGER array of DIMENSION at least (mamax+1),
C where mamax = (NP * DP + 1) * MP.
C On exit, this array contains the row indices of the left upper
C elements of the right invertible diagonal submatrices of A'.
C S - INTEGER array of DIMENSION at least (mamax).
C On exit, this array contains the column indices of the pivots
C of A', that is A transformed in upper staircase form.
C SK - INTEGER array of DIMENSION at least (NP).
C A - DOUBLE PRECISION array of DIMENSION (LDA,namax),
C where namax =mamax + NP.
C On exit, the upper block diagonal part of this array contains
C the transformed matrix A', the lower part contains the vectors
C of the Householder transformations.
C LOA - INTEGER.
C The leading dimension of array A as declared in the calling
C program.
C LOA >= mamax + 1.
C AB - DOUBLE PRECISION array of DIMENSION (LDAB,namax).
C Array in which the transformed matrix Ab is saved.
C LDAB - INTEGER.
C The leading dimension of array AB as declared in the calling
C program.
C LDAB >= mamax + 1.
C Q - DOUBLE PRECISION array of DIMENSION (LDQ,NP).
C LDQ - INTEGER.
C The leading dimension of array Q as declared in the calling
C program.
C LDQ >= MP.
C Y - DOUBLE PRECISION array of DIMENSION (LDY,NP*DP+1).
C Array in which a null vector of sA - E or sA' - E is stored.
C LOY - INTEGER.
C The leading dimension of array Y as declared in the calling
C program.
C LOA >= namax.
C YI - DOUBLE PRECISION array of DIMENSION at least (NP).
C GAMC - DOUBLE PRECISION array of DIMENSION (LDG,NP)
C On exit, this array contains the leading column coefficient
C matrix of R(s), which has full column rank.
C LOG - INTEGER.
C The leading dimension of array GAMC as declared in the calling
C program.
C LOG >= MP.
C W- DOUBLE PRECISION array of DIMENSION (2*mamax).
C
C TOLERANCES
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C
C TOL - DOUBLE PRECISION.
C A tolerance below which matrix elements are considered to be
C zero.
C
C ERROR INDICATOR
C
C IERR - INTEGER.
C Unless the routine detects an error (see next section),
C IERR contains 0 on exit.
C
C WARNINGS AND ERRORS DETECTED BY THE ROUTINE
C
C IERR = 2 No column reduced R(s) has been found for the maximum b,
C (see METHOD).
C IERR = 3 The computation of a null vector has failed, because a
C diagonal block of A' is not right invertible.
C 1ERR = 4 The computation of R(s) has failed, because a computed
C null vector is not s**B times a polynomial vector.
C IERR = 5 The degree of R(s) has become greater than the degree of
C pes).
C
C METHOD
C
C Let GAMC(P) be the constant matrix such that each of its columns
C contains the coefficients of the highest power of s occurring in the
C corresponding column of P(s), the so-called leading column coefficient
C matrix. Then pes) is called column reduced if there exists a permutation
C matrix T such that pes) = ( Z , Pl(s) ) * T, where Z is a zero matrix
C and GAMC(Pl) has full column rank.
C

C Let (U(s),Z(s»' be a minimal polynomial basis (MPB) for
C b
C Ker(s pes), -I), for some b > O. It has been proved, see [1], that if
C b is greater than d'c(P), the sum of all but the smallest column
C -b
C degrees of P(s), then U(s) is unimodular and R(s) = s Z(s) is column
C reduced and pes) * U(s) = R(s).
C The routine computes an MPB for b = 1.2 •... and checks for each b
C whether R(s) is column reduced, i.e. whether GAMC(Rl) has full column
C rank. The algorithm finishes with U(S) and R(s) as soon as R(s) is
C column reduced.
C
C REFERENCES
C
C [1] Neven, W.H.L. and Praagman, C.
C Column Reduction of Polynomial Matrices.
C Linear Algebra and its Applications 188, 189. pp. 569-589, 1993.



C
C CONTRIBUTORS
C
C A.J. Geurts (Eindhoven University of Technology).
C C. Praagman (University of Groningen).
C
C REVISIONS
C
C 1993, November 8.
C

IMPLICIT NONE
C .. Parameters

OOUBLE PRECISION ZERO, ONE
PARAMETER (ZERO = 0.000, ONE = 1.000)

C .. Scalar Arguments .,
INTEGER MP, NP, OP, LOP1, LOP2, OR, OU, LOR1, LOR2, LOU1, LOU2,

* LOA, LOAB, LOQ, LOY, LOG, IERR
OOUBLE PRECISION TOL

C .. Array Arguments "
INTEGER MU(*), S(*), SK(*)
OOUBLE PRECISION P(LOP1,LOP2,*), R(LOR1,LOR2,*), U(LOU1,LOU2,*),

* A(LOA,*), AB(LOAB,*), Q(LOQ,*), Y(LOY,*), YI(*),
* GAMC(LOG,*), W(*)

LOGICAL ZERCOL(*)
C .. Local Scalars

INTEGER BMAX, B, I, IC, IR, INO, NNV, NNVB, NCR1, J, K, KK,
* L, C1AI, OUB, OUR1, MA, NA, MAl, NAI, MUI

OOUBLE PRECISION MUQ, NORM, ZETA
LOGICAL COLROC

C ., External Subroutines/Functions
EXTERNAL DCOPY, OGEMV, OGER, ONRM2, F06FBF, F06QFF, F06QHF,

* COMPYI, CKGAMC, COMPTY, COMPTV, HHTRAN, MKPENC
OOUBLE PRECISION ONRM2
LOGICAL CKGAMC

C .. Intrinsic Functions
INTRINSIC MAX

C
C .. Executable Statements
C

BMAX = (NP-l) * OP + 1
CALL MKPENC(MP, NP, OP, P, LOP1, LOP2, AB, LOAB, MA, NA)
NNVB = 0
OUB = -1
00 10 K = 1, NP * OP + 1

CALL F06QHF('G', NP, NP, ZERO, ZERO, U(l,l,K), LOU1)
10 CONTINUE

COLROC = .FALSE.
MU(l) = 1



B = 0

C WHILE (.NOT.COLRDC and B < BMAX) DO
20 IF (.NOT.COLRDC .ANO. B.LT.BMAX) THEN

B = B + 1
C

C Initialization of A.
C

IF (B .EQ. 1) THEN
CALL F06QFF('G', MA, NA, AB, LOAB, A, LOA)
CALL F06FBF(NA, ZERO, A(MA+1,1), LOA)

ELSE
CALL F06QFF('G', MA+l, NA, AB, LOAB, A, LOA)
J = NP + MU(B-1)
L = MA - MP - MU(B-l) + 1
CALL F06QHF('G', MP, J-l, ZERO, ZERO, A(MA+2,1), LOA)
CALL F06QHF('G', MP+1, L, ZERO, ZERO, A(MA+1,J), LOA)
CALL F06QHF('G', MP+l, MP, ZERO, ONE, A(MA+1,L+J), LOA)
MA = MA + MP
CALL F06QHF('G', MA+l, MP, ZERO, ZERO, A(l,NA+l), LOA)
NA = NA + MP
DO 30 K = MU(B-1), MU(B) - 1

ZETA = A(K+l,S(K))
IF (ZETA .NE. ZERO) THEN

J = NP + K
L = MA - MP - K + 1
MUQ = ONE/ZETA
CALL OGEMV('N', MP, L, ONE, A(MA-MP+1,J), LOA,

* A(K+l,S(K)), 1, ZERO, W, 1)
CALL DGER(MP, L, -MUQ, W, 1, A(K+1,S(K)), 1,

* A(MA-MP+1,J), LOA)
END IF

30 CONTINUE
END IF

C

I = B
DU = DUB
NNV = NNVB
DR = -1

DO 40 K = 1, DU + 1
CALL F06QHF('G', NP, NP-NNVB, ZERO, ZERO, U(l,NNVB+l,K),

* LDU1)
40 CONTINUE

DO 50 K = 1, OP + 1
CALL F06QHF('G', MP, NP, ZERO, ZERO, R(l,l,K), LDR1)

50 CONTINUE
NCR1 = 0
COLROC = .TRUE.

c
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C

C

C

C

C

C
C

C

60

70

NNV is the number of already found null vectors. With these
null vectors correspond the NP by NNV column reduced matrix R(s).
NCR1 is the number of columns in R1(s).

WHILE (NNV < NP, which means that not all null vectors of sA - E
have been found, and R(s) is column reduced) DO

IF «NNV.LT.NP) .AND. COLRDC) THEN

Determine A(i,i), the i(th) right invertible diagonal block.
The left upper element of A(i,i) is A(MUI,C1AI) and the row and
column dimensions are MAl and NAI, respectively.

MUI = MU(I)
MAl = 0
IF (I .EQ. 1) THEN

CiAI = 1

NAI = NP
ELSE

C1AI = MU(I-1) + NP
NAI = MU(I) - MU(I-1)

END IF

Compute the null vectors of A(i,i) and the corresponding null
vectors of sA - E one by one, append the appropriate parts of a
computed null vector to U(s) and R(s) and check whether R(s)
remains column reduced.

K = 1
WHILE (K <= NAland R(s) still column reduced) DO
IF (K.LE.NAI .AND. COLRDC) THEN

IR =MUI + MAl
IC = C1AI + K - 1
L = MA - IR + 1
IF (L .GT. 0) THEN

NORM = DNRM2(L, A(IR,IC), 1)
ELSE

NORM = ZERO
END IF
IF (NORM .GE. TaL) THEN

Generate and apply the Householder transformation for the
IC-th column of A

CALL HHTRAN(MA, NA, IC, IR, A, LDA, W, W(MA+1), TOL)
CALL DCOPY(L, W, 1, A(IR+1,IC), 1)
S(MUI+MAI) = IC
MAl = MAl + 1
SK(MAI) = IC - C1AI + 1
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C

C

C

C
C

C
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*

80

ELSE

Compute the null vector Y of sA - E corresponding
to the IC-th column of A.

IF (L .GT. 0) THEN
CALL F06FBF(L, ZERO, A(IR,IC), 1)

END IF
IF (MAl .GT. 0) THEN

CALL DCOPY(MAI, A(MUI,IC), 1, W, 1)
CALL COMPYI(MAI, K-1, A(HUI,C1AI), LDA, SK, W,

YI, IERR)
IF (IERR .NE. 0) RETURN

ELSE
CALL F06FBF(K-1, ZERO, YI, 1)

END IF
YI(K) = -ONE
CALL COHPTY(NP, NA, I, K, YI, MU, A, LDA, S, Y, LDY,

SK, W, IERR)
IF (IERR .NE. 0) THEN

IERR = 3
RETURN

END IF
CALL COMPTV(MA, NA, I, IR, A, LDA, S, Y, LDY, W)

Append the first NP by I block of Y to the unimodular U,
and the last MP by I block to the column reduced R and the
last MP elements of the I-th column of Y to the leading
column coefficient matrix GAMC.

NNV = NNV + 1
OUR1 = 0
00 80 KK = 1, I

NORM = DNRM2(NP, Y(l,KK), 1)

IF (NORM .GE. TOL) THEN
DUR1 = KK - 1
CALL DCOPY(NP, Y(l,KK), 1, U(1,NNV,KK), 1)

ELSE
CALL F06FBF(NP, ZERO, U(l,NNV,KK), 1)

END IF
CONTINUE
DU = MAX(OU, DUR1)
IND = NA - MP + 1
DO 90 KK = 1, B

NORM = DNRM2(MP, Y(INO,KK), 1)
IF (NORM .NE. ZERO) THEN

IERR = 4
RETURN
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C

C

C

C

90

100

*

END IF
CONTINUE
DURl = -1
DO 100 KK = B + 1, I

NORM = DNRM2(MP, Y(IND,KK), 1)
IF (NORM .GE. TOL) THEN

DUR1 = KK - B-1
CALL DCOPY(MP, Y(IND,KK), 1, R(l,NNV,KK-B), 1)

ELSE
CALL F06FBF(MP, ZERO, R(1,NNV,KK-B), 1)

END IF
CONTINUE
IF (DURl .NE. -1) THEN

NCR1 = NCR1 + 1
ZERCOL(NNV) = .FALSE.
DR = MAX(DR, DUR1)
IF (DR .GT. DP) THEN

IERR = 5
RETURN

END IF
CALL DCOPY(MP, Y(IND,DUR1+B+l), 1, GAMC(1,NCR1), 1)

Check whether R is still column reduced.

COLRDC = CKGAMC(MP, NCR1, GAMC, LOG, Q, LDQ, W,
TOL)

ELSE
ZERCOL(NNV) = .TRUE.

END IF
END IF
K = K + 1
GO TO 70

END IF
END WHILE 70

Save the transformed A if I = B.

IF (I .EQ. B) THEN
CALL F06QFF('G', MA+l, NA, A, LOA, AB, LDAB)
NNVB = NNV
DUB = DU

END IF

IF (NNV.LE.NP .AND. COLRDC) THEN
I = I + 1
MU(I) = MU(I-l) + MAl

END IF
GO TO 60
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END IF
C END WHILE 60

GO TO 20
END IF

C END WHILE 20
C

IF (.NOT. COLRDC) IERR = 2
RETURN

C *** Last line of COLRD1 ***
END

COMPTV

SUBROUTINE COMPTV(MA, NA, I, J, A, LDA, S. Y, LDY, RWORK)
C

C PURPOSE
C
C To apply the Householder reflections, thus far applied to sA - E. to
C the null vector Y(s) corresponding to a given column of the transformed
C sA' - E, which transforms this null vector into a null vector V(s) of
C the original pencil sA - E.
C REMARK: This auxiliary routine is intended to be called only from the
C routine COLRED.
C
C ARGUMENTS IN
C
C MA - INTEGER.
C The number of rows of matrix A.
C MA >= 1.
C NA - INTEGER.
C The number of columns of matrix A.
C NA >= MA.
C I - INTEGER.
C The actual number of columns in Y, which is also the index of
C the diagonal block in A corresponding to the null vector Y(s).
C I >= 1.
C J - INTEGER.
C The row index in A which corresponds to the null vector Y(s).
C J >= 1.
C A - DOUBLE PRECISION array of DIMENSION (LDA,NA).
C The leading (MA + 1) by NA part of this array must contain the
C transformed matrix A' in the upper part and the Householder
C transformation vectors in the lower part.
e LDA - INTEGER.
C The leading dimension of array A as declared in the calling
e program.



C LOA >= MA + 1.
C S - INTEGER ARRAY of DIMENSION at least (J-l).
C The leading J - 1 elements of this array must contain the
C indices of the pivots of the right invertible diagonal sub-
C matrices, i.e., the pivot of A(m,m) is A(m,S(m)). ~=l •...• J-l.
C S(m) is also the index of the column in array A in which the
C m-th non-trivial Householder transformation vector is stored.
C Y - DOUBLE PRECISION array of DIMENSION (LDY.I).
C The leading NA by I part of this array must contain the
C polynomial null vector Y(s) of sA' - E to be transformed. where
C the t-th column (t = 1•...• 1) must contain the coefficient of
C s**(t-l).
C Note: this array is overwritten.
C LOY - INTEGER.
c The leading dimension of array Y as declared in the calling
C program.
C LDY >= NA.
C
C ARGUMENTS OUT
C
C Y - DOUBLE PRECISION array of DIMENSION (LDY.I).
C The leading NA by I part of this array contains the transformed
C null vector V(s) = Q * Y(s). where Q is the product of the
C (J-l) Householder transformations Q(m).
C
C WORKSPACE
C
C RWORK - DOUBLE PRECISION array of DIMENSION (2*MA).
C
C METHOD
C
C Let
C Q(m) = (I 0
C (0 P(m))
C be the elementary Householder transformation corresponding to the
C pivot A(m,S(m)), augmented such that Q(m) is NA by NA, then
C Q(l) Q(2) ... Q(J-l) Y ==> Y is computed.
C
C CONTRIBUTOR
C

C A.J. Geurts.
C
C REVISIONS
C
C 1992, October 27.
C

IMPLICIT NONE
C .. Parameters
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DOUBLE PRECISION ZERO, ONE
PARAMETER (ZERO =0.000, ONE = 1.000)

C .. Scalar Arguments ..
INTEGER MA, NA, I, J, LDA, LOY

C .. Array Arguments ..
INTEGER S(*)
DOUBLE PRECISION A(LOA,NA), Y(LOY,I), RWORK(2*NA)

C .. Local Scalars ..
INTEGER LEN, M, Ml, MY
DOUBLE PRECISION NU

C .. External Subroutines/Functions
EXTERNAL DCOPY, OGER, OGEMV, F06FBF

C

C .. Executable Statements ..
C

C Compute the matrix P(m) Y by w = Y'u and next Y = Y - nu * uw'.
C for m = j -1, .. , , 1.
C

DO 20 M = J - 1, 1, -1
IF (A(M+l,S(M» .NE. ZERO) THEN

LEN = MA - M + 1
MY = NA - MA + M
M1 = MA + 1
CALL DCOPY(LEN, A(M+1,S(M», 1, RWORK, 1)
CALL F06FBF(LEN, ZERO, RWORK(Ml), 1)
NU = ONE/RWORK(1)
CALL DGEMV('T', LEN, I, ONE, Y(MY,l), LOY, RWORK, 1,

* ZERO, RWORK(Ml), 1)
CALL DGER(LEN, I, -NU, RWORK, 1, RWORK(M1), 1, Y(MY,1), LDY)

END IF
20 CONTINUE

RETURN
C *** Last line of COMPTV ***

END

COMPTY

SUBROUTINE COMPTY(NP, NA, I, NYI, YI, HU, A, LOA, S, Y, LDY, SK,
* RWORK, IERR)

C

C PURPOSE
C

C To compute a right null vector of the pencil sA' - E, where the left
C part of A' is in staircase form. Actually, the computed vector is the
C null vector of the corresponding left part of the pencil.
C REMARK: This auxiliary routine is intended to be called only from the



C routine COLRED.
C
C ARGUMENTS IN
C
C NP - INTEGER.
C The number of columns of the polynomial matrix.
C NP >= 1.
C NA - INTEGER.
C The number of columns of the matrix A.
C NA >= 1.
C I - INTEGER.
C The index of the current diagonal block A(i,i) of the matrix A
C being transformed into staircase form.
C I >= 1.
C NYI - INTEGER.
C The length of the righthandside vector YI.
C 1 <= NYI <= NP.
C YI - DOUBLE PRECISION array of DIMENSION at least (NP).
C The right null vector of A(i,i).
C MU - INTEGER array of DIMENSION at least (MA).
C MU(k), k = 1, ... , i must contain the row index of the left
C upper element of A(k,k).
C A - DOUBLE PRECISION array of DIMENSION (LDA,NA).
C The leading MU(i) - 1 by MU(i) + NP - 1 part of this array must
C contain the part of the matrix A' which is in staircase form.
C LDA - INTEGER.
C The leading dimension of array A as declared in the calling
C program.
C LDA >= MU(i) - 1.
C S - INTEGER array of DIMENSION at least (MA).
C The leading MU(i) - 1 elements of this array must contain the
C column indices of the pivots of the right invertible diagonal
C matrices A(k,k), k = 1, ... , i-1.
C
C ARGUMENTS OUT
C
C Y - DOUBLE PRECISION array of DIMENSION (LDY,NA).
C The leading NA by i part of this array contains the computed
C polynomial right null vector yes) of sA' - E, where the j-th
C column contains the coefficient of s**(j-1).
C The last NA - MU(i) - NP + 1 components of yes) are zero.
C LDY - INTEGER.
C The leading dimension of array Y as declared in the calling
C program.
C LDY >= NA.
C
C WORK SPACE
C
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ERROR INDICATOR

METHOD

WARNINGS AND ERRORS DETECTED BY THE ROUTINE

Let the pencil sA' - E, partially transformed up to the i-th block, be
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i i
- SUM A(k,l) Y(l,i) * s
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SK - INTEGER array of DIMENSION at least (NP).
RWORK - DOUBLE PRECISION array of DIMENSION at least (NP).

IERR - INTEGER.
Unless the routine detects an error (see next section),
IERR contains 0 on exit.

IERR = k : A(k,k) is not right invertible.

~here A(k,k), k = i"", i is right invertible, A(k,k+l) is square and
E(k) = I of appropriate size.
Let Y(i,i), the (constant) right null vector of A(i,i), be given.
Then the routine computes a right null vector of sA' - E of the form
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C
C Y(k,j), j = k, ... , i, is a vector of length MU(k) - MU(k-1).
C
C CONTRIBUTOR
C
C A.J. Geurts.
C
C REVISIONS
C
C 1992, October 27.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO, ONE
PARAMETER (ZERO = O.ODO, ONE = 1.0DO)

C ., Scalar Arguments ..
INTEGER NP, NA, I, NYI, LOA, LOY, IERR

C ., Array Arguments ..
INTEGER MU(*), S(*), SK(*)
DOUBLE PRECISION YI(*), A(LOA,*), Y(LOY,*), RWORK(*)

C .. Local Scalars ..
INTEGER J, K, M, INDEXK, MUK, MUK1, NUK, MUK1NP

C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV, F06FBF, F06QHF, COMPYI

C
C .. Executable Statements
C

IERR = 0
C
C Initialization of the polynomial null vector yes).
C

CALL F06QHF('G', NA, I, ZERO, ZERO, Y, LOY)
K = I
IF (I .EQ. 1) THEN

CALL OCOPY(NYI, YI, 1, Y(l,l), 1)
ELSE

INDEXK = NP + MU(I-l)
CALL DCOPY(NYI, YI, 1, Y(INDEXK,I), 1)
00 30 K = I - 1, 1, -1

MUK = MU(K)
INDEXK = NP + MUK
NUK = MU(K+l) - MUK
DO 20 J = K, I

C
C
C
C

Compute the righthandside for Y(k,j) and store the
result in RWORK.

IF (J .LT. I) THEN



C

C
C

CALL DCOPY(NUK, Y(INDEXK,J+1), 1, RWORK, 1)
ELSE

CALL F06FBF(NUK, ZERO, RWORK, 1)
END IF
IF (J .GT. K) THEN

CALL DGEMV('N', NUK, MU(J)-MUK, -ONE, A(MUK,INDEXK),
* LDA, Y(INDEXK,J), 1, ONE, RWORK, 1)

END IF

Solve A(k,k) * Y(k,j) = RWORK for Y(k,j).

*

IF (K .EQ. 1) THEN
CALL COMPYI(NUK, NP, A(1,1), LDA, S, RWORK, Y(1,J),

IERR)
ELSE

MUK1 = MU(K-1)
MUK1NP = MUK1 + NP
DO 10 M= 1, NUK

SK(M) = S(MUK-1+M) - MUK1NP + 1
10 CONTINUE

CALL COMPYI(NUK, MUK-MUK1, A(MUK,MUK1NP), LDA, SK,
* RWORK, Y(MUK1NP,J), IERR)

END IF
IF (IERR .NE. 0) THEN

IERR = K
RETURN

END IF
20 CONTINUE
30 CONTINUE

END IF
RETURN

C *** Last line of COMPTY ***
END

COMPYI

SUBROUTINE COMPYI(M, N, A, LDA, S, V, Y, IERR)
C

C PURPOSE
C

C To compute a null vector yi of the right invertible diagonal submatrix
e A(i,i), by solving an appropriate Mby N system of linear equations
CAy = v, where A is in staircase form.
e REMARK: This auxiliary routine is intended to be called only from the
e routine COLRED.
e

[)'1



C ARGUMENTS IN
C
C M - INTEGER.
C The number of rows of matrix A.
C M >= 1.
C N - INTEGER.
C The number of columns of matrix A.
C N >= M.
C A - DOUBLE PRECISION array of DIMENSION (LDA.N).
C The leading M by N part of this array must contain the matrix A.
C LOA - INTEGER.
C The leading dimension of array A as declared by the calling
C program.
C LOA >= M.
C S - INTEGER array of DIMENSION at least (M).
C S(i), i = 1, ... ,M, must contain the column index of the corner
C in the i-th row of A.
C V - DOUBLE PRECISION array of DIMENSION at least (M).
C The righthand-side of the system of linear equations.
C
C ARGUMENTS OUT
C
C Y - DOUBLE PRECISION array of DIMENSION at least (N).
C The computed solution of the system of linear equation.
C
C ERROR INDICATOR
C
C IERR - INTEGER.
C Unless the routine detects an error (see next section),
C IERR contains 0 on exit.
C
C WARNINGS AMD ERRORS DETECTED BY THE ROUTINE
C
C IERR = 3 : The matrix A is not right invertible.
C
C METHOD
C
C Let A * P = ( BiZ ) where P is a permutation matrix such that B is
C nonsingular upper triangular. Z contains the remaining columns of A.
C Then the system B x = v is solved and y = P ( x I 0 )'.
C
C CONTRIBUTOR
C
C A.J. Geurts.
C
C REVISIONS
C

C 1992, October 27.



C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO
PARAMETER (ZERO = O.ODO)

C .. Scalar Arguments ..
INTEGER M, N, LDA, IERR

C .. Array Arguments .,
INTEGER SCM)
DOUBLE PRECISION A(LDA,N), V(M), yeN)

C .. Local Scalars ..
INTEGER J, K, SI
DOUBLE PRECISION SUM
LOGICAL FAIL

C .. External Subroutines
EXTERNAL F06BLF, F06FBF
DOUBLE PRECISION F06BLF

C

C .. Executable Statements
C

C Check input parameters.
C

IF (N .LT. M) THEN
IERR = 3
RETURN

END IF
C

IERR = 0
CALL F06FBF(N, ZERO, Y, 1)
SI = SCM)
Y(SI) = F06BLF(V(M), A(M,SI), FAIL)
IF (FAIL) THEN

IERR = 3

RETURN
END IF
DO 20 K = M- 1, 1, -1

SUM = V(K)
DO 10 J = K + 1, M

SI = S(J)
SUM = SUM - A(K,SI) * Y(SI)

10 CONTINUE
SI = S(K)
Y(SI) = F06BLF(SUM, A(K,SI), FAIL)
IF (FAIL) THEN

IERR = 3
RETURN

END IF
20 CONTINUE



RETURN
C *** Last line of COMPYI ***

END

HHTRAN

SUBROUTINE HHTRAN(MA, NA, L, K, A, LDA, Q, RWORK, TOL)
C
e PURPOSE
e
C To compute the Householder reflection Q which transforms a
e of A into the first unit vector and to apply Q left and right to
e REMARK: This auxiliary routine is intended to be called only from the
e routine eOLRED.
e
e ARGUMENTS IN
e
C MA - INTEGER.
e The number of rows of matrix A.
C MA >= 1.
e NA - INTEGER.
C The number of columns of matrix A.
e NA >= MA.
e L - INTEGER.
e The index of the column of A to be transformed.
e L >= 1.
e K - INTEGER.
C The row index from which the column is to be transformed.
C K >= 1.
e A - DOUBLE PRECISION array of DIMENSION (LDA,NA).
C The leading MA by NA part of this array must contain the matrix A.
e The left lower MA - K + 1 by L - 1 block of the matrix A is
e understood to be zero made by former transformations.
e Note: this array is overwritten.
e LDA - INTEGER.
C The leading dimension of array A as declared in the calling
e program.
e LDA >= MA.
C
e ARGUMENTS OUT
C

C A - DOUBLE PRECISION array of DIMENSION (LDA,NA).
C The leading MA by NA part of this array contains the transformed
C matrix Q A Q , where Q is the Householder transformation
e 1 2 i

C appropriately augmented with an identity matrix.



Q = ( I 0 ) Q :: ( I o )
1 ( 0 P ) 2 ( 0 P )

be such that Q is MA by MA and Q is NA by NA.
1 2

Then Q A Q is computed and stored in A.
1 2

CONTRIBUTOR

C Q - DOUBLE PRECISION array of DIMENSION at least (MA-K+l).
C The leading MA - K + 1 elements of this array contain the vector
C u Yhich defines the Householder reflection (see F06FSF. i.e .•
C Q(l) contains the value zeta and Q(i). i=2 •... MA-K+l contain the
C vector z).
C
C WORKSPACE
C

C RWORK - DOUBLE PRECISION array of DIMENSION at least (MA-K+l).
C

C TOLERANCES
C

C TOL - DOUBLE PRECISION.
C A tolerance beloy which matrix elements are considered to be
C zero.
C
C METHOD
C

C Let Y be the subcolumn A(i.L). i=K •...• MA. Then the Householder
C reflection P = I - mu * u * u·. where mu = l/u(l). such that Pw = el
C (the first unit vector) is computed.
C Let
C
C

C

C

C

C
C

C

C

C A.J. Geurts.
C

C REVISIONS
C

C 1992. October 27.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO. ONE
PARAMETER (ZERO = 0.000. ONE = 1.000)

C .. Scalar Arguments ..
INTEGER MA. NA. K. L. LDA
DOUBLE PRECISION TOL

C ., Array Arguments ..
DOUBLE PRECISION A(LDA.NA). Q(MA-K+l). RWORK(MA-K+l)

C .. Local Scalars "
INTEGER LEN. NMK. NLl

!)8



DOUBLE PRECISION ZETA, MU
C .. External Subroutines/Functions

EXTERNAL DCOPY, DGER, DGEMV, F06FBF, F06FSF
C

C ., Executable Statements
C

LEN = MA - K + 1
IF (LEN .GT. 1) THEN

C

C Generate the Householder transformation.
C

CALL DCoPY(LEN, A(K,L), 1, Q, 1)
CALL F06FSF(LEN-l, Q(l), Q(2), 1, TaL, ZETA)

C

IF (ZETA .NE. ZERO) THEN
C

C
C

*

Compute the matrix Q A by w =A'u and next A =A - mu * uv'.
1

Q(1) = ZETA
NLl = NA - L + 1
CALL F06FBF(MA, ZERO, RWORK, 1)
MU = ONE/ZETA
CALL DGEMV('T', LEN, NL1, ONE, A(K,L), LDA, Q, 1, ZERO,

RWORK, 1)
CALL DGER(LEN, NL1, -MU, Q, 1, RWORK, 1, A(K,L), LOA)

C

C

C
Compute the matrix Q A Q by w = Au and next A = A - mu * vu'.

1 2
NMK = NA - MA + K
CALL DGEMV('N', MA, LEN, ONE, A(l,NMK), LOA, Q, 1, ZERO,

* RWORK, 1)
CALL DGER(MA, LEN, -MU, RWORK, 1, Q, 1, A(l,NMK), LOA)

END IF
ELSE

Q(1) = ZERO
ENO IF
RETURN

C *** Last line of HHTRAN ***
ENO

MKPENC

SUBROUTINE MKPENC(MP, NP, OP, P, LOP1, LOP2, A, LOA, MA, NA)
C

C PURPOSE
C



ARGUMENTS OUT

ARGUMENTS IN

REMARK: This auxiliary routine is intended to be called only from the
routine COLRED.

the subroutine MKPENC constructs the first degree part A of the
linearization of the polynomial matrix pes), where

(2)

(1)

degree dp
dp

+ P(dp) * s

a
o
o

I 0 0

I 0o

a
I 0
o I

P(O)

P(dp)
P(dp-1)

A - DOUBLE PRECISION array of DIMENSION (LDA.(DP+1)*MP+NP).
The leading (DP+1)*MP by (DP+1)*MP+NP part of this array
contains the matrix A as described in (2).

A =

MP - INTEGER.
The number of rows of the polynomial matrix pes).
MP >= 1.

NP - INTEGER.
The number of columns of the polynomial matrix pes).
NP >= 1.

DP - INTEGER.
The degree of the polynomial matrix pes).
DP >= 1.

P - DOUBLE PRECISION array of DIMENSION (LDP1.LP2,DP+1).
The leading MP by NP by (DP+l) part of this array must contain
the coefficients of the polynomial matrix pes). Specifically.
P(i.j.k) must contain the coefficient of s**(k-l) of the
polynomial which is the (i.j)-th element of pes). where
i = 1.2 •...• MP, j = 1.2 •...• NP and k = 1.2 •...• DP+ 1 .

LDP1 - INTEGER.
The leading dimension of array P as declared in the calling
program.
LDP1 >= MP.

LDP2 - INTEGER.
The second dimension of array P as declared in the calling
program.
LDP2 >= NP.

Given an MP x NP polynomial matrix of
dp-1

pes) = pea) + ... + P(dp-l) * s
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C LOA - INTEGER.
C The leading dimension of array A as declared in the calling
C program.
C LOA >= (OP+l)*MP.
C MA - INTEGER.
C The number of rows of matrix A.
C NA - INTEGER.
C The number of columns of matrix A.
C
C CONTRIBUTOR
C
C A.J.Geurts.
C
C REVISIONS
C

C 1992, October 27.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO, ONE
PARAMETER (ZERO = 0.000, ONE = 1.000)

C .. Scalar Arguments ..
INTEGER MP, NP, OP, LOP1, LOP2, LOA, MA, NA

C .. Array Arguments ..
DOUBLE PRECISION P(LOP1,LDP2,*), A(LOA,*)

C .. Local Scalars ..
INTEGER J, Ml, NJ

C .. External Subroutines/Functions
EXTERNAL F06QFF, F06QHF

C

C .. Executable Statements
C

C Initialization of the matrix A.
C

Ml =OP * MP
MA = Ml + MP
NA = MA + NP
CALL F06QHF('G', MP, MA, ZERO, ZERO, A(l,NP+l), LOA)
CALL F06QHF('G', Ml, MA, ZERO, ONE, A(MP+l,NP+l), LOA)

C

C Insert the matrices P(O), P(l), ... , P(pd) at the right places in A.
C

NJ = Ml + 1
DO 20 J = 1, DP + 1

CALL F06QFF('G', MP, NP, P(l,l,J), LOP1, A(NJ,l), LDA)
NJ = NJ - MP 20 CONTINUE

C

RETURN

<il



C *** Last line of MKPENC ***
END

MU~PM

SUBROUTINE MULTPM(ALPHA, RP1, CP1, CP2, DP1, DP2, DP3, P1, LDP11,
* LDP12, P2, LDP21 , LDP22 , P3, LDP31, LDP32 ,
* RWORK, IERR)

C
C PURPOSE
C
C To compute the coefficients of the real polynomial matrix
C
C pes) = P1(s) * P2(s) + alpha * P3(s), (1)
C
C where P1(s), P2(s) and P3(s) are real polynomial matrices and alpha is
C a real scalar.
C Each of the polynomial matrices may by the zero matrix.
C
C ARGUMENTS IN
C
C ALPHA - DOUBLE PRECISION.
C The value of the scalar factor alpha of the problem.
C RP1 - INTEGER.
C The number of rows of the matrices P1(s) and P3(s).
C RP1 >= 1.
C CP1 - INTEGER.
C The number of columns of matrix P1(s) and the number of rows
C of matrix P2(s).
C CP1 >= 1.
C CP2 - INTEGER.
C The number of columns of the matrices P2(s) and P3(s).
C CP2 >= 1.
C DP1 - INTEGER.
C The degree of the polynomial matrix P1(s).
C DP1 >= -1.
C DP2 - INTEGER.
C The degree of the polynomial matrix P2(s).
C DP2 >= -1.
C DP3 - INTEGER.
C The degree of the polynomial matrix P3(s).
C DP3 >= -1.
C Note: DP3 is overwritten.
C P1 - DOUBLE PRECISION array of (LDP11,LDP12,*).
C If DP1 >= 0, then the leading RP1 by CP1 by (DP1+1) part of this
C array must contain the coefficients of the polynomial matrix



C Pl(s). Specifically. Pl(i.j.k) must contain the coefficient of
C s**(k-l) of the polynomial which is the (i,j)-th element of Pl(s),
C where i = 1.2 •... ,RP1. j = 1.2, ... ,CPl and k =1,2, ...•OP1+l.
C If OPl = -1. then Pl(s) is taken to be the zero polynomial matrix
C and the array Pl is not referenced.
C LOP11 - INTEGER.
C The leading dimension of array Pl as declared in the calling
C program.
C LDPll >= RPl if DPl >= O.
C LDPll >= 1 if DPl = -1.
C LDP12 - INTEGER.
C The second dimension of array Pi as declared in the calling
C program.
C LDP12 >= CPl if DPi >= 0,
C LDP12 >= 1 if DPl = -1.
C P2 - DOUBLE PRECISION array of (LDP21,LDP22,*).
C If DP2 >= O. then the leading CP1 by CP2 by (OP2+1) part of this
C array must contain the coefficients of the polynomial matrix
C P2(s). Specifically, P2(i.j,k) must contain the coefficient of
C s**(k-1) of the polynomial which is the (i,j)-th element of P2(s),
C where i = 1.2•... ,CP1, j = 1,2, ... ,CP2 and k = 1,2 •... ,OP2+1.
C If OP2 = -1, then P2(s) is taken to be the zero polynomial matrix
C and the array P2 is not referenced.
C LDP21 - INTEGER.
C The leading dimension of array P2 as declared in the calling
C program.
C LDP21 >= CPl if DP2 >= O.
C LDP21 >= 1 if DP2 = -1.
C LDP22 - INTEGER.
C The second dimension of array P2 as declared in the calling
C program.
C LDP22 >= CP2 if DP2 >= O.
C LDP22 >= 1 if DP2 = -1.
C P3 - DOUBLE PRECISION array of (LDP31,LDP32,lenp3),
C where lenp3 = MAX(OP1+0P2,DP3,0) + 1.
C If DP3 >= O. then the leading RP1 by CP2 by (DP3+1) part of this
C array must contain the coefficients of the polynomial matrix
C P3(s). Specifically, P3(i.j,k) must contain the coefficient of
C s**(k-l) of the polynomial which is the (i,j)-th element of P3(s),
C where i = 1,2, ...• RP1, j = 1,2, ... ,CP2 and k = 1,2, ... ,DP3+1.
C If DP3 = -1. then P3(s) is taken to be the zero polynomial matrix.
C Note: this array is overwritten.
C LOP31 - INTEGER.
C The leading dimension of array P3 as declared in the calling
C program.
C LDP31 >= RP1.
C LDP32 - INTEGER.
C The second dimension of array P3 as declared in the calling



C program.
C LDP32 >= CP2.
C
C ARGUMENTS OUT
C
C DP3 - INTEGER.
C The degree of the resulting polynomial matrix pes).
C P3 - DOUBLE PRECISION array of DIMENSION (LDP31.LDP32.lenp3).
C If DP3 >= 0 on exit. then the leading RPl by CP2 by (DP3+1) part
C of this array contains the coefficients of pes). Specifically.
C P3(i.j.k) contains the coefficient of s**(k-l) of the polynomial
C which is the (i.j)-th element of pes). where i = 1.2•...•RP1.
C j = 1.2 •...• CP2 and k =1.2•...•DP3+1.
C If DP3 = -1 on exit. then pes) is the zero polynomial matrix and
C the contents of the array P3 are undefined.
C
C WORK SPACE
C

C RWORK - DOUBLE PRECISION array of DIMENSION at least (CP1).
C
C ERROR INDICATOR
C
C IERR - INTEGER.
C Unless the routine detects an error (see next section).
C IERR contains 0 on exit.
C
C WARNINGS AND ERRORS DETECTED BY THE ROUTINE
C
C IERR = 1 : Invalid input parameter(s).
C
C METHOD
C
C Given the real polynomial matrices
C DPl i DP2 i
C Pl(s) = SUM (a(i+l) * s ). P2(s) = SUM (b(i+l) * s ).
C i=O i=O
C DP3 i
C P3(s) = SUM (c(i+l) * s ).
C i=O
C and a real scalar alpha. the routine computes the coefficients
C d(l). d(2) •. ,. of the polynomial matrix (1) from the formula
C s
C d(i+l) := SUM (a(k+l) * b(i-k+l)) + alpha * c(i+l).
C k=r
C where i = O,1 •... ,DP1+DP2 and rand s depend on the value of i,
C i.e. for r <= k <= s both a(k+l) and b(i-k+l) must exist.
C
C CONTRIBUTOR



C
C A.J. Geurts (Eindhoven University of Technology).
C
C REVISIONS
C
C 1992, October 28.
C

IMPLICIT NONE
C .. Parameters

DOUBLE PRECISION ZERO
PARAMETER (ZERO = O.ODO)

C .. Scalar Arguments ..
INTEGER RP1, CP1, CP2, DP1, DP2, DP3, LDPll, LDP12,

* LDP21 , LDP22, LDP31 , LDP32 , IERR
DOUBLE PRECISION ALPHA

C .. Array Arguments ..
DOUBLE PRECISION Pl(LDP11, LDP12, *), P2(LDP21, LDP22 , *),

* P3(LDP31, LDP32 , *), RWORK(*)
C .. Local Scalars ..

INTEGER H, I, J, K, DPOL3, E
DOUBLE PRECISION W
LOGICAL CFZERO

C .. External Subroutines/Functions
EXTERNAL DCOPY, DDOT, DSCAL, F06FBF
DOUBLE PRECISION DDOT

C
C " Executable Statements
C
C Check input parameters.
C

IF «RP1.LT.1) .OR. (CP1.LT.1) .OR. (CP2.LT.l)
* .OR. (DP1.LT.-l) .OR. (DP2.LT.-1) .OR. (DP3.LT.-l)
* .OR. «LDP11.LT.RP1) .AND. (DP1.GE.0»
* .OR. «LDP11.LT.1) .AND. (DP1.EQ.-l»
* .OR. «LDP12.LT.CP1) .AND. (DP1.GE.0»
* .OR. «LDP12.LT.l) .AND. (DP1.EQ.-1»
* .OR. «LDP21.LT.CP1) .AND. (DP2.GE.0»
* .OR. «LDP21.LT.l) .AND. (DP2.EQ.-l»
* .OR. «LDP22.LT.CP2) .AND. (DP2.GE.0»
* .OR. «LDP22.LT.l) .AND. (DP2.EQ.-l»
* .OR. (LDP31.LT.RP1) .OR. (LDP32.LT.CP2» THEN

IERR = 1
RETURN

END IF
c

IERR = 0
IF (ALPHA .EQ. ZERO) THEN

DP3 = -1
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ENO IF
C

IF (OP3 .GE. 0) THEN
C

C P3(s) := ALPHA * P3(s).
C

00 20 K = 1. OP3 + 1
00 10 J = 1. CP2

CALL OSCAL(RP1. ALPHA. P3(1.J,K), 1)
10 CONTINUE
20 CONTINUE

ENO IF
C

IF «OPl .EQ. -1) .OR. (OP2 .EQ. -1» RETURN
C
C Neither of Pl(s) and P2(s) is the zero polynomial.
C

OPOL3 = OPl + OP2
IF (OPOL3 .GT. OP3) THEN

C

C Initialize the additional part of P3(s) to zero.
C

00 40 K = DP3 + 2, OPOL3 + 1
00 30 J = 1, CP2

CALL F06FBF(RP1, ZERO. P3(l,J,K). 1)
30 CONTINUE
40 CONTINUE

OP3 = OPOL3
ENO IF

C k-l
C The inner product of the j-th row of the coefficient of s of Pl(s)
C i-l
C and the h-th column of the coefficient of s of P2(s) contributes to
C k+i-2
C the (j,h)-th element of the coefficient of s of P3(s).
C

00 80 K = 1. OPl + 1
00 70 J = 1. RPl

CALL OCOPY(CP1, Pl(J,l,K), LOP11. RWORK, 1)
DO 60 I = 1, DP2 + 1

E = K + I - 1
DO 50 H = 1. CP2

W= 000T(CP1, RWORK, 1, P2(l,H,I), 1)
P3(J,H,E) = W+ P3(J,H,E)

50 CONTINUE
60 CONTINUE
70 CONTINUE
80 CONTINUE

(j(i



C
C Computation of the exact degree of P3(s).
C

CFZERO = .TRUE.
C WHILE (OP3 >= 0 and CFZERO) DO

90 IF «OP3 .GE. 0) .AND. CFZERO) THEN
DPOL3 = OP3 + 1
DO 110 I = 1, RPl

DO 100 J = 1, CP2
IF (P3(I,J,OPOL3) .NE. ZERO) CFZERO = .FALSE.

100 CONTINUE
110 CONTINUE

IF (CFZERO) DP3 = DP3 - 1
GO TO 90

END IF
C END WHILE 90
C

RETURN
C *** Last line of MULTPM ***

END

PRMAPO

SUBROUTINE PRMAPO(MP, NP, DP, L, NOUT, P, LOP1, LDP2, TEXT, IERR)
C
C PURPOSE
C
C To print the MP by NP coefficient matrices of a matrix polynomial
C dp-l dp
C pes) = P(O) + P(l) * s + ... P(dp-l) * s + P(dp) * s
C
C The elements of the matrices are output to 7 significant figures.
C
C ARGUMENTS IN
C
C MP - INTEGER.
C The number of roys of the matrix polynomial pes).
C MP >= 1.
C NP - INTEGER.
C The number of columns of the matrix polynomial pes).
C NP >= 1.
C OP - INTEGER.
C The degree of the matrix polynomial pes).
C DP >= O.
C L - INTEGER.
C The number of elements of the coefficient matrices to be
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C printed per line.
C 1 <= L <= 5.
C NOUT - INTEGER.
C The output channel to which the results are sent.
C NOUT >= O.
C P - DOUBLE PRECISION array of DIMENSION (LDP1,LDP2,DP+l).
C The leading MP by NP by (DP+l) part of this array must contain
C the coefficients of the matrix polynomial pes). Specifically,
C P(i,j,k) must contain the coefficient of s**(k-l) of the
C polynomial which is the (i,j)-th element of pes), where
C i = 1,2, ... ,MP, j = 1,2, ... , NP and k = 1,2, ... , DP+1 .
C LDPl - INTEGER.
C The leading dimension of array P as declared in the calling
C program.
C LDPl >= MP.
C LDP2 - INTEGER.
C The second dimension of array P as declared in the calling
C program.
C LDP2 >= NP.
C TEXT - CHARACTER*72.
C Title caption of the coefficient matrices to be printed.
C TEXT is followed by the degree of the coefficient matrix,
C within brackets. If TEXT = I I, then the coefficient matrices
C are separated by an empty line.
C

C ERROR INDICATOR
C

C IERR - INTEGER.
C Unless the routine detects an error (see next section),
C IERR contains 0 on exit.
C

C WARNINGS AND ERRORS DETECTED BY THE ROUTINE
C

C IERR = 1 : Invalid input parameter(s).
C
C METHOD
C

C For i = 1,2, ... , DP + 1 the routine first prints the contents of
C TEXT followed by (i-i) as a title, followed by the elements of the
C MP by NP coefficient matrix P(i) such that
C (i) if NP < L, then the leading MP by NP part is printed;
C (ii) if NP = k*L + P (where k, p > 0), then k MP by L blocks of
C consecutive columns of P(i) are printed one after another
C followed by one MP by P block containing the last p columns of P(i).
C Row numbers are printed on the left of each row and a column number on
C top of each column.
C

C CONTRIBUTOR



C
C A.J. Geurts (Eindhoven University of Technology).
C

C REVISIONS
C

C, 1992, October 28.
C

IMPLICIT NONE
C .. Scalar Arguments

INTEGER MP, NP, DP, L, NOUT, LDP1, LDP2, IERR
CHARACTER*(*) TEXT

C .. Array Arguments ..
DOUBLE PRECISION P(LDP1,LDP2,*)

C .. Local Scalars ..
INTEGER I, J, Jl, J2, JJ, K, LENTXT, LTEXT, Nl

C .. Intrinsic Functions
INTRINSIC LEN, MIN

c

c
C

C

C .. Executable Statements
C
C Check input parameters.
C

LENTXT = LEN (TEXT)
LTEXT = MIN(72,LENTXT)
WHILE (TEXT(LTEXT:LTEXT) =

10 IF (TEXT(LTEXT:LTEXT) .EQ.
LTEXT = LTEXT - 1
GO TO 10

END IF
END WHILE 10

, ') DO
, ,) THEN

IF (MP.LT.1 .OR. NP.LT.1 .OR. DP.LT.O .OR. L.LT.l .OR. L.GT.5
* .OR. NOUT.LT.O .OR. LOP1.LT.MP .OR. LDP2.LT.NP) THEN

IERR = 1
RETURN

END IF
C

IERR =0
C

DO 50 K = 1, OP + 1
IF (LTEXT .EQ. 0) THEN

WRITE (NOUT, FMT = 99999)
ELSE

WRITE (NOUT, FMT = 99998) TEXT(l:LTEXT), K - 1, HP, NP
END IF
N1 = (NP - 1)/L

J1 = 1
J2 = L

(i!l



DO 30 J = 1, Nl
WRITE (NOUT, FMT = 99997) (JJ, JJ = J1, J2)
DO 20 I =1, MP

WRITE (NOUT, FMT = 99996) I, (P(I,JJ,K), JJ = J1, J2)
20 CONTINUE

Jl = J1 + L
J2 = J2 + L

30 CONTINUE
WRITE (NOUT, FMT = 99997) (J, J = J1, NP)
DO 40 I = 1, MP

WRITE (NOUT, FMT =99996) I, (P(I,JJ,K), JJ =Jl, NP)
40 CONTINUE
50 CONTINUE

WRITE (NOUT, FMT = 99999)
C

RETURN
[99999 FORMAT (, ')
[99998 FORMAT C/, lX, A, ' ( " 12, ')', ' (I, 12, ' X', 12, ')')
,99997 FORMAT (5X, 5(6X, 12, 7X»
199996 FORMAT (lX, 12, 2X, 5D15.1)
C *** Last line of PRMAPO ***

END
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