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Some new designs for quantitative factors
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D	optimal designs are given for some incomplete quadratic models in linear regression� The
quadratic models are incomplete in the sense that not all quantitative factors have quadratic
terms� The experimental region is a q	dimensional cube� Two methods are developed to
construct small designs for quantitative factors� The 
rst method uses the new concept
of design generator� The second uses properties of D	optimal designs for the incomplete
quadratic model� An application of a design with � experiments is included�
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� Introduction

Many designs for quantitative factors have been developed during the past 
� years� They
are very economical as regards the number of designs points needed� in spite of the fact that
many of these designs� such as some response surface plans� use � levels for each factor�
Articles dealing with response surfaces where written by Box and Draper ������ ������ Box
and Hunter ������� Lucas ����
�� Welch ����
� and Myers� Khuri and Carter ������� Box
and Behnken ������� Hoke ����
�� Mitchell and Bayne ������ and Rechtscha�ner ������ deal
with designs for quantitative factors with three levels� The designs for �� 
� �� �� �� �� ��� ���
�� or �� factors� of Box and Behnken� are frequently used in practical work� Box and Draper
����
� discuss designs in which each factors has four unequally spaced levels� which may be
a disadvantage in a practical situation�
There are several books dealing with response surface methodology such as Box� Hunter and
Hunter ������� Box and Draper ������� Cochran and Cox ������� Montgomery ������ and
Upperman ����
�� It is mostly assumed that the response surface model can be presented by
a second degree polynomial� Box and Draper ������ is especially useful since it incorporates
many results given in articles which were previously published�

� The need for new designs with quantitative factors

Although an experimenter can choose from many designs for quantitative factors� our expe	
rience in statistical consultation has shown that available designs are not always satisfactory�
There are three reasons�

�i� these designs have factors with the same number of levels� mostly � or ��

�ii� designs with factors having four equally spaced levels are not available�

�iii� the number of experimental units is rather large�

Many experimenters only want to carry out small experiments because of time and costs
involved� There is therefore a real need for a great variety of designs with quantitative
factors having a small number of experimental units� The experimenter moreover wants
some freedom as to the choice of the number of levels per factor� It may for instance be
necessary to incorporate four available equally spaced levels� such as 
 wire diameters� in an
experiment� It would then be unwise to use three levels� since it would force the experimenter
to omit either the smallest or the largest diameter� although three levels would be su�cient
to estimate linear and quadratic terms of a model� Especially in the preliminary states of
experimental work� for instance research concerning integrated circuits� it is desirable to carry
out small experiments in which a number of quantitative factors is varied simultaneously and
knowledge as regards their main e�ects and two	factor interactions is required� This article
describes some methods which enable us to construct small designs for quantitative factors�
while maintaining as much orthogonality of the design as possible� To calculate the D	
e�ciency of these designs a class of D	optimal designs is developed in Section ��
Two methods are discussed to construct small designs for quantitative factors�
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�i� the 
rst method constructs plans from the �n design using the new concept of �design
generator�� See Section 
�

�ii� the second method is described in Section ��� and uses properties of the D	optimal
designs developed in Section ��

The designs to be developed have been constructed using the following restrictions�

�i� factors have two� three or four levels�

�ii� the two	level factors may be qualitative or quantitative�

�iii� the three	 and four	level factors are quantitative and the levels are equally spaced�

�iv� all interactions of more than two factors are ignored�

�v� the mathematical model of the observations is an incomplete quadratic model� See
Section ����

The two construction methods mentioned yield designs which have three advantages over
many other designs with quantitative factors�

�i� the number of levels for each factor varies between � and 
 whereas many existing
designs� such as the central composite designs of Cochran and Cox ������ and the Box
and Behnken ������ designs� require each factor to have the same number of levels�

�ii� many designs contain a two	level factor which may of course be either qualitative or
quantitative�

�iii� there is a great variety of small designs to choose from�

� D�optimal designs for an incomplete quadratic model

��� Some basic de�nitions

It was announced in Section � that the designs to be developed have factors with two� three
or four levels and that an incomplete quadratic model shall be used� The model we consider
is incomplete in the sense that k variables have linear and quadratic terms� but the other
�q � k� variables� corresponding with �q � k� two	level factors� have only linear terms� All

� q� � interactions of two factors are however included in the model� So we have the model

Y � �� � ���x
�
� � ���� �kkx

�
k � ��x� � ���� �qxq�

����x�x� � ���� �q���qxq��xq � � � ���

where each xi corresponds to a factor of the design� Y is the response� and � is the error term
of the response variable in the model� The experimental region X is de
ned by
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X � fx � IRq jx � �x�� ���� xq�
���� � xi � � for all i � �� ���� qg �

The experiment consists of N runs� The number of parameters p equals

p � q �

�
q
�

�
� � � k � � � k � �

�q�q � �� �

The design matrix can be seen as a probability distribution giving weights N�� to N not
necessarily distinct elements of the experimental region X � Such a design is called �exact�
because it can be realised in practice� The derivation of optimal designs is simpli
ed by
using the so	called approximate theory in which the N 	trial design is replaced by a measure
� over X � In the sequel we present D	optimal designs �approximate theory� for the model
���� These designs are new and have not previously been published� They will enable us to
calculate the D	e�ciency of the designs to be developed in Section 
 an ��

��� D�optimal designs

First we give the D	optimal designs for model ���� where the experimental region X is a
q	dimensional cube�

De�nition �� We de
ne a design ���� �� �� consisting of three subsets as follows�

i� the �q vertices of the q	dimensional cube with weights ��

ii� the k�q�� elements of X � where one of the k quadratic variables has the value zero� and
all other variables have the value �� or ��� these points are given weights �� the points
are in the middle of some edges� but not all edges�

iii� the � k� ��q�� elements� where two of the k quadratic variables are equal to zero and all

other variables have the value �� or ��� these points are given weights � and are situated
at the centers of some two	dimensional faces� if k � � this set is empty�

The spectrum of the designs ���� �� �� consists of N � �q���� � 
k � k�k � ��� points� Now
de
ne ��� �� and �� as follows

�� � ��k� ���k� ��� �k�k � ��u� � k�k � ��v��	�q�� � ��a�

�� � ���k � �� � ��k� ��u� � �k � ��v��	�q�� � ��b�

�� � ��� �u� � v��	�
q�� � ��c�

where

u� �
��q � k � ����q�k� �� � k � � � �k � ��

p

q� � ��q � ���


�q � ����qk� k� � �k � ��
� ��a�

�



and

v� �
��q � k � ����
q�� �q � ��k � �q � � � ��qk� k � ��

p

q� � ��q � ���

��q � �����qk� k� � �k � ��
� ��b�

Theorem �� If ��� �� and �� as de
ned in ��� are positive� then the design ����� ��� ��� of
De
nition � is D	optimal for model ����

The weights ��� �� and �� of ��� are positive when q � �� q � �� � and k � q � �� � � q � ��
and k � q � �� For q 
 �� we did not compute the weights� However� it is clear that for
k � �� �� and �� are positive for all q�
In Table � values are given for q � ��

Table ��
Values determining the D�optimal designs

q k u� v� �q�� k�q���� k�k � ���qq����
� � ������ � ������ ������ �
� � ������ � ������ ������ �

� ���
�� ������ ������ ������ ������
� � ������ � ������ ������ �

� ������ ����
� ����
� ����
� ������
� ������ ������ ������ �����
 ������


 � ������ � ������ ������ �
� ������ ������ ������ �����
 ���
��
� ������ ������ ������ ���

� ������

 ������ ������ ������ ������ ����
�

� � ������ � ������ ���
�� �
� ������ ���
�� ���
�� ������ ������
� ������ ���
�� �����
 ���
�� �����
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Remark� The values for q � k can also be found in Fedorov ������� However there are some
misprints in Table � of Fedorov ������ on page ��� The table should read as follows�

Table ��
Correct values for ��� �� and �� for k � q � �

�� �� ��
� �������� �������� �
� ���
���� �������� ��������
� �������� �������� ��������

 ������
� ������
� ������


� �������� �������
 ����

��

��� Optimality of the designs

We shall prove the D	optimality of the design ����� ��� ��� given in Section ��� using the
equivalence theorem of Kiefer and Wolfowitz ������� For the information matrix of the design
����� ��� ��� we use the notation M��� and for the standardized variance of the estimated
response in a point x � X

d�x� �� � �f�x���M�����f�x� � �
�

where

�f�x��� � ��� x��� ���� x
�
k� x�� ���� xq� x�x�� ���� xq��xq� �

First we shall derive that the best design of the type ���� �� �� of De
nition � has the weights
��� �� and ��� as given in ���� However� this does not prove that the design is D	optimal� It
might be better �meaning a larger det�M���� to use other points of the experimental region�
But then we show that max

x�X
d�x� ����� ��� ���� � p from which we conclude that the design is

G	optimal and hence D	optimal�
Consider a design ���� �� �� as in De
nition ��
The information matrix M��� is equal to

M��� �

�����������

A

uIk
Iq�k

vI�
�k�k���

uIk�q�k�
I�
� �q�k��q�k���

�����������
� ���

where all the other entries are zero�

A �

����
� u���u

u��� �u� v�Ik � vJk
u

���� �

�



Im is the identity matrix of size m �m� Jm is a matrix of size m �m with Jij � � for all i
and j� and u and v are de
ned by

u � �q�� �k � ���q��� � �
��k � ���k� ���q���� �k � �� � ���

v � �q� � �k � ���q��� � �
��k � ���k � ���q���� �k � �� � ���

The determinant of the matrix M��� is equal to

det�M���� � uk�q�k���v
�
�k�k����u� v�k���u� �k � ��v � ku�� for k � � ��a�

and

det�M���� � uq����� u� for k � � � ��b�

Maximizing det�M���� with respect to u and v we obtain for k � � that u � �q � ��	�q � ��
and for k � � the two equations

�q � k � �� u� � �k � ���q � k � ��uv � �k�q � k� � �k � ��u��

�k � ���q � k � ��v� � �k�q � k � �� � ��u�v � � ���

and

u� � �k� ��uv � ku� � �k � ��v� � �k � ��u�v � � � ����

Solving the system of Equations ��� and ���� under the conditions u 
 � and v 
 � we obtain
u � u� and v � v�� where u� and v� are the values of ����
The weights �� � and � can be found by solving the Equations ���� ��� and

� � �q� � k�q��� � �
�k�k � ���q��� � ����

This yields the values ��� �� and �� of ����
Now we shall prove

max
x�X

d�x� ����� ��� ���� � p � ����

We have to compute M������

M��� �

�����������

A��

�
uIk

Iq�k
�
v I�

�k�k���
�
uIk�q�k�

I�
��q�k��q�k���

�����������
� ����

�



with

A�� �
�

u� �k � ��v � ku�

�����
u� k�k � ��v �u � � � �u

�u
���

u� �k � ��v � ku�

u� v
Ik � v � u�

u� v
Jk

�u

����� �

For d�x� ��� � d�x� ����� ��� ���� we obtain

d�x� ����
u� � �k � ��v�

u� � �k � ��v� � ku��
�

u� � �k � ��v� � ku�� � v� � u��
�u� � v���u� � �k � ��v� � ku���

kX
i��

x	i� ��
�

�u�
u� � �k � ��v� � ku��

kX
i��

x�i � �
v� � u��

�u� � v���u� � �k � ��v� � ku���

XX
��i�j�k

x�ix
�
j

�
�

u�

kX
i��

x�i �
qX

j�k��

x�j �
�

v�

XX
��i�j�k

x�i x
�
j �

�

u�

kX
i��

qX
j�k��

x�ix
�
j �

XX
k���i�j�q

x�i x
�
j �

First we note that the x�j �for k � � � j � q� only occur in positive terms� Therefore we
can 
nd an upper bound for d�x� ��� by substituting x�j � � in ��
� for k � � � j � q�

Furthermore one can show using equation ���� that the coe�cient of
XX
��i�j�k

x�ix
�
j is equal

to zero� and using equation ��� that the coe�cient of
X

��i�k

x�i � say c� is equal to the coe�cient

of �
X

��i�k

x�i �

From this we conclude

d�x� ��� � u� � �k � ��v�
u� � �k � ��v� � ku��

� �q � k� �

�
q � k

�

�
� c

kX
i��

�x�i � x	i � � ����

with

c �
�q � k � ���u� � �k � ��v� � ku���� �u��

u��u� � �k� ��v� � ku���
�

Computation of the value of c yields c � � and therefore

d�x� ��� � u� � �k � ��v�
u� � �k � ��v� � ku��

� �q � k� �

�
q � k

�

�
� ����

Finally� substituting ��� in ����� we obtain �����

�



��� Conclusion

In this section we derived D	optimal approximate designs for some models� In general these
designs can not be realised in practice� It is possible to construct exact designs �i�e� designs
that can be realised in practice� with e�ciency � � � for any small positive value of � �see
Theorem ������ of Fedorov �������� For such a design� since the product of the weights and
the number of observations must be an integer� in general a large number of observations
has to be chosen� Such designs are not very useful for practical applications� Sometimes
one is lucky� For q � � and k � � one can construct a ���� D	e�cient design with only
�� observations as follows� At each of the � vertices two observations are taken and in each
of 
 out of the � midpoints of the edges one observation �see De
nition ��� Indeed we have
� � �

�� � ���� and � � �
�� � ����� In other cases one can use the D	optimal approximate

designs to construct exact designs with a good e�ciency� These will be presented in Section
����

� Construction of designs using design generators

��� Introduction

The designs to be constructed in this section will be derived from the �n design� To do so
we shall use the techniques of replacement and collapsing� which will be explained in the
following sections� The designs to be developed will have factors with two� three or four
levels� These are given in column � of Table �� The values of the corresponding variables are
either given as �� � xi � �� �column ��� or as orthogonal polynomial values �column 
�� It
will always be clear from the context which set of values is being used�

Table ��
Levels of factors and values of corresponding variables

� � � 


Number of Levels used Values of Values of
levels in corresponding orthogonal polynomials

experimental design variables linear quadratic

� �� ��two � �� ��

three �obtained � �� �p� ��
from a four	level � � � ��
factor through � � � ��

collapsing� � �� �
p
� ��

� �� ��	p� ��

� �� � ��	p� ��four � �� � ��	
p
� ��

� �� ��	
p
� ��

�



��� The technique of replacement

If we employ a �� design� we have four treatments as shown in Table �� If we use a four	level
factor we also have four treatments� We can therefore associate the treatments of the ��

design with the treatments of the four	level factor and establish a one	to	one correspondence
between them� This correspondence is given in Table 
� where the four equally spaced levels
of the factor P are indicated with xP � �� �� � and ��

Table ��
The �� design with four�level factor P

B �� ��
xB � �

A �� �� �� ��
xA � � � �

obs� y� y� y� y	
value
of xP � � � �

The relation given in Table 
 has a great practical value� because it is now possible to take two
factors out of a �n design or a fraction thereof and replace these two factors by an equally
spaced four	level factor P � This technique is called replacement� See Addelman �����a�
������ We are now able to use a �n design as a building block for designs with a number
of quantitative factors having four levels� In Section � we stipulated that the mathematical
model of the observations can be described by an incomplete quadratic model� Since the
factor P has four levels we can represent its e�ect with a second degree polynomial in xP �
However� to ensure orthogonality as much as possible� which means many zeros in the X �X

matrix� we shall employ orthogonal polynomials to represent the P 	e�ect� The 
rst and
second degree orthogonal polynomials of an equally spaced four	level factor are

P �linear� � Pl � ��� � �xP �	
p
� �

����
P �quadratic� � Pq � �� �xP � x�P �

The method to calculate these orthogonal polynomials is described in Addelman �����a��
Substituting the values xPi � �� �� �� and � in ���� we obtain orthogonal polynomial values
for a four	level factor as given in Table �� See also Table ��

Table ��
Orthogonal polynomial values for a four�level factor

xPi � � � �

Pli ��	p� ��	p� �	
p
� �	

p
�

Pqi � �� �� �

Replacing the two	level factors A and B by one four	level factor is equivalent to replacing
the column vectors A�B and AB in the X matrix of a design by the column vectors Pl and
Pq of Table �� See also Table ��

�



Table ��
Values of xPi and column vector elements Ai� Bi� AiBi� P li and Pqi

xPi Ai Bi AiBi Pli � �Ai � �Bi�	
p
� Pqi � AiBi

� �� �� � ��	p� �

� � �� �� ��	p� ��

� �� � �� �	
p
� ��

� � � � �	
p
� �

The orthogonal polynomials ���� have been scaled in such a way that
	X
i��

Pl�i �
	X
i��

Pq�i �


 � N � where N equals the number of observations� The diagonal elements of X �X will
then be equal to N � The 
rst advantage of it is that the variance of the b��s� the estimated
parameters of the model are equal for an orthogonal design and nearly equal if the design
is nearly orthogonal� A second advantage is that it will be easy to compare the quality of
designs which have an equal number of experimental units� We now return to the �n design
of Table 
� To facilitate the construction of new designs later on it is necessary to 
nd the
relation between the elements of the set of column vectors �A�B�AB� and �Pl� Pq�� These
sets are� together with xPi� given in Table ��
The following relations now hold

Pli � �Ai � �Bi�	
p
� � ��� � �xPi�	

p
� or xPi � �� � Pli

p
��	� �

����
Pqi � AiBi � �� �xPi � x�Pi �

We shall use ���� to construct new designs�

��� The technique of collapsing

In the preceding section it was shown that the �n design can be used to construct designs
of which some quantitative factors have four equally spaced levels� The factors in the �n

design which have not been used for replacement will still have two levels� This replacement
technique therefore generates designs with some or all quantitative factors having four equally
spaced levels and the remaining factors having two levels� It was however pointed out in
Section � that experimenters want some freedom as to the choice of the number of levels� It
is therefore logical that they may wish to have designs� in which some quantitative factors have
three levels� This can be achieved by making use of the technique of collapsing� See Addelman
�����a� ����b��Margolin ������� This technique establishes for our purpose a correspondence
between the levels of the four	level factor and the levels of a three	level factor� The scheme
of Table � gives a method to achieve collapsing�

��



Table 	�
Collapsing a four�level factor to a three�level factor with relevant column vectors

Four	level Three	level
factor factor
x�Pi xPi Ai Bi AiBi Pli Pqi
� � �� �� �� �p� ��
� � �� �� �� � ��
� � �� �� �� � ��

� � �� �� �� �
p
� ��

The quantities in Table � are related as follows

Pli � �A� �Bi�	
p
�� ��� � xPi�

p
�� xPi � � � Pli	

p
� �

����
Pqi � AiBi � �� 
xPi � �x�Pi �

When we compare formulae ���� with ����� we see that Pl remains a linear function of A and
B� whereas the expression for Pq has not changed at all� This property is very convenient
because it means that we can change a satisfactory design with a four	level factor into a
design with that particular factor collapsed into a three	level factor� which zero elements in
the X �X matrix remain zero� An orthogonal design with a four	level factor can therefore
easily be changed into an orthogonal design with a three	level factor� In the next sections we
shall use the techniques of replacement and collapsing to construct some new designs�

��� The �
� design as a building block for other designs

�
�
� Main�e�ect designs

The �� design has a well	known structure as given in Table ��

Table 
�
�� design

A �� ��
xA � �

B �� �� �� ��
xB � � � �

C xC
�� � y� y� y� y	
�� � y
 y� y� y


The X matrix of column vectors corresponding to the �� design is given in Table ��

��



Table ��
The X matrix of column vectors for the �� design

Experimental
unit x�i Ai Bi Ci AiBi AiCi BiCi AiBiCi

� � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��

 � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��
� � �� �� �� �� �� �� ��

The X matrix of Table � has excellent properties because X �X is orthogonal which means
that the inner product of two di�erent column vectors always equals zero� Each column
vector with the exception of column x� has four values �� and four values ��� This means
that this X matrix can be used as a design matrix for experimental design with �� 
� ���� �
two	level factors� In this way a number of small �� experimental units� main	e�ect designs
for two	level factors can and have been constructed� See Addelman �����a� ������ In the
next section we shall investigate whether it is possible to construct a 
� � � � design with
eight experimental units from the X matrix of Table � using the restrictions mentioned in
Section ��
Such a design shall be indicated as a 
� �� �	� design�

�
�
� The 
� �� � design in eight experimental units

The factors to be used are the following�

P� A quantitative factor with four equally spaced levels �� �� � and ��

Q� A two	level factor with levels Q� � �� and Q� � �� or xQ� � � and xQ� � ��
If follows that xQ � �Q� ��	��

R� A two	level factor with levels R� � �� and R� � �� or xR� � � and xR� � � and
xR � �R� ��	��

Using the orthogonal polynomials Pl and Pq as de
ned in Section 
��� see ����� we have the
following mathematical model

yi � ��x�i � ��Pli � ���QiRi � ���Pqi � ��Qi � ���PliRi � ��Ri � ���PliQi � �i � ����

�i � �� �� ���� �� � See also model ���

Since ���� contains � parameters it must be possible to employ an experiment with � exper	
imental units to estimate these parameters� To 
nd the levels of the four	level factor P we

��



use the technique of replacement as in Section 
�� and replace the column vector elements
Ai� Bi and AiBi of Table � by Pli and Pqi using formula ����� As to the choice of Qi and Ri

from Table � we can choose two elements from the set Ci� AiCi� BiCi� AiBiCi� A good choice
appears to be Qi � Ci and Ri � AiCi� Using ���� we obtain the following design generators�

Table ���
Design generators for a 
� �� �	� design

Pli � �Ai � �Bi�	
p
�

Pqi � AiBi

Qi � Ci

Ri � AiCi

With the aid of the design generators of Table �� we can write each independent variable of
model ���� as a function of the column vector elements of Table ��
We 
nd

x�i � �

Pli � �Ai � �Bi�	
p
�

Pqi � AiBi

Qi � Ci

����
Ri � AiCi

QiRi � Ci�AiCi� � Ai

PliRi � �Ai � �Bi��AiCi�	
p
� � �Ci � �AiBiCi�	

p
�

PliQi � �Ai � �Bi��Ci�	
p
� � �AiCi � �BiCi�	

p
� �

Table ���
Design matrix and X matrix

Exp�unit xP xQ xR x�i Pli QiRi Pqi Qi PliRi Ri PliQi

� � � � � ��	p� �� � �� ��	p� � �	
p
�

� � � � � ��	p� � �� �� �	
p
� �� �	

p
�

� � � � � �	
p
� �� �� �� �	

p
� � ��	p�


 � � � � �	
p
� � � �� ��	p� �� ��	p�

� � � � � ��	p� �� � � �	
p
� �� ��	p�

� � � � � ��	p� � �� � ��	p� � ��	p�

� � � � � �	
p
� �� �� � ��	p� �� �	

p
�

� � � � � �	
p
� � � � �	

p
� � �	

p
�

��



The design matrix and the X matrix of column vectors can now be derived from Table � and
are presented in Table �� using the relations ����� ���� and the formulae xQ � �Q���	�� xR �
�R� ��	��
We can of course calculate X �X easily from the X matrix of Table ��� It is� however� more
elegant and we obtain more insight into the structure of X �X when the expressions ���� are
used�
We 
nd for example

�Pl� QR� � ��A� �B�	
p
�� A� � �




p
���A�A� � ��A�B�� � 





p
� � ����

where Pl� QR�A and B are vectors�
This yields

X �X � �

	BBBBB

� � � � �
� F � � �
� � � � �
� � � F �
� � � � F

�CCCCCA � ����

with

F �

	B
 � �



p
�

�



p
� �

�CA �

According to linear regression theory we have

Cov�b�� � 
��X �X��� � 
� �


	BBBBB

� � � � �
� F�� � � �
� � � � �
� � � F�� �
� � � � F��

�CCCCCA � ��
�

The matrix �X �X��� is an important one since the diagonal elements are proportional to
the variances of the estimated regression coe�cients b� and a zero o�	diagonal element means
that the corresponding coe�cient of correlation between two b��s equals zero� The number of
zero o�	diagonal elements is therefore a measure for the orthogonality of the design� When
we examine ��
� in more detail it appears that the estimated values b� can be divided into �
groups� namely

b��� �b��� b����� b���� �b��� b����� �b��� b���� �
It is striking that all linear e�ect belong to di�erent groups and that each linear e�ect of a
factor is correlated with the linear interaction component of the two other factors� b��s belong	
ing to di�erent groups are orthogonal estimates and therefore uncorrelated� Some authors
call this clumpwise orthogonality �see Margolin� ������ A large measure of orthogonality is
therefore maintained�

�




Now we discuss the choice of the design generators in Table ��� We could have chosen for
example Qi � Ci and Ri � BiCi� This choice results in a matrix X �X with structure given
in ���� where now

F �

	B
 � �



p
�

�



p
� �

�CA �

The values � � �

p
� � ��




p
� in the matrix X �X are the result of the inner products �Pl� QR��

�PlR�Q� and �PlQ�R�� We have for example

�Pl� QR� � ��A� �B�	
p
�� B� � ��B�B�	

p
� � ��




p
� � ����

We prefer the 
rst choice for two reasons

� the diagonal elements corresponding to the variances of b��� b���� b��� b��� and b��� are four
times smaller

� the correlation coe�cient between two b��s within the pairs �b��� b����� �b��� b���� and �b��� b����
equals ��	p� for the 
rst and ��	p� for the second choice�

Comparing ���� and ����� we see that the value ��



p
� originated from the term �B in Pl�

We can now formulate an important rule�
Having once chosen Pl � �A � �B�	

p
� and Pq � AB it is necessary not to equate the B

and AB columns of the �� design to any of the �� design to any of the columns for Q�R and
QR� Applying this rule indicates that apart from the choice Qi � Ci and Ri � AiCi only
the choice Qi � BiCi and Ri � AiBiCi generates a suitable design� The latter choice turns
out to have the same information matrix as ����� It therefore appears that there is only one
suitable 
� �� � design in � runs�

�
�
� The D�e�ciency of the 
� �� �	� design

The D	e�ciency of a design � is de
ned as

D	e�ciency � ����det�M����	det�M���������P � � ����

where �� is a D	optimal design�
The value det�M����� is obtained by substituting the relevant u� and v� values from Table �
in ���� Therefore we obtain

det�M����� � �
	�
 � ����

The value det �M���� can be computed from

det�M���� � det��X �X�	N� ����

��



where N equals the number of observations� However� we should remember that ���� was
obtained using model ��� and �� � xi � � for i � �� �� �� We therefore have to calculate
det�M���� using the scaling �� � xi � � for the independent variables xi and the model ����
We obtain a new matrix X� � XL� where X equals the matrix in Table ��� and

L �

	BBBBBBBBBBBB


� � � �	� � � � �

�
p
�	� � � � � � �

� � � � � � � �
� � � 
	� � � � �
� � � � � � � �

� � � � �
p
�	� � �

� � � � � � � �

� � � � � � �
p
�	�

�CCCCCCCCCCCCA
� ����

Therefore

det�X �
�X�� � �det�L���det�X �X� � ��� � �
	��� ����

and

det�M���� � ���	��� �

This yields a D	e�ciency of ���
��

�
�
� An application of the 
� �� �	� design

To study the ligth output of a particular type of lamp� it was decided to examine the e�ect
of three factors P�Q and R� These factors and their levels are presented in Table ��� The
model used is given in �����

Table ���
Factors and levels of lamp experiment

Factor Levels

P The amount of amalgam �� �� �� ��
Q Type of gas in the lamp G�� G�
R Type of glas used I� II

Only a small experiment could be carried out because the lamps were expensive and the
available time in which to carry out the experiment was limited� It was therefore decided to
carry out a half replicate of a 
� �� � design� The results� the ligth output of one lamp in
each �cell�� are given in Table ��� This design has a structure as given in Table ���

��



Table ���
Data of the lamp experiment

Q� Type of gas G� G�
xQ � �

P � R� Type of glas I II I II
Amount xR � � � �

of amalgam
xP

� � ���� ����

� � ���� ���

� � �
�� �
��

� � �
�� ����

The vector of least squares estimates for the unknown parameters in ���� equals

b� � ������� ����� ������ ����� ������ ����� ������ ��
��� �

From the results of previous experiments we have an estimate of 
�� namely b
� � �����
with �� degrees of freedom� Using linear regression theory� we obtain that ��� ��� and �� are
signi
cant �� � ������ A signi
cant value of ��� implies an e�ect of factor P � We therefore
decide to use the estimate b�� as well in order to obtain a correct measure of the P 	e�ect�
Our estimated model therefore is

Ed�yi� � b��x�i � b��Pli � b���Pqi � b��Qi �

where b�� and b�� are new estimates of the parameters �� and ��� namely

b�� � ��
� and b�� � ����
 �

The relation between the amount of amalgam and light output for two types of gas has been
plotted in Figure ��


�

��

��

��

� � � �

amount of amalgam

Gas type G�

Gas type G�Light

Output

�

�

Fig� �� Relation between the amount of amalgam and light output for two types of gas�

��



Figure � is very interesting because it shows the large and constant di�erence between the
two types of gas and a minimum value of light output for an amount of amalgam of ���
�
The highest light output is obtained for an amount of amalgam of � and gas type G�� The
expected corresponding light output equals ������

�
�
� The �� �� � design in 
 experimental units

In order to construct a � � � � � design in � experimental units� we again employ the X
matrix of column vectors for a �� design a presented in Table ��

The factors to be used are as follows�

P� A quantitative three	level factor with equally spaced levels �� � and ��

Q� A two	level factor with levels Q� � �� and Q� � ��� or xQ� � � and xQ� � ��

R� A two	level factor with levels R� � �� and R� � ��� or xR� � � and xR� � ��

We use the model ����� so a design of � experimental units should again be su�cient� We shall
employ the technique of replacement and collapsing as summarized in Table � of Section 
�� to

nd the column vector elements Pli� Ri� ���� P liQi� The relations according to ���� can be used
to replace the two factors A and B with two levels each by a three	level factor� The column
vectors Q and R can be obtained by choosing two vectors from the set C�AC�BC�ABC� A
good choice is Q � C�R � AC�
This yields the design given in Table �
�

Table ���
A �� �� �	� design

xQ � �
xP xR � � � �

� � �
� � � � �
� � �

Using the same method as in Section 
�
��� we may write the elements of the column vectors
of the X matrix of this design as given in Table ���

Table ���
Column vector elements for a �� �� �	� design

x�i � � Pli � �Ai �Bi�	
p
�

QiRi � Ai Pqi � AiBi

Qi � Ci PliRi � �Ci �AiBiCi�	
p
�

Ri � AiCi PliQi � �AiCi � BiCi�	
p
�

��



The X �X matrix has the structure given in ���� where now

F �

	B
 � �
�

p
�

�
�

p
� �

�CA �

The �X �X��� matrix shows that correlation within the same pairs of b��s� namely �b��� b�����
�b��� b���� and �b��� b����� occurs as with the 
� �� �	� design�
The relevant correlation coe�cient equals

�pq �
cov�b�p� b�q�q

�var�b�p�var�b�q� � ��
�

p
� � ����� �

This correlation coe�cient is fairly high and we can ask ourselves whether a better design
than the one given in Table �
 can be found� The D	e�ciency of this design equals ���
��
A �� �� �	� design using a di�erent collapsing procedure was found by Upperman �������
It had a D	e�ciency of ������ A disadvantage of the latter design is the fairly large value of

�b��� �
� Designs using �� experimental units

��� The �
	 design

The �	 design shall now be used to construct designs with three or four factors� each of which
has two� three or four levels� As before we stipulate that the three	 and four	level factors
are quantitative and have equally spaced levels� We shall� as already announced in Section
�� use two construction methods� The 
rst one uses design generators and will be dealt with
in the Sections ���� ��� and ��
� The second method uses the properties of the D	optimal
designs as discussed in Section �� Designs derived from D	optimal designs will be treated in
Section ���� In Section 
 we found that only a few suitable designs with factors having more
than two levels could be derived from the �� design� We shall see that the number of designs
which can be derived from the �	 designs is far greater� Because we shall frequently make
use of the X matrix of column vectors of the �	 design we give this matrix in Table ���

Table ���
The X matrix of column vectors for the �	 design

Nr�exp� x� A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

� � �� �� �� �� � � � � � � �� �� �� �� �

� � � �� �� �� �� �� �� � � � � � � �� ��

� � �� � �� �� �� � � �� �� � � � �� � ��

� � � � �� �� � �� �� �� �� � �� �� � � �

� � �� �� � �� � �� � �� � �� � �� � � ��

� � � � �� � �� �� � �� � �� �� � �� � �

	 � �� � � �� �� �� � � �� �� �� � � �� �


 � � � � �� � � �� � �� �� � �� �� �� ��

� � �� �� �� � � � �� � �� �� �� � � � ��

�� � � �� �� � �� �� � � �� �� � �� �� � �

�� � �� � �� � �� � �� �� � �� � �� � �� �

�� � � � �� � � �� � �� � �� �� � �� �� ��

�� � �� �� � � � �� �� �� �� � � � �� �� �

�� � � �� � � �� � � �� �� � �� �� � �� ��

�� � �� � � � �� �� �� � � � �� �� � �� ��

�� � � � � � � � � � � � � � � � �

��



The X matrix of Table �� has similar properties as the X matrix of the �� design as discussed
in Section 
�
��� It is well known from the literature that the �	 design can be used to estimate
e�ects of 
� �� ���� �� two	level factors� For 
 and � factors it is possible to estimate all main
e�ects and two	factor interactions� If more than � factors are used� only the main e�ects and
under certain conditions some two	factor interactions can be estimated� In the next sections
we shall construct designs� using the �	 design� with factors having more than two levels�
We shall however ignore the 
� �� �	�� design since it contains �� experimental units� Its
construction and analysis is therefore straightforward� We shall instead try to construct a
half replicate of the 
� 
� � design from the X matrix of Table ���

��� The �� � � � orthogonal design with �	 experimental units

The factors to be used are the following�

P�Q� Two quantitative factors with 
 equally spaced levels xP � �� �� �� � and xQ � �� �� �� �

R� A two	level factor with levels R� � �� and R� � �� or xR� � � or xR� � ��

Using the restrictions as given in Section � we have the mathematical model of the observa	
tions yi as given in �����

yi� ��x�i � ��Pli � ���Pqi � ��Qli � ���Qqi � ��Ri � ���PliQli�

���PliRi � ���QliRi � �i� i � �� �� ���� �� � ����

where E��� � � and E����� � 
�I � I is the identity matrix�

Table �	�
Column vector elements for the 
� 
� �	�� design

x�i � �

Pli � �Ai � �Bi�	
p
�

Pqi � AiBi

Qli � �Ci � �Di�	
p
�

Qqi � CiDi

Ri � AiBiCiDi

PliQli � �AiCi � �AiDi � �BiDi � �BiCi � 
BiDi�	�

PliRi � �BiCiDi � �AiCiDi�	
p
�

QliRi � �AiBiDi � �AiBiCi�	
p
� �

��



Since ���� contains � parameters �� the number of �� experimental units is su�cient and
allows an estimate of 
� with �� � � � � degrees of freedom� To construct the matrix of
column vectors for ���� we employ a procedure similar to the one used in Section 
�
��� We

nd� using the column vectors A�B� ���� ABCD of Table �� the expressions given in Table ���

The manner in which the expressions of Table �� were found will now be explained� The
expressions for Pli� Pqi� Qli and Qqi imply that we have used the technique of replacement
twice� since we assigned the column vectors A�B and AB to Pl and Pq while those for C�D
and CD were assigned to Ql and Qq� We therefore replaced the factors A and B by the
four	level factor P and the factors C and D by the four	level factor Q� See also Section 
���
We therefore used � columns of Table �� to calculate the 
 column vectors for the factors P
and Q� We have to select one more column vector in Table �� for the remaining two	level
factor R� We have in principle the choice from nine vectors� but it will appear that only one
of these is suitable� First of all it is evident that from the choice

Pli � �Ai � �Bi�	
p
� and Qli � �Ci � �Di�	

p
� �

it follows that

PliQli � �AiCi � �AiDi � �BiCi � 
BiDi�	
p
� � ����

Formula ���� shows that the column vector for PlQl is calculated from 
 �interaction columns�
of Table ��� If we use one of these columns for the factor R� we immediately introduce a non
zero o�	diagonal element in X �X and hence correlation between b��s� To avoid this we have
to choose from the remaining column vectors ABC�ABD�ACD�BCD and ABCD� Suppose
we choose Ri � AiBiCi� We then have PliRi � �BiCi � �AiCi�	

p
� which are terms already

in ���� and we again introduce non zero o�	diagonal elements in X �X � It appears that the
only way to avoid this phenomenon is to choose Ri � AiBiCiDi as was done in Table ���
When we examine the expressions in Table �� more closely we see that all column vectors of
Table �� appear only once� It follows that all inner products of the vectors in Table �� such
as �x�� P l�� �Pl� Pq�� �Pl� Ql�� ���� �PlR�QlR� are equal to zero and that means that X �X cor	
responding to model ���� is diagonal and we therefore have an orthogonal design� The vector
elements PliQli� PliRi and QliRi in Table �� are calculated from the design generators� as
given in Table ���

Table �
�
Design generators for the 
� 
� �	�� design

Pli � �Ai � �Bi�	
p
� Pqi � AiBi

Qli � �Ci � �Di�	
p
� Qqi � CiDi Ri � AiBiCiDi

It is extremely important to choose these generators very carefully since they determine the
structure of the X �X and therefore of the �X �X��� matrix� It is also stressed that the design
generator not only yield some of the expressions in Table �� but also enable us to calculate
X �X analytically�
We 
nd

��



X �X � ��I � ����

It appears that X �X is not only diagonal� but also has as diagonal elements the numbers ���
This was achieved by choosing the orthogonal polynomial values as given in Table �� The
matrices X �X and �X �X��� are therefore equal to the X �X and �X �X��� of the �	 design�
Having the number �� as diagonal elements in X �X is especially important since it facilitates
the comparison with other designs� To 
nd the design matrix we use the equations ���� and
we obtain the relations

xPi � �� � Pli
p
��	� � �� � Ai � �Bi�	� ��
a�

xQi � �� � Qli
p
��	� � �� � Ci � �Di�	� ��
b�

xRi � �� � Ri�	� � �� �AiBiCiDi�	� � ��
c�

Substituting the values Pli� Qli and Ri of Table �� or Ai� Bi� Ci� Di and AiBiCiDi of Table
�� into the equations ��
� results in the design matrix for the 
� 
 � �	�� design� which is
given in Table ���

Table ���
Design matrix for the orthogonal 
� 
� �	�� design

xP xQ xR
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

��� The �� � � � design with �	 experimental units

In order to construct the 
 � � � � design� we shall collapse the four	level factor Q used in
the previous section to a three	level factor Q� We use the collapsing procedure as given in
Section 
�� and can therefore use the design generators of Table �� if we only change the
expression for Qli into

��



Qli � �Ci �Di�	
p
� �

Again we have

X �X � ��I �

The design matrix is given in Table ���

Table ���
Design matrix for the orthogonal 
� �� �	�� design

xP xQ xR
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

��� Other designs with �	 experimental units

Upperman ������ derived a total of � designs wit �� experimental units using methods de	
scribed in Section ��� and ��� these are listed in Table ���

Table ���
Designs with �� experimental units constructed by using design generators and collapsing


� 
� �	�� � � ���� Orthogonal design
�Section ����


� �� �	�� � � ���� Orthogonal design
�Section ����


� �� �� �	�� � � ���� Orthogonal design
�� �� �� �	�� � � ���� Orthogonal design

� 
� �� �	�� � 
 ���� Clumpwise othogonality

� �� �� �	�� � � ���� Clumpwise othogonality
�� �� �� �	�� 
 � ���� Clumpwise othogonality

��



Further details of these designs can be found in Upperman ������� where design charac	
teristics� other than D	e�ciency are discussed� It is possible to construct an additional ��
fractional designs with �� experimental units using the techniques of replacement� design
generators and collapsing� but these designs have a low D	e�ciency� In Section ��� we shall
therefore use a di�erent method to construct fractional designs with �� experimental units�

��� The construction of designs with �	 experimental units using D�optimal
designs

The appropriate model to be used for the 
� 
� 
	�� design is the model described in ���
for k � q � �� Using Table � we 
nd that for k � q � � the D	optimal design consists of
design points as given in Table ���

Table ���
Design points of the D�optimal �� �� � design

����� of the points are the type ��� ��� ��

����� of the points are the type �� ��� ��

����� of the points are the type �� �� ��

Since we only use �� design points we can never realize the percentages of Table �� in practice
and we therefore have to use approximate values� Moreover� since we employ 
 levels� we do
not have the level �� but have to use � �� �� instead� remembering that levels � �� �� will
become a level � after collapsing�
We then set up the design of Table ���

Table ���
A 
� 
� 
	�� design

Exp�unit x�i x�i x�i
� �� �� ��
� � �� ��
� �� �� ��

 � �� ��
� �� �� ��
� � �� ��
� �� �� ��
� � �� ��
� �� � �� � �� �
�� � �� �� �
�� �� � � ��
�� � � � ��
�� �� �� � �
�
 � � �� �
�� �� � � �
�� � � � � � �

�




Examining Table �� we see that

� points � ��� are of the type �� � � � � �

these points form a �� design�

� points � ����� are of the type ��	� � � � �

� points � ����� are of the type ��	� � �	� � �	� �

When we compare these percentages with those in Table �� we see some discrepancies as
regards the groups �� �� � �� � �� and ��� � �� � ��� Moreover� we used two points of
the type � � � � � � � � � which do not occur at all in Table ��� but we used these� to
have two �center points� when the three four	level factors are collapsed to three	level factors�
These center points are however not desirable from the D	e�ciency point of view because
they do not occur at all in the D	optimal design of Table ��� It is� on the other hand� very
often desirable to include these points in an experiment� because they represent �normal� or
�standard� operating conditions� We nevertheless calculated the D	e�ciency of the design
in Table ���
For the design of Table �� we obtain

det��X �X�	��� � ������ ���	 �

From Table � and ��a� we obtain

max det �M���� � ����������� �

So� the D	e�ciency of the design of Table �� equals ������ Three other designs were derived
from the 
�
�
	�� design by collapsing �� � and � four	level factors into three	level factors�
The collapsing is achieved as indicated in Table �
�

Table ���
Collapsing a four�level factor into a three�level factor

Four	level factor Three	level factor

x�P or x�Q or x�R x�� or x�� or x�� xP or xQ or xR x� or x� or x�
� �� � ��
� �� � � �
� � � � �
� � � �

The collapsing procedure of Table �
 is identical to the method used in Table �� Three other
groups of design were similarly constructed namely

� A 
� 
� �� �	�� design and two additional designs derived through collapsing one and
two four	level factors�

��



� A 
� 
� 
� �	�� design and three other designs obtained by collapsing�

� A 
� 
� 
� 
	�� design and four other designs also constructed by collapsing one� two�
three and four factors�

These designs are listed in Table ��� For further details we refer to Upperman �������

Table ���
Designs with �� experimental units constructed by using D�optimal designs and collapsing

Design Fraction D	e�ciency Remarks


� 
� 
	�� � 
 ���� Linear e�ects orthogonal

� 
� �	�� � � ���� Linear e�ects orthogonal

� �� �	�� 
 � ���� Linear e�ects orthogonal
�� �� �	�� �� �� ���� Linear e�ects orthogonal


� 
� 
� �	�� � 
 �
�� Clumpwise orthogonality

� �� �� �	�� � � ���� Clumpwise orthogonality
�� �� �� �	�� 
 � ���
 Clumpwise orthogonality


� 
� 
� �	�� � � ����

� 
� �� �	�� � � ����

� �� �� �	�� � � ����
�� �� �� �	�� � �� ����


� 
� 
� 
	�� � �� �
��

� 
� 
� �	�� � �� ����

� 
� �� �	�� � � ����

� �� �� �	�� 
 �� ����
�� �� �� �	�� �� �� ����
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