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Abstract

The paper contains a comparison of solution techniques for

Markov decision processes with respect to the total reward

criterion. It is illustrated by examples that the effect of

a number of improvements of the standard iterative method, which

are advocated in the literature, is limited in some realistic

situations.

Numerical evidence is provided to show that exploiting the

structure of the problem under consideration often yields a more

substantial reduction of the required computational effort than

some of the existing acceleration procedures.

We advocate that this structure should be analyzed and used in

choosing the appropriate solution procedure. This procedure

might be composed by blending several of the acceleration con­

cepts that are described in literature. Four test problems are

sketched and solved with several successive approximation methods.

These methods were composed after analyzing the structure of the

problem. The required computational efforts are compared.

1. Introduction

In recent years a number of papers appeared that described impro­

vements of iterative methods for computing the to~al expected

reward of a (semi-) Markov decision process. The proposed impro­

vements all aim to reduce the required computational effort. How­

ever, they try to reach that goal in a different and sometimes

even conflicting way.

Of each of the proposed improvements or variants of the standard

successive approximation scheme there is numerical evidence that

it works more efficiently in specific situations than the standard

method. See, e.g. MacQueen's iteration method which incorporates

the concept of bounds for the optimal solution [llJ.

Moreover, we refer e.g. to Van Nunen [17J who claims that value

oriented methods-are preferable, Hastings and Van Nunen [8J who

advocate the advantage of action elimination, Porteus [22J who

shows ·the efficiency of extrapolation methods and finally Bart­

mann [lJ whQ gives numerical evidence that the Bisection method

is very efficient.
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However, although each of the proposed variants will have

its specific value, we will illustrate by some examples,

that the effect of each of them might be limited if one has

to solve a real problem.

Numerical evidence is provided to show that exploiting the

structure of the problem under consideration might yield a

more substantial reduction of the required computational effort

than some of the existing acceleration procedures. We advocate

that this structure should be analyzed and used in choosing the

appropriate solution procedure. The choice of a solution procedure

will depend on that structure, with other words the structure

of the problem will determine the way in which the respective

acceleration concepts, are blended when solving a real problem.

One might argue that it is preferable to have one solution

procedure available for all kind of problems. However, for prac­

tical applications, this is an unrealistic argument, as will

be shown by the numerical results that are given and discussed

in the final section of this paper.

The fact that one has to construct the solution procedure de­

pending on the structure of the problem might be disappointing

at first sight.

However, the construction of algorithms that exploit the struc­

ture of the problem is ngt extremely difficult in practice.

In fact, the reverse is true, (almost) all practical problems

possess a certain structure and the use of that structure might

enable you to find a solution in a reasonable time which might

otherwise be impossible.

Especial~y in practical situations one has to solve the problem

again and again with different values of the parameters as well

as with e.g. aggregated and decomposed state and action spaces.

This has to be done e.g. to evaluate several alternatives. So

the reduction of the computation time might be very valuable. The

numerical examples that we will give, will show how large the

computational gain can be. We draw two examples from the existing

li tera ture but the other two stem in. fact: from two real life

applications that were analyzed.

We don't claim that the comparison of methods that we will give

will be exhaustive. We even are not in a position to give the

best solution procedure for certain classes of problems. However,
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the numerical experiences show how important it is to exploit

the structure of the problem under consideration for the choice

of an adequate solution procedure. Moreover, they show some

directions in which this structure can be exploited and how the

several acceleration concepts ,work in some specific situations.

In general successive approximation methods are preferable over

the classical methods like policy iteration [9J and linear pro­

gramming [5J[13J. However, some problems may have a structure

for which a policy iteration type of procedure is efficient. This

ho~ds e.g. for some G/M/s quening control systems, as was shown

in Van Nunen and Puterman [19J.

We will first introduce the model and some notation in order to

be able to describe the relevant notions less verbal.

We consider a system which at discrete points in time

(t = 0, 1, 2, ..... ) can be identified as being in one of a

finite number of states. The state space is 5: = (1, 2, ... , N).

If the system is observed to be in state i at time t, an action

a may be chosen from a finite set of actions A = (1, ..... , k).

As a result of this action a the system moves to state j at time

t + 1 with probability prj '~o and an (expected) one stage

reward r(i, a) is earned. We assume j~SP~j=l for all ieS and

aE~. The objective is to maximize the total expected discounted

rewards over an infinite time horizon and to determine a decision

rule for which this maximal return is achieved.

The discount factor is S< 1. The restriction to discounted

problems with j~SP~j = 1 is only chosen for the simplicity of

the expos i tion, see e. g. [16 J [21 J •

A policy f is a function from S + A and a strategy TI is a

sequence of policies TI = ' (fO, fl ... , '_ ' . ) .

So, if we use strategy TI ,then action ft(i) is chosen at time

t if the system is observed to be in state i at that time.

A strategy is called stationary of all component functions f t
are equal i. e . TI = (f, f, f, .... ).

By r f we denote the vector on S with components r (i, f (i) ) "

By p f we denote the N * N matrix with (i, j)-th component equal

to p~ ~ i) •
1.J



( 1 )

Let strategy 'IT be given and let the starting state be state i.

By the random variables Xt and At we denote the state and the

action of the system at time t respectively.

V
TI

(J.' ) d f d bNow is e ine y

v'IT (i) =m i, 'IT t£o st r (X t ,At) ,

The total expected discounted reward over an infinite time

horizon given that the starting state is iES and that strategy

'IT is used.

4.

~ denotes the expectation with

structure generated by 'IT and i.

components V'IT (i) .

For a stationary strategy 'IT =

v f := v'IT = t st(pf)t r f
t=o

respect to the probability
'IT

By v we denote the vector with

(f, f, f, ..... ) we have

( 2 )

The goal is to determine v

V '* 'IT= sup V'IT

such that

(3)

and to determine a strategy 'IT* for which v* is attained or

approximated.

It is well known, that under the simple conditions that we have

here, there exists a policy f* such that v
f

* = v*.

The standard successive approximation method (SSA) introduced
f*

by Bellman [2J in 1957 can be used to determine f* and v

In fact this SSA forms the basis for the variants that we will

discuss. We define the mappings L f and U from V ~ V for the

set V of real valued functions v on S.

LfV = r f + Spfv

Uv = max LfV =
f

max
f

(4 )

( 5)

These mappings are used to formulate the following classical

result.
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Lemma 1 (Blackwell ( [ 3 J)

Lf and U are monotone contraction mappings on V with fixed points

V f and vt respectively. The contraction factor is S.
Moreover, for v 0 E V and v n defined by

fnv = UV =: L v n- 1 ( 6 )n n-l

We have

with a rate of convergence that is equal to

Moreover,

-+ . v*

wi th f n the policy for which U v n-l is maximal.

Note that (6) can be expressed component-wize by

vn(i) = max {r(i;a) +
at;A .

,·t BP~' v l(j)}
JE5 ~J n-. .

(7 )

The convergence of this standard successive approximation (SSA)

method expressed in (6) or (7) is in general rather slow. There­

fore several variants of the SSA-method have been introduced.

The goal of these variants are different and can be divided into

three groups.

,
The first group tries to use the information collected during the

iteration process to get better estimates ofv* . This group

contains in fact two basic principles of which several subvariants

are available in literature.

These basic principles are

a) successive approximation methods which incorporate the compu­

tation of upper and lower boun~ for the optimal value vector v*

in each iteration step of the actual algorithm. MacQueen [llJ,

Porteus [20 J •

b) successive approximation methods which use extrapolations

to v*. Porteus [22J.
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In the second group of variants one tries to reduce the

contraction factor. This should lead to a gain in the required

number of iterations. Again there are 2 basic variants

c) variants in the policy improvement procedure (the maximization)

step of the successive approximation method. Hastings [6J,

Reetz [24J, Wessels [25J, Van Nunen [16J, Porteus [21J, Van

Nunen and Stidham [18J

d) the Bisection method in which in some iterations a contraction

factor of.5 instead of S is achieved. Bartmann [lJ.

The third group tries to reduce the computational effort that is

required to compute for each i f-S the maximum over all actions

a E A of the sum as given in the righthand side of [7J There

are again 2 basic concepts.

e) S.A.methods that incorporate'a test for the elimination of

actions that can be identified as being non-optimal for a number

of iteration steps. So, for this actions the computation of the

mentioned sum can be avoided.

MacQueen [12J, Hastings [7J, Hastings and Van Nunen [8J.

f) Value oriented successive approximation methods which provide

better values for v fn by executing a number of times the mapping

L
fn . t d f th .. .~ns ea 0 U, so that for these s~eps e max~m~zat~on

can be avoided. Morton [15J, Van Nunen [16J, [17J, Puterman [23J.

Of course one will use a combination of the above basic principles

if one constructs an algorithm for solving a particular problem.

However, the effects of above variants might be conflicting and

depend heavily on the structure of the problem.

For example in a problem with a large number of stat~ but with

only a small number of decisions~ineach state, like it is the case

in machine replacement problems where the only options could be

to repair or to replace the machine, the computational effort

required for the incorporation of an action elimination procedure

might be more than the gain that can be achieved.

If, however for each state a lot of actions are possible the

variants (e) and (f) might work quite well.
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For example if the transition probabilities have a particular

structure e.g. each matrix pf is almost upper triangular, then

this structure can be exploited by using a Gauss-Seidel variant.

These variants belong to the class described under c) .

As an example of conflicting effects we can use the effects that

are achieved if one composes a procedure by using e.g. a Gauss-Seidel

variant as well as the concept of bounds.

The Gauss-Seidel variant might cause an improvement in the con­

traction-rate but it might cause worser bounds. Which of these

effects will be the most important can not be said in general,

as we will see later.

Exploiting the structure of the problem might also lead to

enormous gains in required computation time as is illustrated

next. Many practical problems like the inventory and replacement

problems we will discuss in this paper possess the property that

prj is in fact independent of i. This is illustrated in the

following simple example.

Suppose we have a single item inventory system where the

states 0/ 1, 2, ..... N represent the available inventory at the

beginning of each period e.g. each week. Orders are placed at the

beginning of each week and delivery is instanteneously. The

demand in each period equals k with probability qk. If we

define the decision a as the inventory level just after delivery,

than P~j = qa-j independent of i.

So if one computes in each iteration step in advance for each

a € A

ad(a) = ~ 8 p. v n - 1 (j)
J .J

one finds that (7) can be written as

{ ( ') a (J')}m~x r l/a + § SPij vn_1 = {r(i,a) + d(a)}

( 8 )

( 9 )

This is just one of the examples of how the specific structure

can be used. Similar ideas can be used in computing e.g. the ex­

pected one-stage reward, if the underlying process is separable,

see [4J.
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Moreover, the structure of optimal policies can be exploited.

The combination of certain variants in relation with using the

structure of the problem might also lead to conflicting effects.

For example the idea expressed in (9) can not be exploited if

e.g. a Gauss-Seidel variant is used.

The above discussion explains also why we did not use the same

solution procedures for all four test problems.

In section 2 we discuss, in short, the available accelaration

procedures. Section 3 is used to sketch the four test problems.

Numerical results are given in section four.

2. Variants of successive approximation methods

In this section we will give a brief description of the underlying

ideas of each of the acceleration procedures.

2.a Bounds for the optimal value vector v*

The concept of Bounds for v*was introduced by l~acQueen[llJ.

Consider the SA method as described in (6) or (7). Then

--fn - - f-
- L vn$ L n+l v

n
_ (rfn+ 1

f ~= L n+l v
n

= (r fn+1 + ~ pfn+1Vn )

= Spfn+1(Vn-Vn_l)

UVn - v n

where e is the vector on S with all components .equal to 1.

The difference between vn +2 = u2v n = U(Uvn ) and v n is bounded

from above by

u2
v n - v n = u2v n - UVn + UVn - v n ,$ ~8+82) m~x{vn(i)-vn_l(i!}e

~

In general tfvn - v n can be estimated by

vn+k - v n = Okvn-vn < (S+S2+ .. Sk)max{vn (i)-vn _l(i)}e (10)
i

S· uk *.
~nce vn + v ~t follows that an upperbound for v*is given by
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(11 )

(12)
fn

v ~ v*.

Note that (10) can also be used to obtain an upperbound for

vn+k· .

Similarly a lowerbound ln can be determined.

ln := v n +_S_. min {Vn (i) - v n- 1 (i)} . e.;~·
1- S ~

The above bounds are referred so as the MacQueen bounds (MQB),

see (11), and (17). So, a S.A.-algorithm could be

compute

stop if

\" choose
)

l
V o E V

V = Uvn n-1
(un-In) <E or un - 1n s t II viin

(13)

The E.-optimal policy with which the above procedure ends is f n
and a good es timate for v fn and v* is

~ (un + 1 )
n

The above algorithm converges at least with a rate Sy
. f*

where y is the subdominant eigen value of the matrix P . See [t4J.

This is based on the following result (see [10J, [14J).

span (vn - v n - 1 ) = mrx{vn (i)-Vn-1 (in - min {vn (i)-vn _ 1 (i)'}

~ Sy span (vn-1 - v n-2) .
If one uses more information of the actual transition matrices,

improved bounds can be obtained, see [26J

However, in general this will cost additional computational effort.

In the derivation of the MacQueen bounds (MQB) un and ln as given

in (11) and (12) we used that for all i.f; s the sumrp~, = L
j ~]

If, however, this equal-row-new property does not hold, more

complicated bounds have to be constructed. In this case we
a a

have S r, Pi]' =I Srp ,
J . kJ

Now, a straight~~rward extension of the MQB will lead to

Fn =
v +...SL- max (vn(i) v l(i)).en l-a i n-

1 = v n + -S:.rL min (vn (i) vn-l (i)). e (14)n l-an i



with c't' = max L:p~.. ~J
~,a

and ex n = m.;i.,n
~

10.

In this more general si tuation ex ;;:: Ci;n."

If Uv0$ v 0 ' these bounds need -to be adapted slightly-

(see [16J, [20J). Note, that in this case the difference between
"'" "'"un and ln cannot be expressed by means of the span (Vn -Vn-l)

unless ex =exn
The use of a variant of the policy improvement procedure e.g. a

,
stopping-time as oescribed in section 2.c, transforms the problem

into an equivalent problem for which the equal row sum property

does not hold. This occurs e.q. if a Gauss-Seidel variant is used.

So in that case one could use the more complicated bounds (14).

In order to restore in such cases the equal row sum property

one needs an additional transformation, see [18J, [21J.

2. b Extrapolations

I t would seem a

in which v is
n

of v* based on

good idea to use the following S.A.-algorithm

replaced by v which is the best current estimate. n
the MacQueen bounds.

V o € V

V = uV
n

_
1n- 6 max{ v (i) V

n
_ 1 (i)}un = v n + 1-6 - e

~ n (15 )- 6
In = v n + 1-13 min{v (i) - v

n
_

1
(i)} e

~ n
v n = ~(u + in)n

In the case of equal row sums, the difference un-In equals

un-ln as defined in (11) and (12).

So, the convergence is not improved by using the above

algorithm (15) in the case of equal row sums.

However, in the case of unequal row sums, as might occur

after using a variant of the policy improvement procedure,

as described in section 2.c, a considerable gain in required
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computational effort might be obtained. The Extrapolation

algorithms use the following idea.

Vo E V

V = UVn-ln
-v n = v n + c'n

(16)

with c n chosen appropriatly. For example in the case of

unequal row sums (14) can be used to derive

c, = ~ [ I ~ ""max{V (i ) - v 1 (i)}n ~--~ n n-,

For a number of extrapolation methods and numerical eVidence

see Portals [22J .

2.c Variants of the policy improvement procedure

The S.S.A.-methoddescribed in (6) and (7) is often referred

to as the pre-Jacobi method. Alternat~ves for the policy

improvement step can be obtained by constructing mappings
"" £ "" fLand U instead of L 'and U such that the sequence 'n

defined by

{""
V E Vo
"" ""
v = dv 1n n-

still converges

""v -+ v*n

""f ~f "" L ""fn
:= m;x {r +? v n _ 1'.r=: L v n-l

to v' at a geometric rate, i.e.

(17)

(18 )

Often the goal is to define U in such a way that the resulting

convergence rate. is smaller then s. Some of the policy

improvement variants like Gauss-Seidel procedures, overrelaxa­

tion methods etc. are well known [6J [24J. A unified approach

can be given by using the concept of stopping times. For details

see e.g. Hessels [25J, Van Nunen [16J and Van Nunen and Stidham

[18J. These variants can be generated, also by using a

(pre-inverse) transformation of the data as introduced by

Porteus [21J. From a numerical point of view the advantage

of haVing a smaller spectral radius p(pt},EP (6p t ) =-8

might be diminished by the fact that the transformed problem

does not necessarily possess the equal-row sum property. As an
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example of a variant of the policy improvement procedure

we describe the Gauss-Seidel variant.

V Eo V compute for

{
r(i,a) +

maxa

i = 1, 2, ..... ,N
a a

.2:. Pij vn(j) + .L·P .. Vn - 1 (j)}J< ~ ~> ~ ~J

(19 )

~f
In this case the corresponding r and pf have a particular

the procedure that

..... respectively

2: a (.)
j<i Pij v n- 1 J }

form (see [16 J, [21 J) •
If the transition matrices are almost lower triangular a

procedure based on (19) might yield good results.

We will refer to (19) as G.S.l.

For (almost) upper triangular problems,

starts with computing for state N, N-l,

{
r(i,a) + .2:, prj v (j) +

v (i) = max J~~ n
·n a a

1 - p ..
~J

will be preferable. We will refer to this variant as G.S.2.

2.d) The Bisection method

The Bisection method was introduced by Bartmann (1). By using

the monotonicity property of the mapping U it is tried to make

the contraction factor equal to ~ for as many steps as possible.

Let vaEV such that UVa~va and let v
n

:= Uva. Let 1 1 and

ul be as defined in (11) and (12). Note that 11 ~ v* s: u 1 .

Let ml~=~(ll+ul) and in general mn:= ~(ln+un)' Compute

Uml; now there are three possibilities which are described

in the following picture
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all components, then v'!l< ::> ml' which implies

12:= 11 are also upper and lower bound

(a) If Uml::> ml for

that u2:= Um1 ,

for v*.

(b) If Uml~ ml' then 12:=Uml'

bound for v*.

u2 .- ul are upper and lower

Note that in the cases (a) and (b) we have

(c) If (a) and (b) donot hold, we have to adjust the bounds

according to (11) and (12). In this case

Repeating the above procedure with mn = ~(ln+un) until ln

and un are cl~se enough, results'in an algorithm which might

converge in a very-fast way. The speed of the convergence

will depend on the number of bisection steps that is made,

as is nicely shown in the examples.

2.e) The elimination of suboptimal actions

In the n-th step of the algorithm (6) one has to compute for

all i ES the following term

max {r(i,a) +8 ·J.
S

prJ,vn - 1 (j)'}
aEA JE

The goal of a sUb-optimality test is to eliminate a number of

irrelevant actions such that for these actions the summation

j ~s pfj v'n-l (j) can be avoided.
The idea of using upper and lower-bounds in a procedure for

eliminating actions, was given by MacQueen [12J. In [12]

MacQueen showed how actions can be identified as being non-optimc

for the rest of the iteration process. In [7J, [8J Hastings

and Hastings and Van Nunen showed how similar ideas can be

used to eliminate actions only temporarily. Suppose that we are

in the situation of equal row sums. Then action aEA cannot

be optimal in the next iteration step if

r(i,a) + 1; P~j vn(j) < vn(i) +.8min (vn (j)-v
n

_1 (j))
J j
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since v n+1 (i) ~vn(i) + 8m~n(vn(j) - v n _ 1 (j»

This can also be done for subsequent iteration steps by

using for v in the lefthand side of (10) upper bounds for
n

v n +k like defined in (10) while in the righthand side a .

similar expression with lower bounds is used. For detailed

information on the action elimination (AE) see [8J.

There some numerical evidence is also given.

2.f Value oriented methods

An other way to reduce the amount of computational effort

is by decreasing the number of maximization steps as was

proposed in [17J.

fn
Let v n = L v n -1 = UVn _ 1 .

Instead of determining v n +1 by performing a maxim±zation step,

one could proceed first with a number of iterations that use
fn .

L instead of U. This idea is expressed in the following

S.A.-algorithm.

fn fn fn
(L L ... L Vn-1» ... )

A-times

v 0 (A) € V A€ N

(A) = (Lfn)Av n vn_
1

=

=. U(A)V. n-1
fn

with L v 1 = Uv 1.n- n-

However, the mapping U(A) is neither necessarily monotone

contracting. Nevertheless convergence to V* is preserved,

see [16J. For numerical evidence of this method see (17),

the examples in section 4.

(21 )

nor

and
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3. The test problems

We combined several of the variants discussed in section 2

to determine the optimal policy and the corresponding total

expected discounted reward for four problems. These problems

are briefly described in this section. Typical for these

problems is that they have a lot of structure.

3.1 Howards auto replacement problem

This problem is described extensively in [9J. A car owner

considers his situation every three months. The state of the

system is determined by the age of his car, expressed in periods

of 3 months.

It is supposed that a car of age 40 (10 years) is worn out.

State 40 is also used to identify a car that is total loss. So,

the number of states is 41. In each state he can sell his car

and buy another (second hand or new one) of an age between

o and 39, keeping the car is denoted by -1. So, the number of

possible decisions in each state is 41. A 9ar of age i has

a probability of ~i to reach state 40 within the three months

period, so for each i the number of probabili ties p~. ,*"0 is 2.
~J

Costs are composed of purchasing costs, selling costs and

expected repair and maintenance costs, which depend of course

on the state (age) of the car.

The goal is to determine the policy for which the total expected

discounted rewards are minimal. For the numerical exercise

we took S = O,S7.

o
1

0, 1, 12, 13, 14, 15 .-iQ...

12
13 '
14 :

I-PI
I-p
I-P~

I-p
6

40
. '"'I
--------------------------~

Figure 3.1.

The figure shows the structure of the transition matrix
.... f
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Note that the problem is almost periodic, since the proba­

bilities P6 to P12 are close to 1.

3.2 The replacementproblem of Hastings

For details we refer to (6J.

A machine is considered at discrete, equidistant points in

time. The state of the machine is determined by its age and

the level of required repair and maintenance costs for the

next period. The time interval (period) is chosen such that

the possibility of two break downs in a period can be neglected.

We consider the situation that the age of a machine is

maximally 100 periods and for each age there are 10 repair

cost levels. So the number of states is 1000. Denoted by
-

{ (1 , 1) (i., 2), .... (1 , 10), ( 2 , 1 ) ..... (1 00 , 1 O)} 0

In each state there are two possible actions e.g.

reparation of the machine (0) or replacement by a ne~ machine (1),

Repair costs depend on the level as well as on the age of the

machine.

51 100 100
10 1

......

2 51
10 1

1

1.1
1

1.10
2.1

2.10

50.1

50.10
51.1

51.10

100.1

100.10

Figure 3.2. The figure shows the structure of the matrix pf

for f( (i,j)) = 0 fori s 050 and f( (i,j)) = 1 for

i > SO and j € (1 , 2 , ... 10)
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3.3 A hard-cash inventory system

For details we refer to [26J.

In this problem a cash-money-inventory system is considered.

On one hand customers deposit money into the bank (negative

demand) while on the other hand they cash money to do some

of their (small) payments (positive demand). So the bank

has to take care that enough hard cash is available.

However, too much money means a loss of interest.

The options for the bank are to order or deposit money at the

main-office. This possibility is available at the end of

every morning, delivery is almost immediately. In the meantime

emergency transports of money are possible against relatively

high costs. It appeared that the positive or negative demand

for money in a "normal" week has a stable but stochastic

behaviour, that differs over the days and within a day between

morning and afternoon. The week has been divided in 10 periods,

representing the mornings and afternoons of the workdays.

By considering for each period 30 possible cash-levels,

we can denote the state space by

5 = ((1,0), (1,1) .•• (1,29), (2,0) ••• (2,29), (3,0) , ••• (10,29)),

where (i,j) indicates period i and cash-level j.

The decisions are the amounts to order or to deposit at the

main bank. These are supposed to be taken at the beginning

of the even periods (the afternoons). The average number of

possible decisions at these points in time is about 20.

Transition probabilities have been determined with the demand

distribution of hard cash by customers. Costs consist of ordering

and deposit costs, the ~nventory costs (loss of interest)

and costs of emergenCy orders which could-be placed at the

main bank, if the. bank runs out of" hard cash during the periods.

The structure of a.transition·matrix is sketched in figure 3.3.



1,0

1.29
2.0

2.29

99.29
100.0

100.29

112
1 29 1

,
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Figure 3.3 The figure shows the structure of a transition

matrix pf. The structure given above is independent

of f.

3.4 A Three point inventory system

For details see [27J. We consider a three point inventory

system, as outlined in Figure 3.4, at equidistant points in

time.

p

CPi

Figure 3.4: a three-point inventory system.
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In warehouse 1 and 2 a product is stored. The product in

1 and 2 is produced by production unit P, which has maximal

capacity Cpo In warehouse 3 an essential part of the final

product is stored. Of this part up to C3 can be ordered at

a time. Backlogging is allowed in warehouse 1 and 2 but not

in 3. The delivery times for 1, 2 and 3 are equal to one

period. The states of the system can be defined by a

triple (Xl' X2 , X3 ) which gives the inventory in each of the

respective warehouses.

The decisions exist of the amounts Zl and Z2 ordered by

warehouses 1 and 2 at the production unit P and the amount

Z3 of the subunit ordered by warehouse 3.

The transition probabilities are determined by the demand

at the two warehouses which is given by its distributions'

~1 and ~2' The costs are constituted by inventory, ordering,

and stock out costs.

We considered 1000 different inventory level combinations

~nd in the average 73 decis~ons in each state.

4. Numerical results and comments

Before analyzing the required computational effort for each

of the problems, we will give some technical information.

The numerical results given in this section are achieved

with the Burroughs B7700 computer of Eindhoven University

of Technology. We chose for the programs a maximal processing

time of 300 CPU-seconds. The programs that were stopped after

300 CPU-seconds are indicated in the tables with, EMP, exceeded

maximum processing time. Especially for the larger problems

3 and 4 we see that a number of methods required more than

300 CPU-seconds.

The numerical information is given in table 4.1 - 4.4. The

first column indicates the solution procedure that is con­

structed by combining the variants as discussed in section 2.

On the basis of the tables 4.1 - 4.5 we will discuss some of

the numerical results and relate them with the structure

of the problem. However, first some remarks about the con-
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structed algorithms will be made.

The four problems were first solved by using the standard

successive approximation method with MacQueen bounds.

In these algorithms the structure of the problem was exploited

by using the idea expressed in (8) and (9).

As might be expected the advantage of using this structure

was most clear for problem 4. For this example the number

of 73000 (i,a)-combinations was reduced to 2060 relevant

combinations. This reduction was achieved by taking into

account also the capacity limit for the production unit and

the order restriction for warehouse 3. For this problem it

appeared in fact that using the structure was essential.

Next, in algorithm 2, the action elimination procedure was

incorporated to check how the advantage of this procedure

as indicated in (8) was diminished by us ing the structure o·f

the problem. We did not run this variant for problem. 4 si?ce

the effect (EMF) was foreseeable at that time.

Thirdly, the Gauss-Seidel variant has been computed with

"Gauss-Seidel" bounds (G.S.B.). Again problem 4 was not

processed because it was clear that it could not be processed

within 300 CPU-seconds.

In the remaining algorithms we combined the advantage of,

MacQueen bounds and Gauss-Seidel procedures by alternating

a number of Gauss-Seidel steps with one standard successive

approximation step. This enabled us to use the MacQueen bounds.

In the tables this is indicated e.g. by 50 G.S.l and 1 8.S.A.

with MQB.

Depending on the structure we used G.S.l or G.S.2 or both

variants alternatingly. Similar results can be obtained by

reordering the state space.

For numerical evidence see Porteus [22J. The use of the

Gauss-Seidel variant was in example 3 essential for achieving

a solution in a reasonable time. This was caused by the typical

periodic (upper triangular) structure. For almost periodic

problems the second largest eigenvalue is still almost equal

to 6. So, especially if e is close to 1, the number of

required iterations might be rather large. In the first example
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with a Gauss-Seidel variant, it produced the best result.

For the three point inventory problem it worked only efficiently

in the combination where the structure of the problem could

still be exploited. The number of real bisection iterations

is given together with the total number of iterations.

Concluding, one may say that we did not provid a recipe

according to which a solution procedure should be chosen

for a certain (class of) problem(s).

However, we discussed some devices which might help sUbstantially

in finding a suitable solution procedure. Moreover, we showed

that exploiting the structure of a problem can be essential for

constructing good algorithms.
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Table 4.1

HOWARD AUTOREPLACEMENT PROBLEM

I !
;

METHOD Computation Standard I Average time of
i

Time iterations an iteration

1. SSA+MQB CPU 1. 93 76 .025
I/O 1. 08

2 . SSA+MQB+AE CPU 3.60

I/O 1.08 76 0.047

3. GS1+GSB 7.23
I

CPU 289 I .025
I/O 1.22 I

4. 15*(GSl+GS2) CPU 3.92 I
120 .026

SSA+MQB I/O 1.08
I

5. GSl.VI15 CPU 1.19 328 I .0034
SSA+MQB I/O 1.08

6 . DSE+GSI CPU 3.78

SSA+MQB I/O 1.21 116 .032

7. RSE+GSI CPU 3.53

SSA + MQB I/O 1. 08 133 .026

8. BISECTION CPU 2.73

SSA I/O 1. 26 94 12 .032

9 . BISECTION CPU 1.57 44 16 .035
GS2 I/O 1.08

Table 4.1 Comparison of some methods fur Howard's

Autoreplacement problem, -#= states 41; '# actions in

each state is 41 and B = 0.97 relative error 10-4 .



Table 4.2

\

HASTINGS REPLACEMENT PROBLEM

METHOD Computation ;:P Standard Average time
time iterations of an iter.

- -

1. SSA+MQB CPU 194.10 3146 .062
I/O 2.43

2. SSA+MQB CPU 308.34 2700 .114
I/O 1.12

EMF

3. GSI+GSB CPU 213.61 4299 .049
I/O 2.56 I

4. 100* (GSl+GS2) CPU 35.99 910 .039
SSA+MQB I/O 2.43 .

,

5. GSl+GS2+VI 15++ CPU 41. 78 1209 .035
SSA+MQB I/O 2.43

6. 50* (GSl+GS2+DSE) CPU 6.15 104 .059
SSA+MQB I/O 2.43

7. 50* (GSl+GS2+RSE) CPU 7.74 104 .074
SSA+MQB I/O 2.42

8. BISECTION CPU 267.89 4122 .649
SSA I/O 4.23 7

9. BISECTION CPU 7.37 53 .139
GSl+GS2 I/O 2.16 29

Table 4.2. Comparison

problem of

each state

of four methods for the replacement

Hastings. j;c. states 1000; -#= actions in
-4

2; S = .998; relative error 10 .



HARD CASH INVENTORY PROBLEM

METHOD
1

Computation \ #= Standard Average time of
Time I iterations 'an iteration

I I
I,

l. SSA + MQB
I

CPU 306.21

I
I/O 5.49 400 .077

EMP

2. SSA + MQB CPU 308.87

+AE i
I/O 144 330 .93

EMF

3. GS2 + GSB CPU 301

I/O 4.99 I 380 .79

EMP
I

4' . 50 * (GS 1+GS 2 ) CPU 303.23

SSA+MQB I/O 4.995 390 .78

EMP

5. 50*:;S2 CPU 307

+100 VI I/O 1.359 970 0.32

SSA + MQB EMP

6. 100 GS2+DSE CPU 84.34 204 0.41
SSA + MQB I/O 1.89

7. 100 GS2+RSE CPU 84.75 204 0.41
SSA + MQB 1.75

8. BISECTION CPU 296 387 .76
SSA EMF 5

9. BISECTION 24.94 26 .96
, GS2 1.67 23

Table 4.3. Comparison of some methods for the "hard cash" inventory

problem. ~ states 300; ~ action in each state 20

for even periods; S = .999; relative error 10-4 .



\ THREE POINT INVENTORY PROBLEM
I

# Standard Average til.le ofMETHOD Computation
Time iterations an iteration

1. SSA + MQB CPU 37.24
18 1.51.

I/O 2.74

2. SSA + MQB -- -
+AE

I I
3. GSI + GSB - I - I - .

I

I

4. 5 (GSl+GS2) CPU 300.51

+ 5VI I/O 1.215 30 10.02
ISSA + MQB EMP

5. GSI + GS2 + CPU 300.101
5 VI ++ I/O 1. 26 197 1.52
ISSA + MQB EMP

6. 5 *(GSl+GS2+DSE)

I
CPU 296.31

SSA + MQB I/O 1. 21 18 16.44

EMP

7. 5 (GSl+GS2+RSE) CPU 302.86

I/O 1.21 18 16.78
.

SSA + MQB EMP

8. BISECTION CPU 59.16
28 2.11

SSA I/O 2.25 21

9. BISECTION . CPU 303.10.
I/O 1.12 19 15.95

GSI + GS2 EMP 3

Table 4.4 Comparison of several methods for the three point

inventory problem. ~states 1000; average #action for

each state 73;6 = .997 relative error 10-3 .


