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Abstract 

High level Petri nets have tokens with values, traditionally called colors, and 
transitions that produce tokens in a functional way, using the consumed tokens as 
a.rguments of the function application. Large nets should be designed in a top
down approach and t,herefore we introduce a hierarchical net model which combines 
a. data flow diagram technique with a high level Petri net model. We use Z to 
specify tllis net model, which is in fact the metamodel for specific systems. Specific 
models we specify partly by diagrams and partly in Z. We give some advantages 
and disadvantages of using Z in this way. Finally we show how to specify systems 
by means of a.n exa.mple. 
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1 Introduction 

The last years have shown a growing interest in the formal specification of distributed 
systems. Such a formal description should take care of the distribution aspects, the 
interaction between the distributed parts, the transitions between successive states of the 
system amI the state space itself. 

Petri nets, see e.g. [Jensen 91 J, have been used for quite a while to specify concurrent 
distributed systems. These nets have been augmented recently by a hierarchy to allow 
a systematic top-down design of a system specification. Such a design method is very 
similar to the common (informal) use of data flow diagrams [Yourdon 89J. 

Colored nets make it possible to attach values to tokens. For the specification of these 
values and the functionality of the transitions one needs a specification language. Usually 
a functional language is used for the specification of the transition functions. Recently, a 
few tools have been developed tha,t offer hierarchical colored Petri nets as a specification 
formalism, cf. [Albrecht S9J and [Hee 89J. Our tool, ExSpect, is based upon a hierarchical 
timed net model and a functional language. This system has been in use for two years 
and we have gained a lot of experience in pradical applications, e.g. [Aalst 90J. 

On the other hand, formalisms like Z and VDM are used frequently to specify reactive 
systems. They do not ha,ve mechanisms for treating concurrency and distribution in a 
straightforward way. However, a formalism like Z seems to be very well suited to specify 
the transitions in a colored Petri net, thereby replacing the functional language normally 
used. 

There have been more attempts to integrate Z with graphical languages for the descrip
tion of distributed systems. For instance, for HOOD such an integration is considered. 
In [Giovanni 90J it is noted that an integration with Petri nets is a point of research. 

In the next sections we will use Z in two ways. Firstly for defining what a hierarchical 
Petri net is (section 2) and secondly for the specification of the state transitions of a Petri 
net (section :3). We will follow the notation of [Spivey 89J; if not we make a remark. 

2 Hierarchical net model 

Here we introduce the hierarchical net model that is beiilg used in ExSpect [Hee S9J and 
that is closely related to hierarchical CP-nets [.Jensen 91J. First, we define so called flat 
nets, which are in fact ordinary colored Petri nets. Then we define hie1"Ul'chical nets and 
show how such a net determines a, flat net. 

vVe use the Z notation for the above definitions, thereby showing that Z is not only 
useful for modeling specific systems, but also for defining metamodels or model types. As 
observed in [Diepen 90], Z schemas can be interpreted as implicitly defined tables. So, 
jf we give a schema for the net model, every flat net corresponds to one and only one 
element or tuple of the table determined by the schema. 

2.1 Flat nets 

A flat net has four basic types 

[Place, Transition, Connection, ValueJ. 



The state of a flat net is determined by objects called tokens. Tokens reside at a place, an 
element of the type Place, and have a value belonging to the type Value. State changes are 
caused by transitions, elements of the type Tmnsition. A transition can fire, consuming 
tokens from a. specific set of places and producing tokens for another (not necessarily 
disjoint) set of places. A transition has a set of input and a set of output connections 
(elements of the type Connection). Connections are used to connect transitions to places. 

A .flat net structure is a directed labeled bipartite graph with places and transitions 
as nodes and connections as arcs. Traditionally, places are represented by circles and 
transitions by rectangles (d. figure 1). 

x1 

x2 Ix5 p3 x 

x3 I x8 Ix6 12 
p4 

x9 

Figure 1: An example of a Petri net. 

A flat, net structure is defined by the following schema 

FlatN etStructure 
P : IPPlace 
T : IP Transition 
I : Transition ++ IP Connection 
a : Tmnsition ++ IPConnecbon 
111 : Connection ++ Place 
dom(I) = dom(O) = T A 

(Urng(J)) n (Urng(O)) = dom(M) A 
rng(M) = P A 
'it1,t 2 : Till # t2. l(t 1) n l(t2) = 0(t1) n 0(t 2) = l(tJ! n 0(t2) = l(t1) n 0(t1) = 0 

A net is determined by a set of places P, a set of transitions T, two functions I and 
a that assign to each transition t a set of connections through which it consum.es tokens 
(l(t)) and a set. of connections through which it }Jmd1!ces tokens (O(t)). Each connection 
is assigned to a. place [Hee 91]. So, when a transition t fires, it conSumes as many tokens 
from a place as there are connections of l(t) assigned to it. Furthermore, it produces for 
each connection in ott) one token or none, so if there are n connections in ott) assigned 
to a. place, t may produce any number of tokens between 0 and n for this place. The last 
condition in the schema. states that all connections are unique. In practice, we require 
only that connections between the same place and transition with the same direction have 
different labels. [n that case we augment the label with a pair (t, p) for output connections 
and (1', t) for input connections (where t and p are the transition and the place involved) 
to obt.ain a unique label. 

It is easy to define an instance of the type FlatNetStructure that describes e.g. the 
graph of fig. 1. 



The flat net structure describes only the static aspects of a net model. The dynamics 
of such a model are described by an (unlabeled) transition system. Such a transition 
system has a state space S and a binary relation Tr over S. Each pair of Tr corresponds 
to a possible state transition of the whole system. In fact the transition system of the net 
model may be considered as an operational semantics of the flat net structure. 

We define a derived type called State, 

State == == Place +> (Value +> IN). 

So a state is a mapping that assigns to places a function counting the number of tokens 
per value. (Note that this function does not represent a bag since we allow numbers to 
be zero; however it is equiva.lent to one.) 

For each place in a net structure, we define a subset of Value that represents the set 
of allowed token values for this place. We call this set the value domain of the place. In 
the next schema we define the state space of a net structure 

StateSpace 
P ; IPPlace 
S; IPState 
D ; Place +> IP Value 
domeD) == P /I 

Vs;S.dom(s)==P/\ 
Vs: S. Vp: P. dom(s(p» c D(p) 

So component 5 defines the state space and D the function that assigns domains to 
places. The last predicate states that tokens at a certain place should have values in the 
domain of that place. 

The next schema combines the state space and flat net structure schemas, adding two 
components. The first component is a function L that assigns to each transition a local 
state transition function which forma.lizes the consumption and production of tokens. The 
second component is the transition relation Tr over the state space. 

Netl\Iodel 
FlatN etStructure 
StateSpace 
L : Transition +> (State ++ State) 
Tr : IP( State x State) 
1 clom(L)==T 
2 Vt: T. dom(L(t» c 5 
:3 Vt: T. Vs : dom(L(t). Vp; dom(s) • 

E(s(p» == #{e; l(t) I M(e) == p} 
4 Vt: T. Vs: clom(L(t). Vp: dom(L(t)(s») • 

E(L(t)(s)(p)):S #{e: Ott) I M(e) == p} 
.s Vx: T,·. first(x) E S /I seconcl(x) E S 
6 VS

"
S2: S I (S1,S2) E T". 3t: T. 38: S. 

Vp: P. sip) :S slip) /I s E dom(L(t)) /I 

Vp: P. 82(1') == Sl(P) - .s(p) + L(t)(s)(p) 



The third rule states that for each input connection one token is consumed; the fourth 
rule that for each output connection at most one token is produced. R.ule six tells us how 
a (global) state transition is derived from a local state change caused by a transition in 
the net structure. Note that we add, subtract and compare functions; the generic function 
E summarizes the images of a function. 

Given an initial state, the net model determines the set of paths of the net accord
ing to the transition law. If this law is deterministic, i.e. Tr is in reality of the type 
State ++ State, there is only one path. Note that for each state transition precisely one 
net transition should fire. 

2.2 Hierarchical nets 

Now we can introduce net hiemrchy. For large systems it is too complicated to define a 
flat net structure in one step. One often uses a top-down design method simila,r to data 
flow dia,gram techniques [Yourdon S9J or HOOD [Giovanni 90J. 

Our hierarchical net structure allows us to decompose nets into places and sILbneis or 
agents. (Also compare channel/agency nets [Reisig 87]). At each level of the decompo
sition process we have to decide which subnets are elementa'ry (i.e. are transitions) and 
which ones need further decomposition. vVhen all subnets have been decomposed into 
elementary ones, we can proceed by defining a local state transition function for each 
elementary subnet. 

The above hierarchical net structure is useful not only for the design process but also 
for documenting the Het model, since it provides an overview of the flat net structure. 

A slIbnet usually has connections like a transition. We a.lways assume that the (one) 
subaet at the top of the hierarchy has no connections anymore. This means that if we want 
to describe a system that communicates with an environment (by exchanging tokens), we 
have to model that environment as a subnet and incorporate it at the top level. (Note 
that this was a.lready the case in the flat net structure.) Figure 2 shows three levels of an 
example hierarchy. 

\hIe see that. every connection of a subnet is assigned to a place or connection in its 
supernet. In figure 2, y is assigned to a' and x to z. In the next schema we define the 
hierarchical net structure, generalizing the flat net structure. Each subnet (except the 
top level one) and each place are mapped to precisely one supernet. These mappings 
const,itute the components fIN amI fIP in the schema. Component Top denotes the top 
level net. For subnets as well as transitions we use the same type 

[NetJ 

replacing the earlier type Transition. Component N denotes all subnets, including tran
sitions. Components kIP and Me denote the assignment of connections. They replace 
component !l1 of the flat; net structure. 
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Figure 2: Hierarchical decomposition, 

Hi el'a TCi> icalN etSt-l'll ctll'l'e 
P : !PPluce 
T: IPNe! 
N: IPNet 
I: Net ++ IPConnection 
a : Net ++ IPConnection 
HN : Net ++ Net 
HP: Place ++ Net 
AiP : Connection ++ Pla.ce 
.~iC : Connection ++ Connection 
Top: Net 
1 TeN 1\ Top E N\T 1\ clom(J) == dom( 0) == N\ {Top} 
2 dom(MP) n dom(MC) = 0 
:3 dom(MP) Udom(MC) == (Urng(J)) U (Urng(O)) 

A 

R 

4 lin I , 112: 1V I n, '" 112. l(n,) n l(n2) == O(n,) n 0(n2) == l(n,) n 0(n2) = 0 
,5 dom( HN) = N\ {Top} 1\ rng(HN) == N\T 
6 dom(lIP) = P 1\ rng(lIP) == rng(lIN) 
7 lin: clom( lIN) • 31e : IN • lINk(n) = Top 
8 lin: dom(HN). Iic: l(n) U O(n) • 

c E dom(MP) =? HP(MP(c)) == lINin) 1\ 

c E dom(MC) 1\ c E l(n) =? MC(c) E I(HN(n)) 1\ 
c E dom(MC) 1\ c E O(n) =? MC(c) E O(HN(n)) 

x 

The first four rules of the above schema are straightforward modifications of rules of the 



flat net structure. Rules 5, 6 and 7 determine the mappings to the supernetsj rule 7 
guarantees that in the end everything is mapped to Top, so no cycles are possible. The 
last rule states that if a connection of a subnet is assigned to a place, then both the subnet 
and the place should be mapped to a common supernet. If it is assigned to a connection, 
this should be a connection of the supernet. 

It is easy to derive a flat net structure from a hierarchical one, by assigning to each 
connection of a tra,nsition the place it is assigned to by the higher level subnets. The next 
axiomatic description defines a function nettrans that maps a hierarchical net structure 
onto a flat one. 

nettl'ans : Hiel'Q,l'chicalNet.St.rnchp·e -; Flrd.i',ret.Stnlcture 

Vh : Hierm'chicalNetStnlcture • 
3MN : Connection ++ Place. 

'It: h.T. Vc : (h.1)t U (h.O)t • 
c E dom(h.MP) =} MN(c) = (h.MP)c /\ 
c E dom(h.MC) =} MN(c) = MN((h.MC)c) 

/\ 

(nettrans(h)).P = h.P /\ 
(nettran8(h)).T = h.T /\ 
(nettrans(h)).J = h.T <J h.1 /\ 
(nettran.s(h)).O = h.T <J h.O /\ 
(nettrans(h)).M = h.MN 

Note that the function !lnv is defined recursively: it is however easy to see that this 
definition is sound. 

In the development process, we start with the definition of a hierarchical net structure. 
This we transform into a flat net structure. Next we define a, state space and finally a 
net model. In this section we have defined all these concepts, but we did not give a 
language to speczfy a net model. For the hierarchical net structure we advise a graphical 
representation such as the one we described and used in the example figures. For the 
specification of the state space and local state transition functions we advocate Z. This is 
the topic of the next section. 

3 Specification of nets in Z 

3.1 Places and transitions 

In section 2 we have defined what a net model is. It is constructed from a hierarchical 
net structure which determines a, flat net structure, a state space and local transition 
functions per net transition. In this section we show how the state space and the local 
transition function ca,n be specified using Z. In fact we do more: we also specify the net 
model in Z. Using some examples, we present a method for specification of net models. 

Consider the example of a flat net structure given in figure 3. To specify the value 
domains of the places we use type definitions. Let the types of the four places be TA , TB , 

Tc and TD. vVe assume that all types have one common value, denoted by 1.. and called 



p 

V? W? 

Figure 3: A flat net. 

bottom or nil. The places of a net model are specified in one schema called Places. In our 
example we have the following schema. for the places 

Places 
A: TA ++ IN, 
B: T8 ++ IN, 
C: To ++ IN, 
D: Tn ++ IN, 
true 

Note that all places are real bags now and not bags which allow frequency zero as in 
section 2. 

Transitions are specified by three schemas called front-end, body and back-end that 
have to be combined by the pipe operator~. This operator has been introduced by 
[Hayes 87J. Later we will see that we only have to specify the body schema, the other 
schemas can be derived automatically from the body schema. For transition P in our 
eXilmple we define three schemas P" P2 and P3 and then P ~ P, ~ P2 ~ P3 • 

Schema P, describes the selection of tokens: one from place A and one from place B, 

P, 
6. Places 
=:( Places\( A, B)) 
Xl :TA 

Yl: T8 
Af.0I1Bf.011 
Xl E dom(A) II Yl E dom(B) II 
A' = delele(XI, A) II B' = delele(YI, B) 

Note that both places should contain at least one token. The function delete is a generic 
function with type variable T. It updates a bag of type T ++ IN by deleting an arbitrary 
element from it. 



[TJ 
delete: (T x (T +> IN)) +> (T +> IN) 
'It : T • 'If : T +> IN • t E dom(.f) =} 

(t,f) E dom(delete) /\ 
fit) > 1 =} delete(t,.f) = f ffi {t >---+ fit) - l} /\ 
fit) = 1 =} delete(t,f) = {t} 4 f 

The following schema of the specification of P is P3 . 

b..Places 
~(Places\(C, D)) 
j/? : Tc 
W? :TD 

Ii? i .1 =} C' = add(V?, C) /\ 
j/? = .1 =} C' = C /\ 
W? i .1 =} D' = add(W?, D) /\ 
HI? = .1 =} D' = D 

This schema uses another generic function, called add, that adds one element to a bag. 

[TJ 
add: (T X (T +> IN)) +> (T +> IN) 
Vi : T • 'If: T +> IN • 

t E dom(.f) =} add(t,f) = fEB {t ...... fit) + I} /\ 
t (j dom(.f) =} add(t, f) = f EB {t >---+ l} 

We take specia.l care of the situation that the input has value.l. This case occurs when 
a transition does not produce a token for a. connection. 

The schema P2 specifies the functionality of the transi tion P. Since we are at this 
moment not interested in any particular functionality we lea.ve it open by a.ssuming a 
predicate E. Note that V! or W! may get the value .1, which means tha.t no token is 
produced. 

X?: TA 
Y?: TB 
V! : Tc 
W!:TD 

E 

The final schema P, defined by P ~ PI :::p. P2 :::p. P3 joins the three schemas a.nd 
identifies components with! and? and leaves them out of the signature by introducing 
existential qua.ntors for each of them, a.s illustrated in the example given in section 3.2. 
Of course we could ha,'e given a direct way to specify P. However, the schemas PI and P3 

can be derived from P2 : they do not require any decision from the designer; the designer 
only has to specify the schema P2 • If we consider X? and Y? as input connections of P 
and ]/! and TY! as output connections, then we only need to know which places they are 



assigned to. This information can be derived from the graphical representation of the net 
structure. Simila.rly we derive the types of the places by giving the type of the tokens. 

So, a full specification of a net model consists of a graphically represented hierarchical 
net structure, a schema with places and for each transition one schema (the body schema) 
with input and output connections as components, decorated with? and! respectively. 

If we generate the front-end and back-end schemas for each transition then we have 
a complete Z specification with the following operational semantics: if an initial state is 
given then one of the transitions that is able to fire will do so. Then in the next state 
again one of the enabled transitions will fire. Note that a transition is enabled if the input 
places contain enough tokens. In the example this was checked by the first rule of schema 
PI. It is possible that like in colored Petri nets there is a precondition based on input 
values. This ca,n be expressed in the body schema of a transition. In our example the 
predicate E can have an expression, for instance X? # Y? 

Note that a specification in this way fits into the metamodel we presented in section 
2. The diagram of figure :3 is a,n instance of the flat net structure schema. The state space 
is defined by the schema Places. To see this recall that in the metamodel a state is of the 
form Place -H (Value --+ IN). In the schema Places an instance is a tuple or a mapping 
that assigns to the places A, B, C and D a mapping from respectively T A , T B , Tc and TD 
to IN. Hence TA , T B , Tc and TD are subsets of Value and they determine the domains of 
the places. So we have defined in this way component D of schema StateSpace. The local 
transition function L of schema NetModel assigns to each tra,nsition a mapping from state 
to state. The tra,nsition schema P for transition P is in fact L(P) since it defines a state 
transition that obeys the laws of the schema Net.Model. Hence L is specified by a schema 
per transition. Finally the operational semantics discussed above and below satisfy the 
requirements for T,. in the schema Neti11odel. 

All (serialized) execution paths of a net model can be obtained by constructing all 
possible lists containing firable transition schemas connected by the; schema operator. 
For example for a net consisting of two transitions P and Q, we may get an execution 
path like 

3.2 A small example 

P 

PiQ 
PiQ;P 
P;Q;P;P 
P;Q;P;P;Q 

As a simple example we consider the net structure of figure 4. It consists of one transition 
P that copies its input token to both output places. The schema representing the places 
IS 

Places[TJ 

iA:T+>IN] 
B: T +> IN] 
true 



Figure 4: An example. 

vVe have used an arbitrary type T for these places. The front-end, body an back-end 
schemas for the transition P are, according to the construction in the previous section 

Pl[T] 
6 Places 
2(Places\(A)) 
X!:T 

A # 0 1\ 
X! E dom(A) 1\ 

A' = delete(X!, A) 

I XlT Y!:T 
Z"T 
y! ~ X? 1\ Z! = X? 

6Places 
Y?:T 
Z?:T 
A' = add(Y?,A) 1\ 
B' = add(Z?, B) 

Then P becomes, after removing most of the existential quantors 

P 

I 6Places 

3.3 Stores 

In many applications it is useful to have a local state for a net transition. This can be 
modeled by a special place that always contains one token and that is both an inpnt and 
an output place for the transition. \Ve call such a place a store. (For stores we use a 
graphical representation differing from normal places.) Two transitions may have access 
to the same store; however only one at a time since there is only one token in the place 
representing the store. This avoids concurrent update problems. Usua.lly a store has a 
rather complex type. It is not necessary to define the store as a bag since there is always 
one token; this will simplify the specifications considerably. So we may specify the type 
of a store just by the type of the token. In data. base applications this token usually has 



a rather complex type that may be defined by several auxiliary schemas. As an example 
we construct for a store A a database type. 

Person 
name: NAME 
address: NODE ADDRESS 
age: IN 
age 2: 0 

Ca'r 
license: IN 
kind: KIND 
horsepower: IN 
weigth : IN 
horsepower * 10 2: weight 

Trip 
driver: NAME 
license : IN 
starttime : IN 
destination: PLACE 
true 

A 
peTS on : IP( Person) 
ca'r : IP( Car) 
trip: IP( T,.ip) 
'It: trip. t.driver E {x: person. x.name} /\ 

t .licen.,e E {x : cm' • x .license} 

Note that the condition in schema A is a referential integrity constra.int for the database. 

3.4 An alternative place construction 

We could have considered an alternative for the place construction. Up to here we followed 
the line of section 2. However, this leaves open how to choose tokens from the pla.ces. 
An alternative could be t.o replace t.he bags by queues. In [act this is the way we have 
implemented it in ExSpect. We have to replace the schema for the places by 

Places 

A: seqTA 
B: seqTB 
C: seqTc 
D: seqTD 
true 

to account for the change of bag into queue. The front-end and back-end schemas for 
figure 3 now become equal to 



t>Places 
2:(Places\(A, B)) 
X! :TA 

Y!: TB 
At" []I\Bt" [] 1\ 
X! = hea.d(A) 1\ Y! = head(B) 1\ 

A' = tail(A) 1\ B' = tail(B) 

t>Places 
2:(Place.s\(C, D)) 
V?: To 
W? :TD 

V? t" .l =} C' = C .~ [V?] 1\ 

V? = .l =} C' = C 1\ 

W? t" .l =} D' = D ~. [IV?] 1\ 

W? = .l =} D' = D 

Note that P2 does not have to be changed. 

4 A distributed telephone index 

To illustrate the concepts of the previous sections we present a simple distributed speci
fication of a reactive system. It is a distributed telephone index: it receives questions for 
phone nunlbers and gives answers. 

Let NAME be the set of all names and let NUMBER be the set of all valid telephone 
numbers. At the top level we may specify the index system (as seen from the environment 
of one node) as a schema TI. This is possible since we are dealing with a reactive system: 
it only produces tokens as a. reaction upon an incoming token of the environment. 

X?: NAME 
Y!: NUMBER 
inde~: : NAME -; NUMBER 

The corresponding net is given in figure 5. In this net we have modeled the environment 

TI 

1---;- - --, 
1 

elnvirOIl/l1!ent 
r-........ 

I 
___ .2 

Figure .5: The toplevel of the index system. 

as a slIbnet which we do not specify any further. 



The next step is to decompose the net Tl into several subnets LTl, each representing 
a local node. In a local node questions for numbers arrive from the local environment; if 
possible such a question is answered directly, if not a message is sent into a network of 
remote telephone indices. After a cycle through this network, an answer will arrive. The 
decomposition of the net Tl is given in figure 6. 

LTI LTI 

RZ1 

LTI 

Figure 6: The decomposition of the toplevel Tl. 

We use the following schema to represent the type of a message 

m·es 
name: NAME 
nllmber : NUMBER 
address: NODE ADDRESS 

x 

y 

where NODE ADDRESS is the set of all node addresses. The address field denotes the 
node address from which the message originated and name denotes the name for which a 
number should be found. 

\\le define the network of figure 7 as the decomposition of a loca.! index system LTL 
Each local index system i has stores containing its loca.! index of names and numbers and 
its node address. 

addressi : NODE ADDRESS 
index; : NAME +> NUMBER 
true 

The places we need are the following 



R 
Q p 

x 
y 

Figure 7: A local index system LTI. 

Places 
R : mes -t-+ IN! 
)( : NAME -t-+ IN! 
Y : lVUMBER -t-+ IN! 
Z : mes -t-+ INI 
true 

z 

Questions enter the loca.l index system a.t X, answers are given at Y and the incoming 
and outgoing network connections Me supplied by Rand Z. The specifications of the 
bodies of the two transitions P and Q in the local index system are given below. 

~Stol'e8i 

X?: NANIE 
Y': NUMBER 
Z!: mes 
X? E dom(inde>,;) /\ Y! = index;(X?) /\ Z!:= 1. 
V 

X? tf- c1om( index;) /I Y! = 1. /I Z!'name = X? /I Z!.add,'ess = add,'ess; 

In reaction to a question on X?, transition P searches the local index and gives an answer 
on Yl if the name is present. Otherwise it puts a message for information on Z!. The 
(local) index and address are never changed, so we have used ?OStores;. 



~St.o·reSi 

R?: mes 
Z!: mes 
Y!: NUMBER 
R?address = addressi II Y! = R?number 
V 
R? .address -I addressi /\ R? .name ~ dom( indexi) /\ Z! = R? 
V 
R"?address -I addressi II R?name E dom(indexi) II 

Z!.name == R?name /\ ZLaddress = R?address /\ ZLnumber = index;(R?name) 

Tra.nsition Q takes an incoming NAME,NUMBER,NODE ADDRESS triple from R? and 
sends the number to Y! if the address matches the local address. This happens when a 
message sent by this node has traversed the whole network. Otherwise it searches the 
local index for the name and forwards the triple to the next node via Z!. 

5 Conclusions 

In this paper we have shown how Z can be used (a) to specify the metamodel of a 
hierarchical colored Petri net and (b) to specify the transitions in a. specific colored Petri 
net. We ha.ve seen that Z is very well suited for such a. specification. However, a few 
small comments rema.in. It is not possible to specify constants as parameters to schemas 
(types are possible). Therefore in our example in section 4 we have used a subscript 
i. Furthermore when one wants an executable specification, one needs to restrict the 
predicates in the body schemas of the transitions. 

A method for constructing specifications of distributed systems starts by building 
a. hierarchical net model in a graphical way and continues by specifying the primitive 
transitions by means of Z schemas. As a next design step, the Z schemas should be 
transformed into functions in order to get an executable specification as in ExSpect. 
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