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Abstract. With interconnect increasingly contributing to the electrical behaviour
of integrated circuits, both by higher frequencies and smaller dimensions, it becomes
increasingly important to incorporate its behaviour into simulations of ICs. This can
be done rather elegantly by summarizing interconnect behaviour into a compact or
reduced order model which is then co-simulated with the circuit. A similar approach
can be used in the case of more conventional printed circuit boards. The SVD-
Laguerre algorithm proposed by Knockaert and De Zutter [4] can be used for this
purpose. In this paper, we describe an efficient implementation of the algorithm
for multiple inputs, and show how the mathematical reduced order models can be
translated into realizable circuit elements.

1 Introduction

To increase their performance, the characteristic dimensions of ICs and printed
circuit boards (PCBs) are decreased and will decrease even further in the
future. Higher speed makes the effect of higher frequency modes on the in-
terconnect more important. Therefore, the analysis of signal propagation on
the interconnect system is important. However, this requires the solution of
Maxwell’s equations which is rather demanding from the point of view of
computation times. In addition, accurate modelling leads to large systems
which can hardly be used in conventional circuit simulations.
To be able to work with models for interconnect structures, a technique known
as reduced order modelling is employed. This class of mathematical tech-
niques is able to reduce the sizes of models while preserving their essential
features. Classical techniques in this area are the asymptotic waveform eval-
uation (AWE) method and the Pade-via-Lanczos (PVL) method. The latter
is an efficient and robust implementation of the former. Recently, a new re-
duction method was proposed by Knockaert and De Zutter [4]. We will take
a closer look at this method and will show how this method can be used to
make realizable circuits.

The paper is built up as follows. In section 2, we briefly show how the
discretized Maxwell equations lead to an RLC model for the interconnect
system. Then, in section 3, the concept of transfer function is introduced,
relating the area of reduced order modelling to concepts used in systems and
control engineering where frequent use is made of state space models. Section



4 discusses several points which are of interest when using reduced order
modelling techniques in the context of ICs and PCBs. In section 5 the SVD-
Laguerre method is explained, whereas in section 6 the efficient treatment of
multiple inputs is presented. The translation of the mathematical results to a
realizable circuit is discussed in section 7. In the last section, some numerical
results are given.

2 Discretization procedure

The modelling of interconnect systems has gradually developed over the years.
For DC situations interconnect can be modelled as a short, but as losses and
inductances are becoming more important increased use is made of represen-
tations using RLCG circuits. It is sufficient to restrict ourselves to the case
in which the components R, L, G, and C are frequency independent.
Both ICs and PCBs can be modelled by (large!) RLC-circuits. These models
can be obtained via a discretization of the Maxwell equations. As an illustra-
tion of this, we will very briefly review how this is done in [7].
To calculate the electromagnetic fields in an electronic system, the Maxwell
equations must be solved:

∇× E = −∂B
∂t J = σE

∇× H = J + ∂D
∂t B = μH

∇ · B = 0 D = εE
∇ · D = ρ

After introducing a magnetic vector potential A and an electric scalar po-
tential ϕ the system can be rewritten as follows:

(Δ + k2)A = −μJ,

∇ · (ε∇ϕ) + εk2ϕ = −ρ,

J = σE = σ(−∇ϕ + iωA), (1)
∇ · J − iωρ = 0

with suitable boundary conditions. This system is discretized using a bound-
ary integral method [7] making frequent use of Green’s functions. The final
discrete system can then be written into a form which is familiar to IC and
PCB designers:

(R − iωL)I − PV = 0,

−PT I + iωMQ = 0 (2)
MT V − DQ = 0

Here, the elements of the vector V are the potentials of the elements. The
vector I consists of the current through the edges. Q contains the weights
of the surface charge density, therefore its elements are the charges of the
elements of the circuit.



3 Transfer Functions, Approximation and Reduced
Order Modelling

It is convenient to rewrite RLC models in terms of a state space formulation.
Such formulations are of the form

Cẋ = Gx + Biu

y = Bo
T x, (3)

where Bi and Bo are the matrices selecting the input and output, respectively.
This reformulation can be done both for MNA formulations of circuits, and
for the discretized system of Maxwell equations as derived in the previous
section.

An efficient and commonly used way to solve the state space system is via
the Laplace transform. Within this methodology, the so-called transfer func-
tion is introduced. It is the function H(s) giving the direct relation between
input and output, in the frequency (denoted by s) domain. It is obtained by
eliminating the state space vector x. The s-parameter can be considered as
the complex frequency iω. For (3) we have:

H(s) = Bo
T (G + sC)−1Bi, (4)

such that y = H(s)u. A model which approximates the original model, can be
called accurate if the transfer function of the original model is approximated
well by the transfer function of the approximating model.

As can be understood from the procedure summarized in section 2, the
models obtained for interconnect systems on ICs or PCBs consist of (very)
large systems of equations. This is not very convenient, and a coupling of
these large systems with circuit equations is almost out of the question. With
Reduced Order Modelling the original model is replaced by a model which
is smaller, but has (approximately) the same properties. There is a danger,
however, that some essential properties are lost during the mathematical
procedure. Ideally, these properties should be preserved.

In our search for a smaller circuit, describing approximately the same
behaviour, an important issue is the preservation of stability and passivity.
An RLC-circuit is passive, because it has no active components. Passivity
is stronger than stability. A stable circuit, can become unstable when non-
linear components are attached to its terminals. In contrast, a passive circuit
remains stable under all conditions.

The behaviour of a circuit and the transfer function are uniquely deter-
mined by the poles and their associated residue. Poles can be calculated by:

−1
σ(G−1C)

,

with σ(G−1C) the eigenvalues of −G−1C. Because the poles are determining
the behaviour of the system, also the poles can be approximated. This is why



methods from the area of eigenvalue approximations are often well-suited
for these problems also. Examples of this are the Krylov subspace methods,
PVL and PRIMA. In this paper we consider a new Krylov subspace method
which is very similar to the others, but with some very attractive properties:
SVD-Laguerre [4].

4 Some Theory Behind the Laguerre Method

The idea behind the Laguerre method is that the transfer function can be
expanded in terms of Laguerre functions. We consider the Laguerre functions
in the s-domain:

Φα
n(s) =

√
2α

s + α

(
s − α

s + α

)n

for n = 0, 1, 2, ... (5)

These functions form a uniform bounded orthonormal basis in the frequency
domain for s = iω, with ω ∈ (0,∞), for the space H2. The transfer function
can be expanded in terms of these functions:

H(s) =
2α

s+α
LT

∞∑
n=0

(
(G+αC)−1(G−αC)

)n

(G+αC)−1B
(

s−α

s+α

)n

(6)

Due to a lack of space we are forced to reference to [3], where the derivation
of this expression can be found. The matrices used in this Laguerre expansion
can be used to build up Krylov subspaces. An n-dimensional Krylov subspace
is defined by:

Kn(b,A) = [b,Ab, . . . ,An−1b] (7)

The main part of the Laguerre method consists of building a Krylov subspace,
with the vector (G + αC)−1Bi and matrix (G + αC)−1(G − αC).

The columns of the Krylov subspace are made orthogonal. In the original
article of the SVD-Laguerre method this orthogonalisation is done after all
columns of the Krylov-space are created. This is done with a Singular Value
Decomposition (SVD). But in repetitive multiplication with a matrix the vec-
tors tend to one dominant direction. To avoid numerical artefacts, we propose
to perform orthogonalisation this during the generation of the columns. The
system matrices are projected onto this Krylov subspace, spanned by V:

G̃ = VT GV C̃ = VT CV B̃i = VT Bi B̃o = VT Bo

For a single input column Bi, the algorithm can be summarized as follows:

Solve (G + αC)v1 = Bi

v1 = v1
‖v1‖

for j=1,...,k-1
Solve (G + αC)t = (G − αC)vj



for i = 1, ..., j
hi,j = vH

i t
t = t − hi,jvi

end
hj+1,j = ‖t‖
vj+1 = t

hj+1,j

end
G̃ = VT GV C̃ = VT CV B̃i = VT Bi B̃o = VT Bo

Although, solving the matrix equation in this equation is quite expensive, it
has to be done for one choice of α, so we can for instance invest in an LU-
decomposition, to solve the system efficiently. Further note, that the following
holds, during the algorithm: (G − αC)−1(G + αC)Vk−1 = VkH where H
is a Hessenberg matrix. The small matrix HTH can be used to approximate
the singular values of the matrix (G− αC)−1(G + αC) and can therefor be
used in a stopping criterium.

5 The Laguerre Algorithm for Multiple Input

If an RLC-model is considered with more than one input, the matrix Bi ob-
viously has more than one column. All of these columns describe one specific
input. The approximate model should then also allow more inputs and give
an accurate approximation for all of these. In fact, the transfer function has
become a transfer matrix, and we should have accurate approximations for
all entries of this matrix.

Multiple inputs implies that the Krylov subspaces are also larger. For
example, if two inputs are considered, the Krylov subspaces have a dimension
which is twice as large compared with the subspaces generated for one input:

Kn(Bi,A) = [ Bi︸︷︷︸
2

,ABi︸︷︷︸
2

, . . . ,An−1Bi︸ ︷︷ ︸
2

] (8)

Projecting onto these larger subspaces leads to system matrices which are
correspondingly larger. Hence, the reduction obtained is less, and we have to
be very careful with the number of columns generated. To find an appropriate
space which contains the information needed for several inputs, we propose
the following algorithm:

For every input column Bm

Calculate t = (G + αC)−1Bm

Make this vector orthogonal the already existing columns
Do k iterations of the Laguerre algorithm

every columns is put orthogonal to every other
end

end
Project onto the Krylov-space



Because every column is treated independently and every generated column
is made orthogonal to the others, we expect the Krylov subspace to contain
less redundant information.

6 A Disadvantage of Reduction Methods

The Kirchhoff’s current laws and the branch equations, describing the RLC-
model, can be derived directly from the state space formulation. Unfortu-
nately, after reduction this is not possible anymore. For instance, if a state
space vector x is used, in general it will consist of branch currents and node
voltages. After projecting this vector onto a Krylov subspace, the rows have
lost their physical meaning. The input and output terminals are kept, but
the others may disappear. All well-know reduction methods (AWE [1], PVL
[2], PRIMA [5]) suffer from this problem. This includes the Laguerre method
presented in the previous section(s).

The problem mainly consists of the fact that we cannot make use of a cir-
cuit simulator in a direct way. Furthermore, starting from a model consisting
of resistances, inductances and capacitors, it is desirable to have a reduced
system which also consists of realizable or even passive components. This can
not be done directly. However, there is a way to solve this problem via the
Laguerre method, and we shall present this now.

Reconsider the Laguerre expansion given before:

H(s) =
2α

s+α

∞∑
n=0

LT
(
(G+αC)−1(G−αC)

)n

(G+αC)−1B
(

s−α

s+α

)n

(9)

The advantage of this formulation is that the s parameter is not part of the
inversion process for large matrices anymore. The parts of this equation which
depend on s can be represented by small filters. These filters are shown in
Figure 1.

The voltages implied by these filters have to be multiplied by a factor
LT ((G+αC)−1(G−αC))n(G+αC)−1B for every n and then added, in order
to obtain the weighted summation. The circuit shown in Figure 2(a) stops at
n terms. But this series does converge very slow, so all elements, or at least
many elements in the sum must be taken into account. This can be done
by implementing a loop of filters, as shown in Figure 2(b). This realizable
circuit can be implemented in a circuit simulator. We used Pstar which is
the Philips proprietary circuit simulation programme.

7 Experimental Results

We applied the proposed algorithm to a PEEC model, and to some PCB
examples which were modelled as RLC-circuits. The PEEC method gives an
approximation for the behaviour of interconnect, the method was developed



1/a

Vin

−

+

1 3

Vout = 
2a

Vin
s+a

2

2

1/a

1

1

diffamp

Vin

Vout = s+a
s−a

Vin

1/a

(a) (b)

Fig. 1. (a) The filter representing 2α
s+α

, (b) The filter representing s−α
s+α

s + a

+

2a

2a s-a

2a

2a
s + a

n

s+a
s-a

s + a

s+a

s-a
s+a

2

s + a
� � � � � � � 	 � � � � � �
 � �


 � �

� �


 � �
� 

� � � � � � � 	�

(a) (b)

Fig. 2. (a) The filter circuit, (b) The loop circuit

by Ruehli [6]. The PEEC model we used is a nice example, because the
graph of the transfer function is rather intricate and hard to approximate.
The proposed Laguerre algorithm can approximate this example very well.
In Figure 3(a) the approximation of the Laguerre algorithm with α = 5 1010

and q = 92 is shown. For the given frequency range no difference can be
observed. Of course we have to be careful with this result. An approximation
in the frequency domain does not guarantee a good approximation in the
time domain. Transient analysis should be applied to be sure, that the result
is accurate.

The other example is not chosen for its complexity, but to show that
it is possible to combine our filter realization with non-linear components.
We consider a PCB board (see Fig. 3(b)) which, after discretization, can
be described by system matrices of 460 × 460 entries. This representation
can be reduced with the proposed method. We used a reduced order model
consisting of system matrices of size 60 × 60, in order to get approximation
up to 1 GHz. The loop filter representation of these kind of models were
implemented in Pstar and combined with each other and other component.
The preliminary results are fine. Sometimes, (as yet unexplained) strange
behaviour is observed for lower frequencies. Further, some practical issues
have to be solved.
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Fig. 3. (a) The transfer function of the PEEC model: the original and the Laguerre
approximation, for α = 5 1010 and q = 92(b) The PCB used in the second example

8 Conclusion

We have shown a modified implementation of the SVD-Laguerre algorithm.
We are now able to deal with multiple input in an efficient way and we
orthogonalize during the proces. The algorithm is stable and passive and
leads to an accurate solution.
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