

Z and high level Petri nets

Citation for published version (APA):
Hee, van, K. M., Somers, L. J. A. M., & Voorhoeve, M. (1991). Z and high level Petri nets. (Computing science
notes; Vol. 9123). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/505db0e6-d8a8-4f07-bc32-882b9cf71955

Eindhoven University of Technology

Department of Mathematics and Computing Science

Z and high level Petri nets

by

K.M. van Hee L.J. Somers M. Voorhoeve

Computing Science Note 91/23
Eindhoven, September 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Depanrnent of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Depanment of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Z and high level Petri nets

K.M. van Hee L.J. Somers M. Voorhoeve

Department of Mathematics and Computing Science
Eindhoven University of Technology

Den Doledl 2, P.O. Box 513
5600 MB Eindhoven, the Netherlands

Email: wsinlou@win.tue.nl

Abstract

High level Petri nets have tokens with values, traditionally called colors, and
transitions that produce tokens in a functional way, using the consumed tokens as
a.rguments of the function application. Large nets should be designed in a top
down approach and t,herefore we introduce a hierarchical net model which combines
a. data flow diagram technique with a high level Petri net model. We use Z to
specify tllis net model, which is in fact the metamodel for specific systems. Specific
models we specify partly by diagrams and partly in Z. We give some advantages
and disadvantages of using Z in this way. Finally we show how to specify systems
by means of a.n exa.mple.

1

1 Introduction

The last years have shown a growing interest in the formal specification of distributed
systems. Such a formal description should take care of the distribution aspects, the
interaction between the distributed parts, the transitions between successive states of the
system amI the state space itself.

Petri nets, see e.g. [Jensen 91 J, have been used for quite a while to specify concurrent
distributed systems. These nets have been augmented recently by a hierarchy to allow
a systematic top-down design of a system specification. Such a design method is very
similar to the common (informal) use of data flow diagrams [Yourdon 89J.

Colored nets make it possible to attach values to tokens. For the specification of these
values and the functionality of the transitions one needs a specification language. Usually
a functional language is used for the specification of the transition functions. Recently, a
few tools have been developed tha,t offer hierarchical colored Petri nets as a specification
formalism, cf. [Albrecht S9J and [Hee 89J. Our tool, ExSpect, is based upon a hierarchical
timed net model and a functional language. This system has been in use for two years
and we have gained a lot of experience in pradical applications, e.g. [Aalst 90J.

On the other hand, formalisms like Z and VDM are used frequently to specify reactive
systems. They do not ha,ve mechanisms for treating concurrency and distribution in a
straightforward way. However, a formalism like Z seems to be very well suited to specify
the transitions in a colored Petri net, thereby replacing the functional language normally
used.

There have been more attempts to integrate Z with graphical languages for the descrip
tion of distributed systems. For instance, for HOOD such an integration is considered.
In [Giovanni 90J it is noted that an integration with Petri nets is a point of research.

In the next sections we will use Z in two ways. Firstly for defining what a hierarchical
Petri net is (section 2) and secondly for the specification of the state transitions of a Petri
net (section :3). We will follow the notation of [Spivey 89J; if not we make a remark.

2 Hierarchical net model

Here we introduce the hierarchical net model that is beiilg used in ExSpect [Hee S9J and
that is closely related to hierarchical CP-nets [.Jensen 91J. First, we define so called flat
nets, which are in fact ordinary colored Petri nets. Then we define hie1"Ul'chical nets and
show how such a net determines a, flat net.

vVe use the Z notation for the above definitions, thereby showing that Z is not only
useful for modeling specific systems, but also for defining metamodels or model types. As
observed in [Diepen 90], Z schemas can be interpreted as implicitly defined tables. So,
jf we give a schema for the net model, every flat net corresponds to one and only one
element or tuple of the table determined by the schema.

2.1 Flat nets

A flat net has four basic types

[Place, Transition, Connection, ValueJ.

The state of a flat net is determined by objects called tokens. Tokens reside at a place, an
element of the type Place, and have a value belonging to the type Value. State changes are
caused by transitions, elements of the type Tmnsition. A transition can fire, consuming
tokens from a. specific set of places and producing tokens for another (not necessarily
disjoint) set of places. A transition has a set of input and a set of output connections
(elements of the type Connection). Connections are used to connect transitions to places.

A .flat net structure is a directed labeled bipartite graph with places and transitions
as nodes and connections as arcs. Traditionally, places are represented by circles and
transitions by rectangles (d. figure 1).

x1

x2 Ix5 p3 x

x3 I x8 Ix6 12
p4

x9

Figure 1: An example of a Petri net.

A flat, net structure is defined by the following schema

FlatN etStructure
P : IPPlace
T : IP Transition
I : Transition ++ IP Connection
a : Tmnsition ++ IPConnecbon
111 : Connection ++ Place
dom(I) = dom(O) = T A

(Urng(J)) n (Urng(O)) = dom(M) A
rng(M) = P A
'it1,t 2 : Till # t2. l(t 1) n l(t2) = 0(t1) n 0(t 2) = l(tJ! n 0(t2) = l(t1) n 0(t1) = 0

A net is determined by a set of places P, a set of transitions T, two functions I and
a that assign to each transition t a set of connections through which it consum.es tokens
(l(t)) and a set. of connections through which it }Jmd1!ces tokens (O(t)). Each connection
is assigned to a. place [Hee 91]. So, when a transition t fires, it conSumes as many tokens
from a place as there are connections of l(t) assigned to it. Furthermore, it produces for
each connection in ott) one token or none, so if there are n connections in ott) assigned
to a. place, t may produce any number of tokens between 0 and n for this place. The last
condition in the schema. states that all connections are unique. In practice, we require
only that connections between the same place and transition with the same direction have
different labels. [n that case we augment the label with a pair (t, p) for output connections
and (1', t) for input connections (where t and p are the transition and the place involved)
to obt.ain a unique label.

It is easy to define an instance of the type FlatNetStructure that describes e.g. the
graph of fig. 1.

The flat net structure describes only the static aspects of a net model. The dynamics
of such a model are described by an (unlabeled) transition system. Such a transition
system has a state space S and a binary relation Tr over S. Each pair of Tr corresponds
to a possible state transition of the whole system. In fact the transition system of the net
model may be considered as an operational semantics of the flat net structure.

We define a derived type called State,

State == == Place +> (Value +> IN).

So a state is a mapping that assigns to places a function counting the number of tokens
per value. (Note that this function does not represent a bag since we allow numbers to
be zero; however it is equiva.lent to one.)

For each place in a net structure, we define a subset of Value that represents the set
of allowed token values for this place. We call this set the value domain of the place. In
the next schema we define the state space of a net structure

StateSpace
P ; IPPlace
S; IPState
D ; Place +> IP Value
domeD) == P /I

Vs;S.dom(s)==P/\
Vs: S. Vp: P. dom(s(p» c D(p)

So component 5 defines the state space and D the function that assigns domains to
places. The last predicate states that tokens at a certain place should have values in the
domain of that place.

The next schema combines the state space and flat net structure schemas, adding two
components. The first component is a function L that assigns to each transition a local
state transition function which forma.lizes the consumption and production of tokens. The
second component is the transition relation Tr over the state space.

Netl\Iodel
FlatN etStructure
StateSpace
L : Transition +> (State ++ State)
Tr : IP(State x State)
1 clom(L)==T
2 Vt: T. dom(L(t» c 5
:3 Vt: T. Vs : dom(L(t). Vp; dom(s) •

E(s(p» == #{e; l(t) I M(e) == p}
4 Vt: T. Vs: clom(L(t). Vp: dom(L(t)(s») •

E(L(t)(s)(p)):S #{e: Ott) I M(e) == p}
.s Vx: T,·. first(x) E S /I seconcl(x) E S
6 VS

"
S2: S I (S1,S2) E T". 3t: T. 38: S.

Vp: P. sip) :S slip) /I s E dom(L(t)) /I

Vp: P. 82(1') == Sl(P) - .s(p) + L(t)(s)(p)

The third rule states that for each input connection one token is consumed; the fourth
rule that for each output connection at most one token is produced. R.ule six tells us how
a (global) state transition is derived from a local state change caused by a transition in
the net structure. Note that we add, subtract and compare functions; the generic function
E summarizes the images of a function.

Given an initial state, the net model determines the set of paths of the net accord
ing to the transition law. If this law is deterministic, i.e. Tr is in reality of the type
State ++ State, there is only one path. Note that for each state transition precisely one
net transition should fire.

2.2 Hierarchical nets

Now we can introduce net hiemrchy. For large systems it is too complicated to define a
flat net structure in one step. One often uses a top-down design method simila,r to data
flow dia,gram techniques [Yourdon S9J or HOOD [Giovanni 90J.

Our hierarchical net structure allows us to decompose nets into places and sILbneis or
agents. (Also compare channel/agency nets [Reisig 87]). At each level of the decompo
sition process we have to decide which subnets are elementa'ry (i.e. are transitions) and
which ones need further decomposition. vVhen all subnets have been decomposed into
elementary ones, we can proceed by defining a local state transition function for each
elementary subnet.

The above hierarchical net structure is useful not only for the design process but also
for documenting the Het model, since it provides an overview of the flat net structure.

A slIbnet usually has connections like a transition. We a.lways assume that the (one)
subaet at the top of the hierarchy has no connections anymore. This means that if we want
to describe a system that communicates with an environment (by exchanging tokens), we
have to model that environment as a subnet and incorporate it at the top level. (Note
that this was a.lready the case in the flat net structure.) Figure 2 shows three levels of an
example hierarchy.

\hIe see that. every connection of a subnet is assigned to a place or connection in its
supernet. In figure 2, y is assigned to a' and x to z. In the next schema we define the
hierarchical net structure, generalizing the flat net structure. Each subnet (except the
top level one) and each place are mapped to precisely one supernet. These mappings
const,itute the components fIN amI fIP in the schema. Component Top denotes the top
level net. For subnets as well as transitions we use the same type

[NetJ

replacing the earlier type Transition. Component N denotes all subnets, including tran
sitions. Components kIP and Me denote the assignment of connections. They replace
component !l1 of the flat; net structure.

I r g "

I A B

Top

p

Q

~ ~
U V

i

Figure 2: Hierarchical decomposition,

Hi el'a TCi> icalN etSt-l'll ctll'l'e
P : !PPluce
T: IPNe!
N: IPNet
I: Net ++ IPConnection
a : Net ++ IPConnection
HN : Net ++ Net
HP: Place ++ Net
AiP : Connection ++ Pla.ce
.~iC : Connection ++ Connection
Top: Net
1 TeN 1\ Top E N\T 1\ clom(J) == dom(0) == N\ {Top}
2 dom(MP) n dom(MC) = 0
:3 dom(MP) Udom(MC) == (Urng(J)) U (Urng(O))

A

R

4 lin I , 112: 1V I n, '" 112. l(n,) n l(n2) == O(n,) n 0(n2) == l(n,) n 0(n2) = 0
,5 dom(HN) = N\ {Top} 1\ rng(HN) == N\T
6 dom(lIP) = P 1\ rng(lIP) == rng(lIN)
7 lin: clom(lIN) • 31e : IN • lINk(n) = Top
8 lin: dom(HN). Iic: l(n) U O(n) •

c E dom(MP) =? HP(MP(c)) == lINin) 1\

c E dom(MC) 1\ c E l(n) =? MC(c) E I(HN(n)) 1\
c E dom(MC) 1\ c E O(n) =? MC(c) E O(HN(n))

x

The first four rules of the above schema are straightforward modifications of rules of the

flat net structure. Rules 5, 6 and 7 determine the mappings to the supernetsj rule 7
guarantees that in the end everything is mapped to Top, so no cycles are possible. The
last rule states that if a connection of a subnet is assigned to a place, then both the subnet
and the place should be mapped to a common supernet. If it is assigned to a connection,
this should be a connection of the supernet.

It is easy to derive a flat net structure from a hierarchical one, by assigning to each
connection of a tra,nsition the place it is assigned to by the higher level subnets. The next
axiomatic description defines a function nettrans that maps a hierarchical net structure
onto a flat one.

nettl'ans : Hiel'Q,l'chicalNet.St.rnchp·e -; Flrd.i',ret.Stnlcture

Vh : Hierm'chicalNetStnlcture •
3MN : Connection ++ Place.

'It: h.T. Vc : (h.1)t U (h.O)t •
c E dom(h.MP) =} MN(c) = (h.MP)c /\
c E dom(h.MC) =} MN(c) = MN((h.MC)c)

/\

(nettrans(h)).P = h.P /\
(nettran8(h)).T = h.T /\
(nettrans(h)).J = h.T <J h.1 /\
(nettran.s(h)).O = h.T <J h.O /\
(nettrans(h)).M = h.MN

Note that the function !lnv is defined recursively: it is however easy to see that this
definition is sound.

In the development process, we start with the definition of a hierarchical net structure.
This we transform into a flat net structure. Next we define a, state space and finally a
net model. In this section we have defined all these concepts, but we did not give a
language to speczfy a net model. For the hierarchical net structure we advise a graphical
representation such as the one we described and used in the example figures. For the
specification of the state space and local state transition functions we advocate Z. This is
the topic of the next section.

3 Specification of nets in Z

3.1 Places and transitions

In section 2 we have defined what a net model is. It is constructed from a hierarchical
net structure which determines a, flat net structure, a state space and local transition
functions per net transition. In this section we show how the state space and the local
transition function ca,n be specified using Z. In fact we do more: we also specify the net
model in Z. Using some examples, we present a method for specification of net models.

Consider the example of a flat net structure given in figure 3. To specify the value
domains of the places we use type definitions. Let the types of the four places be TA , TB ,

Tc and TD. vVe assume that all types have one common value, denoted by 1.. and called

p

V? W?

Figure 3: A flat net.

bottom or nil. The places of a net model are specified in one schema called Places. In our
example we have the following schema. for the places

Places
A: TA ++ IN,
B: T8 ++ IN,
C: To ++ IN,
D: Tn ++ IN,
true

Note that all places are real bags now and not bags which allow frequency zero as in
section 2.

Transitions are specified by three schemas called front-end, body and back-end that
have to be combined by the pipe operator~. This operator has been introduced by
[Hayes 87J. Later we will see that we only have to specify the body schema, the other
schemas can be derived automatically from the body schema. For transition P in our
eXilmple we define three schemas P" P2 and P3 and then P ~ P, ~ P2 ~ P3 •

Schema P, describes the selection of tokens: one from place A and one from place B,

P,
6. Places
=:(Places\(A, B))
Xl :TA

Yl: T8
Af.0I1Bf.011
Xl E dom(A) II Yl E dom(B) II
A' = delele(XI, A) II B' = delele(YI, B)

Note that both places should contain at least one token. The function delete is a generic
function with type variable T. It updates a bag of type T ++ IN by deleting an arbitrary
element from it.

[TJ
delete: (T x (T +> IN)) +> (T +> IN)
'It : T • 'If : T +> IN • t E dom(.f) =}

(t,f) E dom(delete) /\
fit) > 1 =} delete(t,.f) = f ffi {t >---+ fit) - l} /\
fit) = 1 =} delete(t,f) = {t} 4 f

The following schema of the specification of P is P3 .

b..Places
~(Places\(C, D))
j/? : Tc
W? :TD

Ii? i .1 =} C' = add(V?, C) /\
j/? = .1 =} C' = C /\
W? i .1 =} D' = add(W?, D) /\
HI? = .1 =} D' = D

This schema uses another generic function, called add, that adds one element to a bag.

[TJ
add: (T X (T +> IN)) +> (T +> IN)
Vi : T • 'If: T +> IN •

t E dom(.f) =} add(t,f) = fEB {t fit) + I} /\
t (j dom(.f) =} add(t, f) = f EB {t >---+ l}

We take specia.l care of the situation that the input has value.l. This case occurs when
a transition does not produce a token for a. connection.

The schema P2 specifies the functionality of the transi tion P. Since we are at this
moment not interested in any particular functionality we lea.ve it open by a.ssuming a
predicate E. Note that V! or W! may get the value .1, which means tha.t no token is
produced.

X?: TA
Y?: TB
V! : Tc
W!:TD

E

The final schema P, defined by P ~ PI :::p. P2 :::p. P3 joins the three schemas a.nd
identifies components with! and? and leaves them out of the signature by introducing
existential qua.ntors for each of them, a.s illustrated in the example given in section 3.2.
Of course we could ha,'e given a direct way to specify P. However, the schemas PI and P3

can be derived from P2 : they do not require any decision from the designer; the designer
only has to specify the schema P2 • If we consider X? and Y? as input connections of P
and]/! and TY! as output connections, then we only need to know which places they are

assigned to. This information can be derived from the graphical representation of the net
structure. Simila.rly we derive the types of the places by giving the type of the tokens.

So, a full specification of a net model consists of a graphically represented hierarchical
net structure, a schema with places and for each transition one schema (the body schema)
with input and output connections as components, decorated with? and! respectively.

If we generate the front-end and back-end schemas for each transition then we have
a complete Z specification with the following operational semantics: if an initial state is
given then one of the transitions that is able to fire will do so. Then in the next state
again one of the enabled transitions will fire. Note that a transition is enabled if the input
places contain enough tokens. In the example this was checked by the first rule of schema
PI. It is possible that like in colored Petri nets there is a precondition based on input
values. This ca,n be expressed in the body schema of a transition. In our example the
predicate E can have an expression, for instance X? # Y?

Note that a specification in this way fits into the metamodel we presented in section
2. The diagram of figure :3 is a,n instance of the flat net structure schema. The state space
is defined by the schema Places. To see this recall that in the metamodel a state is of the
form Place -H (Value --+ IN). In the schema Places an instance is a tuple or a mapping
that assigns to the places A, B, C and D a mapping from respectively T A , T B , Tc and TD
to IN. Hence TA , T B , Tc and TD are subsets of Value and they determine the domains of
the places. So we have defined in this way component D of schema StateSpace. The local
transition function L of schema NetModel assigns to each tra,nsition a mapping from state
to state. The tra,nsition schema P for transition P is in fact L(P) since it defines a state
transition that obeys the laws of the schema Net.Model. Hence L is specified by a schema
per transition. Finally the operational semantics discussed above and below satisfy the
requirements for T,. in the schema Neti11odel.

All (serialized) execution paths of a net model can be obtained by constructing all
possible lists containing firable transition schemas connected by the; schema operator.
For example for a net consisting of two transitions P and Q, we may get an execution
path like

3.2 A small example

P

PiQ
PiQ;P
P;Q;P;P
P;Q;P;P;Q

As a simple example we consider the net structure of figure 4. It consists of one transition
P that copies its input token to both output places. The schema representing the places
IS

Places[TJ

iA:T+>IN]
B: T +> IN]
true

Figure 4: An example.

vVe have used an arbitrary type T for these places. The front-end, body an back-end
schemas for the transition P are, according to the construction in the previous section

Pl[T]
6 Places
2(Places\(A))
X!:T

A # 0 1\
X! E dom(A) 1\

A' = delete(X!, A)

I XlT Y!:T
Z"T
y! ~ X? 1\ Z! = X?

6Places
Y?:T
Z?:T
A' = add(Y?,A) 1\
B' = add(Z?, B)

Then P becomes, after removing most of the existential quantors

P

I 6Places

3.3 Stores

In many applications it is useful to have a local state for a net transition. This can be
modeled by a special place that always contains one token and that is both an inpnt and
an output place for the transition. \Ve call such a place a store. (For stores we use a
graphical representation differing from normal places.) Two transitions may have access
to the same store; however only one at a time since there is only one token in the place
representing the store. This avoids concurrent update problems. Usua.lly a store has a
rather complex type. It is not necessary to define the store as a bag since there is always
one token; this will simplify the specifications considerably. So we may specify the type
of a store just by the type of the token. In data. base applications this token usually has

a rather complex type that may be defined by several auxiliary schemas. As an example
we construct for a store A a database type.

Person
name: NAME
address: NODE ADDRESS
age: IN
age 2: 0

Ca'r
license: IN
kind: KIND
horsepower: IN
weigth : IN
horsepower * 10 2: weight

Trip
driver: NAME
license : IN
starttime : IN
destination: PLACE
true

A
peTS on : IP(Person)
ca'r : IP(Car)
trip: IP(T,.ip)
'It: trip. t.driver E {x: person. x.name} /\

t .licen.,e E {x : cm' • x .license}

Note that the condition in schema A is a referential integrity constra.int for the database.

3.4 An alternative place construction

We could have considered an alternative for the place construction. Up to here we followed
the line of section 2. However, this leaves open how to choose tokens from the pla.ces.
An alternative could be t.o replace t.he bags by queues. In [act this is the way we have
implemented it in ExSpect. We have to replace the schema for the places by

Places

A: seqTA
B: seqTB
C: seqTc
D: seqTD
true

to account for the change of bag into queue. The front-end and back-end schemas for
figure 3 now become equal to

t>Places
2:(Places\(A, B))
X! :TA

Y!: TB
At" []I\Bt" [] 1\
X! = hea.d(A) 1\ Y! = head(B) 1\

A' = tail(A) 1\ B' = tail(B)

t>Places
2:(Place.s\(C, D))
V?: To
W? :TD

V? t" .l =} C' = C .~ [V?] 1\

V? = .l =} C' = C 1\

W? t" .l =} D' = D ~. [IV?] 1\

W? = .l =} D' = D

Note that P2 does not have to be changed.

4 A distributed telephone index

To illustrate the concepts of the previous sections we present a simple distributed speci
fication of a reactive system. It is a distributed telephone index: it receives questions for
phone nunlbers and gives answers.

Let NAME be the set of all names and let NUMBER be the set of all valid telephone
numbers. At the top level we may specify the index system (as seen from the environment
of one node) as a schema TI. This is possible since we are dealing with a reactive system:
it only produces tokens as a. reaction upon an incoming token of the environment.

X?: NAME
Y!: NUMBER
inde~: : NAME -; NUMBER

The corresponding net is given in figure 5. In this net we have modeled the environment

TI

1---;- - --,
1

elnvirOIl/l1!ent
r-........

I
___ .2

Figure .5: The toplevel of the index system.

as a slIbnet which we do not specify any further.

The next step is to decompose the net Tl into several subnets LTl, each representing
a local node. In a local node questions for numbers arrive from the local environment; if
possible such a question is answered directly, if not a message is sent into a network of
remote telephone indices. After a cycle through this network, an answer will arrive. The
decomposition of the net Tl is given in figure 6.

LTI LTI

RZ1

LTI

Figure 6: The decomposition of the toplevel Tl.

We use the following schema to represent the type of a message

m·es
name: NAME
nllmber : NUMBER
address: NODE ADDRESS

x

y

where NODE ADDRESS is the set of all node addresses. The address field denotes the
node address from which the message originated and name denotes the name for which a
number should be found.

\\le define the network of figure 7 as the decomposition of a loca.! index system LTL
Each local index system i has stores containing its loca.! index of names and numbers and
its node address.

addressi : NODE ADDRESS
index; : NAME +> NUMBER
true

The places we need are the following

R
Q p

x
y

Figure 7: A local index system LTI.

Places
R : mes -t-+ IN!
)(: NAME -t-+ IN!
Y : lVUMBER -t-+ IN!
Z : mes -t-+ INI
true

z

Questions enter the loca.l index system a.t X, answers are given at Y and the incoming
and outgoing network connections Me supplied by Rand Z. The specifications of the
bodies of the two transitions P and Q in the local index system are given below.

~Stol'e8i

X?: NANIE
Y': NUMBER
Z!: mes
X? E dom(inde>,;) /\ Y! = index;(X?) /\ Z!:= 1.
V

X? tf- c1om(index;) /I Y! = 1. /I Z!'name = X? /I Z!.add,'ess = add,'ess;

In reaction to a question on X?, transition P searches the local index and gives an answer
on Yl if the name is present. Otherwise it puts a message for information on Z!. The
(local) index and address are never changed, so we have used ?OStores;.

~St.o·reSi

R?: mes
Z!: mes
Y!: NUMBER
R?address = addressi II Y! = R?number
V
R? .address -I addressi /\ R? .name ~ dom(indexi) /\ Z! = R?
V
R"?address -I addressi II R?name E dom(indexi) II

Z!.name == R?name /\ ZLaddress = R?address /\ ZLnumber = index;(R?name)

Tra.nsition Q takes an incoming NAME,NUMBER,NODE ADDRESS triple from R? and
sends the number to Y! if the address matches the local address. This happens when a
message sent by this node has traversed the whole network. Otherwise it searches the
local index for the name and forwards the triple to the next node via Z!.

5 Conclusions

In this paper we have shown how Z can be used (a) to specify the metamodel of a
hierarchical colored Petri net and (b) to specify the transitions in a. specific colored Petri
net. We ha.ve seen that Z is very well suited for such a. specification. However, a few
small comments rema.in. It is not possible to specify constants as parameters to schemas
(types are possible). Therefore in our example in section 4 we have used a subscript
i. Furthermore when one wants an executable specification, one needs to restrict the
predicates in the body schemas of the transitions.

A method for constructing specifications of distributed systems starts by building
a. hierarchical net model in a graphical way and continues by specifying the primitive
transitions by means of Z schemas. As a next design step, the Z schemas should be
transformed into functions in order to get an executable specification as in ExSpect.

References

[Aa.\st 90] W.M.Pyan der Alst and A.W.Waltmans, Modeling Logistic Systems with
ExSpect, in: H.G.Sol, KM.van Ree (eds.), Dynamic Modeling of Information Sys
tems, North-Hollaml, 1991.

[Albrecht S9] KAlbrecht, K . .Jensen and R.M.Shapiro, Design/CPN: A tool package sup
porting the use of Colored Petri Nets, Petri Net Newsletter 32, 1989.

[Diepen 90] lvl..l.van Diepen and K.M.van Hee, A Formal Semantics for Z and the link
between Z and the Relationa.! Algebra., in: D.Bjorner, C.A.R.Hoa.re, H.Langmaack
(eds.), VDM'90, VDM and Z - Formal Methods in Software Development, Lecture
Notes in Computer Science 428, Springer Verlag, 1990.

[Giovanni 90] R.Di Giovanni and P.L.Iachini, HOOD and Z for the Development of Com
plex Software Systems, in: D.Bj0rner, C.A.R.Hoare, H.Langmaack (eds.), VDM'90,

VDM and Z - Formal Methods in Software Development, Lecture Notes in Computer
Science 428, Springer Verlag, 1990.

[Hayes 87] LHayes (ed.), Specification Case Studies, Prentice Hall, 1987.

[Hee 89] K.M.van Hee, L.J.Somers and M.Voorhoeve, Executable Specifications for Dis
tributed Information Systems, in: E.D.Falkenberg, P.Lindgreen (eds.), Information
system concepts: an in-depth analysis, North-Holland, 1989.

[Hee 91] K.M.van Hee and P.A.C.Verkoulen, Integration of a Data Model and Petri Nets,
in: Proceedings 12th International Conference on Application and Theory of Petri
Nets, Arhus, Denmark, 1991.

[Jensen 91] K..Jensen, Colored Petri Nets: A High Level La.nguage for System Design
and Analysis, in: G.Rozenberg (ed), Advances in Petri Nets 1990, Lecture Notes in
Computer Science 48:3, Springer Verlag, 1991.

[Reisig 87] W.Reisig, Petri Nets in Software Engineering, in: W.Brauer, W.Reisig,
G.Rozenberg (eds.), Petri Nets: Applications and Relationships to other Models
of Concurrency, in: Lecture Notes in Computer Science 255, Springer Verlag, 1987.

[Spivey 89] J.lVI.Spivey, The Z Notation: A Reference Manual, Prentice Hall, 1989.

[Yourdon 89] E.Yourdon, Modern structured analysis, Prentice-Hall 1989.

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Male
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T. Vemoeff

89n P.struik

89/8 E.H.L.Aans
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and me link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90(7 A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate netwoIXs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89117).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.c. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
speCification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,tben ... " f p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus· with
recursive types and subtyping, p.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aens
K.M. van Hee

91/16 A.J.J.M. Marcelis

91{17 A.T.M. Aens
P.M.E. de Bra
K.M. van Hce

91/18 Rik van Gcldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 KM. van Hee
L.J. Somers
M. Voorhoeve

91{24 A.T.M. Aens
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.1. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91{28 F. de Boer

Eldorado: Architecture of a Functional Database
Management System, p. "19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25. "

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query ~olving, p. 35.

Som! categorical propenies for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a'· Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p.

,
A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypenext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

	Abstract
	1. Introduction
	2. Hierarchical net model
	2.1 Flat nets
	2.2 Hierarchical nets
	3. Specification of nets in Z
	3.1 Places and transitions
	3.2 A small example
	3.3 Stores
	3.4 An alternative place construction
	4. A distributed telephone index
	5. Conclusions
	References

