
 

Genetic process mining

Citation for published version (APA):
Alves De Medeiros, A. K. (2006). Genetic process mining. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR614016

DOI:
10.6100/IR614016

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR614016
https://doi.org/10.6100/IR614016
https://research.tue.nl/en/publications/9f585688-ed7b-42b1-8446-6e80fc06c7db


Genetic Process Mining



Copyright c© 2006 by Ana Karla Alves de Medeiros. All rights reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Alves de Medeiros, Ana Karla

Genetic Process Mining / by Ana Karla Alves de Medeiros. - Eindhoven
: Technische Universiteit Eindhoven, 2006. - Proefschrift. -

ISBN 90-386-0785-7

ISBN 978-90-386-0785-6

NUR 983

Keywords: Process mining / Genetic mining / Genetic algorithms / Petri
nets / Workflow nets

The work in this thesis has been carried out under the auspices of Beta Re-
search School for Operations Management and Logistics.

Beta Dissertation Series D89

Printed by University Press Facilities, Eindhoven
Cover design: Paul Verspaget & Carin Bruinink, Nuenen, The Netherlands.
The picture was taken by Ana Karla Alves de Medeiros while visiting “Cha-
pada Diamantina” in Bahia, Brazil.



Genetic Process Mining

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificus,
prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen

door het College voor Promoties in het openbaar te verdedigen
op dinsdag 7 november 2006 om 14.00 uur

door

Ana Karla Alves de Medeiros

geboren te Campina Grande, Brazilië



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. W.M.P. van der Aalst

Copromotor:
dr. A.J.M.M. Weijters



To my parents, Salomão and Rosilene.



vi



Contents

1 Introduction 1
1.1 Control-Flow Mining . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Genetic Process Mining . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 15
2.1 Overview of the Related Approaches . . . . . . . . . . . . . . 15
2.2 A More Detailed Analysis of Related Approaches . . . . . . . 20

2.2.1 Cook et al. . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Agrawal et al. . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Pinter et al. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Herbst et al. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.5 Schimm . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.6 Greco et al. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 Van der Aalst et al. . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Weijters et al. . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.9 Van Dongen et al. . . . . . . . . . . . . . . . . . . . . . 26
2.2.10 Wen et al. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Process Mining in Action: The α-algorithm 29
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Workflow Nets . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The α-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Limitations of the α-algorithm . . . . . . . . . . . . . . . . . . 37
3.4 Relations among Constructs . . . . . . . . . . . . . . . . . . . 44
3.5 Extensions to the α-algorithm . . . . . . . . . . . . . . . . . . 45
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



viii CONTENTS

4 A GA to Tackle Non-Free-Choice and Invisible Tasks 51
4.1 Internal Representation and Semantics . . . . . . . . . . . . . 55
4.2 Fitness Measurement . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The “Completeness” Requirement . . . . . . . . . . . . 59
4.2.2 The “Preciseness” Requirement . . . . . . . . . . . . . 61
4.2.3 Fitness - Combining the “Completeness” and “Precise-

ness” Requirements . . . . . . . . . . . . . . . . . . . . 62
4.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Initial Population . . . . . . . . . . . . . . . . . . . . . 67

4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 A Genetic Algorithm to Tackle Duplicate Tasks 91
5.1 Internal Representation and Semantics . . . . . . . . . . . . . 96
5.2 Fitness Measurement . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Initial Population . . . . . . . . . . . . . . . . . . . . . 103
5.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Arc Post-Pruning 123
6.1 Post Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 124

6.2.1 Noise Types . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . 126

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Implementation 141
7.1 ProM framework . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.1 Mining XML format . . . . . . . . . . . . . . . . . . . 144
7.2 Genetic Algorithm Plug-in . . . . . . . . . . . . . . . . . . . . 147



CONTENTS ix

7.3 Duplicates Genetic Algorithm Plug-in . . . . . . . . . . . . . . 149
7.4 Arc Pruning plug-in . . . . . . . . . . . . . . . . . . . . . . . 150
7.5 Other plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5.1 Log Related Plug-ins . . . . . . . . . . . . . . . . . . . 151
7.5.2 Model Related Plug-ins . . . . . . . . . . . . . . . . . . 154
7.5.3 Analysis Related Plug-ins . . . . . . . . . . . . . . . . 155

7.6 ProMimport Plug-ins . . . . . . . . . . . . . . . . . . . . . . . . 158
7.6.1 CPN Tools . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.6.2 Eastman . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 Evaluation 165
8.1 Experiments with Known Models . . . . . . . . . . . . . . . . 165
8.2 Single-Blind Experiments . . . . . . . . . . . . . . . . . . . . . 172
8.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.3.1 Log Replay . . . . . . . . . . . . . . . . . . . . . . . . 195
8.3.2 Re-discovery of Process Models . . . . . . . . . . . . . 204
8.3.3 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9 Conclusion 227
9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.1.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . 227
9.1.2 Analysis Metrics . . . . . . . . . . . . . . . . . . . . . 229
9.1.3 ProM Plug-ins . . . . . . . . . . . . . . . . . . . . . . . 230
9.1.4 Common Framework to Build Synthetic Logs . . . . . 230

9.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . 230
9.2.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . 231
9.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 232
9.2.3 Process Mining Benchmark . . . . . . . . . . . . . . . 232

A Causal Matrix: Mapping Back-and-Forth to Petri Nets 235
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.2 Mapping a Petri net onto a Causal Matrix . . . . . . . . . . . 237
A.3 Mapping a Causal Matrix onto a Petri net . . . . . . . . . . . 240

B All Models for Experiments with Known Models 245

C All Models for Single-Blind Experiments 325

Bibliography 361



x CONTENTS

Index 369

Summary 373

Samenvatting 377

Acknowledgements 381

Curriculum Vitae 385



Chapter 1

Introduction

Nowadays, most organizations use information systems to support the exe-
cution of their business processes [37]. Examples of information systems sup-
porting operational processes are Workflow Management Systems (WMS) [12,
21], Customer Relationship Management (CRM) systems, Enterprise Re-
source Planning (ERP) systems and so on. These information systems may
contain an explicit model of the processes (for instance, workflow systems
like Staffware [6], COSA [1], etc), may support the tasks involved in the
process without necessarily defining an explicit process model (for instance,
ERP systems like SAP R/3 [5]), or may simply keep track (for auditing pur-
poses) of the tasks that have been performed without providing any support
for the actual execution of those tasks (for instance, custom-made informa-
tion systems in hospitals). Either way, these information systems typically
support logging capabilities that register what has been executed in the orga-
nization. These produced logs usually contain data about cases (i.e. process
instances) that have been executed in the organization, the times at which
the tasks were executed, the persons or systems that performed these tasks,
and other kinds of data. These logs are the starting point for process min-
ing, and are usually called event logs . For instance, consider the event log in
Table 1.1. This log contains information about four process instances (cases)
of a process that handles fines.

Process mining targets the automatic discovery of information from an
event log. This discovered information can be used to deploy new systems
that support the execution of business processes or as a feedback tool that
helps in auditing, analyzing and improving already enacted business pro-
cesses. The main benefit of process mining techniques is that information is
objectively compiled. In other words, process mining techniques are helpful
because they gather information about what is actually happening according
to an event log of a organization, and not what people think that is happen-



2 Introduction

Case ID Task Name Event Type Originator Timestamp Extra Data

1 File Fine Completed Anne 20-07-2004 14:00:00 . . .
2 File Fine Completed Anne 20-07-2004 15:00:00 . . .
1 Send Bill Completed system 20-07-2004 15:05:00 . . .
2 Send Bill Completed system 20-07-2004 15:07:00 . . .
3 File Fine Completed Anne 21-07-2004 10:00:00 . . .
3 Send Bill Completed system 21-07-2004 14:00:00 . . .
4 File Fine Completed Anne 22-07-2004 11:00:00 . . .
4 Send Bill Completed system 22-07-2004 11:10:00 . . .
1 Process Payment Completed system 24-07-2004 15:05:00 . . .
1 Close Case Completed system 24-07-2004 15:06:00 . . .
2 Send Reminder Completed Mary 20-08-2004 10:00:00 . . .
3 Send Reminder Completed John 21-08-2004 10:00:00 . . .
2 Process Payment Completed system 22-08-2004 09:05:00 . . .
2 Close case Completed system 22-08-2004 09:06:00 . . .
4 Send Reminder Completed John 22-08-2004 15:10:00 . . .
4 Send Reminder Completed Mary 22-08-2004 17:10:00 . . .
4 Process Payment Completed system 29-08-2004 14:01:00 . . .
4 Close Case Completed system 29-08-2004 17:30:00 . . .
3 Send Reminder Completed John 21-09-2004 10:00:00 . . .
3 Send Reminder Completed John 21-10-2004 10:00:00 . . .
3 Process Payment Completed system 25-10-2004 14:00:00 . . .
3 Close Case Completed system 25-10-2004 14:01:00 . . .

Table 1.1: Example of an event log.

File
Fine

Send
Bill

Process
Payment

Close
Case

Send
Reminder

Figure 1.1: Petri net illustrating the control-flow perspective that can be
mined from the event log in Table 1.1.

ing in this organization. The starting point of any process mining technique
is an event log.

The type of data in an event log determines which perspectives of process
mining can be discovered. If the log (i) provides the tasks that are executed
in the process and (ii) it is possible to infer their order of execution and link
these taks to individual cases (or process instances), then the control-flow
perspective can be mined. The log in Table 1.1 has this data (cf. fields “Case
ID”, “Task Name” and “Timestamp”). So, for this log, mining algorithms
could discover the process in Figure 1.11. Basically, the process describes
that after a fine is entered in the system, the bill is sent to the driver. If
the driver does not pay the bill within one month, a reminder is sent. When

1The reader unfamiliar with Petri nets is referred to Section 3.1.



1.1 Control-Flow Mining 3

the bill is paid, the case is archived. If the log provides information about
the persons/systems that executed the tasks, the organizational perspective
can be discovered. The organizational perspective discovers information like
the social network in a process, based on transfer of work, or allocation rules
linked to organizational entities like roles and units. For instance, the log
in Table 1.1 shows that “Anne” transfers work to both “Mary” (case 2) and
“John” (cases 3 and 4), and “John” sometimes transfers work to “Mary”
(case 4). Besides, by inspecting the log, the mining algorithm could discover
that “Mary” never has to send a reminder more than once, while “John”
does not seem to perform as good. The managers could talk to “Mary”
and check if she has another approach to send reminders that “John” could
benefit from. This can help in making good practices a common knowledge
in the organization. When the log contains more details about the tasks,
like the values of data fields that the execution of a task modifies, the case
perspective (i.e. the perspective linking data to cases) can be discovered. So,
for instance, a forecast for executing cases can be made based on already
completed cases, exceptional situations can be discovered etc. In our par-
ticular example, logging information about the profiles of drivers (like age,
gender, car etc) could help in assessing the probability that they would pay
their fines on time. Moreover, logging information about the places where
the fines were applied could help in improving the traffic measures in these
places. From this explanation, the reader may have already noticed that
the control-flow perspective relates to the “How?” question, the organiza-
tional perspective to the “Who?” question, and the case perspective to the
“What?” question. All these three perspectives are complementary and rel-
evant for process mining. However, in this thesis we focus on the control-flow
perspective of process mining.

1.1 Control-Flow Mining

The control-flow perspective mines a process model that specifies the rela-
tions between tasks in an event log. From event logs, one can find out in-
formation about which tasks belong to which process instances, the time at
which tasks are executed, the originator of tasks, etc. Therefore, the mined
process model is an objective picture that depicts possible flows that were
followed by the cases in the log (assuming that the events were correctly
logged). Because the flow of tasks is to be portrayed, control-flow mining
techniques need to support the correct mining of the common control-flow
constructs that appear in process models. These constructs are: sequences,
parallelism, choices, loops, and non-free-choice, invisible tasks and duplicate



4 Introduction

tasks [15]. Sequences express situations in which tasks are performed in
a predefined order, one after the other. For instance, for the model in Fig-
ure 1.2, the tasks “Enter Website” and “Browse Products” are in a sequence.
Parallelism means that the execution of two or more tasks are independent
or concurrent. For instance, the task “Fill in Payment Info” can be executed
independently of the tasks “Login” and “Create New Account” in Figure 1.2.
Choices model situations in which either one task or another is executed. For
instance, the tasks “Remove Item from Basket” and “Add Item to Basket”
are involved in the same choice in the model in Figure 1.2. The same holds
for the tasks “Cancel Purchase” and “Commit Purchase”. Loops indicate
that certain parts of a process can be repeatedly executed. In the model
in Figure 1.2, the block formed by the tasks “Browse Products”, “Remove
Item from Basket”, “Add Item to Basket” and “Calculate Total” can be ex-
ecuted multiple times in a row. Non-free-choice constructs model a mix of
synchronization and choice. For instance, have a look at the non-free-choice
construct involving the tasks “Calculate Total” and “Calculate Total with
Bonus”. Note that the choice between executing one of these two tasks is
not done after executing the task “Fill in Delivery Address”, but depends
on whether the task “Login” or the task “Create New Account” has been
executed. In this case, the non-free-choice construct is used to model the
constraint that only returning customers are entitled to bonuses. Invisible
tasks correspond to silent steps that are used for routing purposes only and,
therefore, they are not present in event logs. Note that the model in Fig-
ure 1.2 has three invisible tasks (the black rectangles). Two of these invisible
tasks are used to skip parts of the process and the other one is used to
loop back to “Browse Products”. Duplicate tasks refer to situations in which
multiple tasks in the process have the same label. Duplicates are usually
embedded in different contexts (surrounding tasks) in a process. The model
in Figure 1.2 has two tasks with the same label “Calculate Total”. Both
duplicates perform the same action of adding up the prices of the products
in the shopping basket. However, the first “Calculate Total” (see top part of
Figure 1.2) does so while the client is still selecting products and the second
one (see bottom part of Figure 1.2) computes the final price of the whole
purchase. Control-flow process mining algorithms should be able to tackle
these common constructs.

In fact, there has been quite a lot of work on mining the control-flow per-
spective of process models [14, 17, 35, 43, 23, 52, 73, 64, 81]. For instance,
the work in [52] can mine duplicate tasks, [81] can mine non-free-choice, [17]
proves to which classes of models their mining algorithm always works, [23]
mines common control-flow patterns and [73] captures partial synchroniza-
tion in block-structured models. However, none of the current control-flow



1.1 Control-Flow Mining 5

Enter Website

Browse Products

Remove Item
 from Basket

Calculate Total

Proceed to Checkout

Add Item
to Basket

Fill in 
Payment Info Login Create 

New Account

Fill in Delivery
Address

Calculate Total
with BonusCalculate Total

Commit PurchaseCancel Purchase

Leave Website

Figure 1.2: Example of a Petri net that contains all the common control-flow
constructs that may appear in business processes.



6 Introduction

process mining techniques is able to mine all constructs at once. Further-
more, many of them have problems while dealing with another factor that
is common in real-life logs: the presence of noise. Noise can appear in two
situations: event traces were somehow incorrectly logged (for instance, due
to temporary system misconfiguration) or event traces reflect exceptional sit-
uations. Either way, most of the techniques will try to find a process model
that can parse all the traces in the log. However, the presence of noise may
hinder the correct mining of the most frequent behavior in the log.

The first reason why these techniques have problems to handle all the
constructs is that they are based on local information in the log. In other
words, they use the information about what tasks directly precede or directly
follow each other in a log to set the dependencies between these tasks. The
problem is that some of these dependencies are not captured by direct suc-
cession or precedence. For instance, consider the non-free-choice construct
in Figure 1.2. Note that the tasks involved in this non-free-choice constructs
never directly follow of precede each other. A second reason why some of
the techniques cannot mine certain constructs is because the notation they
use to model the processes does not support these constructs. For instance,
the notation used by the α-algorithm [17] and extensions [81] does not allow
for invisible tasks or duplicate tasks. Furthermore, approaches like the ones
in [52] and [73] only work over block-structured processes. Finally, for many
of these approaches, the number of times a relation holds in the log is irrel-
evant. Thus, these approaches are very vulnerable to noise because they are
unable to distinguish between high frequent and low frequent behavior.

Given all these reasons, we decided to investigate the following research
question: Is it possible to develop a control-flow process mining algorithm that
can discover all the common control-flow structures and is robust to noisy logs
at once? This thesis attempts to provide an answer to this question. In our
case, we have applied genetic algorithms [38, 61] to perform process mining.
We call it genetic process mining . The choice for using genetic algorithms
was mainly motivated by the absence of good heuristics that can tackle all the
constructs, and by the fact that genetic algorithms are intrinsically robust
to noise.

1.2 Genetic Process Mining

Genetic algorithms are a search technique that mimics the process of evolu-
tion in biological systems. The main idea is that there is a search space that
contains some solution point(s) to be found by the genetic algorithm. The
algorithm starts by randomly distributing a finite number of points into this



1.2 Genetic Process Mining 7

search space. Every point in the search space is called an individual and the
finite set of points at a given moment in time is called a population. Every
individual has an internal representation and the quality of an individual is
evaluated by the fitness measure. The search continues in an iterative pro-
cess that creates new individuals in the search space by recombining and/or
mutating existing individuals of a given population. That is the reason why
genetic algorithms mimic the process of evolution. They always re-use mate-
rial contained in already existing individuals. Every new iteration of a genetic
algorithm is called a generation. The parts that constitute the internal repre-
sentation of individuals constitute the genetic material of a population. The
recombination and/or modification of the genetic material of individuals is
performed by the genetic operators . Usually, there are two types of genetic
operators: crossover and mutation. The crossover operator recombines two
individuals (or two parents) in a population to create two new individuals
(or two offsprings) for the next population (or generation). The mutation
operator randomly modifies parts of individuals in the population. In both
cases, there is a selection criterion to choose the individuals that may un-
dergo crossover and/or mutation. To guarantee that good genetic material
will not be lost, a number of the best individuals in a population (the elite)
is usually directly copied to the next generation. The search proceeds with
the creation of generations (or new populations) until certain stop criteria
are met. For instance, it is common practice to set the maximum amount
of generations (or new populations) that can be created during the search
performed by the genetic algorithm, so that the search process ends even
when no individual with maximal fitness is found.

In the context of this thesis, individuals are process models, the fitness
assesses how well an individual (or process model) reflects the behavior in an
event log, and the genetic operators recombine these individuals so that new
candidate process models can be created. Therefore, our challenge was to
define (i) an internal representation that supports all the common constructs
in process models (namely, sequences, parallelism, choices, loops, and non-
free-choice, invisible tasks and duplicates tasks), (ii) a fitness measure that
correctly assesses the quality of the created process models (or individuals)
in every population and (iii) the genetic operators so that the whole search
space defined by the internal representation can be explored. All these three
points are related and it is common practice in the genetic algorithm commu-
nity to experiment with different versions of internal representations, fitness
measures and genetic operators. However, in this thesis, we have opted for
“fixing” a single combination for internal representation and genetic oper-
ators, and experimenting more with variations of the fitness measure. The
main motivation is to find out the core requirements that the fitness measure



8 Introduction

of a genetic algorithm to mine process models should consider, regardless of
the internal representation and the genetic operators. In our case, since we
look for a process model that objectively captures the behavior expressed in
the log, one obvious requirement to assess the quality of any individual (or
process model) is that this individual can reproduce (or parse) the traces
(i.e. cases or process instances) in the event log. However, although this
requirement is necessary, it is not sufficient because usually there is more
than one individual that can reproduce the behavior in the log. In particu-
lar, there is the risk of finding over-general or over-specific individuals. An
over-general individual can parse any case (or trace) that is formed by the
tasks in a log. For instance, Figure 1.3(a) shows an over-general individual
(or process model) for the log in Table 1.1. Note that this individual can
reproduce all the behavior in Table 1.1, but also allows for extra behavior
that cannot be derived from the four cases in this log. As an illustration, note
that the model in Figure 1.3(a) allows for the execution of the task “Send
Bill” after the task “Close Case”. An over-specific solution can only repro-
duce the exact behavior in the log, without any form of knowledge extraction
or abstraction. For instance, Figure 1.3(b) shows an over-specific individual
for the log in Table 1.1. Note that this individual does not allow the task
“Send Reminder” to be executed more than three times in a row. In fact,
over-specific models like this one do not give much more information than a
simple look at the unique cases in a log. The fitness measure described in
these thesis can distinguish between over-general and over-specific solutions.

The genetic approach described in this thesis has been implemented as
plug-ins in the ProM framework [32, 78].

1.3 Methodology

To evaluate our genetic approach, we have used a variety of simulation mod-
els 2 and a case study. Simulation was used to create the noise-free logs for
the experiments. As illustrated in Figure 1.4, based on existing process mod-
els (or original process models), logs were generated and given as input to the
genetic miner we have developed. The genetic miner discovered a model (the
mined model) for every log3. Note that the performed discovery is based on
data in the logs only. This means that, like it happens in real-life situations,
no information about the original models is used during the mining process
and only the logs are provided. Once the models were discovered, their qual-

2The simulation models were taken both from literature and student projects.
3Actually, a population of mined models (individuals) is returned, but only the best

individual is selected.



1.3 Methodology 9

File
Fine

Send
Bill Process

Payment

Close
Case

Send
Reminder

File
Fine

File
Fine

File
Fine

File
Fine

Send
Bill

Send
Bill

Send
Bill

Send
Bill

Send
Reminder

Send
Reminder

Send
Reminder

Process
Payment

Close
Case

Process
Payment

Process
Payment

Process
Payment

Close
Case

Close
Case

Close
Case

Send
Reminder

Send
Reminder

Send
Reminder

(a)

(b)

Figure 1.3: Examples of over-general (a) and over-specific (b) process models
to the log in Table 1.1.



10 Introduction

Figure 1.4: Experimental setup for synthetic logs created via simulation.

ity was assessed based on three criteria: (i) how many of the traces in the
log can be reproduced (or parsed) by the mined model, (ii) how close is the
behavior of the mined model to the behavior of the original one, and (iii)
whether the mined model tends to be over-general or over-specific. Because
different mined models can portrait the exact same behavior, we had to de-
velop analysis metrics that go beyond the sheer comparison of the structures
of the mined and original process models. Still for the experiments with
simulated logs, two settings were used: experiments with synthetic logs of
known models and of unknown models. The main difference from the exper-
iments with known models and unknown ones is that, in the first case, the
original models were mainly created by us and, therefore, were known before
the mined models were selected. In the second case, also called single-blind
experiments, the original model and the logs were generated by other people.
In both cases, models were mined based on the logs only and the best mined
model was objectively selected based on its fitness measure. The case study
was conducted to show the applicability of our genetic mining approach in
a real-life setting. The logs for the case study came from a workflow system
used in a Dutch municipality.

1.4 Contributions

This thesis has two main contributions:

• The definition of a genetic algorithm that can mine models with all
common structural constructs that can be found in process models,
while correctly capturing the most frequent behavior in the log. The



1.5 Road Map 11

definition of this algorithm consists of (i) an internal representation,
(ii) a fitness measure and (iii) two genetic operators: crossover and
mutation.

• The definition of analysis metrics that check for the quality of the mined
models based on the amount of behavior that they have in common with
the original models. These metrics are applicable beyond the scope
of genetic algorithms and quantify the similarity of any two process
models with respect to a given event log.

Additional contributions are:

• The provision of a common framework to create synthetic logs for pro-
cess mining algorithms.

• The implementation of all algorithms in an open-source tool (ProM).

1.5 Road Map

In this section we give a brief description of each chapter. The suggested
order of reading for the chapters is illustrated in Figure 1.5. The chapters
are organized as follows:

Chapter 1 The current chapter. This chapter provides an overview of the
approach and motivates the need for better process mining techniques.

Chapter 2 Provides a review of the related work in the area of control-flow
process mining.

Chapter 3 Uses a simple but powerful existing mining algorithm to intro-
duce the reader to the process mining field. Additionally, this chapter
defines notions that are used in the remaining chapters.

Chapter 4 Explains a genetic algorithm that can handle all common struc-
tural constructs, except for duplicate tasks. This chapter is the core
of this thesis because the solutions provided in chapters 5 and 6 build
upon the material presented in this chapter.

Chapter 5 Extends the approach in Chapter 4 to also mine process models
with duplicate tasks.

Chapter 6 Shows how we support the post-pruning of arcs from mined
models. The arc post-pruning can be used to manually “filter out” arcs
in the mined models that represent infrequent/exceptional behavior.

Chapter 7 Presents all the plug-ins that were developed in the ProM frame-
work to realize our genetic mining approach. The plug-ins range from
the mining algorithms themselves to the implementation of the defined
analysis metrics.



12 Introduction

Chapter 1

Chapter 2

Chapter 3

Appendix B

Chapter 4

Appendix A

Chapter 5

Chapter 6

Chapter 8Chapter 7 Appendix C

Chapter 9

Figure 1.5: Suggested order of reading for the chapters and appendices in
this thesis.



1.5 Road Map 13

Chapter 8 Describes the experiments with known models, the single-blind
experiments and the case study.

Chapter 9 Concludes this thesis and points out directions for future work.

In addition, three appendices are provided. Appendix A contains the map-
ping forth-and-back between Petri nets and the internal representation of
individuals. Appendix B shows all the models that were used during the
experiments with known models. Appendix C contains all the models that
were used during the single-blind experiments.



14 Introduction



Chapter 2

Related Work

This thesis presents a genetic approach for discovering the control-flow per-
spective of a process model. Therefore, this chapter focusses on reviewing
other approaches that also target the mining of this perspective. The remain-
der of this chapter is organized as follows. Section 2.1 provides an overview
about the related approaches. Section 2.2 describes in more details how ev-
ery approach (mentioned in Section 2.1) works. Section 2.3 presents a short
summary of this chapter.

2.1 Overview of the Related Approaches

The first papers on process mining 1 appeared in 1995, when Cook et al. [22,
23, 24, 25, 26] started to mine process models from event logs in the context
of software engineering. They called it process discovery . Process mining in
the business sense was first introduced 1998 by Agrawal et al. [18]. They
called it workflow mining . Since then, many groups have focussed on mining
process models [14, 17, 35, 43, 52, 73, 64, 81].

This section gives an overview about each one of these groups. The lenses
we use to analyse each approach is how well they handle the common struc-
tural patterns that can appear in the processes. We do so because our focus
is on the mining of the control-flow perspective. The structural patterns
are: sequence, parallelism, choice, loops, non-free-choice, invisible tasks and
duplicate tasks. These patterns were already explained in Section 1.1. Addi-
tionally to this control-flow pattern perspective, we also look at how robust
the techniques are with respect to noise. This is important because real-life
logs usually contain noise.

1In this section, whenever we use the term process mining, we actually mean the mining
of the control-flow perspective of a process model.



16 Related Work

Table 2.1 summarizes the current techniques. Before we dig into checking
how every related work approach is doing, let us explain what every row in
the table means:

• Event log indicates if the technique assumes that the log has informa-
tion about the start and the completion of a task (non-atomic tasks)
or not (atomic tasks). For instance, consider the net in Figure 2.1(a).
Techniques that work based on atomic tasks require at least two traces
to detect the parallelism between tasks A and B. One trace with the
substring “AB” and another with “BA”. However, techniques that
work with non-atomic tasks can detect this same parallelism with a sin-
gle process instance in which the execution times of A and B overlap.
In other words, the substring “Astart , Bstart , Acomplete , Bcomplete” would
be enough to detect the parallel construct.

• Mined model refers to the amount of information that is directly
shown in the structure of the mined process model. Some techniques
mine a process model that only expresses the task dependencies (for
instance, see Figure 2.1(b)); in other techniques, the mined process
model also contains the semantics of the split/join points. In other
words, other techniques directly show if the split/join points have an
OR, XOR or AND semantics (for instance, see Figure 2.1(a)). More-
over, some mining techniques aim at mining a whole model, others fo-
cus only on identifying the most common substructures in the process
model.

• Mining approach indicates if the technique tries to mine the pro-
cess model in a single step or if the approach has multiple steps with
intermediary mined process models that are refined in following steps.

• Sequence, choice and parallelism respectively show if the technique
can mine tasks that are in a sequential, choice or concurrent control-
flow pattern structure.

• Loops points out if the technique can mine only block-structured loops,
or if the technique can handle arbitrary types of loops. For instance,
Figure 2.1(e) shows a loop that is not block-structured.

• Non-free-choice shows if the technique can mine non-free-choice con-
structs that can be detected by looking at local information at the log
or non-local one. A non-local non-free-choice construct cannot be de-
tected by only looking at the direct successors and predecessors (the
local context) of a task in a log. As an illustration, consider the model in
figures 2.1(c) and 2.1(d). Both figures show a non-free-choice construct
involving the tasks A, B, C, D and E. However, the non-free-choice in
Figure 2.1(d) is local, while the one in Figure 2.1(c) is not. Note that



2.1 Overview of the Related Approaches 17

the task A never directly precedes the task C and a similar situation
holds for the tasks B and D in any trace of a log for the model in
Figure 2.1(c).

• Invisible tasks refer to the type of invisible tasks that the technique
can tackle. For example, invisible tasks can be used to skip other
tasks in a choice situation (see Figure 2.1(f), where B is skipped).
Other invisible tasks are used for more elaborate routing constructs
like split/join points in the model (see Figure 2.1(g), where the AND-
split and AND-join are invisible “routing” tasks.).

• Duplicate tasks can be in sequence in a process model (see Fig-
ure 2.1(h)), or they can be in parallel branches of a process model
(see Figure 2.1(i)).

• Added to the structural constructs, the noise perspective shows how
the techniques handle noise in the event log. Most of the techniques
handle noisy logs by first inferring the process model and, then, making
a post-pruning of the dependencies (or arcs) that are below a given
threshold.

The columns in Table 2.1 show the first author of the publication to which
the analysis summarized in this table refers to 2. Now that we know what
the information in the table means, let us see what we can conclude from it.

In short, Table 2.1 shows the following. Agrawal et al. [18] and Pinter
et al. [64] are the only ones that do not explicitly capture the nature of the
split/join points in the mined models. The reason is that they target a model
for the Flowmark workflow system [53] and every point in this system has
an OR-split/join semantics. In fact, every directed arc in the model has
a boolean function that evaluates to true or false after a task is executed.
The evaluation of the boolean conditions sets how many branches are ac-
tivated after a task is executed. Cook et al. [23] have the only approach
that does not target a whole mined model. Their approach looks for the
most frequent patterns in the model. Actually, sometimes they do mine a
whole process model, but that is not their main aim. The constructs that
cannot be mined by all techniques are loops, non-free-choice, invisible tasks
and duplicate tasks. Grecco et al. [44] cannot mine any kind of loops. The
reason is that they prove that the models their algorithms mine allow for
as little extra behavior (that is not in the event log) as possible. They do
so by enumerating all the traces that the mined model can generate and
comparing them with the traces in the event log. Models with loops would
make this task impractical. Some other techniques cannot mine arbitrary

2Some of the authors have worked in multiple approaches.



18 Related Work

(a)

X
B

Y
A

(b)

X
B

Y
A

(f)

X

B

Y

A

(g)

B

A

X Y
A

B

X BA AC Y (h)

X
C

A

A
Y

B
(i)

X
B

A

D
E

C
(e)

F

Y

X

B

A

D

Y

C

E X B

A

D Y

C

E

(c) (d)

Figure 2.1: Illustration of the main control-flow patterns.



2.1 Overview of the Related Approaches 19

C
o
ok

et
al

.
[2

3]

A
gr

aw
al

et
al

.
[1

8]

P
in

te
r

et
al

.
[6

4]

H
er

b
st

et
al

.
[5

2]

S
ch

im
m

[7
3]

G
re

cc
o

et
al

.
[4

4]

V
an

d
er

A
al

st
et

al
.
[1

7]

W
ei

jt
er

s
et

al
.
[7

9]

D
on

ge
n

et
al

.
[3

5]

W
en

et
al

.
[8

1]

Event log:
- Atomic tasks X X X X X X X X

- Non-atomic tasks X X

Mined model:
- Dependencies X X X X X X X X X X

- Nature split/join X X X X X X X X

- Whole model X X X X X X X X X

Mining approach:
- Single step X X X X X

- Multiple steps X X X X X

Sequence: X X X X X X X X X X

Choice: X X X X X X X X X X

Parallelism: X X X X X X X X X X

Loops:
- Structured X X X X X X X X X

- Arbitrary X X X X X X

Non-free-choice:
- Local X X X X X X X X

- Non-local X

Invisible Tasks:
- Skip X X X X X X X X

- Split/join X X

Duplicate Tasks:
- Sequence X

- Parallel X

Noise:
- Dependency pruning X X X X

- Other X

Table 2.1: Related work analysis.



20 Related Work

loops because their model notation (or representation) does not support this
kind of loop. The main reason why most techniques cannot mine non-local
non-free-choice is that most of their mining algorithms are based on local in-
formation in the logs. The techniques that do not mine local non-free-choice
cannot do so because their representation does not support such a construct.
Usually the technique is based on a block-structured notation, like Herbst et
al. and Schimm. Skip tasks are not mined due to representation limitations
as well. Split/join invisible tasks are not mined by many techniques, except
for Schimm and Herbst et al.. Actually, we also do not target at discovering
such kind of tasks. However, it is often the case that it is possible to build a
model without any split/join invisible tasks that expresses the same behavior
as in the model with the split/join invisible tasks. Duplicate tasks are not
mined because many techniques assume that the mapping between the tasks
and their labels is injective. In other words, the labels are unique per task.
The only techniques that mine duplicate tasks are Cook et al. [24, 25] for se-
quential processes only, and Herbst et al. [49, 51, 52] for both sequential and
parallel processes. We do not consider Schimm [73] to mine process models
with duplicate tasks because his approach assumes that the detection of the
duplicate tasks is done in a pre-processing step. This step identifies all the
duplicates and makes sure that they have unique identifiers when the event
log is given as input to the mining algorithm. Actually, all the techniques
that we review here would tackle duplicate tasks if this same pre-processing
step would be done before the log in given as input to them.

2.2 A More Detailed Analysis of Related Ap-

proaches

For the interested reader, the subsections 2.2.1 to 2.2.10 give more details
about each of the approaches in Table 2.1 (see Section 2.1). Every subsec-
tion contains a short summary about the approach and highlights its main
characteristics.

2.2.1 Cook et al.

Cook et al. [22, 23, 24, 25, 26] were the first ones to work on process mining.
The main difference of their approach compared to the other approaches is
that they do not really aim at retrieving a complete and correct model, but
a model that express the most frequent patterns in the log.

In their first papers [22, 24, 25], they extended and developed algorithms
to mine sequential patterns from event logs in the software development



2.2 A More Detailed Analysis of Related Approaches 21

domain. These patterns were expressed as Finite State Machines (FSMs).
In [22, 24, 25] they show three algorithms: RNet, KTail and Markov. From
these three algorithms, only Markov was fully created by Cook et al.. The
other algorithms were existing methods extended by the authors. The RNet
algorithm provides a purely statistical approach that looks at a window of
predecessor events while setting the next event in the FSM. The approach
uses neural networks. The authors extended this approach to work with
window sizes bigger than 2 and to more easily retrieve the process model
“coded” in the neural network. The Ktail algorithm provides a purely algo-
rithmic approach that looks at a window of successor events while building
the equivalence classes that compose the mined process model. The authors
extended this approach to perform more folding in the mined model and to
make it robust to noise. The Markov algorithm is based on a mix of a statisti-
cal and algorithmic approaches and looks at both predecessors and successors
events while inserting a task into a process model. The approach uses fre-
quency tables to set the probability that an event will occur, given that it was
preceded and succeeded by a sequence of certain size. The Markov algorithm
proved to be superior to the other two algorithms. RNet was the “worst” of
the three algorithms. All algorithms are implemented in the DaGama tool
that is part of the data analysis framework Balboa.

In [23, 26], Cook et al. extend their Markov approach to mine concur-
rent process models. The main challenge here was to identify the nature of
the split/join points. One notable fact is that the authors now work with
a window size of one. In other words, they only look at the frequency ta-
bles for the direct predecessors and direct successors of an event. Additional
to this change, the authors define four statistical metrics that are used to
distinguish between XOR/AND-split/join points. The metrics are: entropy,
event type counts, causality and periodicity. The entropy indicates how re-
lated two event types are. This is important to set the direct successors and
predecessors of an event type. The event type counts distinguish between
the AND/XOR-split/join situations. Note that in an AND-split situation,
the split point and its direct successors are executed the same amount of
times. In an XOR-split situation, the amount of times the direct successors
are executed add up to the amount of times the XOR-split point executes
(assuming a noise-free log!). The causality metric is used to distinguish be-
tween concurrent events and length-two-loop events. The periodicity metric
helps in identifying the synchronization points. Due to their probabilistic
nature, Cook et al.’s algorithms are robust to noise.



22 Related Work

2.2.2 Agrawal et al.

Agrawal et al. [18] were the first ones to apply process discovery (or process
mining, as we name it) in a business setting, specifically in the context of
IBM’s MQ Series workflow product. Their mining algorithm assumes that
the log has atomic tasks. The mined model shows the dependencies between
these tasks, but no indication of the semantics of the split/join points. Be-
sides, their approach requires the target model to have a single start task
and a single end task. This is not really a limitation since one can always
preprocess the log and respectively insert a start task and an end one at the
beginning and at the end of every process instance. The algorithm does not
handle duplicate tasks and assumes that no task appears more than once in
a process instance. So, to tackle loops, a re-labeling process takes place.

The mining algorithm aims at retrieving a complete model. In a nutshell,
it works as follows. First the algorithm renames repeated labels in a process
instance. This ensures the correct detection of loops. Second, the algorithm
builds a dependency-relation graph with all the tasks in the event log. Here it
is remarkable how the dependency relations are set. The algorithm does not
only consider the appearance of task A next to B in a same process instance.
Two tasks may also be dependent based on transitiveness. So, if the task A
is followed by the task C and C by B, then B may depend on A even when
they never appear in a same process instance. After the dependency-relation
graph has been inferred, the algorithm removes the arrows in both directions
between two tasks, removes the strongly connected components, and applies
a transitive reduction to the subgraph (at the main graph) that represents
a process instance. Finally, the re-labelled tasks are merged into a single
element.

The mined model has the dependencies and the boolean functions asso-
ciated to the dependencies. These boolean functions are determined based
on other parameters in the log. Although they do not show in [18] how to
mine these functions, they indicate that a data mining classifier algorithm
can be used to do so. The noise is handled by pruning the arcs that are
inferred less times than a certain threshold. The authors have implemented
their approach (since they conducted some experiments), but they do not
mention a public place where one could get this implementation.

2.2.3 Pinter et al.

Pinter et al.’s work [42, 64] is an extension of the Agrawal et al.’s one (see
Subsection 2.2.2). The main difference is that they consider the tasks to
have a start and a complete event. So, the detection of parallelism becomes



2.2 A More Detailed Analysis of Related Approaches 23

more trivial. However, better mined models are also obtained. Another
difference is that they only look at the process instances individually to set
the dependency relations. Agrawal et al. looked at the log as whole. The
rest is pretty much the same. Like Agrawal et al., the authors also do not
mention where to get their approach’s implementation.

2.2.4 Herbst et al.

The remarkable aspect of Herbst et al.’s [49, 51, 52] approach is its ability
to tackle duplicate tasks. Herbst et al. developed three algorithms: Merge-
Seq, SplitSeq and SplitPar. All the three algorithms can mine models with
duplicate tasks. In short, the algorithms mine process models in a two-step
approach. In the first step, a beam-search is performed to induce a Stochastic
Activity Graph (SAG) that captures the dependencies between the tasks in
the workflow log. This graph has transition probabilities associated to every
dependency but no information about AND/XOR-split/join. The transition
probability indicates the probability that a task is followed by another one.
The beam-search is mainly guided by the log-likelihood (LLH) metric. The
LLH metric indicates how well a model express the behavior in the event
log. The second step converts the SAG to the Adonis Definition Language
(ADL). The ADL is a block-structured language to specify workflow models.
The conversion from SAG to ADL aims at creating well-defined workflow
models. MergeSeq and SplitSeq [51] are suitable for the mining of sequential
process models. SplitPar [49, 52] can also mine concurrent process models.
The MergeSeq algorithm is a bottom-up approach that starts with a SAG
that has a branch for every unique process instance in the log, and apply
successive folding to nodes in this SAG. The SplitSeq algorithm has a top-
down approach that starts with a SAG that models the behavior in the log
but does not contain any duplicate tasks. The algorithm applies a set of split
operations to nodes in the SAG. The SplitPar algorithm can be considered
as an extension of the SplitSeq one. It is also top-down. However, because it
targets at mining concurrent processes, the split operations are done at the
process instance level, instead of on the SAG directly. The reason for that is
that the split of a node may have non-local side effects for the structure of the
process model. All algorithms are implemented in the InWoLve mining tool.
In [47], Hammori shows how he made the InWoLve tool more user-friendly.
His guidelines are useful for people that want to develop a process mining
tool.



24 Related Work

2.2.5 Schimm

The main difference from Schimm’s approach [14, 69, 70, 71, 72, 73] to the
others is that he aims at retrieving a complete and minimal model. In
other words, the model does not generalize beyond what is in the log. For
instance, the other approaches consider two events to be parallel if there is
an interleaving of their appearance in the log. In Schimm’s case, there are
two possibilities for these events. If their start and complete times overlap,
they are indeed mined in parallel. Otherwise, they are in an interleaving
situation. So, they can occur in any order, by they cannot occur at the same
time.

Schimm mines process models by defining a set of axioms for applying
rewriting rules over a workflow algebra. The models are block-structured
(well-formed, safe and sound). Because the models are block-structured, one
would expect that Schimm’s approach cannot model partial synchronization.
However, Schimm smartly extended his algebra to model pointers to the
tasks in the models, so that the modelling of partial synchronization becomes
viable. The main idea is that a task can be executed whenever all of its
pointers in the model are enabled. Note that this is different from duplicate
tasks.

Schimm’s approach does not really tackle duplicates during the mining.
Actually, it assumes that his mining technique is embedded in a Knowledge
Discovery Database (KDD) process [39]. This way, the log is pre-processed
and all duplicate tasks are detected by their context (predecessors and suc-
cessors). The author does not elaborate in his papers how to perform such
detection. Additionally, this pre-processing phase also makes sure that noise
is tackled before the event-log is given to the mining algorithm.

The mining algorithm assumes that tasks have a start and a complete
event. So, the overlapping between start and complete states of different
tasks is used to detect concurrent behavior, alternative behavior or causal
one. The algorithm uses a six-step approach: (1) the algorithm relabels the
multiple appearances of a same task identifier in a log; (2) the algorithm
cluster the process instances based on the happened-before relationship and
the set of tasks; (3) the clusters are further grouped based on the precedence
relation; (4) a block-structured model is built for every cluster and they are
bundled into a single process model that has a big alternative operator at
the beginning; (5) the term-rewriting axioms are used to perform folding in
the models; and (6), if the event log has this information, resource allocation
is included into the mined model. The last step is optional. The algorithm
is implemented in the tool Process Miner [69].

Schimm’s approach cannot mine non-local non-free-choice constructs be-



2.2 A More Detailed Analysis of Related Approaches 25

cause it only looks at direct neighbors in a process instance. We do not
consider the approach to mine duplicate tasks because the duplicates are
detected in a pre-processing step.

2.2.6 Greco et al.

Greco et al. [43, 44] aim at mining a hierarchical tree of process models
that describe the event log at different levels of abstraction. The root of the
tree has the most general model that encompasses the features (patterns of
sequences) that are common in all process instances of the log. The leaves
represent process models for partitions of the log. The nodes in between the
root node and the leaf ones show the common features of the nodes that are
one level below. To build this tree, the authors have a two-step approach.
The first step is top-down. It starts by mining a model for the whole event
log. Given this root model, a feature selection is performed to cluster the
process instances in the log in partition sets. This process is done for every
level of the tree until stop conditions are met. Once the tree is built, the
second step takes place. This second step is bottom-up. It starts at the leaves
of the mined tree and goes up until the root of the tree. The main idea is
that every parent model (or node in the tree generated in the first step) is
an abstract view of all of its child models (or nodes). Therefore, the parent
model preserves all the tasks that are common to all of its child models, but
replaces the tasks that are particular to some of its child models by new
tasks. These new tasks correspond to sub-processes in the parent model.
The first step of the approach is implemented as the Disjunctive Workflow
Schema (DWS) mining plug-in in the ProM framework tool [32].

2.2.7 Van der Aalst et al.

Van der Aalst et al. [11, 17, 28, 29, 32, 33] developed the α-algorithm. The
main difference from this approach to the others is that Van der Aalst et
al. prove to which class of models their approach is guaranteed to work.
The authors assume the log to be noise-free and complete with respect to
the follows relation. So, if in the original model a task A can be executed
just before a task B (i.e., B follows A), at least one process instance in the
log shows this behavior. Their approach is proven to work for the class of
Structured Workflow Nets (SWF-nets) without short loops and implicit places
(see [17] for details). The α-algorithm works based on binary relations in the
log. There are four relations: follows, causal, parallel and unrelated. Two
tasks A and B have a follows relation if they appear next to each other in
the log. This relation is the basic relation from which the other relations



26 Related Work

derive. Two tasks A and B have a causal relation if A follows B, but B does
not follow A. If B also follows A, then the tasks have a parallel relation.
When A and B are not involved in a follows relation, they are said to be
unrelated. Note that all the dependency relations are inferred based on local
information in the log. Therefore, the α-algorithm cannot tackle non-local
non-free-choice. Additionally, because the α-algorithm works based on sets,
it cannot mine models with duplicate tasks.

In [11, 28, 29] the α-algorithm is extended to mine short loops as well.
The work presented in [28, 29] did so by adding more constraints to the notion
of log completeness and by redefining the binary relations. The work in [11]
works based on non-atomic tasks, so that parallel and short-loop constructs
can be more easily captured.

The α-algorithm was originally implemented in the EMiT tool [33]. After-
wards, this algorithm became the α-algorithm plug-in in the ProM framework
tool [32].

Finally, it is important to highlight that the α-algorithm does not take
into account the frequency of a relation. It just checks if the relation holds
or not. That is also one of the reasons why the α-algorithm is not robust to
noise.

2.2.8 Weijters et al.

The approach by Weijters et al. [16, 79] can be seen as an extension of the
α-algorithm. As described in Section 2.2.7, it works based on the follows
relation. However, to infer the remaining relations (causal, parallel and un-
related), it considers the frequency of the follows relation in the log. For this
reason this approach can handle noise. The approach is also a bit similar to
Cook et al.’s one (see Subsection 2.2.1). The main reason behind the heuris-
tics is that the more often task A follows task B and the less often B follows
A, the higher the probability that A is a cause for B. Because the algorithm
mainly works based on binary relations, the non-local non-free-choice con-
structs cannot be captured. The algorithm was originally implemented in
the Little Thumb tool [79]. Nowadays this algorithm is implemented as the
Heuristics miner plug-in in the ProM framework tool [32].

2.2.9 Van Dongen et al.

Van Dongen et al. [34, 35] introduced a multi-step approach to mine Event-
driven Process Chains (EPCs). The first step consists of mining a process
model for every trace in the event log. To do so, the approach first makes
sure that no task appears more than once in every trace. This means that



2.3 Summary 27

every instance of a task in a trace is assigned a unique identifier. After
this step, the algorithm infers the binary relations like the α-algorithm does
(see Subsection 2.2.7). These binary relations are inferred at the log level.
Based on these relations, the approach builds a model for every trace in the
log. These models show the partial order between the instances of tasks in
a trace. Note that at the trace level no choice is possible because all tasks
(instances) in the trace have been indeed executed. The second step performs
the aggregation (or merging) of the models mined, during the first step, for
every trace. Basically, the identifiers that refer to instances of a same task
are merged. The algorithm distinguishes between three types of split/join
points: AND, OR and XOR. The type of the split/join points is set based
on counters associated to the edges of the aggregated task. It is a bit like
the frequency metric in Cook et al. (see Subsection 2.2.1). If a split point
occurs as often as its direct successors, an AND-split is set. If the occurrence
of its successors add up to the number of times this split point was executed,
an XOR-split is determined. Otherwise, an OR-split is set. The algorithm
is implemented as the Multi-phase mining plug-in at the ProM framework
tool [32].

2.2.10 Wen et al.

Wen et al. [80, 81] have implemented two extensions for the α-algorithm (cf.
Subsection 2.2.7). The first extension - the β-algorithm [80] - can mine Struc-
tured Workflow Nets (SWF-nets) with short loops. The extension is based on
the assumption that the tasks in the log are non-atomic. The approach uses
the intersecting execution times of tasks to distinguish between parallelism
and short loops. The β-algorithm has been implemented as the Tsinghua-
alpha algorithm plugin at the ProM framework. The second extension - the
α++-algorithm [81] - can mine Petri nets with local or non-local non-free-
choice constructs. This extension follows-up on the extensions in [28, 29].
The main idea is that the approach looks at window sizes bigger than 1 to
set the dependencies between the tasks in the log. This second extension is
implemented as the Alpha++ algorithm plug-in in the ProM framework.

2.3 Summary

This chapter reviewed the main approaches that aim at mining the control-
flow perspective of a process model. The approaches were compared based
on their capabilities to handle the common constructs in process models,
as well as the presence of noise in the log. As it can be seen in Table 2.1,



28 Related Work

the constructs that cannot be mined by all approaches are: loops (especially
the arbitrary ones), invisible tasks, non-free-choice (especially the non-local
ones) and duplicate tasks. Loops and invisible tasks cannot be mined mainly
because they are not supported by the representation that is used by the ap-
proaches. Non-free-choice is not mined because most of the approaches work
based on local information in the event log. As discussed in Section 2.1,
non-local non-free-choice requires the techniques to look at more distant re-
lationships between the tasks. Duplicate tasks cannot be mined because
many approaches assume an one-to-one relation between the tasks in the log
and their labels. Finally, noise cannot be properly tackled because many
techniques do not take the frequency of the task dependencies into account
when mining the model.

As mentioned in Chapter 1, our aim is to develop an algorithm to mine
models that can also contain advanced constructs in processes and is robust
to noise. By looking at the reasons why the current approaches have prob-
lems to mine such constructs, we can already draw some requirements to
our algorithm: (i) the representation should support all constructs, (ii) the
algorithm should also consider non-local information in the log, and (iii) the
algorithm should take into account the frequency of the traces/tasks in the
log. However, before digging deep into how our algorithm actually works, let
us get more insight into the mining of the control-flow perspective of process
models. The next chapter uses the α-algorithm to do so. We chose this algo-
rithm because some the concepts used in our genetic approach were inspired
by the concepts dealt with in the α-algorithm.



Chapter 3

Process Mining in Action: The
α-algorithm

This chapter uses the α-algorithm [17] to give the reader more insight into
the way control-flow perspective of a process can be mined. We chose the
α-algorithm for two main reasons: (i) it is simple to understand and pro-
vides a basic introduction into the field of process mining, and (ii) some of
its concepts are also used in our genetic approach. The α-algorithm receives
as input an event log that contains the sequences of execution (traces) of
a process model. Based on this log, ordering relations between tasks are
inferred. These ordering relations indicate, for instance, whether a task is a
cause to another tasks, whether two tasks are in parallel, and so on. The α-
algorithm uses these ordering relations to (re-)discover a process model that
describes the behavior in the log. The mined (or discovered) process model
is expressed as a Workflow net (WF-net). Workflow nets form a special type
of Petri nets. This chapter introduces and defines the concepts and notions
that are required to understand the α-algorithm. However, some of these
definitions and notions are also used in chapters 4 to 6. For example, the
notions of Petri nets (Definition 1), bags , firing rule (Definition 2), proper
completion (Definition 10), implicit place (Definition 11) and event log (Def-
inition 13) are also used in subsequent chapters. The reader familiar with
process mining techniques and the previously mentioned notions can safely
skip this chapter.

The remainder of this chapter is organized as follows. Petri nets, workflow
nets and some background notations used by the α-algorithm are introduced
in Section 3.1. The α-algorithm itself is described in Section 3.2. The limi-
tations of the α-algorithm are discussed in Section 3.3. Section 3.4 explains
the relations between the constructs that the α-algorithm cannot correctly
mine. Pointers to extensions of the α-algorithm are given in Section 3.5.



30 Process Mining in Action: The α-algorithm

Section 3.6 summarizes this chapter.

3.1 Preliminaries

This section contains the main definitions used by the α-algorithm. A more
detailed explanation about the α-algorithm and Structured Workflow Nets
(SWF-nets) is given in [17]. In Subsection 3.1.1, standard Petri-net notations
are introduced. Subsection 3.1.2 defines the class of WF-nets.

3.1.1 Petri Nets

We use a variant of the classic Petri-net model, namely Place/Transition
nets. For an elaborate introduction to Petri nets, the reader is referred
to [31, 62, 66].

Definition 1 (P/T-nets). 1 A Place/Transition net, or simply P/T-net, is
a tuple (P, T, F ) where:

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = ∅, and

3. F ⊆ (P ×T )∪ (T ×P ) is a set of directed arcs, called the flow relation.

A marked P/T-net is a pair (N, s), where N = (P, T, F ) is a P/T-net and
where s is a bag over P denoting the marking of the net, i.e. s ∈ P → IN.
The set of all marked P/T-nets is denoted N .

A marking is a bag over the set of places P , i.e., it is a function from P to
the natural numbers. We use square brackets for the enumeration of a bag,
e.g., [a2, b, c3] denotes the bag with two a-s, one b, and three c-s. The sum of
two bags (X + Y ), the difference (X − Y ), the presence of an element in a
bag (a ∈ X), the intersection of two bags (X ∩Y ) and the notion of subbags
(X ≤ Y ) are defined in a straightforward way and they can handle a mixture
of sets and bags.

Let N = (P, T, F ) be a P/T-net. Elements of P ∪ T are called nodes. A
node x is an input node of another node y iff there is a directed arc from x to
y (i.e., (x, y) ∈ F or xFy for short). Node x is an output node of y iff yFx.
For any x ∈ P ∪ T ,

N

• x = {y | yFx} and x
N

•= {y | xFy}; the superscript N
may be omitted if clear from the context.

1In the literature, the class of Petri nets introduced in Definition 1 is sometimes
referred to as the class of (unlabeled) ordinary P/T-nets to distinguish it from the
class of Petri nets that allows more than one arc between a place and a transition,
and the class of Petri nets that allows for transition labels.



3.1 Preliminaries 31

A
B

C
D

E F

Figure 3.1: An example of a Place/Transition net.

Figure 3.1 shows a P/T-net consisting of 7 places and 6 transitions. Tran-
sition A has one input place and two output places. Transition A is an AND-
split. Transition D has two input places and one output place. Transition
D is an AND-join. The black dot in the input place of A and E represents
a token. This token denotes the initial marking. The dynamic behavior of
such a marked P/T-net is defined by a firing rule.

Definition 2 (Firing rule). Let N = ((P, T, F ), s) be a marked P/T-net.
Transition t ∈ T is enabled, denoted (N, s)[t〉, iff •t ≤ s. The firing rule [ 〉
⊆ N ×T×N is the smallest relation satisfying for any (N = (P, T, F ), s) ∈
N and any t ∈ T , (N, s)[t〉 ⇒ (N, s) [t〉 (N, s− •t + t•).

In the marking shown in Figure 3.1 (i.e., one token in the source place),
transitions A and E are enabled. Although both are enabled only one can
fire. If transition A fires, a token is removed from its input place and tokens
are put in its output places. In the resulting marking, two transitions are
enabled: B and C. Note that B and C can be fired concurrently and we
assume interleaving semantics. In other words, parallel tasks are assumed to
be executed in some order.

Definition 3 (Reachable markings). Let (N, s0) be a marked P/T-net in
N . A marking s is reachable from the initial marking s0 iff there exists a
sequence of enabled transitions whose firing leads from s0 to s. The set of
reachable markings of (N, s0) is denoted [N, s0〉.

The marked P/T-net shown in Figure 3.1 has 6 reachable markings. Some-
times it is convenient to know the sequence of transitions that are fired in
order to reach some given marking. This thesis uses the following nota-
tions for sequences. Let A be some alphabet of identifiers. A sequence of
length n, for some natural number n ∈ IN, over alphabet A is a function
σ : {0, . . . , n − 1} → A. The sequence of length zero is called the empty
sequence and written ε. For the sake of readability, a sequence of positive
length is usually written by juxtaposing the function values. For example, a
sequence σ = {(0, a), (1, a), (2, b)}, for a, b ∈ A, is written aab. The set of all
sequences of arbitrary length over alphabet A is written A∗.



32 Process Mining in Action: The α-algorithm

Definition 4 (∈, first , last). Let A be a set, ai ∈ A (i ∈ IN), and σ =
a0a1...an−1 ∈ A∗ a sequence over A of length n. Functions ∈, first, last are
defined as follows:

1. a ∈ σ iff a ∈ {a0, a1, ...an−1},

2. first(σ) = a0, if n ≥ 1, and

3. last(σ) = an−1, if n ≥ 1.

Definition 5 (Firing sequence). Let (N, s0) with N = (P, T, F ) be a mark-
ed P/T net. A sequence σ ∈ T ∗ is called a firing sequence of (N, s0) if and
only if, for some natural number n ∈ IN, there exist markings s1, . . . , sn and
transitions t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i with 0 ≤ i < n,
(N, si)[ti+1〉 and si+1 = si−•ti+1 +ti+1•. (Note that n = 0 implies that σ = ε
and that ε is a firing sequence of (N, s0).) Sequence σ is said to be enabled
in marking s0, denoted (N, s0)[σ〉. Firing the sequence σ results in a marking
sn, denoted (N, s0) [σ〉 (N, sn).

Definition 6 (Connectedness). A net N = (P, T, F ) is weakly connected,
or simply connected, iff, for every two nodes x and y in P ∪T , x(F ∪F−1)∗y,
where R−1 is the inverse and R∗ the reflexive and transitive closure of a
relation R. Net N is strongly connected iff, for every two nodes x and y,
xF ∗y.

We assume that all nets are weakly connected and have at least two nodes.
The P/T-net shown in Figure 3.1 is connected but not strongly connected.

Definition 7 (Boundedness, safeness). A marked net (N, s), with N =
(P, T, F ), is bounded iff the set of reachable markings [N, s〉 is finite. It is
safe iff, for any s′ ∈ [N, s〉 and any p ∈ P , s′(p) ≤ 1. Note that safeness
implies boundedness.

The marked P/T-net shown in Figure 3.1 is safe (and therefore also bounded)
because none of the 6 reachable states puts more than one token in a place.

Definition 8 (Dead transitions, liveness). Let (N, s), with N = (P, T, F ),
be a marked P/T-net. A transition t ∈ T is dead in (N, s) iff there is no
reachable marking s′ ∈ [N, s〉 such that (N, s′)[t〉. (N, s) is live iff, for ev-
ery reachable marking s′ ∈ [N, s〉 and t ∈ T , there is a reachable marking
s′′ ∈ [N, s′〉 such that (N, s′′)[t〉. Note that liveness implies the absence of
dead transitions.

None of the transitions in the marked P/T-net shown in Figure 3.1 is dead.
However, the marked P/T-net is not live since it is not possible to enable
each transition repeatedly.



3.1 Preliminaries 33

3.1.2 Workflow Nets

Most workflow systems offer standard building blocks such as the AND-split,
AND-join, XOR-split, and XOR-join [12, 40, 54, 57]. These are used to model
sequential, conditional, parallel and iterative routing (WFMC [40]). Clearly,
a Petri net can be used to specify the routing of cases. Tasks are modeled
by transitions and causal dependencies are modeled by places and arcs. In
fact, a place corresponds to a condition which can be used as pre- and/or
post-condition for tasks. An AND-split corresponds to a transition with two
or more output places, and an AND-join corresponds to a transition with two
or more input places. XOR-splits/joins correspond to places with multiple
outgoing/ingoing arcs. Given the close relation between tasks and transitions
we use the terms interchangeably.

A Petri net which models the control-flow dimension of a workflow, is
called a WorkFlow net (WF-net). It should be noted that a WF-net specifies
the dynamic behavior of a single case in isolation.

Definition 9 (Workflow nets). Let N = (P, T, F ) be a P/T-net and t̄ a
fresh identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i such that •i = ∅,

2. object completion: P contains an output place o such that o• = ∅,

3. connectedness: N̄ = (P, T∪{t̄}, F∪{(o, t̄), (t̄, i)}) is strongly connected,

The P/T-net shown in Figure 3.1 is a WF-net. Note that although the net
is not strongly connected, the short-circuited net with transition t̄ is strongly
connected. Even if a net meets all the syntactical requirements stated in
Definition 9, the corresponding process may exhibit errors such as deadlocks,
tasks which can never become active, livelocks, garbage being left in the
process after termination, etc. Therefore, we define the following correctness
criterion.

Definition 10 (Sound). Let N = (P, T, F ) be a WF-net with input place i
and output place o. N is sound iff:

1. safeness: (N, [i]) is safe,

2. proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],

3. option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and

4. absence of dead tasks: (N, [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W.

The WF-net shown in Figure 3.1 is sound. Soundness can be verified using
standard Petri-net-based analysis techniques. In fact soundness corresponds
to liveness and safeness of the corresponding short-circuited net [7, 8, 12].



34 Process Mining in Action: The α-algorithm

This way efficient algorithms and tools can be applied. An example of a tool
tailored towards the analysis of WF-nets is Woflan [76, 77].

The α-algorithm aims at rediscovering WF-nets from event logs. How-
ever, not all places in sound WF-nets can be detected. For example places
may be implicit which means that they do not affect the behavior of the
process. These places remain undetected by the α-algorithm. Therefore, we
have defined the notion of implicit places.

Definition 11 (Implicit place). Let N = (P, T, F ) be a P/T-net with
initial marking s. A place p ∈ P is called implicit in (N, s) if and only if,
for all reachable markings s′ ∈ [N, s〉 and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒
s′ ≥ •t.

Figure 3.1 contains no implicit places. However, adding a place p connecting
transition A and D yields an implicit place. The α-algorithm is unable to
detect p because the addition of the place does not change the behavior of
the net and therefore is not visible in the log.

(i) (ii)

Figure 3.2: Constructs not allowed in SWF-nets.

The α-algorithm is proven to correctly mine structured workflow nets
(SWF-nets). This implies that the constructs shown in Figure 3.2 may not
always be correctly derived by the α-algorithm. The left construct illustrates
the constraint that choice and synchronization should never meet. If two
transitions share an input place, and therefore “fight” for the same token,
they should not require synchronization. This means that choices (places
with multiple output transitions) should not be controlled by synchroniza-
tions. The right-hand construct in Figure 3.2 illustrates the constraint that
if there is a synchronization all directly preceding transitions should have
fired, i.e., it is not allowed to have synchronizations directly preceded by an
XOR-join. SWF-nets are defined as:

Definition 12 (SWF-net). A WF-net N = (P, T, F ) is an SWF-net (Struc-
tured workflow net) if and only if:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.

2. For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.



3.2 The α-Algorithm 35

3. There are no implicit places.

3.2 The α-Algorithm

The starting point of any process mining algorithm is an event log. An event
log is a bag of event traces. Each trace corresponds to an execution of a
process, i.e. a case or process instance. Note that the same traces of events
may occur multiple times in a log. In this situation, different cases followed
the same “path” in the process.

Definition 13 (Event Trace, Event Log). Let T be a set of tasks. σ ∈ T ∗

is an event trace and L : T ∗ → IN is an event log. For any σ ∈ dom(L),
L(σ) is the number of occurrences of σ. The set of all event logs is denotes
by L.

Note that we use dom(f) and rng(f) to respectively denote the domain and
range of a function f . Furthermore, we use the notation σ ∈ L to denote
σ ∈ dom(L) ∧ L(σ) ≥ 1. For example, assume a log L = [abcd, acbd, abcd]
for the net in Figure 3.1. Then, we have that L(abcd) = 2, L(acbd) = 1 and
L(ab) = 0.

From an event log, relations between tasks can be inferred. In the case
of the α-algorithm, any two tasks in the event log must have one of the
following four ordering relations : >L (follows), →L (causal), ‖L (parallel)
and #L (unrelated). These ordering relations are extracted based on local
information in the event log. The ordering relations are defined as:

Definition 14 (Log-based ordering relations). Let L be a event log over
T , i.e., L : T ∗ → IN. Let a, b ∈ T :

• a >L b if and only if there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n−
1} such that σ ∈ L and ti = a and ti+1 = b,

• a→L b if and only if a >L b and b 6>L a,

• a#Lb if and only if a 6>L b and b 6>L a, and

• a‖Lb if and only if a >L b and b >L a.

To ensure the event log contains the minimal amount of information necessary
to mine the workflow, the notion of log completeness is defined as follows.

Definition 15 (Complete event log). Let N = (P, T, F ) be a sound WF-
net, i.e., N ∈ W. L is an event log of N if and only if dom(L) ∈ T ∗ and
every trace σ ∈ L is a firing sequence of N starting in state [i] and ending in
state [o], i.e., (N, [i])[σ〉(N, [o]). L is a complete event log of N if and only
if for any event log L′ of N : >L′⊆>L.



36 Process Mining in Action: The α-algorithm

For Figure 3.1, a possible complete event log L is: {abcd, acbd, ef}. From
this complete log, the following ordering relations are inferred:

• (follows) a >L b, a >L c, b >L c, b >L d, c >L b, c >L d and e >L f .

• (causal) a→L b, a→L c, b→L d, c→L d and e→L f .

• (parallel) b‖Lc and c‖Lb.

• (unrelated) x#Ly and y#Lx for x ∈ {a, b, c, d} and y ∈ {e, f}.

Now we can give the formal definition of the α-algorithm followed by a more
intuitive explanation.

Definition 16 (Mining algorithm α). Let L be a event log over T . α(L)
is defined as follows.

1. TL = {t ∈ T | ∃σ∈Lt ∈ σ},
2. TI = {t ∈ T | ∃σ∈Lt = first(σ)},
3. TO = {t ∈ T | ∃σ∈Lt = last(σ)},
4. XL = {(A,B) | A ⊆ TL ∧ B ⊆ TL ∧ ∀a∈A∀b∈B a →L b ∧
∀a1,a2∈A a1#La2 ∧ ∀b1,b2∈B b1#Lb2},

5. YL = {(A,B) ∈ XL | ∀(A′,B′)∈XL
A ⊆ A′ ∧ B ⊆ B′ =⇒ (A,B) =

(A′, B′)},
6. PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL},
7. FL = {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈

YL ∧ b ∈ B} ∪ {(iL, t) | t ∈ TI} ∪ {(t, oL) | t ∈ TO}, and

8. α(L) = (PL, TL, FL).

The α-algorithm works as follows. First, it examines the log traces and (Step
1) creates the set of transitions (TL) in the workflow net, (Step 2) the set of
output transitions (TI) of the source place, and (Step 3) the set of the input
transitions (TO) of the sink place. In steps 4 and 5, the α-algorithm creates
sets (XL and YL, respectively) used to define the places of the discovered
workflow net. In Step 4, the α-algorithm discovers which transitions are
causally related. Thus, for each tuple (A,B) in XL, each transition in set
A causally relates to all transitions in set B, and no transitions within A
(or B) follow each other in some firing sequence. These constraints to the
elements in sets A and B allow for the correct mining of AND-split/join and
XOR-split/join constructs. Note that the XOR-split/join requires the fusion
of places. In Step 5, the α-algorithm refines set XL by taking only the largest
elements with respect to set inclusion. In fact, Step 5 establishes the exact
amount of places the discovered net has (excluding the source place iL and
the sink place oL). The places are created in Step 6 and connected to their
respective input/output transitions in Step 7. The discovered workflow net
is returned in Step 8.

Finally, we define what it means for a WF-net to be rediscovered.



3.3 Limitations of the α-algorithm 37

Definition 17 (Ability to rediscover). Let N = (P, T, F ) be a sound WF-
net, i.e., N ∈ W, and let α be a mining algorithm which maps event logs of
N onto sound WF-nets, i.e., α : L → W. If for any complete event log L of
N the mining algorithm returns N (modulo renaming of places), then α is
able to rediscover N .

Note that no mining algorithm is able to find names of places. Therefore, we
ignore place names, i.e., α is able to rediscover N if and only if α(L) = N
modulo renaming of places.

Theorem 1 (Class of nets α-algorithm can always discover). Let
N = (P, T, F ) be a sound SWF-net and let L be a complete workflow log of
N . If for all a, b ∈ Ta • ∩ • b = ∅ or b • ∩ • a = ∅, then α(L) = N modulo
renaming of places.

As stated in Theorem 1, the α-algorithm is proven to always rediscover the
class of SWF-nets without short loops. For a proof of Theorem 1, the reader
is referred to [17].

3.3 Limitations of the α-algorithm: Loops,

Invisible Tasks, Non-Free-Choice and Du-

plicate Tasks

As motivated in the previous section the α-algorithm can successfully mine
SWF-nets that do not contain short-length loops (cf. Theorem 1). But, the
α-algorithm has also limitations. In this section we present a classification
of possible common constructs the α-algorithm cannot mine correctly, and
relations between these constructs. Some of the constructs are within the
scope of SWF-nets (like short loops), but others are beyond the scope of
SWF-nets (like duplicate tasks). Moreover, there are WF-nets that can be
mined correctly, but that are not SWF-nets (cf. Figure 3.3).

There are problems in the resulting net the α-algorithm produces when
its input is incomplete and/or has noise (because different relations may
be inferred). But even if the log is noise free and complete, there are a
number of workflow constructs that cannot be correctly rediscovered by the
α-algorithm. Below we will discuss some of the problems. The discussion
is illustrated with the WF-nets in Figure 3.4 to 3.8. For each WF-net, the
resulting net generated by the α-algorithm is shown in these figures. Note
that the resulting nets are based on complete logs of the original models.

Length-one loop In a length-one loop, the same task can be executed mul-
tiple times in sequence. Thus, all ingoing places of this task are also



38 Process Mining in Action: The α-algorithm

I X

B

O

D

G
F

p2

C
E

p1

XOR-join

AND-join

Figure 3.3: A WF-net that can be rediscovered by the α-algorithm, although
it is not an SWF-net (see Definition 12).

I X

A

OYN5
N6 I X A OY

N2 I X
A

O
A

Y

N3
I X A O

A

Y

N1 I X A OA Y

N4 I X A OY

Resulting Net: I X A OY

Resulting Net:
I X

A

OY

Figure 3.4: Example of the existing relations between duplicate tasks, invis-
ible tasks and length-one loops.



3.3 Limitations of the α-algorithm 39

N5

BI X A OY

Resulting Net:

N1 I X

A

OY

B

N0 I X

A

OY

B

B

A

I X

A

O

B

Y

N2 I X
A

O
B

Y

Resulting Net:

I X
A

O
B

Y

N3 I X A O

B

Y

Resulting Net:

I X A O

B

Y

N4

I X

A

OY

B

Resulting Net:

I X

A

OY

B

Resulting Net:

I X A B OY

N6 I X A O

B

Y

Figure 3.5: Example of the existing relations between duplicate tasks, invis-
ible tasks and length-one/two loops.



40 Process Mining in Action: The α-algorithm

Resulting Net:

N1

AND-join

I X

B

O

D

G
F

C
E

XOR-join

N2 I X

B

O
D

G

F
C

E

AND-join

XOR-join

X

BD

G

F

C

E

I

O

Figure 3.6: Mined and original nets have different number of places.

I A

B

A

O

B

N3

N1 I X

A

A

B

B

O

N2 I

A

A

B

B

O

Resulting Net:

I A B O

Resulting Net:

I X

A

B

O

Resulting Net:

I
A

B
O

Figure 3.7: Nets with duplicate tasks.



3.3 Limitations of the α-algorithm 41

Non-free
choice

construct

N1

N4

I X
A

O
B

Y
EC

DC

N2 I X
A

O
B

Y
E

C
D

p1

p2

N3 I X
A

O
B

Y
EC

DC

p4

p3

Resulting Net:

I X
A

O
B

Y
E

C
D

Implicit
places

I X
A

O
B

Y
E

C
D

Figure 3.8: Example of existing relations between duplicate tasks, non-free
choice nets, implicit places and SWF-nets.

Non-free choice
construct

N1 I X
A

O
B

Y
E

C
D

p1

p2

F

G

Figure 3.9: Example of a non-free choice net which the α-algorithm can mine
correctly.



42 Process Mining in Action: The α-algorithm

its outgoing places in the WF-net. In fact, for SWF-nets, a length-
one-loop task can only have one single place connected to it. As an
example, see net N5 in Figure 3.4, and also net N1 in Figure 3.5. Note
that in the resulting nets, the length-one-loop transitions do not have
the same place as its ingoing and outgoing place. This happens be-
cause, to generate a place with a common ingoing and outgoing task,
the α-algorithm requires the causal relation task →L task. But it is
impossible to have task >L task and task 6>L task at the same time.

Length-two loop In this case, the α-algorithm infers that the two involved
tasks are in parallel and, therefore, no place is created between them.
For instance, see nets N3 and N4 in Figure 3.5. Note that there are
no arcs between tasks A and B in the resulting net. However, the α-
algorithm would correctly mine both N3 and N4 if the relations A→L B
and B →L A were inferred, instead of the relation A||LB.

Invisible Tasks Invisible tasks do not appear in any log trace. Conse-
quently, they do not belong to TL (set of transitions in the mined net)
and cannot be present in the net the α-algorithm generates. Two sit-
uations lead to invisible tasks: (i) a task is not registered in the log,
for instance, because is only there for routing purposes (e.g., see tasks
without label in net N2, Figure 3.6), or (ii) there is noise in the log
generation and some of the task occurrences are missing in the log
traces.

Duplicate Tasks Sometimes a task appears more than once in the same
workflow. In this case, the same label is given (and thus registered in
the log) to more than one task. This can happen, for instance, when
modelling the booking process in a travel agency. Clients can go there
to book a flight only, book a hotel only, or both. Thus, a workflow model
describing this booking situation could be like net N3, in Figure 3.7 (as-
sume A =“book flight” and B =“book hotel”). Note that the resulting
net for net N3 contains only one task with label A and one with B.
The α-algorithm will never capture task duplication because it cannot
distinguish different tasks with the same label (see also the other nets
in Figure 3.7). In fact, in an SWF-net it is assumed that tasks are
uniquely identifiable. Thus, a heuristic to capture duplicate tasks will
have to generate WF-nets in which tasks can have identical labels.

Implicit Places SWF-nets do not have implicit places. Places are implicit
if their presence or absence does not affect the possible log traces of a
workflow. For example, places p3 and p4 are implicit in net N3 (see
Figure 3.8). Note that the same causal relations are inferred when these
implicit places are present or absent. However, the α-algorithm creates



3.3 Limitations of the α-algorithm 43

places according to the existing causal relations. Thus, implicit places
cannot be captured because they do not influence causal relations be-
tween tasks. Note also that this same reason prevents the α-algorithm
from generating explicit places between tasks that do not have a causal
relation. As an example, see places p1 and p2 in net N2 (also in Fig-
ure 3.8). Both places constrain the execution of tasks D and E because
the choice between the execution of these tasks is made after the ex-
ecution of A or B, respectively, and not after the execution of C. In
fact, if the places p1 and p2 are removed from N2, net N4 is obtained
(see Figure 3.8). However, in N4, the choice between the execution of
tasks D and E is made after the execution of task C. Consequently,
a log trace like XACEY can be generated by N4, but is not possible
according to N2.

Non-free choice The non-free choice construct combines synchronization
and choice. Thus, it is not allowed in SWF-nets because it corre-
sponds to construct (i) in Figure 3.2. Nets containing non-free choice
constructs are not always correctly mined by the α-algorithm. For
instance, consider the non-free-choice net N2, Figure 3.8. The α-
algorithm does not correctly mine N2 because this net cannot generate
any log trace with the substring AD and/or BE. Consequently, there
is no causal relation A →L D and B →L E, and no creation of the
respective places p1 and p2 in the resulting net. However, there are
non-free choice constructs which the α-algorithm can mine correctly.
As an example, consider net N1 in Figure 3.9. This net is similar to
net N2 in Figure 3.8, but N1 has two additional tasks F and G. The
α-algorithm can correctly mine N1 because there is a causal relation
F →L D (enabling the creation of place p1) and G →L E (enabling
the creation of p2). Thus, the α-algorithm can correctly mine non-free-
choice constructs as far as the causal relations can be inferred.

Synchronization of XOR-join places As shown in Figure 3.2(ii), the syn-
chronization of XOR-join places is a non-SWF-net construct. However,
although this is a non-SWF-net construct, sometimes the α-algorithm
can correctly mine it. For instance, see the WF-net in Figure 3.3.
Places p1 and p2 are XOR-join places. p1 is an XOR-join place be-
cause it contains a token if task B or E or F is executed. Similarly,
p2 if task D or E or F is executed. Besides, both p1 and p2 are
synchronized at task G, since this task can happen only when there
is a token in both p1 and p2. Note that this construct corresponds
to a non-SWF-net because task G can be executed whenever some of
the tasks that precede it have been executed. If the net in Figure 3.3



44 Process Mining in Action: The α-algorithm

were an SWF-net, task G could be executed only after the execution
of tasks B, D, E and F . However, although the net in Figure 3.3
is a non-SWF-net, the α-algorithm can correctly mine it because the
necessary and sufficient causal (→L) and unrelated(#L) relations are
inferred. However, in other cases, the inferred causal and unrelated
relations may not be enough to correctly mine the net. For instance,
consider net N1 in Figure 3.6. The resulting net the α-algorithm mines
is not equal to N1 because it contains two additional places between
tasks B, D, E, F and task G. This net structure with extra places
derives from the inferred relations. Note that because B ‖L D and
E ‖L F in net N1, but B#LE, B#LF ,D#LE and D#LF , the places
p({B,E},{G}), p({B,F},{G}), p({D,E},{G}) and p({D,F},{G}) are created by the
α-algorithm, while only places p({B,E},{G}) and p({D,F},{G}) would do.
Thus, in this case, the inferred relations do not allow the α-algorithm
to correctly mine the net. However, the resulting net is behaviorally
equivalent to the original net, even if their structures are different be-
cause both nets generate exactly the same set of traces. Note that the
two additional places in the resulting net are implicit. However, in this
case the problem is not the absence of implicit places; the problem is
the addition of implicit places by the α-algorithm.

3.4 Relations among Constructs

There are relations among the problematic constructs identified in Section 3.3.
The problematic constructs are related because (i) the same set of log traces
can satisfy the current notion of log completeness (cf. Definition 15), and/or
(ii) the same set of ordering relations (cf. Definition 14) can be inferred
when the original net contains one of the constructs. Therefore, no mining
algorithm can detect which of the constructs are in the original net. Some
examples demonstrating that the problematic constructs are related:

Duplicate Tasks (Sequence vs Parallel vs Choice) Duplicate tasks
may appear in sequential, parallel, or choice structures in the WF-net.
These duplicate task structures are related because given a log there
may be different WF-nets containing duplicate tasks. As an example,
see the respective nets N1, N2 and N3 in Figure 3.4. Note that a log
containing only the trace XAAY would be complete for the three nets
N1, N2, and N3. Thus, given this input trace, it is impossible for a
mining algorithm to determine which duplicate task structure really
exists in the original net.



3.5 Extensions to the α-algorithm 45

Invisible Tasks vs Duplicate Tasks WF-nets with the same ordering re-
lations can be created either using invisible tasks or using duplicate
tasks. For instance, consider nets N3 and N4 in Figure 3.4. These
two nets may share an identical complete log. In fact, a log containing
only the trace XAAY would be complete for all four nets (N1−4) in
Figure 3.4.

Invisible Tasks vs Loops Behaviorally equivalent WF-nets can be created
either using invisible tasks or using loops. For instance, consider nets
N5 and N6 in Figure 3.4. These nets generate exactly the same set of
log traces.

Invisible Tasks vs Synchronization of XOR-join places See nets N1

and N2 in Figure 3.6. The α-algorithm generates the same resulting
net for both N1 and N2 because these nets are behaviorally equivalent.

Non-Free Choice vs Duplicate Tasks Nets N1 and N2 in Figure 3.8 are
behaviorally equivalent and, as a result, may have identical complete
logs.

Loops vs Invisible Tasks together with Duplicate Tasks Nets with
equal sets of ordering relations can be created if loops or invisible tasks
in combination with duplicate tasks are used. For instance, see nets N0

and N1 in Figure 3.5. Net N0 has duplicate tasks and invisible tasks in
its structure. Net N1 has two length-one loops, involving tasks A and
B. These two nets lead to the same set of ordering relations because,
whatever the complete event log, the inferred causal and parallel or-
dering relations will always be X →L A, X →L B, X →L Y , B →L Y ,
A→L Y , and A||LB.

3.5 Extensions to the α-algorithm

The α-algorithm has been extended to remove some of the constraints men-
tioned here. The works in [11, 28, 29, 80] show how to mine SWF-nets with
short loops. In this thesis, we do not elaborate on our extension in [28, 29].
The work in [81] shows how to extend the α+-algorithm in [28] to also mine
a wide range of non-free-choice constructs. In the related work sections (cf.
subsections 2.2.7 and 2.2.10), we briefly explain how these extensions work.

3.6 Summary

This chapter explained the basic concepts of control-flow mining: by extract-
ing ordering relations from an event log, a mining algorithm can (re-)discover



46 Process Mining in Action: The α-algorithm

process models that reflect the behavior in this log. The concepts were ex-
plained using the α-algorithm. The α-algorithm is a very simple but power-
ful mining algorithm. It is proven to correctly mine SWF-nets without short
loops from noise-free complete logs. The α-algorithm is based on four order-
ing relations: →L, L, #L and ‖L (cf. Definition 14). These ordering relations
are also used by the heuristics of our genetic approach.

Among the limitations of the α-algorithm is its inability to capture short
loops, invisible tasks, duplicate tasks, non-local non-free-choice constructs
and noise. Invisible tasks are not supported by SWF-nets. Short loops
are confused with parallel constructs when inferring the ordering relations.
The non-local non-free-choice constructs are also not captured by the log
ordering relations. There have been extensions to the α-algorithm, but these
extensions still have problems while handling invisible tasks and duplicate
tasks. Besides, they are also very sensitive to noise.

The next chapters present genetic algorithms that do not have these lim-
itations and are more robust to noise. The basic genetic algorithm (GA)
explained in Chapter 4 tackles all problematic constructs, except for the pres-
ence of duplicate tasks. As an illustration, a model like the one in Figure 3.10
can be mined by the GA. Figure 3.11 shows the mined model returned by the
α-algorithm for a complete log of the model in Figure 3.10. Note that the α-
algorithm captures neither the invisible task to skip “Receive License” nor the
non-local non-free-choice construct involving the tasks “Attend Classes. . . ”
and “Do Practical Exam. . . ”. The extension α++ [81] correctly mines the
non-local non-free-choice in Figure 3.10, but it has the same problems as the
α to mine the invisible task. The duplicate tasks genetic algorithm (DGA) in
Chapter 5 can mine models that also contain duplicate tasks. For instance,
the DGA mines models like the one in Figure 3.12, while the α-algorithm
(cf. mined model in Figure 3.13) and its extensions are unable to capture the
duplication of the tasks “Travel Car” and “Travel Train”. The examples in
Figure 3.10 and 3.12 are respectively used as running examples in chapters 4
and 5.



3.6 Summary 47

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5 p6

p4

p7

p8

p9

p11

Figure 3.10: Model with non-local non-free-choice and invisible task.



4
8

P
ro

ce
ss

M
in

in
g

in
A

ct
io

n
:

T
h
e

α
-a

lg
o
ri

th
m

Figure 3.11: The result produced by the α-algorithm for the example in Figure 3.10. Note that the non-local non-
free-choice construct involving the tasks “Attend Classes. . . ” and “Do Practical Exam. . . ” as well as the invisible
task to skip “Receive License” are not correctly mined.



3.6 Summary 49

Start

Get Ready

Travel by CarTravel by Train

Conference Starts

Join Guided Tour

Join Dinner

Go Home

Travel by Train Pay for Parking

Travel by Car

End

Give a Talk

Figure 3.12: Example of a model containing duplicate tasks, non-local non-
free choice and invisible task.



5
0

P
ro

ce
ss

M
in

in
g

in
A

ct
io

n
:

T
h
e

α
-a

lg
o
ri

th
m

Figure 3.13: The result produced by the α-algorithm for the example in Figure 3.12. There are no duplicates for
the tasks “TravelCar” and “TravelTrain”, and it is not possible to skip the task “GiveTalk”.



Chapter 4

A Genetic Algorithm to Tackle
Non-Free-Choice and Invisible
Tasks

As indicated in Chapter 1, our aim is to develop a Genetic Algorithm (GA)
to mine process models that may contain all the common structural con-
structs (sequence, choice, parallelism, loops, non-free-choice, invisible tasks
and duplicate tasks), while being robust to noisy logs. However, we think
that the whole approach can be more easily understood if we explain it in
a step-wise fashion. Therefore, we have distributed the different aspects of
the GA over chapters 4, 5 and 6. Chapter 4 (the current chapter) shows a
GA to tackle all constructs but duplicate tasks. This chapter introduces the
main concepts behind our GA and the experimental evaluation. Chapter 4
contains material that is used as a basis for the other chapters. Chapter 5
shows how we extend this basic GA to mine event logs from process models
with duplicate tasks. Chapter 6 explains the post-processing step we have
implemented to clean mined models. But first things first. In the remainder
of this chapter we will present the basic genetic algorithm.

Genetic algorithms are adaptive search methods that try to mimic the
process of evolution [38, 61]. These algorithms start with an initial popula-
tion of individuals . Every individual is assigned a fitness measure to indicate
its quality. In our case, an individual is a possible process model and the
fitness is a function that evaluates how well an individual is able to reproduce
the behavior in the log. Populations evolve by selecting the fittest individu-
als and generating new individuals using genetic operators such as crossover
(combining parts of two or more individuals) and mutation (random mod-
ification of an individual). Additionally, it is common practice to directly
copy a number of the best individuals in a current population (the elite) to



52 A GA to Tackle Non-Free-Choice and Invisible Tasks

the next population. This way, one ensures that the best found individu-
als are kept in future populations. Every individual in a population has an
internal representation. Besides, like with human beings, the way the inter-
nal representation of an individuals is coded is called its genotype, but how
this representation is shown to the outside world is called phenotype. This
allows, for instance, that individuals with different genotypes can have the
same phenotype.

When using genetic algorithms to mine process models, there are three
main issues that need to be addressed. The first is to define the internal rep-
resentation. The internal representation defines the search space of a genetic
algorithm. The internal representation that we define and explain in this
chapter supports all the problematic constructs, except for duplicate tasks.
The second issue is to define the fitness measure. In our case, the fitness
measure evaluates the quality of a point (individual or process model) in the
search space against the event log. A genetic algorithm searches for indi-
viduals whose fitness is maximal. Thus, our fitness measure makes sure that
individuals with a maximal fitness can parse all the process instances (traces)
in the log and, ideally, not more than the behavior that can be derived from
those traces. The reason for this is that we aim at mining a model that
reflects as close as possible the behavior expressed in the event log. If the
mined model allows for lots of extra behavior that cannot be derived from the
log, it does not give a precise description of what is actually happening. The
third issue relates to the genetic operators (crossover and mutation) because
they should ensure that all points in the search space defined by the inter-
nal representation may be reached when the genetic algorithm runs. This
chapter presents a genetic algorithm that addresses these three issues, while
assuming the absence of noise and duplicate tasks.

The illustrative example used throughout this chapter is the event log
in Table 4.1 and the process model in Figure 4.1. The log shows the event
traces (process instances) for four different applications to get a license to
ride motorbikes or drive cars. Note that applicants for different types of
licenses do the same theoretical exam (task “Do Theoretical Exam”) but dif-
ferent practical ones (tasks “Do Practical Exam Drive Cars” or “Do Practical
Exam Ride Motorbikes”). In other words, whenever the task “Attend classes
Drive Cars” is executed, the task “Do practical Exam Drive Cars” is the only
one that can be executed after the applicant has done the theoretical exam.
This shows that there is a non-local dependency between the tasks “Attend
Classes Drive Cars” and “Do Practical Exam Drive Cars”, and also between
the tasks “Attend Classes Ride Motorbikes” and “Do Practical Exam Ride
Motorbikes”. The dependency is non-local because it cannot be detected by
simply looking at the direct predecessor and successor of those tasks in the



53

Identifier Process instance

1 Start, Apply for License, Attend Classes Drive Cars,
Do Theoretical Exam, Do Practical Exam Drive Cars,
Get Result, End

2 Start, Apply for License, Attend Classes Ride Motorbikes,
Do Theoretical Exam, Do Practical Exam Ride Motorbikes,
Get Result, Receive License, End

3 Start, Apply for License, Attend Classes Drive Cars,
Do Theoretical Exam, Do Practical Exam Drive Cars,
Get Result, Receive License, End

4 Start, Apply for License, Attend Classes Ride Motorbikes,
Do Theoretical Exam, Do Practical Exam Ride Motorbikes,
Get Result, End

Table 4.1: Example of an event log with 4 process instances.

log in Table 4.1, e.g. “Attend Classes Drive Cars” is never followed directly
by “Do Practical Exam Drive Cars”. Moreover, note that only in some pro-
cess instances (2 and 3) the task “Receive License” was executed. These
process instances point to the cases in which the candidate passed the ex-
ams. Based on this log and these observations, process mining tools could
be used to retrieve the model in Figure 4.1 1. In this case, we are using Petri
nets (cf. Subsection 3.1.1) to depict this model. We do so because Petri
nets [31, 62] will be used to explain the semantics of our internal represen-
tation. Moreover, we use Petri-net-based analysis techniques to analyse the
resulting models.

The remainder of the chapter is organized as follows. Section 4.1 explains
the internal representation that we use and defines its semantics by mapping
it onto Petri nets. Section 4.2 explains the fitness measurement. The fitness
measurement benefits the individuals that are complete (can reproduce all
the behavior in the log) and precise (do not allow for too much extra be-
havior that cannot be derived from the event log). Section 4.3 explains the
genetic operators crossover and mutation. These operators work based on
the task dependencies. Section 4.4 shows how the genetic algorithm works.
Section 4.5 discusses the experiments and results. The experiments include
synthetic logs. This section also introduces the metrics we used to analyse
the results. Section 4.6 has a short summary of this chapter.

1Note that simple algorithms, like the α-algorithm, are unable to capture the non-local
dependencies and the skipping of task “Receive License” (cf. Figure 4.1)



54 A GA to Tackle Non-Free-Choice and Invisible Tasks

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5 p6

p4

p7

p8

p9

p11

Figure 4.1: Mined net for the log in Table 4.1



4.1 Internal Representation and Semantics 55

4.1 Internal Representation and Semantics

When defining the internal representation to be used by our genetic algo-
rithm, the main requirement was that this representation should express the
dependencies between the tasks in the log. In other words, the model should
clearly express which tasks enable the execution of other tasks. Addition-
ally, it is desirable to have an internal representation that is compatible with
a formalism to which analysis techniques and tools exist. This way, these
techniques could also be applied to the discovered models. Thus, one option
would be to directly represent the individual (or process model) as a Petri
net [31, 62]. However, such a representation would require determining the
number of places in every individual and this is not the core concern. It is
more important to show the dependencies between the tasks and the seman-
tics of the split/join tasks. Therefore, we defined an internal representation
that is as expressive as Petri nets (from the task dependency perspective) but
that only focusses on the tasks. This representation is called causal matrix .
Figure 4.2 illustrates in (i) the causal matrix that expresses the same task
dependencies that are in the “original Petri net”. The causal matrix shows
which activities 2 enable the execution of other activities via the matching
of input (I) and output (O) condition functions. The sets returned by the
condition functions I and O have subsets that contain the activities in the
model. Activities in a same subset have an XOR-split/join relation, while
the different subsets have an AND-split/join relation. Thus, every I and O
set expresses a conjunction of exclusive disjunctions. Additionally, an ac-
tivity may appear in more than one subset. For example, consider activity
D in the original Petri net in Figure 4.2. The causal matrix states that
I(D) = {{F,B,E}, {E,C}, {G}} because D is enabled by an AND-join con-
struct that has 3 places. From top to bottom, the first place has a token
whenever F or B or E fires. The second place, whenever E or C fires. The
third place, whenever G fires. Similarly, the causal matrix has O(D) = {}
because D is executed last in the model, i.e., no other activity follows D.
The following definition formally defines these notions.

Definition 18 (Causal Matrix). Let LS be a set of labels. A Causal Matrix
is a tuple CM = (A,C, I, O,Label), where

- A is a finite set of activities,

- C ⊆ A× A is the causality relation,

2In the remainder of this document, we use the term “task” when referring to events in
a log or transitions in a Petri net, but we use the term “activity” when referring to tasks
in a internal representation of an individual.



56 A GA to Tackle Non-Free-Choice and Invisible Tasks

(ii)(i)

A E

B

C

D

Original Petri net Mapped Petri net

F

G

A

F

B

C

E

G

D

Compact representation of the causal matrix

ACTIVITY   I(ACTIVITY)   O(ACTIVITY)  
A  {}   {{F,B,E},{E,C},{G}}  
B  {{A}}   {{D}}  
C  {{A}}   {{D}}  
D  {{F,B,E},{E,C},{G}}   {}  
E  {{A}}   {{D}}  
F  {{A}}   {{D}}  
G  {{A}}   {{D}}  
 

Figure 4.2: Mapping of a PN with more than one place between two tasks
(or transitions).

- I : A→ P(P(A)) is the input condition function,3

- O : A→ P(P(A)) is the output condition function,

- Label ∈ A→ LS is a labeling function that maps each activity in A to
a label in LS,

such that

- C = {(a1, a2) ∈ A× A | a1 ∈
⋃

I(a2)},
4

- C = {(a1, a2) ∈ A× A | a2 ∈
⋃

O(a1)},

- C ∪ {(ao, ai) ∈ A × A | ao
C

•= ∅ ∧ C

• ai = ∅} is a strongly connected
graph,

- Label ∈ A → LS is injective 5, i.e., a1, a2 ∈ A and Label(a1) =
Label(a2) implies a1 = a2.

The set of all causal matrices is denoted by CM, and a bag of causal matrices
is denoted by CM[].

Any Petri net without duplicate tasks and without more than one place with
the same input tasks and the same output tasks can be mapped to a causal

3P(A) denotes the powerset of some set A.
4
⋃

I(a2) is the union of the sets in set I(a2).
5We assume that the function Label is injective because we do not allow for duplicate

tasks in this chapter. However, since our approach will be extended in Chapter 5 to also
mine duplicate tasks, we have added a labelling function.



4.1 Internal Representation and Semantics 57

matrix. Definition 19 formalizes such a mapping. The main idea is that
there is a causal relation C between any two tasks t and t′ whenever at least
one of the output places of t is an input place of t′. Additionally, the I
and O condition functions are based on the input and output places of the
tasks. This is a natural way of mapping because the input and output places
of Petri nets actually reflect the conjunction of disjunctions that these sets
express.

Definition 19 (ΠPN→CM). Let PN = (P, T, F,LabelPN ) be a Petri net. The
mapping of PN is a tuple ΠPN→CM(PN ) = (A,C, I, O,Label), where

- A = T ,

- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 6= ∅},

- I : T → P(P(T )) such that ∀t∈T I(t) = {•p | p ∈ •t},

- O : T → P(P(T )) such that ∀t∈T O(t) = {p • | p ∈ t•},

- Label = LabelPN .

The semantics of the causal matrix can be easily understood by mapping
them back to Petri nets. This mapping is formalized in Definition 20. Con-
ceptually, the causal matrix behaves as a Petri net that contains visible and
invisible tasks. For instance, see Figure 4.2. This figure shows (i) the map-
ping of a Petri net to a causal matrix and (ii) the mapping from the causal
matrix to a Petri net. The firing rule for the mapped Petri net is very sim-
ilar to the firing rule of Petri nets in general (cf. Definition 2). The only
difference concerns the invisible tasks. Enabled invisible tasks can only fire
if their firing enables a visible task. Similarly, a visible task is enabled if all
of its input places have tokens or if there exists a set of invisible tasks that
are enabled and whose firing will lead to the enabling of the visible task.
Conceptually, the causal matrix keeps track of the distribution of tokens at
a marking in the output places of the visible tasks of the mapped Petri net.
The invisible tasks can be seen as “channels” or “pipes” that are only used
when a visible task needs to fire. Every causal matrix starts with a token
at the start place. Finally, we point out that, in Figure 4.2, although the
mapped Petri net does not have the same structure of the original Petri net,
these two nets are behaviorally equivalent (assuming the extended firing rule
just mentioned). In other words, given that these two nets initially have a
single token and this token is at the start place (i.e., the input place of A), the
two nets can generate identical sets of traces. A detailed explanation about
the mappings between the different models in this section can be found in
Appendix A.

Definition 20 (ΠN
CM→PN). Let CM = (A,C, I, O,Label) be a causal matrix.

The Petri net mapping of CM is a tuple ΠN
CM→PN = (P, T, F,LabelPN ),



58 A GA to Tackle Non-Free-Choice and Invisible Tasks

where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},

- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},

- F = {(i, t) | t ∈ A ∧ C

• t = ∅}∪{(t, o) | t ∈ A ∧ t
C

•= ∅}∪{(it,s, t) | t ∈
A ∧ s ∈ I(t)}∪{(t, ot,s) | t ∈ A ∧ s ∈ O(t)}∪{(ot1,s,mt1,t2) | (t1, t2) ∈
C ∧ s ∈ O(t1) ∧ t2 ∈ s}∪{(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈
s},

- ∀t∈T , LabelPN (t) =

{

Label(t) if t ∈ A,
∅ otherwise.

In the resulting Petri net, A is the set of visible transitions. A transition
mt1,t2 ∈ T is an invisible transition that connects an output place of t1 to an
input place of t2. As explained before, these invisible transitions are “lazy”
because they only fire to enable the visible ones.

4.2 Fitness Measurement

Process mining aims at discovering a process model from an event log. This
mined process model should give a good insight into the behavior recorded
in the log. In other words, the mined process model should be complete and
precise from a behavioral perspective. A process model is complete when it
can parse (or reproduce) all the event traces in the log. A process model
is precise when it cannot parse more than the behavior that can be derived
from the traces in the log. The requirement that the mined model should
also be precise is important because different models are able to parse all
event traces and these models may allow for much more extra behavior that
cannot be abstracted from the behavior registered in the log. To illustrate
this we consider the nets shown in Figure 4.3. These models can also parse
the traces in Table 4.1, but they allow for extra behavior. For instance, both
models allow for the applicant to take the exam before attending to classes.
The fitness function guides the search process of the genetic algorithm. Thus,
the fitness of an individual is assessed by benefiting the individuals that can
parse more event traces in the log (the “completeness” requirement) and by
punishing the individuals that allow for more extra behavior than the one
expressed in the log (the “preciseness” requirement).

To facilitate the explanation of our fitness measure, we divide it into three
parts. First, we discuss in Subsection 4.2.1 how we defined the part of the
fitness measure that guides the genetic algorithm towards individuals that
are complete. Second, we show in Subsection 4.2.2 how we defined the part
of the fitness measure that benefits individuals that are precise. Finally, we



4.2 Fitness Measurement 59

Attend Classes 
Ride Motorbikes

Attend Classes 
Drive Cars

Do Theoretical 
Exam

Do Practical 
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes Get Result Receive

 License

Start

End

StartApply for License

Do Practical 
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Get Result
Attend Classes 

Drive Cars

Attend Classes 
Ride Motorbikes

Do Theoretical 
Exam

Receive
 License

End

Apply for License

(a)

(b)

Figure 4.3: Example of nets that can also reproduce the behavior for the log
in Table 4.1. The problem here is that these nets allow for extra behavior
that is not in the log.

show in Subsection 4.2.3 the fitness measure that our genetic algorithm is
using. This fitness measure combines the partial fitness measures that are
presented in the subsections 4.2.1 and 4.2.2.

4.2.1 The “Completeness” Requirement

The “completeness” requirement of our fitness measure is based on the pars-
ing of event traces by individuals. For a noise-free log, the perfect indi-
vidual should have fitness 1. This means that this individual could parse
all the traces in the log. Therefore, a natural fitness for an individual to
a given log seems to be the number of properly parsed event traces6 di-

6An event trace is properly parsed by an individual if, for an initial marking that
contains a single token and this token is at the start place of the mapped Petri net for
this individual, after firing the visible tasks in the order in which they appear in the event
trace, the end place is the only one to be marked and it has a single token. The notion of
proper completion is formalized in Definition 10.



60 A GA to Tackle Non-Free-Choice and Invisible Tasks

vided by the total number of event traces. However, this fitness measure
is too coarse because it does not give an indication about (i) how many
parts of an individual are correct when the individual does not properly
parse an event trace and (ii) the semantics of the split/join tasks. So, we
defined a more refined fitness function: when the activity to be parsed is
not enabled, the problems (e.g. number of missing tokens to enable this
activity) are registered and the parsing proceeds as if this activity would
be enabled. This continuous parsing semantics is more robust because it
gives a better indication of how many activities do or do not have problems
during the parsing of a trace. The partial fitness function that tackles the
“completeness” requirement is in Definition 21. The notation used in this
definition is as follows. allParsedActivities(L,CM) gives the total number
of tasks in the event log L that could be parsed without problems by the
causal matrix (or individual) CM . numActivitiesLog(L) gives the number
of tasks in L. allMissingTokens(L,CM) indicates the number of missing
tokens in all event traces. allExtraTokensLeftBehind(L,CM) indicates the
number of tokens that were not consumed after the parsing has stopped plus
the number of tokens of the end place minus 1 (because of proper comple-
tion). numTracesLog(L) indicates the number of traces in L. The functions
numTracesMissingTokens(L,CM) and numTracesExtraTokensLeftBehind(L,
CM) respectively indicate the number of traces in which tokens were missing
and tokens were left behind during the parsing.

Definition 21 (Partial Fitness - PF complete ). Let L be a non-empty
event log. Let CM be a causal matrix. Then the partial fitness PF complete :
L × CM→ (−∞, 1] is a function defined as:

PF complete(L,CM) =
allParsedActivities(L,CM)− punishment

numActivitiesLog(L)

where

punishment =
allMissingTokens(L,CM)

numTracesLog(L)− numTracesMissingTokens(L,CM) + 1
+

allExtraTokensLeftBehind(L,CM)

numTracesLog(L)− numTracesExtraTokensLeftBehind(L,CM) + 1

The partial fitness PF complete quantifies how complete an individual is to a
given log. The function allMissingTokens penalizes (i) nets with XOR-split
where it should be an AND-split and (ii) nets with an AND-join where it
should be an XOR-join. Similarly, the function allExtraTokensLeftBehind
penalizes (i) nets with AND-split where it should be an XOR-split and (ii)



4.2 Fitness Measurement 61

nets with an XOR-join where it should be an AND-join. Note that we weigh
the impact of the allMissingTokens (allExtraTokensLeftBehind) function by
dividing it by the number of event traces minus the number of event traces
with missing tokens (left-behind tokens). The main idea is to promote in-
dividuals that correctly parse the most frequent behavior in the log. Ad-
ditionally, if two individuals have the same punishment value, the one that
can parse more tasks has a better fitness because its missing and left-behind
tokens impact fewer tasks. This may indicate that this individual has more
correct I and O condition functions than incorrect ones. In other words, this
individual is a better candidate to produce offsprings for the next population
(see Subsection 4.3).

Definition 21 may seem rather arbitrary. However, based on many ex-
periments we concluded that this measure has an acceptable performance
(in terms of the quality of the mined models). In our tool (see Chapter 7,
Section 7.2), we allow for multiple fitness measures.

4.2.2 The “Preciseness” Requirement

The “preciseness” requirement is based on discovering how much extra be-
havior an individual allows for. To define a fitness measure to punish models
that express more than it is in the log is especially difficult because we do
not have negative examples to guide our search. Note that the event logs
show the allowed (positive) behavior, but they do not express the forbidden
(negative) one.

One possible solution to punish an individual that allows for undesirable
behavior could be to build the coverability graph [62] of the mapped Petri net
for this individual and check the fraction of event traces this individual can
generate that are not in the log. The main idea in this approach is to punish
the individual for every extra event trace it generates. Unfortunately, build-
ing the coverability graph for every individual is not very practical (because
it is too time consuming) and it is unrealistic to assume that all possible
behavior is present in the log.

Because proving that a certain individual is precise is not practical, we use
a simpler solution to guide our genetic algorithm towards solutions that have
“less extra behavior”. We check, for every marking, the number of visible
tasks that are enabled. Individuals that allow for extra behavior tend to have
more enabled activities than individuals that do not. For instance, the nets in
Figure 4.3 have more enabled tasks in most reachable markings than the net
in Figure 4.1. The main idea in this approach is to benefit individuals that
have a smaller amount of enabled activities during the parsing of the log. This
is the measure we use to define our second partial fitness function PF precise



62 A GA to Tackle Non-Free-Choice and Invisible Tasks

that is presented in Definition 22. The notation used in this definition is as
follows. allEnabledActivities(L,CM) indicates the number of activities that
were enabled during the parsing of the log L by the causal matrix (or individ-
ual) CM . allEnabledActivities(L,CM []) applies the just explained function
allEnabledActivities(L,CM) to every element in the bag of causal matrices
(or population) CM []. The function max (allEnabledActivities(L,CM [])) re-
turns the maximum value of the amount of enabled activities that individuals
in the given population (CM []) had while parsing the log (L).

Definition 22 (Partial Fitness - PF precise). Let L be a non-empty event
log. Let CM be a causal matrix. Let CM [] be a bag of causal matrices that
contains CM . The partial fitness PF precise : L × CM× CM[] → [0, 1] is a
function defined as

PF precise(L,CM,CM []) =
allEnabledActivities(L,CM)

max (allEnabledActivities(L,CM []))

The partial fitness PF precise gives an indication of how much extra behavior
an individual allows for in comparison to other individuals in the same pop-
ulation. The smaller the PF precise of an individual is, the better. This way
we avoid over-generalizations.

4.2.3 Fitness - Combining the “Completeness” and “Pre-
ciseness” Requirements

While defining the fitness measure, we decided that the “completeness” re-
quirement should be more relevant than the “preciseness” one. The reason is
that we are mainly interested in precise models that are also complete. The
resulting fitness is defined as follows.

Definition 23 (Fitness - F ). Let L be a non-empty event log. Let CM be
a causal matrix. Let CM [] be a bag of causal matrices that contains CM .
Let PF complete and PF precise be the respective partial fitness functions given
in definitions 21 and 22. Let κ be a real number greater than 0 and smaller
or equal to 1 (i.e., κ ∈ (0, 1]). Then the fitness F : L × CM× CM[] →
(−∞, 1) is a function defined as

F (L,CM,CM []) = PF complete(L,CM)− κ ∗ PF precise(L,CM,CM [])

The fitness F weighs (by κ) the punishment for extra behavior. Thus, if a
set of individuals can parse all the traces in the log, the one that allows for
less extra behavior will have a higher fitness value. For instance, assume a
population with the corresponding individual for the net in Figure 4.1 and



4.3 Genetic Operators 63

the corresponding individuals for the nets in Figure 4.3. If we calculate the
fitness F of these three individuals with respect to the log in Table 4.1, the
individual in Figure 4.1 will have the highest fitness value among the three
and the individual in Figure 4.3(b), the lowest fitness value.

4.3 Genetic Operators

The genetic operators make sure that all points in the search space defined by
the internal representation can potentially be reached while the genetic algo-
rithm executes. Our genetic algorithm has two genetic operators: crossover
and mutation. The crossover operator is explained in Subsection 4.3.1. The
mutation operator is explained in Subsection 4.3.2.

4.3.1 Crossover

Crossover is a genetic operator that aims at recombining existing material
in the current population. In our case, this material is the current causality
relations (cf. Definition 18) in the population. Thus, the crossover operator
used by our genetic algorithm should allow for the complete search of the
space defined by the existing causality relation in a population. Given a set
of causality relations, the search space contains all the individuals that can
be created by any combination of a subset of the causality relations in the
population. Therefore, our crossover operator allows an individual to: lose
activities from the subsets in its I/O condition functions (but not necessarily
causality relations because a same activity may be in more than one subset
of an I/O condition function), add activities to the subsets in its I/O condi-
tion functions (again, not necessarily causality relations), exchange causality
relations with other individuals, incorporate causality relations that are in
the population but are not in the individual, lose causality relations, decrease
the number of subsets in its I/O condition functions, and/or increase the
number of subsets in its I/O condition functions. The crossover rate de-
termines the probability that two parents undergo crossover. The crossover
point of two parents is a randomly chosen activity. The pseudo-code for the
crossover operator is as follows:

Pseudo-code:
input: Two parents (parent 1 and parent2), crossover rate.
output: Two possibly recombined offsprings (offspring 1 and offspring2).

1. offspring1 ←− parent1 and offspring2 ←− parent2.

2. With probability “crossover rate” do:



64 A GA to Tackle Non-Free-Choice and Invisible Tasks

(a) Randomly select an activity a to be the crossover point of the
offsprings.

(b) Randomly select a swap point sp1 for I1(a) 7. The swap point
goes from position 0 to n− 1, where n is the number of subsets in
the condition function I1(a).

(c) Randomly select a swap point sp2 for I2(a).

(d) remainingSet1(a) equals subsets in I1(a) that are between position
0 and sp1 (exclusive).

(e) swapSet1(a) equals subsets in I1(a) whose position equals or bigger
than sp1.

(f) Repeat steps 2d and 2e but respectively use remainingSet 2(a),
I2(a), sp2 and swapSet2(a) instead of remainingSet1(a), I1(a), sp1

and swapSet1(a).

(g) FOR every subset S2 in swapSet2(a) do:

i. With equal probability perform one of the following steps:
A. Add S2 as a new subset in remainingSet1(a).

B. Join S2 with an existing subset X1 in remainingSet1(a).

C. Select a subset X1 in remainingSet1(a), remove the ele-
ments of X1 that are also in S2 and add S2 to remaining-
Set1(a).

(h) Repeat Step 2g but respectively use S1, swapSet1 (a), X2 and
remainingSet2(a) instead of S2, swapSet2(a), X1 and remaining-
Set1(a).

(i) I1(a)←− remainingSet1(a) and I2(a)←− remainingSet2(a).

(j) Repeat steps 2b to 2h but use O(a) instead of the I(a).

(k) Update the related activities to a.

3. Return offspring1 and offspring2.

Note that, after crossover, the number of causality relations for the whole
population remains constant, but how these relations appear in the offsprings
may be different from the parents. Moreover, the offsprings may be differ-
ent even when both parents are equal. For instance, consider the situa-
tion in which the crossover operator receives as input two parents that are
equal to the causal matrix in Figure 4.2. Assume that (i) the crossover

7We use the notation In(a) to get the subset returned by the input condition function
of activity a in individual n. When there is a single individual, n will be omitted. In this
pseudo-code, the individuals are the offsprings.



4.3 Genetic Operators 65

point is the activity D, (ii) we are doing crossover over the input condi-
tion function I(D) = {{F,B,E}, {E,C}, {G}}, and (iii) the swap points
are sp1 = 1 and sp2 = 2. Then, we have that the remainingSet 1(D) =
{{F,B,E}}, the swapSet 1(D) = {{E,C}, {G}}, the remainingSet 2(D) =
{{F,B,E}, {E,C}}, the swapSet 2(D) = {{G}}. Let us first crossover the
subsets in the swapSet2(D) with the remainingSet1(D). During the crossover,
the genetic algorithm randomly chooses to merge the subset S2 = {G} in the
swapSet2(D) with the existing subset X1 = {F,B,E}. In a similar way,
while swapping the subsets in swapSet 1(D) with the remainingSet2(D), the
algorithm randomly chooses (i) to insert the subset S1 = {E,C} and remove
activity E from the subset X2 = {F,B,E}, and (ii) to insert the subset
S1 = {G} as a new subset in the remainingSet 2(D). The result is that
I1(D) = {{F,B,E,G}} and I2(D) = {{F,B}, {E,C}, {G}}. The output
condition functions O1(D) and O2(D) do not change after the crossover op-
erator because the activity D does not have any output activity. Note that,
in this example, the two resulting offsprings are different from each other and
from the parents, even though the parents are equal.

After the crossover, the mutation operator takes place as described in the
next subsection.

4.3.2 Mutation

The mutation operator aims at inserting new material in the current popu-
lation. In our case, this means that the mutation operator may change the
existing causality relations of a population. Thus, our mutation operator
performs one of the following actions to the I/O condition functions of an
activity in an individual: (i) randomly choose a subset and add an activity
(in A) to this subset, (ii) randomly choose a subset and remove an activity
out of this subset, or (iii) randomly redistribute the elements in the subsets
of I/O into new subsets. For example, consider the input condition func-
tion of activity D in Figure 4.2. I(D) = {{F,B,E}, {E,C}, {G}} can be
mutated to (i) {{F,B,E}, {E,C}, {G,D}} if activity D is added to the sub-
set {G}, (ii) {{F,B,E}, {C}, {G}} if activity E is removed from the subset
{E,C}, or (iii) {{F}, {E,C,B}, {G}, {E}} if the elements in the subsets of
the original I(D) (i.e., the elements in the list “F,B,E,E,C,G”) are ran-
domly redistributed in four randomly chosen new subsets. Every activity in
an offspring may undergo mutation with the probability determined by the
mutation rate. The pseudo-code for the mutation operator is as follows:

Pseudo-code:
input: An individual, mutation rate.



66 A GA to Tackle Non-Free-Choice and Invisible Tasks

output: A possibly mutated individual.

1. For every activity a in the individual do:

(a) With probability mutation rate do one of the following operations
for the condition function I(a):

i. Select a subset X in I(a) and add an activity a′ to X, where
a′ belongs to the set of activities in the individual.

ii. Select a subset X in I(a) and remove an activity a′ from X,
where a′ belongs to X. If X is empty after a′ removal, exclude
X from I(a).

iii. Redistribute the elements in I(a). 8

(b) Repeat Step 1a, but use the condition function O(a) instead of
I(a).

(c) Update the related activities to a.

As the reader may already have noticed, both the crossover and the mutation
operators perform a repairing operation at the end of their executions. The
“update the related activities” operation makes sure that an individual is still
compliant with the Definition 18 after undergoing crossover and/or mutation.

4.4 Algorithm

After defining the representation, fitness and genetic operators, we define the
Genetic Algorithm (GA). The GA has five main steps (see Figure 4.4). Step
I simply reads the input event log. Based on the set of tasks in this event
log, Step II builds a number m of individuals as the initial population. The
initial population can be built via a completely random process or by using
heuristics. More details about Step II are in Subsection 4.4.1. Once the
initial population is built, Step III of the GA calculates the fitness for every
individual in the population. The fitness is the one given in Definition 23
(see Section 4.2.3, page 62). The Step IV checks if the algorithm should
stop or not. The mining algorithm stops when (i) it computes n generations,
where n is the maximum number of generations; or (ii) the fittest individual
has not changed for n/2 generations in a row. If the GA stops, it returns
the current population. If it does not stop, then Step V takes place. This
step uses elitism, crossover and mutation to build the individuals of the next

8Details about this step: (i) Get a list l with all the elements in the subsets of I(a);
(ii) Remove all subsets of I(a) (i.e., make I(a) = ∅); (iii) Create n sets (1 ≤ n ≤ |l|) and
randomly distribute the elements in the list l into these n sets; and (iv) Insert these n sets
into I(a).



4.4 Algorithm 67

generation. A percentage of the best individuals (the elite) is directly copied
to the next population. The other individuals in the population are gener-
ated via crossover (see Subsection 4.3.1) and mutation (see Subsection 4.3.2).
Two parents produce two offsprings. To select one parent, a tournament is
played in which five individuals in the population are randomly drawn and
the fittest one always wins. Again, Step III is executed to assign a fitness
measure to every individual in this new population. The iteration over steps
III, IV and V continues until one of the stopping conditions holds and the
current population is returned. Here it is worth to make a comment regarding
the returned population. During the GA steps executions, the individuals
may contain arcs that are never used. Thus, before returning the current
population, the GA removes the unused arcs from the individuals. These
arcs can be seen as the invisible tasks, in the mapped Petri nets, that never
fired. The following subsection provides details about the initial population
(Step II).

start I II III

V

IV end
yes

no

Step   Description  
I  Read event log  
II   Build the initial population  
III   Calculate fitness of the 

individuals in the population  
IV   Stop and return the fittest 

individuals?  
V  Create next population  – use 

elitism and  genetic operators  
 

Figure 4.4: Main steps of our genetic algorithm.

4.4.1 Initial Population

The initial population is randomly built by the genetic algorithm. As ex-
plained in Section 4.1, individuals are causal matrices. When building the
initial population, we ensure that the individuals comply with Definition 18.
Given a log, all individuals in any population of the genetic algorithm have
the same set of activities A. This set contains one activity for every task
that appear in the log. The setting of the causality relation C can be done
via a completely random approach or a heuristic one. The random approach
uses a 50% probability for establishing (or not) a causality relation between
two activities in A. The heuristic approach uses the information in the log
to determine the probability that two activities are going to have a causality
relation set. In a nutshell, the heuristics works as follows: the more often



68 A GA to Tackle Non-Free-Choice and Invisible Tasks

an activity a1 is directly followed by an activity a2 (i.e. the subtrace “a1a2”
appears in traces in the log), the higher the probability that individuals are
built with a causality relation from a1 to a2 (i.e., (a1, a2) ∈ C). This heuristic
way of building an individual is based on the work presented in [79]. Sub-
section “Heuristics to Build the Causality Relation of a Causal Matrix”, on
page 68, provides more details about the heuristic approach. Once the causal-
ity relations of an individual are determined, the condition functions I and O
are randomly built. This is done by setting a maximum size n for any input
or output condition function set of an activity a in the initial population9.
Every activity a1 that causally precedes an activity a2, i.e. (a1, a2) ∈ C, is
randomly inserted in one or more subsets of the input condition function
of a2. A similar process is done to set the output condition function of an
activity10. In our case, we set the number of distinct activities in the log as
the maximum size for any input/output condition function set in the initial
population11. As a result, the initial population can have any individual in
the search space defined by a set of activities A that satisfies the constraints
for the size of the input/output condition function sets. Note that the more
distinct tasks a log contains, the larger this search space. Finally, we em-
phasize that no further limitations to the input/output condition functions
sets are made in the other GA’s steps. Therefore, during the “Step V” in
the Figure 4.4, these sets can increase or shrink as the population evolves.

Heuristics to Build the Causality Relation of a Causal Matrix

When applying a genetic algorithm to a domain, it is common practice to
“give a hand” to the genetic algorithm by using well-known heuristics (in this
domain) to build the initial population [38]. Studies show that the use of
heuristics often does not alter the end result (if the genetic algorithm runs for
infinite amount of time), but it may speed the early stages of the evolution.
The GAs that use heuristics are called hybrid genetic algorithms .

In our specific domain - process mining - some heuristics have proven to
give reasonable solutions when used to mine event logs. These heuristics are
mostly based on local information in the event-log . Thus, these heuristics
can be used by the GA to build an initial population that has many of the
correct local causality relations. It makes sense to use heuristics because
most of the causality relations in process models can be detected based on
local information. However, note that the non-local causality dependencies

9Formally: ∀a∈A[|I(a)| ≤ n ∧ |O(a)| ≤ n].
10Formally: ∀a1,a2∈A,(a1,a2)∈C [∃i ∈ I(a2) : a1 ∈ i] and ∀a1,a2∈A,(a1,a2)∈C [∃o ∈ O(a1) :

a2 ∈ o].
11Formally: ∀a∈A[|I(a)| ≤ |A| ∧ |O(a)| ≤ |A|].



4.4 Algorithm 69

will not be in the initial population. In other words, the mutation operator
will be responsible for creating these non-local causality dependencies. Due
to its similarities to other related work (cf. Chapter 2), we use the heuristics
in [79] to guide the setting of the causality relations in the individuals of the
initial population. These heuristics are based on the dependency measure.

The dependency measure basically indicates how strongly a task depends
(or is caused) by another task. The more often a task t1 directly precedes
another task t2 in the log, and the less often t2 directly precedes t1, the
stronger is the dependency between t1 and t2. In other words, the more likely
it is that t1 is a cause to t2. The dependency measure is given in Definition 24.
The notation used in this definition is as follows. l2l : T × T × L → IN is
a function that detects length-two loops. l2l(t1, t2, t1) gives the number of
times that the substring “t1t2t1” occurs in a log. follows : T ×T ×L → IN is
a function that returns the number of times that a task is directly followed
by another one. That is, how often the substring “t1t2” occurs in a log.

Definition 24 (Dependency Measure - D ). Let L be an event log. Let
T be the set of tasks in L. Let t1 and t2 be two tasks in T . The dependency
measure D : T × T × L → IR is a function defined as:

D(t1, t2, L) =



























l2l(t1,t2,L)+l2l(t2,t1,L)
l2l(t1,t2,L)+l2l(t2,t1,L)+1

if t1 6= t2 and l2l(t1, t2, L) > 0,

follows(t1,t2,L)−follows(t2,t1,L)
follows(t1,t2,L)+follows(t2,t1,L)+1

if t1 6= t2 and l2l(t1, t2, L) = 0,

follows(t1,t2,L)
follows(t1,t2,L)+1

if t1 = t2.

Observe that the dependency relation distinguishes between tasks in short
loops (length-one and length-two loops) and tasks in parallel. Moreover, the
“+1” in the denominator is used to benefit more frequent observations over
less frequent ones. For instance, if a length-one-loop “tt” happens only once
in the log L, the dependency measure D(t, t, L) = 0.5. However, if this same
length-one-loop would occur a hundred times in the log, D(t, t, L) = 0.99.
Thus, the more often a substring (or pattern) happens in the log, the stronger
the dependency measure.

Once the dependency relations are set for the input event log, the genetic
algorithm uses it to randomly build the causality relations for every individual
in the initial population. The pseudo-code for this procedure is the following:

Pseudo-code:
input: An event-log L, an odd power value p and a dependency function D.
output: A causality relation C.



70 A GA to Tackle Non-Free-Choice and Invisible Tasks

1. T ←− set of tasks in L.

2. C ←− ∅.

3. FOR every tuple (t1, t2) in T × T do:

(a) Randomly select a number r between 0 (inclusive) and 1.0 (exclu-
sive).

(b) IF r < D(t1, t2, L)p then:

i. C ←− C ∪ {(t1, t2)}.

4. Return the causality relation C.

Note that we use an odd power value p to control the “influence” of the
dependency measure in the probability of setting a causality relation. Higher
values for p lead to the inference of fewer causality relations among the tasks
in the event log, and vice-versa.

4.5 Experiments and Results

This section explains how we conducted the experiments and, most important
of all, how we analyzed the quality of the models that the genetic algorithm
mined. To conduct the experiments we needed (i) to implement our genetic
algorithm and (ii) a set of event logs. The genetic algorithm described in
this chapter is implemented as the “Genetic algorithm plug-in” in the ProM
framework (see Figure 7.1 for a screenshot). Chapter 7 provides more details
about ProM and the genetic algorithm plug-in. The logs used in our exper-
iments are synthetic. In brief, we built the model (or copied it from some
related work) and simulated it to create a synthetic event log 12. We then run
the genetic algorithm over these sets of logs. Once the genetic algorithm fin-
ished the mining process, we analyzed the results. A genetic algorithm run is
successful whenever it finds an individual that is behaviorally complete and
precise (see Section 4.2 for details). Thus, at first sight, the natural way
to check for this seemed to be a direct comparison of the causal matrix of
the original model (the one that was simulated to create the synthetic event
logs) and the causal matrix of the individual that was mined by the genetic
algorithm. However, this is not a good evaluation criterion because there are
different ways to model the exact behavior expressed in a log. For instance,
consider the net in Figure 4.6. This net produces exactly the same behavior
as the one in Figure 4.1. However, their causal matrices are different. For
this reason, we defined evaluation metrics that check equality both from a

12Chapter 8 provides more details about how the synthetic logs used in this thesis were
created.



4.5 Experiments and Results 71

behavioral and from a structural perspective. The remainder of this section
is divided in three parts: (i) Subsection 4.5.1 motivates and explains the
metrics we have used to assess the quality of the mined models, (ii) Subsec-
tion 4.5.2 describes the experiments setup, and (iii) Subsection 4.5.3 contains
the results.

4.5.1 Evaluation

The genetic algorithm searches for models that are complete and precise (see
Section 4.2). Therefore, when evaluating our results, we should check if the
mined models are indeed complete and precise. Furthermore, even when the
mined models are not complete and/or precise, we should be able to assess
how much correct material they contain. This is important because we do
not let the genetic algorithm run for an “infinite” amount of time. Thus,
even when the mined model is not complete and precise, it is important to
know if the genetic algorithm is going in the right direction.

In our experiments, we have three elements: (i) the original model that
is used to build the synthetic event log, (ii) the synthetic event log itself, and
(iii) the mined model (or individual). Thus, to analyse our results, we have
defined metrics that are based on two or more of these elements.

Checking for Completeness
To check for completeness, we only need the event log and the mined

model. Recall that a model is complete when it can parse all the traces in the
log without having missing tokens or leaving tokens behind. So, completeness
can be verified by calculating the partial fitness PFcomplete (see Definition 21)
for the event log and the mined model. Whenever PFcomplete = 1, the mined
model is complete. Moreover, even when the mined model has PFcomplete < 1,
this measure gives an indication of the quality of the mined model with
respect to completeness.

Checking for Preciseness
To check for preciseness, we need the original model, the event log and

the mined model13. The main reason why we could not define metrics only
based on the event log and the mined model, or the original model and the
mined model, is because it is unrealistic to assume that the event log has all
the possible traces that the original model can generate. In other words, it
is unrealistic to assume that the log contains all possible event traces. Recall
that a model is precise when it does not allow for more behavior than the one

13Note that in reality we do not know the original (or initial) model in many situations.
However, the only way to evaluate our results is to assume an initial model. Without
an initial model, it is impossible to judge preciseness. In other words, there could be
over-fitting or over-generalization, but it would be impossible to judge this.



72 A GA to Tackle Non-Free-Choice and Invisible Tasks

Figure 4.5: Screenshot of the “Genetic algorithm plug-in” in the ProM frame-
work. This screenshot shows the result of mining an event log like the one in
Table 4.1. This log has 300 process instances in total. The left-side window
shows the configuration parameters (see Subsection 4.5.2). The right-side
window shows the best mined individual (or causal matrix). Additionally,
in the menu bar we show how to convert this individual (called “Heuristics
Net” in the ProM framework) to a Petri net.



4.5 Experiments and Results 73

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5

p6

p4

p7

p8

p9

p11

Figure 4.6: Another mined net for the log in Table 4.1. Note that this
net is behaviorally equivalent to the net in Figure 4.1, although they are
structurally different because the place “p6” has different input and output
tasks in the two nets.



74 A GA to Tackle Non-Free-Choice and Invisible Tasks

expressed in the log. Thus, if the log would be exhaustive, a possible metric
to check for this preciseness could be to divide the number of traces that are
in the log and that the mined model can generate by the amount of traces
that the mined model can generate. Clearly, a precise mined model could not
generate more traces than the ones in the log. Note that this metric would
be based on the event log and the mined model. For similar reasons, metrics
based on the mined and original models only would also be possible if the
log would be exhaustive. For instance, we could compare the coverability
graphs [62] of mapped Petri nets of the mined and the original models. In
this case, the mined model would be precise whenever the coverability graphs
would be equal. Note that sophisticated notions such as bisimulation [60]
and branching bisimulation [41] could also be used. However, none of these
metrics are suitable because in real-life applications the log does not hold all
possible traces.

Note that a process model with n parallel tasks can generate n! possi-
ble traces. In a similar way, a model with n independent choices can lead
to 2n possible traces. However, it is unrealistic to expect the logs to show
all the possible interleaving situations. Therefore, to analyse the precise-
ness of a mined models, one needs the original model and the respective
event log given as input to the GA. For instance, consider the situation illus-
trated in Figure 4.7. This figure shows the original model (“OriginalModel”),
two synthetic logs (“Log1” and “Log2”) and their respective mined models
(“MinedModel1” and “MinedModel2”). “Log1” shows that the tasks A,B,C
and D are (i) always executed after the task X and before the task Y and
(ii) independent of each other. Thus, we can say that the “MinedModel1”
is precise with respect to the behavior observed in the “Log1”. However,
note that the “MinedModel1”, although precise, can generate more traces
than the ones in the “Log1”. A similar reasoning can be done for the “Log2”
and the “MinedModel2”. Moreover, the coverability graph of the “Mined-
Model2” is different from the one of the “OriginalModel”. Actually, based
on “Log2”, the “MinedModel2” is more precise than the “OriginalModel”.
This illustrates that, when assessing how close the behavior of the mined and
original models are, we have to consider the event log that was used by the
genetic algorithm. Therefore, we have defined two metrics to quantify how
similar the behavior of the original model and the mined model are based on
the event log used during the mining process.

The two metrics are the behavioral precision (BP ) and the behavioral re-
call (BR). Both metrics are based on the parsing of an event log by the
mined model and by the original model. The BP and BR metrics are respec-
tively formalized in definitions 25 and 26. These metrics basically work by
checking, for the continuous semantics parsing of every task in every process



4.5 Experiments and Results 75

A B C A D

y

x

y

X

D B C

X

A B C

D

Y

OriginalModel Log1

X,A,B,C,D,Y

X,A,C,B,D,Y

X,C,A,D,B,Y

X,B,A,D,C,Y

X,D,A,C,B,Y

X,C,D,B,A,Y

Log2

X,A,B,C,D,Y

X,B,A,C,D,Y

X,C,B,A,D,Y

X,B,C,A,D,Y

MineModel1

MineModel2

Figure 4.7: Example of two mined models that are complete and precise with
respect to the logs, but both mined models can generate more traces than the
ones in the log. Additionally, the coverability graph of the “MinedModel2”
is different from the one of the “OriginalModel”.



76 A GA to Tackle Non-Free-Choice and Invisible Tasks

instance of the event log, how many activities are enabled in the mined model
and how many are enabled in the original model. The more enabled activ-
ities the models have in common while parsing the traces, the more similar
their behaviors are with respect to the event log. The behavioral precision
BP checks how much behavior is allowed by the mined model that is not
by the original model. The behavioral recall BR checks for the opposite.
Additionally, both metrics take into account how often a trace occurs in the
log. This is especially important when dealing with logs in which some paths
are more likely than others, because deviations corresponding to infrequent
paths are less important than deviations corresponding to frequent behavior.
Note that, assuming a log generated from an original model and a complete
mined model for this log, we can say that the closer their BP and BR are to
1, the more similar their behaviors. More specifically, we can say that:

- The mined model is as precise as the original model whenever BP and
BR are equal to 1. This is exactly the situation illustrated in Figure 4.7
for the “OriginalModel”, the “Log1” and the “MinedModel1”.

- The mined model is more precise than the original model whenever
BP = 1 and BR < 1. For instance, see the situation illustrated in Fig-
ure 4.7 for the “OriginalModel”, the “Log2” and the “MinedModel2”.

- The mined model is less precise than the original model whenever BP <
1 and BR = 1. For instance, see the situation illustrated for the original
model in Figure 4.1, the log in Figure 4.1, and the mined models in
Figure 4.3.

Definition 25 (Behavioral Precision - BP). 14 Let L be an event log. Let
CM o and CM m be the respective causal matrices for the original (or base)
model and for the mined one. Let the ranges of the labelling functions of
the original and mined models be the same, i.e., rng(Label o) = rng(Labelm).
Then the behavioral precision BP : L × CM× CM → [0, 1] is a function
defined as:

BP(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)
⋂

Enabled(CM m, σ, i)|

|Enabled(CM m, σ, i)|

)

∑

σ∈L

L(σ)

14For both definitions 25 and 26, whenever the denominator “|Enabled(CM , σ, i)|” is
equal to 0, the whole division is equal to 0. For simplicity reasons, we have omitted this
condition from the formulae.



4.5 Experiments and Results 77

where

- Enabled(CM , σ, i) gives the labels of the enabled activities at the causal
matrix CM just before the parsing of the element at position i in the
trace σ. During the parsing a continuous semantics is used (see Sec-
tion 4.2.1).

Definition 26 (Behavioral Recall - BR). Let L be an event log. Let CM o

and CM m be the respective causal matrices for the original (or base) model
and for the mined one. Let the ranges of the labelling functions of the original
and mined models be the same, i.e., rng(Label o) = rng(Labelm). Then the
behavioral recall BR : L × CM× CM→ [0, 1] is a function defined as:

BR(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)
⋂

Enabled(CM m, σ, i)|

|Enabled(CM o, σ, i)|

)

∑

σ∈L

L(σ)

Reasoning About the Quality of the Mined Models

When evaluating the quality of a data mining approach (genetic or not),
it is common to check if the approach tends to find over-general or over-
specific solutions. A typical extreme example of an over-general solution is
the net that can parse any trace that can be formed from the tasks in a log.
This solution has a self-loop for every task in the log (cf. Figure 4.8(a)).
The over-specific solution is the one that has a branch for every unique trace
in the log. Figure 4.8 illustrates both an over-general and an over-specific
solution for the log in Table 4.1.

The over-general solution does belong to the search space considered in
this chapter. However, this kind of solution can be easily detected by the
metrics we have defined so far. Note that, for a given original model CM o,
a log L generated by simulating CM o, and the mined over-general model
CM m, it always holds that: (i) the over-general model is complete (i.e.,
PFcomplete(L,CM m) = 1); (ii) while parsing the traces, all the activities that
are enabled in the original model are also enabled in the over-general model
(i.e., BR(L,CM o,CM m) = 1); and (iii) while parsing the traces, all the
activities of the over-general model are always enabled, i.e., the formula of
the behavioral precision (see Definition 25) can be simplified to the formula



78 A GA to Tackle Non-Free-Choice and Invisible Tasks

StartApply for License

Do Practical 
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Get Result

Attend Classes 
Drive Cars

Attend Classes 
Ride Motorbikes

Do Theoretical 
Exam

Receive
 License

End

Start Start Start Start

Apply for License Apply for License Apply for License Apply for License

Attend Classes 
Drive Cars

Attend Classes 
Drive Cars

Attend Classes 
Ride Motorbikes

Attend Classes 
Ride Motorbikes

Do Theoretical 
Exam

Do Theoretical 
Exam

Do Theoretical 
Exam

Do Theoretical 
Exam

Do Practical 
Exam Drive Cars

Do Practical 
Exam Drive Cars

Do Practical Exam
 Ride Motorbikes

Do Practical Exam
 Ride Motorbikes

Get Result Get Result Get Result Get Result

Receive
 License

Receive
 License

EndEnd End End

(a)

(b)

Figure 4.8: Example of nets that are (a) over-general and (b) over-specific
for the log in the Table 4.1.



4.5 Experiments and Results 79

in Equation 4.115. These three remarks helps us in detecting over-general
mined models during the experiments analysis.

BP(L,CM o,CM m) =

∑

σ∈L

(

L(σ)

|σ|
×

|σ|
∑

i=1

|Enabled(CM o, σ, i)|

|Am|

)

∑

σ∈L

L(σ)
(4.1)

Contrary to the over-general solution, the over-specific one does not be-
long to our search space because our internal representation (the causal ma-
trix) does not support duplicate tasks. Note that the function Label is re-
quired to be injective (see Definition 18). However, because our fitness only
looks for the complete and precise behavior (not the minimal representa-
tion, like the works on Minimal Description Length (MDL) [45]), it is still
important to check how similar the structures of the mined model and the
original one are. Differences in the structure may point out another good so-
lution or an overly complex solution. For instance, have a look at the model
in Figure 4.9. This net is complete and precise from a behavioral point of
view, but it contains extra unnecessary places. Note that the places “p12”
and “p13” could be removed from the net without changing its behavior. In
other words, “p12” and “p13” are implicit places [17]. Actually, because the
places do not affect the net behavior, all the nets in figures 4.1, 4.6 and 4.9
have the same fitness. However, a metric that checks the structure of a net
would, for instance, point out that the net in Figure 4.9 is a “superstructure”
of the net in Figure 4.1, and has many elements in common with the net in
Figure 4.6. So, even when we know that the over-specific solution is out of
the search space defined in this chapter, it is interesting to get a feeling about
the structure of the mined models. That is why we developed two metrics
to assess how much the mined and original model have in common from a
structural point of view .

The two metrics are the structural precision (SP) and the structural re-
call (SR). Both metrics are based on the causality relations of the mined
and original models, and were adapted from the precision and recall met-
rics presented in [64]. The SP and SR metrics are respectively formalized in
definitions 27 and 28. These metrics basically work by checking how many
causality relations the mined and the original model have in common. The
more causality relations the two models have in common, the more similar

15Recall that we do not allow for duplicate tasks here, i.e., the function Label is required
to be injective (see Definition 18).



80 A GA to Tackle Non-Free-Choice and Invisible Tasks

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

p10

p1

p2

p3

p5 p6

p4

p7

p8

p9

p11

p12

p13

Figure 4.9: Example of a net that that is behavioral precise and complete
w.r.t. the log in the Table 4.1, but that contains extra unnecessary (implicit)
places (p12 and p13).



4.5 Experiments and Results 81

their structures are. The structural precision assesses how many causality
relations the mined model has that are not in the original model. The struc-
tural recall works the other way around. Note that the structural similarity
performed by these metrics does not consider the semantics of the split/join
points. We have done so because the causality relations are the core of our ge-
netic material (see Subsection 4.3). The semantics of the split/join tasks can
only be correctly captured if the right dependencies (or causality relations)
between the tasks in the log are also in place.

Definition 27 (Structural Precision - SP). 16 Let CM o and CM m be
the respective causal matrices for the original and the mined models. Let the
ranges of the labelling functions of the original and mined models be the same,
i.e., rng(Label o) = rng(Labelm). The structural precision SP : CM× CM→
[0, 1] is a function defined as:

SP(CM o,CM m) =
|mapToLabels(Co ,Labelo) ∩mapToLabels(Cm ,Labelm)|

|mapToLabels(Cm ,Labelm)|

where:

- mapToLabels(C ,Label) is a function that applies the labelling function
Label to every element of a tuple in the causality relation C. For in-
stance, if C = {(a1, a2), (a2, a3)} and Label = {(a1, a), (a2, b), (a3, c)},
then the function mapToLabels(C,Label) = {(a, b), (b, c)}.

Definition 28 (Structural Recall - SR). Let CM o and CM m be the re-
spective causal matrices for the original and the mined model. Let the ranges
of the labelling functions of the original and mined models be the same, i.e.,
rng(Label o) = rng(Labelm). The structural recall SR : CM× CM→ [0, 1] is
a function defined as:

SR(CM o,CM m) =
|mapToLabels(Co ,Labelo) ∩mapToLabels(Cm ,Labelm)|

|mapToLabels(Co ,Labelo)|

When the original and mined models have behavioral metrics BR and BP

that are equal to 1, the SR and SP show how similar the structures of these
models are. For instance, for the original model in Figure 4.1, the structural
metrics would indicate that a mined model like the one in Figure 4.6 differs
from the original one by the same amount of causality relations (SR = SP),
and a mined model like the one in Figure 4.9 has extra causality relations
(SR = 1 and SP < 1).

16For both definitions 27 and 28, whenever the denominator “|mapToLabels(C ,Label)|”
is equal to 0, the whole division is equal to 0. For simplicity reasons, we have omitted this
condition from the formulae.



82 A GA to Tackle Non-Free-Choice and Invisible Tasks

Recapitulation of the Analysis Metrics
This subsection has presented the five metrics that are used to analyse the

results of the experiments: the partial fitness for the completeness require-
ment (PFcomplete), the behavioral precision (BP), the behavioral recall (BR),
the structural precision (SP) and the structural recall (SR). The PFcomplete

quantifies how complete a mined model is. The BP and BR measures how
precise the mined model is. The SP and SR express if the mined model has
an overly complex structure or not. These metrics are complementary and
should be considered together during the experiments analysis. For instance,
for our experiments, the mined model is as complete and precise as the orig-
inal model whenever the metrics PFcomplete , BP and BR are equal to 1. More
specifically, the mined model is exactly like the original model when all the
five metrics are equal to 1. As a general rule, the closer the values of the five
metrics are to 1, the better.

4.5.2 Setup

The genetic algorithm was tested over noise-free event logs from 25 different
process models 17. These models contain constructs like sequence, choice,
parallelism, loops, non-free-choice and invisible tasks. From the 25 models,
6 were copied from the models in [50]. The other models were created by
the authors. The models have between 6 and 42 tasks. Every event log was
randomly generated and contained 300 process instances. To speed up the
computational time of the genetic algorithm, the similar traces were grouped
into a single one and a counter was associated to inform how often the trace
occurs. The similarity criterion was the local context of the tasks in the trace.
Traces with the same direct left and right neighbors for every task (i.e., traces
with the same set of follows relation18) were grouped together. Besides, to
test how strong the use of the genetic operators and the heuristics influence
the results, we set up four scenarios while running the genetic algorithm:
(“Scenario I”) without heuristics to build the initial population and without
genetic operators 19; (“Scenario II”) with heuristics, but without the genetic
operators; (“Scenario III”) without heuristics, but with genetic operators;
and (“Scenario IV”) with heuristics and genetic operators. For every log,
50 runs were executed for every scenario. Every run had a population size

17All models can be found in the Appendix B.
18See Definition 14 for details about the follows (>L) relation.
19This scenario is a random generation of individuals. The aim of experimenting with

this scenario is to assess if the use of genetic operators and/or heuristics is better than the
pure random generation of individuals, given the same limited amount of computational
time.



4.5 Experiments and Results 83

of 100 individuals, at most 1,000 generations, an elite of 2 individuals and
a κ of 0.025 (see Definition 23). The experiments with heuristics used a
power value of 1 while building the initial population (see Subsection 4.4.1).
The experiments with the genetic operators have a respective crossover and
mutation probabilities of 0.8 and 0.2 (see the respective subsections 4.3.1
and 4.3.2). All the experiments were run using the ProM framework. We
implemented the genetic algorithm and the metrics described in this chapter
as plug-ins for this framework (see Chapter 7 for details).

4.5.3 Results

The results in figures 4.10 to 4.1720 indicate that the scenario for the hybrid
genetic algorithm (Scenario IV) is superior to the other scenarios. More
specifically, the results show that:

• Any approach (scenarios II to IV) is better than the pure random gen-
eration of individuals (Scenario I).

• Scenario II and IV mined more complete and precise models than the
other scenarios.

• The hybrid genetic algorithm (Scenario IV) works the best. This ap-
proach combines the strong ability of the heuristics to correctly capture
the local causality relations with the benefits of using the genetic opera-
tors (especially mutation) to introduce the non-local causality relations.
For instance, consider the results for the nets a6nfc, driversLicense
and herbstFig6p36. All these nets have non-local non-free-choice con-
structs. Note that, for these three nets, the results for Scenario II (cf.
Figure 4.11) have a much lower behavioral precision than for Scenario
IV (cf. Figure 4.13). This illustrates the importance of the genetic
operators to insert the non-local causality relations.

• In general, the hybrid genetic algorithm (Scenario IV) mines more com-
plete models that are also precise than the other scenarios (see Fig-
ure 4.17).

• Nets with short parallel branches (like parallel5, a7 and a5) are more
difficult to mine. This is due to the probabilistic nature of the genetic
algorithm. Recall that the fitness measure always benefits the individu-
als that can parse the most frequent behavior in the log. So, in parallel
situations, it is often the case that the algorithm goes for individuals
that show the most frequent interleaving patterns in the log.

20The unmarked points in these figures correspond to experiments that were interrupted
because they were taking more than 6 hours to finish one run.



84 A GA to Tackle Non-Free-Choice and Invisible Tasks

Averages for Precision and Recall for Scenario I (-H-GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8 a1

2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge



Average Structural Precision Average Structural Recall Average Behavioral Recall Average Behavioral Precision

Figure 4.10: Average precision and recall values of the results for Scenario I
(without heuristics to build the initial population and without using genetic
operators to build the following populations).

• Although Scenario II led to better results than Scenario III, it is not fair
to compare them. The reason is that Scenario III starts from scratch,
in the sense that its initial population is randomly built, while Scenario
II is strongly helped by good heuristics to detect local dependencies. In
our experiments, Scenario III is used to show that (i) the use of the
genetic operators improves the results (and this is indeed the case, since
Scenario III gave better results than Scenario I), and (ii) the genetic
operators help in mining non-local dependencies (again, note that the
results for the nets with non-local non-free-choice constructs - a6nfc
and driversLicense - are better in Scenario III than in Scenario II).
Thus, in short, Scenario III shows that the GA was going on the right
track, but it would need more iterations to reach or outperform the
results of Scenario II for all nets.

4.6 Summary

This chapter explained how the genetic algorithm (GA) to tackle non-free-
choice and invisible tasks works. The chapter has two main parts: the ex-



4.6 Summary 85

Averages for Precision and Recall for Scenario II (+H-GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8 a1

2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge



Average Structural Precision Average Structural Recall Average Behavioral Recall Average Behavioral Precision

Figure 4.11: Average precision and recall values of the results for Scenario
II (with heuristics to build the initial population, but without using genetic
operators to build the following populations).

Averages for Precision and Recall for Scenario III (-H+GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8 a1

2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge



Average Structural Precision Average Structural Recall Average Behavioral Recall Average Behavioral Precision

Figure 4.12: Average precision and recall values of the results for Scenario
III (without heuristics to build the initial population, but using genetic op-
erators to build the following populations).



86 A GA to Tackle Non-Free-Choice and Invisible Tasks

Averages for Precision and Recall for Scenario IV (+H+GO)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8 a1

2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Net name

P
re

ci
si

on
/R

ec
al

l a
ve

ra
ge



Average Structural Precision Average Structural Recall Average Behavioral Recall Average Behavioral Precision

Figure 4.13: Average precision and recall values of the results for Scenario
IV (with heuristics to build the initial population and using genetic operators
to build the following populations).

Average Fitness (PFcomplete) over 50 Runs

-1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Nets

A
ve

ra
ge

 P
Fc

om
pl

et
e 

of
 th

e 
M

in
ed

 M
od

el
s

Scenario I (-H-GO) Scenario II (+H-GO) Scenario III  (-H+GO) Scenario IV (+H+GO)

Figure 4.14: Average fitness (PFcomplete) values of the mined models for 50
runs (each scenario depicted separately).



4.6 Summary 87

Average Proper Completion over 50 Runs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip


pa

ra
lle

l5
a6

nfc


bn
1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4


l1l


he
rb

stF
ig6

p4
5 a7


al2


a5


bn
3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1


he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn
2

l2l
Skip



Nets

A
ve

ra
ge

 P
ro

pe
r 

C
om

pl
et

io
n 

of
 th

e 
M

in
ed

 M
od

el
s

Scenario I (-H-GO) Scenario II (+H-GO) Scenario III  (-H+GO) Scenario IV (+H+GO)

Figure 4.15: Average values of the proper completion fitness of the mined
models for 50 runs. The proper completion fitness shows the proportion of
the traces in the log that can be parsed without missing tokens or leaving
tokens.



88 A GA to Tackle Non-Free-Choice and Invisible Tasks

% of Complete Models over 50 Runs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8 a1

2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Nets

%
 o

f P
ro

pe
r 

C
om

pl
et

e 
M

in
ed

 M
od

el
s

Scenario I (-H-GO) Scenario II (+H-GO) Scenario III  (-H+GO) Scenario IV (+H+GO)

Figure 4.16: Percentage of the mined models that proper complete
(PFcomplete = 1) over 50 runs.

% of Complete Mined Models that are also Precise over 50 Runs

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

l1l
Skip



pa
ra

lle
l5

a6
nfc


bn

1 a8


he
rb

stF
ig6

p3
7

a1
0s

kip


he
rb

stF
ig6

p1
8

a1
2

he
rb

stF
ig3

p4
 l1l



he
rb

stF
ig6

p4
5 a7


al2


a5


bn

3

dr
ive

rsL
ice

ns
e

l2l
Opti

on
al al1



he
rb

stF
ig6

p3
6

ch
oic

e

he
rb

stF
ig6

p4
1 l2l


bn

2

l2l
Skip



Nets

%
 o

f P
ro

pe
r 

C
om

pl
et

e 
M

od
el

s 
th

at
 a

re
 a

ls
o 

P
re

ci
se



Scenario I (-H-GO) Scenario II (+H-GO) Scenario III  (-H+GO) Scenario IV (+H+GO)

Figure 4.17: Percentage of the complete mined models (PFcomplete = 1) that
are also precise (BP = 1) over 50 runs.



4.6 Summary 89

planation about the GA itself and the description of the developed metrics
to evaluate the experiments.

The three main components of the GA are (i) the internal representation,
(ii) the fitness function and (iii) the genetic operators. The internal represen-
tation defines the search space. So, the causal matrix supports the modelling
of these kinds of constructs. The fitness function evaluates the quality of a
candidate solution. In our case, this quality is measured by how complete
and precise a candidate solution (or causal matrix or individual) is with re-
spect to the event log given as input. A solution is complete when it can
reproduce all the behavior observed in the log, it is precise when it does not
describe much more behavior than the one that can be derived from the log.
The crucial elements of the defined fitness are (i) the use of the continuous
semantics when parsing the log, (ii) the weighed punishment for the amount
of tokens that were not used during the parsing and the number of missing
tokens, and (iii) the relative punishment for the number of possible behavior
during the parsing of traces by a causal matrix. The genetic operators are the
crossover and mutation. The underlying idea is that the causality relations
are the core genetic material that the genetic operators manipulate.

For the evaluation, five metrics were defined: PFcomplete , BP , BR, SP and
SR. The metric PFcomplete is based on the log and the mined model. This
metric assesses how complete the mined model is with respect to the log
given as input. The metrics behavioral precision (BP) and behavioral recall
(BR) are based on the log, the mined model and the original model. They
quantify how precise the mined model is. The main idea is that, for a given
log, the mined model should be at least as precise as the original model used
to generate this log. The metrics structural precision (SP) and structural
recall (SR) are based only on the mined model and the original model. These
metrics measure how many causality relations the mined and original models
have in common. All these five metrics are complementary when assessing
the quality of a mined model. Moreover, the application of these metrics is
not limited to the evaluation of genetic algorithms. They can be applied to
another settings where models need to be compared.

The results show that the hybrid genetic algorithm indeed usually mines
complete models that are also precise. However, the probabilistic nature of
the GA seems to hinder the correct discovery of parallel branches (especially
the ones with more than two branches).

The next chapter shows how we have extended the genetic algorithm
presented here to tackle duplicate tasks as well. As it will be shown, the
main challenge while defining a genetic algorithm to also tackle duplicate
tasks is to avoid the mining of over-specific models.



90 A GA to Tackle Non-Free-Choice and Invisible Tasks



Chapter 5

A Genetic Algorithm to Tackle
Duplicate Tasks

This chapter explains the Duplicates Genetic Algorithm (DGA), an extension
of the basic genetic algorithm (see Chapter 4) to mine process models with
duplicate tasks as well. Duplicate tasks are used when a particular task is
needed in different contexts in a process model. As an illustrative example,
consider the model in Figure 5.1. This model shows the procedure for a
one-day conference: the participants go to the conference by car or by train,
they may give a talk, they join the social activities (guided tour and dinner)
and, when the conference ends, they go back home. Furthermore, the model
shows that (i) the participants use the same means of transportation (train
or car) to come to the conference location and to go back home and (ii)
the participants that come by car have to pay for the parking place. Note
that the tasks “Travel by Car” and “Travel by Train” are duplicated in this
model because, although they refer to a same task (being in a vehicle to go
somewhere), they are used in different contexts in the process model. The
top tasks “Travel by Train” and “Travel by Car” are in the context of “going
to the conference”. The bottom ones are in the context of “going home or
leaving the conference”. In other words, the going somewhere is different.
This example illustrates that a genetic algorithm to mine process models
with duplicate tasks should allow two or more activities in an individual to
be linked to a same task (or label) in the log. Therefore, one trivial extension
to the GA in Chapter 4 is to remove the constraint that the labelling function
Label of a causal matrix (see Definition 18) is injective. If Label is not
injective anymore, the internal representation (the causal matrix) naturally
supports the modelling of processes with duplicate tasks. However, this
simple extension has implications for the size of the search space, the parsing
of traces and the fitness measure:



92 A Genetic Algorithm to Tackle Duplicate Tasks

Start

Get Ready

Travel by CarTravel by Train

Conference Starts

Join Guided Tour

Join Dinner

Go Home

Travel by Train Pay for Parking

Travel by Car

End

Give a Talk

Figure 5.1: Example of a model containing duplicate tasks.



93

Identifier Process instance

1 Start, Get Ready, Travel by Car, Conference Starts,
Give a Talk, Join Guided Tour, Join Dinner, Go Home,
Pay for Parking, Travel by Car, End.

2 Start, Get Ready, Travel by Train, Conference Starts,
Give a Talk, Join Guided Tour, Join Dinner, Go Home,
Travel by Train, End.

3 Start, Get Ready, Travel by Car, Conference Starts,
Join Guided Tour, Join Dinner, Go Home, Pay for Parking,
Travel by Car, End.

4 Start, Get Ready, Travel by Train, Conference Starts,
Join Guided Tour, Join Dinner, Go Home, Travel by Train,
End.

Table 5.1: Example of an event log (with four process instances) for the
process model in Figure 5.1.

• The search space is defined by the internal representation. When du-
plicates are allowed, this search space increases considerably. Actually,
the search space may even be infinite if no limit is set to the maximum
amount of duplicates that every task in the log can have. Since our
experience with the basic genetic algorithm (see Chapter 4) shows that
running the GA is very time consuming, it is worth to set a maximum
amount of duplicates that a task in the log can have before the DGA
starts the search. This makes the search space finite and also speeds up
the search. However, over-specific solutions may still be in the search
space. For instance, consider the log in Table 5.1. If we set that there
are as many duplicates of a task as the number of times this task ap-
pears in the log, the over-specific model portrayed in Figure 5.2 would
be in the search space.

• The parsing is affected because it is not trivial to decide which duplicate
to fire when multiple duplicates of a given task are enabled. Recall
that the fitness measure of the basic GA is based on the replay of
the log traces by the individuals. The main idea of replaying a trace
is to fire the activities in the individual in the order in which their
corresponding tasks appear in the trace. However, when duplicates are
allowed, choosing among duplicates of a same task may become very
costly because the correct choice may involve looking ahead more than
one position in the individual. For instance, assume the situation in
which the process instance 1 (see Table 5.1) should be parsed by an



94 A Genetic Algorithm to Tackle Duplicate Tasks

individual like the one in Figure 5.2. Assume that this individual has
initially one token in place p1. In this situation, 4 duplicates of the task
“Start” are enabled. When replaying process instance 1 (cf. Table 5.1)
for this individual, the parser has to choose which duplicate to fire.
The correct duplicate to fire is the “Start” connected to the place p4
because its branch models the behavior of this process instance. One
way to correctly decide which duplicate to fire is to look ahead in the
individual structure and the log trace. In fact, this is the log replay
semantics used in [67, 68] for conformance checking. However, this
process becomes very expensive, from a computational time point of
view, when it has to be done for every individual in the population.

• The fitness guides the search of any genetic algorithm. For the basic
GA, the fitness guided the search towards individuals that are complete
(can parse the behavior observed in the log) and precise (cannot parse
much more than the behavior that can be derived from the log). How-
ever, when duplicates are allowed, the fitness also needs to incorporate
some requirement to punish the individuals that have more duplicates
than necessary. In other words, the fitness needs to promote the fold-
ing of duplicates when they are in excess. For instance, note that both
individuals in figures 5.1 and 5.2 are complete and precise with respect
to the log in Table 5.11, but the individual in Figure 5.2 has unneces-
sary duplicates that can be folded. This situation illustrates why the
preciseness and completeness requirements, although necessary, are not
sufficient anymore.

All these remarks led us to develop a genetic algorithm that aims at
mining models in which the duplicates can be distinguished based on their
local context . The local context of a duplicate is the set of input and output
elements of the duplicate. Thus, the DGA presented in this chapter aims at
the mining of process models in which duplicates of a same task do not have
input elements or output elements in common.

The requirement that the duplicates can be distinguished based on their
local context solves the implications we have mentioned for the search space,
the parsing and the fitness measure. The search space can be easily made
finite by using heuristics to set the maximum amount of duplicates per
task. Since the duplicates are locally identifiable and they do not share
input/output elements, the heuristics can use the follows relation (cf. the
relation “>L” in Definition 14) to determine the maximum amount of dupli-
cates that a task can have. The parsing can be simplified from n-look-ahead
to 1-look-ahead in the individual structure. Because duplicates do not have

1Note that the nets in Figure 5.1 and Figure 5.2 are trace equivalent.



95

Start

Get Ready

Travel by CarTravel by Train

Conference Starts

Join Guided Tour

Have Dinner

Go Home

Travel by Train Pay for Parking

Travel by Car

End

Give a Talk

StartStart Start

Get ReadyGet Ready Get Ready

Travel by Train Travel by Car

Conference StartsConference Starts Conference Starts

Give a Talk

Join Guided TourJoin Guided Tour Join Guided Tour

Have DinnerHave Dinner Have Dinner

Go HomeGo HomeGo Home

Travel by Train Pay for Parking

Travel by Car

EndEnd End

p1

p2 p3 p4 p5

p6 p7 p8 p9

p10 p11 p12 p13

p14 p15

p16 p17 p18 p19

p20 p21 p22 p23

p24 p25 p26 p27

p28 p29 p30 p31

p32 p33

p36 p37

p38

p35p34

Figure 5.2: An over-specific mined model for the log in Table 5.1



96 A Genetic Algorithm to Tackle Duplicate Tasks

common output elements, looking at their output elements should be suf-
ficient to choose which duplicate to fire. The fitness measure can be easily
extended with a punishment that is based on the structure of the individuals.
In short, an individual is punished whenever duplicates of a same task have
common input/output elements.

Finally, we point out that the use of local information to set the maximum
amount of duplicates does not prevent the DGA of mining individuals with
non-local dependencies between activities. For instance, the DGA illustrated
in this chapter can mine the model in Figure 5.1. Note that this model has
a non-local non-free-choice construct. The DGA can still mine non-local
dependencies because, like for the basic GA, the genetic operators allow for
the creation/exchange of non-local dependencies.

The remainder of this chapter explains the DGA in more detail. Sec-
tion 5.1 presents the definition of the causal matrix to support duplicates.
Basically, the function Label (see Definition 18) is not injective anymore.
Section 5.2 explains the new “folding” requirement that needs to be added
to the fitness measure. This section also describes in more detail how the
continuous parsing semantics works in the presence of duplicates. Section 5.3
describes the small changes to the genetic operators, so that they work at
the duplicates level, instead of at the activity level. Section 5.4 describes the
DGA’s steps. The main differences are related to the way the initial popu-
lation is built because heuristics are also used to set the maximum amount
of duplicates per task. Section 5.5 contains the experimental results. This
section also shows how the analysis metrics are adapted to work for models
with duplicates, and introduces new analysis metrics that check if the mined
models have the correct amount of duplicates per task. Section 5.6 provides
a short summary of this chapter.

5.1 Internal Representation and Semantics

The DGA needs an internal representation that supports duplicates. An
internal representation supports duplicates when more than one activity of
an individual can have the same label. Thus, we can easily extend the internal
representation of the basic genetic algorithm (see Definition 18) by removing
the constraint that the function Label should be injective. The extended
causal matrix is, then, formally defined as:

Definition 29 (Extended Causal Matrix). Let LS be a set of labels. An
Extended Causal Matrix is a tuple ECM = (A,C, I, O,Label), where

- A is a finite set of activities,



5.2 Fitness Measurement 97

- C ⊆ A× A is the causality relation,

- I : A→ P(P(A)) is the input condition function,2

- O : A→ P(P(A)) is the output condition function,

- Label : A → LS is a labeling function that maps each activity in A to
a label in LS,

such that

- C = {(a1, a2) ∈ A× A | a1 ∈
⋃

I(a2)},
3

- C = {(a1, a2) ∈ A× A | a2 ∈
⋃

O(a1)},

- C ∪ {(ao, ai) ∈ A × A | ao
C

•= ∅ ∧ C

• ai = ∅} is a strongly connected
graph.

Note that any causal matrix (CM ) (see Definition 18) is also an extended
causal matrix (ECM ). Furthermore, ECMs have the same semantics of CMs
(cf. Section 4.1) and the mappings in Appendix A (from Petri nets to Causal
Matrix, and vice-versa) still hold. This is the case because both the semantics
(explained in Section 4.1) and the mappings in Appendix A are independent
of the activity labels. In the remainder of this document, we will use the
term causal matrix to also refer to an extended causal matrix.

5.2 Fitness Measurement

The fitness measure of the DGA is based on two extensions to the basic GA.
The first extension is the addition of the folding requirement to the fitness
measure itself. The second extension is the adaptation of the continuous
semantics parser of the basic GA to handle duplicates during the log replay
performed by the fitness. In the following we explain these two extensions.

Extensions to the Fitness Measure
The folding requirement was added to the fitness of the DGA to avoid

over-specific solutions. Recall that the fitness fitness F (see Definition 23) of
the GA captures the completeness and preciseness requirements. In fact, the
completeness and preciseness requirements are still necessary because (i) the
mined model should represent the behavior in the log and (ii) over-general
solutions are also in the search space. However, these two requirements are
not sufficient anymore because they do not allow the fitness to distinguish
the individuals that are complete and precise and do not over-specialize from
the ones that do over-specialize. For instance, consider the log in Table 5.1,
and the complete and precise mined models in figures 5.1 and 5.2. Note that

2P(A) denotes the powerset of some set A.
3
⋃

I(a2) is the union of the sets in set I(a2).



98 A Genetic Algorithm to Tackle Duplicate Tasks

both mined models have the same fitness F value because they are complete
and precise. However, the model in Figure 5.2 is over-specific. This example
shows that, when over-specific solutions are in the search space, the fitness
measure needs an extra metric to punish for over-specializations. In other
words, the fitness measure should be able to benefit individuals like the one
in Figure 5.1 over individuals like the one in Figure 5.2. That is why we have
added the “folding” requirement to the fitness measure used by the DGA.
But, how to detect that folding is necessary? The answer follows from the
discussion about the kind of models the DGA can mine.

Recall that in the introduction of this chapter we explained that the DGA
targets the class of models in which duplicates do not have input elements
or output elements in common. Thus, the “folding” requirement is based
on this constraint. The main idea is that individuals are punished when-
ever they do not satisfy this constraint. Moreover, the more the individuals
have duplicates that violate this constraint, the higher the punishment. The
“folding” requirement is formalized as follows:

Definition 30 (Partial Fitness - PF folding ). 4 Let CM be a causal matrix.
Let CM [] be a bag of causal matrices that contains CM . Then the partial
fitness PF folding : CM× CM[]→ [0, 1] is a function defined as

PF folding(CM,CM []) =
DuplicatesSharingElements(CM)

max (DuplicatesSharingElements(CM []))

where

- DuplicatesSharingElements : CM → IN is a function that calculates
the number of different tuples in the causality function C of the causal
matrix CM , that map to the same labels. Formally,
DuplicatesSharingElements(CM) = |{(a1, a2) ∈ C|∃(a′

1, a
′
2) ∈ (C\{(a1,

a2)})[Label(a1) = Label(a′
1) ∧ Label(a2) = Label(a′

2)]}|.

- DuplicatesSharingElements : CM[] → IN is a function that returns
the set of values DuplicatesSharingElements(CM) for every individ-
ual in the population. Formally, DuplicatesSharingElements(CM []) =
{DuplicatesSharingElements(x)|x ∈ CM []}.

- max : P(IN) → IN is a function that returns the maximum value of a
set.

The extended fitness - called FDGA - adds to the fitness F (see Definition 23)
of the basic genetic algorithm the “folding” requirement. The FDGA is defined
as follows:

4For Definition 30, whenever the denominator max (DuplicatesSharingElements(CM []))
is equal to 0, the whole division is equal to 0.



5.2 Fitness Measurement 99

Definition 31 (DGA Fitness - FDGA). Let L be an event log. Let CM
be a causal matrix. Let CM [] be a bag of causal matrices that contains CM .
Let F be the fitness function given in Definition 23. Let PF folding be the
partial fitness function introduced in Definition 30. Let γ be a real number
greater than 0 and smaller or equal to 1 (i.e., γ ∈ (0, 1]) . Then the fitness
FDGA : L × CM× CM[]→ (−∞, 1) is a function defined as

FDGA(L,CM,CM []) = F (L,CM,CM [])− γ ∗ PF folding(CM,CM [])

The fitness FDGA weighs (by γ) the punishment for individuals that have
duplicates with common input/output elements. Thus, if a set of individuals
are complete and precise (they have all F = 1), the ones that have fewer
duplicates sharing common input/output elements will have a higher fitness
FDGA value. Furthermore, once the duplicates satisfy the constraint, no fur-
ther punishment is introduced. This means that the fitness FDGA does not
benefit certain constructs over others, given that the individual fits the class
of targeted models. For instance, whenever a situation can be modelled in
terms of non-free-choice or duplicates, the fitness will not benefit an indi-
vidual over another. To illustrate this situation, consider the individual in
Figure 5.3. This individual replaces the non-free-choice of the individual in
Figure 4.1 by the duplication of the task “Do Theoretical Exam”. Both indi-
viduals have the same fitness value for FDGA. This is a situation in which the
duplicates do not relate to over-specialization. However, the folding require-
ment does not prevent all kinds of over-specialization. Namely, over-specific
individuals that do not violate the folding constraint are not punished. For
instance, the fitness FDGA does not distinguish between the nets in Figure 5.4
because the folding punishment is the same for both models. Note that, in
the net Figure 5.4(b), neither the duplicates of task A nor the duplicates of
task B have common input/output elements. However, although the folding
requirement does not prevent all cases of specialization, this requirement is
simple and works for many situations.

Extensions to the Continuous Semantics Parser
Like the basic GA, the DGA also uses continuous semantics parsing while

calculating an individual’s fitness. Recall that a continuous semantics means
that the parsing process proceeds even when the activity to be parsed is
not enabled. In other words, the activity that should be parsed always fires
(or executes) (see Subsection 4.2). However, choosing which activity to fire
becomes a less trivial task when duplicates are possible. More specifically,
the parsing process needs to resolve the scenarios in which (i) more than
one duplicate is enabled in the individual, or (ii) none of the duplicates
are enabled. The latter scenario - all duplicates are disabled - is solved by



100 A Genetic Algorithm to Tackle Duplicate Tasks

Apply for License

Attend Classes Ride MotorbikesAttend Classes Drive Cars

Do Theoretical Exam

Do Practical Exam Drive Cars Do Practical Exam Ride Motorbikes

Get Result

Receive License

Start

End

Do Theoretical Exam

Figure 5.3: Net with the same behavior of the net in Figure 4.1, but that
uses duplicates instead of the non-free-choice construct.



5.3 Genetic Operators 101

A B

A B

y

x

y

X

B A

(a) (b)

Log

X,A,B,Y

X,B,A,Y

Figure 5.4: Example of a situation in which the fitness FDGA will not punish
the net (b) for its extra duplicates.

randomly firing one of the duplicates. The former scenario - multiple enabled
duplicates - is solved based on the output elements of the enabled duplicates.
The enabled duplicate that has an output element that occurs first in the
trace, from the current position until the end of the trace, is the one to
be fired. If multiple enabled duplicates satisfy this condition, one of the
duplicates is randomly fired anyway. When this condition does not hold for
any of the enabled duplicates, one of them is randomly fired. Note that this
firing policy generates some unpredictability for the parsing process when the
individuals have duplicates with output elements in common. However, due
to the folding requirement of the fitness FDGA, this non-determinism should
decrease as the population evolves and the individuals tend to have fewer
duplicates that share input/output elements.

5.3 Genetic Operators

Before we explain the extension for the genetic operators, let us step back a
bit and explain the differences between the genotypes and the phenotypes of
the individuals in the population. The genotype is the representation that
the genetic algorithm deals with during the search. The phenotype is how
the genetic algorithm presents its results [38]. Understanding this difference
is important to comprehend how we extended the genetic operators.



102 A Genetic Algorithm to Tackle Duplicate Tasks

When choosing how to represent the individuals, we had two possibilities.
The first possibility would be to have a population in which the individuals
might have a different number of activities (different sets A). In this case,
the number of activities of every individual might shrink or grow as the
population evolves, and all the activities should be involved in some causality
relation C. The second possibility would be to have a population in which all
the individuals have the same amount of activities (same set A), but some of
these activities could be disconnected from the net. We selected the second
possibility because it is faster to manipulate. The “trick” here is that the
disconnected activities are not shown in the phenotypes of the individuals.
The gain is that the genetic operators can be easily adapted and do not have
to deal with keeping track of the shrinking and growing of the individuals.

Actually, only the crossover operator needs to be adapted in order to sup-
port duplicates. Recall that the crossover operator of the basic GA works by
selecting an activity at both parents and randomly exchanging some parts
of these activities’ input/output sets. Now that duplicates are possible, the
crossover operator works at the label level. In other words, the crossover
point is now a label that belongs to the range of the function Label of every
individual. Based on this label, one of the duplicates linked to this label is
selected in one parent, and another duplicate (perhaps the same), that is also
associated to the same label, is selected in the other parent. The rest of the
procedure is the same as for the crossover of the basic GA (see Section 4.3.1
for more details). The change from activity level to label level makes the
crossover promote the exchange of genetic material (causality relations) be-
tween different duplicates of individuals in the population. The mutation
operator remains the same because its work is independent of the activity
being a duplicate or not.

5.4 Algorithm

The DGA basically works like the GA (see Section 4.4), and also has the
five main steps depicted in Figure 4.4. The differences are that the DGA (i)
in Step II, builds the initial population using heuristics to set the maximum
amount of duplicates; (ii) in Step III, uses the fitness FDGA (see Definition 31)
instead of the fitness F (see Definition 23) and the continuous semantics
parsing that handles duplicates (see Section 5.2); and (iii) in Step IV, also
removes the dangling duplicates while cleaning the individuals to be returned.
The following subsection has more details about how the initial population
is built.



5.4 Algorithm 103

5.4.1 Initial Population

The most important issue while building the initial population is to set the
amount of duplicates per task that each individual will have. This is im-
portant because it defines if the desired solutions are in the search space or
not. For instance, to mine an individual like the one in Figure 5.1 for the
log in Table 5.1, the internal representation should support at least two du-
plicates of the task “Travel by Train” and two duplicates of the task “Travel
by Car”. If this is not the case, individuals like the one in Figure 5.1 could
never be found because they will not belong to the search space. In terms
of the DGA’s internal representation (see Definition 29), setting the amount
of duplicates per task implies determining the set A of activities and the la-
belling function Label . The range of the function Label is the set of tasks in
the log (every task is a label). The DGA uses heuristics based on the follows
relation (cf. >L in Definition 14) to determine the set of activities A.

Since the DGA targets models in which duplicates do not have input or
output elements in common, the follows relation (>L in Definition 14) derived
from the log can be safely used to set the maximum amount of duplicates
per task. The main idea is that, for a given task t in the log, the individuals
have as many duplicates as the minimum of the number of tasks that directly
precede t in any trace in the log and the number of tasks that directly follow t 5.
This can be formalized as follows: ∀l∈rng(Label)|Label−1(l)| = max (min(|{l′ ∈
LS|l >L l′}|, |{l′ ∈ LS|l′ >L l}|), 1). The minimum is sufficient because the
input/output elements of any two duplicates of a same task should be disjoint.
For instance, if we compute the follows relation for the log in Table 5.1, we
see that the task “Travel by Train” is directly preceded by the tasks “Get
Ready” and “Go Home”, and is directly followed by the tasks “Conference
Starts” and “End”. Therefore, for this log, all individuals should have two
duplicates for task “Travel by Train”. If a similar reasoning is done for the
other tasks in the log, the result is that every individual in the population
will have two duplicates of the tasks “Travel by Car”, “Travel by Train”
and “Conference Starts”. The other tasks will not have duplicates. This
means that for this log, the search space has the size of all possible process
models that are compliant with the causal matrix definition for this A and
this Label . However, as the reader might already have noticed, the “ideal”
individual for the log in Table 5.1 does not duplicate the task “Conference
Starts”. The reasoning we use here is that we set an upper bound for the
amount of duplicates per task for all individuals in the population, but we

5When a task is not directly preceded or directly followed by any other task in the log,
we set the minimum to 1. In other words, there is at least one activity in A that is linked
to a task in the log.



104 A Genetic Algorithm to Tackle Duplicate Tasks

allow for dangling activities. Thus, there is an upper limit, but activities
may be disconnected from the rest of the net. So, given the A and Label for
the previous example, the genotype of an individual like the one in Figure 5.1
would have one of the duplicates for “Conference Starts” disconnected from
the rest of the net. Whenever an individual has disconnected activities, we
do not show these disconnected activities in the individual’s phenotype and,
consequently, in the mapped Petri net for this individual.

Once the maximum amount of duplicates is set, the dependency measure
is used to create the causality relations C for every individual. Again, we
reinforce that all individuals have a genotype with the same A and Label ,
but their C and I/O functions may differ. We use the dependency measure
D (see Definition 24) to build the causality relation C of every individual.
The dependency measure indicates how strongly a task t in the log is a cause
for another task t′. Note that this measure is defined over the log. Therefore,
in the context of the DGA, the dependency measure indicates how strongly
an activity “a” linked to a label “t” is a cause to another activity “a′” linked
to a label “t′”. For this reason, the pseudo-code to set the causality relations
for the individuals of an initial population (see Subsection 4.4.1, on page 69)
needed to be adapted as follows:

Pseudo-code:
input: An event-log L, the set A, the function Label , an odd power value p,
a dependency function D.
output: A causality relation C.

1. T ←− The range of the function Label .

2. C ←− ∅.

3. FOR every tuple (t1, t2) in T × T do:

(a) Randomly select a number r between 0 (inclusive) and 1.0 (exclu-
sive).

(b) IF r < D(t1, t2, L)p then:

i. c ∈ {(a1, a2) ∈ A× A | Label(a1) = t1 ∧ Label(a2) = t2}.

ii. C ←− C ∪ {c}.

4. Return the causality relation C.

Note that the Step 3b of the pseudo-code has been modified to take the du-
plicates into account. Besides, there is at most one causality relation between
any two pairs of duplicates that map to the same labels (cf. Step 3(b)i). This
is the case because we assume that no duplicates have input/output elements
in common. When the causality relations of an individual are determined,



5.5 Experiments and Results 105

the condition functions I and O are randomly built as described for the basic
GA (cf. Subsection 4.4.1, on page 68).

5.5 Experiments and Results

This section explains how we conducted the experiments and analyzed the
quality of the models that the DGA mined. To conduct the experiments we
had (i) to implement the DGA and (ii) collect a representative set of event
logs. The Duplicates Genetic Algorithm described in this chapter is imple-
mented as the “Duplicate Tasks GA plug-in” in the ProM framework (see
Figure 5.5 for a screenshot). Chapter 7 provides more details about ProM
and the DGA plug-in. The logs used in our experiments are synthetic. In
brief, we constructed models (or copied them from related work) and simu-
lated them to create synthetic event logs6. We then ran the DGA over these
sets of logs. Once the algorithm finished the mining process, we analyzed
the results. A DGA run is successful whenever the mined model is complete
(it can parse all the traces in the log), precise (it does not allow for more be-
havior than the one that can be derived from the log) and folded (it does not
contain unnecessary duplicates). The completeness and preciseness require-
ments can be analyzed by using the metrics we have defined for the basic
genetic algorithm (see Subsection 4.5.1). However, the structural precision
(SP) and recall (SR) need to be extended to work with bags. The reason is
that the labelling function Label is not injective anymore, so there can be
more than one tuple with the same pair of labels. To check for the folding
requirement, we have defined two new analysis metrics: duplicates precision
and duplicates recall . These metrics basically check if the original and mined
models have the same amount of duplicates per task. The remainder of this
section is divided into three parts: (i) Subsection 5.5.1 presents the exten-
sions to the structural precision/recall metrics as well as the new metrics
that check for the folding requirement, (ii) Subsection 5.5.2 describes the
experiments setup, and (iii) Subsection 5.5.3 shows the results.

5.5.1 Evaluation

The analysis metrics structural precision (SP ) and Structural Recall (SR)
measure how many connections (causality relations) two individuals have in
common (see Subsection 4.5.1, on page 79). Two individuals have a com-
mon causality relation when the activities involved in this relation - say
(a1, a2) ∈ C in one individual and (a′

1, a
′
2) ∈ C ′ in the other individual

6Section 8.1 provides more details about this.



106 A Genetic Algorithm to Tackle Duplicate Tasks

Figure 5.5: Screenshot of the “Duplicate Tasks GA plug-in” in the ProM
framework. This screenshot shows the result of mining an event log like the
one in Table 5.1. This log has 300 process instances in total. The left-side
window shows the configuration parameters (see Subsection 5.5.2). The right-
side window shows the best mined individual. Additionally, in the menu bar
we show how to convert this individual (called “Heuristic net” in the ProM
framework) to a Petri net.



5.5 Experiments and Results 107

- are respectively linked to a same label - i.e., Label(c1) = Label(c′1) and
Label(c2) = Label(c′2) . Since for the basic genetic algorithm the labelling
function is required to be injective, two individuals have at most one causal-
ity relation in common for every pair of labels. However, when duplicates are
allowed, this is not the situation anymore because causality relations involv-
ing different activities may map to the same pair of labels. For this reason,
we had to extend the analysis metrics structural precision and recall to deal
with bags. More specifically, the function mapToLabels in definitions 27
and 28 was extended to return a bag of labelled pairs. In a similar way, the
intersection operator (∩) now works over bags. The intersection of two bags
returns the minimum amount of elements that are common to both bags.
The “extended” version of the structural precision and recall are respectively
formalized in Definitions 32 and 33. A more detailed discussion about the
structural precision and recall metrics can be found in Subsection 4.5.1 of
the basic genetic algorithm.

Definition 32 (Structural Precision - SP). 7 Let CM o and CM m be
the respective causal matrices for the original and the mined models. Let
the ranges of the labelling functions of the original and mined models be
the same, i.e., rng(Label o) = rng(Labelm). Then the structural precision
SP : CM× CM→ [0, 1] is a function defined as:

SP(CM o,CM m) =
|mapToLabels(Co ,Labelo) ∩mapToLabels(Cm ,Labelm)|

|mapToLabels(Cm ,Labelm)|

where:

- mapToLabels(C ,Label) is a function that applies the labelling function
Label to every element of a tuple in the causality relation C. For in-
stance, if C = {(a1, a2), (a2, a3), (a2, a4)} and Label = {(a1, a), (a2, b),
(a3, c), (a4, c)}, then the function mapToLabels(C,Label) = [(a, b),
(b, c)2], i.e., a bag containing three elements.

Definition 33 (Structural Recall - SR). Let CM o and CM m be the re-
spective causal matrices for the original and the mined model. Let the ranges
of the labelling functions of the original and mined models be the same, i.e.,
rng(Label o) = rng(Labelm). Then the structural recall SR : CM × CM →
[0, 1] is a function defined as:

SR(CM o,CM m) =
|mapToLabels(Co ,Labelo) ∩mapToLabels(Cm ,Labelm)|

|mapToLabels(Co ,Labelo)|

7For both definitions 32 and 33, whenever |mapToLabels(C ,Label)| is equal to 0, the
whole division is equal to 0.



108 A Genetic Algorithm to Tackle Duplicate Tasks

The analysis metrics duplicates precision (DP ) and duplicates recall (DR)
check if the original model (the one used to create the synthetic logs for the
experiments) and the mined model (the one returned by the DGA) have the
same amount of duplicates. These two metrics are respectively formalized
in definitions 34 and 35. The duplicates recall (DR) assesses how many
duplicates the original model has that are not in the mined model. The
duplicates precision (DP ) quantifies how many duplicates the mined model
has that are not in the original model. The duplicates precision indicates if
the mined models tend to over-specialize. Thus, if we assume that a mined
model is complete to a certain log, we can say that this mined model (i) has
as many duplicates as the original model if their DP and DR are equal to 1;
(ii) has more duplicates than the original model if DP < 1 and DR = 1 (for
instance, compare the original model in Figure 5.4(a) with the mined models
in Figure 5.4(b)); and (ii) has fewer duplicates than the original model if
DP = 1 and DR < 1 (for instance, compare the original model in Figure 5.3
with the mined model in Figure 4.1, for the log in Table 4.1). In short, the
closer the metric duplicates precision is to one the better. In other words,
over-specific individuals have a DP value that is closer to zero. The metrics
duplicates precision and recall allow us to check for the folding requirement
introduced in Section 5.2.

Definition 34 (Duplicates Precision - DP). 8 Let CM o and CM m be
the respective causal matrices for the original and the mined models. Let
the ranges of the labelling functions of the original and mined models be
the same, i.e., rng(Label o) = rng(Labelm). Then the duplicate precision
DP : CM× CM→ [0, 1] is a function defined as:

DP(CM o,CM m) =
|toLabels(Ao,Co ,Labelo) ∩ toLabels(Am ,Cm ,Labelm)|

|toLabels(Am ,Cm ,Labelm)|

where:

- toLabels(A,C ,Label) is a function that applies the labelling function
Label to every element of the set A that belongs to at least one tuple
in the causality relation C. For instance, if A = {a1, a2, a3, a4}, C =
{(a1, a3), (a1, a4)} and Label = {(a1, a), (a2, b), (a3, c), (a4, c)}, then the
function toLabels(A,C,Label) = [a, c2].

Definition 35 (Duplicates Recall - DR). Let CM o and CM m be the re-
spective causal matrices for the original and the mined models. Let the ranges
of the labelling functions of the original and mined models be the same, i.e.,

8For both definitions 34 and 35, whenever the denominator |toLabels(A,C ,Label)| is
equal to 0, the whole division is equal to 0.



5.5 Experiments and Results 109

rng(Label o) = rng(Labelm). Then the duplicates recall DR : CM × CM →
[0, 1] is a function defined as:

DR(CM o,CM m) =
|toLabels(Ao,Co ,Labelo) ∩ toLabels(Am ,Cm ,Labelm)|

|toLabels(Ao ,Co ,Labelo)|

The metrics presented in this section, as well as the metric for completeness
(cf. PFcomplete in Definition 21) and the metrics for preciseness (behavioral
precision BP and recall BR as introduced in definitions 25 and 26), are used
to analyse the experiments results. These metrics are complementary and
should be considered together. As for the basic genetic algorithm, the DGA
mines a model that is as complete and precise as the original one whenever
the metrics PFcomplete , BP and BR are equal to 1. More specifically, the
mined model is exactly like the original model when all the seven metrics
(i.e, PFcomplete , BP , BR, DP , DR, SP and SR) are equal to 1. As a general
rule, the closer the values of all seven metrics are to 1, the better.

5.5.2 Setup

The Duplicates Genetic Algorithm was tested using noise-free event logs from
32 different process models 9. These models contain constructs like sequence,
choice, parallelism, loops, non-free-choice, invisible tasks and duplicate tasks.
From the 32 models, 14 nets have duplicate tasks and were mostly copied
from the models in [50]. The other models were mostly created by the authors
and they do not contain duplicates. The 32 models had between 6 and 42
tasks. Every event log was randomly generated and contained 300 process
instances. To speed up the computational time of the genetic algorithm, the
similar traces were grouped into a single one and a counter was associated to
inform how often the trace occurs. Traces were grouped together if they had
exactly the same execution sequence of tasks. For every log, 50 runs were
executed. Every run had a population size of 100 individuals, at most 1,000
generations, an elite of 2 individuals, a κ and γ of 0.025 (see Definition 31), a
power value of 1 while building the initial population (see Subsection 5.4.1),
and respective crossover and mutation probabilities of 0.8 and 0.2 (see the
Section 5.3). All the experiments were run using the ProM framework. We
implemented the DGA and the metrics described in this chapter as plug-ins
for this framework (see Chapter 7 for details).

9All models can be found in the Appendix B.



110 A Genetic Algorithm to Tackle Duplicate Tasks

5.5.3 Results

The results for the setup explained in Subsection 5.5.2 are depicted in Fig-
ure 5.7 to 5.9. In the graphs, the nets that contain duplicate tasks are
signaled with an “∗” (asterisk) after their names. Similarly, the nets that
are not compliant with the constraints of the models the DGA targets (i.e.,
these nets have duplicates sharing input/output elements) have an “nc” (non-
compliant) after their names. From the results, we can conclude that:

• Nets with constructs that allow for more interleavings are more difficult
to mine for the following two reasons. The first reason is that more
interleaving situations usually lead to the inferring of more duplicates
per task while building the initial population (cf. Subsection 5.4.1).
Note that, in these situations, more tasks tend to be directly pre-
ceded/followed by other tasks and, consequently, the DGA has to ex-
plore a bigger search space. The second reason is that, because the
DGA’s fitness is an extension of the GA’s one, the DGA also has a
tendency to benefit the individuals that correctly portrait the most
frequent interleavings in the log. As an illustration, consider the re-
sults for the nets:

– parallel5, herbst6p45 and herbstFig5p1AND. These nets respectively
have a five-, three- and two-branch parallel construct. Further-
more, all branches have a single task, except that one of the
branches of herbst6p45 contains two tasks. From these three nets,
the amount of possible interleavings are 120 (= 5!) for parallel5,
12 for herbst6p45 and 4 for herbstFig5p1AND. Note that, except
for the duplicates precision metric, the net parallel5 has the worst
results (among the three nets) for the metrics in Figure 5.7 to 5.9.
In other words, the mined models for parallel5 are less complete
and precise than the mined models for the other two nets (cf.
Figure 5.8 and 5.9). Furthermore, the mined models for paral-

lel5 contain more extra duplicates than the ones for herbst6p45

(cf. Figure 5.7). On the opposite way, the net herbstFig5p1AND

has the best results of the three nets. The only exception is for
the metric duplicates precision. This happens because the mined
models for the net herbstFig5p1AND contain the specialization il-
lustrated in Figure 5.4. Note that this kind of specialization is
not punished by the folding requirement of the fitness measure in
Definition 31.

– herbstFig6p34 and herbstFig6p10. These two nets are very similar
and have the same bag of tasks. However, they differ because the



5.5 Experiments and Results 111

net herbstFig6p34 (i) has one extra loop construct that is not in
herbstFig6p10 and (ii) has one extra task in one of the branches
of the parallel construct that also appears in herbstFig6p10. The
presence of this longer parallel branch and the extra loop allow for
more possible interleavings for the net herbstFig6p34 than for the
net herbstFig6p10. As the results in Figure 5.7 to 5.9 point out,
the mined models for herbstFig6p10 are better than the ones for
herbstFig6p34. The difference is more critical for the complete-
ness requirement (cf. Figure 5.9). While the mined models for
herbstFig6p10 correctly capture on average 70% of the behavior in
the logs (see “Average Proper Completion Fitness”), the ones for
herbstFig6p34 can correctly parse less than 30% of the behavior in
the log.

• The mined models for compliant nets that proportionally have more
duplicates tend to be more folded than necessary. For instance, consider
the results for the duplicates precision metric (see Figure 5.7). Note
that the compliant nets herbstFig6p34, herbstFig6p10 and flightCar are
more folded (have smaller duplicates precision values) than the other
compliant nets. The common characteristic of these nets is that at
least 40% of their tasks are duplicates and some of these duplicates are
in parallel constructs.

• Low-frequent skipping of tasks is difficult to mine. For instance, con-
sider the net herbstFig6p25. As indicated by the results in Figure 5.8,
the mined models for this net are among the less precise ones, and
the average value for the strutural precision points out that the mined
models did not correctly capture a considerable amount of connections
that are in the original model (structural precision inferior to 0.9).
Furthermore, the results in Figure 5.9 indicate that the average proper
completion fitness of the mined models is very low (less than 0.3). By
inspecting the mined models for this net, we discovered that some of
its tasks did not contain output elements. Thus, this justifies the in-
ability to proper complete. Actually, the mined models have problems
to correctly capture a part of the net that contains many skipping of
tasks. This construct is highlighted in Figure 5.6.



112 A Genetic Algorithm to Tackle Duplicate Tasks

• As expected, the non-compliant nets herbstFig6p42 and herbstFig6p39

could not be correctly mined. These nets are more folded (cf. Fig-
ure 5.7) than necessary and, consequently, less precise (cf. Figure 5.8).
Besides, the results are worse for herbstFig6p42 than for herbstFig6p39.
In both cases, the heuristics used to build the initial population (cf.
Subsection 5.4.1) are enough to capture the minimum amount of du-
plicates, but the original models have duplicates sharing input/output
elements. Thus, mined models are going to be punished by the folding
requirement of the fitness measure. Actually, as shown in Figure 5.9,
none of the mined models is precise for these two non-compliant models
(see metric “% of Complete Models that are Precise”).

• Whenever the behavior modelled with non-free-choice constructs could
also be modelled with duplicate tasks, the DGA mined models with
duplicate tasks. This is the case for the nets a6nfc and driversLicense.
Note that these nets have more duplicates than necessary (as indicated
by the duplicates precision metric in the top graph in Figure 5.7), but
many mined complete models are also precise (cf. top graph in Fig-
ure 5.9). Since during the analysis of these two nets we have compared
the mined models with original models that use non-free-choice con-
structs, we can conclude the non-free-choice constructs were replaced
by duplicate tasks.

• No mined model for the net betaSimplified is precise. betaSimplified

is the only net that contains duplicates and non-local non-free-choice
construct at the same time. Although many of the mined models for
this net are complete, they are not precise. Since they are complete,
and the duplicates precision and recall values in the top graph of Fig-
ure 5.7 indicate that these models are as folded as the original ones,
we can conclude that the duplicates are correctly captured and the
non-preciseness is due to the absence of (part of) the non-local non-
free-choice construct. This situation suggests that the DGA would need
more iterations to correctly capture the non-free-choice construct.

Based on the remarks above and the results in Figure 5.7 to 5.9, we
can conclude that the DGA is able to discover the right model in many
situations. However, the DGA approach requires more iterations than the
GA to find a complete and precise model. This is probably because it needs
to explore a bigger search space. Additionally, although the heuristics based
on the follows relation seems to be enough to capture the minimal amount
of duplicates per task in the log (since the duplicates precision is usually
lower than the duplicates recall), the returned models tend to have more
duplicates than necessary. The models are not exactly over-specific (since the



5.5 Experiments and Results 113

Figure 5.6: Heuristic net for the original model of the net herbstFig6p25. The
zoomed part shows the construct with the low-frequent skipping of tasks. The
mined models could not correctly mine this construct.



114 A Genetic Algorithm to Tackle Duplicate Tasks

average values for the duplicates precision metrics are above 0.75), but they
do tend to be more specific than necessary. Thus, to check if the DGA indeed
would return better models if it would iterate more, we ran new experiments
for a set of nets with duplicates. The setup was like the one described
in Subsection 5.5.2, but using the 10,000 generations (10 times the initial
number of generations). The set of nets with duplicates was chosen based on
the amount of time it would take to complete one run (the faster ones were
selected). In total, 11 nets with duplicate tasks were selected. The results are
depicted in Figures 5.10 to 5.12. For every figure, we show the situation for
1,000 generations (top) and the situation for 10,000 generations (bottom). As
can be seen, the DGA did perform better for the 10,000 generations than for
1,000 generations. The difference is more remarkable for the results shown
in Figure 5.12. Note that all mined models, except for the non-compliant
ones, have much better values for the average proper completion fitness, the
percentage of complete models and the percentage of complete models that
are precise. For instance, some of the mined models for the net betaSimplified

also captured the non-local non-free-choice construct (for 1,000 iterations,
none of the mined models were complete and precise). Furthermore, all
the mined models for the net flightCar are complete (before, only 70% of
the models were complete). The nets herbstFig6p33 and herbstFig6p31 also
increased significantly the number of complete and precise mined models.
This means that the DGA was able to mine the missing connections for the
experiments with 1,000 generations. In short, all the average values for the
metrics of the mined models improved after it has run for 10,000 generations.

5.6 Summary

This chapter presented the Duplicates Genetic Algorithm (DGA). The DGA
is an extension of the basic GA explained in Chapter 4 to allow the mining
of process models with duplicate tasks. The DGA aims at mining process
models in which the duplicates can be distinguished based on the local con-
text in which they are inserted. The local context of a task t is determined
by the tasks that are input and output elements of t. Thus, the DGA only
aims to mine models in which the duplicates do not share input elements and
do not share output elements.

The extensions to the GA consisted of (i) removing the constraint that
the labelling function Label of a causal matrix must be injective, (ii) the use
of the follows relations to set the maximum amount of duplicates that a task
in the log can have, (iii) adding the folding requirement to the fitness mea-
sure and adapting the continuous semantics parsing to work with duplicates,



5.6 Summary 115

Averages for Folding Requirement - Nets 1 to 16

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

a1
0s

kip


a1
2 a5



a6
nfc


a7


a8



be
taS

im
pli

fie
d (

*) bn
1

ch
oic

e

dr
ive

rsL
ice

ns
e

flig
htC

ar
 (*

)

he
rb

stF
ig3

p4


he
rb

stF
ig5

p1
9 (

*)

he
rb

stF
ig5

p1
AND (*

)

he
rb

stF
ig5

p1
OR (*

)

he
rb

stF
ig6

p1
0 (

*)

Average Duplicates Precision Average Duplicates Recall

Averages for Folding Requirement - Nets 17 to 32

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

he
rb

stF
ig6

p2
5 (

*)

he
rb

stF
ig6

p3
1 (

*)

he
rb

stF
ig6

p3
3 (

*)

he
rb

stF
ig6

p3
4 (

*)

he
rb

stF
ig6

p3
6

he
rb

stF
ig6

p3
8 (

*)

he
rb

stF
ig6

p3
9 (

*, 
nc

)

he
rb

stF
ig6

p4
1

he
rb

stF
ig6

p4
2 (

*, 
nc

)

he
rb

stF
ig6

p4
5

he
rb

stF
ig6

p9
 (*

) l1l


l2l


l2l
Opti

on
al

l2l
Skip



pa
ra

lle
l5

Average Duplicates Precision Average Duplicates Recall

Figure 5.7: Average values for the duplicates precision and recall. Although
the mined models are not over-specific (average duplicates precision ≥ 0.75),
they tend to have more duplicates than necessary (average duplicates recall <
1.0). Additionally, some models have fewer duplicates than necessary. These
models are either non-compliant (like herbstFig6p42), or have proportionally
more duplicates than the other compliant models (like herbstFig6p34 and
herbstFig6p10).



116 A Genetic Algorithm to Tackle Duplicate Tasks

Results for the Preciseness Requirement - Nets 1 to 16

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

a1
0s

kip


a1
2 a5



a6
nfc


a7


a8



be
taS

im
pli

fie
d (

*) bn
1

ch
oic

e

dr
ive

rsL
ice

ns
e

flig
htC

ar
 (*

)

he
rb

stF
ig3

p4


he
rb

stF
ig5

p1
9 (

*)

he
rb

stF
ig5

p1
AND (*

)

he
rb

stF
ig5

p1
OR (*

)

he
rb

stF
ig6

p1
0 (

*)

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Results for the Preciseness Requirement - Nets 17 to 32

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

he
rb

stF
ig6

p2
5 (

*)

he
rb

stF
ig6

p3
1 (

*)

he
rb

stF
ig6

p3
3 (

*)

he
rb

stF
ig6

p3
4 (

*)

he
rb

stF
ig6

p3
6

he
rb

stF
ig6

p3
8 (

*)

he
rb

stF
ig6

p3
9 (

*, 
nc

)

he
rb

stF
ig6

p4
1

he
rb

stF
ig6

p4
2 (

*, 
nc

)

he
rb

stF
ig6

p4
5

he
rb

stF
ig6

p9
 (*

) l1l


l2l


l2l
Opti

on
al

l2l
Skip



pa
ra

lle
l5

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 5.8: Averages values for the behavioral/structural precision and re-
call. The results show that the mined models do not tend to be over-general
(behavioral precision ≥ 0.74), but the mined models for non-compliant nets
(like herbstFig6p42) and nets with (i) more than two parallel branches (like
parallel5 and herbstFig6p41) and/or (ii) longer parallel branches (like herbst-

Fig6p34) are less precise. In addition, the mined models have a tendency to
contain duplicates tasks instead of non-free-choice constructs whenever they
can be used to model a same behavior (like in the net driversLicense).



5.6 Summary 117

Results for the Completeness Requirement - Nets 1 to 16

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

a1
0s

kip


a1
2 a5



a6
nfc


a7


a8



be
taS

im
pli

fie
d (

*) bn
1

ch
oic

e

dr
ive

rsL
ice

ns
e

flig
htC

ar
 (*

)

he
rb

stF
ig3

p4


he
rb

stF
ig5

p1
9 (

*)

he
rb

stF
ig5

p1
AND (*

)

he
rb

stF
ig5

p1
OR (*

)

he
rb

stF
ig6

p1
0 (

*)

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Results for the Completeness Requirement - Nets 17 to 32

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

he
rb

stF
ig6

p2
5 (

*)

he
rb

stF
ig6

p3
1 (

*)

he
rb

stF
ig6

p3
3 (

*)

he
rb

stF
ig6

p3
4 (

*)

he
rb

stF
ig6

p3
6

he
rb

stF
ig6

p3
8 (

*)

he
rb

stF
ig6

p3
9 (

*, 
nc

)

he
rb

stF
ig6

p4
1

he
rb

stF
ig6

p4
2 (

*, 
nc

)

he
rb

stF
ig6

p4
5

he
rb

stF
ig6

p9
 (*

) l1l


l2l


l2l
Opti

on
al

l2l
Skip



pa
ra

lle
l5

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 5.9: Averages values for the completeness requirement and derived
metrics. The average fitness indicates that the mined models can correctly
parse many substructures in the original nets (average fitness close to 1), but
there are also mined models that do not correctly express the most frequent
behavior in the log (see nets with average process completion fitness inferior
to 0.5). The problems are again related to parallelism (e.g. parallel5 and
herbst6p34), non-compliance (e.g. herbstFig6p42) and low-frequent observa-
tions of dependencies to skip parts of the process (e.g. herbstFig6p25).



118 A Genetic Algorithm to Tackle Duplicate Tasks

Results for the Preciseness Requirement - 1,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Results for the Preciseness Requirement - 10,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 5.10: Comparison between the results for 1,000 generations and 10,000
generations for the average values of the behavioral/structural precision and
recall. Note that all the average values improved when the DGA was given
more iterations. As an illustration, consider the net betaSimplified. Note that
this net had a significant improvement for the metrics behavioral precision
and structural recall. betaSimplified looks like the net in Figure 5.1. Thus,
this improvement means that more arcs related to the non-local non-free-
choice construct were correctly captured in the mined models.



5.6 Summary 119

Averages for Folding Requirement -  1,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Duplicates Precision Average Duplicates Recall

Averages for Folding Requirement -  10,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Duplicates Precision Average Duplicates Recall

Figure 5.11: Comparison between the results for 1,000 generations and 10,000
generations for the average values of the duplicates precision and recall. All
values improved slightly. Note that the values for the net herbstFig5p1AND

did not change because the extra duplicates are due to the kind of special-
ization illustrated in Figure 5.4. This specialization is not punished by the
folding requirement of the DGA’s fitness.



120 A Genetic Algorithm to Tackle Duplicate Tasks

Results for the Completeness Requirement - 1,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Results for the Completeness Requirement - 10,000 generations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

be
taS

im
pli

fie
d (

*) 


flig
htC

ar
 (*

) 

he
rb

stF
ig5

p1
9 (

*) 


he
rb

stF
ig5

p1
AND (*

) 

he
rb

stF
ig5

p1
OR (*

) 

he
rb

stF
ig6

p3
1 (

*) 


he
rb

stF
ig6

p3
3 (

*) 


he
rb

stF
ig6

p3
8 (

*) 


he
rb

stF
ig6

p3
9 (

*, 
nc

) 

he
rb

stF
ig6

p4
2 (

*, 
nc

) 

he
rb

stF
ig6

p9
 (*

) 

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 5.12: Comparison between the results for 1,000 generations and 10,000
generations for the average values of the the completeness metrics. Note that
the number of complete (and precise) models increased remarkably when the
DGA ran for a longer period of time. This is especially the case for the
nets flightCar, herbstFig6p31 and herbstFig6p33. The only exceptions are the
non-compliant nets because their results did not improve much.



5.6 Summary 121

and (iv) changing the crossover point from the activity level to the label
level. Additionally, two new analysis metrics were introduced: duplicates
precision and duplicates recall. These metrics quantify how close the mined
and original models are with respect to the amount of duplicates that they
contain.

The experiments show that the DGA can mine process models with dupli-
cate tasks. However, the models tend to have more duplicates than necessary.
The more the DGA iterates, the better the results. This shows that the fit-
ness is guiding the search in the right direction. However, the overhead of
the extra computational time cannot be neglected and, for sure, this is a
drawback of the DGA.

The next chapter explains the arc post-pruning mechanism that we pro-
vide to “clean” the visual representation of mined models that the GA and
DGA return for given (noisy) logs.



122 A Genetic Algorithm to Tackle Duplicate Tasks



Chapter 6

Arc Post-Pruning

This chapter explains the approach we chose to handle mined models from
noisy logs. Noise can be defined as low-frequent incorrect behavior in the log.
A log may contain noise because some of its traces are incomplete (e.g., they
correspond to running cases in the system that have not been completed
yet), or the traces reflect incorrect behavior (e.g., due to some temporal
system misconfiguration). Either way, the presence of noise may hinder the
correct discovery of a process model. Noisy behavior is typically difficult
to detect because it cannot be easily distinguished from other low-frequent
correct behavior in the log (for instance, the execution of exceptional paths
in the process). For this reason, and because both the GA and the DGA
are designed to always benefit individuals that can correctly parse the most
frequent behavior in the log, we have opted for a post-processing step to
“clean” mined models from the effects of noise. In short, the post-processing
step works by pruning the arcs of a (mined) model that are used fewer times
than a certain threshold.

The main advantage of a post-pruning step is that, because it works inde-
pendently of the process mining algorithm, it does not avoid the discovery of
low-frequent behavior. Thus, if the mined low-frequent behavior is a correct
one, it can remain in the model. If the mined low-frequent behavior corre-
sponds to noisy behavior, the end user has the possibility to clean the mined
model. Furthermore, arc post-pruning can also be used over any model to get
a more concise view (in terms of the number of arcs in the model) of the most
frequent behavior. As a final remark, we point out that arc post-pruning is
also the approach adopted by the other related process mining techniques
in [18, 23, 44, 52] to clean mined models. The remainder of this chapter
provides more details about this arc post-pruning approach. Section 6.1 ex-
plains how the post-pruning works. Section 6.2 presents the experiments
setup and the results. The experiments included logs with different types



124 Arc Post-Pruning

of noise. The main aim of the experiments was to detect to which kinds of
noise the GA and the DGA seem to be more sensitive. Section 6.3 provides
a short summary of this chapter.

6.1 Post Pruning

The post-pruning step removes the arcs that are used fewer times than a
given threshold from a (mined) model. The threshold refers to the arc usage
percentage. The arc usage indicates the number of times that an arc (or
dependency) is used when a log is replayed by an individual. The arc usage
percentage defined by the threshold is relative to the most frequently used arc.
As an illustration, assume that the most frequent arc usage of a mined model
to a given log is 300. If the threshold is set for 5%, all arcs of this model that
are used 15 or fewer times are removed during the post-pruning step. This
situation is depicted in Figure 6.1. The mined model is in Figure 6.1(a).
The pruned model is in Figure 6.1(b). Notice that the arcs of the mined
model that were used (from left to right) 7, 5, 3 and 6 times are not shown
in the pruned model. When the removal of arcs leads to dangling activities
(i.e., activities without ingoing and outgoing arcs), these activities are also
omitted in the post-pruned model.

6.2 Experiments and Results

This section explains the experimental setup and results. Our aim is to test
how the GA and the DGA perform in the presence of noise. So, the first
requirement to perform the experiments would be to have noisy logs. As
explained in [58], different types of noise may affect a mining algorithm in
different ways. Therefore, we have experimented with noisy logs that contain
different noise types. The noise types are explained in Subsection 6.2.1. After
deciding on the types of noise to consider, we selected some logs to experiment
with. Due to the high computational time required by the GA and, especially,
by the DGA, we have selected the nets that were reasonable fast (less than 3
hours to process one seed for at most 1,000 iterations) to compute the results.
Additionally, these nets should have returned good results for the noise-free
logs. This requirement makes sure that any failure in mining complete and
precise models is exclusively due to the noise in the log, since the genetic
algorithm can successfully mine models for the noise-free log. To facilitate
the explanation, the remainder of this section is divided into two parts. First,
in Subsection 6.2.1, the noise types we have experimented with are explained.



6.2 Experiments and Results 125

(a) (b)

Figure 6.1: Illustration of applying post-pruning to arcs of a mined model.
The mined model is in (a), and the resulting post-pruned model is in (b).
The numbers next to the arcs in these models inform how often these arcs
have been used while replaying the log for the models. The post-pruning
illustrated here has a threshold of 5%. Thus, since the highest arc usage of
the mined model in (a) is 300, all of its arcs that are used 15 or fewer times
are not shown in the resulting pruned model in (b).



126 Arc Post-Pruning

Second, in Subsection 6.2.2, the experiments setup and results for the GA
and DGA are provided.

6.2.1 Noise Types

For the experiments, we used 6 different noise types: missing head, missing
body, missing tail, swap tasks, remove task and mix all. These noise types are
the ones described in [58]. If we assume a trace σ = t1...tn−1tn, these noise
types behave as follows. Missing head, body and tail respectively randomly
remove sub-traces of tasks in the head, body and tail of σ. The head goes
from t1 to tn/3

1. The body goes from t(n/3)+1 to t(2n/3). The tail goes from
t(2n/3)+1 to tn. The removed sub-traces contain at least one task and at
most all the tasks in the head, body or tail. Swap task exchanges two tasks
in σ. Remove task randomly removes one task from σ. Mix all randomly
performs (with the same probability) one of the other 5 noise types to a
traces in a log. Real life logs will typically contain mixed noise. However,
the separation between the noise types allows us to better assess how the
different noise types affect the GA and the DGA.

For every noise type, we generated logs with 5% and 10% of noise. So,
every selected net in our experiments had 6 × 2 = 12 noisy logs. Note that
the experiment was not exhaustive because we did not generate logs with
multiple seeds for every noise type. We are aware that a more rigorous ex-
perimentation would require that. However, because we play with different
nets, our setting is good enough to give insight into the sensitivity of the
algorithms GA and DGA. The insertion of noise in a log works as follows.
First we got the noise-free log for a net. Then, every trace of the log has
the selected percentage (5% or 10%) of being modified. After the process
has been repeated for every trace, we inserted two artificial start tasks and
two artificial end tasks at every trace. This is necessary because our imple-
mentations for the GA and the DGA assume that the target model has a
unique XOR-split/join start activity and a unique XOR-split/join end activ-
ity. However, this last step is implementation dependent and can be safely
skipped in cases the implementation does not require that.

6.2.2 Genetic Algorithms

This section explains the experimental setup and the results of mining noisy
logs with both the GA and the DGA. The aim of the experiments is to

1The division n/3 is rounded to the largest double value that is not greater than n/3
and is equal to a mathematical integer.



6.2 Experiments and Results 127

check how sensitive the GA and the DGA are to the different noise types
(cf. Subsection 6.2.1). Finally, the experiments were analyzed based on the
seven analysis metrics described in Chapter 5. The analysis metrics are: the
completeness metric (PFcomplete in Definition 21), the behavioral precision
and recall (BP and BR in Definition 25 and 26), the structural precision and
recall (SP and SR in Definition 32 and 33), and the duplicates precision and
recall (DP and DR in Definition 34 and 35). However, we did not use the
metrics DP and DR to analyse the results obtained for the GA because this
algorithm does not allow for duplicates.

Setup

Both the GA and DGA were tested over noisy logs from 5 different process
models. The process models used for the GA are: a12, bn1, herbstFig3p4,
herbstFig6p36 and herbstFig6p37. These models contain constructs like se-
quences, choices, parallelism, structured loops and non-local non-free-choice
constructs, and have between 10 and 40 tasks. The process models used for
the DGA are: a12, herbstFig3p4, herbstFig5p19, herbstFig6p36 and herbst-

Fig6p9. These models contain constructs like sequences, choices, parallelism,
non-local non-free-choice constructs, invisible tasks and duplicate tasks, and
have between 7 and 16 tasks. All the models used to test the GA and DGA
can be found in Appendix B. The noise-free log of every net has 300 traces
(actually, these are the same noise-free logs used during the experiments re-
ported in chapters 4 and 5). For every noise-free log, 12 noisy logs were
generated: 6 logs with 5% noise and 6 logs with 10% noise. The 6 noise
types used are the ones described in Subsection 6.2.1: missing head, missing
body, missing tail, swap tasks, remove task and mix all. To speed up the
computational time of the genetic algorithm, the similar traces were grouped
into a single one and a weight was added to indicate how often the trace
occurs. Traces with the same sequence of tasks were grouped together. For
every noisy log, 50 runs were executed. For the GA, the configuration of
every run is the same used for the noise-free experiments of the Scenario IV
(see Subsection 4.5.2). For the DGA, the configuration of every run is like
the one described in Subsection 5.5.2. After a run was complete, the mined
model was used as input for a post-processing step to prune its arcs. Every
mined model went two post-pruning steps: one to prune with a threshold
of 5% and another to prune with a threshold of 10%. So, when analyzing
the results, we look at (i) the mined model returned by the GA/DGA, (ii)
the model after applying 5% pruning, and (iii) the model after 10% pruning.
The post-processing step is implemented as the Prune Arcs analysis plug-in
in the ProM framework (see Chapter 7 for details).



128 Arc Post-Pruning

Results

The results for the experiments with logs of the net a12 are in Figure 6.2
to 6.5 for the GA and in Figure 6.6 to 6.11 for the DGA. We only show the
results for the net a12 because the obtained results for the other nets lead to
the same conclusions that can be drawn based on the analysis of the results
for a12. Every figure plots the results before and after pruning. However,
we have omitted the results for 10% arc-pruning because the results are just
like the results for 5% arc-pruning. Furthermore, for every graph, the x-axis
shows, for a given net (or original model), the noise type and the percentage
of noise in the log. For instance, a12All10pcNoise is a short for “Noisy log
for the net a12 (a12). The noise type is mix all (All) and this log contains
at most 10% (10pc) of noise (Noise).”. The y-axis contains the values for the
analysis metrics.

Additionally, we have plotted the metric values for the mined model and
original model with respect to the noisy log and the noise-free one. The
reason is that the analysis with the noisy logs allow us to check if the mined
models over-fit the data (since these noisy logs were given as input to the
genetic algorithms). For instance, if some mined model can proper complete
the noisy log (can parse all the traces without missing tokens or tokens left-
behind), this mined model has over-fitted the data. On the other hand,
when the model does not over-fit the data, the analysis with the noise-free
logs can check if the mined model correctly captures the most frequent noise-
free behavior (since the noisy logs used for the experiments were created by
inserting noisy behavior into these noise-free logs).

In a nutshell, we can conclude that (i) both the GA and the DGA are
more sensitive to the noise type swap tasks (and, consequently, mix all), (ii)
the mined models do not tend to over-fit the noisy logs, and (iii) the DGA is
more sensitive to noisy logs than the GA. More specifically, the results point
out that:

• The GA and the DGA are more robust to 5% noise than to 10% noise.
But the 5% arc post-pruning gave the same results as the 10% one.

• The GA is more robust to noisy logs than the DGA. As an illustration,
compare the results in Figure 6.2 (for the GA) with the ones in Fig-
ure 6.6 (for the DGA). Note that the models mined by the GA capture
a behavior that is much closer to the behavior of the original mod-
els. In other words, the values of the behavioral precision and recall
metrics of the models returned by the GA (cf. Figure 6.2) are much
closer to 1 (before and after pruning) than the values of these metrics
for the models returned by the DGA (cf. Figure 6.6). This probably
happens because the presence of noise may increase the search space of



6.3 Summary 129

the DGA. Note that the maximum amount of duplicates is set based
on the follows relation. So, if noise is introduced, some tasks may
have more direct predecessors/successors in the log than in the noise
free situation. Furthermore, it is easier to over-fit when the model has
duplicates.

• The pruning is more effective for the noise types missing head, missing
body, missing tail and remove task. This makes sense because these
noise types usually can be incorporated to the net by adding causality
dependencies to skip the “removed” or “missing” tasks. In other words,
the main net structure (the one also contained in the original model)
does not change, only extra causality dependencies need to be added
to it. This explains why the arc post-pruning works quite fine for these
noise types.

• Related to the previous item, the noise type swap tasks affects the qual-
ity of the mined results the most. By looking at figures 6.2 and 6.4, one
can see that the behavioral/structural precision and recall of the mined
models for logs with swapped tasks (a12Swap5pcNoise and a12Swap-
10pcNoise) did not change dramatically after the pruning. This is
probably because the over-fitting of the mined models to the logs in-
volves more than the simple addition of causality dependencies. I.e.,
the main structure of mined models is more affected by the swap tasks
noise type. A similar reasoning holds for the results in Figure 6.6
and 6.9.

• The mined models returned by the DGA have at least one activity
for every task in the log (cf. Figure 6.8 and 6.11), but the pruned
models do not. For instance, note that the average values of the met-
ric duplicates precision of the pruned models a12Swap5pcNoise and
a12Swap10pcNoise are lower than the values of metric duplicates recall.
This means that some of the duplicates were connected to low-frequent
input/output arcs.

6.3 Summary

This chapter explained the post-pruning step that can be executed over
(mined) models. This post-pruning step works by eliminating from a (mined)
model the arcs that are used fewer times than a given threshold. The thresh-
old is proportional to the most frequently used arc. The choice for a post-
pruning step is motivated by the fact that (i) it is very difficult to distinguish
up-front between low-frequent correct behavior and low-frequent incorrect



130 Arc Post-Pruning

GA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

GA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - After Pruning 5% 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 6.2: Average values for the behavioral and structural precision/recall
metrics of the models mined by the GA for noisy logs of the net a12. The
top (bottom) graph shows the results for the mined models before (after) arc
post-pruning. The results show that (i) the mined models have a behavior
that is quite similar to the original models (since behavioral precision > 0.8
and behavioral recall > 0.95), and (ii) the arc post-pruning is more effective
for the noise types missing head/body/tail and remove task (since all the
values plotted in the bottom graph are better than the ones in the top graph).



6.3 Summary 131

GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

GA - Net a12 - Results for the Completeness Requirement - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 6.3: Results of the GA for the noisy logs of the net a12: completeness
metrics. The metrics were calculated based on the noisy logs used during the
mining. The top graph shows the results for the mined models. The bottom
graph shows the results after the mined models have undergone 5% arc post-
pruning. Note that the top graph indicates that only 2 models for the noise
type missing head (10% noise) over-fit the data. However, overall the mined
models did not over-fit the data, since the average proper completion < 0.95
and the % of complete models is 0 for almost all logs.



132 Arc Post-Pruning

GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

GA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 6.4: The results show the same metrics as explained for Figure 6.2,
but these metrics are calculated base on a noise-free log of a12. Note that,
contrary to the results in Figure 6.2, all mined models (before and after
pruning) have an average behavioral recall that is equal to 1. This means
that, with respect to the noise-free log, all the behavior allowed by the original
model is also captured by the mined models.



6.3 Summary 133

GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

GA - Net a12 - Results for the Completeness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 6.5: Same metrics as in Figure 6.3, but this time the values are
calculated based on a noise-free log of a12. The values for the average proper
completion fitness point out that the models correctly captured at least 50%
(see a12Body10pcNoise) of the behavior in the log. This indicates that the
fitness indeed benefits the individuals that correctly model the most frequent
behavior in the log. Besides, note that many more mined models are complete
and precise after they have undergone arc post-pruning.



134 Arc Post-Pruning

DGA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

DGA - Net a12 - Results for the Preciseness Requirement - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 6.6: Average values for the behavioral and structural precision/recall
metrics of the models mined by the DGA for noisy logs of the net a12. The
top (bottom) graph shows the results for the mined models before (after)
arc post-pruning. The results indicate that the DGA is more sensitive to
the noise type swap tasks (note that the logs for a12Swap10pcNoise and
a12Swap5pcNoise have the lowest average values for the metrics behavioral
precision and recall) and, consequently, also the noise type mix all. Overall,
the DGA is much more sensitive to noise than the GA (compare the results
here with the ones in Figure 6.2).



6.3 Summary 135

DGA - Results for the Completeness Requirement - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

DGA - Net a12 - Results for the Completeness Requirement - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 6.7: Results of the DGA algorithm for the noisy logs of the net a12:
completeness metrics. The results suggest that the DGA would need more
iterations to mine models that correctly capture the most frequent behavior
in the log. Note that all the mined models can complete, on average, less
than 60% of the traces in the logs.



136 Arc Post-Pruning

DGA - Results for Folding Requirement  - Noisy Logs - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Duplicates Precision Average Duplicates Recall

DGA - Results for Folding Requirement  - Noisy Logs - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Duplicates Precision Average Duplicates Recall

Figure 6.8: Results of the DGA algorithm for the noisy logs of the net a12:
folding metrics. The metrics were calculated based on the noisy logs used
during the mining. The top (bottom) graph shows the results for the mined
(pruned) models. Except for the noise type missing body, all other noise types
led to the mining of models that more unfolded (i.e. contain more duplicates)
than the original one (note that behavioral precision is less than behavioral
recall). This situation is improved after the mined models are pruned. In
fact, the models for the noise types swap tasks and mix all become too folded
(behavioral recall less than behavioral precision) after the arc post-pruning.



6.3 Summary 137

DGA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

DGA - Net a12 - Results for the Preciseness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Structural Precision Average Structural Recall
Average Behavioral Precision Average Behavioral Recall

Figure 6.9: Results for the same metrics as in Figure 6.6, but the values
are calculated based on a noise-free log of a12. Except for the noise types
swap tasks and mix all, the quality of the mined models improved after they
have undergone arc post-pruning. However, these pruned models are still
less precise then the ones returned by the GA (cf. Figure 6.4).



138 Arc Post-Pruning

DGA - Net a12 - Results for the Completeness Requirement - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

DGA - Net a12 - Results for the Completeness Requirement - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Fitness Average Proper Completion Fitness
% of Complete Models % of Complete Models that are Precise

Figure 6.10: Same metrics as in Figure 6.7, but the values are computed based
on a noise-free log of a12. Although the average proper completion is inferior
to 0.5 in many cases, the complete models mined by the DGA are also precise
in many situations. For instance, see the results for a12Remove10pcNoise and
a12Remove5pcNoise.



6.3 Summary 139

DGA - Results for Folding Requirement  - Noise Free Log - No Pruning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Duplicates Precision Average Duplicates Recall

DGA - Results for Folding Requirement  - Noise Free Log - After Pruning 5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1
2A

ll1
0p

cN
ois

e

a1
2A

ll5
pc

Nois
e

a1
2B

od
y1

0p
cN

ois
e

a1
2B

od
y5

pc
Nois

e

a1
2H

ea
d1

0p
cN

ois
e

a1
2H

ea
d5

pc
Nois

e

a1
2R

em
ov

e1
0p

cN
ois

e

a1
2R

em
ov

e5
pc

Nois
e

a1
2S

wap
10

pc
Nois

e

a1
2S

wap
5p

cN
ois

e

a1
2T

ail
10

pc
Nois

e

a1
2T

ail
5p

cN
ois

e

Average Duplicates Precision Average Duplicates Recall

Figure 6.11: Same remarks as for Figure 6.8.



140 Arc Post-Pruning

one, and (ii) the fitness measures of both the GA and DGA are designed
to prioritize the mining of models that correctly portrait the most frequent
behavior in the log. Thus, when low-frequent behavior is also captured in
a mined model, the end user has the flexibility to keep it or remove it by
performing arc post-pruning.

During the experiments, 6 different noise types were considered: missing
head, missing body, missing tail, swap tasks, remove task and mix all. Addi-
tionally, the experiments were executed for both the GA and the DGA. The
results show that the GA is much more robust to noise than the DGA. This
is probably because the GA uses a smaller search space than the DGA. The
results also show that both algorithms are more sensitive to the noise type
swap tasks and, consequently, mix all. Finally, although the experiments are
not exhaustive, they reinforce the point that the fitness guides the algorithms
to individuals that are as complete and precise as possible.

The next chapter gives an overview about the plug-ins that were imple-
mented in the ProM tool to support the GA, DGA, the analysis metrics and
the post-pruning step that was explained in this chapter.



Chapter 7

Implementation

This chapter describes how we have implemented the concepts that were ex-
plained in chapters 4 to 6. Rather than constituting a manual, this chapter
aims at providing information about the plug-ins that have been developed.
The information presented should be sufficient to enable the reader to mine
his/her own logs or to repeat some of the experiments that we have de-
scribed in previous chapters. All the algorithms mentioned before, i.e. basic
Genetic Algorithm (GA), Duplicates Genetic Algorithm (DGA), arc prun-
ing, and analysis metrics were developed as plug-ins in the ProM (Process
Mining) framework [32]. ProM is an open-source framework that supports
the development of mining plug-ins. Thus, this chapter introduces this frame-
work and the plug-ins that have been developed. The main idea is to make
the reader familiar with the interfaces one encounters when playing with
these plug-ins in the ProM framework. In addition to the plug-ins in the
ProM framework, we have also developed some log conversion plug-ins in
the ProMimport framework [4, 46]. The converted logs were used during the
experiments and the case study reported in this thesis. ProMimport is also
an open-source framework and it suports the development of plug-ins that
convert logs from different systems (like Staffware, Flower, Eastman etc) to
the MXML (Mining Extensible Markup Language) format that the ProM
framework accepts. More details about the plug-ins explained in this chapter
can be found at the help of the ProM or ProMimport framework.

The remainder of this chapter is organized as follows. First, in Section 7.1,
the ProM framework and the MXML format are introduced. Second, in
sections 7.2 and 7.3, the mining plug-ins for the GA and the DGA are briefly
described. Third, in Section 7.4, the plug-in to perform the arc post-pruning
step is shown. Fourth, in Section 7.5, the analysis plug-ins and other plug-ins
related to the experiments setup (e.g., the plug-ins to reduce the log size)
are presented. Fifth, the ProMimport plug-ins used to create the logs for the



142 Implementation

experiments are explained in Section 7.6. Finally, Section 7.7 provides a
short summary of this chapter.

7.1 ProM framework

ProM is an open-source framework [32] that is available at www.processmin-
ing.org. Since its creation, this framework has evolved from a tool to support
the mining of process models from event logs, to a more general tool that
also allows for the analysis of process models and conversions between process
models in different notations [78]. Figure 7.1 shows a screenshot of the main
interface of ProM. The menu File is often used as the starting point. Here,
logs and models can be loaded into the framework and, consequently, used
by the different plug-ins. The main concept behind the framework is that the
plug-ins do not have to worry about loading the log files or other things that
are not specific for a particular plug-in. As long as the log files are in MXML
format, the ProM framework will handle them. Additionally, all algorithms
are developed as plug-ins that specify its input (or accepted) objects and
its output (or provided) objects. Based on the input/output of every plug-
in, and the available objects at a certain moment in time, the framework
automatically figures out which plug-ins to enable/disable. In other words,
the collaboration between different plug-ins is automatically provided by the
framework. The ProM framework is implemented in Java.

Figure 7.2 provides an overview of ProM’s architecture. As illustrated,
five types of plug-ins are supported: mining, import, export, analysis and
conversion plug-ins. The mining plug-ins perform the actual mining based
on logs in the MXML format (see Subsection 7.1.1 for more details about
this format). The format of the output model depends on the mining plug-in.
For instance, the Alpha algorithm plug-in provides Petri nets as output, while
the Multi-phase plug-in also provides Event-driven Process Chains (EPC).
In the context of this thesis, the GA and DGA are implemented as mining
plug-ins that provide “Heuristic Nets” (HNs) as output. Causal matrices
are called heuristic nets in ProM and are depicted graphically (i.e., a graph
representation rather than a matrix representation). The import plug-ins
allow for the loading of models. While importing, these models can be linked
to an already opened log. The imported models can come from an external
tool, like ARIS PPM or YAWL, or they may have been exported from ProM
before. In our case, we have developed a plug-in to import and link causal
matrices (or heuristic nets) to logs. The export plug-ins allow to save the
results obtained during mining and analysis, as well as to perform operations
over the logs and export the modifications. While describing the experimen-



7.1 ProM framework 143

Figure 7.1: Screenshot of the main interface of the ProM framework.

External
tools Models

Mining plug-ins

Import plug-ins

Export plug-ins Conversion plug-ins

Analysis plug-insMXML logs

Staff-
ware SAP

In-
Concert

FLOW-
er

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Model files

EPC
Petri
net

YAWL
model

Heur.
net

...

...

Visualizations

...
...

EPC
Tools

CPN
Tools

ARIS

Net-
miner

Staff-
ware

SAP

In-
concert

FLOW-
er

Event

Task
t

p

Function

ProM

ProM
import

Petri
nets EPCs

YAWL
models

Heur.
nets

Figure 7.2: Overview of the architecture of the ProM framework.



144 Implementation

tal setup in chapters 4, 5 and 6, we mentioned that we performed grouping
of traces in the log to reduce its physical size. Grouping is implemented as
an export plug-in in the ProM framework. The analysis plug-ins support
the analysis of models and logs. For instance, if the model is a Petri net, it
can be analyzed using place/transition invariants or state-space analysis. If
the log should satisfy a certain property, e.g. a property like the four-eyes
principle, the LTL (Linear Temporal Logic) plug-in can be used to check for
this. Furthermore, one can replay a log for a certain (imported) model by
using the Conformance Checker plug-in. In our context, both the analysis
metrics and the arc post-pruning step are implemented as analysis plug-ins.
The conversion plug-ins allow to convert between different models. In our
case, we have implemented a plug-in to convert heuristic nets to Petri nets.
An overview of all of the plug-ins supported by the ProM framework can be
found at the help of this tool. In total there are 90 plug-ins 1: 15 mining
plug-ins, 10 import plug-ins, 22 export plug-ins, 10 conversion plug-ins, 24
analysis plug-ins and 9 log filters. Here we only describe the plug-ins that
have been developed in the context of this thesis and mention some of the
other plug-ins to give an impression of the features that are already supported
by ProM and its plug-ins. More information about the ProM framework is
available at www.processmining.org.

7.1.1 Mining XML format

The Mining XML2 format (MXML) started as an initiative to share a com-
mon input format among different mining tools [14]. This way, event logs
could be shared among different mining tools. The schema for the MXML for-
mat (depicted in Figure 7.3) is available at http://www.processmining.org/-
WorkflowLog.xsd.

As can be seen in Figure 7.3, an event log (element WorkflowLog) con-
tains the execution of one or more processes (element Process), and op-
tional information about the source program that generated the log (element
Source) and additional data elements (element Data). Every process (el-
ement Process) has zero or more cases or process instances (element Pro-
cessInstance). Similarly, every process instance has zero or more tasks (el-
ement AuditTrailEntry). Every task or audit trail entry (ATE) should at
least have a name (element WorkflowModelElement) and an event type (ele-
ment EventType). The event type determines the state of the tasks. There
are 13 supported event types: schedule, assign, reassign, start, resume, sus-

1This information regards the version 3.1 of ProM.
2More information about the Extensible Markup Language (XML) can be found in [3].



7.1 ProM framework 145

(a) Process log XML format

reassign 

schedule  assign 

start 
resume 

suspend 

autoskip  complete 

manualskip 

ate_abort 

pi_abort 

withdraw 

(b) Transactional model for EventType

Figure 7.3: The visual description of the schema for the Mining XML
(MXML) format.

Figure 7.4: Excerpt of a log in the MXML format.



146 Implementation

pend, autoskip, manualskip, withdraw, complete, ate abort, pi abort and
unknown. The other task elements are optional. The Timestamp element
supports the logging of time for the task. The Originator element records
the person/system that performed the task. The Data element allows for the
logging of additional information. Figure 7.4 shows an excerpt of a log in the
MXML format. More details about the MXML format can be found in [32].

Figure 7.5: Main interface of the GA plug-in.



7.2 Genetic Algorithm Plug-in 147

7.2 Genetic Algorithm Plug-in

The Genetic algorithm mining plug-in implements the GA explained in Chap-
ter 4. The basic GA is suitable to mine process models that do not contain
duplicate tasks. The GA plug-in receives as input an event log. Thus, before
the reader can use this plug-in in ProM, the reader should first open a log.
The interface of the GA plug-in is shown in Figure 7.5. A complete expla-
nation about all of its configuration parameters can be found at the help of
this plug-in. The configuration shown in Figure 7.5 is the same one used
for one run of Scenario IV in Section 4.5.2. Once the configuration is set, a
click on the button “Start mining” initiates the GA mining process. When
the GA plug-in stops executing (either because it reached its stop criteria or
because the user pressed the button “Cancel”), the last generated population
is returned. Figure 7.6 shows the returned population after running the GA
plug-in for 152 iterations3. As can be seen, the individuals are decreasingly
ordered according to their fitness values. In other words, the best mined
individual is returned first, and so on. Individuals can be selected by double-
clicking one of the “Population” entries. Additionally, a returned individual
(or heuristic net) can be visualized with or without showing the semantics of
its split/join points (see checkbox “Display split/join semantics”).

Although all the configuration parameters are explained in the help of the
GA plug-in, we highlight here a few of them. The first one refers to the fitness
types. In Chapter 4, we have explained the fitness F (cf. Definition 23) that
is called “ExtraBehaviorPunishment” in the GA plug-in. However, the GA
plug-in also supports four other experimental fitness types: “ProperCom-
pletion”, “StopSemantics”, “ContinuousSemantics”, and “ImprovedContin-
uousSemantics”. These fitness types were created while searching for a good
fitness measures to the basic GA. Our experience shows that the fitness mea-
sure F is the best one. However the user may be interested in, for instance,
experimenting with fitness types that have a stop semantics parsing4 (like
the “ProperCompletion” and “StopSemantics”). Additionally, we also sup-
port other types of selection methods, crossover types and mutation types.
Again, these other types were created while calibrating the basic GA. As an
example, we have a crossover type (“Local One Point”) that always swaps
all input and output sets of the crossover point. Note that this crossover
type is more coarse grained than the crossover type explained in Subsec-
tion 4.3.1 (which works at the subsets of the input/output of the crossover
point). Again, the help of the GA plug-in in the ProM framework explains

3It starts at generation 0.
4In this stop semantics, the parsing of a trace (or process instance) stops whenever a

task should be parsed but its corresponding activity (in the individual) is not enabled.



148 Implementation

Figure 7.6: Interface for the results of one run of the GA plug-in.



7.3 Duplicates Genetic Algorithm Plug-in 149

all the (extra) supported types.

7.3 Duplicates Genetic Algorithm Plug-in

The Duplicate Tasks GA plug-in implements the DGA described in Chap-
ter 5. The DGA can mine process models in which the duplicates of a task
do not share input/output elements. In other words, the DGA can mine
models in which the duplicates can be locally detected. The interface of the
DGA plug-in is shown in Figure 7.7. As can be seen, this interface is very
similar to the interface of the GA plug-in (cf. Section 7.2). Actually, the
differences reside in the supported “Initial population type”, “Fitness type”
and “Crossover Type”. These differences reflect the extensions made to the
basic GA while defining the DGA. A complete explanation about all of the
DGA’s configuration parameters can be found at the help of this plug-in.
The configuration shown in Figure 7.5 is the same one used for one run of
the experiments described in Section 5.5.2.

Similar to the GA plug-in, the DGA plug-in also supports different vari-
ants for the initial population, fitness and crossover. These different variants
are all explained in the help of the DGA plug-in. However, here we highlight
an initial population type that may reduce the search space of the DGA. In
Chapter 5, we explained that the maximum amount of duplicates that any
individual in the population can have is based on the follows relations that
can be extracted from the log (cf. Section 5.4.1). This is indeed the heuristic
used by the initial population type “Follows Heuristics (Duplicates+Arcs)”.
However, sometimes a heuristics based on the causal relations (cf. relation
“→L” in Definition 14) maybe be sufficient to set the maximum amount of
duplicates per task. The principle is the same as for the heuristics based on
the follows relation, but using the causal relation instead of the follows rela-
tion. To illustrate the search space reduction, consider the log in Table 5.1. A
heuristics based on the follows relation sets that every individual has at most
two duplicates of the tasks “Travel by Car”, “Travel by Train” and “Confer-
ence Starts”. The other tasks do not have duplicates. On the other hand,
a heuristics based on the causal relation sets the same, but the task “Con-
ference Starts” is also not duplicated. So, the DGA does not “waste time”
searching for individuals with two duplicates for task “Conference Starts”.
In this case, building an initial population based on the causal relation would
suffice because the target model (see Figure 5.1) indeed does not have more
than one task “Conference Starts”. Thus, for the situation in which the user
assumes that the causal relations may be sufficient to detect the maximum
amount of duplicates per task, the initial population type “Causal Heuristics



150 Implementation

Figure 7.7: Main Interface of the DGA plug-in.

(Duplicates+Arcs)” is also provided in the DGA plug-in.

7.4 Arc Pruning plug-in

The post-processing step that prunes arcs from a model is implemented as
the analysis plug-in “Prune Arcs”. Figure 7.8 shows a screenshot of this
plug-in in action. The left-side model is the unpruned one. The right-side
model is the result of pruning arcs that are used 5% or fewer times than
the most used arc. In this case, all arcs that are used 15 or fewer times
were removed from the model because the highest arc usage is 300 (see arc
between “ArtificialStartTask2” and “ArtificialStartTask”). Note that the
threshold explained in Chapter 6 correspond to the parameter “Arc pruning
in %”. Furthermore, the plug-in takes the fitness type into account during the
pruning. So, if the reader use the fitness “ProperCompletion” with threshold
of 0%, only the arcs that were used to replay traces that proper complete are



7.5 Other plug-ins 151

kept.

7.5 Other plug-ins

Additionally to the GA, DGA and arc pruning plug-ins, we have implemented
a set of auxiliary plug-ins to set up and analyse the experiments. The plug-
ins regarding log preparation are explained in Subsection 7.5.1. The plug-
in to convert mined individuals (heuristic nets) to Petri nets is described
in Subsection 7.5.2. The plug-ins for the analysis metrics are described in
Subsection 7.5.3.

7.5.1 Log Related Plug-ins

There are five log related plug-ins: Add Artificial Start Task, Add Artificial
End Task, Add Noise, Group Log (same sequence) and Group Log (same
follows relation). The first three plug-ins are log filters that change the
traces in the log. These plug-ins are illustrated in Figure 7.9. The last two
plug-ins are export plug-ins that reduce the physical log size based on some
similarity criterion. These plug-ins are illustrated in Figure 7.10.

The Add Artificial Start Task log filter allows to include a dummy task
at the start of all log traces. In a similar way, the Add Artificial End Task
log filter allows to include a dummy task at the end of log traces. These
plug-ins have been developed because the implementations of the GA and
DGA algorithms assume that the target model has a single start task and
a single end task. Furthermore, these single start and end tasks must be
XOR-join/split tasks. Thus, by adding two start tasks and two end tasks
at every trace of an external log, we make sure that these constraints are
satisfied. Note that these constraints are only implementation specific and
do not affect the obtained results. The Add Noise log filter is used to include
noise in a log. The plug-in provides an interface to select among noise types,
the seed to be used during the noise inclusion, and the noise percentage.

The Group Log (same sequence) and Group Log (same follows relation)
export plug-ins are used to reduce the physical size of the log. Recall that
both the GA and DGA work by replaying the log traces in every unique
individual in the population. Besides, these mining algorithms only take into
account the sequence of the task in a trace, i.e. they do not consider who
performed the task (originator element in MXML), or the data attributes of
a task. Thus, to save on computational time, we have developed these two
export plug-ins. The main idea is that they group the traces in a log based
on some similarity criterion and register in the exported log the frequency



152 Implementation

Figure 7.8: Arc pruning plug-in.



7.5 Other plug-ins 153

Figure 7.9: Log filter plug-ins: Add Artificial Start Task, Add Artificial End
Task and Add Noise.

Figure 7.10: Export plug-ins to reduce the log size: Group Log (same se-
quence) and Group Log (same follows relation).



154 Implementation

that the grouped traces happen in the original log. The frequency is stored
as a Data attribute of a ProcessInstance element in the MXML format (cf.
Subsection 7.1.1). The name of this data attribute is “numSimilarInstances”.
Figure 7.11 shows the excerpt of a log in which traces are grouped. The Group
Log (same sequence) export plug-in groups the traces that have the same
sequence of tasks with respect to the MXML elements WorkflowModelElement
and EventType. The Group Log (same follows relation) export plug-in groups
the traces that have the same set of follows relation with respect to the MXML
elements WorkflowModelElement and EventType, keeping the longest trace
at the exported log. For instance, assume that a log contains the four traces
(i) “Acomplete , Bcomplete , Ccomplete , Bcomplete , Ccomplete , Dcomplete”, (ii) “Acomplete ,
Bcomplete , Ccomplete , Bcomplete , Ccomplete , Bcomplete , Ccomplete , Bcomplete , Ccomplete ,
Dcomplete”, (iii) “Acomplete , Fcomplete , Gcomplete , Hcomplete , Dcomplete” and (iv)
“Acomplete , Bcomplete , Ccomplete , Bcomplete , Ccomplete , Dcomplete”. If this log is
exported using the plug-in Group Log (same sequence), the traces (i) and (iv)
are going to be grouped because they express the same sequence of events.
So, the resulting log would contain 3 unique traces and 4 traces in total (since
one of the unique traces - “Acomplete , Bcomplete , Ccomplete , Bcomplete , Ccomplete ,
Dcomplete” - has a counter 2 associated to it). However, if this same log is
exported using the plug-in Group Log (same follows relation), the traces (i),
(ii) and (iv) are going to be grouped because the same set of follows relations
can be inferred from these traces. In this case, the resulting log would contain
2 unique traces and 4 traces in total.

7.5.2 Model Related Plug-ins

Three model related plug-ins have been implemented: Open HN File, Export
HN File and Heuristic net to Petri net . The first two plug-ins respectively
provide the loading and saving of heuristic nets (or causal matrices). Thus,
for instance, the actual mining and the analysis of the models can be per-
formed at different moments in time. Figure 7.1 shows the menu option for
the Open HN File import plug-in. The HN File export plug-in is illustrated
in Figure 7.12. The Heuristic net to Petri net is a conversion plug-in. It
maps heuristic nets to Petri nets. This way mined models can benefit from
the other plug-ins in ProM that receive as input Petri nets. The Heuristic
net to Petri net conversion plug-in is illustrated in Figure 7.13. This figure
shows the menu option, a mined heuristic net (at the top right) and the
mapped Petri net for this heuristic net (at the bottom).



7.5 Other plug-ins 155

Figure 7.11: Excerpt of a grouped log. The indicated process instance results
from the grouping of 3 process instances in the original log.

7.5.3 Analysis Related Plug-ins

The analysis metrics described in chapters 4 and 5 are implemented as analy-
sis plug-ins in ProM. The metric for the completeness requirement is available
as the analysis plug-in Fitness . This plug-in receives as input a heuristic net
already linked to a log. The interface of the Fitness analysis plug-in (see
Figure 7.14) provides the selection of different fitness types. The partial fit-
ness PF complete (see Definition 21) corresponds to the fitness type Improved-
ContinuousSemantics. Figure 7.14 shows the results of applying the fitness
ProperCompletion to a heuristic net. The fitness proper completion gives
the percentage of log traces that can be parsed by a heuristic net without
leading to missing tokens or without leaving tokens. The heuristic net in
Figure 7.14 can correctly parse 90% of log traces to which it is linked. The
Behavioral, Structural and Duplicates Precision/Recall metrics are illustrated
in Figure 7.15 (see bottom left). All these metrics have an interface to pro-
vide the original model (the “Base net”) and the mined model (the “Mined



156 Implementation

Figure 7.12: Export plug-in: HN File.



7.5 Other plug-ins 157

Figure 7.13: Conversion plug-in: Heuristic net to Petri net.



158 Implementation

net”). Additionally, the behavioral precision/recall metrics require the two
selected nets to the linked to the same log. Figure 7.14 illustrates the behav-
ioral precision (Bp = 0.729) and the behavioral recall (Br = 0.988) for two
individuals.

7.6 ProMimport Plug-ins

ProMimport [4, 46] is an open-source framework that makes it easier to convert
event logs from different formats to the MXML format that ProM can read.
In this section we explain the two ProMimport plug-ins that we have imple-
mented to generate the logs used in our experiments. The two ProMimport

plug-ins are: CPN Tools and Eastman. The CPN Tools ProMimport plug-in
was used to generate the noise-free logs mentioned in chapters 4 and 5, as
well as the logs utilized during the single-blind experiments (see Section 8.2).
The Eastman plug-in was used to convert the logs for the case study ex-
plained in Section 8.3. All these plug-ins can be downloaded together with
the ProMimport framework at www.processmining.org. The following subsec-
tions provide more details about these plug-ins.

7.6.1 CPN Tools

CPN Tools is a software package that supports the modelling, execution and
analysis of Coloured Petri nets (CP-nets) [55, 56]. Additionally, there is a fair
amount of CPN models that can be used as input to test mining algorithms.
Thus, we decided to extend CPN Tools to support the creation of MXML
logs. The main idea is to create random MXML logs by simulating CP-nets
in CPN Tools. The extension is fairly simple. The first part of the extension
consisted of implementing the ML functions to support the logging from a
CP-net. The second part consisted of implementing the CPN Tools plug-in
in the ProMimport framework to bundle the logged files into a single MXML
file. In short, two steps are necessary to create MXML logs using CPN Tools:

1. Modify a CP-net by invoking a set of ML functions that will create logs
for every case executed by the CP-net. This step involves modifying
the declarations of the CP-net and the input/output/action transition
inscriptions.

2. Use the CPN Tools plug-in in the ProMimport framework to group the
logs for the individual cases into a single MXML log.

The synthetic logs used in our experiments were created by performing the
two steps above. Figure 7.16 shows an annotated CPN net for the net choice.



7.6 ProMimport Plug-ins 159

Figure 7.14: Analysis plug-in to check for the completeness requirement:
Fitness.



160 Implementation

Figure 7.15: Analysis plug-in to check for the preciseness and folding require-
ments: Behavioral, Structural and Duplicates Precision/Recall.



7.6 ProMimport Plug-ins 161

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B
input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C
input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E
input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

G input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

Finput (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

Dinput (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

Hinput (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

I
input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

J
input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

Figure 7.16: Annotated CP-net for net choice.



162 Implementation

Figure 7.17: Promimport plug-in: CPN Tools.

The function createCaseFile creates a file for every case. The functions
addATE logs the execution a given task (or Audit Trail Entry) to a case
file. In Appendix B we show the annotated nets for all models used dur-
ing the experiments. The CPN Tools ProMimport plug-in is illustrated in
Figure 7.17. It receives as input the directory to which the logs for every
case were written (“CPN log files directory”), the termination of these files
(“CPN log files suffix”) and if the case files should be deleted after the ag-
gregation (“Delete input files”). The output is a MXML file that contains all
the cases. More details about how to use CPN Tools to generate synthetic
logs can be found in [27] and in “ProM CPN library” tutorial provided at
www.processmining.org.

7.6.2 Eastman

Eastman5 [74] is the workflow system that created the logs used during the
case study (cf. Section 8.3). The cases are logged in an MS-Access database.

5The Eastman workflow system is nowadays called Global 360 (www.global360.com).
However, we have decided to keep the original name of this workflow system in the
ProMimport plug-in.



7.7 Summary 163

Figure 7.18: Promimport plug-in: Eastman.

The Eastman ProMimport plug-in is illustrated in Figure 7.18. It receives
as input the database ODBC driver (“DbDriver”), the database username
(“DbUser”) and password (“DbPassword”), the database URL (“DbHos-
tUrl”) and the name of the table with the logging information to be converted
(“LogTableName”). The output is also a MXML log file.

7.7 Summary

This chapter introduced the plug-ins we have developed to realize the algo-
rithms and analysis metrics explained in chapters 4 to 6. In total, 17 plug-
ins were implemented: 15 in the ProM framework and 2 in the ProMimport

framework. However, both ProM and ProMimport offer a much wider variety
of plug-ins.

As an illustration, the ProM framework has a plug-in that allows for the
verification of EPCs [36]. Thus, before deploying a model (or showing it for
the managers), the reader can verify its correctness. The models can be im-
ported in the format EPML (EPC Markup Language), AML (ARIS Markup
Language) or the ARIS PPM graph format [59] and verified with the plug-
in “Check correctness of EPC”. Furthermore, the ProM framework provides



164 Implementation

other diagnosis tools based on logs and a variety of models. The analysis
plug-in “LTL Checker” [10] uses linear temporal logic to verify properties in
the log. For instance, for a log of an ATM machine, the reader can check
if a task to ask and check for a password is always executed before a task
that provides the money. The LTL formulae can refer to any of the elements
defined in the MXML format (including the data attributes). Another useful
plug-ins are the “Conformance Checker” [68] and the “Performance Analysis
with Petri Nets”. The “Conformance Checker” replays the log in the model
and identifies the points of discrepancies, the most frequent paths, etc. The
“Performance Analysis with Petri Nets” also works based on a model and a
log. This plug-in calculates basic management information about the pro-
cess like the average completion time of processes, the waiting time between
tasks etc. In total, the ProM framework offers more than 90 plug-ins. Some
plug-ins work based on Petri nets, other on EPCs or Heuristic nets, but this
is not a problem since the ProM tool provides conversion plug-ins from one
format to another.

The ProMimport framework also provides additional plug-ins (more than 15
in total!). For instance, the Flower plug-in, suitable to convert logs from the
case-handling tool Flower [19, 20], and the Staffware plug-in, which converts
logs from the workflow system Staffware [75].

Both ProM and ProMimport are open-source tools developed in Java. They
are all available at www.processmining.org. We encourage the reader to try
their plug-ins and to collaborate with us.

In next chapter we present additional evaluation of our approach. We
describe blind-experiments and a case study.



Chapter 8

Evaluation

This chapter describes the evaluation of our genetic mining approach. The
genetic mining approach presented in this thesis was evaluated using three
kinds of logs: synthetic logs from known models , synthetic logs from unknown
models and real-life logs . Because both the setup and the results for the
experiments with known models were already given in chapters 4 to 6, here
we only explain why these models were selected and how their synthetic logs
were created. This is done in Section 8.1. The experiments with synthetic
logs from unknown models are reported in Section 8.2. The results for the
case study (experiments with real-life logs) are given in Section 8.3. Finally,
Section 8.4 provides a short summary of this chapter.

8.1 Experiments with Known Models

The models used to test our approach should contain the constructs used to
review the related work (cf. Chapter 2). These constructs are: sequences,
choices, parallelism, short loops, structured/arbritary loops and non-local
non-free-choice, invisible tasks and duplicate tasks. Additionally, the models
should have different numbers of tasks. In total, we have modelled 39 nets.
Table 8.1 gives an overview of the constructs present in each net. The nets
themselves are in Appendix B. Note that the 18 nets whose names start
with “herbst. . . ”1 were directly copied from Herbst’s PhD thesis [50]. We
have selected these nets for two reasons: (i) Herbst’s approach can also handle
duplicate tasks, so it is interesting to get an idea about how well our approach
performs on these models, and (ii) these nets have not been defined by us.

1The name indicates the net’s respective figure number in Herbst’s PhD thesis. For
instance, the net in “Figure 3.4” in his thesis has the name “herbstFig3p4”.



166 Evaluation

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

N
on

-L
o
ca

l
N

F
C

In
v
is

ib
le

T
as

k
s

D
u
p
li
ca

te
s

in
S
eq

u
en

ce

D
u
p
li
ca

te
s

in
P
ar

al
le

l

a10skip B.1 X X X X

a12 B.3 X X X

a5 B.5 X X X X

a6nfc B.7 X X X X

a7 B.9 X X X

a8 B.11 X X X

al1 B.13 X X X X

al2 B.15 X X X X

betaSimplified B.17 X X X X X

bn1 B.19 X X

bn2 B.21 X X X X

bn3 B.23 X X X X

choice B.25 X X

driversLicense B.27 X X X

flightCar B.29 X X X X

herbstFig3p4 B.31 X X X X

herbstFig5p1AND B.33 X X X

herbstFig5p1OR B.35 X X X

herbstFig5p19 B.37 X X X X X

herbstFig6p10 B.39 X X X X X X

herbstFig6p18 B.41 X X X X X X

herbstFig6p25 B.43 X X X X X X

herbstFig6p31 B.45 X X X

herbstFig6p33 B.47 X X X

herbstFig6p34 B.49 X X X X X X

herbstFig6p36 B.51 X X X

herbstFig6p37 B.53 X X

herbstFig6p38 B.55 X X X

herbstFig6p39 nc B.57 X X X X

herbstFig6p41 B.59 X X X

herbstFig6p42 nc B.61 X X X X X

herbstFig6p45 B.63 X X

herbstFig6p9 B.65 X X X X

l1l B.67 X X X

l1lSkip B.69 X X X X X

l2l B.71 X X X

l2lOptional B.73 X X X

l2lSkip B.75 X X X X

Continued on next page



8.1 Experiments with Known Models 167

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

N
on

-L
o
ca

l
N

F
C

In
v
is

ib
le

T
as

k
s

D
u
p
li
ca

te
s

in
S
eq

u
en

ce

D
u
p
li
ca

te
s

in
P
ar

al
le

l

parallel5 B.77 X X

Table 8.1: Nets for the experiments with known models.

From the 18 models copied form Herbst’s thesis (cf. Table 8.1), 12 have
duplicate tasks. From these, 2 (herbstFig6p39 and herbstFig6p42) are non-
compliant (nc) with the kind of models our DGA aims at. This is the case
because, for both models, some of the duplicates share input/output ele-
ments. For instance, consider the heuristic net representation of the net
herbstFig6p39 in Figure 8.1. Note that the two duplicates of “A” share “join”
as an output element. Yet we included both models in our experiments to
check if the DGA would be able to mine also some non-compliant nets.

The remaining 21 nets were designed by us. The main motivation to
create each of these nets was to check for:

• Different kinds of short loops : Tasks in a loop can be optional or re-
quired to be executed at least once. For instance, both the nets l1l and
l1lSkip model length-one loop situations (cf. the respective figures 8.2
and 8.3) for the activities “B” and “C”. However, l1lSkip requires the
activities “B” and “C” to be executed at least once, while both activ-
ities can be completely skipped in l1l. In a similar way, the nets l2l,
l2lOptional and l2lSkip model different types of length-two loop con-
structs.

• Interleaving situations : As seen in chapters 4 and 5, the fitness of our
genetic approach benefits individuals that correctly parse the most fre-
quent behavior in the log. In situations in which many interleaving
between the tasks are possible, this characteristic of the fitness mea-
sure may generate side-effects to the mined model because it will always
benefit the individuals that show the most frequent interleaving situ-
ations in the log. Thus, the nets a12, a8, choice and parallel5 were
created.

• Non-local NFC : Herbst’s models did not contain non-local NFC con-
structs. Actually, the net herbstFig6p36 uses duplicate tasks instead of



168 Evaluation

ArtificialStartTask 
(complete)

 300

XOR

XOR

split 
(complete)

 300

XOR and XOR

  300

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 141

XOR

  141

XOR and XOR

join 
(complete)

 300

XOR

  159

XOR

A 
(complete)

 143

XOR

  143

  143

  157

  141

XOR

ArtificialEndTask 
(complete)

 300

  300

Figure 8.1: Heuristic net for herbstFig6p39. This model contains duplicate
tasks that violate the assumption made in Chapter 5, i.e. both “A” tasks
share a common “join”.



8.1 Experiments with Known Models 169

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 297

XOR

  111

XOR

D 
(complete)

 300

XOR

  100

XOR

B 
(complete)

 316

XOR

  89  95

  89

  113

XOR

EEENNNDDD 
(complete)

 300

  300

  91

  111

  114

Figure 8.2: Heuristic net for l1l.



170 Evaluation

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

B 
(complete)

 2983

XOR

  300

XOR

C 
(complete)

 3000

XOR

  300

  2683

XOR and XOR

D 
(complete)

 300

XOR

  300

  2700

  300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure 8.3: Heuristic net for l1lSkip.



8.1 Experiments with Known Models 171

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

Kb 
(complete)

 135

XOR and XOR

  135

XOR

Ka 
(complete)

 165

XOR and XOR

  165

XOR

I1 
(complete)

 300

XOR

  135

XOR and XOR

Nb 
(complete)

 135

XOR

  135

XOR

I2 
(complete)

 300

XOR

  300

XOR

I3 
(complete)

 300

XOR

  300

XOR

I4 
(complete)

 300

XOR

  300

XOR

I5 
(complete)

 300

XOR

  300

XOR

A 
(complete)

 300

XOR

  300

  135

XOR and XOR

Na 
(complete)

 165

XOR

  165

XOR

EEENNNDDD 
(complete)

 300

  135

  165

  165

  165

Figure 8.4: Heuristic net for herbstFig6p36.



172 Evaluation

non-local NFC. However, because our DGA does not capture this kind
of nets (the duplicates share input/output elements), we have modelled
it (cf. Figure 8.4) with a non-local NFC construct. Additionally, the
nets driverLicense, betaSimplified and a6nfc also contain non-local NFC
constructs. Note that the net betaSimplified also has duplicate tasks.

• Non-block structured constructs : All of Herbst’s models are block struc-
tured. So, the nets a10Skip, a5, a7, al1 and al2 have been created. The
first three nets have branches that intersect. The nets al1 and al2 con-
tain arbitrary loops [13].

• Different net sizes : The original nets have between 7 and 44 tasks.
We needed nets with different size to check how sensitive our genetic
mining approach is to the size of the models. For instance, the nets
for the short loops (“l1l. . . ” and “l2l. . . ”) have no more than 10 tasks,
while the nets “bn1. . . ” have about 40 tasks.

As shown in Table 8.1, some of the mentioned nets would fit in more than one
of the previous items. For instance, all nets with non-local non-free-choice
are also non-block structured. However, we have opted for highlighting the
most important reason why these models have been selected.

Once the nets have been chosen, they have been modelled in CPN Tools [2]
to create the logs via simulation [27]. More details about this process are
given in Subsection 7.6.1.

As a final remark about the models in Table 8.1, we emphasize that
Herbst’s approach can mine all models that start with “herbst. . . ”. The
experiments in Chapter 5 show that the DGA can also mine many of these
models. However, Herbst’s approach is much faster (the mined models are
returned in seconds or minutes [50], while the DGA takes minutes or hours).
Besides, Herbst’s approach, although block-structured, does not require the
duplicates to have disjoint input/output elements. Thus, for such models,
Herbst’s approach seems to be more suitable. However, the advantage of
our genetic approach over Herbst’s one is that ours can mine also non-block-
structured nets and it captures (non-local) non-free-choice.

More details about the setup and the results for the experiments with
known models are provided in sections 4.5, 5.5 and 6.2.

8.2 Single-Blind Experiments

As explained in the previous section, most of the models without duplicates
used to test the basic Genetic Algorithm (GA) (cf. Chapter 4) were created
by us (cf. Table 8.1). Only five models (herbstFig3p4, herbstFig6p36, herb-



8.2 Single-Blind Experiments 173

stFig6p37, herbstFig6p41 and herbstFig6p45) were not our design. Thus, to
make sure that the models we have created were not too biased, we have con-
ducted a single-blind experiment to test the GA even further. In a single-blind
experiment, the original models are unknown while running the experiments
and selecting a mined model for a given log. The aim of this experiment was
to check how complete and precise the models returned by the GA were.

The original models were extracted from group assignments from students
of the course “Business Process Modelling”2. The group assignment has two-
phases. In the first phase, the students have to create workflow models from
fictive situations that resemble real-life situations. In the second phase, the
students have to apply redesign rules in [65] to improve the performance of
their first-phase models. The redesigned models are usually closer to models
that one typically encounters in real-life. Probably because they were more
thoughtfully considered while applying the redesign rules. In total, there
were 20 groups. Thus, a third party selected one redesigned model from each
group and created one noise-free log for every model. Like for the experiments
with the known models (cf. Section 8.1), the third party also used CPN Tools
to simulate the selected models and, therefore, create the logs. In total, 20
logs were provided (one log for every selected model of a group). As for the
experiments with the known models (cf. Subsection 4.5.2), every log had 300
traces.

Since our previous experience with the GA pointed out that the more the
GA iterates, the better the results, we have opted for running the experiments
with a smaller population size (only 10 individuals), but for more generations
(5000 at most). Additionally, for each of the 20 logs, 10 runs were executed
(i.e. 10 experiments per log). The configuration of the remaining parameters
for each run was just like for Scenario IV in Subsection 4.5.2. Once the
10 runs for a log were finished, the best mined model was selected. This
selected model can correctly parse more traces in the log than the other 9
mined models. In case of ties, one of the mined models was randomly chosen.
After the mined models were selected, the original models were made public
to us, so that we could proceed with the analysis of the mined models.

The original models have all constructs but non-free-choice and duplicate
tasks. The tool3 the students used to design these models does not support
duplicates. Non-free-choice constructs are supported by this tool, but the
selected models happened not to have this kind of construct. Table 8.2 shows
the main constructs used in every model. Note that, although the models do

2This course is held at the Information Systems subdepartment. This subdepartment
belongs to the Technology Management department of the Eindhoven University of Tech-
nology.

3The modelling tool Protos [63] is used for this course.



174 Evaluation

not have non-free-choice or duplicates, they do exhibit imbalances between
the AND-split/join points (cf. last column in the Table 8.2).

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

In
v
is

ib
le

T
as

k
s

U
n
b
al

an
ce

d
A

N
D

-s
p
li
t/

jo
in

g2 C.1 X X X X X X

g3 C.2 X X X X X X

g4 C.4 X X X X X

g5 C.6 X X X X X

g6 C.7 X X X X X

g7 C.8 X X X X X

g8 C.9 X X X X X X X

g9 C.11 X X X X X X

g10 C.13 X X X X X

g12 C.15 X X X X X X

g13 C.16 X X X X X X X

g14 C.18 X X X X X X

g15 C.20 X X X X X

g19 C.22 X X X X X X

g20 C.24 X X X X X X

g21 C.25 X X X X

g22 C.26 X X X X X X

g23 C.28 X X X X X

g24 C.30 X X X X X X

g25 C.32 X X X X X

Table 8.2: Nets for the single-blind experiments.



8.2 Single-Blind Experiments 175

Blind Experiments - GA - Results for the Preciseness Requirement

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

g2 g3 g4 g5 g6 g7 g8 g9 g10 g12 g13 g14 g15 g19 g20 g21 g22 g23 g24 g25

Structural Precision Structural Recall
Behavioral Precision Behavioral Recall

Blind Experiments - GA - Results for the Completeness Requirement

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

g2 g3 g4 g5 g6 g7 g8 g9 g10 g12 g13 g14 g15 g19 g20 g21 g22 g23 g24 g25

Fitness Proper Completion Fitness Model is precise (1=yes; 0=no)

Figure 8.5: Analysis metrics for the mined models for the single-blind exper-
iments.



176 Evaluation

Figure 8.5 shows the results for the analysis metrics. In short, the single-
blind experiments revealed that the GA has problems to mine models when-
ever many interleaving situations between the tasks are possible. This result
is not really surprising because of the nature of the GA’s fitness measure.
Recall that the fitness measure always benefits the individuals that better
portrait the most frequent behavior in the log. From the 20 models in Ta-
ble 8.2, the GA had more problems to mine models with: (i) parallel con-
structs with more than two branches, especially when these branches have
more than two tasks each; (ii) unbalance of AND-split/join points (note that
this also derives from item (i) before because it involves parallel branches as
well); and more than three length-two loops connected to a same starting
point. More specifically, the results in Figure 8.5 show that:

• 85% (17/20) of the mined models can correctly parse more than 50% of
the traces in the log (cf. bottom graph in Figure 8.5, measure “Proper
Completion Fitness”). Furthermore, 60% (12/20) of the mined models
correctly parse at least 90% of the traces in the log, and 77% (7/9)
of the mined models that are complete are also precise (see measure
“Model is precise” on page 175). This supports the hypothesis that
the fitness of the GA indeed guides the search towards individuals (or
models) that correctly capture the most frequent behavior in the log.

• All the seven models that turned out to be precise were also structurally
identical to the original models. Note that the models g2, g5, g6, g7,

g12, g20 and g21 have all structural precision and recall values that are
equal to 1 (cf. top graph in Figure 8.5).

• 60% (12/20) of the mined models (see top graph in Figure 8.5) have
behavioral precision and recall metrics close to 1. This shows that, even
when the models are not as precise as the original ones (like for g8, g9,

g13, g19 and g22), they do not allow for much more extra behavior
than the original one with respect to the log.

• The mined models for g3, g14 and g23 are less precise. As illustrated in
the top graph in Figure 8.5, all of these models have behavioral precision
values that are inferior to 0.7. The original and mined models for g3,

g14 and g23 are respectively shown in figures 8.6 to 8.13. Based on
these models, we can conclude that:



8.2 Single-Blind Experiments 177

XOR

Split_up 
(complete)

 266

XOR and XOR

XOR

Create_new_order 
(complete)

 266

XOR

  266

XOR

Remove_faulty_pallets 
(complete)

 266

XOR

  266

XOR

Fetch_and_Place_beams 
(complete)

 1104

XOR

XOR and XOR

Produce_pallet 
(complete)

 1104

XOR

  1104

XOR

Check_order 
(complete)

 566

XOR

  266

XOR

Order_pick_up 
(complete)

 139

XOR

  139

XOR

Deliver_order 
(complete)

 161

XOR

  161

XOR and XOR

Join 
(complete)

 266

XOR

  266   266

XOR

Check_stock 
(complete)

 566

XOR

XOR

Start_pallet_production 
(complete)

 1104

XOR and XOR

  292

XOR

Purchase 
(complete)

 274

XOR and XOR

  274

XOR

Check_nails_delivery 
(complete)

 185

XOR

XOR

Bypass_nail_purchase 
(complete)

 365

XOR

  91

XOR and XOR

Administer_purchase 
(complete)

 274

XOR

  94

XOR

Finish_order 
(complete)

 300

XOR

  139

XOR

Burn_logo_into_pallet 
(complete)

 1104

XOR

  1104

  1104

XOR

Fetch_shelves 
(complete)

 1104

XOR

  1104

XOR

Purchase_nails 
(complete)

 185

XOR

  185

  185

  180

XOR

Purchase_timber 
(complete)

 170

XOR

XOR

Check_timber_delivery 
(complete)

 170

XOR

  170

XOR

Register_order 
(complete)

 300

XOR

  300

  161

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  274

XOR

Bypass_timber_purchase 
(complete)

 352

XOR

  274

  170

  182

  78

  92

  274

XOR

Place_shelves 
(complete)

 1104

XOR

  1104

  266

XOR

Check_number_of_pallets 
(complete)

 1104

XOR

  566

  538

  1104

  1104

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.6: Original model for net g3. The parallel construct in which the
two branches are length-three loops is difficult to mine.



178 Evaluation

Figure 8.7: Zoomed view of the parallel construct with length-three loops
in the original model for net g3. Note that this construct is not correctly
captured in the mined model in Figure 8.8, but the remaining structure of
this mined model is very similar to the original model in Figure 8.6, as it can
be seen in the arc-pruned model in Figure 8.9. This model has been pruned
so that only the arcs/activities that are used to replay the traces that proper
complete are kept.



8.2 Single-Blind Experiments 179

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

Register_order 
(complete)

 300

XOR

  300

XOR

Check_stock 
(complete)

 566

XOR

  300

XOR

Check_nails_delivery 
(complete)

 185

XOR

  63

XOR

Start_pallet_production 
(complete)

 1104

XOR and XOR

  372

XOR

Purchase_timber 
(complete)

 170

XOR and XOR

  103

XOR and XOR and XOR and XOR

Purchase 
(complete)

 274

XOR and XOR and XOR and XOR and XOR

XOR

Bypass_timber_purchase 
(complete)

 352

XOR

  218   218

XOR

Bypass_nail_purchase 
(complete)

 365

XOR and XOR

  265

  102

XOR

Remove_faulty_pallets 
(complete)

 266

XOR

  2   2  2

  7

XOR

Administer_purchase 
(complete)

 274

XOR

  274

  59   59

  124

XOR

Purchase_nails 
(complete)

 185

XOR and XOR

  185   100

  33

  20

  221

XOR and XOR

Place_shelves 
(complete)

 1104

XOR

  40

XOR

Fetch_shelves 
(complete)

 1104

XOR

  1104

XOR

Fetch_and_Place_beams 
(complete)

 1104

XOR

  1104

  1064   1104

XOR

Produce_pallet 
(complete)

 1104

XOR

  1104

XOR

Burn_logo_into_pallet 
(complete)

 1104

XOR

  1104

XOR

Check_number_of_pallets 
(complete)

 1104

XOR

  1104

  9

  511

XOR

Check_order 
(complete)

 566

XOR

  566

XOR

Deliver_order 
(complete)

 161

XOR

  161

XOR

Split_up 
(complete)

 266

XOR and XOR

  266

XOR

Order_pick_up 
(complete)

 139

XOR

  139

XOR

Finish_order 
(complete)

 300

XOR

  161

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  264

XOR

Create_new_order 
(complete)

 266

XOR

  266

XOR and XOR

Join 
(complete)

 266

XOR

  266   266

  266

  139

  36   36

XOR

Check_timber_delivery 
(complete)

 170

  170

Figure 8.8: Mined model for net g3.



180 Evaluation

ArtificialStartTask2 
(complete)

 106

XOR

XOR

ArtificialStartTask 
(complete)

 106

XOR

  106

XOR

Register_order 
(complete)

 106

XOR

  106

XOR

Check_stock 
(complete)

 143

XOR

  106

XOR

Start_pallet_production 
(complete)

 299

XOR and XOR

  143

XOR

Fetch_shelves 
(complete)

 299

XOR

  299

XOR

Fetch_and_Place_beams 
(complete)

 299

XOR

  299

XOR and XOR

Place_shelves 
(complete)

 299

XOR

  299   299

XOR

Produce_pallet 
(complete)

 299

XOR

  299

XOR

Burn_logo_into_pallet 
(complete)

 299

XOR

  299

XOR

Check_number_of_pallets 
(complete)

 299

XOR

  299

  156

XOR

Check_order 
(complete)

 143

XOR

  143

XOR

Deliver_order 
(complete)

 52

XOR

  52

XOR

Split_up 
(complete)

 37

XOR and XOR

  37

XOR

Order_pick_up 
(complete)

 54

XOR

  54

XOR

Finish_order 
(complete)

 106

XOR

  52

XOR

ArtificialEndTask 
(complete)

 106

XOR

  106

XOR

ArtificialEndTask2 
(complete)

 106

  106

XOR

Remove_faulty_pallets 
(complete)

 37

XOR

  37

XOR

Create_new_order 
(complete)

 37

XOR

  37

XOR and XOR

Join 
(complete)

 37

XOR

  37   37

  37

  54

Figure 8.9: Mined model for net g3 after arc pruning.



8.2 Single-Blind Experiments 181

XOR

check_additional_technical_specs 
(complete)

 633

XOR

XOR

check_redundancy_technical_specs 
(complete)

 633

XOR

  633

XOR

translate_technical_in_physical_specs 
(complete)

 300

XOR

XOR and XOR

combine_with_dominant_tech_spec 
(complete)

 300

XOR

  300

XOR

Receive_CRL 
(complete)

 300

XOR

XOR

Check_and_change_requirements_with_customer 
(complete)

 300

XOR

  300

XOR

check_redundancy 
(complete)

 573

XOR

XOR

Check_Funct__Design 
(complete)

 573

XOR

  573

XOR

Give_Design_into_Production 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

translate_req_to_function 
(complete)

 300

XOR and XOR

XOR

translate_functions_in_technical_specs 
(complete)

 300

XOR and XOR

  300

XOR

check_completeness 
(complete)

 573

XOR

  300

XOR

check_redundancy_physical_specs 
(complete)

 579

XOR

XOR

Check_Physical_Design 
(complete)

 579

XOR

  579

  300

XOR and XOR

combine_with_dominant_functional_specs 
(complete)

 300

XOR

  300

  300

XOR

check_completeness_physical_specs 
(complete)

 579

XOR

  279

XOR

check_additional_physical_specs 
(complete)

 579

XOR

  579

  579

XOR

Release_requirements 
(complete)

 300

XOR

  300

  300

XOR

check_completeness_technical_specs 
(complete)

 633

XOR

  633

XOR

check_for_additional_functions 
(complete)

 573

XOR

  573

  300

  273

  300

XOR

Check_Technical_Design 
(complete)

 633

XOR

  633

  300

  333  300

  573

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.10: Original model for net g14. The unbalanced AND-split/join
points are difficult to mine.



182 Evaluation

ArtificialStartTask 
(complete)

 300

XOR

XOR

Receive_CRL 
(complete)

 300

XOR

  300

XOR

Check_and_change_requirements_with_customer 
(complete)

 300

XOR

  300

XOR

Release_requirements 
(complete)

 300

XOR

  300

XOR

translate_req_to_function 
(complete)

 300

XOR and XOR

  300

XOR

check_completeness 
(complete)

 573

XOR

  300

XOR

translate_functions_in_technical_specs 
(complete)

 300

XOR

  300

XOR

check_for_additional_functions 
(complete)

 573

XOR

  573

XOR

translate_technical_in_physical_specs 
(complete)

 300

XOR

  300

XOR

check_redundancy 
(complete)

 573

XOR and XOR

  573

XOR

Check_Funct__Design 
(complete)

 573

XOR

  573

XOR

check_completeness_technical_specs 
(complete)

 633

XOR

  352

XOR

combine_with_dominant_tech_spec 
(complete)

 300

XOR

  300  273

XOR

combine_with_dominant_functional_specs 
(complete)

 300

XOR

  300

XOR and XOR and XOR

Give_Design_into_Production 
(complete)

 300

XOR

  300

XOR

check_additional_technical_specs 
(complete)

 633

XOR

  633

XOR

check_redundancy_technical_specs 
(complete)

 633

XOR

  633

XOR

Check_Technical_Design 
(complete)

 633

XOR

  633

  281

  300

XOR

check_completeness_physical_specs 
(complete)

 579

XOR

  300

XOR

check_additional_physical_specs 
(complete)

 579

XOR

  579

XOR

check_redundancy_physical_specs 
(complete)

 579

XOR

  579

XOR

Check_Physical_Design 
(complete)

 579

XOR

  579

  279

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.11: Mined model for net g14. Note that, in comparison with the
original model in Figure 8.10, the loops are all correctly captured, but the
AND-split/join points are not.



8.2 Single-Blind Experiments 183

XOR

_4_Create_steering_construction 
(complete)

 300

XOR

XOR and XOR and XOR and XOR

_8_Assemblage_car 
(complete)

 300

XOR

  300

XOR

__Plan_work 
(complete)

 300

XOR

XOR

__Green_light_administration 
(complete)

 300

XOR and XOR and XOR and XOR and XOR

  300

XOR

Recieve_roof 
(complete)

 300

XOR

XOR and XOR and XOR

__Assemblage_bodywork 
(complete)

 300

XOR

  300

XOR

_0_Build_Basic_structure 
(complete)

 576

XOR

XOR

_1_Test_BS 
(complete)

 840

XOR

  576

  300

XOR

_5_Build_engine 
(complete)

 561

XOR

  300

XOR and XOR

__Schedule_body_work 
(complete)

 300

XOR and XOR and XOR and XOR

  300

XOR

_9_Recieve_customer_demands 
(complete)

 300

XOR

  300

XOR

Order_roof 
(complete)

 300

XOR

  300

XOR

_1_Distribution 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

_2_Place_windows 
(complete)

 300

XOR

  300

XOR

_3_Attach_wheels 
(complete)

 300

XOR

  300

XOR

_6_Test_engine 
(complete)

 837

XOR

  561

  300

XOR

_12_Redo_part_BS 
(complete)

 264

XOR

  264

XOR and XOR

_0_Paint_car 
(complete)

 300

XOR

  300

  300

XOR

__Create_interior 
(complete)

 300

XOR

  300

  300

  300

  300

XOR

__Create_Doors 
(complete)

 300

XOR

  300

  261

  300

XOR

_7_Redo__part_engine 
(complete)

 276

XOR

  276

XOR

__Rec_customer_order 
(complete)

 300

XOR

  300

  276

  276

  264   300

  300   300

  300

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.12: Original model for net g23. This model has four-parallel
branches with unbalanced AND-split/join points.



184 Evaluation

ArtificialStartTask 
(complete)

 300

XOR

XOR

__Rec_customer_order 
(complete)

 300

XOR and XOR

  300

XOR

__Plan_work 
(complete)

 300

XOR

  300

XOR

__Schedule_body_work 
(complete)

 300

XOR

  300

XOR

__Green_light_administration 
(complete)

 300

XOR and XOR

  300

XOR

Order_roof 
(complete)

 300

XOR

  300

XOR

_9_Recieve_customer_demands 
(complete)

 300

XOR and XOR

  300

XOR

_0_Build_Basic_structure 
(complete)

 576

XOR

XOR

_1_Test_BS 
(complete)

 840

XOR

  576  256

XOR

_12_Redo_part_BS 
(complete)

 264

XOR

  264

XOR

__Create_Doors 
(complete)

 300

XOR

  300

  264

XOR

Recieve_roof 
(complete)

 300

XOR

  300

XOR and XOR

__Assemblage_bodywork 
(complete)

 300

XOR

  300

  249

XOR

_5_Build_engine 
(complete)

 561

XOR

  236

XOR

_3_Attach_wheels 
(complete)

 300

XOR

  27

XOR

_4_Create_steering_construction 
(complete)

 300

XOR

  29

XOR

_6_Test_engine 
(complete)

 837

XOR

  482

  70

  237

  102

  81

XOR

_7_Redo__part_engine 
(complete)

 276

XOR

  273

XOR

__Create_interior 
(complete)

 300

XOR

  300

XOR and XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  300

  70

  145

XOR and XOR

_8_Assemblage_car 
(complete)

 300

XOR

  300

XOR

_2_Place_windows 
(complete)

 300

XOR

  300

  300

XOR

_0_Paint_car 
(complete)

 300

XOR

  300

XOR

_1_Distribution 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  252

Figure 8.13: Mined model for net g23. Note that the four-parallel branches
in the original model (cf. Figure 8.12) are not correctly captured, but the
loop constructs are.



8.2 Single-Blind Experiments 185

– For the model g3 (cf. Figure 8.6), the parallel construct with
loops (zoomed in Figure 8.7) is the main problem. This parallel
construct starts with the AND-split activity “Purchase” and fin-
ishes with the AND-join activitiy “Administer purchase”. Note
that this parallel construct has two branches with more than 2
tasks each. Besides, every branch is in itself a loop. This paral-
lel construct was not correctly captured by the mined model (cf.
Figure 8.8). However, the remaining structure of g3 was correctly
captured in the mined model. To illustrate this, we show in Fig-
ure 8.9 the resulting model after the mined model has undergone
arc pruning. This pruned model only shows the arcs and tasks
that are used while replaying the traces that can be correctly
parsed. Note that the pruned model indeed correctly captures
the remaining structure of g3 (cf. original model in Figure 8.6)
that does not include the parallel construct between the activities
“Purchase” and “Administer purchase”.

– For the model g14 (cf. Figure 8.10), the main problem is the
unbalance between the AND-split and the AND-join activities.
Note that the loop constructs in g14 were correctly captured in
the mined model (cf. Figure 8.11), but the original unbalanced
match between the AND-split and AND-join points was not.

– For the model g23 (cf. Figure 8.12), the combination of multiple
concurrent branches and unbalanced AND-split/join points is the
main problem. Like for g14, the loop structures were correctly
captured (cf. mined model for g23 in Figure 8.13) and the paral-
lelism plus unbalanced AND-split/join points was the main issue.

The mined models for g3, g14 and g23 indicate that the higher the
amount of possible interleavings, the lower the probability that the GA
will mine a model that is complete and precise.

• Multiple parallel branches with unbalance of split/join points are more
harmful for the GA than the single presence of multiple parallel branches.
For instance, consider the models g25 (cf. Figure 8.14) and g23 (cf.
Figure 8.12). Both models have four parallel branches. However, the
values of the behavioral precision and recall for the model g25 are bet-
ter than the ones for the model g23 (cf. top graph in Figure 8.5). The
main difference between these two models is that the AND-split/join
points in g25 are balanced.



186 Evaluation

XOR

End_Phone_Production 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Paint_Black 
(complete)

 155

XOR

XOR and XOR and XOR and XOR

Assemble_Phone 
(complete)

 300

XOR

  155

XOR

Production_Frame_1 
(complete)

 300

XOR and XOR

XOR

Production_Electronics 
(complete)

 300

XOR

  300

XOR

Production_Frame_2 
(complete)

 300

XOR

  300

XOR and XOR

Assemble_Keyboard 
(complete)

 300

XOR

  300

XOR

Check_Phone 
(complete)

 612

XOR

  300

  312

XOR

Production_Keyboard 
(complete)

 300

XOR and XOR

XOR

Production_Board 
(complete)

 300

XOR

  300

XOR

Outsourced_Keys_Production 
(complete)

 300

XOR

  300

  300

XOR

Start_Production 
(complete)

 300

XOR and XOR and XOR and XOR

  300   300

XOR

Production_Cover 
(complete)

 300

XOR

  300

XOR

Earphone_Machina_B 
(complete)

 159

XOR

  159

XOR

Earphone_Machine_A 
(complete)

 141

XOR

  141

  155

XOR

Paint_Silver 
(complete)

 145

XOR

  145

  145

XOR and XOR

Assemble_Frame 
(complete)

 300

XOR

  300

  159  300   300   300

  141

  300

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.14: Original model for net g25. Like the net g23 (cf. Figure 8.12),
this net also has four-parallel branches. However, unlike g23, all AND-
split/join points in g25 are balanced.



8.2 Single-Blind Experiments 187

ArtificialStartTask 
(complete)

 300

XOR

XOR

Start_Production 
(complete)

 300

XOR and XOR

  300

XOR

Earphone_Machine_A 
(complete)

 141

XOR and XOR and XOR

  141

XOR

Production_Keyboard 
(complete)

 300

XOR

  300

XOR

Earphone_Machina_B 
(complete)

 159

XOR and XOR and XOR

  159

XOR

Production_Cover 
(complete)

 300

XOR

  116

XOR

Production_Frame_1 
(complete)

 300

XOR

  126

XOR

Production_Board 
(complete)

 300

XOR

  139

XOR

Paint_Black 
(complete)

 155

XOR

  155

XOR

Paint_Silver 
(complete)

 145

XOR

  145

XOR

Production_Frame_2 
(complete)

 300

XOR

  112

XOR

Production_Electronics 
(complete)

 300

XOR

  300

XOR and XOR

Assemble_Frame 
(complete)

 300

XOR

  300

XOR

Outsourced_Keys_Production 
(complete)

 300

XOR

  300

XOR and XOR and XOR

Assemble_Phone 
(complete)

 300

XOR

  300

XOR

Assemble_Keyboard 
(complete)

 300

XOR

  300

  295

  300

  277

XOR

Check_Phone 
(complete)

 612

XOR

  300

  312

XOR

End_Phone_Production 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  129   138   156

  14

  5

  104

  23

Figure 8.15: Mined model for net g25. Note that, although this model is
different from the original one (cf. Figure 8.14), it better expresses the most
frequent behavior in the log (cf. metrics in Figure 8.5) than the mined model
for net g23 (cf. Figure 8.13).



188 Evaluation

• Six length-two loops connected to a same starting point hinder the GA
mining more than three length-two loops connected to a same place.
At least, this is the conclusion we can draw by comparing the results
for the model g8 and g15. Both models have length-two loops con-
nected to a same initial point (cf. Figure 8.16 and 8.18). However, the
results in Figure 8.5 show that mined model for g8 can correctly parse
more traces (proper completion fitness around 52%) than g15 (proper
completion fitness around 35%). Additionally, both the behavioral re-
call and precision of g8 have higher values than for g15. By looking at
the mined models for g8 (cf. Figure 8.17) and g15 (cf. Figure 8.19),
one can notice that the three length-two loops connected to a same
starting point are correctly mined for g8, but the six ones of g15 are
not. In fact, g8 was not correctly mined because it contains unbal-
anced AND-split/join points in other parts of its structure. However,
for g15, the lenght-two loops are the constructs that could not be cor-
rectly mined. Note that loops connected to a same starting point also
lead to interleaving situations.

In our case, the blind experiments were important because (i) they high-
lighted the fact that we forgot to include nets with unbalanced AND-split/join
constructs in the experiments with known models, and (ii) they reinforced the
main conclusion drawn from the experiments in Chapter 4: models that al-
low for many interleaving situations are more difficult to mine. Clearly more
exhaustive logs are needed for discovering correct models. In other words,
there will always be some interleaving situations that are more frequent than
others and often many interleavings will be missing.

All the original and mined models used during the blind experiments are
included in Appendix C.



8.2 Single-Blind Experiments 189

XOR

prepare 
(complete)

 52

XOR and XOR

XOR

money_transfer 
(complete)

 52

XOR

  52

XOR

Notification 
(complete)

 52

XOR

  52

XOR

fin_info 
(complete)

 184

XOR

XOR and XOR

report 
(complete)

 184

XOR

  184

XOR

send_file_for_Mngr_approval 
(complete)

 37

XOR

XOR

bank_proposal 
(complete)

 23

XOR

  23

XOR and XOR

Cancel 
(complete)

 22

XOR

  14

XOR

start_approval 
(complete)

 184

XOR

XOR

check_doc 
(complete)

 184

XOR

  184

XOR

Start_procedure 
(complete)

 142

XOR and XOR

XOR

start_collect_info 
(complete)

 184

XOR and XOR

  142

XOR

timeout 
(complete)

 90

XOR

  90

XOR

return_contract 
(complete)

 52

XOR

  52

  184

  184

XOR

social_info 
(complete)

 184

XOR

  184

XOR

credit__A 
(complete)

 37

XOR

  37

XOR and XOR and XOR

archive 
(complete)

 52

XOR

  33

  13

XOR and XOR

end_blank_report 
(complete)

 68

XOR

  44

XOR

customer_decision 
(complete)

 23

XOR

  15   8

XOR

End_process 
(complete)

 300

XOR

  52

  19

  9   24

  52

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  23

  42

  37

XOR

credit_A 
(complete)

 37

XOR

  37

  68

XOR

register 
(complete)

 300

XOR

XOR

Send_info 
(complete)

 445

XOR

  300

  184

XOR

phone_contact 
(complete)

 158

XOR

  55

  58

  45

XOR

www_contact 
(complete)

 140

XOR

  44

  46

  50

  158

  140

XOR

Direct_contact 
(complete)

 147

XOR

  147

  22

  37

  68  52

  43

  54

  50

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.16: Original model for net g8. Note the three length-two loops after
the activity “register”.



190 Evaluation

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

register 
(complete)

 300

XOR

  300

XOR

Send_info 
(complete)

 445

XOR

  300

XOR

www_contact 
(complete)

 140

XOR

  140

XOR

phone_contact 
(complete)

 158

XOR

  158

XOR

Direct_contact 
(complete)

 147

XOR

  147   50

XOR

Start_procedure 
(complete)

 142

XOR and XOR

  44

XOR

End_process 
(complete)

 300

XOR

  46

XOR

timeout 
(complete)

 90

  90

XOR

start_collect_info 
(complete)

 184

XOR and XOR and XOR

  131

XOR

return_contract 
(complete)

 52

XOR

  52

XOR

fin_info 
(complete)

 184

XOR

  184

XOR

social_info 
(complete)

 184

XOR

  184

XOR and XOR

report 
(complete)

 184

XOR and XOR

  160

  35

XOR and XOR

customer_decision 
(complete)

 23

XOR

  23

XOR and XOR

archive 
(complete)

 52

  18

  184

XOR

start_approval 
(complete)

 184

XOR

  184

XOR

Notification 
(complete)

 52

XOR and XOR

  52

XOR

check_doc 
(complete)

 184

XOR

  184

  24

XOR

credit_A 
(complete)

 37

XOR and XOR and XOR

  37

XOR

credit__A 
(complete)

 37

XOR

  37

XOR

end_blank_report 
(complete)

 68

XOR

  68

XOR

send_file_for_Mngr_approval 
(complete)

 37

XOR

  37

XOR

prepare 
(complete)

 52

XOR and XOR

  15   15

XOR

Cancel 
(complete)

 22

XOR

  22

XOR

bank_proposal 
(complete)

 23

XOR

  23

  23

XOR

ArtificialEndTask2 
(complete)

 300

  9

XOR

money_transfer 
(complete)

 52

XOR

  52

  26  34

  52

  52

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  265

  45

  55

  58

  50

  43

  54

  18

  37

  68

  22

Figure 8.17: Mined model for net g8. Note that the three length-two loops
after the activity “register” are correctly captured (cf. original model in
Figure 8.16).



8.2 Single-Blind Experiments 191

XOR

Change_date 
(complete)

 24

XOR

XOR

Check_availability_9_pers_car 
(complete)

 145

XOR

  8

XOR

Check_availability_del_van 
(complete)

 148

XOR

  9

XOR

Check_availability_5_pers_car 
(complete)

 153

XOR

  7

XOR

Stop_booking 
(complete)

 17

XOR

XOR

Process_finished 
(complete)

 300

XOR

  17

XOR

Send_documents 
(complete)

 227

XOR

XOR

Receive_documents 
(complete)

 66

XOR

  66

XOR

Phone 
(complete)

 131

XOR

  73

XOR

Cancel_booking 
(complete)

 156

XOR

  88

XOR

Change_category__ 
(complete)

 24

XOR

  7

  8

  9

XOR

Deadline_two_weeks_before_start 
(complete)

 71

XOR

  71

XOR

Change_category_ 
(complete)

 19

XOR

  3

  10

  6

XOR

Ask_for_options 
(complete)

 227

XOR

  119

XOR

Book_options 
(complete)

 108

XOR

  108

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Change_date__ 
(complete)

 22

XOR

  3

  11

  8

  19

XOR

Stop_booking_ 
(complete)

 38

XOR

  38

XOR

Change_date_ 
(complete)

 27

XOR

  27

XOR

Choose_options 
(complete)

 227

XOR

  61

  38

  11

  9

  7

  24   22

XOR

Stop_booking__ 
(complete)

 18

XOR

  18   84

  18

XOR

Contact_TM_car 
(complete)

 300

XOR

  100

  95

  105   24

  17

XOR

Change_category 
(complete)

 30

XOR

  30

  82

  31  35

  13

  6

  11

  108

  40

  58

  33

  227

  156

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure 8.18: Original model for net g15. Note the six length-two loops after
the activity “Contact TM car”.



192 Evaluation

ArtificialStartTask 
(complete)

 300

XOR

XOR

Contact_TM_car 
(complete)

 300

XOR

  300

XOR

Check_availability_del_van 
(complete)

 148

XOR

  95

XOR

Check_availability_9_pers_car 
(complete)

 145

XOR and XOR

  100

XOR

Check_availability_5_pers_car 
(complete)

 153

XOR and XOR and XOR

  105

XOR

Choose_options 
(complete)

 227

XOR

  86

  12

XOR

Stop_booking__ 
(complete)

 18

XOR

  18

XOR

Ask_for_options 
(complete)

 227

XOR

  227

XOR

Book_options 
(complete)

 108

XOR

  108

XOR

Send_documents 
(complete)

 227

XOR

  119

  108

XOR

Receive_documents 
(complete)

 66

XOR

  66

XOR

Cancel_booking 
(complete)

 156

XOR

  86

XOR

Phone 
(complete)

 131

XOR

  71

XOR

Deadline_two_weeks_before_start 
(complete)

 71

XOR

  31

XOR

ArtificialEndTask 
(complete)

 300

XOR

  2

  33

XOR

Process_finished 
(complete)

 300

XOR

  71

  298

XOR

ArtificialEndTask2 
(complete)

 300

  295

  60   60

XOR

Change_date_ 
(complete)

 27

XOR

  27

XOR

Change_category_ 
(complete)

 19

XOR

  19

  12

XOR

Stop_booking_ 
(complete)

 38

XOR

  38

  9

  5

  11

  156

  9

  81   81

  18

XOR

Change_category 
(complete)

 30

XOR and XOR and XOR and XOR

  30   30

XOR

Change_date 
(complete)

 24

XOR and XOR and XOR and XOR and XOR

  24   24

XOR

Stop_booking 
(complete)

 17

XOR

  17

  40   32

  56

Change_category__ 
(complete)

 24

XOR and XOR and XOR

  9

  7   7

  4   4

  7

  15   15

  5   5

  4   4

  8

  8   8   8

  2   2

XOR

Change_date__ 
(complete)

 22

XOR

  2   2   2

  11

  18

  38

  17

Figure 8.19: Mined model for net g15. Unlike the three length-two loops in
g8 (cf. Figure 8.17), the six length-two loops in g15 (cf. original model in
Figure 8.18) are not correctly captured in the mined model.



8.3 Case Study 193

8.3 Case Study

The case study was conducted based on real-life logs from a municipality
in The Netherlands. Here we obtained the logs of four processes: Bezwaar,
BezwaarWOZ, Afschriften and Bouwvergunning. The first three processes
deal with the handling of complaints, the last process (Bouwvergunning)
has to do with getting a building permit. The workflow system used in the
municipality is the “Eastman Software Workflow for NT”4 [74]. For the four
selected models, all constructs but non-free-choice and duplicate tasks are
present. An overview of the control-flow patterns supported by the Eastman
workflow is provided in [13].

The managers at the municipality were especially interested in using the
process mining techniques for feedback analysis (or delta analysis). Among
others, they would like to know (i) if there are deviations from the designed
process, (ii) what the exact differences are, (iii) what the most frequent fol-
lowed paths per process are and (iv) how the model that describes the current
situation looks like. To check for discrepancies (points (i) to (iii)), we have
used the Conformance Checker plug-in [67, 68] in the ProM framework (see
Section 7.1). Since duplicates are not present in the prescribed models, we
have used the Genetic Algorithm plug-in (see Chapter 4 and Section 7.2)
to mine the logs (point (iv)). However, before any analysis could be per-
formed, we needed to convert the provided logs to the MXML format (see
Subsection 7.1.1) used by ProM, and we needed to clean the logs.

The conversion to the MXML format was done by using the Eastman
ProMimport plug-in. This import plug-in was explained in Subsection 7.6.2.
The data cleaning consisted of two steps. In the first step, a projection was
made of every case in the log of every process, so that only the tasks that
were executed by the personnel of the municipality were considered. As an
illustration, Figure 8.20 shows the model for the process Bezwaar. The tasks
that have been crossed out are executed by external third parties and were
removed from the logs of this process. The projection of the cases was done
by using the log filter Event Log Filter of the ProM framework. The second
step consisted of selecting the cases that were finished. The selection of
such cases was made based on the information provided by managers of the
municipality. For every process, they informed us about the start tasks and
the end tasks. The filtering was done by using the log filters Start Event
Log Filter and Final Events Log Filter that are also in the ProM framework.
Furthermore, because the implementation of the Genetic Algorithm plug-in

4The current name of this workflow is Global360 (www.global360.com). However, for
historic reasons, we have decided to keep the original name.



194 Evaluation

Figure 8.20: Prescribed model for the process Bezwaar. The crossed tasks
were filtered out of the log during the data cleaning. The remaining tasks
have an XOR-split/join semantics.

requires the target model to have a single start/end task that has XOR-
split/join semantics, artificial start/end tasks were added at the start/end of
every case. The artificial tasks were inserted by using the ProM log filters
Add Artificial Start Task Log Filter and Add Artificial End Task Log Filter .
Table 8.3 shows the numbers of cases in the log before and after the cleaning.
As can be seen, many of the cases for the processes Bezwaar, BezwaarWOZ
and Bouwvergunning have not been completed by the time these logs were
collected. Once the logs have been cleaned, we have proceeded with their
actual analysis.

Process Model # of cases # of cases # of unique cases
in raw log in cleaned log in cleaned log

Afschriften 374 358 4
Bezwaar 130 35 22

BezwaarWOZ 1982 747 54
Bouwvergunning 2076 407 107

Table 8.3: Information about the logs before and after cleaning, for every
process model in the municipality. # stands for “number”. The cases were
grouped by using the export plug-in Group Log (same sequence) (cf. Subsec-
tion 7.5.1).

The remainder of this section is organized as follows. Subsection 8.3.1
shows the results of the analysis for the log replay performed by the Confor-



8.3 Case Study 195

mance Checker plug-in on the original models. Subsection 8.3.2 presents the
models mined by the Genetic Algorithm plug-in. Subsection 8.3.2 contains
the reflections of the responsible people in the municipality about the results
for the log replay and re-discovered processes.

8.3.1 Log Replay

To check how compliant the cases in the cleaned logs were with the deployed
(or original) models, we needed to import the original models and logs into
ProM. The results after having played with the Conformance Checker plug-
ins are summarized in Table 8.4. Note that all cases (100%) for the pro-
cess Afschriften are compliant with the original (or deployed or prescribed)
model, and most of the cases (80%) for the process Bouwvergunning do not
differ from the prescribed behavior. However, many cases of the other two
processes - Bezwaar and BezwaarWOZ - do not comply with the deployed
models. Actually, the most frequent path (19% of the cases) for the process
Bezwaar is not compliant with the original model. The discrepancy is due
to the presence of a length-two loop between the tasks “BZ12 Voorstel” and
“BZ16 Wacht Besluit”5. Note that the original model (cf. Figure 8.20) does
have a connection (arc or dependency) from “BZ16 Wacht Besluit” to “BZ14
Voorstel”. The most frequent paths per model are summarized in Table 8.5.

Process Model Number of Cases % Correctly Parsed Figure
Cases Original Model

Afschriften 358 100% 8.21
Bezwaar 35 51% 8.22 & 8.23

BezwaarWOZ 747 46% 8.24 & 8.25
Bouwvergunning 407 80% 8.26 & 8.27

Table 8.4: Percentage of cases that could be correctly parsed by the original
process models. A case is correctly parsed when no tokens are missing or left
behind during the parsing.

5“Voorstel” means “offer, proposal” in English, and “Wacht Besluit” means “Wait for
Decision”.



196 Evaluation

Process Model Most frequent path for all cases

Afschriften 88% of the cases follow the compliant path:
DH1→AG02→AG04→AG08

Bezwaar 14% of the cases follows the non-compliant
path:
DH1→BZ02→BZ04→BZ08→BZ09→BZ10
→BZ12→BZ14→BZ16→BZ14→BZ16

11% of the cases follows the compliant path:
DH1→BZ02→BZ04→BZ08→BZ30

BezwaarWOZ 19% of the cases follows the compliant path:
DH1→OZ02→OZ06→OZ08→0Z12→OZ16
→OZ20→OZ24

However, 17% of the cases follows the non-
compliant path:
DH1→OZ02→OZ06→OZ12→OZ16→OZ20
→OZ24

Bouwvergunning 31% of the cases follows the compliant path:
DH1→BV02→BV04→BV06 Brandweer
→BV06 Milieu→BV06 CCT→BV06 Toets ontv
→BV08 →BV10→BV16→BV22→BV24

Table 8.5: The most frequent paths for every process model.



8.3 Case Study 197

ArtificialStartTask
(complete)

358

Domain: heus1
(complete)

358

  358

AG02 Voorbereiden
(complete)

358

  358

AG04 GBA betrokkene
(complete)

1

  1

AG08 GBA afnemer
(complete)

316

  316

AG04 BS betrokkene
(complete)

21

  21
AG10 BS derden

(complete)
20

  20

ArtificialEndTask
(complete)

358

  1

AG05 Wacht betrokken
(complete)

0

  0

ArtificialEndTask2
(complete)

358

  358

  316

AG09 Wacht afnemer
(complete)

0

  0

  21

  0   20

  0

  0

  0

Figure 8.21: Original model for Afschriften. The numbers associated to the
arcs indicate how often the arc has been used during the log replay. In
a similar way, the numbers inside the activities (third textual line in an
activity) indicate how often the activity has been used during the log replay.
Furthermore, to improve the readability of the text in the models, we have
omitted the semantics of the activities whenever they are all XOR-split/join
points. This “omission policy” applies to all models presented in this chapter.



198 Evaluation

ArtificialStartTask
(complete)

18

Domain: heus1
(complete)

18

  18

BZ02 Verdelen
(complete)

22

  18

BZ04 Intake
(complete)

25

  22   4

BZ08 Inhoud
(complete)

11

  11

BZ09 Secretaris
(complete)

12

  5
BZ05 Wachten

(complete)
3

  3

BZ30 Intrekken
(complete)

6

  2

  7

BZ14 Voorstel
(complete)

12

  0

  4

BZ10 Agenderen
(complete)

12

  12

  0

  0

BZ12 Hoorzitting
(complete)

8

  8

  4

  0

  8

  0

BZ16 Wacht Besluit
(complete)

12

  12

  0

ArtificialEndTask
(complete)

18

  12

  0

ArtificialEndTask2
(complete)

18

  18

  3

  6

Figure 8.22: Original model for Bezwaar - Replay of compliant traces (18
out of 35).



8.3 Case Study 199

ArtificialStartTask
(complete)

35

Domain: heus1
(complete)

35

  35

BZ02 Verdelen
(complete)

43

  35

BZ04 Intake
(complete)

53

  43   8

BZ08 Inhoud
(complete)

27

  25

BZ09 Secretaris
(complete)

30

  9
BZ05 Wachten

(complete)
8

  8

BZ30 Intrekken
(complete)

6

  2

  20

BZ14 Voorstel
(complete)

39

  2

  4

BZ10 Agenderen
(complete)

29

  28

  1

  0

BZ12 Hoorzitting
(complete)

25

  22

  7

  0

  21

  0

BZ16 Wacht Besluit
(complete)

41

  39

  0

ArtificialEndTask
(complete)

35

  29

  0

ArtificialEndTask2
(complete)

35

  35

  7

  6

Figure 8.23: Original model for Bezwaar - Replay of all traces.



200 Evaluation

ArtificialStartTask
(complete)

345

Domain: heus1
(complete)

345

  345

OZ02 Voorbereiden
(complete)

392

  345

OZ04 Incompleet
(complete)

47

  47

OZ15 Zelf uitspraak
(complete)

126

  45

OZ06 Stop vordering
(complete)

238

  238

OZ12 Hertaxeren
(complete)

219

  61

OZ10 Horen
(complete)

4

  1

  47

OZ20 Administatie
(complete)

345

  126

OZ24 Start vordering
(complete)

321

  321

ArtificialEndTask
(complete)

345

  24

  321

ArtificialEndTask2
(complete)

345

  345

OZ08 Beoordelen
(complete)

239

  79

  0

OZ09 Wacht Beoord
(complete)

4

  4

  156

  0

  235

  3

  4

OZ16 Uitspraak
(complete)

219

  219

OZ14 Plan. Taxeren
(complete)

0

  0

  219

OZ18 Uitspr. wacht
(complete)

0

  0  0

  2

  0

  2

  0

Figure 8.24: Original model for BezwaarWOZ - Replay of compliant traces
(345 out of 747).



8.3 Case Study 201

ArtificialStartTask
(complete)

747

Domain: heus1
(complete)

747

  747

OZ02 Voorbereiden
(complete)

769

  700

OZ04 Incompleet
(complete)

72

  67

OZ15 Zelf uitspraak
(complete)

272

  50

OZ06 Stop vordering
(complete)

478

  478

OZ12 Hertaxeren
(complete)

477

  145

OZ10 Horen
(complete)

4

  1

  67

OZ20 Administatie
(complete)

749

  267

OZ24 Start vordering
(complete)

703

  703

ArtificialEndTask
(complete)

747

  45

  702

ArtificialEndTask2
(complete)

747

  747

OZ08 Beoordelen
(complete)

391

  113

  89

OZ09 Wacht Beoord
(complete)

9

  7

  180

  0

  244

  3

  9

OZ16 Uitspraak
(complete)

477

  475

OZ14 Plan. Taxeren
(complete)

0

  0

  393

OZ18 Uitspr. wacht
(complete)

1

  1  1

  2

  0

  2

  0

Figure 8.25: Original model for BezwaarWOZ - Replay of all traces.



202 Evaluation

XOR

Domain: heus1 
(complete)

 329

XOR

XOR

BV02 Voorbereiden 
(complete)

 329

XOR

  329

XOR

BV04 Advies Split 
(complete)

 284

XOR and XOR and XOR and XOR

  284

XOR

BV10 Antwoord 
(complete)

 334

XOR

  45

XOR

BV06 Milieu 
(complete)

 284

XOR

  284

XOR

BV06 CCT 
(complete)

 284

XOR

  284

XOR

BV06 Brandweer 
(complete)

 284

XOR

  284

XOR

BV06 Toets ontv 
(complete)

 284

XOR

  284

XOR and XOR and XOR and XOR

BV08 Advies Join 
(complete)

 284

XOR

  284   284   284   284

  284

XOR

BV12 Incompleet 
(complete)

 5

XOR

  5

XOR

BV16 Toets inhoud 
(complete)

 342

XOR

  328

XOR

BV22 Voorber besch 
(complete)

 331

XOR

  1

  5

XOR

BV18 Aanhouden 
(complete)

 7

XOR

  7

XOR

BV17 Welstand 
(complete)

 1

XOR

  1  7   1

XOR

BV19 Jurist inhoud 
(complete)

 6

XOR

  6   328  6

XOR

BV20 Jurist besch 
(complete)

 15

XOR

  2

XOR

BV24 Afwerk besch 
(complete)

 329

XOR

  13

  15

  316

XOR

ArtificialEndTask 
(complete)

 329

  329

ArtificialStartTask 
(complete)

 329

XOR

  329

Figure 8.26: Original model for Bouwvergunning - Replay of compliant traces
(329 out of 407).



8.3 Case Study 203

XOR

Domain: heus1 
(complete)

 407

XOR

XOR

BV02 Voorbereiden 
(complete)

 407

XOR

  407

XOR

BV04 Advies Split 
(complete)

 361

XOR and XOR and XOR and XOR

  358

XOR

BV10 Antwoord 
(complete)

 414

XOR

  46

XOR

BV06 Milieu 
(complete)

 357

XOR

  357

XOR

BV06 CCT 
(complete)

 359

XOR

  354

XOR

BV06 Brandweer 
(complete)

 355

XOR

  355

XOR

BV06 Toets ontv 
(complete)

 334

XOR

  334

XOR and XOR and XOR and XOR

BV08 Advies Join 
(complete)

 380

XOR

  341   346   346   324

  357

XOR

BV12 Incompleet 
(complete)

 10

XOR

  9

XOR

BV16 Toets inhoud 
(complete)

 425

XOR

  395

XOR

BV22 Voorber besch 
(complete)

 408

XOR

  1

  10

XOR

BV18 Aanhouden 
(complete)

 11

XOR

  11

XOR

BV17 Welstand 
(complete)

 1

XOR

  1  10   1

XOR

BV19 Jurist inhoud 
(complete)

 11

XOR

  11   403  10

XOR

BV20 Jurist besch 
(complete)

 18

XOR

  3

XOR

BV24 Afwerk besch 
(complete)

 413

XOR

  15

  18

  389

XOR

ArtificialEndTask 
(complete)

 407

  407

ArtificialStartTask 
(complete)

 407

XOR

  407

Figure 8.27: Original model for Bouwvergunning - Replay of all traces.



204 Evaluation

Figures 8.28 and 8.29 respectively show screenshots of the model and
log diagnostic perspective of the Conformance Checker plug-in. These two
perspectives provide detailed information about the problems encountered
during the log replay. The model perspective diagnoses information about to-
ken counter (number of missing/left tokens), failed tasks (tasks that were not
enabled), remaining tasks (tasks that remained enabled), path coverage (the
tasks and arcs that were used during the log replay) and passed edges (how
often every arc in the model was used during the log replay). The log perspec-
tive indicates the points of non-compliant behavior for every case in the log.
As an illustration, consider the length-two loop situation of the most frequent
case for the process Bezwaar. The screenshot in Figure 8.28 shows the di-
agnosed problems for the tasks “BZ14 Voorstel” and “BZ16 Wacht Besluit”.
The selected cases are the ones that do not fit, i.e., the non-compliant ones.
Note that, for this selection, the task “BZ14 Voorstel” could be replayed
without any problems for 10 out of the 17 non-compliant cases, it cannot be
replayed once for 6 of the non-compliant cases, and for 1 non-compliant case,
this task could not be correctly replayed twice (since 2 tokens were missing
and this task has a single input place). A further look at the log perspective
of these non-fitting traces (see Figure 8.29) reveals that this is indeed the
case. Note that the arrow in Figure 8.29 points out that the task “Voorstel”
happened three times for one of the non-compliant process instances. The
first occurrence could be replayed without any problems and, therefore, the
task is not highlighted. However, the second and third occurrences were not
possible according to the model and, consequently, are highlighted in the log
diagnosis view. All this illustrates that the Conformance Checker is a use-
ful tool to inspect the match between the executed cases and the deployed
models.

8.3.2 Re-discovery of Process Models

This section shows the results of applying the Genetic Algorithm plug-in to
the four processes in the municipality. The aim is to get a concise picture
(the mined models) of what is really happening in the log. Based on the
log-replay results (cf. Subsection 8.3.1), we should expect the mined model
for the process Afschriften to be very similar to the deployed model. Note
that all the cases for this process are compliant with the deployed model
(cf. Table 8.4). For the other three processes - Bezwaar, BezwaarWOZ
and Bouwvergunning - we would expect the mined models to differ from the
deployed models because many cases are not compliant with these models.
More specifically, the mined models should capture the most frequent paths
in the log.



8
.3

C
a
se

S
tu

d
y

2
0
5

Figure 8.28: Conformance Checker plug-in - Screenshot of the “Model Diagnostic Perspective” for the process
Bezwaar.



2
0
6

E
v
a
lu

a
ti
o
n

Figure 8.29: Conformance Checker plug-in - Screenshot of the “Log Diagnostic Perspective” for the process Bezwaar.



8.3 Case Study 207

% Correctly Parsed Traces Mined Model & Figure
Process Model no pruning 1% pruning 5% pruning 10% pruning

Afschriften 100% & 8.30 99% & 8.31 99% & 8.31 88% & 8.32
Bezwaar 100% & 8.33 100% & 8.33 62% & 8.34 51% & 8.35

BezwaarWOZ 98% & 8.36 95% & 8.37 91% & 8.38 68% & 8.39
Bouwvergunning 77% & 8.40 76% & 8.41 73% & 8.42 70% & 8.43

Table 8.6: Percentage of traces that could be correctly parsed by the mined
process models before and after the arc pruning. A trace is correctly parsed
when no tokens are missing or left behind during the parsing.

Process Model SP SR BP BR PFcomplete

Afschriften 1.0 0.65 1.0 0.92 1.0
Bezwaar 0.73 0.92 0.80 0.79 1.0

BezwaarWOZ 0.80 0.81 0.85 0.73 0.99
Bouwvergunning 0.62 0.59 0.76 0.85 0.97

Table 8.7: Analysis metrics for the mined models.

For every log, the experimental setup was the same as for the single-blind
experiments (see Section 8.2, on page 173), but the maximum number of
generations was 10,000. Again 10 runs were generated for each log. From
these 10 runs, the best models were selected. The best model is the one that
correctly parses most of the cases in the log. The results are summarized in
Table 8.6 and Table 8.7. Table 8.6 shows the percentage of cases that can be
correctly parsed by the selected mined models. Note that the reported results
also include the pruned models of these mined models. Table 8.7 shows the
values of the analysis metrics for the mined models. Note that, because
the original models for Bezwaar, BezwaarWOZ and Bouwvergunning cannot
correctly parse all the behavior in their logs (cf. Table 8.4), we expect the
values for the behavioral/structural precision and recall metrics to point out
the presence of discrepancies between these models and the mined ones. To
facilitate the visual comparison between the original and mined models, we
show their heuristic nets in figures 8.21 to 8.27 (for the original models) and
8.30 to 8.43 (for the mined models). Based on these figures and tables 8.4, 8.6
and 8.7, we can conclude that:

• The results in Table 8.6 reinforce that the fitness measure of our ge-
netic approach indeed guides the search towards individuals that can
correctly parse the most frequent behavior in the log. Note that, even
after the mined models have undergone 10% arc pruning, they are still
able to parse at least 51% (process Bezwaar) of the cases in the logs.



208 Evaluation

ArtificialStartTask
(complete)

358

Domain: heus1
(complete)

358

  358

AG02 Voorbereiden
(complete)

358

  358

AG04 GBA betrokkene
(complete)

1

  1

AG08 GBA afnemer
(complete)

316

  316

AG04 BS betrokkene
(complete)

21

  21

AG10 BS derden
(complete)

20

  20

ArtificialEndTask
(complete)

358

  1

ArtificialEndTask2
(complete)

358

  358

  316   21   20

Figure 8.30: Mined model for Afschriften - Replay of compliant traces.



8.3 Case Study 209

ArtificialStartTask
(complete)

357

Domain: heus1
(complete)

357

  357

AG02 Voorbereiden
(complete)

357

  357

AG08 GBA afnemer
(complete)

316

  316

AG04 BS betrokkene
(complete)

21

  21

AG10 BS derden
(complete)

20

  20

ArtificialEndTask
(complete)

357

ArtificialEndTask2
(complete)

357

  357

  316   21   20

Figure 8.31: Afschriften - 1% or 5% arc pruning over the mined model in
Figure 8.30.



210 Evaluation

ArtificialStartTask
(complete)

358

Domain: heus1
(complete)

358

  358

AG02 Voorbereiden
(complete)

358

  358

AG08 GBA afnemer
(complete)

316

  316

ArtificialEndTask
(complete)

358

ArtificialEndTask2
(complete)

358

  358

  316

Figure 8.32: Afschriften - 10% arc pruning over the mined model in Fig-
ure 8.30.



8.3 Case Study 211

ArtificialStartTask
(complete)

35

Domain: heus1
(complete)

35

  35

BZ02 Verdelen
(complete)

43

  35

BZ04 Intake
(complete)

53

  43   8

BZ08 Inhoud
(complete)

27

  25

BZ09 Secretaris
(complete)

30

  9

BZ12 Hoorzitting
(complete)

25

  1

BZ05 Wachten
(complete)

8

  8

BZ30 Intrekken
(complete)

6

  2

  20

  1

BZ14 Voorstel
(complete)

39

  2

  4

  1

  1

BZ10 Agenderen
(complete)

29

  27

  1   1

  22

  6

  2

  23

BZ16 Wacht Besluit
(complete)

41

  39

  2

  8

  2

ArtificialEndTask
(complete)

35

  29

ArtificialEndTask2
(complete)

35

  35

  7

  1

  6

Figure 8.33: Mined model for Bezwaar - Replay of compliant traces.



212 Evaluation

ArtificialStartTask
(complete)

22

Domain: heus1
(complete)

22

  22

BZ02 Verdelen
(complete)

25

  22

BZ04 Intake
(complete)

27

  25   3

BZ08 Inhoud
(complete)

17

  17

BZ09 Secretaris
(complete)

18

  5
BZ05 Wachten

(complete)
2

  2

  13

BZ30 Intrekken
(complete)

4

  4

BZ10 Agenderen
(complete)

18

  18

BZ12 Hoorzitting
(complete)

14

  14

BZ14 Voorstel
(complete)

25

  4

  14

BZ16 Wacht Besluit
(complete)

25

  25  7

ArtificialEndTask
(complete)

22

  18

ArtificialEndTask2
(complete)

22

  22

  2

  4

Figure 8.34: Bezwaar - 1% or 5% arc pruning over the mined model in
Figure 8.33.



8.3 Case Study 213

ArtificialStartTask
(complete)

18

Domain: heus1
(complete)

18

  18

BZ02 Verdelen
(complete)

21

  18

BZ04 Intake
(complete)

23

  21   3

BZ08 Inhoud
(complete)

13

  13

BZ09 Secretaris
(complete)

18

  5
BZ05 Wachten

(complete)
2

  2

  13

BZ10 Agenderen
(complete)

18

  18

BZ12 Hoorzitting
(complete)

14

  14

BZ14 Voorstel
(complete)

25

  4

  14

BZ16 Wacht Besluit
(complete)

25

  25   7

ArtificialEndTask
(complete)

18

  18

ArtificialEndTask2
(complete)

18

  18

  2

Figure 8.35: Bezwaar - 10% arc pruning over the mined model in Figure 8.33.



214 Evaluation

ArtificialStartTask
(complete)

737

Domain: heus1
(complete)

737

  737

OZ02 Voorbereiden
(complete)

758

  688

OZ04 Incompleet
(complete)

70

  5

OZ15 Zelf uitspraak
(complete)

265

  7

OZ08 Beoordelen
(complete)

384

  23

OZ12 Hertaxeren
(complete)

469

  14

  65

  45

  114
OZ06 Stop vordering

(complete)
472

  472

  62

  70

OZ20 Administatie
(complete)

737

  265

OZ24 Start vordering
(complete)

694

  694

ArtificialEndTask
(complete)

737

  43

  694

ArtificialEndTask2
(complete)

737

  737

  114

  3

OZ09 Wacht Beoord
(complete)

7

  7   260

  99

  240

  133

  7

OZ16 Uitspraak
(complete)

469

  469

  469

Figure 8.36: Mined model for BezwaarWOZ - Replay of compliant traces.



8.3 Case Study 215

ArtificialStartTask
(complete)

716

Domain: heus1
(complete)

716

  716

OZ02 Voorbereiden
(complete)

740

  680

OZ08 Beoordelen
(complete)

363

  22

OZ12 Hertaxeren
(complete)

467

  14
OZ04 Incompleet

(complete)
60

  60

OZ15 Zelf uitspraak
(complete)

249

  45

  110
OZ06 Stop vordering

(complete)
463

  463

  62

  60

OZ20 Administatie
(complete)

716

  249

OZ24 Start vordering
(complete)

678

  678

ArtificialEndTask
(complete)

716

  38

  678

ArtificialEndTask2
(complete)

716

  716

  105   258

  99

  231

  133

OZ16 Uitspraak
(complete)

467

  467

  467

Figure 8.37: BezwaarWOZ - 1% arc pruning over the mined model in Fig-
ure 8.36.



216 Evaluation

ArtificialStartTask
(complete)

680

Domain: heus1
(complete)

680

  680

OZ02 Voorbereiden
(complete)

740

  680

OZ04 Incompleet
(complete)

60

  60

OZ15 Zelf uitspraak
(complete)

246

  45

OZ08 Beoordelen
(complete)

341

  110
OZ06 Stop vordering

(complete)
463

  463

OZ12 Hertaxeren
(complete)

434

  62

  60

OZ20 Administatie
(complete)

680

  246

OZ24 Start vordering
(complete)

642

  642

ArtificialEndTask
(complete)

680

  38

  642

ArtificialEndTask2
(complete)

680

  680

  102  239

  99

  231

  133

OZ16 Uitspraak
(complete)

434

  434

  434

Figure 8.38: BezwaarWOZ - 5% arc pruning over the mined model in Fig-
ure 8.36.



8.3 Case Study 217

ArtificialStartTask
(complete)

514

Domain: heus1
(complete)

514

  514

OZ02 Voorbereiden
(complete)

514

  514

OZ08 Beoordelen
(complete)

286

  94
OZ06 Stop vordering

(complete)
420

  420

OZ15 Zelf uitspraak
(complete)

155

OZ20 Administatie
(complete)

514

  155

OZ24 Start vordering
(complete)

514

  514

ArtificialEndTask
(complete)

514

  514

ArtificialEndTask2
(complete)

514

  514

  60

OZ12 Hertaxeren
(complete)

359

  226

  95

  192

  133

OZ16 Uitspraak
(complete)

359

  359

  359

Figure 8.39: BezwaarWOZ - 10% arc pruning over the mined model in Fig-
ure 8.36.



218 Evaluation

ArtificialStartTask 
(complete)

 407

XOR

XOR

Domain: heus1 
(complete)

 407

XOR and XOR

  407

XOR

BV02 Voorbereiden 
(complete)

 407

XOR and XOR

  407

XOR

BV06 CCT 
(complete)

 359

XOR

  356

XOR and XOR

BV10 Antwoord 
(complete)

 414

XOR

  46

XOR

BV04 Advies Split 
(complete)

 361

XOR

  358

XOR and XOR

BV22 Voorber besch 
(complete)

 408

XOR

  400

  46

XOR

BV06 Brandweer 
(complete)

 355

XOR

  355

XOR

BV08 Advies Join 
(complete)

 380

XOR

  24

XOR

BV06 Milieu 
(complete)

 357

XOR

  264

XOR

BV06 Toets ontv 
(complete)

 334

XOR

  55

  129

  51

XOR

BV20 Jurist besch 
(complete)

 18

XOR

  1

  163  17

  350

XOR and XOR and XOR

BV18 Aanhouden 
(complete)

 11

XOR and XOR

  1   1

  212

  108

  25

XOR

BV16 Toets inhoud 
(complete)

 425

XOR

  402  10   10

XOR

BV19 Jurist inhoud 
(complete)

 11

XOR

  11

  4

XOR

BV24 Afwerk besch 
(complete)

 413

XOR

  399

XOR

ArtificialEndTask 
(complete)

 407

  407

  3  322

  395

XOR

BV12 Incompleet 
(complete)

 10

XOR

  9

  11

  4

  10   10

  10

Figure 8.40: Mined model for Bouwvergunning - Replay of all traces.



8.3 Case Study 219

ArtificialStartTask 
(complete)

 311

XOR

XOR

Domain: heus1 
(complete)

 311

XOR and XOR

  311

XOR

BV02 Voorbereiden 
(complete)

 311

XOR and XOR

  311

XOR

BV06 CCT 
(complete)

 271

XOR

  271

XOR and XOR

BV10 Antwoord 
(complete)

 315

XOR

  40

XOR

BV04 Advies Split 
(complete)

 271

XOR

  271

XOR and XOR

BV22 Voorber besch 
(complete)

 311

XOR

  311

  40

XOR

BV06 Brandweer 
(complete)

 271

XOR

  271

XOR

BV08 Advies Join 
(complete)

 275

XOR

  12

XOR

BV06 Milieu 
(complete)

 271

XOR

  193

XOR

BV06 Toets ontv 
(complete)

 265

XOR

  66

  26

  74

  171  4

  271

  237

  28

  6

XOR

BV16 Toets inhoud 
(complete)

 325

XOR

  311

XOR

BV18 Aanhouden 
(complete)

 8

XOR

  8

XOR

BV19 Jurist inhoud 
(complete)

 6

XOR

  6

XOR

BV24 Afwerk besch 
(complete)

 311

XOR

  311

XOR

ArtificialEndTask 
(complete)

 311

  311

  265

  311

XOR

BV12 Incompleet 
(complete)

 4

XOR

  4

  8

  4   4

  6

Figure 8.41: Bouwvergunning - 1% arc pruning over the mined model in
Figure 8.40.



220 Evaluation

ArtificialStartTask 
(complete)

 298

XOR

XOR

Domain: heus1 
(complete)

 298

XOR and XOR

  298

XOR

BV02 Voorbereiden 
(complete)

 298

XOR and XOR

  298

XOR

BV06 CCT 
(complete)

 258

XOR

  258

XOR and XOR

BV10 Antwoord 
(complete)

 298

XOR

  40

XOR

BV04 Advies Split 
(complete)

 258

XOR

  258

XOR and XOR

BV22 Voorber besch 
(complete)

 298

XOR

  298

  40

XOR

BV06 Brandweer 
(complete)

 258

XOR

  258

XOR

BV08 Advies Join 
(complete)

 258

XOR

  29

XOR

BV06 Milieu 
(complete)

 258

XOR

  160

XOR

BV06 Toets ontv 
(complete)

 250

XOR

  69  26

  98

  134

  258

  203   47

  8

XOR

BV16 Toets inhoud 
(complete)

 298

XOR

  298

XOR

BV24 Afwerk besch 
(complete)

 298

XOR

  298

XOR

ArtificialEndTask 
(complete)

 298

  298

  250

  298

Figure 8.42: Bouwvergunning - 5% arc pruning over the mined model in
Figure 8.40.



8.3 Case Study 221

ArtificialStartTask 
(complete)

 288

XOR

XOR

Domain: heus1 
(complete)

 288

XOR and XOR

  288

XOR

BV02 Voorbereiden 
(complete)

 288

XOR and XOR

  288

XOR

BV06 CCT 
(complete)

 248

XOR

  248

XOR and XOR

BV10 Antwoord 
(complete)

 288

XOR

  40

XOR

BV04 Advies Split 
(complete)

 248

XOR

  248

XOR and XOR

BV22 Voorber besch 
(complete)

 288

XOR

  288

  40

XOR

BV06 Brandweer 
(complete)

 248

XOR

  248

XOR

BV06 Milieu 
(complete)

 248

XOR

  226

XOR

BV06 Toets ontv 
(complete)

 248

XOR

  22

XOR

BV08 Advies Join 
(complete)

 248

XOR

  145

  22

  81

  248

  103  145

XOR

BV16 Toets inhoud 
(complete)

 288

XOR

  288

XOR

BV24 Afwerk besch 
(complete)

 288

XOR

  288

XOR

ArtificialEndTask 
(complete)

 288

  288

  248

  288

Figure 8.43: Bouwvergunning - 10% arc pruning over the mined model in
Figure 8.40.



222 Evaluation

• The most frequent paths reported in Table 8.5 are all possible in the
mined models. For instance, consider the most frequent path for pro-
cess Bezwaar. Note that this path is non-compliant with the original
model (cf. Figure 8.23). However, the mined model (cf. Figure 8.33)
correctly captures the length-two loop situation between the activities
“BZ14 Voorstel” and “BZ16 Wacht Besluit”. Furthermore, the second
most frequent path for Bezwaar is also captured by the mined model.

• The mined model for the process Afschriften (cf. Figure 8.30) better
describes the behavior in the log than the original model (cf. Figure
8.21). The reason is that the mined model does not include the activi-
ties of the original model that were not executed. In other words, the
mined model does not contain the activities “AG05 Wacht betrokken”
and “AG09 Wacht afnemer” that are in the original model. Note that
these activities were never executed during the log replay in Figure 8.21
(i.e., activity usage = 0 and arc usage = 0). Furthermore, the mined
model is a substructure (or sub-net) of the original model. This can
be easily seen by visually comparing the original model in Figure 8.21
with the mined model in Figure 8.30. However, this is also indicated
by the values of the metrics PFcomplete , SP and BP . This is the case
because (i) both the original and mined models are 100% complete
(PFcomplete = 1), (ii) the mined model is precise (BP = 1) and (ii)
all the causality relations that are in the mined model are also in the
original model (SP = 1).

• The mined model for the process Bezwaar (cf. Figure 8.33) can cor-
rectly parse all the cases in the log (cf. Table 8.6), while the original
model (cf. Figure 8.23) correctly parses only 51% of the cases in this
same log. Note that the behavioral precision/recall metrics indicate
that these two models are very similar from a behavioral point of view
(both metrics are approximately 80%). Besides, the structural pre-
cision/recall metrics (cf. Table 8.7) indicate that the mined model
contains many of the causality relations that are in the original model,
but not all (SR = 0.92). As an illustration, notice that the mined
model (cf. Figure 8.33) contains only 2 out of the 7 input connections
of the activity “BZ0 Intrekken” in the original model (cf. Figure 8.23).
Furthermore, the mined model also has many connections that are not
in the original model (SP = 0.73).

• The mined model for BezwaarWOZ can correctly parse 98% of the log
traces (cf. Table 8.6) while the original model correctly parses only 46%
of the traces (cf. Table 8.4). The analysis metrics values in Table 8.7
point out that the mined model has less extra behavior that is not in



8.3 Case Study 223

the original model (BP = 0.85), than the other way around (BR =
0.73). Furthermore, seen from the structural viewpoint, the precision
and recall are similar (SP = 0.80 and SR = 0.81). By looking at the
original and mined models for BezwaarWOZ (cf. the respective fig-
ures 8.25 and 8.36), we noticed that the mined model: (i) does not
contain the low-frequent activities “OZ10 Horen”, “OZ14 Plan. Tax-
eren” and “OZ18 Uitspr. wacht”; and (ii) captures frequently used
connections that are not in the original model. For instance, note the
connections from (i) activity “OZ06 Stop vordering” to “OZ12 Hertax-
eren” and (ii) activity “OZ02 Voorbereiden” to “OZ08 Beoordelen” in
Figure 8.36. These two connections are used respectively 133 and 114
times.

• Bouwvergunning is the only process for which fewer traces in the log
are compliant with the mined model (77%) than with the original one
(80%). The main difference between the structure of Bouwvergun-
ning to the other three processes - Afschriften, Bezwaar and Bezwaar-
WOZ - is the presence of a four-branch parallel construct (cf. orig-
inal model in Figure 8.27) starting at the AND-split activity “BV04
Advies Split” and finishing at the AND-join activity “BV08 Advies
Join”. The experiments in Chapter 4 and the blind experiments in
Section 8.2 already revealed that parallel constructs with more than
two branches are difficult to mine. The result for Bouwvergunning re-
inforces this observation. As the reader notices from the metric values
in Table 8.1, the mined model allows for more extra behavior than the
original model (BP = 0.76 but BR = 0.85), and it has fewer extra con-
nections than the mined model (SP = 0.62 and SR = 0.59). The mined
model for Bouwvergunning is in Figure 8.40. Note that the activity
“BV06 CCT” is in parallel with the activity “BV04 Advies Split”. Al-
though it is true that in some of the 20% non-compliant cases activity
“BV06 CCT” was indeed executed before the activity “BV04 Advies
Split”, this is not the behavior observed in the remaining 80% com-
pliant cases. Therefore, the GA should have captured the execution
of “BV06 CCT” after “BV04 Advies Split”. However, although the
mined model has problems, it is interesting to see that it shows that
the activity “BV04 Advies Split” was more frequently directly followed
by the activity “BV06 Brandweer” than by the other three activities in
this parallel construct. In fact, from the 284 compliant cases in which
the activity “BV04 Advies Split” was executed (cf. activity usage in
Figure 8.26), “BV06 Brandweer” was the next activity to be executed
in 232 (81,6%) of these cases. This indicates that the fitness was in-



224 Evaluation

deed guiding the search towards an individual that exhibits the most
frequent interleaving situations in the log. As final remark, we empha-
size that the remaining net structure of Bouwvergunning was correctly
mined. For instance, have a look at the pruned model in Figure 8.41
where the length-one loops are mined correctly.

The results for the case study show that the GA performs remarkably well
when the nets do not have AND-split/join constructs. When they have AND-
split/join constructs, the GA has a tendency to mine a model that portraits
the most frequent interleaving situations between the tasks in the log.

8.3.3 Reflections

The reported results for the log replay (cf. Subsection 8.3.1) and the process
re-discovery (cf. Subsection 8.3.2) were shown to the people responsible for
these processes in the municipality. Since they work with a workflow system,
we were curious to understand how the deviations have been possible. Recall
that workflow management systems typically prescribe a model and forces
users to execute the processes accordingly. Thus, in principle, all cases should
comply with the deployed models.

After discussing with them, two possible sources of deviations came out:
temporary system misconfiguration and end-user explicit requests to change
the state of a case. Temporary system misconfiguration can be considered
as “bugs” in deployed models. This situation happened for the process
Bouwvergunning. When this process was initially configured, the AND-join
task “BV08 Advies Join” could be executed whenever 3 out of the 4 paral-
lel branches have been executed. The correct configuration should require
all 4 tasks in the branches to execute, before the task “BV08 Advies Join”
could be executed. The system administrator inspected (using the Confor-
mance Checker) the cases that did not comply with the tasks in the parallel
construct and confirmed that these cases were from a date before the “bug
fix” had taken place. The other points of discrepancies in the Bouwvergun-
ning process and in the other processes result from an explicit change of
the state of the case by the system administrator. These changes happened,
for instance, because the users of the system needed to re-edit an already
completed case, or needed to jump to other tasks in the process (and the
deployed model did not allow for this). It was very interesting to see that
the system administrator could recognize some of the deviations captured in
the mined models. For instance, we heard comments like “For the process
Bezwaar, I can still remember when I had to change cases so that the task
“BZ14 Voorstel” could be executed after the task “BZ16 Wacht Besluit””.



8.4 Summary 225

In short, the responsible people in the municipality found that the mined
models were very insightful to give a compact view of how the processes are
actually being executed. Together with the information about the arc usage,
the deviations detected in the mined model indicate if it may be worth to
update the deployed model, or if the deviations were rather infrequent and
should not be incorporated in the deployed model. Additionally, the log
replay allows for the detailed inspection of both discrepant and compliant
behavior. Note that good and bad practices can be detected by replaying the
log. Bad practices should be avoided, good practices should be made common
knowledge in the organization. Either way, both types of information are
important when using process mining techniques to improve deployed models.

8.4 Summary

This chapter described (i) the way models were selected for the experiments,
(ii) how the logs for the experiments with our genetic approach were created,
(iii) the results of the GA for the blind experiments, and (iv) the insights
about the usefulness of process mining techniques in a real-life situation (the
case study).

The logs for the experiments with known models and for the blind ex-
periments were generated via simulation. The logs for the case study were
provided by a Dutch municipality. Two ProMimport converters - namely, CPN
Tools and Eastman - were used to convert the logs to the MXML files format
accepted by ProM.

The results for the blind experiments reinforced that the GA has prob-
lems to mine models with parallel constructs with more than two concurrent
branches. Additionally, the blind experiments highlighted that the unbal-
ance of AND-split/join points hinders even more the correct discovery of
models by the GA. The main reason in both cases is that the GA “gets a
bit lost” while guiding the search towards individuals that show the most
frequent interleaving situations detected in the log. Note that highly concur-
rent systems allow for many interleavings and typically the distribution over
the various possible interleavings is unbalanced. As a result, process mining
becomes more difficult.

The case study confirmed the usefulness of process mining techniques to
perform a delta analysis for deployed models. Even though the Dutch mu-
nicipality uses a workflow management system (and, in principle, deviations
from the prescribed behavior in the models are ruled out), the Conformance
Checker and Genetic Algorithm plug-ins detected that there are differences
between the behavior modelled in the deployed models and the actual ex-



226 Evaluation

ecution of these models. In the Dutch municipality situation, the detected
differences were related to temporary system misconfiguration and manual
interventions of the system administrator to change the state of some cases.
The mined models showed that some of these manual interventions were quite
frequent. This prompted the personnel in the municipality to consider the
update of their deployed models to contemplate these frequent interventions.



Chapter 9

Conclusion

This chapter concludes the thesis. Section 9.1 summarizes the main con-
tributions of the genetic process mining approach described in this thesis.
Section 9.2 discusses the limitations of this approach and possible future
work.

9.1 Contributions

As indicated in Chapter 1, the main aim of this thesis is to develop a control-
flow process mining algorithm that can discover all the common control-flow
structures (i.e. sequences, choices, parallelism, loops and non-free-choices,
invisible tasks and duplicate tasks) while being robust to noisy logs. As a re-
sult, two genetic algorithms (GA and DGA) have been developed. These al-
gorithms have been implemented as plug-ins of the ProM framework. To test
these algorithms, synthetic logs were generated via simulation. To generate
the synthetic logs, a common framework based on existing tools was devel-
oped. Furthermore, because different (mined) models can correctly portrait
the behavior in the log, analysis metrics that go beyond the pure structural
comparison of the mined models with the original models were also defined.
The genetic algorithms and the analysis metrics constitute the main contri-
butions of this thesis. In the following we elaborate on the contributions.

9.1.1 Genetic Algorithms

Two genetic algorithms have been defined: GA and DGA. The GA is a
genetic algorithm that can mine all structural constructs, except for duplicate
tasks. The DGA is an extension of the GA that is able to also discover
duplicate tasks. As the results for the experiments reported in chapters 4, 5



228 Conclusion

and 6 indicate, both algorithms are robust to noise because they benefit the
mining of models that correctly portrait the most frequent behavior in the
log. For both algorithms, three core elements were defined:

• Internal representation: Individuals are represented as causal matrices
(cf. Section 4.1 and 5.1). Causal matrices contain (i) a set of activities,
(ii) a causality relation to set the dependencies between the activi-
ties, (iii) input/output condition functions to model the XOR/AND-
split/join points, and (iv) a labelling function that associates tasks in
the log to activities in the individuals. The main strength of causal
matrices is that they support the modelling of all common control-flow
constructs in process models. Besides, causal matrices can be mapped
to Petri nets and, therefore, the mined models can benefit from the
analysis techniques already provided to Petri nets. Note that the map-
ping heavily uses the so-called silent transitions. This way advanced
constructs such as skipping can be dealt with in a more direct manner.

• Fitness measure: The fitness measure assesses the quality of individu-
als by replaying the log traces into these individuals. The main lesson
learned for this replaying process is that the use of a continuous pars-
ing semantics is better than the use of a blocking parsing semantics
(cf. Subsection 4.2.1). In the blocking parsing semantics, the parsing
process stops as soon as tasks in the log cannot be replayed in the
individual. Alternatively, the continuous parsing semantics proceeds
even when problems occur, but these problems are registered and con-
sidered while calculating the fitness value of a given individual. The
fitness measure guides the search towards individuals that are com-
plete, precise and folded (cf. Section 4.2 and 5.2). An individual is
complete when it can replay all the traces of a log without having any
problems during the parsing. Thus, to make sure that the fitness guides
the search towards individuals that correctly capture the most frequent
behavior in the log, the completeness requirement is based on the pro-
portional amount (with respect to the most frequent behavior in the
log) of tasks that can be correctly replayed by an individual (cf. Def-
inition 21). An individual is precise when it does not allow for much
more behavior than what can be derived from the log. Therefore, the
preciseness requirement is based on the amount of activities that are
simultaneously enabled while replaying the log (cf. Definition 22). The
purpose of this requirement is to punish individuals that tend to be
over-general. An individual is folded when none of its duplicates have
input/output elements in common (cf. Definition 30). The folding
requirement is only based on the structure of an individual. This re-



9.1 Contributions 229

quirement punishes the individuals that have too many duplicates and,
therefore, tend to be over-specific.

• Genetic operators: Crossover and mutation are the two genetic opera-
tors used in the GA and the DGA (cf. Section 4.3 and 5.3). The core
concept of both operators is that the causality relations are the genetic
material to be manipulated. The crossover operator works by exchang-
ing causality relations between the input/output condition functions
of duplicates in two individuals. The mutation operator works by in-
serting, replacing or removing causality relations from input/output
condition functions of an individual’s activities.

The experiments in Chapter 4 showed that the use of heuristics to set the
causality relations while building individuals for the initial population speeds
up the discovering process. Additionally, the results for the case study (cf.
Chapter 8) showed that the genetic approach defined in this thesis is also
applicable to real-life logs.

9.1.2 Analysis Metrics

As explained in Chapter 4 and 5, seven analysis metrics have been developed
to quantify how complete, precise and folded the mined models are. These
metrics are: the partial fitness for the completeness requirement (PFcomplete)
in Definition 21, the behavioral precision (BP) and recall (BR) in Definition 25
and 26, the structural precision (SP) and recall (SR) in Definition 32 and 33,
and the duplicates precision (DP) and recall (DR) in Definition 34 and 35.
From all these metrics, the more elaborate ones are the behavioral precision
and recall. These metrics quantify how much behavior two models have in
common while parsing an event log. We had to develop these analysis metrics
because two individuals could model the same behavior in the log, but have
completely different structures. Furthermore, because it is unrealistic to
assume that event logs are exhaustive (i.e. contain all the possible behavior
that can be generated by original models), metrics that compare state spaces
(e.g. converability graph comparison or branching bisimulation) were not
applicable anymore (cf. Section 4.5.1). Thus, the defined metrics can detect
differences in the individuals, but can also quantify how much behavior they
have in common regardless of the log being exhaustive or not. The concepts
captured by these analysis metrics are applicable to situations in which two
models need to be compared with respect to some exemplary behavior. In
other words, these analysis metrics are also useful beyond the scope of our
genetic process mining approach.



230 Conclusion

9.1.3 ProM Plug-ins

All the algorithms described in this thesis have been implemented as plug-
ins in the ProM framework (cf. Chapter 7). ProM is an open-source tool
that is made available via www.processmining.org. In the context of this
thesis, 17 ProM plug-ins have been developed. From these, we highlight
(i) the Genetic algorithm and Duplicate Tasks GA mining plug-ins that are
the respective implementations of the GA and the DGA algorithms, (ii) the
analysis plug-in “Prune Arcs” that implements the post-pruning mechanism
to “clean” (mined) models (cf. Chapter 6), and (iii) the analysis plug-ins that
implement the seven analysis metrics (cf. Subsection 9.1.2) to quantify how
similar two models are. All the implemented plug-ins are provided together
with the ProM framework.

9.1.4 Common Framework to Build Synthetic Logs

To assess the quality of the mined models, simulation was used to create
synthetic event logs. The idea was to mine these synthetic logs and compare
how close the behavior of the mined models are with respect to the original
models. To generate these logs, we have implemented a library for the CPN
Tools software package. CPN Tools allows for the design and simulation of
Colored Petri nets (CP-nets). The library we have developed supports the
creation of event logs whenever CP-nets are simulated. These event logs can
be converted to the format that the ProM framework accepts (the MXML
format presented in Subsection 7.1.1) by executing a ProMimport plug-in -
also called CPN Tools - that we have developed (cf. Subsection 7.6.1) as
well. Both the ML library and the ProMimport plug-in are made available via
www.processmining.org.

9.2 Limitations and Future Work

Although the GA and the DGA can mine structural constructs that other
techniques cannot and are also robust to noise, they have a drawback that
cannot be neglected: the computational time. The situation is more critical
for the DGA than for the GA because the DGA often uses a bigger search
space. Therefore, it needs more iterations (i.e. generations) to converge to
good solutions (i.e. process models that are complete, precise and folded). In
the following we elaborate more on the limitations of the genetic algorithms
and give suggestions for possible future work.



9.2 Limitations and Future Work 231

9.2.1 Genetic Algorithms

As the results for the experiments and case study in Chapter 4, 5 and 8
suggest, the genetic algorithms have more difficulties to mine models with
constructs that allow for many interleaving situations. This is related to
the fact that the fitness measure of these algorithms is tailored to benefit
the individuals that correctly capture the most frequent behavior in the log.
Therefore, as a side-effect, the models tend to correctly capture only the
most frequent interleavings in the log. Examples of difficult constructs to
mine are: (i) parallel constructs with many (say more than five) branches,
(ii) unbalanced AND-slit/join points, especially when combined with long
parallel branches, and (iii) more than three length-two loops connected to
the same point. Again, the situation is worse for the DGA than for the GA
because the interleavings tend to lead to the inference of more duplicates
per task and, consequently, the DGA requires more iterations to converge to
good solutions than the GA.

Related to duplicate tasks, in Chapter 5 we explained that the DGA
can only capture models in which the duplicates do not share input/output
elements. A possible future work would be to remove this constraint. How-
ever, perhaps this will affect even more the performance of the algorithm
since bigger search spaces will be possible and it will become trickier to de-
tect over-specializations. Another possible future work is to use heuristics
in other steps of the genetic algorithms. In this thesis, heuristics have only
been used to build the individuals in the initial population. These heuris-
tics helped in setting the causality relations for these initial individuals and,
in case of the DGA, in determining the amount of duplicates per task in
the log. However, perhaps it would be worthwhile to use heuristics while
performing the genetic operators as well. For instance, for the crossover op-
erator, heuristics based on the problems encountered during the log replay
(continuous semantics parsing) could be used to select the crossover point.
In the current situation, duplicates are randomly chosen to crossover, regard-
less of how well they could be parsed during the log replay. Another possible
extension for the crossover operator is to lift the crossover point from the
duplicate level to a substructure level. In other words, instead of swapping
the input/output elements of duplicates in two individual, the crossover op-
erator could swap entire subparts of these individuals. This process could
speed up the search process. In a similar way, heuristics could also be used
to “guide” the mutation operator. For instance, in the current situation, one
of the actions performed by the mutation operator is the random inclusion
of causality relations in the input/output condition functions of activities in
individuals. Perhaps heuristics to determine the set of causality relations



232 Conclusion

that seem to be appropriate to be inserted in individuals could be developed.
Note that it does not make sense to insert a causality relation (dependency)
in-between activities whose labels (tasks) never appear in a same trace in
the log. Incorporating these heuristics may result in both better mined mod-
els and shorter computational time per run. Finally, future research could
aim at extending the causal matrix to also support activities with an arbi-
trary OR-split/join semantics. The current representation only works with
AND/XOR-split/join semantics.

9.2.2 Experiments

Although the experiments conducted in the context of this thesis are enough
to give an indication of the quality of the mined models returned by the GA
and DGA, there is space for more experimentation. For instance, for the
noisy logs experiments, we have generated a single noisy log per net. A more
rigorous setting would have used more logs per nets, generated for different
seeds. Thus, we propose to test the genetic algorithm in a wide variety of
experimental settings. First of all, start with smaller population sizes. The
results for the blind-experiments and the case study suggest that smaller
population sizes that run for more iterations give good results. However, the
limits of this were not explored. Furthermore, we have not experimented
with different settings for the κ and γ constants of the fitness measure. In
fact, we have made some small experiments to choose the values we used
during the experiments reported in this thesis. However, more extensive ex-
perimentations with different values would be interesting to give more insight
on the proper calibration of these two parameters.

9.2.3 Process Mining Benchmark

The creation of a common set of event logs to test and compare the different
process mining techniques seems to be vital for progressing process mining
research. The process mining community should aim at a comprehensive set
of benchmark examples. In this thesis, we have generated logs from models
that have been derived from related work (especially from Herbst’s work).
However, a rigorous comparison was not possible because, among others, the
logs used to test our approach are not the same ones used by the other related
approaches. Only some of the original models that were simulated to create
these logs are the same. It would be nice to have a common repository to (i)
store event logs, (ii) describe the main characteristics of the process models
used to create these logs and also provide these models, and (iii) show results
of the process mining algorithms that have already being evaluated for these



9.2 Limitations and Future Work 233

logs. These results could provide information about the quality of the mined
models. For instance, they could report the values for the analysis metrics
used in this thesis, the structural constructs that the mined models contain,
etc.



234 Conclusion



Appendix A

Causal Matrix: Mapping
Back-and-Forth to Petri Nets

In this appendix we relate the causal matrix to Petri nets. We first map Petri
nets (in particular WF-nets) onto the notation used by our genetic algorithm.
Then we consider the mapping of the causal matrix onto Petri nets. First
some preliminaries in Petri Nets.

A.1 Preliminaries

This subsection introduces the basic Petri net terminology and notations,
and also discusses concepts such as WF-nets and soundness.

The classical Petri net is a directed bipartite graph with two node types
called places and transitions. The nodes are connected via directed arcs.

Definition 36 (Petri net). A Petri net is a triple (P, T, F ):

- P is a finite set of places,

- T is a finite set of transitions (P ∩ T = ∅),

- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there exists a directed
arc from p to t. Place p is called an output place of transition t iff there exists a
directed arc from t to p. For any relation/directed graph G ⊆ N×N we define
the preset •n = {(m1,m2) ∈ G | n = m2} and postset n• = {(m1,m2) ∈
G | n = m1} for any node n ∈ N . We use

G

• n or n
G

• to explicitly indicate the
context G if needed. Based on the flow relation F we use this notation as
follows. •t denotes the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g., p• is the set of transitions sharing



236 Causal Matrix: Mapping Back-and-Forth to Petri Nets

p as an input place. Note that we do not consider multiple arcs from one
node to another.

At any time a place contains zero or more tokens, drawn as black dots.
The state, often referred to as marking, is the distribution of tokens over
places, i.e., M ∈ P → IN. To compare states we define a partial ordering.
For any two states M1 and M2, M1 ≤M2 iff for all p ∈ P : M1(p) ≤M2(p).

The number of tokens may change during the execution of the net. Tran-
sitions are the active components in a Petri net: they change the state of the
net according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains
at least one token.

(2) An enabled transition may fire. If transition t fires, then t consumes
one token from each input place p of t and produces one token for each
output place p of t.

Given a Petri net (P, T, F ) and a state M1, we have the standard notations
for a transition t that is enabled in state M1 and firing t in M1 results in

state M2 (notation: M1
t
→M2) and a firing sequence σ = t1t2t3 . . . tn−1 leads

from state M1 to state Mn via a (possibly empty) set of intermediate states
(notation: M1

σ
→ Mn). A state Mn is called reachable from M1 (notation

M1
∗
→ Mn) iff there is a firing sequence σ such that M1

σ
→ Mn. Note that

the empty firing sequence is also allowed, i.e., M1
∗
→M1.

In this appendix, we will focus on a particular type of Petri nets called
WorkFlow nets (WF-nets) [8, 9, 30, 48].

Definition 37 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Work-
flow net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.

(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net represents the life-cycle of a case that has some initial state
represented by a token in the unique input place (i) and a desired final state
represented by a token in the unique output place (o). The third requirement
in Definition 37 has been added to avoid “dangling transitions and/or places”.
In the context of workflow models or business process models, transitions
can be interpreted as activities or tasks and places can be interpreted as
conditions. Although the term “WorkFlow net” suggests that the application
is limited to workflow processes, the model has wide applicability, i.e., any
process where each case has a life-cycle going from some initial state to some
final state fits this basic model.



A.2 Mapping a Petri net onto a Causal Matrix 237

The three requirements stated in Definition 37 can be verified statically,
i.e., they only relate to the structure of the Petri net. To characterize
desirable dynamic properties, the notation of soundness has been defined
[8, 9, 30, 48].

Definition 38 (Sound). A procedure modeled by a WF-net PN = (P, T, F )
is sound if and only if:

(i) For every state M reachable from state i, there exists a firing sequence

leading from state M to state o. Formally: ∀M(i
∗
→M)⇒ (M

∗
→ o).1

(ii) State o is the only state reachable from state i with at least one token

in place o. Formally: ∀M(i
∗
→M ∧ M ≥ o)⇒ (M = o).

(iii) There are no dead transitions in (PN , i). Formally: ∀t∈T ∃M,M ′ i
∗
→

M
t
→M ′.

Note that the soundness property relates to the dynamics of a WF-net.
The first requirement in Definition 38 states that starting from the initial
state (state i), it is always possible to reach the state with one token in place
o (state o). The second requirement states that the moment a token is put
in place o, all the other places should be empty. The last requirement states
that there are no dead transitions (activities) in the initial state i.

A.2 Mapping a Petri net onto a Causal Ma-

trix

In this thesis, we use the concept of a causal matrix to represent an individual.
Table A.1 and A.2 show two alternative visualizations. In this section, we
first formalize the notion of a causal matrix. This formalization will be used
to map a causal matrix onto a Petri net and vice-versa.

Definition 39 (Causal Matrix). Let LS be a set of labels. A Causal Matrix
is a tuple CM = (A,C, I, O,Label), where

- A is a finite set of activities,

- C ⊆ A× A is the causality relation,

- I : A→ P(P(A)) is the input condition function,2

- O : A→ P(P(A)) is the output condition function,

- Label ∈ A→ LS is a labeling function that maps each activity in A to
a label in LS,

1Note that there is an overloading of notation: the symbol i is used to denote both the
place i and the state with only one token in place i.

2P(A) denotes the powerset of some set A.



238 Causal Matrix: Mapping Back-and-Forth to Petri Nets

INPUT
true A A A D D E ∧ F B ∨ C ∨G

→ A B C D E F G H OUTPUT
A 0 1 1 1 0 0 0 0 B ∨ C ∨D
B 0 0 0 0 0 0 0 1 H
C 0 0 0 0 0 0 0 1 H
D 0 0 0 0 1 1 0 0 E ∧ F
E 0 0 0 0 0 0 1 0 G
F 0 0 0 0 0 0 1 0 G
G 0 0 0 0 0 0 0 1 H
H 0 0 0 0 0 0 0 0 true

Table A.1: A causal matrix is used for the internal representation of an
individual.

ACTIVITY INPUT OUTPUT

A {} {{B,C,D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}, {F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{B,C,G}} {}

Table A.2: A more succinct encoding of the individual shown in Table A.1.



A.2 Mapping a Petri net onto a Causal Matrix 239

such that

- C = {(a1, a2) ∈ A× A | a1 ∈
⋃

I(a2)},
3

- C = {(a1, a2) ∈ A× A | a2 ∈
⋃

O(a1)},

- C ∪ {(ao, ai) ∈ A × A | ao
C

•= ∅ ∧ C

• ai = ∅} is a strongly connected
graph.

The mapping of Table A.2 onto CM = (A,C, I, O,Label) is straightfor-
ward (the latter two columns represent I and O). Note that C can be derived
from both I and O. Its main purpose is to ensure consistency between I and
O. For example, if a1 has an output condition mentioning a2, then a2 has
an input condition mentioning a1 (and vice versa). This is enforced by the
first two constraints. The last requirement has been added to avoid that
the causal matrix can be partitioned in two independent parts or that nodes
are not on a path from some source activity ai to a sink activity ao. Fur-
thermore, we have removed the requirement for the labelling function (cf.
Definition 18 in Chapter 4) because the mappings shown in this appendix
work independently of the labelling function be injective or not.

The mapping from an arbitrary Petri net to its corresponding causal
matrix illustrates the expressiveness of the internal format used for genetic
mining. First, we give the definition of the mapping ΠPN→CM .

Definition 40 (ΠPN→CM). Let PN = (P, T, F,LabelPN ) be a Petri net. The
mapping of PN is a tuple ΠPN→CM(PN ) = (A,C, I, O,Label), where

- A = T ,

- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 6= ∅},

- I : T → P(P(T )) such that ∀t∈T I(t) = {•p | p ∈ •t},

- O : T → P(P(T )) such that ∀t∈T O(t) = {p • | p ∈ t•},

- Label = LabelPN .

Let PN be the Petri net shown in Figure A.1. It is easy to check that
ΠPN→CM(PN ) is indeed the causal matrix in Table A.1. However, there
may be Petri nets PN for which ΠPN→CM(PN ) is not a causal matrix. The
following lemma shows that for the class of nets we are interested in, i.e., WF-
nets, the requirement that there may not be two different places two different
places with a same set of input and output transitions (i.e., 6 ∃p1,p2∈P [•p1 =
•p2∧p1• = p2•]) is sufficient to prove that ΠPN→CM(PN ) represents a causal
matrix as defined in Definition 39.

Lemma 1. Let PN = (P, T, F,LabelPN ) be a WF-net with no two places with
the same input and output transitions, i.e., ∀p1,p2∈P [(•p1 = •p2) ∧ (p1• =

3
⋃

I(a2) is the union of the sets in set I(a2).



240 Causal Matrix: Mapping Back-and-Forth to Petri Nets

A

B

C

E

F

GD

Hi p1 p6 o

p2

p3

p4

p5

Figure A.1: Petri net that can be mapped to the causal matrix in Table A.1.

p2•) ⇒ p1 = p2]. ΠPN→CM(PN) represents a causal matrix as defined in
Definition 39.

Proof. Let ΠPN→CM = (A,C, I, O,Label). Clearly, A = T is a finite set, C ⊆
A×A and Label = LabelPN is a function that maps each activity to a label.
I, O : A→ P(P(A)) because ∀p1,p2∈P [(•p1 = •p2) ∧ (p1• = p2•)⇒ p1 = p2].
C = {(a1, a2) ∈ A × A | a1 ∈

⋃

I(a2)} because a1 ∈
⋃

I ′(a2) if and only if
a1 • ∩ • a2 6= ∅. Similarly, C = {(a1, a2) ∈ A×A | a2 ∈

⋃

O(a1)}. Finally, it
is easy to verify that C ∪{(ao, ai) ∈ A×A | ao• = ∅ ∧ •ai = ∅} is a strongly
connected graph.

The requirement ∀p1,p2∈P [(•p1 = •p2) ∧ (p1• = p2•) ⇒ p1 = p2] is a direct
result of the fact that the I and O condition functions map to a powerset of
a powerset of the set of activities in A (i.e., I, O : A → P(P(A))). If this
requirement would not be there, the I/O condition functions would allow
for bags of a powerset of activities in A. However, the added places would
not impact the behavior of the net. Therefore, since the behavior of a mined
model is not affected by this restriction, it has been added to reduce the
search space of the genetic mining algorithm.

A.3 Mapping a Causal Matrix onto a Petri

net

The mapping from a causal matrix onto a Petri net is more involved because
we need to “discover places” and, as we will see, the causal matrix is slightly
more expressive than classical Petri nets.4 Let us first define the mapping.

4Expressiveness should not be interpreted in a formal sense but in the sense of conve-
nience when manipulating process instances, e.g., crossover operations.



A.3 Mapping a Causal Matrix onto a Petri net 241

ACTIVITY INPUT OUTPUT

A {} {{C,D}}
B {} {{D}}
C {{A}} {}
D {{A,B}} {}

A

B

C

D

A

B

C

D

(a) Correct translation.

(b) Incorrect translation.

Figure A.2: A causal matrix (left) and two potential mappings onto Petri
nets (right).

Definition 41 (ΠN
CM→PN). Let CM = (A,C, I, O,Label) be a causal matrix.

The Petri net mapping of CM is a tuple ΠN
CM→PN = (P, T, F,LabelPN ),

where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},

- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},

- F = {(i, t) | t ∈ A ∧ C

• t = ∅}∪{(t, o) | t ∈ A ∧ t
C

•= ∅}∪{(it,s, t) | t ∈
A ∧ s ∈ I(t)}∪{(t, ot,s) | t ∈ A ∧ s ∈ O(t)}∪{(ot1,s,mt1,t2) | (t1, t2) ∈
C ∧ s ∈ O(t1) ∧ t2 ∈ s}∪{(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈
s},

- ∀t∈T , LabelPN (t) =

{

Label(t) if t ∈ A,
∅ otherwise.

The mapping ΠN
CM→PN maps activities onto transitions and adds input places

and output places to these transitions based on functions I and O. These
places are local to one activity. To connect these local places, one transition
mt1,t2 is added for every (t1, t2) ∈ C. Figure A.2 shows a causal matrix and
the mapping ΠN

CM→PN (we have partially omitted place/transition names).
Figure A.2 shows two WF-nets illustrating the need for “silent transi-

tions” of the form mt1,t2 . The dynamics of the WF-net shown in Figure A.2(a)
is consistent with the causal matrix. If we try to remove the silent transitions,
the best candidate seems to be the WF-net shown in Figure A.2(b). Although
this is a sound WF-net capturing the behavior of the WF-net shown in Fig-
ure A.2(a), the mapping is not consistent with the causal matrix. Note that
Figure A.2(b) allows for a firing sequence where B is followed by C. This
does not make sense because C 6∈

⋃

O(B) and B 6∈
⋃

I(C). Therefore, we
use the mapping given in Definition 41 to give Petri-net semantics to causal
matrices.



242 Causal Matrix: Mapping Back-and-Forth to Petri Nets

ACTIVITY INPUT OUTPUT

A {} {{B}, {C,D}}
B {{A}} {{E,F}}
C {{A}} {{E}}
D {{A}} {{F}
E {{B}, {C}} {{G}}
F {{B}, {D}} {{G}}
G {{E}, {F}} {}

A C

D

B E

F

G

A C

D

B E

F

G

(a) Mapping without silent transitions.

(b) Mapping with silent transitions.

Figure A.3: Another causal matrix (left) and two potential mappings onto
Petri nets (right).

It is easy to see that a causal matrix defines a WF-net. However, note
that the WF-net does not need to be sound.

Lemma 2. Let CM = (A,C, I, O,Label) be a causal matrix. ΠN
CM→PN(CM )

is a WF-net.

Proof. It is easy to verify the three properties mentioned in Definition 37.
Note that the “short-circuited” C is strongly connected and that each mt1,t2

transition makes a similar connection in the resulting Petri net.

Figure A.3 shows that despite the fact that ΠN
CM→PN(CM ) is a WF-net, the

introduction of silent transitions may introduce a problem. Figure A.3(b)
shows the WF-net based on Definition 41, i.e., the mapping with silent tran-
sitions. Clearly, Figure A.3(b) is not sound because there are two potential
deadlocks, i.e., one of the input places of E is marked and one of the input
places of F is marked but none of them is enabled. The reason for this is
that the choices introduced by the silent transitions are not “coordinated”
properly. If we simply remove the silent transitions, we obtain the WF-net
shown in Figure A.3(a). This network is consistent with the causal matrix.
This can easily be checked because applying the mapping ΠPN→CM defined
in Definition 40 to this WF-net yields the original causal matrix shown in
Figure A.3.

Figures A.2 and A.3 show a dilemma. Figure A.2 demonstrates that silent
transitions are needed while Figure A.3 proves that silent transitions can be



A.3 Mapping a Causal Matrix onto a Petri net 243

harmful. There are two ways to address this problem taking the mapping of
Definition 41 as a starting point.

First of all, we can use relaxed soundness [30] rather than soundness [8].
This implies that we only consider so-called sound firing sequences and thus
avoid the two potential deadlocks in Figure A.3(b). See [30] for transforming
a relaxed sound WF-net into a sound one.

Second, we can change the firing rule such that silent transitions can only
fire if they actually enable a non-silent transition. The enabling rule for non-
silent transitions is changed as follows: a non-silent transition is enabled if
each of its input places is marked or it is possible to mark all input places
by just firing silent transitions, i.e., silent transitions only fire when it is
possible to enable a non-silent transition. Note that non-silent and silent
transitions alternate and therefore it is easy to implement this semantics in
a straightforward and localized manner.

In this thesis we use the second approach, i.e., a slightly changed enabling/-
firing rule is used to specify the semantics of a causal matrix in terms of a
WF-net. This semantics allows us also to define a notion of fitness required
for the genetic algorithms. Using the Petri-net representation we can play
the “token game” to see how each event trace in the log fits the individual
represented by a causal matrix.



244 Causal Matrix: Mapping Back-and-Forth to Petri Nets



Appendix B

All Models Used During the
Experiments with Known
Models

This appendix has the nets that were used during the experiments with
known models (cf. Section 8.1 and the experiments reported in chapters 4
to 6). For every net, we show the CPN model that was used to generate the
logs, as well as the corresponding causal matrix (or heuristic net in the ProM
terminology) for this net. Additionally, Table B.1 summarizes the constructs
that the each net contains.

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

N
on

-L
o
ca

l
N

F
C

In
v
is

ib
le

T
as

k
s

D
u
p
li
ca

te
s

in
S
eq

u
en

ce

D
u
p
li
ca

te
s

in
P
ar

al
le

l

a10skip B.1 X X X X

a12 B.3 X X X

a5 B.5 X X X X

a6nfc B.7 X X X X

a7 B.9 X X X

a8 B.11 X X X

al1 B.13 X X X X

al2 B.15 X X X X

betaSimplified B.17 X X X X X

bn1 B.19 X X

Continued on next page



246 All Models for Experiments with Known Models

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

N
on

-L
o
ca

l
N

F
C

In
v
is

ib
le

T
as

k
s

D
u
p
li
ca

te
s

in
S
eq

u
en

ce

D
u
p
li
ca

te
s

in
P
ar

al
le

l

bn2 B.21 X X X X

bn3 B.23 X X X X

choice B.25 X X

driversLicense B.27 X X X

flightCar B.29 X X X X

herbstFig3p4 B.31 X X X X

herbstFig5p1AND B.33 X X X

herbstFig5p1OR B.35 X X X

herbstFig5p19 B.37 X X X X X

herbstFig6p10 B.39 X X X X X X

herbstFig6p18 B.41 X X X X X X

herbstFig6p25 B.43 X X X X X X

herbstFig6p31 B.45 X X X

herbstFig6p33 B.47 X X X

herbstFig6p34 B.49 X X X X X X

herbstFig6p36 B.51 X X X

herbstFig6p37 B.53 X X

herbstFig6p38 B.55 X X X

herbstFig6p39 nc B.57 X X X X

herbstFig6p41 B.59 X X X

herbstFig6p42 nc B.61 X X X X X

herbstFig6p45 B.63 X X

herbstFig6p9 B.65 X X X X

l1l B.67 X X X

l1lSkip B.69 X X X X X

l2l B.71 X X X

l2lOptional B.73 X X X

l2lSkip B.75 X X X X

parallel5 B.77 X X

Table B.1: Nets for the experiments with known models.



247

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

G

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

Finput (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

H
input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

I
input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

J
input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT INT

Figure B.1: CPN model for net a10Skip.



248 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 300

XOR and XOR

  300

XOR

D 
(complete)

 190

XOR

  190

XOR

F 
(complete)

 190

XOR

  190

XOR

C 
(complete)

 110

XOR

  110   110

XOR and XOR

H 
(complete)

 300

XOR

  190

  190

XOR

J 
(complete)

 300

XOR

  145

XOR

I 
(complete)

 155

XOR

  155

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

E 
(complete)

 110

XOR

  110

XOR

G 
(complete)

 110

XOR

  110

  110   110

  155

Figure B.2: Heuristic net for a10Skip.



249

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

C
input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

Finput (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

D input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

J
input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

G

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

H
input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

I
input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

Kinput (id);
output ();
action
(addATE(id,"K",["complete"],"","",[]));

L
input (id);
output ();
action
(addATE(id,"L",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.3: CPN model for net a12.



250 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 141

XOR

  141

XOR

B 
(complete)

 159

XOR and XOR

  159

XOR

G 
(complete)

 67

XOR

  67

XOR

H 
(complete)

 74

XOR

  74

XOR

K 
(complete)

 141

XOR

  67

XOR

L 
(complete)

 300

XOR

  141

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

D 
(complete)

 159

XOR

  159

XOR

F 
(complete)

 159

XOR

  159

XOR

E 
(complete)

 159

XOR

  159

XOR and XOR

J 
(complete)

 159

XOR

  159

  159

  159

XOR

I 
(complete)

 74

XOR

  74

  74

Figure B.4: Heuristic net for a12.



251

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

B input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

Cinput (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INTINT

INT

INT

INT

Figure B.5: CPN model for net a5.



252 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

E 
(complete)

 234

XOR and XOR

  128   128

XOR

C 
(complete)

 300

XOR

  172

XOR

B 
(complete)

 300

XOR

  172  106   106

  128   128

XOR and XOR

D 
(complete)

 300

XOR

  300   300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.6: Heuristic net for a5.



253

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B
input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

D
input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

Cinput (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

F
input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

INT

1`1

INT

INTINT

INT

INT

INT

INT

Figure B.7: CPN model for net a6nfc.



254 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

D 
(complete)

 300

XOR

  300

XOR and XOR

E 
(complete)

 60

XOR

  60

XOR

B 
(complete)

 240

XOR

  240

  60

XOR and XOR

C 
(complete)

 240

XOR

  240

XOR

F 
(complete)

 300

XOR

  60

XOR

EEENNNDDD 
(complete)

 300

  300

  240

  240

Figure B.8: Heuristic net for a6nfc.



255

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

Ginput (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

F

input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

D input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INTINT

INTINTINT

Figure B.9: CPN model for net a7.



256 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR and XOR

  300

XOR

G 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 223

XOR

  223

XOR

F 
(complete)

 124

XOR

  124

XOR

E 
(complete)

 77

XOR

  77   77

XOR

B 
(complete)

 99

XOR

  99

XOR and XOR and XOR

D 
(complete)

 300

XOR

  300   223   124

XOR

EEENNNDDD 
(complete)

 300

  300

  77   77   99

Figure B.10: Heuristic net for a7.



257

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

Cinput (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

Einput (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

F input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

G

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

H
input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.11: CPN model for net a8.



258 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 92

XOR

  92

XOR

D 
(complete)

 101

XOR and XOR

  101

XOR

B 
(complete)

 107

XOR

  107

XOR

H 
(complete)

 300

XOR

  92

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

E 
(complete)

 101

XOR

  101

XOR

F 
(complete)

 101

XOR

  101

XOR and XOR

G 
(complete)

 101

XOR

  101   101

  101

  107

Figure B.12: Heuristic net for a8.



2
5
9

1`id
if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id 1`id

1`id

1`id 1`id

1`id 1`id

1`id

1`id
1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

F

input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

G

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

I

input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

INT

1`1

INT

INT INT

INT

INT INT

INT

Figure B.13: CPN model for net al1.



260 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

B 
(complete)

 650

XOR

  300

XOR

C 
(complete)

 650

XOR

  300

XOR and XOR

D 
(complete)

 323

XOR

  323

XOR and XOR

I 
(complete)

 327

XOR

  327   323

  327

XOR

F 
(complete)

 350

XOR and XOR

  179

XOR

G 
(complete)

 300

XOR

  144

  350

  350

  171

  156

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.14: Heuristic net for al1.



2
6
1

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

M

input (id);
output ();
action
(addATE(id,"M",["complete"],"","",[]));

F

input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

I

input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

J

input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

G

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

H

input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

INT

1`1

INT

INT INT INT

INT INT

INT

INT

INT

INT

INT

Figure B.15: CPN model for net al2.



262 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

B 
(complete)

 603

XOR

  300

XOR

C 
(complete)

 603

XOR

  300

XOR

D 
(complete)

 422

XOR

  422

XOR and XOR

G 
(complete)

 181

XOR

  181

XOR and XOR

F 
(complete)

 422

XOR

  422

XOR

E 
(complete)

 603

XOR

  603

  422

  181

XOR

I 
(complete)

 603

XOR

  422

XOR

M 
(complete)

 303

XOR and XOR

  303

XOR

J 
(complete)

 300

XOR

  300

  303

  303

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

H 
(complete)

 181

XOR

  181

  181

Figure B.16: Heuristic net for al2.



2
6
3

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id1`id1`id1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id 1`id

1`id
1`id

1`id

Generator input (id);
output ();
action
(createCaseFile(id));

Startinput (id);
output ();
action
(addATE(id,"start",["complete"],"","",[]));

Get 
Ready

input (id);
output ();
action
(addATE(id,"GetReady",["complete"],"","",[]));

Travel by
Car

input (id);
output ();
action
(addATE(id,"TravelCar",["complete"],"","",[]));

Travel by
Train

input (id);
output ();
action
(addATE(id,"TravelTrain",["complete"],"","",[]));

Beta PhD
Day Starts

input (id);
output ();
action
(addATE(id,"BetaPhdDay",["complete"],"","",[]));

Visit
Brewery

input (id);
output ();
action
(addATE(id,"VisitBrewery",["complete"],"","",[]));

Have 
Dinner

input (id);
output ();
action
(addATE(id,"HaveDinner",["complete"],"","",[]));

Go 
Home

input (id);
output ();
action
(addATE(id,"GoHome",["complete"],"","",[]));

Travel by
Train1

input (id);
output ();
action
(addATE(id,"TravelTrain",["complete"],"","",[]));

Pay for
Parking

input (id);
output ();
action
(addATE(id,"PayParking",["complete"],"","",[]));

Travel by
Car1

input (id);
output ();
action
(addATE(id,"TravelCar",["complete"],"","",[]));

End

input (id);
output ();
action
(addATE(id,"end",["complete"],"","",[]));

Give a 
Talk

input (id);
output ();
action
(addATE(id,"GiveTalk",["complete"],"","",[]));

i1

INT

1`1

INT

INT INT INT INT

INTINTINT

INT

INT

INT

INT

INT

INT

Figure B.17: CPN model for net betaSimplified.



264 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

start 
(complete)

 300

XOR

  300

XOR

GetReady 
(complete)

 300

XOR

  300

XOR

TravelCar 
(complete)

 161

XOR and XOR

  161

XOR

TravelTrain 
(complete)

 139

XOR and XOR

  139

XOR

BetaPhdDay 
(complete)

 300

XOR

  161

XOR and XOR

PayParking 
(complete)

 161

XOR

  161

XOR

TravelCar 
(complete)

 161

XOR

XOR

end 
(complete)

 300

XOR

  161

XOR

VisitBrewery 
(complete)

 300

XOR

  152

XOR

GiveTalk 
(complete)

 148

XOR

  148

XOR

HaveDinner 
(complete)

 300

XOR

  300

XOR

GoHome 
(complete)

 300

XOR

  300

  161

XOR and XOR

TravelTrain 
(complete)

 139

XOR

  139

  161

XOR

EEENNNDDD 
(complete)

 300

  300

  139

  139

  139

  148

Figure B.18: Heuristic net for betaSimplified.



265

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

1

input (id);
output ();
action
(addATE(id,"1",["complete"],"","",[]));

2

input (id);
output ();
action
(addATE(id,"2",["complete"],"","",[]));

3

input (id);
output ();
action
(addATE(id,"3",["complete"],"","",[]));

5

input (id);
output ();
action
(addATE(id,"5",["complete"],"","",[]));

6

input (id);
output ();
action
(addATE(id,"6",["complete"],"","",[]));

4

input (id);
output ();
action
(addATE(id,"4",["complete"],"","",[]));

7

input (id);
output ();
action
(addATE(id,"7",["complete"],"","",[]));

8

input (id);
output ();
action
(addATE(id,"8",["complete"],"","",[]));

9

input (id);
output ();
action
(addATE(id,"9",["complete"],"","",[]));

10

input (id);
output ();
action
(addATE(id,"10",["complete"],"","",[]));

11

input (id);
output ();
action
(addATE(id,"11",["complete"],"","",[]));

12

input (id);
output ();
action
(addATE(id,"12",["complete"],"","",[]));

13

input (id);
output ();
action
(addATE(id,"13",["complete"],"","",[]));

14

input (id);
output ();
action
(addATE(id,"14",["complete"],"","",[]));

15

input (id);
output ();
action
(addATE(id,"15",["complete"],"","",[]));

16

input (id);
output ();
action
(addATE(id,"16",["complete"],"","",[]));

17

input (id);
output ();
action
(addATE(id,"17",["complete"],"","",[]));

18

input (id);
output ();
action
(addATE(id,"18",["complete"],"","",[]));

19

input (id);
output ();
action
(addATE(id,"19",["complete"],"","",[]));

20

input (id);
output ();
action
(addATE(id,"20",["complete"],"","",[]));

21

input (id);
output ();
action
(addATE(id,"21",["complete"],"","",[]));

22

input (id);
output ();
action
(addATE(id,"22",["complete"],"","",[]));

23

input (id);
output ();
action
(addATE(id,"23",["complete"],"","",[]));

24

input (id);
output ();
action
(addATE(id,"24",["complete"],"","",[]));

25

input (id);
output ();
action
(addATE(id,"25",["complete"],"","",[]));

26

input (id);
output ();
action
(addATE(id,"26",["complete"],"","",[]));

27

input (id);
output ();
action
(addATE(id,"27",["complete"],"","",[]));

29

input (id);
output ();
action
(addATE(id,"29",["complete"],"","",[]));

31

input (id);
output ();
action
(addATE(id,"31",["complete"],"","",[]));

28

input (id);
output ();
action
(addATE(id,"28",["complete"],"","",[]));

30

input (id);
output ();
action
(addATE(id,"30",["complete"],"","",[]));

32

input (id);
output ();
action
(addATE(id,"32",["complete"],"","",[]));

33

input (id);
output ();
action
(addATE(id,"33",["complete"],"","",[]));

34

input (id);
output ();
action
(addATE(id,"34",["complete"],"","",[]));

36

input (id);
output ();
action
(addATE(id,"36",["complete"],"","",[]));

35

input (id);
output ();
action
(addATE(id,"35",["complete"],"","",[]));

37

input (id);
output ();
action
(addATE(id,"37",["complete"],"","",[]));

38

input (id);
output ();
action
(addATE(id,"38",["complete"],"","",[]));

39

input (id);
output ();
action
(addATE(id,"39",["complete"],"","",[]));

40

input (id);
output ();
action
(addATE(id,"40",["complete"],"","",[]));

INT

1`1

INT

INT

INTINT

INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT

INT INT

INTINT INT

INTINTINT

INT INT INT INT

INT

Figure B.19: CPN model for net bn1.



266 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

1 
(complete)

 300

XOR

  300

XOR

2 
(complete)

 140

XOR

  140

XOR

3 
(complete)

 160

XOR

  160

XOR

4 
(complete)

 140

XOR

  140

XOR

6 
(complete)

 300

XOR

  140

XOR

7 
(complete)

 300

XOR

  300

XOR

8 
(complete)

 300

XOR

  300

XOR

9 
(complete)

 300

XOR

  300

XOR

10 
(complete)

 300

XOR

  300

XOR

11 
(complete)

 300

XOR

  300

XOR

12 
(complete)

 300

XOR

  300

XOR

13 
(complete)

 300

XOR

  300

XOR

14 
(complete)

 300

XOR

  300

XOR

15 
(complete)

 300

XOR

  300

XOR

16 
(complete)

 300

XOR

  300

XOR

17 
(complete)

 300

XOR

  300

XOR

18 
(complete)

 300

XOR

  300

XOR

19 
(complete)

 300

XOR

  300

XOR

20 
(complete)

 300

XOR

  300

XOR

21 
(complete)

 300

XOR

  300

XOR

22 
(complete)

 300

XOR

  300

XOR

23 
(complete)

 300

XOR

  300

XOR

24 
(complete)

 300

XOR

  300

XOR

25 
(complete)

 300

XOR

  300

XOR

26 
(complete)

 300

XOR

  300

XOR

27 
(complete)

 155

XOR

  155

XOR

28 
(complete)

 145

XOR

  145

XOR

29 
(complete)

 155

XOR

  155

XOR

31 
(complete)

 155

XOR

  155

XOR

33 
(complete)

 300

XOR

  155

XOR

34 
(complete)

 300

XOR

  300

XOR

35 
(complete)

 300

XOR

  300

XOR

36 
(complete)

 300

XOR

  300

XOR

37 
(complete)

 300

XOR

  300

XOR

38 
(complete)

 300

XOR

  300

XOR

39 
(complete)

 300

XOR

  300

XOR

40 
(complete)

 300

XOR

  300

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

5 
(complete)

 160

XOR

  160

  160

XOR

30 
(complete)

 145

XOR

  145

XOR

32 
(complete)

 145

XOR

  145

  145

Figure B.20: Heuristic net for bn1.



267

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id
1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

1

input (id);
output ();
action
(addATE(id,"1",["complete"],"","",[]));

2

input (id);
output ();
action
(addATE(id,"2",["complete"],"","",[]));

3

input (id);
output ();
action
(addATE(id,"3",["complete"],"","",[]));

5
input (id);
output ();
action
(addATE(id,"5",["complete"],"","",[]));

6

input (id);
output ();
action
(addATE(id,"6",["complete"],"","",[]));

4

input (id);
output ();
action
(addATE(id,"4",["complete"],"","",[]));

7

input (id);
output ();
action
(addATE(id,"7",["complete"],"","",[]));

8

input (id);
output ();
action
(addATE(id,"8",["complete"],"","",[]));

9

input (id);
output ();
action
(addATE(id,"9",["complete"],"","",[]));

10

input (id);
output ();
action
(addATE(id,"10",["complete"],"","",[]));

11

input (id);
output ();
action
(addATE(id,"11",["complete"],"","",[]));

12

input (id);
output ();
action
(addATE(id,"12",["complete"],"","",[]));

13

input (id);
output ();
action
(addATE(id,"13",["complete"],"","",[]));

14

input (id);
output ();
action
(addATE(id,"14",["complete"],"","",[]));

15

input (id);
output ();
action
(addATE(id,"15",["complete"],"","",[]));

16

input (id);
output ();
action
(addATE(id,"16",["complete"],"","",[]));

17

input (id);
output ();
action
(addATE(id,"17",["complete"],"","",[]));

18

input (id);
output ();
action
(addATE(id,"18",["complete"],"","",[]));

19

input (id);
output ();
action
(addATE(id,"19",["complete"],"","",[]));

20

input (id);
output ();
action
(addATE(id,"20",["complete"],"","",[]));

21

input (id);
output ();
action
(addATE(id,"21",["complete"],"","",[]));

22

input (id);
output ();
action
(addATE(id,"22",["complete"],"","",[]));

23

input (id);
output ();
action
(addATE(id,"23",["complete"],"","",[]));

24

input (id);
output ();
action
(addATE(id,"24",["complete"],"","",[]));

25

input (id);
output ();
action
(addATE(id,"25",["complete"],"","",[]));

26

input (id);
output ();
action
(addATE(id,"26",["complete"],"","",[]));

27

input (id);
output ();
action
(addATE(id,"27",["complete"],"","",[]));

29

input (id);
output ();
action
(addATE(id,"29",["complete"],"","",[]));

31

input (id);
output ();
action
(addATE(id,"31",["complete"],"","",[]));

28

input (id);
output ();
action
(addATE(id,"28",["complete"],"","",[]));

30

input (id);
output ();
action
(addATE(id,"30",["complete"],"","",[]));

32

input (id);
output ();
action
(addATE(id,"32",["complete"],"","",[]));

33

input (id);
output ();
action
(addATE(id,"33",["complete"],"","",[]));

34

input (id);
output ();
action
(addATE(id,"34",["complete"],"","",[]));

36

input (id);
output ();
action
(addATE(id,"36",["complete"],"","",[]));

35

input (id);
output ();
action
(addATE(id,"35",["complete"],"","",[]));

37

input (id);
output ();
action
(addATE(id,"37",["complete"],"","",[]));

38

input (id);
output ();
action
(addATE(id,"38",["complete"],"","",[]));

39

input (id);
output ();
action
(addATE(id,"39",["complete"],"","",[]));

40

input (id);
output ();
action
(addATE(id,"40",["complete"],"","",[]));

INT

1`1

INT

INT

INTINT

INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT

INT INT

INTINT INT

INTINTINT

INT INT INT INT

INT

Figure B.21: CPN model for net bn2.



268 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

1 
(complete)

 300

XOR

  300

XOR

2 
(complete)

 166

XOR

  166

XOR

3 
(complete)

 134

XOR

  134

XOR

4 
(complete)

 166

XOR

  166

XOR

6 
(complete)

 300

XOR

  166

XOR

7 
(complete)

 300

XOR

  300

XOR

8 
(complete)

 300

XOR

  300

XOR

9 
(complete)

 300

XOR

  300

XOR

10 
(complete)

 300

XOR

  300

XOR

11 
(complete)

 591

XOR

  300

XOR

12 
(complete)

 591

XOR

  591

XOR

13 
(complete)

 591

XOR

  591

XOR

14 
(complete)

 591

XOR

  591

XOR

15 
(complete)

 591

XOR

  591

XOR

16 
(complete)

 591

XOR

  591

XOR

17 
(complete)

 591

XOR

  591

XOR

18 
(complete)

 591

XOR

  591

XOR

19 
(complete)

 591

XOR

  591

XOR

20 
(complete)

 591

XOR

  591

XOR

21 
(complete)

 591

XOR

  591

XOR

22 
(complete)

 591

XOR

  591

XOR

23 
(complete)

 591

XOR

  591

XOR

24 
(complete)

 591

XOR

  591

XOR

25 
(complete)

 591

XOR

  591

  291

XOR

26 
(complete)

 300

XOR

  300

XOR

27 
(complete)

 160

XOR

  160

XOR

28 
(complete)

 140

XOR

  140

XOR

29 
(complete)

 160

XOR

  160

XOR

31 
(complete)

 160

XOR

  160

XOR

33 
(complete)

 300

XOR

  160

XOR

34 
(complete)

 300

XOR

  300

XOR

35 
(complete)

 300

XOR

  300

XOR

36 
(complete)

 300

XOR

  300

XOR

37 
(complete)

 300

XOR

  300

XOR

38 
(complete)

 300

XOR

  300

XOR

39 
(complete)

 300

XOR

  300

XOR

40 
(complete)

 300

XOR

  300

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

5 
(complete)

 134

XOR

  134

  134

XOR

30 
(complete)

 140

XOR

  140

XOR

32 
(complete)

 140

XOR

  140

  140

Figure B.22: Heuristic net for bn2.



269

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

1

input (id);
output ();
action
(addATE(id,"1",["complete"],"","",[]));

2

input (id);
output ();
action
(addATE(id,"2",["complete"],"","",[]));

3

input (id);
output ();
action
(addATE(id,"3",["complete"],"","",[]));

5

input (id);
output ();
action
(addATE(id,"5",["complete"],"","",[]));

6

input (id);
output ();
action
(addATE(id,"6",["complete"],"","",[]));

4

input (id);
output ();
action
(addATE(id,"4",["complete"],"","",[]));

7

input (id);
output ();
action
(addATE(id,"7",["complete"],"","",[]));

8

input (id);
output ();
action
(addATE(id,"8",["complete"],"","",[]));

9

input (id);
output ();
action
(addATE(id,"9",["complete"],"","",[]));

10

input (id);
output ();
action
(addATE(id,"10",["complete"],"","",[]));

11

input (id);
output ();
action
(addATE(id,"11",["complete"],"","",[]));

12

input (id);
output ();
action
(addATE(id,"12",["complete"],"","",[]));

13

input (id);
output ();
action
(addATE(id,"13",["complete"],"","",[]));

14

input (id);
output ();
action
(addATE(id,"14",["complete"],"","",[]));

15

input (id);
output ();
action
(addATE(id,"15",["complete"],"","",[]));

16

input (id);
output ();
action
(addATE(id,"16",["complete"],"","",[]));

17

input (id);
output ();
action
(addATE(id,"17",["complete"],"","",[]));

18

input (id);
output ();
action
(addATE(id,"18",["complete"],"","",[]));

19

input (id);
output ();
action
(addATE(id,"19",["complete"],"","",[]));

20

input (id);
output ();
action
(addATE(id,"20",["complete"],"","",[]));

21

input (id);
output ();
action
(addATE(id,"21",["complete"],"","",[]));

22

input (id);
output ();
action
(addATE(id,"22",["complete"],"","",[]));

23

input (id);
output ();
action
(addATE(id,"23",["complete"],"","",[]));

24

input (id);
output ();
action
(addATE(id,"24",["complete"],"","",[]));

25

input (id);
output ();
action
(addATE(id,"25",["complete"],"","",[]));

26

input (id);
output ();
action
(addATE(id,"26",["complete"],"","",[]));

27

input (id);
output ();
action
(addATE(id,"27",["complete"],"","",[]));

29

input (id);
output ();
action
(addATE(id,"29",["complete"],"","",[]));

31

input (id);
output ();
action
(addATE(id,"31",["complete"],"","",[]));

28

input (id);
output ();
action
(addATE(id,"28",["complete"],"","",[]));

30

input (id);
output ();
action
(addATE(id,"30",["complete"],"","",[]));

32

input (id);
output ();
action
(addATE(id,"32",["complete"],"","",[]));

33

input (id);
output ();
action
(addATE(id,"33",["complete"],"","",[]));

34

input (id);
output ();
action
(addATE(id,"34",["complete"],"","",[]));

36

input (id);
output ();
action
(addATE(id,"36",["complete"],"","",[]));

35

input (id);
output ();
action
(addATE(id,"35",["complete"],"","",[]));

37

input (id);
output ();
action
(addATE(id,"37",["complete"],"","",[]));

38

input (id);
output ();
action
(addATE(id,"38",["complete"],"","",[]));

39

input (id);
output ();
action
(addATE(id,"39",["complete"],"","",[]));

40

input (id);
output ();
action
(addATE(id,"40",["complete"],"","",[]));

i1

i2

INT

1`1

INT

INT

INTINT

INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT INT INT INT

INTINTINTINT

INT

INT INT

INTINT INT

INTINTINT

INT INT INT INT

INT

Figure B.23: CPN model for net bn3.



270 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

1 
(complete)

 300

XOR

  300

XOR

3 
(complete)

 136

XOR

  136

XOR

2 
(complete)

 164

XOR

  164

XOR

5 
(complete)

 136

XOR

  136

XOR

6 
(complete)

 300

XOR

  136

XOR

7 
(complete)

 300

XOR

  300

XOR

8 
(complete)

 300

XOR

  300

XOR

9 
(complete)

 300

XOR

  300

XOR

10 
(complete)

 300

XOR

  300

XOR

11 
(complete)

 605

XOR

  300

XOR

12 
(complete)

 605

XOR

  605

XOR

13 
(complete)

 605

XOR

  605

XOR

14 
(complete)

 605

XOR

  605

XOR

15 
(complete)

 605

XOR

  605

XOR

16 
(complete)

 605

XOR

  605

XOR

17 
(complete)

 605

XOR

  605

XOR

18 
(complete)

 605

XOR

  605

XOR

19 
(complete)

 605

XOR

  605

XOR

20 
(complete)

 1242

XOR

  605

XOR

21 
(complete)

 1242

XOR

  1242

XOR

22 
(complete)

 1242

XOR

  1242

XOR

23 
(complete)

 1242

XOR

  1242

XOR

24 
(complete)

 1242

XOR

  1242

  637

XOR

25 
(complete)

 605

XOR

  605

XOR

26 
(complete)

 605

XOR

  605

XOR

27 
(complete)

 294

XOR

  294

XOR

28 
(complete)

 311

XOR

  311

XOR

29 
(complete)

 294

XOR

  294

XOR

31 
(complete)

 294

XOR

  294

XOR

33 
(complete)

 605

XOR

  294

XOR

34 
(complete)

 605

XOR

  605

XOR

35 
(complete)

 605

XOR

  605

XOR

36 
(complete)

 605

XOR

  605

  305

XOR

37 
(complete)

 300

XOR

  300

XOR

38 
(complete)

 300

XOR

  300

XOR

39 
(complete)

 300

XOR

  300

XOR

40 
(complete)

 300

XOR

  300

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

4 
(complete)

 164

XOR

  164

  164

XOR

30 
(complete)

 311

XOR

  311

XOR

32 
(complete)

 311

XOR

  311

  311

Figure B.24: Heuristic net for bn3.



271

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B
input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C
input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E
input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

G input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

Finput (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

Dinput (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

Hinput (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

I
input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

J
input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

Figure B.25: CPN model for net choice.



272 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 160

XOR

  160

XOR

C 
(complete)

 140

XOR

  140

XOR

D 
(complete)

 162

XOR

  84

XOR

E 
(complete)

 138

XOR

  76

XOR

F 
(complete)

 162

XOR

  85

XOR

G 
(complete)

 138

XOR

  77

XOR

H 
(complete)

 159

XOR

  81

XOR

I 
(complete)

 141

XOR

  81

XOR

J 
(complete)

 300

XOR

  159

XOR

EEENNNDDD 
(complete)

 300

  300

  78   62

  78   60

  77   61

  141

Figure B.26: Heuristic net for choice.



273

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id
1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

Apply for 
License

input (id);
output ();
action
(addATE(id,"Apply for License",["complete"],"","",[]));

Attend Classes
Ride Motorbikes

input (id);
output ();
action
(addATE(id,"Attend Classes Ride Motorbikes",["complete"],"","",[]));

Attend Classes
Drive Carsinput (id);

output ();
action
(addATE(id,"Attend Classes Drive Cars",["complete"],"","",[]));

Do Theoretical
Exam input (id);

output ();
action
(addATE(id,"Do Theoretical Exam",["complete"],"","",[]));

Do Practical
Exam Drive

Carsinput (id);
output ();
action
(addATE(id,"Do Practical Exam Drive Cars",["complete"],"","",[]));

Do Practical
Exam Ride
Motorbikes

input (id);
output ();
action
(addATE(id,"Do Practical Exam Ride Motorbikes",["complete"],"","",[]));

Get Result
input (id);
output ();
action
(addATE(id,"Get Result",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.27: CPN model for net driversLicense.



274 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

Apply for License 
(complete)

 300

XOR

  300

XOR

Attend Classes Drive Cars 
(complete)

 141

XOR and XOR

  141

XOR

Attend Classes Ride Motorbikes 
(complete)

 159

XOR and XOR

  159

XOR

Do Theoretical Exam 
(complete)

 300

XOR

  141

XOR and XOR

Do Practical Exam Drive Cars 
(complete)

 141

XOR

  141

  141

XOR and XOR

Do Practical Exam Ride Motorbikes 
(complete)

 159

XOR

  159

XOR

Get Result 
(complete)

 300

XOR

  141

XOR

EEENNNDDD 
(complete)

 300

  300

  159

  159

  159

Figure B.28: Heuristic net for driversLicense.



275

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

Book Trip

input (id);
output ();
action
(addATE(id,"Book Trip",["complete"],"","",[]));

Book Car

input (id);
output ();
action
(addATE(id,"Book Car",["complete"],"","",[]));

Book Flight

input (id);
output ();
action
(addATE(id,"Book Flight",["complete"],"","",[]));

Send Vouchers
input (id);
output ();
action
(addATE(id,"Send Vouchers",["complete"],"","",[]));

Split input (id);
output ();
action
(addATE(id,"Split",["complete"],"","",[]));

Book Flight1

input (id);
output ();
action
(addATE(id,"Book Flight",["complete"],"","",[]));

Book Car1
input (id);
output ();
action
(addATE(id,"Book Car",["complete"],"","",[]));

Join input (id);
output ();
action
(addATE(id,"Join",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT INT

INT INT

Figure B.29: CPN model for net flightCar.



276 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

Book Trip 
(complete)

 300

XOR

  300

XOR

Split 
(complete)

 95

XOR and XOR

  95

XOR

Book Flight 
(complete)

 104

XOR

  104

XOR

Book Car 
(complete)

 101

XOR

  101

XOR

Book Flight 
(complete)

 95

XOR

  95

XOR

Book Car 
(complete)

 95

XOR

  95

XOR

Send Vouchers 
(complete)

 300

XOR

  104

XOR and XOR

Join 
(complete)

 95

XOR

  95   95

  101

  95

XOR

ArtificialEndTask 
(complete)

 300

  300

Figure B.30: Heuristic net for flightCar.



277

1`id

1`id

if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

Receive Order
input (id);
output ();
action
(addATE(id, "Receive Order", ["complete"], "", "", []));

Check Availabilityinput (id);
output ();
action
(addATE(id, "Check Availability", ["complete"], "", "", []));

v5

input (id);
output ();
action
(addATE(id, "v5", ["complete"], "", "", []));

Order from Supplier

input (id);
output ();
action
(addATE(id, "Order from Supplier", ["complete"], "", "", []));

Notify Customer

input (id);
output ();
action
(addATE(id, "Notify Customer", ["complete"], "", "", []));

Billing
input (id);
output ();
action
(addATE(id, "Billing", ["complete"], "", "", []));

Prepare Shippinginput (id);
output ();
action
(addATE(id, "Prepare Shipping", ["complete"], "", "", []));

v12
input (id);
output ();
action
(addATE(id, "v12", ["complete"], "", "", []));

Send by Truckinput (id);
output ();
action
(addATE(id, "Send by Truck", ["complete"], "", "", []));

Send by Traininput (id);
output ();
action
(addATE(id, "Send by Train", ["complete"], "", "", []));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.31: CPN model for net herbstFig3p4.



278 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

Receive Order 
(complete)

 300

XOR

  300

XOR

Check Availability 
(complete)

 555

XOR

  300

XOR

v5 
(complete)

 300

XOR and XOR

  300

XOR

Order from Supplier 
(complete)

 255

XOR

  255

XOR

Prepare Shipping 
(complete)

 300

XOR

  300

XOR

Billing 
(complete)

 300

XOR

  300

XOR

Send by Train 
(complete)

 147

XOR

  147

XOR

Send by Truck 
(complete)

 153

XOR

  153

XOR and XOR

v12 
(complete)

 300

XOR

  147

  300

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

Notify Customer 
(complete)

 255

XOR

  255

  255

  153

Figure B.32: Heuristic net for herbstFig3p4.



279

1`id

1`id

if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id 1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

Binput (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

Cinput (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

INT

1`1

INT

INT INT

INTINT

INT

Figure B.33: CPN model for net herbstFig5p1AND.



280 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR and XOR

A 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 300

XOR

  300

  300   300

Figure B.34: Heuristic net for herbstFig5p1AND.



281

1`id

1`id

if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

Binput (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

Cinput (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

INT

1`1

INT

INT

INT

INT

Figure B.35: CPN model for net herbstFig5p1OR.



282 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

A 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

  300

XOR

C 
(complete)

 157

XOR

  157

XOR

B 
(complete)

 143

XOR

  143

  157   143

Figure B.36: Heuristic net for herbstFig5p1OR.



283

1`id

1`id

if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id1`id

1`id 1`id

1`id 1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

B
input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

ANDsplit

input (id);
output ();
action
(addATE(id, "Andsplit", ["complete"], "", "", []));

A2input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

D input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

ANDjoin

input (id);
output ();
action
(addATE(id, "Andjoin", ["complete"], "", "", []));

INT

1`1

INT

INT

INT

INT INT

INT INT

INT

Figure B.37: CPN model for net herbstFig5p19.



284 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

B 
(complete)

 156

XOR

  156

XOR

A 
(complete)

 144

XOR

  144

XOR

C 
(complete)

 300

XOR

  156

XOR

ArtificialEndTask 
(complete)

 300

  143

XOR

Andsplit 
(complete)

 157

XOR and XOR

  157

  144

XOR

A 
(complete)

 157

XOR

XOR and XOR

Andjoin 
(complete)

 157

XOR

  157

  157

XOR

D 
(complete)

 157

XOR

  157

  157

  157

Figure B.38: Heuristic net for herbstFig5p19.



285

1`id
if OK(id,300)
then 1`(id + 1)
else empty

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

C1

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

B
input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

D1

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

D2input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

C2input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

Split

input (id);
output ();
action
(addATE(id, "Split", ["complete"], "", "", []));

B1 input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

E
input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

Join
input (id);
output ();
action
(addATE(id, "Join", ["complete"], "", "", []));

i2

i1

F
input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

p1
INT

1`1

p3

INT

p5

INT

p6

INT

p7

INT

p2

INT

p4

INT

p8

INT

p15

INT

p9

INT

p10

INT

p11

INT

p12

INT

p14

INT

p13

INT

Figure B.39: CPN model for net herbstFig6p10.



286 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 138

XOR

  138

XOR

B 
(complete)

 162

XOR

  162

XOR

A 
(complete)

 138

XOR

  138

XOR

G 
(complete)

 428

XOR

  162

  138

XOR

D 
(complete)

 428

XOR

  428

XOR

D 
(complete)

 186

XOR

  186

XOR

Split 
(complete)

 242

XOR and XOR

  242

XOR

C 
(complete)

 186

XOR

  186

XOR

B 
(complete)

 242

XOR

  242

XOR

E 
(complete)

 242

XOR

  242

XOR

ArtificialEndTask 
(complete)

 300

  186

XOR and XOR

Join 
(complete)

 242

XOR

  242   242

XOR

F 
(complete)

 242

XOR

  242

  128

  114

Figure B.40: Heuristic net for herbstFig6p10.



287

1`id
if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

i1

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

A
input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

Cinput (id)
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

i3

i4

i2

INT

1`1

INT

INT

INT

INT

INT

INT

INT

Figure B.41: CPN model for net herbstFig6p18.



288 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 615

XOR

  300

  315

XOR

B 
(complete)

 998

XOR

  300

XOR

D 
(complete)

 1332

XOR

  998

XOR

C 
(complete)

 698

XOR

  698

XOR

E 
(complete)

 634

XOR

  634

  698

  334

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.42: Heuristic net for herbstFig6p18.



2
8
9

1`id

if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id 1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id
1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

B
input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

Dinput (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

E
input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

F

input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

H
input (id);
output ();
action
(addATE(id, "H", ["complete"], "", "", []));

i1

A1
input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

I

input (id);
output ();
action
(addATE(id, "I", ["complete"], "", "", []));

B1
input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

J

input (id);
output ();
action
(addATE(id, "J", ["complete"], "", "", []));

K

input (id);
output ();
action
(addATE(id, "K", ["complete"], "", "", []));

i2

L

input (id);
output ();
action
(addATE(id, "L", ["complete"], "", "", []));

P

input (id);
output ();
action
(addATE(id, "P", ["complete"], "", "", []));

i3

i4

O

input (id);
output ();
action
(addATE(id, "O", ["complete"], "", "", []));

N

input (id);
output ();
action
(addATE(id, "N", ["complete"], "", "", []));

M
input (id);
output ();
action
(addATE(id, "M", ["complete"], "", "", []));

i6

Q

input (id);
output ();
action
(addATE(id, "Q", ["complete"], "", "", []));

Rinput (id);
output ();
action
(addATE(id, "R", ["complete"], "", "", []));

i7

Sinput (id);
output ();
action
(addATE(id, "S", ["complete"], "", "", []));

i8

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT INT

INTINT

INT

INT

INT

INT

INT

Figure B.43: CPN model for net herbstFig6p25.



290 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 581

XOR

  300

XOR

C 
(complete)

 281

XOR

  281

XOR

D 
(complete)

 300

XOR

  300  281

XOR

E 
(complete)

 300

XOR

  300

XOR

F 
(complete)

 300

XOR

  300

XOR

G 
(complete)

 149

XOR

  149

XOR

H 
(complete)

 300

XOR

  151

  149

XOR

A 
(complete)

 300

XOR

  300

XOR

I 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 300

XOR

  300

XOR

J 
(complete)

 153

XOR

  153

XOR

K 
(complete)

 147

XOR

  147

XOR

L 
(complete)

 238

XOR

  153  73

XOR

P 
(complete)

 195

XOR

  74

XOR

O 
(complete)

 117

XOR

  117  121

XOR

M 
(complete)

 12

XOR

  12

XOR

N 
(complete)

 34

XOR

  12

XOR

ArtificialEndTask 
(complete)

 300

  22

  34

XOR

Q 
(complete)

 36

XOR

  36

XOR

R 
(complete)

 83

XOR

  47

  36

  195

XOR

S 
(complete)

 35

XOR

  35

  48

  35

Figure B.44: Heuristic net for herbstFig6p25.



2
9
1

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

F

input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

INT

1`1

INT INT

INT

end

INT

INT

INT

INT

Figure B.45: CPN model for net herbstFig6p31.



292 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 67

XOR

  67

XOR

D 
(complete)

 76

XOR

  76

XOR

B 
(complete)

 69

XOR

  69

XOR

E 
(complete)

 88

XOR

  88

XOR

A 
(complete)

 136

XOR

XOR

G 
(complete)

 136

XOR

  136

XOR

A 
(complete)

 164

XOR

XOR

F 
(complete)

 164

XOR

  164

  67

XOR

ArtificialEndTask 
(complete)

 300

  136

  76

  164

  69   88

Figure B.46: Heuristic net for herbstFig6p31.



2
9
3

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id
Generatorinput (id);

output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

F

input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

H

input (id);
output ();
action
(addATE(id, "H", ["complete"], "", "", []));

INT

1`1

INT INT

INT

end

INT

INT

INT

INT

INT

Figure B.47: CPN model for net herbstFig6p33.



294 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

D 
(complete)

 101

XOR

  101

XOR

H 
(complete)

 104

XOR

  104

XOR

E 
(complete)

 95

XOR

  95

XOR

A 
(complete)

 104

XOR

XOR

G 
(complete)

 104

XOR

  104

XOR

A 
(complete)

 196

XOR

XOR

F 
(complete)

 196

XOR

  196

  101

XOR

ArtificialEndTask 
(complete)

 300

  196

XOR

C 
(complete)

 55

XOR

  55

XOR

B 
(complete)

 49

XOR

  49

  55

  104

  49

  95

Figure B.48: Heuristic net for herbstFig6p33.



2
9
5

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id 1`id 1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id 1`id 1`id 1`id 1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

D1input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

C1

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

split

input (id);
output ();
action
(addATE(id, "split", ["complete"], "", "", []));

join

input (id);
output ();
action
(addATE(id, "join", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

F

input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

B1

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

end

input (id);
output ();
action
(addATE(id, "end", ["complete"], "", "", []));

i3

INT

1`1

INT INT INT

INT

INT INT

INT

INT

INT

INT

INT

INTINT INT

Figure B.49: CPN model for net herbstFig6p34.



296 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 163

XOR

  163

XOR

C 
(complete)

 137

XOR

  137

XOR

G 
(complete)

 580

XOR

  163

XOR

A 
(complete)

 137

XOR

  137

  137

XOR

D 
(complete)

 580

XOR

  580

XOR

split 
(complete)

 283

XOR and XOR

  283

XOR

D 
(complete)

 297

XOR

  297

XOR

E 
(complete)

 283

XOR

  283

XOR

F 
(complete)

 283

XOR

  283

XOR

C 
(complete)

 297

XOR

  297

XOR and XOR

join 
(complete)

 283

XOR

  283

XOR

B 
(complete)

 283

XOR

  283

  283

  154

XOR

end 
(complete)

 300

XOR

  129

  126

  171

XOR

ArtificialEndTask 
(complete)

 300

  300

Figure B.50: Heuristic net for herbstFig6p34.



297

1`id
if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

Ka
input (id);
output ();
action(addATE(id,"Ka",["complete"],"","",[]));

I1input (id);
output ();
action
(addATE(id,"I1",["complete"],"","",[]));

I2input (id);
output ();
action
(addATE(id,"I2",["complete"],"","",[]));

I3
input (id);
output ();
action
(addATE(id,"I3",["complete"],"","",[]));

I4
input (id);
output ();
action
(addATE(id,"I4",["complete"],"","",[]));

I5
input (id);
output ();
action
(addATE(id,"I5",["complete"],"","",[]));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

Na
input (id);
output ();
action
(addATE(id,"Na",["complete"],"","",[]));

Kb input (id);
output ();
action
(addATE(id,"Kb",["complete"],"","",[]));

I1' input (id);
output ();
action
(addATE(id,"I1",["complete"],"","",[]));

I2' input (id);
output ();
action
(addATE(id,"I2",["complete"],"","",[]));

I3' input (id);
output ();
action
(addATE(id,"I3",["complete"],"","",[]));

I4' input (id);
output ();
action
(addATE(id,"I4",["complete"],"","",[]));

I5'
input (id);
output ();
action
(addATE(id,"I5",["complete"],"","",[]));

A' input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

Nb
input (id);
output ();
action
(addATE(id,"Nb",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.51: CPN model for net herbstFig6p36.



298 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

Kb 
(complete)

 135

XOR and XOR

  135

XOR

Ka 
(complete)

 165

XOR and XOR

  165

XOR

I1 
(complete)

 300

XOR

  135

XOR and XOR

Nb 
(complete)

 135

XOR

  135

XOR

I2 
(complete)

 300

XOR

  300

XOR

I3 
(complete)

 300

XOR

  300

XOR

I4 
(complete)

 300

XOR

  300

XOR

I5 
(complete)

 300

XOR

  300

XOR

A 
(complete)

 300

XOR

  300

  135

XOR and XOR

Na 
(complete)

 165

XOR

  165

XOR

EEENNNDDD 
(complete)

 300

  135

  165

  165

  165

Figure B.52: Heuristic net for herbstFig6p36.



299

1`id

if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action(addATE(id,"A",["complete"],"","",[]));

Binput (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

Dinput (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

F
input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

H
input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

J
input (id);
output ();
action
(addATE(id,"J",["complete"],"","",[]));

L
input (id);
output ();
action
(addATE(id,"L",["complete"],"","",[]));

N

input (id);
output ();
action
(addATE(id,"N",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

E input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

G input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

I input (id);
output ();
action
(addATE(id,"I",["complete"],"","",[]));

K
input (id);
output ();
action
(addATE(id,"K",["complete"],"","",[]));

M input (id);
output ();
action
(addATE(id,"M",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.53: CPN model for net herbstFig6p37

.



300 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

B 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

D 
(complete)

 300

XOR

  300

XOR

E 
(complete)

 300

XOR

  300

XOR

G 
(complete)

 300

XOR

  300

XOR

F 
(complete)

 300

XOR

  300

XOR

I 
(complete)

 300

XOR

  300

XOR

H 
(complete)

 300

XOR

  300

XOR

K 
(complete)

 300

XOR

  300

XOR

J 
(complete)

 300

XOR

  300

XOR

M 
(complete)

 300

XOR

  300

XOR

L 
(complete)

 300

XOR

  300

XOR and XOR

N 
(complete)

 300

XOR

  300   300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.54: Heuristic net for herbstFig6p37.



301

1`id

if OK(id,300) 
then 1`(id+1)
else empty

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

split

input (id);
output ();
action
(addATE(id,"split",["complete"],"","",[]));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

A1

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

join
input (id);
output ();
action
(addATE(id,"join",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.55: CPN model for net herbstFig6p38.



302 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

split 
(complete)

 300

XOR and XOR

  300

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

A 
(complete)

 300

XOR

XOR and XOR

join 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 300

XOR

  300   300

  300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.56: Heuristic net for herbstFig6p38.



303

1`id

if OK(id,300) 
then 1`(id+1)
else empty

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

split

input (id);
output ();
action
(addATE(id,"split",["complete"],"","",[]));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

A1

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

join
input (id);
output ();
action
(addATE(id,"join",["complete"],"","",[]));

i1 i2

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT

Figure B.57: CPN model for net herbstFig6p39.



304 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

split 
(complete)

 300

XOR and XOR

  300

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 141

XOR

  141

XOR and XOR

join 
(complete)

 300

XOR

  159

XOR

A 
(complete)

 143

XOR

  143

  143

  157

  141

XOR

ArtificialEndTask 
(complete)

 300

  300

Figure B.58: Heuristic net for herbstFig6p39.



305

1`id

if OK(id,300) 
then 1`(id+1)
else empty

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id
1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id
1`id

1`id
1`id

1`id 1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

split

input (id);
output ();
action
(addATE(id,"split",["complete"],"","",[]));

Ainput (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

Binput (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

join
input (id);
output ();
action
(addATE(id,"join",["complete"],"","",[]));

split1

input (id);
output ();
action
(addATE(id,"split1",["complete"],"","",[]));

split2

input (id);
output ();
action
(addATE(id,"split2",["complete"],"","",[]));

G
input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

H

input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

F
input (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

join1

input (id);
output ();
action
(addATE(id,"join1",["complete"],"","",[]));

join2

input (id);
output ();
action
(addATE(id,"join2",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

INT INTINT INT

INT INT INT INT

INT

INT

Figure B.59: CPN model for net herbstFig6p41.



306 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

split 
(complete)

 300

XOR and XOR

  300

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

B 
(complete)

 300

XOR

  300

XOR and XOR

join 
(complete)

 300

XOR

  300

  300

XOR

split1 
(complete)

 148

XOR and XOR

  148

XOR

split2 
(complete)

 152

XOR and XOR

  152

XOR

G 
(complete)

 148

XOR

  148

XOR

H 
(complete)

 148

XOR

  148

XOR and XOR

join1 
(complete)

 148

XOR

  148   148

XOR

D 
(complete)

 300

XOR

  148

XOR

EEENNNDDD 
(complete)

 300

  300

XOR

E 
(complete)

 152

XOR

  152

XOR

F 
(complete)

 152

XOR

  152

XOR and XOR

join2 
(complete)

 152

XOR

  152   152

  152

Figure B.60: Heuristic net for herbstFig6p41.



307

1`id

if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

D input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

B input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

G
input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

D1 input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

i1

B1

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

i2

i3

split

input (id);
output ();
action
(addATE(id,"split",["complete"],"","",[]));

E

input (id);
output ();
action
(addATE(id,"E",["complete"],"","",[]));

C1input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

join

input (id);
output ();
action
(addATE(id,"join",["complete"],"","",[]));

Finput (id);
output ();
action
(addATE(id,"F",["complete"],"","",[]));

i4

G1

input (id);
output ();
action
(addATE(id,"G",["complete"],"","",[]));

C3

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

split1

input (id);
output ();
action
(addATE(id,"split1",["complete"],"","",[]));

join1

input (id);
output ();
action
(addATE(id,"join1",["complete"],"","",[]));

B2

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

H

input (id);
output ();
action
(addATE(id,"H",["complete"],"","",[]));

D2

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

i5

i6

i7

i8

INT

1`1

INT

INT

INT

INT

Fusion End

INT

INT

INT

INT

Fusion End

INT

INT

INTINT

INT INT

INT

INT

INT

INT

INT

INT

INT

INTINT

Fusion End

INT

INT

Figure B.61: CPN model for net herbstFig6p42.



308 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

D 
(complete)

 142

XOR

  142

XOR

split 
(complete)

 158

XOR and XOR

  158

XOR

G 
(complete)

 61

XOR

  61

XOR

B 
(complete)

 81

XOR

  81

XOR

E 
(complete)

 158

XOR

  158

XOR

C 
(complete)

 158

XOR

  158

XOR

C 
(complete)

 62

XOR

  23

XOR

ArtificialEndTask 
(complete)

 300

  38

XOR

D 
(complete)

 42

XOR

  42  39

XOR and XOR

join 
(complete)

 158

XOR

  158   158

XOR

B 
(complete)

 42

XOR

  42

XOR

F 
(complete)

 186

XOR

  28

  34

  158

  42

XOR

G 
(complete)

 98

XOR

  98

XOR

C 
(complete)

 88

XOR

  88

XOR

D 
(complete)

 134

XOR

  46

  52

XOR

split1 
(complete)

 88

XOR and XOR

  88

XOR

B 
(complete)

 88

XOR

  88

XOR

H 
(complete)

 88

XOR

  88

  134

XOR and XOR

join1 
(complete)

 88

XOR

  88   88

  88

Figure B.62: Heuristic net for herbstFig6p42.



309

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator input (id);
output ();
action
(createCaseFile(id));

BEGIN
input (id);
output ();
action
(addATE(id,"BEGIN",["complete"],"","",[]));

RSO

input (id);
output ();
action
(addATE(id,"RSO",["complete"],"","",[]));

RPB

input (id);
output ();
action
(addATE(id,"RPB",["complete"],"","",[]));

Set Path
input (id);
output ();
action
(addATE(id,"Set Path",["complete"],"","",[]));

Proc.
Pends

input (id);
output ();
action
(addATE(id,"Proc. Pends",["complete"],"","",[]));

END

input (id);
output ();
action
(addATE(id,"END",["complete"],"","",[]));

INT

1`1

INT

INT INT INT

INT INT INT

INT

INT

Figure B.63: CPN model for net herbstFig6p45.



310 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

BEGIN 
(complete)

 300

XOR and XOR and XOR

  300

XOR

Set Path 
(complete)

 300

XOR

  300

XOR

RPB 
(complete)

 300

XOR

  300

XOR

RSO 
(complete)

 300

XOR

  300

XOR

Proc. Pends 
(complete)

 300

XOR

  300

XOR and XOR and XOR

END 
(complete)

 300

XOR

  300

  300   300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.64: Heuristic net for herbstFig6p45.



311

1`id
if OK(id,300)
then 1`(id + 1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator

input (id);
output ();
action
(createCaseFile(id));

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

C1
input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

C2
input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

A2

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

A1

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

INT

1`1

INT

INT

INT

INT

INT

INT

INT

Figure B.65: CPN model for net herbstFig6p9.



312 All Models for Experiments with Known Models

ArtificialStartTask 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

A 
(complete)

 164

XOR

XOR

ArtificialEndTask 
(complete)

 300

  164

XOR

C 
(complete)

 157

XOR

  157

XOR

B 
(complete)

 143

XOR

  143

XOR

D 
(complete)

 300

XOR

  157

XOR

C 
(complete)

 164

XOR

  164

XOR

E 
(complete)

 164

XOR

  164

  136

  164

  143

Figure B.66: Heuristic net for herbstFig6p9.



313

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id 1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C

input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D

input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INT

Figure B.67: CPN model for net l1l.



314 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 297

XOR

  111

XOR

D 
(complete)

 300

XOR

  100

XOR

B 
(complete)

 316

XOR

  89  95

  89

  113

XOR

EEENNNDDD 
(complete)

 300

  300

  91

  111

  114

Figure B.68: Heuristic net for l1l.



315

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

Binput (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D
input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

i1i2

INT

1`1

INT

INT

INT

INT

INTINT

Figure B.69: CPN model for net l1lSkip.



316 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR

  300

XOR

B 
(complete)

 2983

XOR

  300

XOR

C 
(complete)

 3000

XOR

  300

  2683

XOR and XOR

D 
(complete)

 300

XOR

  300

  2700

  300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.70: Heuristic net for l1lSkip.



317

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

Binput (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D
input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

Figure B.71: CPN model for net l2l.



318 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 621

XOR

  300

XOR

B 
(complete)

 321

XOR

  321

XOR

D 
(complete)

 300

XOR

  300  321

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.72: Heuristic net for l2l.



319

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id
1`id

1`id
1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

Cinput (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D
input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INTINT

Figure B.73: CPN model for net l2lOptional.



320 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 313

XOR

  151

XOR

D 
(complete)

 300

XOR

  149

XOR

B 
(complete)

 313

XOR

  313   162

  151

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.74: Heuristic net for l2lOptional.



321

1`id if OK(id,300)
then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generatorinput (id);
output ();
action
(createCaseFile(id));

A
input (id);
output ();
action
(addATE(id,"A",["complete"],"","",[]));

B

input (id);
output ();
action
(addATE(id,"B",["complete"],"","",[]));

C
input (id);
output ();
action
(addATE(id,"C",["complete"],"","",[]));

D
input (id);
output ();
action
(addATE(id,"D",["complete"],"","",[]));

INT

1`1

INT

INT

INT

INT

INT

Figure B.75: CPN model for net l2lSkip.



322 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 576

XOR

  300

XOR

B 
(complete)

 576

XOR

  576   276

XOR

D 
(complete)

 300

XOR

  300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.76: Heuristic net for l2lSkip.



323

1`id

if OK (id, 300) then 1`(id+1)
else empty

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id 1`id 1`id 1`id

1`id1`id1`id 1`id

1`id

1`id

1`id

1`id

1`id

1`id

1`id

Generator
input (id);
output ();
action
(createCaseFile(id));

A

input (id);
output ();
action
(addATE(id, "A", ["complete"], "", "", []));

D

input (id);
output ();
action
(addATE(id, "D", ["complete"], "", "", []));

C

input (id);
output ();
action
(addATE(id, "C", ["complete"], "", "", []));

B

input (id);
output ();
action
(addATE(id, "B", ["complete"], "", "", []));

E

input (id);
output ();
action
(addATE(id, "E", ["complete"], "", "", []));

G

input (id);
output ();
action
(addATE(id, "G", ["complete"], "", "", []));

H input (id);
output ();
action
(addATE(id, "H", ["complete"], "", "", []));

F

input (id);
output ();
action
(addATE(id, "F", ["complete"], "", "", []));

INT

1`1

INT

INTINTINT INT

INT INT INT INT

INT

INT

INT

INT

Figure B.77: CPN model for net parallel5.



324 All Models for Experiments with Known Models

SSSTTTAAARRRTTT 
(complete)

 300

XOR

XOR

A 
(complete)

 300

XOR and XOR and XOR and XOR and XOR

  300

XOR

B 
(complete)

 300

XOR

  300

XOR

E 
(complete)

 300

XOR

  300

XOR

C 
(complete)

 300

XOR

  300

XOR

F 
(complete)

 300

XOR

  300

XOR

D 
(complete)

 300

XOR

  300

XOR and XOR and XOR and XOR and XOR

G 
(complete)

 300

XOR

  300   300   300   300   300

XOR

H 
(complete)

 300

XOR

  300

XOR

EEENNNDDD 
(complete)

 300

  300

Figure B.78: Heuristic net for parallel5.



Appendix C

All Models Used during the
Single-Blind Experiments

This appendix contains the heuristic net (or causal matrix) representation
of the original and mined models for the single-blind experiments (cf. Sec-
tion 8.2). The main characteristics of the original models are summarized in
Table C.1. Note that, unlike the experiments with known models (cf. Ap-
pendix B), the models presented here also contain unbalanced AND-split/join
points. This means that, for some of these models, there is not a one-to-one
correspondence between the AND-split points and the AND-join ones.



326 All Models for Single-Blind Experiments

Net F
ig

u
re

S
eq

u
en

ce

C
h
oi

ce

P
ar

al
le

li
sm

L
en

gt
h
-O

n
e

L
o
op

L
en

gt
h
-T

w
o

L
o
op

S
tr

u
ct

u
re

d
L
o
op

A
rb

it
ra

ry
L
o
op

In
v
is

ib
le

T
as

k
s

U
n
b
al

an
ce

d
A

N
D

-s
p
li
t/

jo
in

g2 C.1 X X X X X X

g3 C.2 X X X X X X

g4 C.4 X X X X X

g5 C.6 X X X X X

g6 C.7 X X X X X

g7 C.8 X X X X X

g8 C.9 X X X X X X X

g9 C.11 X X X X X X

g10 C.13 X X X X X

g12 C.15 X X X X X X

g13 C.16 X X X X X X X

g14 C.18 X X X X X X

g15 C.20 X X X X X

g19 C.22 X X X X X X

g20 C.24 X X X X X X

g21 C.25 X X X X

g22 C.26 X X X X X X

g23 C.28 X X X X X

g24 C.30 X X X X X X

g25 C.32 X X X X X

Table C.1: Nets for the single-blind experiments.



327

ArtificialStartTask 
(complete)

 300

XOR

XOR

Start 
(complete)

 300

XOR

  300

XOR

Login__RESEQ_ 
(complete)

 438

XOR

  300

  138

XOR

Submit_order 
(complete)

 300

XOR

  139

XOR

Register__RESEQ_ 
(complete)

 330

XOR

  161

XOR

Check_Credit__XOR_split_ 
(complete)

 353

XOR

  300

XOR

Inform_customer 
(complete)

 351

XOR

  82

XOR

Check_stock__XOR_split_ 
(complete)

 348

XOR

  84

XOR

Write_to_customer 
(complete)

 250

XOR

  187

  176

  175

XOR

Stock__OK_ 
(complete)

 166

XOR

  166

XOR

Put_order_on_hold 
(complete)

 182

XOR

  182

XOR

Process_Bill 
(complete)

 329

XOR

  166

XOR

Generate_invoice__XOR_split_ 
(complete)

 329

XOR

  329   163

XOR

Pay_electronically 
(complete)

 166

XOR

  166

XOR

Ship_goods__OUT_INTG_TECH_ 
(complete)

 166

XOR

  166

XOR

Inform_Customer 
(complete)

 166

XOR

  166

XOR

Customer_tracks_shipment__ADD_ 
(complete)

 166

XOR

  166

XOR

End_of_the_process 
(complete)

 300

XOR

  166

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  161

  169

  93

  89

  134

  63

XOR

Customer_responds 
(complete)

 53

XOR

  53

  53

Figure C.1: Original model for net g2. The mined model is identical to the
original model.



328 All Models for Single-Blind Experiments

XOR

Split_up 
(complete)

 266

XOR and XOR

XOR

Create_new_order 
(complete)

 266

XOR

  266

XOR

Remove_faulty_pallets 
(complete)

 266

XOR

  266

XOR

Fetch_and_Place_beams 
(complete)

 1104

XOR

XOR and XOR

Produce_pallet 
(complete)

 1104

XOR

  1104

XOR

Check_order 
(complete)

 566

XOR

  266

XOR

Order_pick_up 
(complete)

 139

XOR

  139

XOR

Deliver_order 
(complete)

 161

XOR

  161

XOR and XOR

Join 
(complete)

 266

XOR

  266   266

XOR

Check_stock 
(complete)

 566

XOR

XOR

Start_pallet_production 
(complete)

 1104

XOR and XOR

  292

XOR

Purchase 
(complete)

 274

XOR and XOR

  274

XOR

Check_nails_delivery 
(complete)

 185

XOR

XOR

Bypass_nail_purchase 
(complete)

 365

XOR

  91

XOR and XOR

Administer_purchase 
(complete)

 274

XOR

  94

XOR

Finish_order 
(complete)

 300

XOR

  139

XOR

Burn_logo_into_pallet 
(complete)

 1104

XOR

  1104

  1104

XOR

Fetch_shelves 
(complete)

 1104

XOR

  1104

XOR

Purchase_nails 
(complete)

 185

XOR

  185

  185

  180

XOR

Purchase_timber 
(complete)

 170

XOR

XOR

Check_timber_delivery 
(complete)

 170

XOR

  170

XOR

Register_order 
(complete)

 300

XOR

  300

  161

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  274

XOR

Bypass_timber_purchase 
(complete)

 352

XOR

  274

  170

  182

  78

  92

  274

XOR

Place_shelves 
(complete)

 1104

XOR

  1104

  266

XOR

Check_number_of_pallets 
(complete)

 1104

XOR

  566

  538

  1104

  1104

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.2: Original model for net g3.



329

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

Register_order 
(complete)

 300

XOR

  300

XOR

Check_stock 
(complete)

 566

XOR

  300

XOR

Check_nails_delivery 
(complete)

 185

XOR

  63

XOR

Start_pallet_production 
(complete)

 1104

XOR and XOR

  372

XOR

Purchase_timber 
(complete)

 170

XOR and XOR

  103

XOR and XOR and XOR and XOR

Purchase 
(complete)

 274

XOR and XOR and XOR and XOR and XOR

XOR

Bypass_timber_purchase 
(complete)

 352

XOR

  218   218

XOR

Bypass_nail_purchase 
(complete)

 365

XOR and XOR

  265

  102

XOR

Remove_faulty_pallets 
(complete)

 266

XOR

  2   2  2

  7

XOR

Administer_purchase 
(complete)

 274

XOR

  274

  59   59

  124

XOR

Purchase_nails 
(complete)

 185

XOR and XOR

  185   100

  33

  20

  221

XOR and XOR

Place_shelves 
(complete)

 1104

XOR

  40

XOR

Fetch_shelves 
(complete)

 1104

XOR

  1104

XOR

Fetch_and_Place_beams 
(complete)

 1104

XOR

  1104

  1064   1104

XOR

Produce_pallet 
(complete)

 1104

XOR

  1104

XOR

Burn_logo_into_pallet 
(complete)

 1104

XOR

  1104

XOR

Check_number_of_pallets 
(complete)

 1104

XOR

  1104

  9

  511

XOR

Check_order 
(complete)

 566

XOR

  566

XOR

Deliver_order 
(complete)

 161

XOR

  161

XOR

Split_up 
(complete)

 266

XOR and XOR

  266

XOR

Order_pick_up 
(complete)

 139

XOR

  139

XOR

Finish_order 
(complete)

 300

XOR

  161

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  264

XOR

Create_new_order 
(complete)

 266

XOR

  266

XOR and XOR

Join 
(complete)

 266

XOR

  266   266

  266

  139

  36   36

XOR

Check_timber_delivery 
(complete)

 170

  170

Figure C.3: Mined model for net g3.



330 All Models for Single-Blind Experiments

XOR

Decide_outsourcing 
(complete)

 300

XOR

XOR

Cont__outsource_organization 
(complete)

 147

XOR and XOR

  147

XOR

Select_service_mechanic 
(complete)

 153

XOR

  153

XOR

Tow_away_car__ASM_ 
(complete)

 29

XOR

XOR

Give_replacement_car 
(complete)

 66

XOR

  29

XOR

Check_car_for_defects__RSM_ 
(complete)

 93

XOR

XOR

Repair_car_on_the_spot__RSM_ 
(complete)

 56

XOR and XOR

  56

XOR

Tow_away_car__RSM_ 
(complete)

 37

XOR

  37

XOR

Go_to_customer__RSM_ 
(complete)

 93

XOR

  93

XOR

Customer_pays_within_3_weeks 
(complete)

 300

XOR

XOR and XOR

And_join 
(complete)

 300

XOR

  300

XOR

Check_car_for_defects__ASM_ 
(complete)

 60

XOR

  29

XOR

Repair_car_on_the_spot__ASM_ 
(complete)

 31

XOR and XOR

  31

XOR

Repair_car 
(complete)

 66

XOR and XOR

  66

XOR

Go_to_customer__ASM_ 
(complete)

 60

XOR

  60

XOR

Make_bill 
(complete)

 300

XOR

  147

  147

XOR

Send_bill 
(complete)

 610

XOR

  300

  56

  56

  93  60

XOR

No_payment_within_3_weeks 
(complete)

 310

XOR

  310

XOR

Make_appointment 
(complete)

 66

XOR

XOR

Pick_up_car 
(complete)

 66

XOR

  66

XOR

Registrate_call 
(complete)

 300

XOR

XOR

Look_up_customer_info 
(complete)

 300

XOR

  300

  300  310

  31

  31

XOR

Contact_nearest_service_location 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Return_replacement_car 
(complete)

 66

XOR

  66

XOR

Return_car_to_customer 
(complete)

 66

XOR

  66

  66   66

  300

  66

  37

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.4: Original model for net g4.



331

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

Registrate_call 
(complete)

 300

XOR and XOR

  300

XOR

Look_up_customer_info 
(complete)

 300

XOR

  300

XOR

Make_appointment 
(complete)

 66

XOR

  66

XOR and XOR

Send_bill 
(complete)

 610

XOR

  234

XOR

Contact_nearest_service_location 
(complete)

 300

XOR

  300

XOR

Decide_outsourcing 
(complete)

 300

XOR

  300

XOR

Select_service_mechanic 
(complete)

 153

XOR

  153

XOR

Cont__outsource_organization 
(complete)

 147

XOR

  147

XOR

Go_to_customer__RSM_ 
(complete)

 93

XOR

  93

XOR

Go_to_customer__ASM_ 
(complete)

 60

XOR

  60

XOR

Check_car_for_defects__RSM_ 
(complete)

 93

XOR

  93

XOR

Tow_away_car__RSM_ 
(complete)

 37

XOR and XOR

  37

XOR

Repair_car_on_the_spot__RSM_ 
(complete)

 56

XOR

  56

XOR

Give_replacement_car 
(complete)

 66

XOR and XOR

  37

XOR

Make_bill 
(complete)

 300

XOR

  37

XOR

Repair_car 
(complete)

 66

XOR

  66

XOR and XOR

Pick_up_car 
(complete)

 66

XOR

  56

XOR and XOR

Return_car_to_customer 
(complete)

 66

XOR

  66

  66

  66

XOR

Return_replacement_car 
(complete)

 66

XOR

  66

  300

  66

XOR

No_payment_within_3_weeks 
(complete)

 310

XOR

  310

XOR

Customer_pays_within_3_weeks 
(complete)

 300

XOR

  300  310   310

XOR

And_join 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

XOR

Check_car_for_defects__ASM_ 
(complete)

 60

XOR

  60

  10

XOR

Repair_car_on_the_spot__ASM_ 
(complete)

 31

XOR

  31

Tow_away_car__ASM_ 
(complete)

 29

XOR and XOR

  29  29

  147

  56   31

Figure C.5: Mined model for net g4.



332 All Models for Single-Blind Experiments

XOR

Archive 
(complete)

 300

XOR

XOR

End 
(complete)

 300

XOR

  300

XOR

Check_student_request 
(complete)

 300

XOR

XOR

Reject_application 
(complete)

 143

XOR

  143

XOR

Grant_scolarship 
(complete)

 157

XOR

  157

XOR

Reject_objection 
(complete)

 158

XOR

XOR

Send_rejection_letter 
(complete)

 301

XOR

  158

XOR

Check_income_of_parents 
(complete)

 321

XOR

XOR

Determine_financial_figures 
(complete)

 321

XOR and XOR

  321

  143

XOR

Start_payment 
(complete)

 321

XOR

XOR and XOR

And_join 
(complete)

 321

XOR

  321

XOR

Judge 
(complete)

 322

XOR

  158

XOR

Accept_objection 
(complete)

 164

XOR

  164

  157

  149

XOR

Receive_and_record_objection 
(complete)

 322

XOR

  172

  164

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  151

  150

  322

  321

XOR

Send_letter 
(complete)

 321

XOR

  321

  321

XOR

_Register 
(complete)

 300

XOR

  300

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.6: Original model for net g5. The mined model is identical to the
original model.



333

XOR

Assemble_bike 
(complete)

 164

XOR

XOR

Test_drive 
(complete)

 323

XOR

  164

XOR

Receive_custom_parts 
(complete)

 63

XOR

XOR

Build_and_disassemble_bike_the_unpainted 
(complete)

 164

XOR

  63

XOR

Send_quotation 
(complete)

 300

XOR

XOR

Close_deal 
(complete)

 436

XOR

  300

XOR

Make_small_adjustments 
(complete)

 159

XOR

  159

XOR and XOR

Send_notification 
(complete)

 164

XOR

  164

XOR

Derive_regular_specifications 
(complete)

 300

XOR

  300

  159

XOR

Receive_payment 
(complete)

 164

XOR

  164

XOR

Order_custom_parts 
(complete)

 63

XOR

  63

XOR

Design_custom_parts 
(complete)

 63

XOR

  63

XOR

Finalize_order 
(complete)

 164

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  164

XOR

Paint_parts 
(complete)

 164

XOR

  164

XOR

Send_reminder 
(complete)

 136

XOR

  136

XOR

Send_second_invoice 
(complete)

 164

XOR

  164

  136

  136

XOR

And_split_1 
(complete)

 164

XOR and XOR

  164

  164

XOR

ArtificialEndTask2 
(complete)

 300

  300

  164

XOR

Design 
(complete)

 300

XOR

  300

  164

XOR

OR_split_1 
(complete)

 164

XOR

  164

  63

  101

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

Figure C.7: Original model for net g6. The mined model is identical to the
original model.



334 All Models for Single-Blind Experiments

XOR

Remove_from_database 
(complete)

 300

XOR

XOR

End 
(complete)

 300

XOR

  300

XOR

Notify_and_make_appointment 
(complete)

 1164

XOR

XOR

Visit_residence 
(complete)

 1164

XOR

  1164

XOR

Online_intake 
(complete)

 155

XOR

XOR

Determine_priority_and_category 
(complete)

 300

XOR

  155

XOR

Subscription_at_counter 
(complete)

 145

XOR

XOR

Intake_at_counter 
(complete)

 145

XOR

  145

XOR

Check_travel_distance 
(complete)

 294

XOR

XOR

Check_commitment 
(complete)

 589

XOR

  294

XOR

Link_client_to_residence 
(complete)

 1164

XOR

  1164

XOR

ANDsplit 
(complete)

 589

XOR and XOR

XOR

Check_family_composition 
(complete)

 589

XOR

  589

XOR

Check_municipality_subscription 
(complete)

 589

XOR

  589

XOR

Handing_over_key 
(complete)

 300

XOR

  300

XOR

Brief_investigation 
(complete)

 300

XOR

  300

  145

XOR

Check_municipality_deviation 
(complete)

 589

XOR

  294

  295

XOR

Add_to_database 
(complete)

 589

XOR

  300

XOR and XOR

_Check_validity 
(complete)

 589

XOR

XOR

Adjust_data 
(complete)

 289

XOR

  289

XOR

Sign_contract 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Evaluation 
(complete)

 1164

XOR

  1164

  589

XOR

Online_subscription 
(complete)

 155

XOR

  155

  589

  589

  289

XOR

Start 
(complete)

 300

XOR

  145  155

XOR

Check_debt 
(complete)

 589

XOR

  589

  300

  575

  589

  589

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.8: Original model for net g7. The mined model is identical to the
original model.



335

XOR

prepare 
(complete)

 52

XOR and XOR

XOR

money_transfer 
(complete)

 52

XOR

  52

XOR

Notification 
(complete)

 52

XOR

  52

XOR

fin_info 
(complete)

 184

XOR

XOR and XOR

report 
(complete)

 184

XOR

  184

XOR

send_file_for_Mngr_approval 
(complete)

 37

XOR

XOR

bank_proposal 
(complete)

 23

XOR

  23

XOR and XOR

Cancel 
(complete)

 22

XOR

  14

XOR

start_approval 
(complete)

 184

XOR

XOR

check_doc 
(complete)

 184

XOR

  184

XOR

Start_procedure 
(complete)

 142

XOR and XOR

XOR

start_collect_info 
(complete)

 184

XOR and XOR

  142

XOR

timeout 
(complete)

 90

XOR

  90

XOR

return_contract 
(complete)

 52

XOR

  52

  184

  184

XOR

social_info 
(complete)

 184

XOR

  184

XOR

credit__A 
(complete)

 37

XOR

  37

XOR and XOR and XOR

archive 
(complete)

 52

XOR

  33

  13

XOR and XOR

end_blank_report 
(complete)

 68

XOR

  44

XOR

customer_decision 
(complete)

 23

XOR

  15   8

XOR

End_process 
(complete)

 300

XOR

  52

  19

  9   24

  52

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  23

  42

  37

XOR

credit_A 
(complete)

 37

XOR

  37

  68

XOR

register 
(complete)

 300

XOR

XOR

Send_info 
(complete)

 445

XOR

  300

  184

XOR

phone_contact 
(complete)

 158

XOR

  55

  58

  45

XOR

www_contact 
(complete)

 140

XOR

  44

  46

  50

  158

  140

XOR

Direct_contact 
(complete)

 147

XOR

  147

  22

  37

  68  52

  43

  54

  50

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.9: Original model for net g8.



336 All Models for Single-Blind Experiments

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

register 
(complete)

 300

XOR

  300

XOR

Send_info 
(complete)

 445

XOR

  300

XOR

www_contact 
(complete)

 140

XOR

  140

XOR

phone_contact 
(complete)

 158

XOR

  158

XOR

Direct_contact 
(complete)

 147

XOR

  147   50

XOR

Start_procedure 
(complete)

 142

XOR and XOR

  44

XOR

End_process 
(complete)

 300

XOR

  46

XOR

timeout 
(complete)

 90

  90

XOR

start_collect_info 
(complete)

 184

XOR and XOR and XOR

  131

XOR

return_contract 
(complete)

 52

XOR

  52

XOR

fin_info 
(complete)

 184

XOR

  184

XOR

social_info 
(complete)

 184

XOR

  184

XOR and XOR

report 
(complete)

 184

XOR and XOR

  160

  35

XOR and XOR

customer_decision 
(complete)

 23

XOR

  23

XOR and XOR

archive 
(complete)

 52

  18

  184

XOR

start_approval 
(complete)

 184

XOR

  184

XOR

Notification 
(complete)

 52

XOR and XOR

  52

XOR

check_doc 
(complete)

 184

XOR

  184

  24

XOR

credit_A 
(complete)

 37

XOR and XOR and XOR

  37

XOR

credit__A 
(complete)

 37

XOR

  37

XOR

end_blank_report 
(complete)

 68

XOR

  68

XOR

send_file_for_Mngr_approval 
(complete)

 37

XOR

  37

XOR

prepare 
(complete)

 52

XOR and XOR

  15   15

XOR

Cancel 
(complete)

 22

XOR

  22

XOR

bank_proposal 
(complete)

 23

XOR

  23

  23

XOR

ArtificialEndTask2 
(complete)

 300

  9

XOR

money_transfer 
(complete)

 52

XOR

  52

  26  34

  52

  52

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  265

  45

  55

  58

  50

  43

  54

  18

  37

  68

  22

Figure C.10: Mined model for net g8.



337

XOR and XOR

Create_Send_final_invoice 
(complete)

 154

XOR

XOR

Receive_and_handle_payment 
(complete)

 154

XOR

  154

XOR

Order_product 
(complete)

 77

XOR

XOR

Receive_product 
(complete)

 77

XOR

  77

XOR

Control_materials 
(complete)

 157

XOR

XOR

Order_materials 
(complete)

 157

XOR

  80

XOR

Create_Adjust_product 
(complete)

 184

XOR

  77

XOR

Receive_materials 
(complete)

 157

XOR

  157

XOR

Archive 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

XOR_split 
(complete)

 154

XOR

  77   77

XOR

Show_product_to_customer 
(complete)

 184

XOR

  184

XOR

Sketch_concept_designs 
(complete)

 300

XOR

XOR

Send_concept_designs 
(complete)

 300

XOR

  300

XOR

Contact_customer 
(complete)

 145

XOR

  145

XOR

Receive_reaction 
(complete)

 155

XOR

  155

  66

XOR

Determine_final_design 
(complete)

 154

XOR

  79

  157

XOR

Deliver_product 
(complete)

 154

XOR

  154

  77

  107

  77

  80

  75

XOR

Receive_and_handle_deposit 
(complete)

 154

XOR

  154

XOR

Send_deposit_invoice 
(complete)

 154

XOR

  154

XOR

Create_deposit_invoice__AUT_ 
(complete)

 154

XOR

  154

XOR

Specify_product 
(complete)

 154

XOR and XOR

  154   154

  154

  154

XOR

Register_client 
(complete)

 300

XOR

  300

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.11: Original model for net g9.



338 All Models for Single-Blind Experiments

ArtificialStartTask2 
(complete)

 300

XOR

XOR

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

Register_client 
(complete)

 300

XOR

  300

XOR

Sketch_concept_designs 
(complete)

 300

XOR

  300

XOR

Send_concept_designs 
(complete)

 300

XOR

  300

XOR

Receive_reaction 
(complete)

 155

XOR

  155

XOR

Contact_customer 
(complete)

 145

XOR

  145

XOR

Determine_final_design 
(complete)

 154

XOR

  75

XOR

Archive 
(complete)

 300

XOR

  80

XOR

Specify_product 
(complete)

 154

XOR and XOR

  154

XOR

XOR_split 
(complete)

 154

XOR

  154

XOR

Create_deposit_invoice__AUT_ 
(complete)

 154

XOR

  154

XOR

Order_materials 
(complete)

 157

XOR

  77

XOR

Order_product 
(complete)

 77

XOR

  77

XOR

Send_deposit_invoice 
(complete)

 154

XOR

  154

XOR

Receive_and_handle_deposit 
(complete)

 154

XOR

  154

XOR

Receive_materials 
(complete)

 157

XOR

  157

XOR

Control_materials 
(complete)

 157

XOR

  157

  80

XOR and XOR

Create_Send_final_invoice 
(complete)

 154

XOR

  77

XOR

Create_Adjust_product 
(complete)

 184

XOR

  77

  77

XOR

Show_product_to_customer 
(complete)

 184

XOR

  184  107

  77

XOR

Receive_and_handle_payment 
(complete)

 154

XOR

  154

XOR

Deliver_product 
(complete)

 154

XOR

  154

  154

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

XOR

Receive_product 
(complete)

 77

XOR

  77

  77

  79

  66

Figure C.12: Mined model for net g9.



339

XOR

t19__End_of_treatment_ 
(complete)

 154

XOR

XOR and XOR

t22__file_treatment_ 
(complete)

 154

XOR

  154

XOR

t5__start_treament_ 
(complete)

 154

XOR

XOR

t8__analyse_and_decide_treatment_ 
(complete)

 154

XOR

  154

XOR

t7__make_insurance_forms_ 
(complete)

 154

XOR

XOR

t18__Check_if_patient_has_to_pay_ 
(complete)

 154

XOR

  154

XOR

t20__send_bill_to_patient_ 
(complete)

 65

XOR

XOR

t21_autojoin 
(complete)

 154

XOR

  65

XOR

t11__start_medication_ 
(complete)

 101

XOR

XOR

t14__check_results_1_ 
(complete)

 101

XOR

  101

  65

  89

XOR

t1__register_patient_ 
(complete)

 300

XOR

XOR

t3__check_insurance_ 
(complete)

 300

XOR

  300

  154

XOR

t17__End_of_medication_ 
(complete)

 72

XOR

  72

XOR

t9__start_surgery_treatment_ 
(complete)

 82

XOR

XOR

t12__OR1_ 
(complete)

 43

XOR

  43

XOR

t13__OR2_ 
(complete)

 39

XOR

  39

XOR

t15__End_of_surgery_ 
(complete)

 82

XOR

  43

XOR

t10__decline_patient_ 
(complete)

 146

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  146

  47

XOR

t16__decide_further_treatments_ 
(complete)

 54

XOR

  54

  82

  29

  25

XOR

ArtificialEndTask2 
(complete)

 300

  300

  39

  146

XOR

t4__automatic_ 
(complete)

 154

XOR and XOR

  154

  154   154

  154

  72   82

ArtificialStartTask 
(complete)

 300

XOR

  300

Figure C.13: Original model for net g10.



340 All Models for Single-Blind Experiments

ArtificialStartTask 
(complete)

 300

XOR

XOR

t1__register_patient_ 
(complete)

 300

XOR

  300

XOR

t3__check_insurance_ 
(complete)

 300

XOR

  300

XOR

t4__automatic_ 
(complete)

 154

XOR and XOR

  154

XOR

t10__decline_patient_ 
(complete)

 146

XOR

  146

XOR

t5__start_treament_ 
(complete)

 154

XOR

  154

XOR

t7__make_insurance_forms_ 
(complete)

 154

XOR

  154

XOR

t8__analyse_and_decide_treatment_ 
(complete)

 154

XOR

  154

XOR

t11__start_medication_ 
(complete)

 101

XOR and XOR

  72

XOR

t9__start_surgery_treatment_ 
(complete)

 82

XOR and XOR

  82

XOR

t14__check_results_1_ 
(complete)

 101

XOR

  101

XOR and XOR

t17__End_of_medication_ 
(complete)

 72

XOR

  72

XOR

t16__decide_further_treatments_ 
(complete)

 54

XOR

  54

  47

  29

  25

XOR

t18__Check_if_patient_has_to_pay_ 
(complete)

 154

XOR and XOR

  154

XOR

t21_autojoin 
(complete)

 154

XOR

  154

XOR and XOR and XOR

t22__file_treatment_ 
(complete)

 154

XOR

  154

XOR

t19__End_of_treatment_ 
(complete)

 154

XOR

  72

  154

  89

XOR

t20__send_bill_to_patient_ 
(complete)

 65

XOR

  65

XOR

ArtificialEndTask 
(complete)

 300

XOR

  154

XOR

ArtificialEndTask2 
(complete)

 300

  300

  65

XOR

t13__OR2_ 
(complete)

 39

XOR

  39

XOR and XOR

t15__End_of_surgery_ 
(complete)

 82

XOR

  82

XOR

t12__OR1_ 
(complete)

 43

XOR

  43

  39

  82

  43

  146

Figure C.14: Mined model for net g10.



341

XOR

Calculate_price 
(complete)

 92

XOR

XOR

Send_back 
(complete)

 92

XOR

  92

XOR

Cash_payment 
(complete)

 83

XOR

XOR

End_case 
(complete)

 300

XOR

  83

XOR

AND_split_2 
(complete)

 148

XOR and XOR

XOR

Receive_data 
(complete)

 148

XOR

  148

XOR

Load_machine 
(complete)

 148

XOR

  148

XOR

PIN_payment 
(complete)

 80

XOR

  80

XOR

End_device_case 
(complete)

 77

XOR

  77

XOR

Find_error 
(complete)

 114

XOR

XOR

Inform_about_problem 
(complete)

 60

XOR

  60

XOR

Solve 
(complete)

 54

XOR

  54

XOR

Send 
(complete)

 152

XOR

XOR

Transport1 
(complete)

 152

XOR

  152

XOR

Calculate_price_device 
(complete)

 71

XOR

  39   32

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Print_normal 
(complete)

 206

XOR

XOR

Check_print_normal 
(complete)

 206

XOR

  206

XOR

Fill_form_ 
(complete)

 311

XOR

XOR

Check_bag 
(complete)

 311

XOR

  311

XOR

Transport2 
(complete)

 92

XOR

  92

XOR

Check_print_device 
(complete)

 148

XOR

  77   71

XOR and XOR

Enter_data 
(complete)

 148

XOR

  148

XOR

Print_device 
(complete)

 148

XOR

  148

  152

  60

  92   114

  44   48

  152

  159

  148

ArtificialStartTask 
(complete)

 300

XOR

  148

  152

  148   54

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.15: Original model for net g12. The mined model is identical to
the original model.



342 All Models for Single-Blind Experiments

XOR

car_finished 
(complete)

 155

XOR

XOR

call_for_pick_up 
(complete)

 300

XOR

  155

XOR

check_repair1 
(complete)

 148

XOR

  80

XOR

repair_in_price_range 
(complete)

 148

XOR

  68

XOR

check_car 
(complete)

 300

XOR

XOR

Repair_list___in_price_range_ 
(complete)

 155

XOR

  155

  145

XOR

check_repair2 
(complete)

 79

XOR

XOR and XOR

out_of_price_range___agree 
(complete)

 39

XOR

  39

XOR

repair 
(complete)

 79

XOR

  40

XOR and XOR

do_not_repair 
(complete)

 36

XOR

  0

XOR

deliver_car_to_garage 
(complete)

 300

XOR

XOR

max_price_agreement 
(complete)

 300

XOR

  300

XOR

call_appointment 
(complete)

 300

XOR

  300

XOR

call_for_price 
(complete)

 118

XOR

  43

  39   36

  39

  79

XOR

and_split 
(complete)

 75

XOR and XOR

  75   80

XOR

prepare_repair 
(complete)

 75

XOR

  39

  36

XOR

end 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  75

  75

  300

XOR

start 
(complete)

 300

XOR

  300

XOR

pay_and_pick_up 
(complete)

 300

XOR

  300

  300

  36

  148

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.16: Original model for net g13.



343

ArtificialStartTask 
(complete)

 300

XOR

XOR

start 
(complete)

 300

XOR

  300

XOR

call_appointment 
(complete)

 300

XOR

  300

XOR

deliver_car_to_garage 
(complete)

 300

XOR

  300

XOR

max_price_agreement 
(complete)

 300

XOR

  300

XOR

check_car 
(complete)

 300

XOR

  300

XOR

Repair_list___in_price_range_ 
(complete)

 155

XOR and XOR

  155

XOR

call_for_pick_up 
(complete)

 300

XOR

  145

XOR

and_split 
(complete)

 75

XOR

  75

XOR

prepare_repair 
(complete)

 75

XOR

  75

XOR

repair_in_price_range 
(complete)

 148

XOR

  80  80

XOR

call_for_price 
(complete)

 118

XOR

  75

XOR

repair 
(complete)

 79

XOR

  39

XOR and XOR

do_not_repair 
(complete)

 36

XOR

  36  43

XOR and XOR

out_of_price_range___agree 
(complete)

 39

XOR

  39

  36

XOR

check_repair2 
(complete)

 79

XOR

  79   40

  39

XOR

car_finished 
(complete)

 155

XOR

  39

  155

XOR

pay_and_pick_up 
(complete)

 300

XOR

  300

XOR

end 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

XOR

check_repair1 
(complete)

 148

XOR

  148

  80

  68

  36

Figure C.17: Mined model for net g13.



344 All Models for Single-Blind Experiments

XOR

check_additional_technical_specs 
(complete)

 633

XOR

XOR

check_redundancy_technical_specs 
(complete)

 633

XOR

  633

XOR

translate_technical_in_physical_specs 
(complete)

 300

XOR

XOR and XOR

combine_with_dominant_tech_spec 
(complete)

 300

XOR

  300

XOR

Receive_CRL 
(complete)

 300

XOR

XOR

Check_and_change_requirements_with_customer 
(complete)

 300

XOR

  300

XOR

check_redundancy 
(complete)

 573

XOR

XOR

Check_Funct__Design 
(complete)

 573

XOR

  573

XOR

Give_Design_into_Production 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

translate_req_to_function 
(complete)

 300

XOR and XOR

XOR

translate_functions_in_technical_specs 
(complete)

 300

XOR and XOR

  300

XOR

check_completeness 
(complete)

 573

XOR

  300

XOR

check_redundancy_physical_specs 
(complete)

 579

XOR

XOR

Check_Physical_Design 
(complete)

 579

XOR

  579

  300

XOR and XOR

combine_with_dominant_functional_specs 
(complete)

 300

XOR

  300

  300

XOR

check_completeness_physical_specs 
(complete)

 579

XOR

  279

XOR

check_additional_physical_specs 
(complete)

 579

XOR

  579

  579

XOR

Release_requirements 
(complete)

 300

XOR

  300

  300

XOR

check_completeness_technical_specs 
(complete)

 633

XOR

  633

XOR

check_for_additional_functions 
(complete)

 573

XOR

  573

  300

  273

  300

XOR

Check_Technical_Design 
(complete)

 633

XOR

  633

  300

  333  300

  573

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.18: Original model for net g14.



345

ArtificialStartTask 
(complete)

 300

XOR

XOR

Receive_CRL 
(complete)

 300

XOR

  300

XOR

Check_and_change_requirements_with_customer 
(complete)

 300

XOR

  300

XOR

Release_requirements 
(complete)

 300

XOR

  300

XOR

translate_req_to_function 
(complete)

 300

XOR and XOR

  300

XOR

check_completeness 
(complete)

 573

XOR

  300

XOR

translate_functions_in_technical_specs 
(complete)

 300

XOR

  300

XOR

check_for_additional_functions 
(complete)

 573

XOR

  573

XOR

translate_technical_in_physical_specs 
(complete)

 300

XOR

  300

XOR

check_redundancy 
(complete)

 573

XOR and XOR

  573

XOR

Check_Funct__Design 
(complete)

 573

XOR

  573

XOR

check_completeness_technical_specs 
(complete)

 633

XOR

  352

XOR

combine_with_dominant_tech_spec 
(complete)

 300

XOR

  300  273

XOR

combine_with_dominant_functional_specs 
(complete)

 300

XOR

  300

XOR and XOR and XOR

Give_Design_into_Production 
(complete)

 300

XOR

  300

XOR

check_additional_technical_specs 
(complete)

 633

XOR

  633

XOR

check_redundancy_technical_specs 
(complete)

 633

XOR

  633

XOR

Check_Technical_Design 
(complete)

 633

XOR

  633

  281

  300

XOR

check_completeness_physical_specs 
(complete)

 579

XOR

  300

XOR

check_additional_physical_specs 
(complete)

 579

XOR

  579

XOR

check_redundancy_physical_specs 
(complete)

 579

XOR

  579

XOR

Check_Physical_Design 
(complete)

 579

XOR

  579

  279

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.19: Mined model for net g14.



346 All Models for Single-Blind Experiments

XOR

Change_date 
(complete)

 24

XOR

XOR

Check_availability_9_pers_car 
(complete)

 145

XOR

  8

XOR

Check_availability_del_van 
(complete)

 148

XOR

  9

XOR

Check_availability_5_pers_car 
(complete)

 153

XOR

  7

XOR

Stop_booking 
(complete)

 17

XOR

XOR

Process_finished 
(complete)

 300

XOR

  17

XOR

Send_documents 
(complete)

 227

XOR

XOR

Receive_documents 
(complete)

 66

XOR

  66

XOR

Phone 
(complete)

 131

XOR

  73

XOR

Cancel_booking 
(complete)

 156

XOR

  88

XOR

Change_category__ 
(complete)

 24

XOR

  7

  8

  9

XOR

Deadline_two_weeks_before_start 
(complete)

 71

XOR

  71

XOR

Change_category_ 
(complete)

 19

XOR

  3

  10

  6

XOR

Ask_for_options 
(complete)

 227

XOR

  119

XOR

Book_options 
(complete)

 108

XOR

  108

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Change_date__ 
(complete)

 22

XOR

  3

  11

  8

  19

XOR

Stop_booking_ 
(complete)

 38

XOR

  38

XOR

Change_date_ 
(complete)

 27

XOR

  27

XOR

Choose_options 
(complete)

 227

XOR

  61

  38

  11

  9

  7

  24   22

XOR

Stop_booking__ 
(complete)

 18

XOR

  18   84

  18

XOR

Contact_TM_car 
(complete)

 300

XOR

  100

  95

  105   24

  17

XOR

Change_category 
(complete)

 30

XOR

  30

  82

  31  35

  13

  6

  11

  108

  40

  58

  33

  227

  156

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.20: Original model for net g15.



347

ArtificialStartTask 
(complete)

 300

XOR

XOR

Contact_TM_car 
(complete)

 300

XOR

  300

XOR

Check_availability_del_van 
(complete)

 148

XOR

  95

XOR

Check_availability_9_pers_car 
(complete)

 145

XOR and XOR

  100

XOR

Check_availability_5_pers_car 
(complete)

 153

XOR and XOR and XOR

  105

XOR

Choose_options 
(complete)

 227

XOR

  86

  12

XOR

Stop_booking__ 
(complete)

 18

XOR

  18

XOR

Ask_for_options 
(complete)

 227

XOR

  227

XOR

Book_options 
(complete)

 108

XOR

  108

XOR

Send_documents 
(complete)

 227

XOR

  119

  108

XOR

Receive_documents 
(complete)

 66

XOR

  66

XOR

Cancel_booking 
(complete)

 156

XOR

  86

XOR

Phone 
(complete)

 131

XOR

  71

XOR

Deadline_two_weeks_before_start 
(complete)

 71

XOR

  31

XOR

ArtificialEndTask 
(complete)

 300

XOR

  2

  33

XOR

Process_finished 
(complete)

 300

XOR

  71

  298

XOR

ArtificialEndTask2 
(complete)

 300

  295

  60   60

XOR

Change_date_ 
(complete)

 27

XOR

  27

XOR

Change_category_ 
(complete)

 19

XOR

  19

  12

XOR

Stop_booking_ 
(complete)

 38

XOR

  38

  9

  5

  11

  156

  9

  81   81

  18

XOR

Change_category 
(complete)

 30

XOR and XOR and XOR and XOR

  30   30

XOR

Change_date 
(complete)

 24

XOR and XOR and XOR and XOR and XOR

  24   24

XOR

Stop_booking 
(complete)

 17

XOR

  17

  40   32

  56

Change_category__ 
(complete)

 24

XOR and XOR and XOR

  9

  7   7

  4   4

  7

  15   15

  5   5

  4   4

  8

  8   8   8

  2   2

XOR

Change_date__ 
(complete)

 22

XOR

  2   2   2

  11

  18

  38

  17

Figure C.21: Mined model for net g15.



348 All Models for Single-Blind Experiments

XOR

Don_t_take_the_job_T22 
(complete)

 34

XOR

XOR

Finish__End_ 
(complete)

 300

XOR

  34

XOR

Make_canteen_card_T19 
(complete)

 43

XOR

XOR and XOR and XOR

Deactivate_account___destroy_card_T13 
(complete)

 22

XOR

  22

XOR and XOR

Get_introduction_lunch_T20 
(complete)

 21

XOR

  21

XOR

Apply__Begin__T1 
(complete)

 300

XOR

XOR

Start_screening_T2 
(complete)

 300

XOR and XOR

  300

XOR

Tell_candidate_to_leave_T12 
(complete)

 218

XOR

  218

XOR

Check_history_and_make_report 
(complete)

 300

XOR

XOR and XOR

Decide_if_qualifiedT9 
(complete)

 300

XOR

  300

  22

XOR

Work_description 
(complete)

 82

XOR

XOR

Begin_first_work_day_T11 
(complete)

 43

XOR and XOR and XOR

  43

  39

  12

XOR

Work_T23 
(complete)

 9

XOR

  9

XOR

Interview_T10 
(complete)

 158

XOR

  76  82

XOR

Meeting_with_colleagues_T14 
(complete)

 43

XOR

  22

XOR and XOR

Learn_for_training_T16 
(complete)

 21

XOR

  21

  142

  158

XOR

Get_training_T17 
(complete)

 35

XOR

  21

XOR

Check_experience_and_make_report 
(complete)

 300

XOR

  300

XOR

Decide_training_results_T18 
(complete)

 35

XOR

  35

  43   43

XOR

Make_new_account_T15 
(complete)

 43

XOR

  43

  22   21

  300   300

  9

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  21

  14

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.22: Original model for net g19.



349

ArtificialStartTask 
(complete)

 300

XOR

XOR

Apply__Begin__T1 
(complete)

 300

XOR

  300

XOR

Start_screening_T2 
(complete)

 300

XOR and XOR

  300

XOR

Check_history_and_make_report 
(complete)

 300

XOR

  300

XOR

Check_experience_and_make_report 
(complete)

 300

XOR

  300

XOR and XOR

Decide_if_qualifiedT9 
(complete)

 300

XOR

  300   300

XOR

Interview_T10 
(complete)

 158

XOR

  158

XOR

Tell_candidate_to_leave_T12 
(complete)

 218

XOR

  142

XOR

Work_description 
(complete)

 82

XOR and XOR

  82   76

XOR

Begin_first_work_day_T11 
(complete)

 43

XOR and XOR

  43

XOR

Make_new_account_T15 
(complete)

 43

XOR

  43

XOR

Finish__End_ 
(complete)

 300

XOR

  39   39

XOR

Make_canteen_card_T19 
(complete)

 43

  43

XOR

Meeting_with_colleagues_T14 
(complete)

 43

XOR

  43

XOR and XOR

Deactivate_account___destroy_card_T13 
(complete)

 22

XOR

  22

XOR

Learn_for_training_T16 
(complete)

 21

XOR

  21   22

XOR

Get_training_T17 
(complete)

 35

XOR

  21

XOR

Decide_training_results_T18 
(complete)

 35

XOR

  35   14

XOR

Get_introduction_lunch_T20 
(complete)

 21

XOR and XOR

  21

XOR

Don_t_take_the_job_T22 
(complete)

 34

XOR

  12

XOR

Work_T23 
(complete)

 9

XOR

  9   9

  34

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  9

  218

  22

Figure C.23: Mined model for net g19.



350 All Models for Single-Blind Experiments

ArtificialStartTask 
(complete)

 300

XOR

XOR

Start 
(complete)

 300

XOR

  300

XOR

Login__RESEQ_ 
(complete)

 438

XOR

  300

  138

XOR

Submit_order 
(complete)

 300

XOR

  139

XOR

Register__RESEQ_ 
(complete)

 330

XOR

  161

XOR

Check_Credit__XOR_split_ 
(complete)

 353

XOR

  300

XOR

Inform_customer 
(complete)

 351

XOR

  82

XOR

Check_stock__XOR_split_ 
(complete)

 348

XOR

  84

XOR

Write_to_customer 
(complete)

 250

XOR

  187

  176

  175

XOR

Stock__OK_ 
(complete)

 166

XOR

  166

XOR

Put_order_on_hold 
(complete)

 182

XOR

  182

XOR

Process_Bill 
(complete)

 329

XOR

  166

XOR

Generate_invoice__XOR_split_ 
(complete)

 329

XOR

  329   163

XOR

Pay_electronically 
(complete)

 166

XOR

  166

XOR

Ship_goods__OUT_INTG_TECH_ 
(complete)

 166

XOR

  166

XOR

Inform_Customer 
(complete)

 166

XOR

  166

XOR

Customer_tracks_shipment__ADD_ 
(complete)

 166

XOR

  166

XOR

End_of_the_process 
(complete)

 300

XOR

  166

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  161

  169

  93

  89

  134

  63

XOR

Customer_responds 
(complete)

 53

XOR

  53

  53

Figure C.24: Original model for net g20. The mined model is identical to
the original model.



351

XOR

uitleggen_case 
(complete)

 93

XOR

XOR

bellen_sleepwagen 
(complete)

 33

XOR

  33

XOR

stuur_dichtstbijzijnde_reparateur 
(complete)

 60

XOR

  60

XOR

auto_op_vluchtstrook_zetten 
(complete)

 300

XOR

XOR

neem_voorzorgmaatregelen 
(complete)

 300

XOR

  300

XOR

controleer_reparatie 
(complete)

 60

XOR

XOR

formulier_invullen 
(complete)

 93

XOR

  60

XOR

Sleepwagen_extern_bedrijf 
(complete)

 17

XOR

  17

XOR

sleepwagen_Route_Mobiel 
(complete)

 16

XOR

  16

XOR

reparatie_probleem 
(complete)

 60

XOR

  60

XOR

wachten_op_sleepwagen 
(complete)

 33

XOR

XOR

wegslepen_auto 
(complete)

 33

XOR

  33

XOR

auto_zelf_repareren 
(complete)

 184

XOR

XOR

controle_probleem_zelf 
(complete)

 184

XOR

  184

XOR

controleer_auto 
(complete)

 388

XOR

  184

XOR

contact_opnemen_routemobiel 
(complete)

 204

XOR

  204

XOR

controleer_lidmaatschapsgegevens 
(complete)

 204

XOR

  93

XOR

ArtificialEndTask 
(complete)

 300

XOR

  111

  93

  17

  88

  96

  33

  16

XOR

wachten_op_reparateur 
(complete)

 60

XOR

XOR

controle_door_reparateur 
(complete)

 60

XOR

  60

  60

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  60

  204

ArtificialStartTask 
(complete)

 300

XOR

  300

Figure C.25: Original model for net g21. The mined model is identical to
the original model.



352 All Models for Single-Blind Experiments

XOR

Make_Appointment__D_ 
(complete)

 169

XOR

XOR and XOR

Cancel_Appointment__G_ 
(complete)

 92

XOR

  92

XOR and XOR

HoldInterview__F_ 
(complete)

 77

XOR

  77

XOR

SendContract__R_ 
(complete)

 13

XOR

XOR and XOR

Appointment__S_ 
(complete)

 13

XOR

  13

XOR and XOR

RejectCandidate__L_ 
(complete)

 25

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  25

XOR

StudyCandidate__B_ 
(complete)

 300

XOR

XOR

DoBoth__C_ 
(complete)

 169

XOR and XOR

  169

  131

XOR

DoBoth2__H_ 
(complete)

 43

XOR and XOR

XOR

GuidedTour__J_ 
(complete)

 43

XOR

  43

XOR

Background_Check__I_ 
(complete)

 43

XOR

  43

  92

  169

XOR

Check_References__E_ 
(complete)

 169

XOR

  169

XOR and XOR

Vacancy_Check__M_ 
(complete)

 18

XOR

XOR

DoBoth3__N_ 
(complete)

 13

XOR and XOR

  9

XOR

StoreData__O_ 
(complete)

 9

XOR

  9

  43

  34

XOR

MakeAppointment2__Q_ 
(complete)

 13

XOR

  13

XOR

MakeContract__P_ 
(complete)

 20

XOR

  13

XOR

EmployeeMeeting__K_ 
(complete)

 43

XOR

  25  18

  43

  92  77

XOR

ArtificialEndTask2 
(complete)

 300

  300

XOR

Check_Contract 
(complete)

 20

XOR

  13

  7

XOR

StoreData2__T_ 
(complete)

 3

XOR

  3

  13

  4

  6

  3

  20

  25  18

  9

XOR

ReceiveResume_andAppl__A_ 
(complete)

 300

XOR

  300

ArtificialStartTask 
(complete)

 300

XOR

  300

Figure C.26: Original model for net g22.



353

ArtificialStartTask 
(complete)

 300

XOR

XOR

ReceiveResume_andAppl__A_ 
(complete)

 300

XOR

  300

XOR

StudyCandidate__B_ 
(complete)

 300

XOR

  300

XOR

DoBoth__C_ 
(complete)

 169

XOR and XOR

  169

XOR

ArtificialEndTask 
(complete)

 300

XOR

  131

XOR

Make_Appointment__D_ 
(complete)

 169

XOR

  169

XOR

Check_References__E_ 
(complete)

 169

XOR

  169

XOR and XOR

HoldInterview__F_ 
(complete)

 77

XOR

  77

XOR and XOR

Cancel_Appointment__G_ 
(complete)

 92

XOR

  92   77  92

  34

XOR

DoBoth2__H_ 
(complete)

 43

XOR and XOR

  43

XOR

ArtificialEndTask2 
(complete)

 300

  300

XOR

GuidedTour__J_ 
(complete)

 43

XOR

  43

XOR

Background_Check__I_ 
(complete)

 43

XOR

  43

XOR

EmployeeMeeting__K_ 
(complete)

 43

XOR

  43

XOR

Vacancy_Check__M_ 
(complete)

 18

XOR

  18

XOR and XOR

RejectCandidate__L_ 
(complete)

 25

XOR

  25

XOR

MakeContract__P_ 
(complete)

 20

XOR

  7

  25

XOR and XOR

StoreData__O_ 
(complete)

 9

XOR

  9

XOR

DoBoth3__N_ 
(complete)

 13

XOR and XOR and XOR

  9   9

XOR

MakeAppointment2__Q_ 
(complete)

 13

XOR

  13   10

XOR and XOR

SendContract__R_ 
(complete)

 13

XOR and XOR

  13  9

  4

XOR

Check_Contract 
(complete)

 20

XOR

  20

  13

  3

XOR

Appointment__S_ 
(complete)

 13

  13

XOR

StoreData2__T_ 
(complete)

 3

  3

  25  9

  92

Figure C.27: Mined model for net g22.



354 All Models for Single-Blind Experiments

XOR

_4_Create_steering_construction 
(complete)

 300

XOR

XOR and XOR and XOR and XOR

_8_Assemblage_car 
(complete)

 300

XOR

  300

XOR

__Plan_work 
(complete)

 300

XOR

XOR

__Green_light_administration 
(complete)

 300

XOR and XOR and XOR and XOR and XOR

  300

XOR

Recieve_roof 
(complete)

 300

XOR

XOR and XOR and XOR

__Assemblage_bodywork 
(complete)

 300

XOR

  300

XOR

_0_Build_Basic_structure 
(complete)

 576

XOR

XOR

_1_Test_BS 
(complete)

 840

XOR

  576

  300

XOR

_5_Build_engine 
(complete)

 561

XOR

  300

XOR and XOR

__Schedule_body_work 
(complete)

 300

XOR and XOR and XOR and XOR

  300

XOR

_9_Recieve_customer_demands 
(complete)

 300

XOR

  300

XOR

Order_roof 
(complete)

 300

XOR

  300

XOR

_1_Distribution 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

_2_Place_windows 
(complete)

 300

XOR

  300

XOR

_3_Attach_wheels 
(complete)

 300

XOR

  300

XOR

_6_Test_engine 
(complete)

 837

XOR

  561

  300

XOR

_12_Redo_part_BS 
(complete)

 264

XOR

  264

XOR and XOR

_0_Paint_car 
(complete)

 300

XOR

  300

  300

XOR

__Create_interior 
(complete)

 300

XOR

  300

  300

  300

  300

XOR

__Create_Doors 
(complete)

 300

XOR

  300

  261

  300

XOR

_7_Redo__part_engine 
(complete)

 276

XOR

  276

XOR

__Rec_customer_order 
(complete)

 300

XOR

  300

  276

  276

  264   300

  300   300

  300

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.28: Original model for net g23.



355

ArtificialStartTask 
(complete)

 300

XOR

XOR

__Rec_customer_order 
(complete)

 300

XOR and XOR

  300

XOR

__Plan_work 
(complete)

 300

XOR

  300

XOR

__Schedule_body_work 
(complete)

 300

XOR

  300

XOR

__Green_light_administration 
(complete)

 300

XOR and XOR

  300

XOR

Order_roof 
(complete)

 300

XOR

  300

XOR

_9_Recieve_customer_demands 
(complete)

 300

XOR and XOR

  300

XOR

_0_Build_Basic_structure 
(complete)

 576

XOR

XOR

_1_Test_BS 
(complete)

 840

XOR

  576  256

XOR

_12_Redo_part_BS 
(complete)

 264

XOR

  264

XOR

__Create_Doors 
(complete)

 300

XOR

  300

  264

XOR

Recieve_roof 
(complete)

 300

XOR

  300

XOR and XOR

__Assemblage_bodywork 
(complete)

 300

XOR

  300

  249

XOR

_5_Build_engine 
(complete)

 561

XOR

  236

XOR

_3_Attach_wheels 
(complete)

 300

XOR

  27

XOR

_4_Create_steering_construction 
(complete)

 300

XOR

  29

XOR

_6_Test_engine 
(complete)

 837

XOR

  482

  70

  237

  102

  81

XOR

_7_Redo__part_engine 
(complete)

 276

XOR

  273

XOR

__Create_interior 
(complete)

 300

XOR

  300

XOR and XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

  300

  70

  145

XOR and XOR

_8_Assemblage_car 
(complete)

 300

XOR

  300

XOR

_2_Place_windows 
(complete)

 300

XOR

  300

  300

XOR

_0_Paint_car 
(complete)

 300

XOR

  300

XOR

_1_Distribution 
(complete)

 300

XOR

  300

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  252

Figure C.29: Mined model for net g23.



356 All Models for Single-Blind Experiments

XOR

Check_credit 
(complete)

 360

XOR

XOR

Inform_Customer 
(complete)

 193

XOR

  193

XOR and XOR

AND_Split 
(complete)

 167

XOR and XOR

  167

XOR

Design_CB 
(complete)

 148

XOR

XOR

Produce_CB 
(complete)

 82

XOR

  82

XOR and XOR

Cancel_CB 
(complete)

 66

XOR

  66

XOR

Packaging_CB 
(complete)

 82

XOR

  82

XOR

ArtificialEndTask 
(complete)

 300

XOR

  66

XOR

Packaging_SB 
(complete)

 152

XOR

XOR and XOR

Cancel_SB 
(complete)

 67

XOR

  67   85

XOR and XOR

AND_Join 
(complete)

 167

XOR

XOR

Recieve_payment 
(complete)

 82

XOR

  82

XOR

Payment_Recovery 
(complete)

 85

XOR

  85

  0   82

XOR

Process_Order___SB_Parts 
(complete)

 152

XOR

  152

XOR

Send_bill 
(complete)

 167

XOR

  167

XOR

respond 
(complete)

 105

XOR

  60

  20   25

XOR

Ship_order 
(complete)

 167

XOR

  167

  82

  67

XOR

No_responce 
(complete)

 88

XOR

  46   42

  85

XOR

ArtificialEndTask2 
(complete)

 300

  300

  105  88

XOR

Recieve_cust__order 
(complete)

 300

XOR and XOR

  300  148   152

  167   167

ArtificialStartTask 
(complete)

 300

XOR

  300

Figure C.30: Original model for net g24.



357

ArtificialStartTask 
(complete)

 300

XOR

XOR

Recieve_cust__order 
(complete)

 300

XOR

  300

XOR

Process_Order___SB_Parts 
(complete)

 152

XOR

  152

XOR

Design_CB 
(complete)

 148

XOR

  148

XOR

Packaging_SB 
(complete)

 152

XOR and XOR

  152

XOR

Check_credit 
(complete)

 360

XOR and XOR

XOR

AND_Split 
(complete)

 167

XOR

  167

XOR

Ship_order 
(complete)

 167

XOR

  85

XOR

Inform_Customer 
(complete)

 193

XOR

  193

XOR and XOR

respond 
(complete)

 105

XOR and XOR

  105

XOR

No_responce 
(complete)

 88

XOR

  88

XOR

Produce_CB 
(complete)

 82

XOR and XOR

  82

  141

XOR and XOR

ArtificialEndTask 
(complete)

 300

XOR

  142

XOR

Send_bill 
(complete)

 167

XOR

  167

XOR and XOR

AND_Join 
(complete)

 167

XOR

  166

  167

XOR

Payment_Recovery 
(complete)

 85

XOR

  85

XOR

Recieve_payment 
(complete)

 82

XOR

  82

  85

XOR

ArtificialEndTask2 
(complete)

 300

  300

  140

  53

  105

  58   58

  1

  23

XOR

Cancel_CB 
(complete)

 66

XOR

  20

XOR

Cancel_SB 
(complete)

 67

XOR

  26  46   41

  66

  82

XOR

Packaging_CB 
(complete)

 82

XOR

  82

  82

  82

  67

Figure C.31: Mined model for net g24.



358 All Models for Single-Blind Experiments

XOR

End_Phone_Production 
(complete)

 300

XOR

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

Paint_Black 
(complete)

 155

XOR

XOR and XOR and XOR and XOR

Assemble_Phone 
(complete)

 300

XOR

  155

XOR

Production_Frame_1 
(complete)

 300

XOR and XOR

XOR

Production_Electronics 
(complete)

 300

XOR

  300

XOR

Production_Frame_2 
(complete)

 300

XOR

  300

XOR and XOR

Assemble_Keyboard 
(complete)

 300

XOR

  300

XOR

Check_Phone 
(complete)

 612

XOR

  300

  312

XOR

Production_Keyboard 
(complete)

 300

XOR and XOR

XOR

Production_Board 
(complete)

 300

XOR

  300

XOR

Outsourced_Keys_Production 
(complete)

 300

XOR

  300

  300

XOR

Start_Production 
(complete)

 300

XOR and XOR and XOR and XOR

  300   300

XOR

Production_Cover 
(complete)

 300

XOR

  300

XOR

Earphone_Machina_B 
(complete)

 159

XOR

  159

XOR

Earphone_Machine_A 
(complete)

 141

XOR

  141

  155

XOR

Paint_Silver 
(complete)

 145

XOR

  145

  145

XOR and XOR

Assemble_Frame 
(complete)

 300

XOR

  300

  159  300   300   300

  141

  300

ArtificialStartTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

Figure C.32: Original model for net g25.



359

ArtificialStartTask 
(complete)

 300

XOR

XOR

Start_Production 
(complete)

 300

XOR and XOR

  300

XOR

Earphone_Machine_A 
(complete)

 141

XOR and XOR and XOR

  141

XOR

Production_Keyboard 
(complete)

 300

XOR

  300

XOR

Earphone_Machina_B 
(complete)

 159

XOR and XOR and XOR

  159

XOR

Production_Cover 
(complete)

 300

XOR

  116

XOR

Production_Frame_1 
(complete)

 300

XOR

  126

XOR

Production_Board 
(complete)

 300

XOR

  139

XOR

Paint_Black 
(complete)

 155

XOR

  155

XOR

Paint_Silver 
(complete)

 145

XOR

  145

XOR

Production_Frame_2 
(complete)

 300

XOR

  112

XOR

Production_Electronics 
(complete)

 300

XOR

  300

XOR and XOR

Assemble_Frame 
(complete)

 300

XOR

  300

XOR

Outsourced_Keys_Production 
(complete)

 300

XOR

  300

XOR and XOR and XOR

Assemble_Phone 
(complete)

 300

XOR

  300

XOR

Assemble_Keyboard 
(complete)

 300

XOR

  300

  295

  300

  277

XOR

Check_Phone 
(complete)

 612

XOR

  300

  312

XOR

End_Phone_Production 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask 
(complete)

 300

XOR

  300

XOR

ArtificialEndTask2 
(complete)

 300

  300

  129   138   156

  14

  5

  104

  23

Figure C.33: Mined model for net g25.



360 All Models for Single-Blind Experiments



Bibliography

[1] COSA Business Process Management. http://www.cosa-bpm.com/.

[2] CPN Tools. http://wiki.daimi.au.dk/cpntools/.

[3] Extensible Markup Language (XML). http://www.w3.org/XML/.

[4] Process Mining Website. http://www.processmining.org/.

[5] SAP. http://www.sap.com/.

[6] Staffware Process Suite. http://www.staffware.com/.

[7] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets 1997, volume
1248 of Lecture Notes in Computer Science, pages 407–426. Springer-
Verlag, Berlin, 1997.

[8] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,
1998.

[9] W.M.P. van der Aalst. Business Process Management Demystified: A
Tutorial on Models, Systems and Standards for Workflow Management.
In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Con-
currency and Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 1–65. Springer-Verlag, Berlin, 2004.

[10] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process
Mining and Verification of Properties: An Approach Based on Tem-
poral Logic. In Robert Meersman, Zahir Tari, Mohand-Said Hacid,
John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacob-
sen, Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors,
OTM Conferences (1), volume 3760 of Lecture Notes in Computer Sci-
ence, pages 130–147. Springer, 2005.

[11] W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Per-
formance Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski,
editors, International Conference on Engineering and Deployment of



362 BIBLIOGRAPHY

Cooperative Information Systems (EDCIS 2002), volume 2480 of Lec-
ture Notes in Computer Science, pages 45–63. Springer-Verlag, Berlin,
2002.

[12] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Mod-
els, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[13] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

[14] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of
Issues and Approaches. Data and Knowledge Engineering, 47(2):237–
267, 2003.

[15] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining,
volume 53 of Special Issue of Computers in Industry. Elsevier Science
Publishers, Amsterdam, 2004.

[16] W.M.P. van der Aalst and A.J.M.M. Weijters. Chapter 10: Process
Mining. In M. Dumas, W.M.P. van der Aalst, and A.H. ter Hofstede,
editors, Process-Aware Information Systems: Bridging People and Soft-
ware Through Process Technology. John Wiley & Sons Inc, 2005.

[17] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow
Mining: Discovering Process Models from Event Logs. IEEE Transac-
tions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[18] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models
from Workflow Logs. In I. Ramos G. Alonso H.-J. Schek, F. Saltor, ed-
itor, Advances in Database Technology - EDBT’98: Sixth International
Conference on Extending Database Technology, volume 1377 of Lecture
Notes in Computer Science, pages 469–483, 1998.

[19] Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas
Athena BV, Apeldoorn, The Netherlands, 2001.

[20] Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn,
The Netherlands, 2001.

[21] Workflow Management Coalition. WFMC Home Page.
http://www.wfmc.org.

[22] J.E. Cook. Process Discovery and Validation Through Event-Data Anal-
ysis. PhD thesis, 1996.

[23] J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering Models of Behavior
for Concurrent Workflows. Computers in Industry, 53(3):297–319, 2004.



BIBLIOGRAPHY 363

[24] J.E. Cook and A.L. Wolf. Automating Process Discovery Through
Event-Data Analysis. In ICSE ’95: Proceedings of the 17th interna-
tional conference on Software engineering, pages 73–82, New York, NY,
USA, 1995. ACM Press.

[25] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes
from Event-Based Data. ACM Transactions on Software Engineering
and Methodology, 7(3):215–249, 1998.

[26] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In
Proceedings of the Sixth International Symposium on the Foundations of
Software Engineering (FSE-6), pages 35–45, New York, NY, USA, 1998.
ACM Press.

[27] A.K. Alves de Medeiros and C.W. Guenther. Process Mining: Using
CPN Tools to Create Test Logs for Mining Algorithms. In K. Jensen, ed-
itor, Proceedings of the Sixth Workshop on the Practical Use of Coloured
Petri Nets and CPN Tools (CPN 2005), volume 576 of DAIMI, pages
177–190, Aarhus, Denmark, October 2005. University of Aarhus.

[28] A.K. Alves de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and
A.J.M.M. Weijters. Process Mining for Ubiquitous Mobile Systems: An
Overview and a Concrete Algorithm. In L. Baresi, S. Dustdar, H. Gall,
and M. Matera, editors, Ubiquitous Mobile Information and Collabora-
tion Systems (UMICS 2004), volume 3272 of Lecture Notes in Computer
Science, pages 154–168. Springer-Verlag, Berlin, 2004.

[29] A.K. Alves de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and
A.J.M.M. Weijters. Process Mining: Extending the α-algorithm to Mine
Short Loops. BETA Working Paper Series, WP 113, Eindhoven Univer-
sity of Technology, Eindhoven, 2004.

[30] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Busi-
ness Models and Workflow Specifications. International Journal of Co-
operative Information Systems, 13(3):289–332, 2004.

[31] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1995.

[32] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, and W.M.P. van der Aalst. The ProM Framework: A New Era
in Process Mining Tool Support. In G. C. and P. Darondeau, editors,
ICATPN, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer, 2005.

[33] B.F. van Dongen and W.M.P. van der Aalst. EMiT: A Process Mining
Tool. In Jordi Cortadella and Wolfgang Reisig, editors, ICATPN, volume



364 BIBLIOGRAPHY

3099 of Lecture Notes in Computer Science, pages 454–463. Springer,
2004.

[34] B.F. van Dongen and W.M.P. van der Aalst. Multi-phase Process
Mining: Building Instance Graphs. In Paolo Atzeni, Wesley W. Chu,
Hongjun Lu, Shuigeng Zhou, and Tok Wang Ling, editors, ER, volume
3288 of Lecture Notes in Computer Science, pages 362–376. Springer,
2004.

[35] B.F. van Dongen and W.M.P. van der Aalst. Multi-phase Process
mining: Aggregating Instance Graphs into EPCs and Petri Nets. In
Proceedings of the Second International Workshop on Applications of
Petri Nets to Coordination, Workflow and Business Process Manage-
ment (PNCWB), 2005.

[36] B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek. Verifi-
cation of EPCs: Using Reduction Rules and Petri Nets. In O. Pastor
and J. Falcão e Cunha, editors, CAiSE, volume 3520 of Lecture Notes
in Computer Science, pages 372–386. Springer, 2005.

[37] M. Dumas, W.M.P. van der Aalst, and A.H. ter Hofstede, editors.
Process-Aware Information Systems: Bridging People and Software
Through Process Technology. John Wiley & Sons Inc, 2005.

[38] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.
Natural Computing. Springer-Verlag, Berlin, 2003.

[39] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to
Knowledge Discovery in Databases. AI Magazine, 17:37–54, 1996.

[40] L. Fischer, editor. Workflow Handbook 2001, Workflow Management
Coalition. Future Strategies, Lighthouse Point, Florida, 2001.

[41] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction
in Bisimulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

[42] M. Golani and S.S. Pinter. Generating a Process Model from a Pro-
cess Audit Log. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and
M. Weske, editors, International Conference on Business Process Man-
agement (BPM 2003), volume 2678 of Lecture Notes in Computer Sci-
ence, pages 136 – 151, 2003.

[43] G. Greco, A. Guzzo, and L. Pontieri. Mining Hierarchies of Models:
From Abstract Views to Concrete Specifications. In W.M.P. van der
Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Business Pro-
cess Management, volume 3649, pages 32–47, 2005.

[44] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Mining Expressive Pro-
cess Models by Clustering Workflow Traces. In H. Dai, R. Srikant, and



BIBLIOGRAPHY 365

C. Zhang, editors, PAKDD, volume 3056 of Lecture Notes in Computer
Science, pages 52–62. Springer, 2004.

[45] P. D. Grunwald, I. J. Myung, and M. Pitt, editors. Advances in Min-
imum Description Length Theory and Applications. The MIT Press,
2005.

[46] C.W. Guenther and W.M.P. van der Aalst. A Generic Import Frame-
work for Process Event Logs. In Johann Eder and Schahram Dustdar,
editors, Business Process Management Workshops, volume 4103, pages
81–92, 2006.

[47] M. Hammori, J. Herbst, and N. Kleiner. Interactive Workflow Mining.
In B. Pernici J. Desel and M. Weske, editors, Second International Con-
ference on Business Process Management (BPM 2004), volume 3080 of
Lecture Notes in Computer Science, pages 211 – 226. Springer-Verlag,
Berlin, 2004.

[48] K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability
of Workflow Nets in the Stepwise Refinement Approach. In W.M.P. van
der Aalst and E. Best, editors, Application and Theory of Petri Nets
2003, volume 2679 of Lecture Notes in Computer Science, pages 335–
354. Springer-Verlag, Berlin, 2003.

[49] J. Herbst. A Machine Learning Approach to Workflow Management.
In R.L. de Mntaras and E. Plaza, editors, Proceedings 11th European
Conference on Machine Learning.

[50] J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von
Workflow-Modellen. PhD thesis, Universität Ulm, November 2001.

[51] J. Herbst and D. Karagiannis. Integrating Machine Learning and Work-
flow Management to Support Acquisition and Adaptation of Workflow
Models. International Journal of Intelligent Systems in Accounting, Fi-
nance and Management, 9:67–92, 2000.

[52] J. Herbst and D. Karagiannis. Workflow Mining with InWoLvE. Com-
puters in Industry, 53(3):245–264, 2004.

[53] IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM
Deutschland Entwicklung GmbH, Boeblingen, Germany, 1999.

[54] S. Jablonski and C. Bussler. Workflow Management: Modeling Con-
cepts, Architecture, and Implementation. International Thomson Com-
puter Press, London, UK, 1996.

[55] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1. EATCS monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1997.



366 BIBLIOGRAPHY

[56] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2. EATCS monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1997.

[57] F. Leymann and D. Roller. Production Workflow: Concepts and Tech-
niques. Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[58] L. Maruster. A Machine Learning Approach to Understand Business
Processes. PhD thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2003.

[59] J. Mendling and M. Nüttgens. Transformation of ARIS Markup Lan-
guage to EPML. In Proceedings of the 3rd GI Workshop on Business
Process Management with Event-Driven Process Chains (EPK 2004),
pages 27–38, 2004.

[60] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes.
Information and Computation, 100(1):1–77, 1992.

[61] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
1996.

[62] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[63] Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The
Netherlands, 1999.

[64] S.S. Pinter and M. Golani. Discovering Workflow Models from Activities
Lifespans. Computers in Industry, 53(3):283–296, 2004.

[65] H.A. Reijers and S. Limam Mansar. Best Practices in Business Process
Redesign: An Overview and Qualitative Evaluation of Successful Re-
design Heuristics. Omega: The International Journal of Management
Science, 33(4):283–306, 2005.

[66] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1998.

[67] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring
the Alignment Between Event Logs and Process Models. BETA Working
Paper Series, WP 144, Eindhoven University of Technology, Eindhoven,
2005.

[68] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measur-
ing the Fit and Appropriateness of Event Logs and Process Models. In
Christoph Bussler and Armin Haller, editors, Business Process Manage-
ment Workshops, volume 3812, pages 163–176, 2005.

[69] G. Schimm. Process Mining. http://www.processmining.de/.



BIBLIOGRAPHY 367

[70] G. Schimm. Generic Linear Business Process Modeling. In S.W. Lid-
dle, H.C. Mayr, and B. Thalheim, editors, Proceedings of the ER 2000
Workshop on Conceptual Approaches for E-Business and The World
Wide Web and Conceptual Modeling, volume 1921 of Lecture Notes in
Computer Science, pages 31–39. Springer-Verlag, Berlin, 2000.

[71] G. Schimm. Process Miner - A Tool for Mining Process Schemes from
Event-based Data. In S. Flesca and G. Ianni, editors, Proceedings of
the 8th European Conference on Artificial Intelligence (JELIA), volume
2424 of Lecture Notes in Computer Science, pages 525–528. Springer-
Verlag, Berlin, 2002.

[72] G. Schimm. Mining Most Specific Workflow Models from Event-Based
Data. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, ed-
itors, International Conference on Business Process Management (BPM
2003), volume 2678 of Lecture Notes in Computer Science, pages 25 –
40, 2003.

[73] G. Schimm. Mining Exact Models of Concurrent Workflows. Computers
in Industry, 53(3):265–281, 2004.

[74] Eastman Software. RouteBuilder Tool User’s Guide. Eastman Software,
Inc, Billerica, MA, USA, 1998.

[75] Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berk-
shire, United Kingdom, 2000.

[76] H.M.W. Verbeek. Verification of WF-nets. PhD thesis, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands, 2004.

[77] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing
Workflow Processes using Woflan. The Computer Journal, 44(4):246–
279, 2001.

[78] H.M.W. Verbeek, B.F. van Dongen, J. Mendling, and W.M.P. van der
Aalst. Interoperability in the ProM Framework. In T. Latour and M. Pe-
tit, editors, Proceedings of the CAiSE’06 Workshops and Doctoral Con-
sortium, pages 619–630, Luxembourg, June 2006. Presses Universitaires
de Namur.

[79] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Work-
flow Models from Event-Based Data using Little Thumb. Integrated
Computer-Aided Engineering, 10(2):151–162, 2003.

[80] L. Wen, J. Wang, W.M.P. van der Aalst, Z. Wang, and J. Sun. A Novel
Approach for Process Mining Based on Event Types. BETA Working
Paper Series, WP 118, Eindhoven University of Technology, Eindhoven,
2004.



368 BIBLIOGRAPHY

[81] L. Wen, J. Wang, and J. Sun. Detecting Implicit Dependencies Between
Tasks from Event Logs. In Xiaofang Zhou, Jianzhong Li, Heng Tao Shen,
Masaru Kitsuregawa, and Yanchun Zhang, editors, APWeb, volume 3841
of Lecture Notes in Computer Science, pages 591–603. Springer, 2006.



Index

α-algorithm, 29, 34–36
extensions, 45

dom, 35
rng , 35
addATE, 162
createCaseFile, 162

analysis metrics, 70, 155
completeness, 71, 155

PF complete , 60, 71
duplicates, 105

duplicates precision (DP), 105,
108

duplicates recall (DR), 105, 108
preciseness, 71

behavioral precision (BP ), 74,
76

behavioral recall (BR), 74, 77
structure, 79

structural precision (SP), 79, 81,
107

structural recall (SR), 79, 81,
107

arc post-pruning, 123, 124

bag, 29, 30, 105, 107
behaviorally equivalent, 44, 57

causal matrix, 55, 97
extended, 96, 97
mappings, 235, 239
semantics, 57, 243

common control-flow constructs, 3

choice, 4
duplicate tasks, 4
invisible tasks, 4
loops, 4
non-free choice, 4
parallelism, 4
sequence, 4

CPN Tools, 158, 172, 173

dependency measure, 69, 104

elitism, 66
event log, 1, 2, 29, 35

real-life, 165, 193
simulation, 172
synthetic, 165, 173

event trace, 35

firing rule, 29, 31
fitness measure, 58, 94, 97

F , 62
FDGA, 99
requirements

completeness, 59, 60
folding, 97, 98, 108
preciseness, 61, 62

genetic algorithms, 6, 51
elite, 7, 51
fitness, 7, 51, 52
generation, 7
genetic material, 7
genetic operators, 7, 51, 52



370 INDEX

crossover, 7, 51
mutation, 7, 51

genotype, 52, 101
individual, 7, 51
internal representation, 7, 52
offsprings, 7
parents, 7
phenotype, 52, 101
population, 7, 51
selection criterion, 7
stop criteria, 7

genetic operators, 63, 101
crossover, 63, 102
mutation, 65, 102

genetic process mining, 6
basic GA, 51

evaluation, 71
experiments, 70, 82, 83, 124, 126,

128, 165, 176
fitness, see fitness measure
genetic operators, 63
initial population, 67
internal representation, 55
steps, 66

duplicates GA (DGA), 91
evaluation, 105
experiments, 105, 109, 110, 124,

126, 128, 165
fitness, see fitness measure
genetic operators, 101
initial population, 103
internal representation, 93, 96
steps, 102

Heuristic Nets (HNs), 142
heuristics, 67–69, 102, 103
hybrid genetic algorithms, 68

implicit place, 29, 34
individuals

over-general, 8, 77

over-specific, 8, 77
information systems, 1

local context, 94
local information, 6, 35, 68, 96

MXML, 141, 142, 144

noise, 6, 123
noise types, 126
non-free-choice, 16

local, 16
non-local, 16

ordering relations, 35
causal, 35, 149
follows, 35, 82, 94, 103, 149, 154
parallel, 35
unrelated, 35

parsing, 60, 93, 94
continuous semantics, 60, 97, 99
look ahead, 94, 99
stop (or blocking) semantics, 147

Petri nets, 29, 30
input/output nodes, 30

plug-ins, 142
analysis, 144

Behavioral Precision/Recall, 155
Conformance Checker, 144, 193,

195, 204
Duplicates Precision/Recall, 155
Fitness, 155
Prune Arcs, 127, 150
Structural Precision/Recall, 155

conversion, 144
Heuristics net to Petri net, 154

export, 142
Group Log (same follows rela-

tion), 151, 154
Group Log (same sequence), 151,

154



INDEX 371

HN File, 154
import, 142

Open HN File, 154
log filters, 151

Add Artificial End Task, 151
Add Artificial End Task Log Fil-

ter, 194
Add Artificial Start Task, 151
Add Artificial Start Task Log

Filter, 194
Add Noise, 151
Event Log Filter, 193
Final Event Log Filter, 193
Start Event Log Filter, 193

mining, 142
Duplicate Tasks GA, 105, 149
Genetic algorithm, 70, 147, 193,

204
process discovery, 15
process instances, 1
process mining

benefit, 1
concept, 1
perspectives, 2

case, 3
control-flow, 2, 3
organizational, 3

ProM, 141, 142
architecture, 142
plug-ins, see plug-ins

ProMimport , 141, 158
plug-ins

CPN Tools, 158, 162
Eastman, 158, 162, 193

proper completion, 29, 33

research question, 6

single-blind experiment, 173

tournament, 67

unbalanced AND-split/join, 174

Woflan, 34
workflow mining, 15
Workflow nets, 29, 33

Structured, 34



372 INDEX



Summary

Nowadays, most organizations use information systems to support the exe-
cution of their business processes. These information systems may contain
an explicit model of the business processes (e.g. workflow management sys-
tems), may support the tasks involved in the processes without necessarily
defining explicit process models (e.g. ERP systems), or may simply keep
track (for auditing purposes) of the tasks that have been performed without
providing any support for the actual execution of those tasks (e.g. custom
made systems in hospitals). Either way, these information systems typically
support logging capabilities that register what has been executed in the or-
ganization: general data about cases (i.e. process instances), times at which
tasks were executed, persons or systems that performed the tasks, and so on.
Such logs, called event logs, are the starting point for process mining.

Process mining targets the automatic discovery of information from an
event log. This discovered information can be used to deploy new systems
that support the execution of business processes or as a feedback tool that
helps in auditing, analyzing and improving already enacted business pro-
cesses. The main benefit of process mining techniques is that information
is objectively compiled. Depending on the type of data present in an event
log, three different perspectives of process mining can be discovered. The
control-flow perspective relates to the “How?” question (e.g. “How are the
processes actually been executed?”), the organizational perspective to the
“Who?” question (e.g. “Who is handing over work to whom?”), and the case
perspective to the “What?” question (e.g. “What is the average throughput
time for cases of a certain process?”). All these three perspectives are com-
plementary and relevant for process mining. However, this thesis focusses on
the control-flow perspective of process mining.

Control-flow mining techniques discover a process model that specifies
the relations between tasks in an event log. This mined process model is an
objective picture that depicts possible flows that were followed by the cases
in the log (assuming that the events were correctly logged). Because the flow
of tasks is to be portrayed, control-flow mining techniques need to support



374 Summary

the correct mining of the common control-flow constructs that appear in pro-
cess models. These constructs are: sequences, parallelism, choices, loops, and
non-free-choice, invisible tasks and duplicate tasks. In fact, there has been
quite a lot of work on mining the control-flow perspective of process models.
However, none of the current control-flow process mining techniques is able
to mine all constructs at once. The first reason why these techniques have
problems to handle all the constructs is that they are based on local informa-
tion in the log. In other words, they use the information about what tasks
directly precede or directly follow each other in a log to set the dependencies
between these tasks. A second reason why some of the techniques cannot
mine certain constructs is because the notation they use to model the pro-
cesses does not support these constructs. Furthermore, many of the current
techniques have problems while dealing with another factor that is common
in real-life logs: the presence of noise. Noise is low frequent behavior that
can appear in two situations: event traces were somehow incorrectly logged
(for instance, due to temporary system misconfiguration) or event traces re-
flect exceptional situations. Either way, most of the techniques will try to
find a process model that can parse all the traces in the log. The problem
here is that, for many of these approaches, the number of times a relation
holds in the log is irrelevant. Thus, these approaches are very vulnerable to
noise because they are unable to distinguish between high frequent and low
frequent behavior.

Given all these reasons, we decided to investigate if it is possible to develop
a control-flow process mining algorithm that can discover all the common
control-flow structures while being robust to noisy logs. We did so by applying
genetic algorithms to perform process mining, and we call it genetic process
mining. The choice for using genetic algorithms was mainly motivated by the
absence of good heuristics that can tackle all the constructs, and by the fact
that genetic algorithms are intrinsically robust to noise. This investigation
resulted in two main contributions: (i) the genetic process mining algorithms
themselves and (ii) the analysis metrics that quantify the quality of the mined
models.

Genetic algorithms are a search technique that mimics the process of
evolution in biological systems. In this thesis, two genetic algorithms have
been defined: GA and DGA. The GA (basic Genetic Algorithm) can mine
all structural constructs, except for duplicate tasks. The DGA (Duplicates
Genetic Algorithm) is an extension of the GA that is able to also discover
duplicate tasks. Both algorithms are robust to noise because they benefit
the mining of models that correctly portrait the most frequent behavior in
the log. Any genetic algorithm has three main building blocks: the internal
representation of individuals, the fitness measure and the genetic operators.



375

For both the GA and the DGA, individuals are represented as causal matri-
ces. The main strength of causal matrices is that they support the modelling
of all common control-flow constructs in process models. The fitness mea-
sure assesses the quality of individuals by replaying the log traces into these
individuals. The main lesson learned from this replaying process is that the
use of a continuous parsing semantics is better than the use of a blocking
semantics. The fitness measure guides the search towards individuals that
are complete, precise and folded. An individual is complete when it can suc-
cessfully replay all the traces in an event log. An individual is precise when
it does not allow for much more behavior than the one that can be derived
from the log. Therefore, the preciseness requirement is based on the amount
of tasks of an individual that are simultaneously enabled while replaying the
log. The purpose of this requirement is to punish individuals that tend to
be over-general. An individual is folded when none of its duplicates have
input/output elements in common. The folding requirement is based only
on the structure of an individual. This requirement punishes the individu-
als that have too many duplicates and, therefore, tend to be over-specific.
Crossover and mutation are the two genetic operators used in the GA and the
DGA. The core concept behind both operators is that the causality relations
(i.e. dependencies) among tasks are the genetic material to be manipulated.

In total, seven analysis metrics have been developed to quantify how
complete, precise and folded the mined models are. These metrics are: the
partial fitness for the completeness requirement (PFcomplete), the behavioral
precision (BP) and recall (BR), the structural precision (SP) and recall (SR),
and the duplicates precision (DP) and recall (DR). From all these metrics,
the more elaborate ones are the behavioral precision and recall, which quan-
tify how much behavior two models have in common while parsing an event
log. We had to develop these analysis metrics because two individuals could
model the same behavior in the log, but have completely different structures.
Furthermore, because it is unrealistic to assume that event logs are exhaus-
tive (i.e. contain all the possible behavior that can be generated by original
models), metrics that would compare the coverability graphs of individu-
als or metrics based on branching bisimilarity were not applicable anymore.
Thus, the defined metrics can detect differences in the individuals, but can
also quantify how much behavior they have in common regardless of the log
being exhaustive or not. The concepts captured by these analysis metrics
are applicable to situations in which two models need to be compared with
respect to some exemplary behavior. In other words, these analysis metrics
are useful also beyond the scope of our genetic process mining approach.

The results of our experiments and case study show that the mined models
tend to be precise, complete and folded in many situations. However, the



376 Summary

algorithms have a drawback that cannot be neglected: the computational
time. The situation is more critical for the DGA than for the GA because
the DGA allows for duplicate tasks and, therefore, often uses a bigger search
space. As a consequence, the DGA usually needs more iterations to converge
to good solutions (i.e. mined process models that are complete, precise and
folded).

Finally, all the algorithms described in this thesis have been implemented
as plug-ins in the ProM framework. ProM is an open-source tool that is
available at www.processmining.org.



Samenvatting

Tegenwoordig gebruiken de meeste organisaties informatiesystemen om de
uitvoering van hun bedrijfsprocessen te ondersteunen. Deze informatiesyste-
men bevatten een expliciet model van de bedrijfsprocessen (bijv. workflow
management systems), ondersteunen de taken in het proces zonder een expli-
ciet model te definiëren (bijv. ERP systemen), of houden simpelweg bij welke
taken er uitgevoerd zijn (voor auditing doeleinden) zonder ondersteuning te
bieden bij het uitvoeren van deze taken (bijv. op maat gemaakte systemen in
ziekenhuizen). Doorgaans bieden deze informatiesystemen de mogelijkheid
om bij te houden wat er uitgevoerd is in een organisatie: algemene gegevens
over cases (“process instances”), wanneer taken zijn uitgevoerd, personen die
de taak hebben verricht, etc. Deze databestanden, genaamd event logs, zijn
het startpunt voor process mining.

Het doel van process mining is het automatisch ontdekken van informatie
in een event log. Deze informatie kan gebruikt worden om nieuwe systemen
te implementeren die de uitvoering van bedrijfsprocessen ondersteunen of als
een manier om feedback te krijgen over het auditen, analyseren en verbeteren
van reeds gëımplementeerde bedrijfsprocessen. Het belangrijkste voordeel
van process mining is dat de informatie op een objectieve wijze verkregen
wordt. Afhankelijk van de gegevens in de event log kunnen drie verschil-
lende perspectieven ontdekt worden. Het control-flow-perspectief gaat over
de “Hoe?” vraag (bijv. “Hoe worden de processen echt uitgevoerd?”), het
organisatieperspectief over de “Wie?” vraag (bijv. “Wie draagt werk over
aan wie?”) en het caseperspectief over de “What?” vraag (bijv. “Wat is
de gemiddelde doorlooptijd van bepaalde cases?”). Deze drie perspectieven
vullen elkaar aan en zijn alle relevant voor process mining. In dit proefschrift
ligt de nadruk echter op het control-flow-perspectief van process mining.

Control-flow mining technieken ontdekken een procesmodel dat de on-
derlinge verbanden tussen taken in een event log weergeeft. Dit ontdekte
procesmodel is een objectieve weergave van mogelijke opeenvolgende stappen
in het proces die gevolgd zijn (“flow”) door een bepaalde case in de event
log (onder de aanname dat de event log correct is). Omdat de flow van



378 Samenvatting

taken weergegeven dient te worden, moeten control-flow mining technieken
de meestvoorkomende control-flow elementen kunnen herkennen. Deze el-
ementen zijn: opeenvolging, parallellisme, keuze, herhaling, non-free-choice,
onzichtbare taken en gedupliceerde taken. Hoewel er al behoorlijk wat werk
is gedaan op het gebied van control-flow process mining, kan geen enkele
bestaande techniek al deze elementen tegelijkertijd herkennen. De eerste reden
waarom bestaande technieken hier problemen mee hebben is dat ze gebaseerd
zijn op lokale informatie in de event log. Dat wil zeggen, ze gebruiken in-
formatie over welke taken direct voorafgegaan of gevolgd worden door elkaar
om de afhankelijkheden te ontdekken. Een tweede reden waarom sommige
technieken sommige elementen niet kunnen herkennen is dat deze elementen
niet uit te drukken zijn in de notatie die de technieken gebruiken. Bovendien
hebben veel bestaande technieken problemen met een ander veelvoorkomende
eigenschap van event logs: ruis. Ruis is laagfrequent gedrag dat in twee
gevallen voor kan komen: data in de event log is fout opgeslagen (bijv. als
het system tijdelijk niet goed geconfigureerd is), of er zijn flows die uitzon-
derlijke situaties beschrijven. De meeste technieken zullen een procesmodel
proberen te vinden dat alle stappen in de event log kan naspelen. Het prob-
leem is dat, voor veel van deze aanpakken, het aantal keer dat een bepaalde
relatie tussen taken voorkomt in de log er niet toe doet. Dit maakt de huidige
technieken erg gevoelig voor ruis omdat ze niet in staat zijn om onderscheid
te maken tussen hoogfrequent en laagfrequent gedrag.

Gegeven deze redenen, hebben we besloten om te onderzoeken of het
mogelijk is om een control-flow mining algoritme te ontwikkelen dat alle
veelvoorkomende control-flow elementen kan ontdekken en bovendien om kan
gaan met ruis. We hebben dit gedaan door genetische algoritmes te gebruiken
voor process mining en we hebben het genetic process mining genoemd. De
motivatie om genetische algoritmes te gebruiken was vooral de afwezigheid
van goede heuristieken die alle elementen aan kunnen en het feit dat genetis-
che algoritmes goed met ruis om kunnen gaan. Dit onderzoek heeft geleid
tot twee belangrijke bijdragen: (i) de genetische process mining algoritmes
zelf en (ii) de analysemetrieken die de kwaliteit van ontdekte procesmodellen
kwantificeren.

Genetische algoritmes zijn een zoektechniek die het proces van evolutie
in biologische systemen volgt. In dit proefschrift zijn twee genetische algo-
ritmes gedefiniëerd: GA en DGA. GA (eenvoudig Genetic Algorithm) kan alle
control-flow elementen herkennen, behalve gedupliceerde taken. DGA (Du-
plicates Genetic Algorithm) is een uitbreiding van GA die ook gedupliceerde
taken kan ontdekken. Beide algoritmes kunnen goed omgaan met ruis omdat
ze zoeken naar procesmodellen die het meestvoorkomende gedrag in de event
log weergeven. Elk genetisch algoritme bestaat uit drie hoofdbestanddelen:



379

de interne representatie van de individuen, de fitness measure en de genetis-
che operatoren. Voor zowel GA als DGA worden individuen gerepresenteerd
als causale matrices. Het belangrijkste voordeel van causale matrices is dat
ze alle control-flow elementen ondersteunen. De fitness measure beoordeelt
de kwaliteit van individuen door de event log na te spelen aan de hand van
het procesmodel wat gedefiniëerd wordt door deze individuen. De belangri-
jkste les met betrekking tot deze simulatie is dat zogenaamde continuous
parsing semantics beter zijn dan blocking semantics. De fitness measure legt
de nadruk op individuen die compleet, precies en folded zijn. Een individu is
compleet wanneer het de event log helemaal kan naspelen. Een individu is
precies wanneer het niet veel meer gedrag toestaat dan wat er uit de event
log afgeleid kan worden. Daarom is de precisie-eis gebaseerd op het aantal
taken dat tegelijkertijd mogelijk uitgevoerd zouden kunnen worden tijdens
het naspelen van de event log met een individu. Het doel van deze eis is om
individuen te straffen die te algemeen zijn. Een individu is folded wanneer
geen enkele van zijn gedupliceerde taken input/output elementen gemeen
hebben. Deze eis straft individuen die te veel gedupliceerde taken hebben,
en daardoor te specifiek zijn. Crossover en mutatie zijn de twee genetische
operatoren die gebruikt zijn in GA en DGA. Het basisconcept achter beide
operatoren is dat de causale relaties (de afhankelijkheden) tussen taken het
genetisch materiaal zijn dat gemanipuleerd dient te worden.

In totaal zijn er zeven analysemetrieken ontwikkeld om te kwantificeren
hoe compleet, precies en folded de ontdekte modellen zijn. Deze metrieken
zijn: de partiële fitness voor de compleetheidseis (PFcomplete), de precisie van
het gedragsaspect (BP) en de recall ervan (BR), de precisie van de structuur
(SP) en de recall ervan (SR), en de precisie van de gedupliceerde taken (DP)
en de recall ervan (DR). De meest uitgebreide metrieken zijn de precisie en
recall van het gedragsaspect; zij kwantificeren hoeveel gedrag twee modellen
gemeen hebben wanneer een event log nagespeeld wordt. We hebben deze
analysemetrieken moeten ontwikkelen omdat two individuen hetzelfde gedrag
kunnen modelleren, maar tegelijkertijd een compleet verschillende structuur
kunnen hebben. Bovendien, omdat het niet realistisch is om aan te nemen dat
event logs compleet zijn (d.w.z. alle mogelijke gedrag bevatten van de oor-
spronkelijke procesmodellen), waren metrieken die de coverability-graaf van
individuen vergelijken of metrieken op basis van branching bisimilarity niet
meer van toepassing. De gedefinierde metrieken kunnen dus verschillen de-
tecteren tussen individuen, maar zij kunnen ook kwantificeren hoeveel gedrag
ze gemeen hebben ongeacht of de event log compleet is of niet. De concepten
achter deze analysemetrieken zijn van toepassing op situaties waar twee mod-
ellen vergeleken moeten worden ten opzichte van een bepaald “goed” gedrag.
Met andere woorden, deze metrieken zijn ook nuttig buiten het gebied van



380 Samenvatting

genetische process mining.
De resultaten van onze experimenten en case study laten zien dat de ont-

dekte modellen vaak precies, compleet en folded zijn. Echter, de algoritmes
hebben een nadeel dat niet verwaarloosd kan worden: rekentijd. De situ-
atie is kritischer voor DGA dan voor GA omdat DGA gedupliceerde taken
toestaat en daarom vaak een grotere zoekruimte heeft. Het gevolg hiervan is
dat DGA meestal meer iteraties nodig heeft om te convergeren naar goede
oplossingen (d.w.z. procesmodellen die compleet, precies en folded zijn).

Tot slot, alle algoritmes beschreven in dit proefschrift zijn gëımplementeerd
als plug-ins in het ProM-framework. ProM is een open-source programma
en is beschikbaar op www.processmining.org.



Acknowledgements

Although the tangible and final product of a PhD is a thesis, there is a
lot more to it than the written document. Actually, dedicating four years of
your life to a project is much more worthwhile if you have interesting and nice
people around you. When I decided to come to The Netherlands to do my
PhD, I was also motivated by the fact that this would be a nice opportunity
to be in touch with a different culture. I believe experiences abroad help one
in breaking old paradigms. Actually, my adaptation here was very smooth
and pleasant. In part because, in my opinion, the Dutch culture is not that
different from the Brazilian one, but also because I was lucky enough to come
to a nice work environment and to make some very nice friends during these
years. I try to acknowledge all of them here, but I apologize in advance if I
forgot someone.

(Still in Brazil)

The first person I want to thank is Jorge C.A. de Figueiredo because he
was the one who told me about the PhD position in Eindhoven. Without his
hint, I would have never applied for the position. Thanks, Jorge! Two other
important people were Péricles and Heliante Barros. They have both lived
in Eindhoven before (Heliante is Dutch) and they provided me with the most
important facts that Brazilians should know about Dutch people. Further-
more, they introduced me (via e-mail) to a family (de Paiva Verheijden) that
would play a very important role in my stay in Eindhoven. Thanks, Péricles
and Heliante!

(While in The Netherlands)

My stay in The Netherlands has been a great opportunity for both my
professional and personal development. First of all, I was very lucky to have
Wil van der Aalst and Ton Weijters as my advisors. Their passion for good
research and their different (but complementary!) leadership styles inspired
me to always try my best. Wil and Ton, thank you very much for believing
in me and providing such a rewarding work environment! I have learned a
lot in these four years! Second, I would like to thank my colleagues and
friends from the Information Systems (IS) group for the nice discussions and



382 Acknowledgements

social activities. More specifically, I would like to thank: Ineke Withagen
and Ada Rijnberg for providing their services as secretaries and translating
some Dutch documents for me in the first years in Eindhoven; Boudewijn van
Dongen, my officemate, for the discussions about how to express my ideas in a
nice mathematical way; Laura Maruster (former PhD in our group) for having
helped me in getting acquainted with life in Eindhoven and for becoming such
a great friend; Nick Szirbik for helping me in registering for a course to learn
Dutch at ROC; Monique Jansen-Vullers for introducing me to her Brazilian
neighbor already in the first months after my arrival in Eindhoven and for
helping me in getting the data for the case study conducted in this thesis;
Eric Verbeek for his technical support and also for allowing me to run my
experiments in his computer as well; Maurice Loosschilder for generating
the logs for the blind experiments; Alex Norta, Anke Hutzschenreuter, Anne
Rozinat, Christian Günther, Florian Gottschalk, Irene Vanderfeesten, Jeroen
van Luin, Hajo Reijers, Maja Pesic, Mariska Netjes, Minseok Song, Nataliya
Mulyar, Samuil Angelov, Sven Till and Ting Wang for the nice times while
playing sports, chatting, having lunch and/or going out together.

Other people who were not working in the IS group but also played an
important role in these years are: Peter van den Brand (thanks for being
such a special partner!) and his family (thanks for accepting me even when I
could not speak Dutch yet!); the employees of the Dutch municipality (thanks
for collaborating with us during the case study!); Cristina Ivanescu (thanks
for introducing me to Peter and for being a great friend!); Ulaz Ozen and
Baris Selcuk (thanks for helping with the Queuing Theory course!); Onno ter
Haar and Geri van den Berg (thanks for being so motivating while teaching
Dutch!); Family de Paiva Verheijden, especially Ignez and Jan (thank you
very much for welcoming me in Eindhoven and having acted as my “second
family” in many moments here!); Karina and Jack Nijssen (thanks for the
nice walks, celebrations and cheerful moments!); Tânia Fernandez (thanks
for the nice chats and for introducing Karina and Jack to me!); Adriana
Stout (thanks for putting me in touch with many of the Brazilians I know
nowadays in Eindhoven!); Nancy Horning (thanks for the nice times we had
together!); Ana Rita and Martin Roders, Fabio Ferreira, Javier Aprea, Keila
and Hermes Cordoba, Mônica Melhado, Sara Barros, Viviane Soares and
Ćıcero Vaucher (thank you all for the nice moments in Eindhoven!); Franklin
Ramalho, Genáına Rodrigues, Gilberto Cysneiros, Juliano Iyoda, Ĺıvia Sam-
paio and Natasha Lino (my Brazilian friends also doing (part of) a PhD
abroad, thanks for the nice trips in Europe and for your friendship!); and
my other friends in Brazil, especially Andréa Lima and Andréa Cavalcanti
(thanks for the encouraging e-mails and phone calls!).

(Always)



383

Last, but definitely not least, I want to thank my family for all their
constant support, love, care and stimulus. Thanks, mom and dad! Thanks,
Karina and Leonardo!



384 Acknowledgements



Curriculum Vitae

Ana Karla Alves de Medeiros was born on June 18, 1976 in Campina Grande,
Paráıba, Brazil, where she also grew up. From 1991 to 1993 she went to high
school at the Colégio Imaculada Conceição (Damas) in Campina Grande.

After finishing high school, she studied from 1994 to 1997 at the Universi-
dade Federal da Paráıba (Campus II)1, in Campina Grande, Brazil, to get a
Bachelor of Science degree in Computing Science (Ciência da Computação).
From 1998 to 2000, Ana Karla studied to get a Master of Science degree in
Computing Science, at this same university. The title of her dissertation is
“Mecanismos de Interação para um Modelo de Redes de Petri Orientado a
Objetos” (Interaction Mechanisms for an Object-Oriented Petri Net Model).

From May/2000 until July/2002, Ana Karla worked as a software engineer
for a software company in Recife, Pernambuco, Brazil. The company was
called Radix and its main product was a search engine especially tailored for
the Brazilian web.

In September 2002, Ana Karla moved to Eindhoven, The Netherlands, to
start her doctoral studies under the supervision of Prof.dr.ir. W.M.P. van
der Aalst and the co-supervision of Dr. A.J.M.M. Weijters in the area of pro-
cess mining, at the Technische Universiteit Eindhoven. Her doctoral studies
were completed in November 2006. The title of her doctoral thesis is “Ge-
netic Process Mining”.

At the moment (2006), Ana Karla continues to live in Eindhoven and since
April she is working as a researcher for the SUPER European project (www.ip-
super.org). Her main research area is process mining, but she is also inter-
ested in semantic web, data mining, business process management, genetic al-
gorithms and Petri nets. Ana Karla can be reached at a.k.medeiros@tm.tue.nl.

1Nowadays, this university is called Universidade Federal de Campina Grande.


	Contents
	1. Introduction
	2. Related work
	3. Process mining in action: the alpha-algorithm
	4. A genetic algorithm to tackle non-free-choice and invisible tasks
	5. A genetic algorithm to tackle duplicate tasks
	6. Arc post-pruning
	7. Implementation
	8. Evaluation
	9. Conclusion
	App. A. Causal matrix: mapping back-and-forth to Petri nets
	App. B. All models used during the experiments with known models
	App. C. All models used during the single-blind experiments
	Bibliography
	Index
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

