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Abstract

The paper contains a comparison of solution techniques for
Markov decision processes with respect to the total reward
criterion. It is illustrated by examples that the effect of

a number of improvements of the standara iterative method, which
are advocated in the literature, is limited in some realistic
situations.

Numerical evidence is provided to show that exploiting the
structure of the problem under consideration often yields a more
substantial reduction of the required computational effort than
some of the existing acceleration procedures.

We advocate that this structure should be analyzed and used in
choosing the appropriate solution procedure. This procedure
might be composed by blending several of the acceleration con- -
cepts that are described in literature. Four test problems are:
sketched and solved with seveéral successive approximation methods.
These methods were composed after analyzing the structure of the
problem. The required computational efforts are compared.

Introduction

In recent years a number of papers appeared that described impro-
vements of iterative methods for computing the total expected
reward of a (semi-) Markov decision process. The proposed impro-
vements all aim to reduce the required computational effort. How-
ever, they try to reach that goal in a different and sometimes
even conflicting way.

Of each of the proposed improvements or variants of the standard
successive approximation scheme there is numerical evidence that
it works more efficiently in specific situations than the standard
method. See, e.g. MacQueen's iteration method which incorporates
the concept of bounds for the optimal solution [11].

Moreover, we refer e.g. to Van Nunen [17] who claims that value
oriented methods.are preferable, Hastings and Van Nunen [81 who
advocate the advantage of action elimination, Porteus [22] who
shows the efficiency of extrapolation methods and finally Bart-
mann [1] who gives numerical evidence that the Bisection method
is very efficient.



However, although each of the proposed variants will have
its specific value, we will illustrate by some examples,
that the effect of each of them might be limited if one has
to solve a real problem. '
Numerical evidence is’provided to show that exploiting the
structure of the problem under consideration might yield a
more substantial reduction of the required éomputational effort
than some of the existing acceleration procedures. We advocate
that this structure should be analyzed and used in choosing the
appropriate solution procedure. The choice of a solution procedure
will depend on that structure, with other words the structure
of the problem will determine the way in which the respective
acceleration concepts, are blended when solving a real problem.
One might argue that it is preferable to have one solution
procedure available for all kind of problems. However, for prac-
tical applications, this is an unrealistic argument, as will
'be shown by the numerical results that are given and discussed
in the final section of this paper. _
The fact that one has to construct the solution procedure deé=-
pending on the structure of the problem might be disappointing
at first sight.
However, the construction of algorithms that exploit the struc-
ture of the problem is not extremely difficult in practice.
In fact, the reverse is true, (almost) all practical‘problems
pPossess a certain structure and the use of that structure might
enable you to find a solution in a reasonable time which might
otherwise be impossible.
Especial%y in practical situations one has to solve the problem
again and again with different values of the parameters as well
as with e.g. aggregated and decomposed state and action spaces.
This has to be done e.g. to evaluate several alternatives. So
the reduction of the computation time might be very valuable. The
numerical examples that we will give, will show how large the
computational gain can be. We draw two examples from the existing
literature but the other two stem in. fact from two real life
applications that were analyzed.
We don't claim that the comparison of methods that we will give
will be exhaustive. We even are not in a position to give the

best solution procedure for certain classes of problems. However,



the numerical experiences show how important it is to exploit
the structure of the problem under consideration for the choice
of an adequate solution procedure. Moreover, they show some
directions in which this structure can be exploited and how the

several acceleration concepts .work in some specific situations.

In general successive approximation methods are preferable over
the classical methods like policy iteration [9] and linear pro-
gramming [5][13]. However, some problems may have a structure

for which a policy iteration type of procedure is efficient. This
holds e.g. for some G/M/s guening control systems, as was shown
in Van Nunen and Puterman [19].

We will first introduce the model and some notation in order to
be able to describe the relevant notions less verbal.

We consider a system which at discrete points in time

(t=0,1, 2, ..... ) caﬁ be identified as being in oné of a
finite number of states. The state space is S: = (1, 2, ..., N).
If the system is observed to be in state i at time t, an action
a may be chosen from a finite set of actions A = (1, ..... , k).
As a result of this action a the system moves to state j at time
t + 1 with probability P?j > 0 and an (expected) one stage

reward r(i, a) is earned. We assume jgsp?j=l for all ieS and
ael, The objective is to maximize the total expected discounted

rewards over an infinite time horizon and to determine a decision
rule for which this maximal return is achieved.

The discount factor iS‘Bg 1. The restriction to discounted
problems with jéspij = 1 1is only chosen for the simplicity of
the exposition, see e.g. [16][21].

A policy £ is a function from S - A and a strategy T is a
sequence of policiesm= (fo, f1 .......).
So, if we use strategy ™ , then action £.(i) is chosen at time

t if the system is observed to be in state i at that time.
A strategy is called stationary of all component functions fg
are equal i.e. 7™ = (£, £, £, ....).

By rf

we denote the vector on S with components r(i,f(i)).
By pf we denote the N » N matrix with (i, 3j)-th component equal

£ (i
to plj(l).



Let strategy m be given and let the starting state be state i.
By the random variables X, and A, we denote the state and the
action of the system at time t respectively.

Now v (i) is defined by

o]

V(1) =B,y Lo BY T(XgiAe), (1)

The total expected discounted reward over an infinite time
horizon given that the starting state is ieS and that strategy
m 1s used.
E denotes the expectation with respect to the probability
structure generated by 7™ and 1i. By'JTwe denote the vector with
components Vv (i) .
For a stationary strategy T = (£, £, £, ..... ) we have

£ gt pf)t ot (2)

vii= v = ?
t=0

The goal is to determine v such that

v* = sup v" (3)

and to determine a strategy 7* for which v* is attained or
approximated. '
It is well known, that under the simple conditions that we have

. , bid
here, there exists a policy f* such that v = v*.

The standard successive approximation method (SSA) introdgced

by Bellman [2] in 1957 can be used to determine f£* and Vv

In fact this SSA forms the basis for the variants that we will
discuss. We define the mappings 1t anda U from V - V for the

set V of real valued functions V on S.

Lfv = rf + Bva (4)

£

Uv + stv} (5)

i

max Lfv = max {r
£ £

These mappings are used to formulate the following classical
result.




Lemma 1 (Blackwell ([31)

Lf and U are monotone contraction mappings on V with fixed points

v and Vt respectively. The contraction factor is B8.
Moreover, for Vo eV and v, defined by
fn

v, =Uv, _; =: LTV (6)
We have

v, + V¥
with a rate of convergence that is equal to
Moreover,

an > . V¥
with fp the policy for which Uv,_; 1is maximal,
Note that (6) can be expressed component-wize by

: — a a . . .
vy (i) = ggi {r(l,a) + jES Bpij vn_l(j)} ieS (7)

.

The convergence of this standard successive approximation (SSA)
method expressed in (6) or (7) is in general rather slow. There-
fore several variants of the SSA-method have been introduced.
The goal of these variants are different and can be divided into

three groups.

The first group tries to use the information collected during the
iteration process to get better estimates of v¥ . This group
contains in fact two basic principles of which several subvariants
are available in literature.

These basic principles are

a) successive approximation methods which incorporate the compu-
tation of upper and lower bounds for the optimal value vector v*
in each iteration step of the actual algorithm. MacQueen [11],
Porteus [203].

b) successive approximation methods which use extrapolations
to v*. Porteus [22].



In the second group of variants one tries to reduce the
contraction factor. This should lead to a gain in the required

number of iterations. Again there are 2 basic variants

c) variants in the policy improvement procedure (the maximization)
step of the successive approximation method. Hastings [6],
Reetz [24], Wessels [25], Van Nunen [16], Porteus [21], Van
Nunen and Sticdham [18]

d) the Bisection method in which in some iterations a contraction

factor of .5 instead of § is achieved. Bartmann [1].

The third group tries to reduce the computational effort that is
required to compute for each ie¢ S the maximum over all actions

a ¢ A of the sum as given in the righthand side of [7] There
are again 2 basic concepts.

e) S.A.methods that incorporate-a test for the elimination of
actions that can be identified as being non-optimal for a number
of iteration steps. So, for this actions the computation of the
mentioned sum can be avoided.

MacQueen [12], Hastings [7], Hastings and Van Nunen [8].

f) Value oriented successive approximation methods which provide

better values for vil

fn o .
L instead of U, so that for these steps the maximization

can be avoided. Morton [15], Van Nunen [16], [17], Puterman [23].

by executing a number of times the mapping

Of course one will use a combination of the above basic principles
if one constructs an algorithm for solving a particular problem.
However, the effects of above variants might be conflicting and
depend heavily on the structure of the problem.

For example in a problem with a large number of states but with
only a small number of decisions ineach state, like it is the case
in machine replacement problems where the only options could be

to repair or to replace the machine, the computational effort
regquired for the incorporation of an action elimination procedure
might be more than the gain that can be achieved.

If, however for each state a lot of actions are possible the
variants (e) and (£f) might work quite well.



For example if the transition probabilities have a particular
structure e.g. each matrix Pf is almost upper triangular, then
this structure can be exploited by using a Gauss-Seidel variant.
These variants belong to the class described under c).

As an example of conflicting effects we can use the effects that
are achieved if one composes a procedure by using e.g. a Gauss-Seidel
variant as well as the concept of bounds.

The Gauss-Seidel variant might cause an improvement in the con-
traction-rate but it might cause worser bounds. Which of these
effects will be the most important can not be said in general,

- as we will see later. .

Exploiting the structure of the problem might also lead to
enormous gains in required computation time as is illustrated
next. Many practical problems like the inventory and replacement

problems we will discuss in this paper possess the property that

a
pij
following simple example.

is in fact independent of i. This is illustrated in the

Suppose we have a single item inventory system where the

states 0, 1, 2, ..... N represent the available inventory at the
beginning of each period e.g. each week. Orders are placed at the
beginning of each week and delivery is instanteneously. The
demand in each period equals k with probability gx. If we

define the decision a as the inventory level just after'delivery,
than P?j = Ja-j independent of 1i.

So if one computes in each iteration step in advance for each

a € A

d(a) = %g}_)? Vhop (3) - (8)

one finds that (7) can be written as

This is just one of the examples of how the specific structure
can be used. Similar ideas can be used in computing e.g. the ex-
pected one-stage reward, if the underlying process is separable,
see [4].



Moreover, the structure of optimal policies can be exploited.
The combination ¢f certain variants in relation with using the
structure of the problem might also lead to conflicting effects.
For example the idea expressed in (9) can not be exploited if
e.g. a Gauss-Seidel variant is used.

The above discussion explains also why we did not use the same

solution procedures for all four test problems.
In section 2 we discuss, in short, the available accelaration
procedures. Section 3 is used to sketch the four test problems.

Numerical results are given in section four.

Variants of successive approximation methods

In this section we will give a brief description of the underlying
ideas of each of the acceleration procedures.

2.a Bounds for the optimal value vector v*

The concept of Bounds for v* was introduced by MacQueen([11].

Consider the SA method as described in (6) or (7). Then

Uvy = v, = pin+l v - LBy o ety il g
n n n n

= (zfntl 4 gpfnrlyy) - (ofntl 4 gpfatly )

= Ban+l(vn-vn_1)
< B max {v (i) - vy (1)} e
where e is the vector on S with all components .eqgual to 1.

The difference between vp,o = U2vn = U(Uvp) and vy 1is bounded
from above by

U2vn - vp = U2Vn - Uvp + Uvp = v, €S {8+82) max{v, (i)-vy_;(il}e
i
In general Ukvn - Vp can be estimated by
Vht+k = Vp = Ukvn-vn <(8+82+..Bk)max{vn(i)—vn_l(i)}e (10)

i

. k *
Since U'v, -~ v’ it follows that an upperbound for v* is given by



Vilsiv* giv 4 I%E max{vn(i) - vn_l(ij- (11)

Note that (10) can also be used to obtain an upperbound for

Vn+k-.
Similarly a lowerbound 1, can be determined.

fn

1, = vy +——min v (3) - v, (1) eng VIR cve gy

n ,.g 1 n-1

The above bounds are referred so as the MacQueen bounds (MQB),
see (11}, and (17). So, a S.A.-algorithm could be

¢ choose Vo € v (
) compute vo= Uvoy _ (13)
L stop if (i -1p) <€ or up - ln:se||vnﬂ

The €.-optimal policy with which the above procedure ends is fp

fn

and a good estimate for v and v* is

5 (dp + 1)

The above algorithm converges at least with a rate By
— ~ *
where Y is the subdominant eigen value of the matrix Pf . See [14].

This is based on the following result (see [10], [14]).

span (vn - Vn—l) = m?x{vh(i)-vn_l(i)} - m%n {vn(i)-vn_l(if}

< By span (Vvp-) = Vpo2).
If one uses more information of the actual transition matrices,
improved bounds can be obtained, see [26]
However, in general this will cost additional computational effort.
In the derivation of the MacQueen bounds (MQB) up and 1l as given
in (11) and (12) we used that for all i.e s the sum ;pij = 1.
If, however, this equal-row-new property does not hgld, more
complicated bounds have to be constructed. In this case we
have g L Py # BIPgs
Now, a straightébrward extension of the MQB will lead to

a = & i - i .
En vy + T3 mix (Vn(l) Vn_l(l)) e
- o . . .



10.

2 and o 4 = min ZP?éi)

with o = max Zpij in Ipy%

i,a
In this more general situation « z 0.

If UV v, , these bounds need-to be adapted slightly
(see [16], [20]). Note, that in this case the difference between

~ ~

u, and 1, cannot be expressed by means of the span (Vn‘Vn-l)

unless a =0, .

The use of a variant of the policy improvement procedure e.g. a
stopping-time as éescribed in section 2.c¢, transforms the problem
into an equivalent problem for which the equal row sum property
does not hold. This occurs e.g. if a Gauss-Seidel variant is used.
So in that case one could use the more complicated bounds (14).

In order to restore in such cases the egual row sum property

one needs an additional transformation, see [18], [21].

2. b Extrapolations

It would seem a good idea to use the following S.A.-algorithm
in which V_ is replaced by Vn which is the best current estimate

of v* based on the MacQueen bounds.

Go e V

Vh T Uvn_lB

Uy = vy + T3 m§x{vn(i) - vn_l(i)} e (15)
in = v, + %%E m}n{vn(i) - ?n_l(i)} e

Vp = %(ﬁn+ In)

In the case of equal row sums, the difference En'in equals
u.-l. as defined in (11) and (12).

So, the convergence is not improved by using the above
algorithm (15) in the case of equal row sums.

However, in the case of unegual row sums, as might occur
after using a variant of the policy improvement procedure,
as described in section 2.c¢, a considerable gain in required



11.

computational effort might be obtained. The Extrapolation
algorithms use the following idea.

Vo eV
{In = UVn- 1 (16)
Vn = Vn + C,n

with ¢, chosen appropriatly. For example in the case of
unequal row sums (14) can be used to derive
en:

1-0

- min { v (1)-v__; (1)}

c_ = klp=gmax{¥_(1) - Voo (B3 0+

For a number of extrapolation methods and numerical evidence
see Porteas [ 22].

Variants of the policy improvement procedure

The S.S.A.-method described in (6) and (7) is often referred
to as the pre-Jacobi method. Alternatives for the policy

improvement step can be obtained by constructing mappings
~f ~
L

and U instead of LY and U such that the sequence v
defined by

Goe \Y )
~_ X . ~f ~f ~ . ~fn
v, =U0v, _, := ggx{r + PT v _pl=: L7 vp-y

still converges to v at a geometric rate, i.e.

n

Often the goal is to define U in such a way that the resulting
convergence rate is smaller then g. Some of the policy
improvement variants like Gauss-Seidel procedures, overrelaxa-
tion methods etc. are well known [6] [24]. A unified approach
can be given by using the concept of stopping times. For details
see e.g. Wessels [25], Van Nunen [16] and Van Nunen and Stidham
[18]. These variants can be generated, also by using a
(pre-inverse) transformation of the data as introduced by
Porteus [21]. From a numerical point of view the advantage

of having a smaller spectral radius ;ﬂ?t)ep(BPt) =B

might be diminished by the fact that the transformed problem
does not necessarily possess the egual-row sum property. As an



2

.d)

12.

example of a variant of the policy improvement procedure

we describe the Gauss-Seidel wvariant.

vV, € V compute for i =1, 2, ..... /N
. a . a .
r(i,a) + .I, pis v_(3) + .I.ps. v._,(3). (19)
vpli) = mgx{ J<1 J 2 i>i7ij n-1 }
1 =Py
In this case the corresponding ;f and Sf have a particular

form (see [16],[211]). :

If the transition matrices are almost lower triangular a
procedure based on (19) might yield good results.

We will refer to (19) as G.S.1l. \

For (almost) upper triangular problems, the procedure that

starts with computing for state N, N-1, ..... respectively
. T a, : T a .
v_ (i) = max{r(l'a) ¥ 351 P33 Va9 T g0y Piy Va1 () }
I a
1 - pa

ij
will be preferable. We will refer to this variant as G.S.2.

The

Bisection method

The
the
the
Let

Bisection method was introduced by Bartmann (1). By using
monotonicity property of the mapping U it is tried to make
contraction factor equal to % for as many steps as possible.

VoeV such that Uvy 2vp and let v, = Uvo. Let 1, and

u; be as defined in (11) and (12). Note that 1) x v*<u;.

Let

mlg:%(ll+u1) and in general mp:= % (lpj+up). Compute

Um;; now there are three possibilities which are described

in the following picture

(a)

iy Umpomy

]
t
{

¥

/

{

]
.

b B s M 1t 1
|
i

5 P! ' !
)i \r '{
| } l \\ \ }

e
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(a) If Umy< my for all components, then v* <m;, which implies
that us:= Um,; 1l2:= 1, are also upper and lower bound
for v*.

(b) If Umy> mj, then 1l,:=Um, up := u; are upper and lower
bound for v*.

Note that in the cases (a) and (b) we have

luy = Lyfl<% [lu; - 14|

(c) If (a) and (b) donot hold, we have to adjust the bounds
according to (11) and (12). In this case

lJlug = 1o/ %8B [Juy - 1]

Repeating the above procedure with mp = %(lp+up) until 1,
and up are close enough, results in an algorithm which might
converge in a very-fast way. The speed of the convergence
will depend on the number of bisection steps that is made,

as is nicely shown in the exahples.

The elimination of suboptimal actions

In the n-th step of the algorithm (6) one has to compute for
all i1 €S the following term

. a .
max {r(i,a) +8 55 leVn_l<J{}

The goal of a sub-optimality test is t0 eliminate a number of

irrelevant actions such that for these actions the summation
z

;€3
The idea of using upper and lower~bounds in a procedure for

eliminating actions, was given by MacQueen [12]. In [12]

p?j V-1 (3) can be avoided.

MacQueen showed how actions can be identified as being non-optim:
for the rest of the iteration process. In [7], [8] Hastings

and Hastings and Van Nunen showed how similar ideas can be

used to eliminate actions only temporarily. Suppose that we are
in the situation of equal row sums. Then action ae¢A cannot

be optimal in the next iteration step if

. a . . , . .
r(l,a)+-§ Pij vn(3) < vy (1) +5m;n (vn(j)—vn_l(j))



since vp (1) 2v_(i) + Bm%n(vn(j) - v (3))

n-1
This can also be done for subsequent iteration steps by
using for Vo in the lefthand side of (10) upper bounds for

v like defined in (10) while in the righthand side a

n+k
similar expression with lower bounds is used. For detailed
information on the action elimination (AE) see [8].

There some numerical evidence is also given.

Value oriented methods

An other way to reduce the amount of computational effort
is by decreasing the number of maximization steps as was
proposed in [17].

fn
Let Vo = L V-1 = Uvp_ -

14,

Instead of determining vn;) by performing a maximization step,
one could proceed first with a number of iterations that use

Lfn instead of U. This idea is expressed in the following
S.A.-algorithm.

VO(A) e V Ae N
A fn A
Jva M= @ ‘;) vy, = @ P
_. () A-times
”% U " vn-1
n
’w1th L Vi1 = Uvn__l

(X)

However, the mapping U
contracting. Nevertheless convergence to v* is preserved,
see [16]. For numerical evidence of this method see (17),
the examples in section 4.

(21)

is neither necessarily monotone nor

and



3.

.1

= O

12
13

14

40

15.

\
The test problems

We combined several of the variants discussed in section 2
to determine the optimal policy and the corresponding total
expected discounted reward for four problems. These problems
are briefly described in this section. Typical for these
problems is that they have a lot of structure.

Howards auto replacement problem

This probleﬁ is described extensively in [%]. A car owner
considers his situation every three months. The state of the
system is determined by the age of his car, expressed in periods
of 3 months. /

It is supposed that a car of age 40 (10 years)/is worn out.
State 40 is also used to identify a car that is total loss. S0,
the number of states is 41. In each state he can sell his car

and buy another (second hand or new one) ¢f an age between

0 and 39, keeping the car is denoted by =-1. So, the number of
possible decisions in each state is 41. A car of age i has

a probability of P; to reach state 40 within the three months
period, so for each i the number of probabilities pijﬁfo is 2.
Costs are composed of purchasing costs, selling costs and
expected repair and maintenance costs, which depend of course
on the state (age) of the car.

The goal is to determine the policy for which the total expected
discounted rewards are minimal. For the numerical exercise

we took B = 0,¢7.

0, 1y eeeiainnns 12, 13, 14, 15 \ourern.... 40

Figure 3.1.

The figure shows the structure of the transition matrix

->e ey e -
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Note that the problem 1s almost periodic, since the proba-

bilities Pg to Py are close to 1.

The replacementproblem of Hastings

For details we refer to [67].

A machine is considered at discrete, equidistant points in

time. The state of the machine is determined by its age and

the level of required repair and maintenance costs for the

next period. The time interval (period) is chosen such that

the possibility of two break downs in a period can be neglected;
We consider the situation that the age of a machine is
maximally 100‘periods and for each age there are 10 repair

cost levels. So the number of states is 1000. Denoted by
{(1,1)(1,2), «...(1,10), (2,1) ..... (100,10)} .

in each state there are two possible actions-e.g.

. reparation of the machine (0) or replacement by a new machine (1)
Repair costs depend on the level as well as on the age of the

machine.

2 2 51 51 100 100

50.1 “\\‘
50.10 : %
51.1 7
51.10 ///%/
_
{
{
100.1 ;9/

Figure 3.2. The figure shows the structure of the matrix Pf

for £((i,3)) = 0 fori < 50 and £((i,3)) = 1 for
i > 50 and je(1,2,...10)
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3.3 A hard-cash inventory system

For details we refer to [26].

In this problem a cash-money-inventory system is considered.
On one hand customers deposit money into the bank (negative
demand) while on the other hand they cash money to do some

of their (small) payments (positive demand). So the bank

has to take care that enough hard cash is available.

However, too much money means a loss of interest.

The options for the bank are to order or deposit money at the
main-office. This possibility is available at the end of

every morning, delivery is almost immediately. In the meantime
emergency transports of money are possible against relatively
high costs. It appeared that the positive or negative demand
for money in a "normal" week has a stable but stochastic
behaviour, that differs over the days and within a day between
'morning and afternoon. The week has been divided in 10 periods,
representing the mornings and afternoons of the workdays.

By considering for each period 30 possible cash-levels,

we can denote the state space by

S = ((1,0),(1,1)...(1,29),(2,0)...(2,29),(3,0),...(10,29)),
where (i,j) indicates period i and cash-level j.

The decisions are the amounts to order or to deposit at the
main bank. These are supposed to be taken at the beginning

of the even periods (the afternoons). The average number of
possible decisions at these points in time is about 20.
Transition probabilities have been determined with the demand
distribution of hard cash by customers. Costs consist of ordering
and deposit costs, the #nventory costs (loss of interest)

and costs of emefgency orders which could be placed at the

main bank, if the bank runs out of hard cash during the periods.

The structure of a.transition matrix is sketched in figure 3.3.
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Figure 3.3 The figure shows the structure of a transition

3.4 A Three point inventory system

matrix P~.

of £f.

£

The structure given above is independent

For details see [27]. We consider a three pcint inventory

sys

tem, as outlined in Figure 3.4,

time.

at equidistant points in

Figure 3.4: a three-point inventory system.



In warehouse 1 and 2 a product is stored. The product in

1 and 2 is produced by production unit P, which has maximal
capacity Cp. In warehouse 3 an essential part of the final
product is stored. Of this part up to C3 can be ordered at
a time. Backlogging is allowed in warehouse 1 and 2 but not
in 3. The delivery times for 1, 2 and 3 are egual to one
period. The states of the system can be defined by a

triple (X;, X,, X3) which gives the inventory in each of the
respective warehouses.

The decisions exist of the amounts Z; and Z, ordered by
warehouses 1 and 2 at the production unit P and the amount
Z3 of the subunit ordered by warehouse 3.

The transition probabilities are determined by the demand
at the two warehouses which is given by its distributions’
¢; and ¢5. The costs are constituted by inventory, ordering,
and stock out costs.

Wévconsidered 1000 different inventory level combinations

and in the average 73 decisions in each state.

Numerical results and comments

Before analyzing the required computational effort for each
of the problems, we will give some technical information.

The numerical results given in this section are achieved

with the Burroughs B7700 computer of Eindhoven University

of Technology. We chose for the programs a maximal processing
time of 300 CPU-seconds. The programs that were stopped after
300 CPU~-seconds are indicated in the tables with, EMP, exceeded
maximum processing time. Especially for the larger problems

3 and 4 we see that a number of methods required more than
300 CPU~seconds.

The numerical information is given in table 4.1 - 4.4. The
first column indicates the solution procedure that is con-

structed by combining the variants as discussed in section 2.

On the basis of the tables 4.1 - 4.5 we will discuss some of
the numerical results and relate them with the structure

of the problem. However, first some remarks about the con-
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structed algorithms will be made.

" The four problems were first solved by using the standard
successive approximation method with MacQueen bounds.

In these algorithms the structure of the problem was exploited
by using the idea expressed in (8) and (9).

As might be expected the advantage of using this structure
was most clear for problem 4. For this example the number

of 73000 (i,a)-combinations was reduced to 2060 relevant
combinations. This reduction was achieved by taking into
account also the capacity limit for the production unit and
the order restriction for warehouse 3. For this problem it
appeared in fact that using the structure was essential.
Next, in algorithm 2, the action elimination procedure was
incorporated to check how the advantage of this procedure

as indicated in (8) was diminished by using the structure of
the problem. We did not run this variant for problem.4 since
the effect (EMP) was foreseeable at that time.

Thirdly, the Gauss~Seidel variant has been computed with
"Gauss-Seidel" bounds (G.S.B.). Again problem 4 was not
processed because it was clear that it could not be'processed
within 300 CPU-seconds.

In the remaining algorithms we combined the advantage of
MacQueen bounds and Gauss-Seidel procedures by alternating

a number of Gauss-Seidel steps with one standard successive
approximation step. This enabled us to use the MacQueen bounds.
In the tables this is indicated e.g. by 50 G.S.1 and 1 S.S.A.
with MQB.

Depending on the structure we used G.S.1 or G.S.2 or both
variants alternatingly. Similar results can be obtained by
reordering the state space.

For numerical evidence see Porteus [22]. The use of the
Gauss-Seidel variant was in example 3 essential for achieving
a solution in a reasonable time. This was caused by the typical
periodic (upper triangular) structure. For almost periodic
problems the second largest eigenvalue is still almost egual
to B. So, especially if B is close to 1, the number of

required iterations might be rather large. In the first example
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with a Gauss-Seidel variant, it produced the best result.

For the three point inventory problem it worked only efficiently
in the combination where the structure of the problem could
still be exploited. The number of real bisection iterations

is given together with the total number of iterations.

Concluding, one may say that we did not provid a recipe

according to which a solution procedure should be chosen

for a certain (class of) problem(s).

However, we discussed some devices which might help substantially
in finding a suitable solution procedure. Moreover, we showed
that exploiting the structure of a problem can be essential for
constructing good algorithms.
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Table 4.1

HOWARD AUTOREPLACEMENT PROBLEM

METHOD Computation Standard Average time of
Time iterations an iteration
1. SSA+MQB CPU 1.93 76 025
I/0 1.08
2. SSA+MQOB+AE CPU 3.60
I/0 1.08 76 0.047
3. GS1+GSB CPU 7.23 289 025
I/0 1.22
4. 15%(GS1+GS2)| CPU 3.92 120 026
SSA+MOB I/0 1.08
5. G?l.VIlS CPU 1.19 328 .0034
SSA+MQB I/0 1.08
6. DSE+GS1 CPU 3.78
SSA+MQB I/0 1.21 116 ) -032
7. RSE+GS1 CPU 3.53
SsSa + MQOB I/0 1.08 133 -026
8. BISECTION CPU 2.73
SSA I/0 1.26 944, .032
9. BISECTION CPU 1.57 4416 035
GS2 I/0 1.08

.Table 4.1 Comparison of some methods for Howard's
Autoreplacement problem, < states 41; #actions in

each state is 41 and B = 0.97 relative error 10'4.




Table 4.2

i
HASTINGS REPLACEMENT PROBLEM
METHOD Computation ¥ Standard Average time
time iterations of an iter.
e —
1. SSA+MOB CPU 194.10 3146 .062
I/0 2.43
ke
2. SSA+MQOB CPU  308.34 2700 .114
I/0 1.12
EMP
3. GSI+GSB CPU  213.61 4299 .049
I/0 2.56
4. 100% (GS1+GS2) CPU 35.99 910 .039
SSA+MQOB I/0 2.43
5. GS1+GS2+vI 157+ | cpu 41.78 . 1209 .035
SSA+MOB I/0 2.43
6. 50%(GS1+GS2+DSE)| CPU 6.15 104 .059
SSA+MOB 1/0 2.43
7. 50% (GS1+GS2+RSE)| CPU 7.74 104 .074
SSA+MQB 1/0 2.42
8. BISECTION CPU  267.89 | 4122 .649
Ssa I/0 4.23 | 7
9. BISECTION CPU 7.37 | 53 .139
GS1+GS2 I1/0 2.16 29

Table 4.2. Comparison of four methods for the replacement

problem of Hastings. fZ=states 1000; #=actions in

each state 2; 8 = .998; relative error 10

4



HARD CASH INVENTORY PROBLEM

METHOD Computation I#fStandard Average time of
Time & iterations |-an iteration
;
1. SSA + MQB CPU  306.21 |
I/0 5.49 400 .077
EMP
2. SSA + MQB CPU 308.87
+ AE I/0 144 330 .93
EMP
3. GS2 + GSB CPU 301
I/0 4.99 380 .79
EMP
4. 50*(GS1+GS2) . CPU 303.23
SSA+MOB /0 4.995| = 390 -78
, ___EMP
5. 50%x382 CPU 307
+100 VI I/0 1.359 970 0.32
SSA + MQB EMP
6. 100 GS2+DSE CPU 84.34 204 0.41
Ssa + MQB I/0 1.89
7. 100 GS2+RSE CPU 84.75 204 0.41
SSA + MQB 1.75
8. BISECTION CPU 296 387 .76
SSA EMP 5
9. BISECTION 24.94 26 .96
Gs2 1.67 23

Table 4.3. Comparison of some methods for the "hard cash" inventory

problem. 4+ states 300; # action in each state 20

for even periods; g = .999; relative error 10-4.




THREE POINT INVENTORY PRCOBLEM

METHOD Computation # Standard Average tiune of
Time iterations an iteration
1. SSA + MQB CPU  37.24 18 1.51
I/0 2.74 ’
2. SSA + MOB _ _ _
+ AE
3. GS1 + GSBR - - -
4. 5 (GS1+GSs2) CPU 300.51
+ 5VI I/0 1.215 30 10.02
ISSA + MQB EMP
5. GS1 + GS82 + CPU 300.101
5 yr 1/0 1.26° 197 1.52
ISsSA + MQB EMP
6. 5%(GS1+GS2+DSE) CPU 296.31
 SSA + MOB 1/0 1.21 18 16.44
EMP
7. 5 (GS1+GS2+RSE) CPU 302.86
I/0 1.21 18 16.78
SSA + MOCB EMD
8. BISECTION CPU 59.16 28 2.11
SsSa I/0 2.25 21
9. BISECTION CPU 303.10
' 1/0 1.12 19 15.95
GS1 + GS2 EMP 3

Table 4.4 Comparison of several methods for the three point

inventory problem. Fstates 1000; average ffaction for
each state 73; B = .997 relative error 10-3.




