

Interface suites as contracts : composition of contracts in UML

Citation for published version (APA):
Roubtsova, E. E., Jonkers, H. B. M., & Kuiper, R. (2002). Interface suites as contracts : composition of contracts
in UML. In F. Karelse (Ed.), Proceedings 3rd PROGRESS Workshop on Embedded Systems (Utrecht, The
Netherlands, October 24, 2002) (pp. 203-210). STW Technology Foundation.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/6927f251-5bc6-458a-877f-b71f2a1acd34

1

Interface Suites as Contracts.
Composition of Contracts in UML

Ella E. Roubtsova, Ruurd Kuiper, H.B.M.Jonkers
Eindhoven Embedded System Institute (EESI),

Faculty of Mathematics and Computing Science, TU Eindhoven,
Den Dolech 2, P.O.Box 513, 5600 MB Eindhoven The Netherlands
E.Roubtsova@tue.nl, phone +31 040 2478219, fax +31 040 2472078

Philips Research Laboratories Eindhoven, Prof. Holstlaan 4,
5656AA Eindhoven, The Netherlands. hans.jonkers@philips.com

Abstract—We present a tool for composition of compo-
nent specifications. The tool uses UML diagrams to model
the composition. A fixed component specification is a con-
tract between some roles communicating via interfaces. A
contract has a specific underlying model that we present.
Composition of contracts is a contract that extends con-
tracts of composites, but does not change them. To guar-
antee this feature we built some rules of the composition
into our tool. Our tool is an ADD-IN of the Rational Rose
that allows to produce consistent interface suite specifica-
tions in form of UML diagrams and documentation and to
reuse such specifications in system design by composition.

I. Introduction

Component technologies modified modern system
design. System designers now do not study compo-
nent implementation, they study specification of com-
ponents and adapt components or compose them. Af-
ter that, designers produce a new component specifi-
cation for system customers and for the design of more
complex systems. System customers also do not study
the component implementation. They use the spec-
ification to understand the functionality. Customers
write their requirements to designers on the basis of
the specification. Since even a cursory survey of com-
ponent technologies shows that both system designers
and customers spend most of their time reading and
writing component and system specifications - sup-
porting that task by a tool is desirable.

To realize such a tool, there is the Unified Modelling
Language [6] which is a standard of software design.
This language is understandable both for component
customers and for producers. The problem is that
there is no commonly accepted definition of a compo-
nent specification. Instead there are several different
definitions [2], [9] and practically used specification

Supported by PROGRESS grant EES5141

methodologies based on those definitions [1], [2]. All
of these methodologies are complex to follow without
any tool. There is only one way to have feedback from
users and to understand how useful the methodology
is: it is to support the methodology by a convenient
tool.

For example, over the past four years the IS-
pec methodology has been developed and used at
Philips [5]. The popularization of the methodology
was organized by courses and manuals. Nevertheless,
only a narrow group of trained people can take ad-
vantage of the methodology.

This is a pity, because the ISpec is a very promis-
ing approach closely related with a COM definition of
component specification.
• The ISpec considers a component specification as an
interaction pattern, possibly involving more then one
component and abstracting from components. Be-
cause of the abstraction, the ISpec defines a pattern in
terms of roles, communicating via interfaces (services)
provided by these roles. Such a pattern is termed an
interface suite.
• An interface suite is closed in the sense that the
environment is specified inside of the suite. This fea-
ture makes it possible to use an interface suite as a
component specification.
• The ISpec uses a set of templates and UML views
to specify an interface suite. The idea of the ISpec is
to make those views and templates consistent with a
specification model of an interface suite. This spec-
ification model is a formal definition of an interface
suite. We presented this model in [8].
• The ISpec defines rules for interface suite composi-
tion that provides the opportunity to reuse component
specification.
Existing UML-based tools are not directly suitable to
support the ISpec, because those tools allow different
definitions of interfaces, do not guarantee consistency

PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

© PROGRESS/STW 2002, ISBN 90-73461-34-0 OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

2

of UML diagrams and do not support the composition
of interface suites.

In this paper, we present a tool for composition
of component specifications developed using the IS-
pec composition methodology [4]. The tool generates
UML diagrams as models of the composition. A fixed
component specification is a contract between some
roles communicating via interfaces. A contract has a
specific underlying model that we present. Composi-
tion of contracts is a contract that must not change
the contracts of components. To guarantee this fea-
ture, composing a system from suites and modifying
existing interface suites should follow specific rules
and checks. We built such rules and checks into our
tool that is realized as an extension of the Rational
Rose [7]. Our tool enables to produce consistent inter-
face suite specifications in the form of UML diagrams
and documentation and to reuse such specifications in
system design by composition.

Section II of this paper illustrates the problem with
interface suite composition by example. In Section III,
we identify two levels of abstraction in interface suite
definition. Section IV precisely defines the composi-
tion of interface suites at the higher level of abstrac-
tion. In Section V we describe, following this defi-
nition, the tool support for the composition of inter-
face suites at the high level of abstraction. We also
show how the organized specification at the high level
simplifies the specification at the level of behaviour.
Section VI observes related work and provides some
conclusions.

II. An example of interface-suite
composition

Consider an Modem-Client component specified as
an interface suite (Fig. 1). It consists of a Modem pool
and a Client. The Modem pool provides an interface
IConnect that contains operations connect(address)
and disconnect(address). There could be several ac-
tive clients every moment. A Client calls operations
of interface IConnect .

Consider a Security component specified as an in-
terfaces suite. It has roles of Security Controller and
User. The User provides interface IPassword. The
Security Controller requests the user password via this
interface, recognizes or denies it (Fig. 1).

Let us construct an internet provider which realizes
the described modem-client relations together with
the security control. There are several ways to com-
bine the functionality.

We could take as the basis the Modem-Client

Interface suite “M odem-Client”

Security C on tro lle r

<<R o le>>

U s er

<<R o le>>

IPas s w ord

Interface suite “Security”

M o d e m

< < R o le > >

C l ie n t

< < R o le > >

I C o n n e c t

<<Role>>
IConnect

Client
<<Role>>

IPassword

Composed Interface suite

Modem

Fig. 1.

ModemClien
t.IConnect

ModemClient.Client
<<Parent Role>>

ModemClient.Modem
<<Parent Role>>

Security.IPa
ssword

Security.User
<<Parent Role>>

Security.Security Controller
<<Parent Role>>

Registered User
<<Role>>

Secure Provider
<<Role>>

Modem-Client Security

Secure Provider
 a. Package diagram

 b.Class diagram

Fig. 2.

ModemClien
t.IConnect

ModemClient.Client
<<Parent Role>>

ModemClient.Modem
<<Parent Role>>

Security.IPa
ssword

Security.User
<<Parent Role>>

Security.Security Controller
<<Parent Role>>

Registered User
<<Role>>

Secure Provider
<<Role>>

Timer
<<Role>>

ISet

Fig. 3.

204

3

component and change it. For example, we could
add interface IPassword from the Security Compo-
nent (Fig. 1). The specification then loses the names
of roles from the Security suite - but those names rep-
resent relationships! Thus only the client-modem rela-
tion is visible. So, combining functionality in this way
we can lose information about relations that explain
the functionally. If there are more then two kinds
of functionality to combine, the specification becomes
difficult to read, because all kinds of functionality get
combined in one mixed description. Moreover, this
way of composition does not help to specify behaviour.
As the initial suites are not visible any more, the be-
haviour of the composition can contain all possible
sequences of the interface used.

There is a second way to combine functionality. We
exploit the fact that our new role Secure Provider
plays two roles: the role of Modem from the first
suite and the role of Security Controller from the sec-
ond suite. In this approach we know the rights and
obligations of our Secure Provider completely. Our
Registered User plays both the role of Client from the
first Modem-Client component and the role of User
from the Security component (Fig. 2). In this ap-
proach the specifications of the components helps to
construct and understand the functionality of a com-
posed component. Furthermore, the behaviour of the
initial components should be inherited, so the possible
behaviour of the composed component is restricted.
It makes it possible to simplify and control the be-
havioural specification.

It could be the case that we have a new interface or
a new role, that was not involved in any components
before. Those new roles and interfaces can be speci-
fied both in the first and in the second approaches to
extend functionality. In the first case this decreases
the readability of specification involving a new inter-
face to the specification. In the second way we stress
the new interface is allowed to be used only if it does
not break the functionality of other components. For
example, a role Timer can be defined for our Secure
Provider to control how long a registered user works
with the internet source (Fig. 3).

In this paper we advocate the second way of com-
bining functionality. We show how our approach helps
in specification of composed systems and how it sim-
plifies reading and understanding of this specification.
The construction of composed specifications and cor-
responding diagrams are supported by the tool that
we present and explain in this paper.

III. Three levels in interface suite
definition

An interface suite specification defines communica-
tions of a finite set of roles via interfaces provided by
the roles. A UML class specifies a role. Interfaces pro-
vided by a role are disjoint subsets of the operations.
Note, that only later in the development process suites
are distributed over real components.

An interface suite can be considered at three differ-
ent levels of abstraction.

We here provide a formal definition of interface suite
at the highest level of abstraction, because this is
where the present version of the tool operates on: the
rigorous definition of composition is based on this def-
inition.
• At the interface-role level of abstraction, an inter-
face suite is a graph

(R, I, PI,RI)

with two kinds of nodes:
– R is a finite set of roles depicted by boxes; R 6= ∅.
– I is a finite set of interfaces depicted by circles, I

can be empty;
and two kinds of relations
– PI(R, I) defines interfaces provided by roles:

PI(R, I) = {(r, i)|r ∈ R, i ∈ I}.

The relation is depicted by a line between a role and
an interface (Fig. 1).
– RI(R, PI(R, I)) defines interfaces required by

roles.

RI(R, PI(R, I)) = {(r, (r, i))|r ∈ R, i ∈ I, (r, i) ∈ PI(R, I)}.

The relation is drawn by a dashed line with an arrow
connecting a role and a provided interface. The arrow
is directed to the interface (Fig. 1).

Changing any of the tuple elements produces a
new graph. We make a distinction between an
interface-role graph of type (R, I, PI,RI) that can
be changed and an interface suite contract that can
not be changed. So, the set of roles, provided and re-
quired interfaces of an interface-suite contract can not
be changed.
• At the operational level of abstraction, an interface
set I is specified via set of operations Op, their pa-
rameters P and results R :

I = Op× P ×R.

205

4

This level narrows the space for the behavioural spec-
ification.
• At the behavioural level, an interface suite is a set
of traces of operation calls and returns as we have
defined it in [8] .
So, at the interface-role level of abstraction we ab-
stract from detailed definition of interfaces and be-
haviour. This abstraction allows to define the compo-
sition of interface suites in such a way that the com-
position allows saving and reusing the operational and
behavioural specification of composed interface suites
in the result of the composition without mentioning
these.

IV. Composition of interface suites

The idea of the definition we give below is to save
the specification of composed contracts and the struc-
ture of the composition in the result of the composi-
tion. Such an approach helps to read and understand
the composed specification. The approach allows also
to correct mistakes in parents independently from chil-
dren and distribute correct parent-contracts through
all children-contracts.

The structure of the composition can be represented
at two diagram levels: UML package diagrams and
interface role diagrams which are expressed as UML
class diagrams, where roles are represented by classes.

For the package diagrams, when a new contract is
constructed by inheritance this is represented by just
dependency arrows −−−− > Fig.2(a).

A UML class diagram allows to illustrate some more
details of composition. Fig.2(b) and Fig.3 show (fixed)
contracts, indicated by grey roles and interfaces. It
also shows changeable interface role graphs, drawn
in black lines. A black graph can not be considered
a fixed contract. For example in Fig. 3 for Secure
Provider only one interface is drawn, but because of
inheritance during the specialization, Secure Provider
has additionally two provided interfaces, IConnect
and IPassword.

Informally, any role-child in the interface-role graph
always inherits all provided interfaces of its parent-
roles.

The inheritance of required interfaces is different.
Role x∗ which specializes role x from an old contract
is an element a new contract. It is possible that in this
new contract role x∗ requires other interfaces. There-
fore, the role does not automatically inherit the re-
quired interfaces from role x. So, there is the option
to define new required interfaces. However, if role x∗
requires the same interfaces as role x requires from

role r, then some role r∗ should exist in the new con-
tract to provide those interfaces. This role r∗ can be
supplied through inheritance from the role r of the old
contract. In the example, because Registered User has
required interfaces IConnect and IPassword, there has
to be Secure Provider that inherits from roles Modem
and Security Controller from the old contracts.

A simple case of composition is where two contracts
are combined to a new one and the two subsystems
and no specialization occurs. Intuitively, this means
that no communication between roles of those con-
tracts occurs. This we name parallel composition. At
the level of package diagram, it cannot be seen yet
which kind of composition is used; only at the inter-
face role level the distinction between parallel compo-
sition and specialization becomes visible.

These ideas are formalized in the following
Definition:

1. Let two interface suite contracts C1, C2 be given:

C1 = (R1, I1, P I1(R1, I1), RI1(R1, P I1(R1, I1)))

C2 = (R2, I2, P I2(R2, I2), RI2(R2, P I2(R2, I2))),

R1 ∩R2 = ∅, I1 ∩ I2 = ∅.
Parallel composition of given interface suite contracts
is an interface suite contract:

C = C1 ‖ C2, C = (R, I, PI,RI) :

• R = R1 ∪R2,
• I = I1 ∪ I2,
• PI(R, I) = PI1(R1, I1) ∪ PI2(R2, I2),
• RI(R, I) = RI1(R1, P I1(R1, I1))∪RI2(R2, P I(R2, I2).

2. Let an interface suite contract C and an interface
suite graph G be given:

C = (Rc, Ic, P Ic(Rc, Ic), RIc(Rc, P Ic))

G = (Rg, Ig, P Ig(Rg, Ig), RI(Rg, P Ig))

Rc ∩Rg = ∅, Ic ∩ Ig = ∅.
Specialization of interface suite contract C1 by
interface-suite-graph G is an interface suite contract:

S = G ¤ C, S = (Rs, Is, P Is, RIs), where

• Rs = Rc ∪Rg,
• Is = Ic ∪ Ig,

• PIs(Rs, Is) = PIc(Rc, Ic) ∪ PIg(Rg, Ig) ∪
PI∗(R∗, I∗), where

206

5

ModemClien
t.IConnect

ModemClient.Client
<<Parent Role>>

ModemClient.Modem
<<Parent Role>>

Security.IPa
ssword

Security.User
<<Parent Role>>

Security.Security Controller
<<Parent Role>>

Contract 1 Contract 2

Parallel composition of contracts

ModemClien
t.IConnect

ModemClient.Client
<<Parent Role>>

ModemClient.Modem
<<Parent Role>>

Security.IPa
ssword

Security.User
<<Parent Role>>

Security.Security Controller
<<Parent Role>>

Registered User
<<Role>>

Secure Provider
<<Role>>

Timer
<<Role>>

ISet

Specialisation of a contract by an interface-suite-graph

GraphContract

Fig. 4. Composition of interface-suite contracts

R∗ ⊆ Rg, I∗ ⊆ Ic,

P I∗(R∗, I∗) = {(r∗, i) | r∗ ∈ R∗, i ∈ Ic,
∃r ∈ Rc, (such that r∗ ¤ r, and

(r, i) ∈ PIc(Rc, Ic)) }.
• RIs (Rs, Is) = RIc(Rc, P Ic(Rc, Ic)∪

RIg(Rg, P Ig(Rg, Ig)) ∪ RI∗(R∗, P I∗(R∗, I∗).
R∗ ⊆ Rg, I∗ ⊆ Ic,
RI∗(R∗, P I∗(R∗, I∗) = {(x∗, (r∗, i)) |
r∗, x∗ ∈ R∗ i ∈ Ic,
∃r ∈ Rc, such that
r∗ ¤ r, ∃x ∈ Rc, such that x∗ ¤ x, such that
((r, i) ∈ PIc(Rc, Ic) and (x, (r, i) ∈ RIc(Rc, P Ic))}.
3. There are no other interface suite contracts.

This definition guarantees that a role can not spe-
cialize itself and parent-roles can not specialize child-
roles. The definition covers both cases of specializa-
tion mentioned in section II. Both specialized roles
and completely new roles belong to the changeable

part, an interface suite graph.

V. Tool support for composition of
interface suites

In this section we show how the composition of in-
terface suites defined in section IV is supported by our
tool and how the composition simplifies specification
of behaviour.

The main ideas of our tool are the following:
1. to collect the information for an interface suite con-
tract and interface suite graph in forms,
2. to adapt the Rational Rose model for an interface
suite specification,
3. to represent the composed interface suite by UML
diagrams which are automatically drawn by the tool
using information from forms,
4. to direct a specifier through the specification pro-
cess allowing reuse of specifications and resulting on
a consistent specification.

We further explain these ideas.
1. To collect the information by forms we define

our reaction on Rose events and customize the Rose
specification for Rose classes representing roles.

2. Adapting the Rose model, we represent an in-
terface suite graph by one Rose model and save it as
an mdl-file. An interface suite graph is created as an
interface role diagram with an additional data-type di-
agram. If we decide to use the interface suite as a con-
tract, we save it as a file with extension sui (this is a
Rose category-file). The Rose model which represents
a composed interface suite in our tool is a unidirec-
tional tree. A node of this tree is a link to a package.
The root of this tree is the link to a new interface suite
graph as a model. There is a slight difference between
a model and a package in Rose. A package is always
a part of a model. However, a package can be opened
in Rose as a model, therefore we have a model as the
root. Packages in our tool are interface suite contracts
placed in separate files with extension sui. Interface
suites are implemented as Rose Controlled Units.

3. There are three diagrams that belong to the Rose
model for an interface suite inour tool: a package dia-
gram, an interface-role diagram, a data-type diagram.
All diagrams are variants of the Rose class diagram. A
package diagram consists of packages only (Fig. 2(a)).
An interface-role diagram represents roles by classes
and shows interfaces provided and required by roles
(Fig. 2(b)). A data-type diagram depicts data types
by Rose classes which have no operations and inter-
faces [8].

207

6

4. To direct a specifier through the specification
process we introduce an order by opening forms and
collecting information according to the definition of
interface suite composition and the interface suite
model:
• interface suite graphs can be defined as interface role
diagrams with the corresponding data type diagram;
• interface suite graphs can be saved as interface-suite
contracts for reuse;
• composition of interface suite contracts is performed
using forms, a package diagram and an interface role
diagram;
• specialization of interface suite contracts is defined
at the corresponding interface-role diagram;
• the results of composition can be fixed as an
interface-suite contract.

A. An Interface suite as the package diagram

The structure of a composed interface suite is repre-
sented in our tool by a package diagram. The diagram
belongs to the model, it can be opened and seen in the
Rose Logical View. The Rose model file of an inter-
face suite links only the first level of controlled units.
So, if a controlled unit from the first level also holds
the link to other unit, our tool draws this unit at the
package diagram.

The supplier-client relations between nodes in this
package diagram (Fig. 2(a)) are drawn by dependency
arrow supplier package−−− > client package. This
arrow means in our tool that the client inherits from
the supplier and has a link to the specification of the
supplier to visualize it at the interface role diagram
level. We do not allow other dependencies between
packages. Any change of a supplier package inside this
model is forbidden. The supplier-suite specification
can be modified only if it is opened as a self-standing
model. In this way the information in the package
diagram is used by the tool to restrict modification at
other levels.

A.1 Composition of suites by users at the package
level.

Our tool provides a form to name a new interface
suite and to choose parent suites from the set of sui-
files. All chosen suites and the new one are drawn
at the package diagram automatically. The result of
filling in this form is reflected also at the Logical View
of Rose. The first level of the Logical View represents
the new interface suite, at the second level you can
see parent suites. We have lists of parent roles with

the specification from this composition in the internal
model.

For example, a client suite Secure Provider inher-
its from supplier-suites Modem-Client and Security.
Modem-Client and Security can not be modified in
the model Secure Provider . However, we can open
and modify each of the suppliers as a Rose model.

The result of the composition is represented also
at the interface-role diagram: all roles and interfaces
are depicted. The possible changes of the new in-
terface suite being now the composition of suites are
restricted by definition of a new interface suite graph
and by specialization of roles of parent suite by roles
of the graph. Those changes are reflected at the
interface-role diagram and the supporting customized
specification forms.

B. An Interface suite at the interface-role diagram
level

B.1 Specialization of an interface suite contract by an
interface suite graph.

To define a new specialized role, the user puts a
new role on the interface-role diagram, opens the
customized specification to give a name to this role,
say Registered User. Using tab Specialization (Fig.5)
he/she chooses a role from the list of parent roles, say
Client from Modem-Client suite and User from the
Security suite. The specialization relation is drawn
automatically at the class diagram. The new roles
appear in the Logical View at the second level of
packages. The specifications of all interfaces provided
by Client are inherited in Registered User. Registered
User requires all interfaces that are required by User.

Specialization of a role is supplemented by defini-
tion of new elements of an interface-role graph:
1. defining new provided interfaces that were not de-
fined in parent suites; the interfaces can be composed
only from new operations;
2. requiring new interfaces from the new provided in-
terfaces that were not defined in parent suites;
3. creating new roles and new interfaces.

1. New provide interfaces are defined by a special
tab in the new role specification. In accordance with
the definition of a contract, new interfaces can not be
defined for parent roles.

2. The required interfaces are chosen from the set
of provided interfaces on a special tab in the new role
specification. There is no such possibility for parent
roles because they belong to a contract. In this way
the tool prevents mistakes of a designer.

208

7

Fig. 5.

3. If a new role does not specialize any existing
one from parent suites, than the user does not use
the specialization tab. For example, a new role Timer
is defined without any specialization. Using tab Pro-
vided Interfaces a new interface can be specified, for
example the ISet interface of the role Timer. Another
new role, Secure Provider requires the new interface.
This relation is defined by tab Required Interfaces in
the specification the role Secure Provider.

B.2 The result of the composition.

The tool makes impossible the modification of par-
ents inside the current model, both on diagrams and
in forms. A modified interface with modified opera-
tion is used only in the child suite.

The result of the composition can be saved as a
mdl-file to enable its modification and as a sui-file to
reuse it in other composition.

The tool generates the corresponding documenta-
tion as an HTML-file. This file contains a package
diagram and an interface suite diagram, which allow
to quickly understand the functionality of a complex
suite.

B.3 Modification of parent suites.

If we save the current model as mdl-file, our tool
closes the model to the link-structure to make it pos-
sible to open the model again and to modify the parent
suites independent from children.

The modification of parents should be done care-
fully. Adding new operations and attributes to a par-
ent is well possible. But we can not delete roles, in-
terfaces, operations and attributes because children

can use them. Modification of specification can break
the correspondence between specification parents and
children. Thus, this correspondence is checked by the
tool each time one loads of a child-suite using flags of
Rose controlled units.

C. Specification of operations and behaviour

The composition of interface suite contracts defined
in this paper and supported by our tool simplifies
specification of behaviour. This effect comes from the
reuse of parent specifications. Additional changes of
the specification is restricted by
1. defining new operations for specialized roles that
were not defined in parent suites;
2. adding new attributes to specialized roles;
3. specializing an operation from an inherited inter-
face.

1.2. New operations and new attributes have their
own tab forms in the role specification form. New at-
tributes and operations can demand definition of new
data types. This is supported by the tool. Completely
new data types are defined at the type diagram. More-
over, new data types can be defined by specialization
of basic and parent data types at the data type dia-
gram. Then we can choose the necessary data types
from the data-type list when we define attributes, pa-
rameters and results of operations.

3. The forms enable specification of operations by
pre-, postconditions and action clauses [4]. The spe-
cialization of an operation from an inherited interface
is restricted by
• weakening the precondition of this operation;
• adding code to the action clause. The code can mod-
ify new attributes;
• strengthening the postcondition of the operation.
So, the specification of the operation is copied to the
specialized role. It is allowed to write new precon-
ditions and postconditions using the set of old at-
tributes. The user compares the old and the new ex-
pressions. The action clause can be changed using
only new attributes. In this way the tool simplifies
the behaviour definition.

VI. Related work and Conclusion

The use of contracts for component specification is
accepted now: a component should not be used if its
requirements to environment are not satisfied. How-
ever, the form of the contract representation in the
UML is still not clear. In paper [10] it was proposed
to define contracts at the component diagram as ”re-

209

8

quirements on a component environment”. A com-
posed contract is introduced as a super-class of inter-
face with the Non Functional Contract subclass. We
find useful the composition of contracts at the com-
ponent diagram (it is similar to our representation of
a contract by a package diagram), but we consider it
as not sufficient for specializing the contract through
inheritance. Namely, important elements of a con-
tract are hidden in this way. A contract has a specific
structure: services, providers, clients. A composed
contract should be defined in terms of those elements.
So, we open the internal structure of a contract and
allow contract specification at different levels of ab-
straction. We have shown what can be done at the
interface role level.

Our approach, based on the ISpec methodology, is
closely related to the CATALYSIS [2] architectural
level of design. An interface suite is a pattern of the
CATALYSIS. Both a suite and a pattern are repre-
sented by a package. The differences are that we
involve interfaces at the architectural level, making
visible the structure of contract, and we use another
interpretation of package relation. The CATALYSIS
uses different relations between packages, such as re-
fine and apply [3]. Our package can only inherit from
other parent-packages. This means the roles of the
child-package can inherit from and specialize the roles
of parents with the corresponding provided and re-
quired interfaces. So, we do not substitute the pattern
as in the CATALYSIS, but we inherit and specialize it
by other combination of roles. In this way we do not
change the initial contracts (patterns) in the new suite
and always can read the initial functionality. The re-
strictions introduced by ISpec give a precise meaning
to contract in the UML, to package diagram in the
UML and to the composition of contracts at the UML
class diagram. The restrictions of ISpec allow also to
automatically construct those UML diagrams using
specification of contracts by templates and keep the
diagrams and templates consistent on the basis of the
contract model.

The new tool presented in this paper supports the
activities of different groups of professionals involved
in the system development cycle: component speci-
fiers, programmers, customers of components, system
designers. The component specifiers produce the spec-
ification for component programmers, for component
customers and for component system designers.

Programmers need a precise and consistent specifi-
cation to implement a component. Component speci-
fiers can produce such a specification with the help of

our tool. In previous work we defined the semantics of
a specification as a set of sequences of operation calls
and returns [8]. This model also facilitates checking
the consistency of different views on a component pro-
duced in our tool.

The customers of components want a visual speci-
fication to quickly study and understand the compo-
nent functionality and to compare it with their re-
quirements. Component specifiers can produce that
visual specification with the help of our tool in the
form of consistent UML diagrams and documentation.

System designers need both the precise and the vi-
sual forms of the component specification. The system
designers would like to reuse component specifications
constructing a system from components. The speci-
fication produced with the help of our tool can be
reused, because composition is precisely defined and
supported by the tool.

Possible extensions of our tool can cover the be-
havioural views on component specification, for ex-
ample, UML sequence diagrams. Our specification
model is suitable for behavioural views as it is shown
in [8]. This also allows connecting our tool with model
checkers.

References

[1] Cheesman J., Daniels J. UML Components. A Simple Pro-
cess for Specifying Component-Based Software. Addison-
Wesley, 2001.

[2] D’Souza D.F., Wills A.C. Objects, Components and Fram-
works with UML. The CATALYSIS Approach. Addison-
Wesley , 1999.

[3] D’Souze D., Mauhg I. Precise Compo-
nent Architectures,Presented at OOPSLA.
http://www.catalysis.org/omg/, 1999.

[4] Jonkers H.B.M. ISpec: Towards Practical and Sound In-
terface Specifications. Integrated Formal Methods, LNCS
1945:116–135, 2000.

[5] Jonkers H.B.M. Interface-Centric Architecture Descrip-
tions. In: Working IEEE/IFIP Conference on Software
Architecture, WICSA 2001:113–124, 2001.

[6] OMG. Unified Modeling Language Specification
v.1.3. ad/99-06-10, http://www.rational.com/uml/
resources/documentation/index.jsp, June 1999.

[7] Rational Rose 2000. Rose Extensibility Reference 2000.
[8] Roubtsova E.E., Gool L.C.M.van, Kuiper R., Jonkers

H.B.M. A Specification Model For Interface Suites.
UML’01, LNCS 2185:457–471, 2001.

[9] Szyperski C. Component Software Beyond Object-Oriented
Programming. ADDISON-WESLEY, New-York, 1998.

[10] Weis T., Becker C., Geihs K., Plouzeau N. A UML Meta-
model for Contract Aware Components. UML’01, LNCS
2185:442–456, 2001.

210

	Contents

