

Axiomatizing GSOS with termination

Citation for published version (APA):
Baeten, J. C. M., & Vink, de, E. P. (2001). Axiomatizing GSOS with termination. (Computer science reports; Vol.
0106). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/3d81c959-ac09-48d4-a995-d8fde21cb38b

I·
I

/
/

!

technische universiteit eindhoven

CS-Repolit 01-06

Aximatizin:g GSOS
with Termination:

/
/

/

JI"' ,';YI BaetelJ
.;~.; ... ,I~", de Viink

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Aximatizing GSOS with termination

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nl/winics

by

J.C.M. Baeten and E.P. de Vink

Computer Science Reports 01106
Eindhoven, October 2001

01106

AXIOMATIZING GSOS WITH TERMINATION

J.C.M. Baeten! & E.P. de Vink!,2

Abstract We discuss a combination of GSOS-type structural operational semantics with
explicit termination, that we call the tagh-format (tagh being short for termination and
GSOS hybrid). The tagh-format distinguishes between transition and termination rules,
but allows besides active and negative premises as in GSOS,. also for, what is called
terminating and passive arguments. We extend the result of Aceto, Bloom and Vaandrager
on the automatic generation of sound and complete axiomatizations for GSOS to the
setting of tagh-transition systems. The construction of the equational theory is based
upon the notion of a smooth and distinctive operation, which have been generalized
from GSOS to tagh. We prove the soundness of the synthesized laws and show their
completeness modulo bisimulation. The examples provided indicate a significant, though
yet not ideal, improvement over the axiomatization techniques known so far.

Keywords Structured operational semantics, asos format, equational theories

1 Introduction

It has become very popular in the concurrency community to define various process operators
by means of Plotkin-style operational rules (see e.g. [AFVOlJ). These are usually pretty
intuitive, and they can be used to derive a transition system for each process expression.
Properties of such a transition system can then be checked using a model checker.

But it is also well-known that this approach has its restrictions. Often, transition systems
become too large to be handled by model checkers, or, due to the presence of parameters,
transition systems have infinitely many states. In these cases, an approach using theorem
provers or deploying equational reasoning can be very helpful.

In the face of these alternative approaches, it is often profitable to generate a set of laws
or equations for an operator that is given by a set of operational rules. Moreover, we want
two characterizations that match: the axiomatization should be sound and complete for the
model of transition systems modulo (strong) bisimulation. The paper [ABV94] points the
way in such an endeavour: in some cases an axiomatization can be derived by just following
a recipe. Some other papers in this area are [Uli95, UliDD] (where other equivalence relations
besides bisimulation equivalence are considered). However, in the years since the appearance
of these papers, we have seen no application of the theory. The reader may wonder why this
is so.

In our opinion, this is due to the limited process algebraic basis employed in [ABV94]; in
particular, termination and deadlock are identified. Any language, both programming and
specification languages, involving some form of parallel composition will know the situation
when no further action is possible, but components are not finished, e.g. when two compo­
nents are waiting for different communications. This situation is usually called deadlock or

IDepartment of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

2LIACS, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

unsuccessful termination. Now if the language also involves some form of sequential compo­
sition, we have to know when the first component in a sequential composition is finished, i.e.
successfully terminated, in order for the second component to continue. In such a case, dead­
lock must be distinguished from successful termination, and, subsequently, the axiomatization
method of [ABV94] does not apply.

There are three ways to handle this combination of parallel composition and sequential
composition. First, we can do away with sequential composition as a basic operator, only
have prefixing as a rudimentary form of sequential composition, and use tricks like a spe­
cial communication to mimic some form of sequential composition. This is the solution of
CCS [MiISO, MiIS9], in our opinion an unsatisfactory solution. Second, we can use implicit
termination as in ACP [BK84, BW90], where successful termination is implicitly "tacked
onto" the last action. Finally, in the majority of cases, we find explicit termination, usually
implemented by having two separate constants, one denoting deadlock, inaction Or unsuc­
cessful termination, the other one denoting skip or successful termination. Operationally,
deadlock has no rules, and termination is denoted by a predicate On states. Examples are
LOTOS [Bri89], SDL [EHS97], CSP [BHR84], X [BR97], and DiCons [JBMOl].

In this paper, we adapt the theory of [ABV94] for the case of explicit termination. We
think that the theory presented can be extended in order to deal also with implicit termination,
but leave this as future research. Starting from the GSOS-format (cf. [BIM95]), we extend it
with termination to obtain the tagh-format (termination and GSOS hybrid). We also employ
some additional generalizations so t.hat auxiliary operators are needed in fewer cases: for
instance, the definition of sequential composition does not require auxiliary operators as in
[ABV94). This does make the theory a lot mOre complicated, but we gain that the generated
axiomatizations are almost optimal, intuit.ively understandable, and are sound and complete
for the model of transition systems modulo bisimulation.

The outcome is a recipe that can be applied in a straightforward manner. It is presented in
Section 3. We also provide a few examples (sequential composition, leftmerge, disrupt and the
priorit.y operator) to illustrat.e the technique. Section 2 provides the necessary preliminaries,
while section 4 and Section 5 are devoted to the soundness and completeness of the generated
theory. Some concluding remarks are collected in Section 6. We hope that our generalizations
will lead t.o actual applications.

2 Preliminaries

We assume the reader to be familiar with the standard notions and examples of process
algebra (cf. [BW90, FokOO, Mil89]). Below we present the transition system for the basic
process language with explicit termination c, deadlock {) (which has no rules)' a prefixing
operation 'a. ' for every a taken from the finite alphabet of actions Act, nondeterministic
choice '+' and unary one-step restriction operations 81 for every subset B <;; Act. The
expression 81 (t) indicates that the term t is not permitted to perform any action from B as
a first step. However, this restriction is dropped after t has done a step outside of the action
set B. For the termination predicate '.j.', we use the postfix notation t.j. meaning that the
term t has an option to terminate immediately. (See [BaeOO] for a further discussion on the
advantage of having explicit termination as first class citizen in a transition system.)

Definition 1

2

(a) The transition system TS1 consists of the following transition and termination rules:

a
a.x --+ X

X~X'

x+y~x'

X4-

(x+yH

y..'!:t y'

x + y..'!:t y'

Y4-

(x+yH

X~XI
(a 1- B)

&1(x)..'!:tx'

X4-

&1(xH

(b) The equational theory ET1 consists of the following equations:

x+y = y+x &1(x + y) = &1(x) + &1(y)

(x+y)+z = x + (y + x) &1(a.x) a.x if a 1- B

x+x x &1(a.x) 0 if a E B

x+o x &1(0) 0

&1 (t:) = t:

The operation '&1' is necessary to deal with negative premises. However, as no negative
premises are involved in the transition for '&1', it will turn out that the axiomatization above
for this operation can be obtained from the algorithm presented below, which implies that
this axiomatization is sound and complete.

We have the standard notion of strong bisimulation with predicates, in our set-up in the
form of a termination condition (cf., e.g., [BW90, BV95]).

Definition 2 A bisimulation relation R for a transition system TS is a binary relation for
closed terms over TS such that whenever tlRt2 it holds that (i) tl ..'!:t t~ =* 3t~: t2..'!:t t~ II
t~Rt~, (ii) t2..'!:t t~ =* 3t~: tl..'!:t t~ II t~Rt~, (iii) tl4- {==? t24-' Two terms tl, t2 are bisimilar
with respect to TS if there exists a bisimulation relation R for TS with tlRt2, notation:
tl ~TS t2 or just tl ~ t2'

When proving soundness of the various laws that will be introduced in the sequel, the following
property comes in handy.

Lemma 3 Let tl, t2 be two closed terms such that tJ ~ t {==?

closed terms t, and tl4- {==? t24-. Then it holds that tl ~ t2'
t2 ~ t for all actions a and

o
The next basic soundness and completeness result can be shown with standard techniques.
See, e.g., [MiI89, BV95J.

Theorem 4 The equational theory ETb as given in Definition 1 b is sound and complete for
Ts1 modulo bisimulation. 0

The following property is straightforward.

Lemma 5 Suppose t is a term of the form LiEl ai.t: or (LiE! ai.t;) + c with, for some set
of actions B <;; Act, ai 1- B for all i E I. Then it holds that ET11- t = &1(t). 0

3

In Section 5, on completeness, we make use of the concept of head normalization. In the
context of process algebra with explicit termination its definition is as follows.

Definition 6 A term t of the form c, 0, LiE! ai.t: or (LiE! ai.tD + c with I a finite non­
empty index set, is in head normal form. An equational theory ET is head normalizing if for
all terms t there exists a term t' in head normal form such that ET I- t = t'.

Below we will use tl == t2 to denote syntactic equality of the terms tl and t2. We also use
expressions like G[Xk> Ye, zm] to indicate that only variables from the set

{Xk IkE K }U{ Ye I £ E L }U{ Zm I mE M}

occur in the context G[] with respect to some given index sets K, Land M.

3 Generating equations for the tagh-format

In this section we introduce the tagh-format for transition systems. The acronym tagh stands
for termination and GSOS hybrid. It extends the GSOS-format as introduced in [BIM95] with
a notion of explicit termination. We provide, at the end of this section, a general procedure to
obtain, for each transition system in tagh-format, a disjoint extension TS' and an equational
theory ET'. In later sections we investigate the soundness and completeness of ET' for TS'­
bisimulation. As the transition system TS' is a disjoint extension of the transition system TS
this amounts for terms t l , t2 over TS to coincidence of bisimulation with respect to TS and
equality based on ET'. Thus, ET' is a sound and complete axiomatization of TS-bisimulation.

Definition 7

(a) A tagh-transition rule p for an n-ary operation f is a deduction rule of the format

{Xi ~ Yip liE l,p E Pd {Xj J.. I j E J, bE B j } {Xk+ IkE K} (1)

f (Xl, ... ,Xn) ~ G[Xm' Yip]

with I,J,K <;; {l, ... ,n}, fori E l, Pi a nonempty finite index set, for j E J, Bj a finite
(possibly empty) set of actions from Act, and, Xm, Yip, for m E {I, ... ,n}, i E l,p E Pi,
pairwise distinct variables, that are the only variables that may occur in the context
G[Xm,Yip].

(b) A tagh-termination rule () for an n-ary operation f is a deduction rule of the format

{Xk+ IkE K}

f(xI, ... , xn).!.

with Xl, ... ,Xn pairwise distinct variables and the index set K <;; {I, ... ,n}.

(2)

(c) A tagh-transition system is a transition system where any operation f different from
'c', '0', 'a. ','+' and '81' has transition rules and termination rules of the tagh-format
only.

4

In the context of a transition rule p of the format (1) we use act(p), neg(p), term(p), pass(p)
to denote the index sets I, J, K, L, respectively, where L = {I, ... , n} \ (I U J UK). For a
rule (j conforming to equation (2) we put term((j) = K. For a transition rule p like (1), we
refer to f(Xl, .. ·, xn), or an instantiation of it, as the source of p, and to the term C[xm, Yip]
as the target. Occasionally we will write t.j. if not t.j., i.e., t cannot terminate immediately.

The tagh-format is an extension of the GSOS-format of [BIM95]. If we strip all aspects of
termination from the definition we end up with the original format for GSOS. We have, as the
tagh-format is subsumed by the panth-format of [Ver95], that bisimulation is a congruence,
just as for GSOS. The syntactic format of general tagh-transition rules though, is much
too liberal to allow for an automatic generation of axioms directly. We therefore introduce
(cf. [ABV94J) a more restricted format, called smooth, where there are no clashes between
active, negative, terminating and passive arguments. Also an active position is not permitted
to have multiple transitions. Regarding an operation f it is profitable to further restrict the
collection of rules. In essence we want that at any time at most one of the transition rules
for f applies. If the rules for f have this additional property, the operation is called smooth
and distinctive.

Definition 8 Let TS be a tagh-transition system.

(a) A transition rule p in TS for an n-ary operation f E Sig is smooth if it is of the
format

{Xi ~ Yi liE I} {Xj ~ I j E J, bE Bj } {Xk.j. IkE K} (3)

f(x!, . .. , xn) ~ C[Yi, Xj, xe]

where the index sets I, J, K, L form a partition of { 1, ... , n}, I", 0, Bj ~ Act a finite
(possibly empty) subset of actions, and, where in the target C[Yi, Xj, Xl] only variables
amongst {Yi liE I}, {xp I p E J U L} occur. We use act(p), neg(p), term(p), pass(p)
to denote I, J, K, L, respectively. The operation f is smooth with respect to TS if all
of its transition rules in TS are smooth, and, moreover,

• for each position p in {I, ... ,n} it holds that p rf= pass(p) for some rule p for f
in TS.

(b) The rank of a rule p is the 4-tuple (pass(p), act(p), term(p), neg(p)), notation rank(p).
For two rules p, p' for an n-ary operation f we say that rank(p) ~ rank(p') iff

• neg(p) = neg(p'), pass(p) 2 pass(p') and term(p) t;; term(p'), and

• pass(p) '" pass(P') =* act(p) n term(p') '" 0.

(c) A smooth n-ary operation f is called smooth and distinctive with respect to TS if

• the set {rank(p) I p a transition rule for f in TS} is totally ordered by the order­
ing ~ introduced in part (b);

• for any two distinct rules p, p' of the form (3) with rank(p) = rank(p') there exists
an index i E act(p) = act(p') such that ai '" a;;

• for each termination rule (j and each transition rule p for f in TS it holds that
term((j) n act(p) '" 0.

5

For such an operation I it holds that neg(p) = neg(p') for any two transition rules p,p'.
We define neg(f) = neg(p) and nonneg(f) = {I, ... , n} \ neg(p) where p is an arbitrary
transition rule for I in TS.

The intuition for the ordering on the transition rules for a smooth and distinctive n-ary
operation I is the following: Suppose p and p' are two transition rules for I with p :;" p'.
The ordering on >,0 then demands that a passive position in p' must be passive in p as well
and, conversely, that a terminating position in p must also be terminating in p'. Now, let
PI >,0 '" :;" Pm be in descending order and p E {I, ... ,n} a non-negative position in I·
The position p can either be passive, active or terminating in p!, ... , Pm, but in view of the
observation above we have that for suitable 0 :0; k < £ :0; m it holds that p E PasS(Pi) for
I :0; i :0; k, p E act(Pi) for k < i :0; £ and p E term(Pi) for £ < i :0; m. So, in the context
of I (Xl, ... , xn), the variable xp at position p has a life-cycle from passive, via active, to
terminating (but, possibly, p doesn't start out as passive or doesn't reach the termination
stage).

For a smooth and distinctive n-ary operation I we have that for closed terms of the form
I(tl,"" tn) where each ti =' 0, Ii, a'.t' at most one of the transition rules for I applies: If
p and p' are two distinct rules for I, we either have rank(p) = rank(p') or, without loss of
generality, rank(p) >- rank(p'). From the requirements of Definition 8c above we then obtain
in the first case that for some i E {I, ... , n}, ti =' a'.t' with a' = ai (the action of the i-th
premise for p), a' = a: (the action of the i-th premise for p') but also ai # a:. For the second
case we obtain from rank(p) >- rank(p') that act(p) n term(p') # 0. So, for some i E {I, ... , n}
we have ti =' ai.t' as ti matches the source of the i-th premise of p, but also ti =' 0 as according
to the rule p' the term ti should terminate. All cases thus lead to a contradiction, and we
conclude that I(t!, ... , tn) does not match two distinct transition rules p and p'.

If we consider only transition rules p with empty sets term(p) and pass(p), the notion of
smooth and distinctive for the tagh-format specializes to this notion for GSOS as introduced
in [ABV94]. Note that, in the absence of termination conditions, a non-active argument can
be regarded as a negative one with an empty set of forbidden actions, so that the requirement
for smoothness of an operation becomes trivial. In [ABV94] there is another requirement for
smooth operations, viz. that the negative arguments of all transition rules coincide. In the
set-up here, this is subsumed by the condition of total ordering for smooth and distinctive
operations: if p :;" p' we have neg(p) = neg(p'). In the set-up presented here there is for
smooth rules the demand that the index set I is non-empty, which is not required by the
definition of [ABV94J.

The requirement of at least one active position in a smooth transition rule will be needed
in our proof of the soundness of the distributive laws for negative arguments, introduced
below and that are superfluous in the setting of [ABV94] but are essential for our treatment
of termination (ef. Lemma 17). Likewise the condition for a position p of a smooth operation
to occur non-passively in some rule p will be needed in the proof of the head-normalization
result Lemma 24. We stress that our primary aim is to deal with explicit termination as well
as to allow for what we have baptized 'passive' variables, since this will lead, in many cases,
to a more satisfactory axiomatization.

Examples 9

(a) The binary operation ';' of sequential composition comes equipped, in the set-up

6

with explicit termination, with two transition rules and one termination rule:

X~X'
(SeqJ) a

x; y -+ x'; y
(S)

X,j. y'::" yf
eq2 a

X; y --+ yf

S X,j. y,j.
(eqe) (x; y)-!.

We check that ';' in our set-up (contrasting [ABV94]) is a smooth and distinctive oper­
ation.

• It holds that rank(SeqJl = ({2}, {I}, 0, 0) ~ (0, {2}, {I}, 0) = rank(Se%). So, the
set {rank(Seq1),rank(Seq2l} is totally ordered.

• There are no two distinct rules of equal rank. Hence the condition on actions is
trivially satisfied.

• We have term(Seq,,) = {1,2} and 1 E act(Seqd, 2 E act(Seq2), so term(Seqe) n
act (Seq;) i' 0 for i = 1,2.

(b) The binary operation '/L', usually referred to as leftmerge, has one transition rule
and one termination rule:

x -!+ x'
(LeftmergeJl---:;---:-­

x/Ly'::" Xf II y

X,j. y,j.
(Leftmergee) --­

(x/Ly)-!'

We have act(/L) = {I}, neg(/L) = {2} and term(/L) = pass(/L) = 0. Note that the
format (3) allows for an empty set of 'forbidden' actions. As the leftmerge has only
one transition rule, it is clear that '/L' is a smooth and distinctive operation, since
{I, 2} ~ act(LeftmergeJl U neg(LeftmergeJ).

In concrete examples, such as the examples above, we prefer the usage of the more colloquial
variable names like x, Xf, y, yf, etc. instead of the technical Xl, YJ, X2, Y2, etc., respectively.
Also note that, in fact, we have transition schemes for (SeqJl, (Seq2) and (Leftmerge J) rather
than transition rules, as we have transition rules (SeqJl, (Seq2) and (Leftmerged, respectively,
for each action a E Act.

Before we are ready to describe the axioms generated for a smooth and distinctive n-ary
operation j for a tagh-transition system, we need some notation: If m E nonneg(f), there
exists a, not necessarily unique, transition rule p, maximal in rank, such that m rt pass(p). In
that situation we put rank(m) = rank(p) and act(m) = act(p), neg(m) = neg(p), etc. Also,
if, for a 4-tuple R, we have that R = rank(p), we put act(R) = act(p), neg(R) = neg(p), etc.
The index set handle(m), the handle of m with respect to j and TS, is defined as term(m) if
mE nonneg(f), and as nonneg(f) if mE neg(f).

The idea behind the notion of a handle is that for a smooth operation j and non-negative
position m E {I, ... ,n} the set handle(m) consists of all positions that are required to be
terminating when the position m becomes active, i.e.,

handle(m) = n{ term(p) 1m E act(p), p transition rule for j}

For a negative position m for j, handle(m) simply consists of all non-negative positions. The
handles are used in the formulation of distributivity laws; the subset-ordering on the handles
of an operation induces an ordering on the applicability of these laws.

The next definition describes the various laws associated with a smooth and distinctive
operation.

7

Definition 10 Let I be a distinctive and smooth n-ary operation for a tagh-transition sys­
tem TS.

(a) For a position p E {l, ... ,n} the distributive law for p with respect to I is given as
follows:

1(10'" ,z; +z;'''',(n) = 1(10'" ,z;, ... ,(n) +1(r"",z;'''',(n) (4)

where (q == c for q E handle(p) and (q == Zq for q f/: {p} U handle(p).

(b) For a transition rule p of the format (3) the action law for p is given as follows:

(5)

where (i == ai.Z: for i E act(p), (j == 81 (Zj) for j E neg(p) with B j f 0 and (j == Zj
J

for j E neg(p) with Bj = 0, (k == c for k E term(p) and (e == Ze for e E pass(p).

(c) For a rank R for 1 the deadlock laws are given as follows:

(6)

where (m is of the form c, 8 or a;".z;" for m E act(R) U term(R), (j is of the form Zj, 8,
bj.zj or Zj + bj.zj for J' E neg(R) and (e == Ze for e E pass(R) such that, for each rule p
for 1 in TS of the format (3), there exists a position p such that one of the following
cases holds:

* P E act(p) and (p == c, (p == 8 or (p == a~.z~ with a~ -I ap, or

* p E neg(p) and (p == b~.z~ or (p == zp + b~.z; with b~ E B p, or

* p E term(p) and (p == 8 or (p == a;.z;,

and, for each termination rule e for I there exists a position p E {l, ... ,n} such that
(p == 8 or (p == a;.z;.

(d) For a termination rule e for 1 the termination law for e is given as follows:

(7)

where (p == c for p E term(e) and (p == zp for p f/: term(e).

In the distributive laws we demand a 'fingerprint of c-s' for the particular position instead
of allowing a variable for handle-arguments. This way, non-determinism at a position is only
resolved if it is guaranteed that there is sufficient termination at other positions, as will
be illustrated in the examples for sequential composition ';' and leftmerge '1L' below. Note
that there is also a distributive law for negative positions (which is not present in [ABV94]).
The action laws are similar to those of [ABV94]. Here, we also adopt the difference in the
handling of a non-empty or empty set of negative actions Bj. For the deadlock laws, it should
be syntactically guaranteed that no transition rule will match. If such can be established
without instantiating passive arguments, this can be reflected by the rule having variables at
that places. It should however be ascertained by the form of the term that no termination
rule will apply. The termination laws themselves are straightforward translations of the
corresponding termination rules.

8

Examples 11

(a) The transition system for ';' generates, according to the definitions above, the fol­
lowing equations:

(Xl + X2); Y (Xl; y) + (X2; y) 1';0 0

1'; (Yl + Y2) = (E;Yl) + (E;Y2) o;y 0

(a.x');y a.(x'; y) E;E l'

1'; (a.y') a.'!/

Note that, apart from the equation o;y = 0, the operation ';' has also other deadlock
laws, viz. 0; l' = 0, 0; (a.y') = 0 and 0; (y + b.y'), which are special cases of the displayed
law o;y = O.

(b) Similarly, we obtain for the leftmerge 'IL ' the following axiom system:

(Xl +X2)lLy (xllLy) + (X2ILy)

Ell (yt+ Y2) (EILYl) + (EILY2)

(a.x')lLy = a.(x' II y)

ElLo = 0

Ell (b.y') o
= 0

Again we omit the superfluous instantiations of the axiom 0; y = O. Note that actually
we have exactly the preferred axiomatization, see e.g. [Vra97].

From the termination law 1'; l' = l' and Ell l' = l' in the examples above, one can see the
necessity of a distributive law for a negative argument, here in both cases the second position.
Without these distributive laws it is not possible to derive, e.g., c; (a.t + E) = a.t + l' and
Ell (a.t + c) = 1', which is desired for our interpretation of optional termination. Another
observation here is that the handles indicate which distributivity law should be applied first
in a rewriting procedure. In the case of the sequential composition ';' given by the rules
in Example 9 we have that handle(l) = 0, handle(2) = {I}. The distributivity law for the
second position is only applicable when the term at the first position is terminating and hence
deterministic.

The disrupt or disabling operator '»' is well-known, e.g., from Lotos [BriS9] (see also [BBOO]).
In the process X » y the subprocess X may proceed, unless the subprocess y takes over control.
It terminates when either of the subprocesses does so. Thus, the disrupt operator has the
following transition system:

x~x' y~y' X.). y.).

(x» y).). (x» y).).

The disrupt operator, as can be seen from the transition rules, is a smooth but non-distinctive
operation. However, if we split the operation '»' into two, introducing '»1' and '»2' say, for
which the transition rules satisfy the distinctiveness restrictions, we end up with two smooth
and distincti';e operations:

9

x.j. y -"t y' y.j.

x »1 y -"t X' » y (x »1 y).j. x »2 y -"t y' (x »2 y).j.

The idea of splitting up '»' is also present in the transition system for this operation in [BBOO).
The relationship between the various disrupt operations is expressed by the law x » y =
(x »1 y) + (x »2 y). Another instance of this trick is the representation of the merge 'II' in
terms of left merge 'll.', right merge 'JJ ' and communication merge ' I ' using the law x II y =

(xll.y) + (x JJ y) + (x I y).
The same approach, as pointed out in [ABV94) and also applicable for the tagh-format, of

partitioning of the set of transition rules and introducing smooth and distinctive suboperations
works in general to split a smooth but non-distinctive operation I into a number of smooth
and distinctive ones, h, ... ,Is say. Here we only present how the resulting equations can be
derived. See Lemma 21 for the soundness of this law.

Definition 12 Let I be a smooth but non-distinctive n-ary operation for the tagh-transition
system TS. The n-ary operations h, .. . ,Is are called distinctive versions of I in a disjoint
extension TS' of TS if the transition and termination rules for each Ir in TS' (1 :S r :S s)
form, after renaming of Ir in the source of the rules by I, a partitioning of all the rules for I
in TS. The equation

I(z) = h(Z) + ... + Is(Z)

is then referred to as the distinctivity law for I.
(8)

The previous definition addresses smooth but non-distinctive operations. However, some
operations are not smooth at all. There may be several ways in which the transition rules of
an operation I can violate the various conditions of the definition of smooth operations: there
can be a transition rule for I that is not of the format (3), thus, either there are multiple
premises for an action-argument or an active or terminating variable occurs in the target or
there is overlap of the index sets or there is rio active premise. Additionally, there can be a
position p for which there is no transition rule for I for which this p is non-passive.

The latter situation is harmless: If a position p occurs passively only in the transition
rules of an operation I we can simply interpret p as a negative position with an empty set
of forbidden transitions. Thus removing p from the index set L and adding it to the index
set J.

If a transition rule for an n-ary operation I has an empty set of active premisses, we can
consider an n + 1-ary operation f' obtained from I by adding a dummy variable Xo. For the
dummy variable we require a dummy transition. By extending the transition system with a
constant n, say, with (non-smooth) transition rule

o

instantiation of the dummy variable with n in I'(xo, X1, . .. ,xn) will yield a term bisimilar
to I(X1,"" x n). We therefore add the law I(X1, ... , xn) = f'(n, X1, ... , xn) to the equational
theory.

Let us consider, in order to illustrate this, the so-called don't care choice denoted by '$'.
It is modelled by the transition rules with no premisses below. Therefore we interpret the
first and second position to occur negatively in the two rules.

10

o o
l r

x$y~x x$y~y

This way the operation '$' is not smooth. It is lacking an active premise. The defect, though,
can be overcome easily; we simply add a dummy variable and extend the transition system
with a fresh constant 0 with only an 0..'; O-transition and expand the equational theory
with the w-law x $ y = $'(0, x, y). This will not contribute essentially to the dynamics of
the operation '$" compared to '$', nor to its termination behavior. We thus arrive at

w~w' w -::t w'

$'(w,x,y)4x $'(w,x,y)4Y
Now, both the first and second position of '$' are negative and the adapted left and right
rule both have an active transition. Thus '$' is a smoothened version of the operation '$'.

To illustrate the countermeasure for multiple active transitions, overlap over index sets
and trespassing variable in the target, consider the following, synthesized, one-rule transition
system adapted from [ABV94J. The operation I is non-smooth because there are multiple

transitions for an active variable (viz. x -"t YI and x ~ Y2), the active and terminating vari­
able x occurs in the target x + YI, the index sets overlap (its only position 1 occurs as active,
as terminating and as negative argument).

abc
X~YI X~Y2 x-r+ x.j.

d
I(X)~X+YI

x.j.

I(x).j.
The key idea is not to split I into new operations, but to split the variable x into new variables,
i.e., we introduce separate copies Xl, X2, X3, X4 of the variable x to relieve the overlap and
multiplicity. The rules for I are translated into rules for a fresh operation p. This yields the
following transition system for which!' is a smooth operation:

abc
Xl ~ YI X2 ~ Y2 x3 -r+ X4.j. XI.j. X2.j. X3.j. X4.j.

1'(XI,X2,X3,X4)..c;X3 +YI P(XI,X2,X3,X4).j.
As connecting law for I we have I(x) = I'(x,x,x,x) which enforces that in the right-hand
side we indeed have copies of the original argument.

In the next definition we will formalize the idea for the general case. In the presentation
below we introduce mappings ¢ and 'IjJ to make the correspondence explicit between a vari­
able Xi and its splittings {x;, I ¢(i') = i} and the actions aip and output variables Yip and
their new names a;, and Y;, with 'IjJ(i') = (i,p).

Definition 13 Let I be a non-smooth n-ary operation of a tagh-transition system TS. The
m-ary operation p is called the smooth version of I in a disjoint extension TS' of TS, if there
exist mappings ¢: {1, ... ,m} ~ {I, . .. ,n} and 'IjJ: {I, ... ,m} ~ {I, ... ,n} x {I, ... ,m} and
a 1-1 correspondence between the rules of I and P, such that

(a) a transition rule p for I in TS of the form

{Xi ~ Yip liE I,p E Pd {x/;,% Ij E J, q E Qj} {xk.j.1 k E K} (9)

f(Xl 1 ••• ,xn) ~ C(Xil Xj, xk, Xl, Yip]

corresponds to a smooth transition rule p' for I' in TS' of the form

a'. II
{x:~y: liE I'} {xj~ Ij E J',q E Qi} {x~.j.1 k E K'} (10)

1'(, ,) a G'[' , 'J Xl' ... ,Xm ---+ Xi' Xl' Yip

11

· , a~ I ai , bjq bjq I I I .
such that the mappmg xi ---t Yi r-+ X¢(i) ---t Y,p(i) , Xj -f+ r-+ X¢(j) -f+ , Xk+ r-+ X¢(k)+ IS a
bijection between the premises of p and the premises of pi and C[Xi,Xj,Xk,X£,Yip] =
X(C'[xj, x~, yiJ) for a substitution X with X(xj) = X¢(j) , X(x~) = X¢(£) , X(Y;) = Y,p(i),

(b) a termination rule () for f in TS of the form on the left below corresponds to a
termination rule for l' in TS' of the form on the right below

{xdlkEK}

f(XI,···,Xn)-\.

where K' = q,-I(K).

The equation

{X~-\.I k E K'}

1'(x~, ... ,x;"')-\'

(11)

with (p = Z¢(p) for p E {I, ... ,n}, is called the smoothening law for f. In case the index
set I' is empty, l' will be an m + l-ary operation and to its transition rules we add the active
premise x~ ~ y~. The transition system TS' is assumed to contain the transition n ~ n as
only transition for the label w. In this case the equation

(12)

is referred to as the smoothening law for f.

Example 14 The 'classical' example of a non-smooth operation is the priority operator ()
of [BBK86]. Assuming a partial ordering on '>' on Act, the action rules of the unary () and
its binary smoothening ()' are the following:

a I b () x-+x X-f+ b>a

()(x) ~ ()(X')
x-\.

()(X)-\.

X~X' y.1 (b>a)

()I(X, y) ~ ()(X')

The smoothening law for the priority operator () is ()(x) = ()'(x, x).

x-\. Y-\.
()'(x, y)-\.

In the above we have defined how to transform a non-smooth operation into a smooth one
and how to split a smooth but non-distinctive operation into several smooth and distinctive
ones. In these situations the transition system will be extended disjointly, i.e., the dynamics
and termination of operations already in the transition system remain unaffected. Also we
have defined the smoothening law (11) and its variant (12) and the distinctivity law (8) that
connects the original and new operations. For smooth and distinctive operations we have
introduced various equations describing distributivity, dynamics, deadlock and termination.
Collecting this all together induces the notion of the transition system and the set of equations
generated by a tagh-transition system.

Definition 15 Let TS be a tagh-transition system. The tagh-transition system TS' gen­
erated by TS and the equational theory ET' generated by TS are given by the following
procedure:

Step 0 Let TS' disjointly extend TS and Ts1. Let ET' contain the equations for '+'
and '81'.

12

Step 1 For every non-smooth operation I of TS not in Ts1, extend TS' with the smooth
version l' of I and add to ET' the corresponding smoothening law (ll) or (12).

Step 2 For every smooth but non-distinctive operation I of TS' (as obtained after Step 1)
but not in Ts1, extend TS' with the distinctive versions II, ... , Is and add to ET' the
distinctivity law (S).

Step 3 For each smooth and distinctive operation I of TS' (as obtained after Step 2) but not
in Ts1 add to ET' the distributive laws (4), the action laws (5), the deadlock laws (6)
and the termination laws (7).

Examples 16 Application of the above procedure yields for the disrupt operator '»' and
the priority operator () the following generated equational theories:

x»y

(Xl + X2) »1 y

(a.x') »1 y

()(x)

()'(X1 +X2,y)

()'(£, Y1 + Y2)

(X »1 y) + (X »2 y)

(Xl »1 y) + (X2 »1 y)

= a.(x» y)

= ()'(x, x)

()'(X1,Y) + ()'(X2,Y)

()'(£, yd + ()'(£, Y2)

()'(a.x',86>a(Y)) = a.()(x')

()'(a.x',b.y+z) = 6 ifb>a

6 »1 y 6

E »1 Y £

similar rules for '»2'

()'(6, y) 6

()'(£, b.y') = 6

()'(x,6) = 6

()'(a.x, £) = 6

()'(£, £) = £

Note that the above axiomatizations are quite natural and improve upon the corresponding
theory synthesized in [ABV94J. The equations for the disrupt operation coincide with those
of [BBOOJ. The axiomatization for the priority operator avoids equations for the auxiliary
'unless' operation '<l' (cf. [BBKS6]). However, one may want, as also discussed in [ABV94J, to
optimize the equations regarding their rewriting properties by introducing a rule X »2 y = Y
or to replace IJ'(a.x',86>a(Y)) = a.IJ(x') by the laws IJ'(a.x,b.y + z) = IJ'(a.x,z) if b 1- a,
IJ'(a.x, £) = a.IJ(x) and IJ'(a.x, 6) = a.IJ(x).

4 Soundness

In this section we first address the soundness of the laws generated for a smooth and distinctive
operation: distributive laws, action laws, deadlock laws and termination laws. Next, we
address the distinctivity law for a smooth but non-distinctive operation and the smoothening
law for a non-smooth operation. Taking all results together we obtain a soundness result
for the generated equational theory with respect to the generated disjoint extension of the
original transition system.

As a direct consequence of the incorporation of explicit termination in our set-up, both in
form of termination rules and in the form of having the possibility for termination premises in
a transition rule, the proofs presented in this and in the next section are, at places, technically
more involved. In particular, compared to the proofs of [ABV94J, there are more cases in the
analysis of arguments, and our format demands for distributive laws for negative positions
and also for termination laws (both are not present in the framework of Aceto et al.). The

13

latter is necessary to deal with termination, as was illustrated by the left merge law oIL 0 = 0

above.

Lemma 17 Let f be an n-ary smooth and distinctive operation of a tagh-transition sys­
tem TS. Then it holds that the distributive laws for f are sound.

Proof

(a) Suppose m E nonneg(f) and f(tl,"" t;" + t::', ... , tn) = f(tl, ... , t;", ... , tn) +
f(tl, ... , t::', ... , tn) is a closed instance of the distributive law (4). So tp == 0 for
p E handle(m). We use Lemma 3 to show that the terms f(tl, ... , t;" + t::', ... , tn) and
f(tl, ... , t;", ... , tn) + f(tl,"" t::', ... , tn) are bisimilar.

(i) Assume I(t!, ... , t;" + t::', ... , tn) -:'r t via the rule p for some a and t. It holds
that m ric pass(p): For, if m E pass(p), then rank(p) >- rank(m). So we can choose

p E act(p) n term(m). Then, on the one hand, tp ~ t~ for suitable t~, but, on the other
hand, p E handle(m) and tp == E. Contradiction. So m ric pass(p) and thus either
mE act(p) or m E term(p).

Suppose m E act(p). Then t;" + t::, ~ tm for some tm· By inspection of TS+
we derive that t;" ~ tm or t:;' ~ tm. Since all other premises of p with respect
to I(tl, ... ,t;" + t::" ... ,tn), f(h, ... ,t;", ... ,tn) and f(tl, ... ,t::', ... ,tn) are the
same, it follows that f(t!, ... , t;", ... , tn) -:'r t or f(tl, ... , t:;', .. . , tn) -:'r t and thus
f(t!, ... , t;", ... , tn) + f(t!, ... , t::', ... ,tn) ~ t.

Suppose m E term(p). Then we have that (t;" + t:;,).j.. It follows by defini­
tion of '.j.' for '+' that t;".j. or t::'l Since all other premises of p with respect
to j(t!, ... ,t;" + t::" ... ,tn), f(tl, ... ,t;", ... ,tn) and f(tl, ... ,t::', ... ,tn) are the
same, we derive that j(t!, ... ,t;", ... ,tn)~t or f(tl, ... ,t:;', ... ,tn)-:'rt and thus
f(tl, ... , t;", ... ,tn) + f(tl, ... , t::', ... , tn) ~ t.

(ii) Assume that there is a transition f(tl, ... , t;", ... , tn) + f(tl, ... , t:;', ... , tn) ~ t
via the transition rule p for some a and t. By inspection of Tsb it follows that
f(t!, ... , t;", ... , tn) ~ tor f(t!, ... , t::', ... , tn) -:'r t. Without loss of generality we can
assume f(tl, ... , t;", ... , tn) ~ t. As before it holds that m E act(p) or m E term(p).

Suppose m E act(p). Then t;" ~ tm for some tm. So t;" + t;;, ~ tm. As the premises for
positions different from m coincide, we obtain I(t!, . .. , t;" + t;;', . .. , tn) ~ t. Suppose
mE term(p). Then t;".j.. So, by definition of '.j.' for '+', (t;" + t::,),j., hence, as all other
premises for p with respect to f(tl, ... , t;" + t::', ... , tn) are satisfied, it follows that
I(t!, ... , t;" + t;;', ... , tn) ~ t.

(iii) Suppose f(t!, ... , t;" + t::', ... , tn),j. by some termination rule O. If m ric term(B),
then also f(h, ... ,t;", ... ,tn).j. and f(t!, ... ,t::', ... ,tn),j., so f(tl, ... ,t;", ... ,tn) +
f(t!, ... , t::', ... , tn),j.· Suppose m E term(II). Then we have that (t;" + t:;,),j. and tp.j.
for p E term(O) \ {m}. It follows by definition of .j. for '+' that t;".j. or t::',J.. So, by
application of 0, f(tl, ... , t;", ... , tn),j. or f(t!, ... , t::', ... , tn),j.. Again by definition of.j.
for '+', we obtain f(t!, ... , t;", ... , tn) + f(h, ... , t::', ... , tn).j..

Suppose f(h, ... , t;", ... , tn) + I(t!, ... , t;;', ... , tn),j.. By definition of.j. for +, we then
have f(tl,"., t;", ... , tn),j. or f(t!, ... , t:;', ... , tn),j.. Assume f(t!, ... , t;", ... , tn),j. by
application of the termination rule II. If m ric term(lI) then also f (tl, ... , t;" +t;;', ... , tn),j.
by application of II. If mE term(II), we have t;",J. and tp.j. for p E term(lI) \ {m}. We

14

conclude, by definition of.j. for '+', (t;" + t;;'H and hence I(tl, ... , t;" + t;;', ... , tnH by
application of O.

(b) Suppose m E neg(!) and consider a closed instance l(tl, ... , t;,. + t':,., ... , tn) =

l(tl, ... , t;", ... , tn) + I(tl, ... , t;;', ... , tn) of the distributive law for m with respect
to I. SO tp == £ for p E nonneg(f). Clearly, as act(p) ~ nonneg(f) and act(p) /0
0, by definition, for every transition rule p for I, both l(tl, ... , t;,. + t;;', ... , tn) and
l(tl, ... , t;", ... , tn) + l(tl, ... , t;;', ... , tn) have no transitions. Also (t;" + t;;'H iff t;,..j.
or t;;,.j.. From this it follows that l(tl, ... , t;,. + t;;', ... , tnH iff l(tI, ... , t;", ... , tnH or
l(tl, ... , t;;', ... ,tnH, and therefore I(t l , ... , t;,. + t;;', ... , tnH iff I (tl, ... , t;", ... ,tn) +
I(tl, ... , t':,., ... , tnH· 0

Note the observation that act(p) /0 0 which follows directly from Definition B in the last
paragraph of the proof of the lemma.

Next we consider the action laws. It is here that the notion of distinctivity comes into play.
In short, distinctivity captures that for a source I(tl,· .. , tn), with I smooth and distinctive,
at most one rule can apply. As can be seen from the proof sketch for the lemma, all conditions
of Definition Bc regarding distinctivity are exploited.

Lemma 18 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys­
tem TS. Then it holds that the action laws for the operation I are sound.

Proof Let p be a transition rule for I of the format (3). Let I(t" ... , tn) = a.C[t;, ti, tel be a
closed instance of the action law (5) for the rule p for I· Hence ti == ai. t; for i E I, tj == 81

j
(ti)

for j E J and tk == £ for k E K. Again we apply Lemma 3 to show that I(tl, ... , tn) and
a.C[t;, ti, tel are bisimilar.

(i) Clearly, I(t" ... , tn)..", Crt;, ti, tel by application of p. This transition is matched

by a.C[t;, ti, te]..", Crt;, ti, tel. Next we show, appealing to the distinctiveness of I, that
I (tl, ... , tn) admits no other transitions than the one based on p.

Suppose I(t l , ... , tn) 4 t via some rule p' for I of the format (3) with p' /0 p. First
we derive that rank(p') = rank(p) by falsification of the two cases rank(p))-- rank(p') and
rank(p) -< rank(p'): (1) Assume rank(p))-- rank(p'), then either pass(p) \ pass(P') /0 0
or act(p) n term(p') /0 0. In the first case we have, by distinctiveness of I (cf. the 2nd
bullet of Definition Bb), that act(p) n term(p') /0 0. Hence, in both cases, we can choose
a position q E act(p) n term(p'). But then we have tq == aq.t~ as q E act(p) and tl.j. as
q E term(p'). Contradiction. (2) Assume rank(p) -< rank(p'). As before we can choose

a'
a position q E act(p') n term(p). But then we have tq ~ t~ as q E act(p') and tq == £ as
q E term(p). Contradiction. Since neither rank(p))-- rank(p') nor rank(p) -< rank(p') we
conclude that rank(p) = rank(p') by distinctiveness of I (cf. the 1st bullet of Definition Bc).

From rank(p) = rank(p') we obtain act(p) = act(p'). If p /0 p' we can choose, distinctive­
ness of I (cf. the 2nd bullet of Definition Bc), an index i such that ai /0 ai· But then we have

a'.
both ti == ai.ti and ti -=+ t;' for some term t;'. Contradiction. We conclude that p and p' must
coincide and that l(tl, . .. , tn) only admits the transition based on the transition rule p.

(ii) The term a.C[ti, ti, tel admits exactly one transition, viz. a.C[t;, ti, tel..", Crt;, ti, tel

which is matched by l(tl, ... , tn)..", C[ti, ti, tel.
(iii) For every termination rule 0, we have act(p) n term(O) /0 0. Therefore, for each 0,

3i E act(p) n term(O): ti == ai.t;. Hence, by definition of .j. for I, we have l(tl, ... ,tn}{.. Note

15

also a.C[ti, ti, ttH· o

The soundness of the deadlock laws is straightforward. The particular rank, for which a
deadlock law is formulated, does not playa role here, but will become important for the
head-normalization result (see Lemma 24) in the next section.

Lemma 19 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys­
tem TS. Then it holds that the deadlock laws for the operation I are sound.

Proof Let R be a rank of I and let I (tl' ... , tn) = Ii be a closed instance of a deadlock law
for R. Hence tm ;: E, tm ;: Ii or tm ;: a;".t;,. for some a;", t;" for m E act(R) and for each
rule p for I of the format (3) one of the following cases holds: (1) 3i E act(p): ti ;: Ii or
ti ;: ai·ti and ai of. ai, (2) 3j E neg(p): tj ;: bi.ti or tj ;: t'j +b.ti for some t'j, b, ti with bE B j ,

(3) 3k E term(p): tk ;: Ii or tk ;: a~.t~. It follows that for each rule p for I of the format (3):

(1) 3i E act(p): ti ~, (2) 3j E neg(p): tj!!' ti for some action b E Bj and some term tj, or
(3) 3k E term(p): tkol·.

We conclude that I(tl,"" tn) has no transitions, just as Ii does. Moreover, by definition
of the deadlock law, we have, for each termination rule B, 3p E term(B): tp ;: Ii or tp ;: a~.t~.
Hence I(tl,"" tnH· By definition of.j. for Ii, we also have Ii~. 0

The proof of the last soundness lemma regarding a smooth and distinctive operation makes
use of the fact that for a transition rule p of the format (3), it holds that act(p) n term(B) of. 0.
So, the termination rule B guarantees the term E at a position where the transition rule p

demands an action.

Lemma 20 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys­
tem TS. Then it holds that the termination laws for the operation I are sound.

Proof Let I(tl,"" tn) be a closed instance of a termination law for a termination rule B
for I. Hence tp ;: E for all p E term(B). For all rules p for I we have that act(p) n term(B) of. 0
by distinctiveness of I. SO I(tl,"" tn) has no transitions, just as E does. Moreover, both
I (tl, ... , tn).j., since Vp E term(f): tp.j., and £.j. by definition. 0

The next result concerns the soundness of the distinctivity law for a smooth but non­
distinctive operation. The construction and its proof are a modest extension of the COr­
responding lemma of [ABV94J. As only extra we need for the termination condition of Defi­
nition 2 that a sum can terminate iff one its summands can terminate, a fact which directly
follows from the termination rules for '+' in Ts1.

Lemma 21 For an n-ary smooth operation I in a tagh-transition system TS, there exists a
disjoint extension TS' with smooth and distinctive·n-ary operations h thru I" say, such that
I(ZI, ... ,Zn) = h(ZI, ... ,zn) + '" +ls(ZI, ... ,zn) is sound for bisimulation modulo TS'.
Proof Start, as in [ABV94], from a partitioning Rl, ... , Rs of the rules for I in TS such that
I is smooth and distinctive with respect to each of the parts. Introduce, for each part 14, a
fresh n-ary operation Ir with as its rules the collection 14 with I replaced by fr. Then Ir is
a smooth operation. Moreover, we have that I(tl,"" tn) ~ t iff Ir(tl, ... , tn) ~ t for some
r E {1, ... ,s}, and I(tl, ... ,tn).j. iff Ir(t 1 , •.. ,tn).j. for some r E {1, ... ,s}. 0

16

The soundness proof of the final building block, viz. the transition from a non-smooth opera­
tion to a smooth one, is based on the construction of Definition 13. For simplicity we suppress
the issue of absence of active transitions. Two points remain: (i) to establish the number of
copies that should be introduced for each argument, and (ii) to verify that the two operations
admit the same transitions.

Lemma 22 Let I be a non-smooth n-ary operation of a transition system TS. Then there
exist a disjoint extension TS' of TS with a smooth m-ary operation I' and an equation
l(zl,· .. ,zn} = !'((I,·.·,(m) with zp, for p E {I, ... ,n}, all different and (q E {ZI, ... ,Zn},
for q E {I, ... , m} that is sound for bisimulation modulo TS'.

Proof The proof follows the reasoning of [ABV94]: First we have to establish the number
of 'copies' for each argument, using the so-called barb-factor. Then, we need a technical
result (Lemma 4.12 of [ABV94]) to show that the copies will generate the same terms as their
sources, i.e., that I (zJ, ... , zn) .!'c, t = !' ((I, ... , (m) .!'c, t. Finally we have to check that
the termination condition for bisimulation with explicit termination holds. 0

By now we have addressed all the laws raised in the previous section. Concatenation of the
above lemmata now yields the desired soundness result.

Theorem 23 Let TS be a transition system in tagh-Iormat with generated transition sys­
tem TS' and generated equational theory ET'. Then the theory ET' is sound with respect
to TS' modulo bisimulation. 0

5 Completeness

In this section we show, for a tagh-transition system TS, the completeness of the generated
set of equations ET' for the generated transition system TS' modulo bisimulation. We follow
the outline as provided in [ABV94].

The first result concerns head-normalization of the generated equational theory ET' and
will be used as a tool to find a 'projection' t' / an (see below) of a term t over the signature
{o, 0, a. , + } in the process algebra, such that ET' f- t' / an = t. The proof of the result requires
a detailed case analysis that exploits the full machinery of handle, rank and the ordering >,0

on transition rules.

Lemma 24 Let TS be a transition system in tagh-format with generated transition sys­
tem TS' and equational theory ET'. Then the theory ET' is head-normalizing for terms
over TS'.

Proof It suffices to show that for any n-ary smooth and distinctive operation I and closed
terms tl, ... , tn in head-normal form, we have that ET' f- I(tl, . .. , tn} = t for some closed
term t in head normal-form. We elaborate a detailed case analysis:

1. Assume that 3m E nonneg(f): tm is nondeterministic. Choose the index m maximal
such that tm is nondeterministic, say tm == t:" + t'/n. We distinguish two subcases:

(a) [\'p E handle(m): tp == 0] Put t == I(tl, ... , t:", ... , tn) + I(t l , .. ·, t'/n, ... , tn) and
apply the distributive law for m.

17

(b) [3p E bandle{m): tp == 0 or tp == a~.t~ for some a~, t~] Note that if p E bandle{m)
then tp must be deterministic, since p E bandle{ m) implies rank(p) >- rank{ m) and
m was chosen to be maximal with tm nondeterministic.

Suppose I{t l , ... , tn) ~ t' for some term t' and rule p. By the assumption we then
have term{p) rt term(m) , so rank{p) >- rank{m). If i E act{p), then rank{i) >-
rank{m), so ti is deterministic, and, hence, ti == ai.t;. For j E neg{p) we have tj .;:,
for b E Bj, hence, by Lemma 5, tj = 81.(tj). If k E term(p) , then rank(k) >-

J

rank(m) by distinctiveness of I, so tk is deterministic and therefore tk == c. Now,
put t == a.C[t;, tj, ttl and apply the action law for p.

Suppose I(t l ,.··, tn) admits no rules. For each rule p for I such that rank(p) >­
rank(m) we have that tq is deterministic for q E act(p) U term(p) ~ nonneg(j).
As such p does not match I{tl , ... , tn) it holds that (1) 3i E act(p): ti.'!it, (2)

3j E neg{p): tj ~ tj for some action b E Bj and some term tj, or (3) 3k E term(p):
tk.j.. From this we derive that (1) 3i E act(p): ti == C, ti == 0 or ti = a;.t; with
a; '" ai, (2) 3j E neg(p): tj == b.tj Or tj == tj + b.tj for some action b E Bj and
some term tj, or (3) 3k E term(p): tk == 0 or tk == a~.t~.
For each rule p for I such that rank(p) ~ rank(m) We have that term(p) :2
bandle(m). Since, by assumption, 3p E bandle(m): tp == 6 or tp == a~.t~, it fol­
lows that 3k E term{p): tk == 0 or tk == a~.t~. If, for all termination rules B,
3p E term(B): tp ¢ c, put t == 6 and apply the corresponding deadlock law
for rank(m). If not, there exists a termination rule iJ for I such that Vp E term{B):
tp == c. Put t == c and apply the termination law for B.

2. Assume that '1m E nonneg(f): tm == c, tm == 6 or tm == a;,..t;,. for some a;", t;". We
distinguish three subcases:

(i) [J(tl, ... , tn) has a transition] Suppose I(t!, ... , tn) ~ Crt:, tj, tel for some rule p
of the form (3). Put t == a.C[t;, tj, tel and apply the action law for p.

(ii) [Vp E term{B): tm == c for some termination rule 11]. Put t == c and apply the
corresponding termination law for B.

(iii) [J(tl, ... , tn) admits no transition rule and, for no termination rule iJ, Vp E term(B):
tm == 0] If '1m E nonneg{j): tm == 0 and 3j E neg(f): tj is nondeterministic, apply
the distributive law for j. If not, putt == 0 and apply the deadlock law for a rank
of I with pass(R) = 0 (which, by smootheness of I, exists as every position p is
negative or becomes active or terminating eventually). 0

Having the head-normalization result in place, we can conclude, using standard arguments,
the completeness of the generated theory for finite processes. However, in order to deal with
infinite behaviour, we need, in line with [ABV94], some extra machinery. First, we introduce
a syntactic version of the Approximation Induction Principle (cf. Lemma 25). Next, we
show that all 'projections' can be represented by a term for the basic transition system Ts1
(ef. Lemma 26). The results are then combined (see Theorem 27) to obtain the announced
completeness result.

Let TS be a tagb-transition system. The transition system TS; is the disjoint extension
of TS and TS1 with only one binary operation 'I', referred to as the hourglass operation.
This hourglass operation is defined by the following rules:

18

X.:; x', y~ y'

X/y':;X'/y'

X.j.

(X/y).j.

Let u be an arbitrary action from Act, that we think as indicating a sandgrain for the
hourglass. For n E N, the term un is defined by u O == 0, un+! == u.un. The Approximation
Induction Principle, AlP for short, can now be reformulated in terms of the hourglass and
sandgrains:

x/un = y/un (\In E N)

x=y

We then have the following basic result, based on the finite branching of a tagh-transition
system, i.e., that for all closed terms t over TS the set {(a, t') It':; t' in TS} is finite.

Lemma 25 Let TS be a disjoint extension of TS;- Then TS 1= AlP, i.e., if, for closed
terms tl, t2 over TS, it holds that \In E N: tl/un ~ t2/un with respect to TS, then also tl ~ t2'

o
The hourglass operation' /', as can be directly seen from its rules, is smooth and distinctive.
Therefore, by the results of the previous section, we have that, amongst others, the following
equations hold (with respect to any disjoint extension of TSj):

(XI + X2)/y = (xl/y) + (X2/Y)

(a.x')/(b.y') = a.(x' /y')

o/y = 0

c/y c

Lemma 26 Let TS be a tagh-transition system and TS' the disjoint extension of TSj with
accompanying equational theory ET' generated by the procedure 15. Then it holds for any
closed term t' for TS' and any n E N, that there exists a closed term t for Ts1 such that
ET' f- t' / un = t and t' / un ~ t with respect to TS'.

Proof The proof goes, as in [ABV94], by induction on n using the head-normalization result
Lemma 24 and the equations for the operation' /' above. 0

We are now in a position to provide the completeness result for the equations synthesized by
the generation procedure. The proof of the theorem below is similar to the proof presented
in [ABV94] for the GSOS-format. It is included here to show the reader the interplay of the
various results presented above.

Theorem 27 Let TS be a tagh-transition system. Let TS' be the disjoint extension of TSj
and the generated extension of TS. Let ET' be the generated equational theory. Then ET'
and AlP are sound and complete for equality modulo TS'.
Proof If ET', AlP f- t' = til for two closed terms t', til over TS', then it follows from the
soundness results of Section 4 and Lemma 25 that t' and til are bisimilar modulo TS'.

Suppose t', til are closed and bisimilar terms over TS'. Then we have that t' / un and til/un
are bisimilar modulo TS', for all n E N. Now, by virtue of AlP, it suffices to show that
ET' f- t' / un = til / un for each n in N. So, pick n E N. Choose, using Lemma 26 two
closed terms tl,t2 over TS+ such that ET' f- t'/un = tl and ET' f- til/un = t2' From the
soundness of ET' we derive that t' / un and tl are bisimilar modulo TS' that and til/un and t2
are bisimilar modulo TS'. Hence, tl and t2 are bisimilar modulo TS'. Note that TS' is

19

a disjoint extension of Ts1. We thus obtain that tl and t2 are bisimilar modulo Ts1. By
the completeness result for Ts1, Lemma 4, it follows that ET1 f- tl = t2 and, a fortiori,
ET' f- tl = t2. We conclude that ET' f- t'/un = tf//un, as was to be shown. 0

6 Concluding remarks

We have introduced the tagh-format for structured operational semantics. The tagh-format
enhances the well-known GSOS-format with explicit termination. The format additionally
allows for a finer distinction between the modes of the argument (viz. active, negative, ter­
minating, passive). The method of automatic generation ofaxiomatizations as developed by
Aceto, Bloom and Vaandrager for GSOS is extended for the case of tagh. We have shown that
for a transition system in tagh-format the synthesized theory is sound and complete modulo
bisimulation. Examples illustrate the technique and indicate the strength of the approach.
The resulting laws are equal or close to hand-crafted axiomatizations.

Many other examples than the ones mentioned have been examined already. E.g., the
projection operator, renaming operator, encapsulation, restriction, state operator, generalized
state operator and process creation operator can be treated within the framework of the
tagh-format. Following the practical thread, our aim is to experiment with more extensive
transition systems and to investigate the impact of the axiomatization method, for example
for timed transition systems. A theoretical issue here is the adaptation of the techniques for
the tagh-format to deal with implicit termination of the form x ~ ,;, a format at present also
often used within process algebra. Note, since then we do not have the constant E, we loose
the syntactical expression of termination at the term level.

Another, theoretically important question concerns the application of the tagh-format
in the setting of metric semantics and co-induction (cf. [BV96, RutOOJ). In this paper we
have focussed on transition systems and their axiomatizations. Another view is to consider
transition systems and denotational models (see, for example, [Rut90, AI96, TP97J). We
believe, having the correspondence of the syntactic E with the empty semantical process p,
of metric domain equations, it should be feasible to automatically construct higher-order or
co-inductive definitions for semantical operators and a denotational semantics that is correct
with respect to a transition system in tagh-format.

References

[ABV94] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111:1-52, 1994.

[AFV01] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A.

[AI96]

Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages
197-292. Elsevier Science, 2001.

L. Aceto and A. Ing6lfsd6ttir. CPO models for GSOS-languages-Part I: compact
GSOS languages. Information and Computation, 129: 107-141, 1996.

[BaeOO] J.C.M. Baeten. Embedding untimed into timed process algebra: the case for explicit
termination. In L. Aceto and B. Victor, editors, Proc. EXPRESS'OO, pages 45-62.
ENTCS 39, 2000. See http://www.elsevier.nl/locate/entcs/volume39.html.

20

[BBOO] J.C.M. Baeten and J.A. Bergstra. Mode transfer in process algebra. Technical
Report Rapport CSR 00-01, Division of Computer Science, Technische Universiteit
Eindhoven, 2000. See http://www.win.tue.nl/~wwwst/fm/misc/pubbaeten.html.

[BBK86] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae, IX:127-168,
1986.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of Communicating Se­
quential Processes. Journal of the ACM, 31(3):560-599, 1984.

[BIM95] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced. Journal of
the ACM, 42:232-268, 1995. Preliminary version in Proc. POPL'88.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60:109-137, 1984.

[BR97] D.A. van Beek and J.E. Rooda. Specification and simulation of industrial systems
using an executable mathematical specification language. In Proc. 15th IMA CS
World Congress, Vol. 2 Numerical Mathematics, pages 721-726, Berlin, 1997.

[Bri89] E. Brinksma, editor. Information Processing Systems, Open Systems Interconnec­
tion, LOTOS - A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour. ISO Standard IS-8807, 1989.

[BV95] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 4, Syntactical Methods, pages 149-268. Oxford University Press, 1995.

[BV96] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. Foundations of Com­
puting Series. MIT Press, 1996.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[EHS97] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL: Formal Object-Oriented Language
for Communicating Systems. Prentice Hall, 1997.

[FokOO] W.J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, 2000.

[JBM01] H.M.A. van Beek J.C.M. Baeten and S. Mauw. Specifying internet applications with
DiCons. In Proc. ACM Symp. on Applied Computing, pages 576-584, Las Vegas,
2001. ACM.

[Mil80] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

[Mi189] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[Rut90] J.J.M.M. Rutten. Deriving denotational models for bisimulation from structured
operational semantics. In M. Broy and C.B. Jones, editors, Proc. IFIP Working
Group 2.2/2.3 Working Conference, pages 155-177, 1990.

21

[RutOO] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249:3-80, 2000.

[TP97] D. Tnri and G. Plotkin. Towards a mathematical operational semantics. In Froc.
LICS'97, pages 280-291. IEEE, 1997.

[Uli95] 1. Ulidowski. Axiomatisations of weak equivalences for De Simone languages. In
1. Lee and S. Smolka, editors, Froc. CONCUR'95, pages 219-233. LNCS 962,1995.

[UliOO] 1. Ulidowski. Finite axiom systems for testing preorder and De Simone process
languages. Theoretical Computer Science, 239:97-139, 2000.

[Ver95] C. Verhoef. A congruence theorem for structured operational semantics with pred­
icates and negative premises. Nordic Journal of Computing, 2:274-302, 1995.

[Vra97] J .L.M. Vrancken. The algebra of communicating processes with empty process.
Theoretical Computer Science, 177:287-328, 1997.

22

Computer Science Reports Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

If you want to receive reports, send an email to:m.m.j.l.philips@tue.nl (we cannot guarantee the availability of
Ihe requested reports)
In this series appeared:

97/02 J. Hooman and O. v. Roosmalen

97/03 J. Blanco and A. v. Deursen

97/04 J.C.M. Baeten and J.A. Bergstra

97/05 J.C.M. Baeten and n. Vereijken

97/06 M. Franssen

97/07 J.C.M. Baeten and J.A. Bergstra

97108 P. Hoogendijk and R.C. Backhouse

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction ofeorreet Programs: an Overview, p. 33,

Bounded Stacks, Bags and Queues, p. 15.

When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling· The Language! Action Perspective, p. 147.

97110

97/11

97112

97113

97114

97/)5

97/)6

97117

971)8

98/0)

98102

98103

98104

98105

98106

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9~10 June, 1997.

P.C.N. v. Gorp, EJ. Luit, D.K. Hammer
E.H.L. Aal1S

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van der Aalst

W .M.P. van der Aalst

J.F. Groote, F. Monin and
J. Springintve1d

M. Franssen

W .M.P. van der Aalst

M. Vaccari and R.e. Backhouse

Werkgemeenschap Informatiewetenschap
redactie: P .M.E. De Bra

W. Van der Aalst

M. Voorhoeve

J.C.M. Baeten and J.A. Bergstra

R.c. Backhouse

D.Dams

G. v.d. Bergen, A. Katdewaij
VJ. Dielissen

Distributed rcal·time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri·net·based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p.28

AP-: A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification of Inter·organizational workflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Informatiewetenschap, p. 60.

Fonnalization and Verification of Event· driven Process Chains, p. 26.

State / Event Net Equiva1ence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments ofCTL and CTL *: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union ofIntervals on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net·based Concepts, Models, Techniques and Tools (WFM'9S)
June 22, 1998 Lisbon, Portugal edited by W. v.d, Aaist, p. 209

98/08 Iofonnal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology .13-15 July 1998

edited by R.C. Backhouse, p. 180

98/09 KM. van Hee and HA. Reijers An analytical method for assessing business processes, p. 29.

93110 T. Basten and J. Hoaman Process Algebra in PVS

98111 J. Zwanenburg The ProQf-assistemt Yarrow, p. 15

98112 Ninth ACM Conference on Hypertext and Hypermedia
Hypertext '98

98/13

99/01

99/02

99/03

99104

99/05

99/06
66

99/07

99/08
VFM'99

99/09

99110

99111

99112

99/13

99114

99115

99116

99/17

99/18

99119

Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypermedia.

J.P. Groote, F. Monin and J. v.d. Pol

V. Bos and JJ.T. Kleijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aalst

R.C. Backhouse and P. Hoogendijk

S. Andova

M. Franssen, R.C. Veltkamp and
W. Wesselink

T. Basten and W. v.d. Aalst

P. Brusilovsky and P. De Bra

D. Bosnacki, S. Mauw, and T. Willemse

J. v.d. Pol, J. Hoornan and E. de Jong

T.A.C. Willemse

J.CM. Baeten and C.A. Middelburg

s. Andova

K.M. van Hee, R.A. van der Toom,
J. van der Woude and P .A.C. Verkoulen

A. Engels and S. Mauw

J.F. Groote, W.H. Hesselink, S. Mauw,
R. Vermeulen

G.J. Houben, P. Lemmens

T. Basten, W.M.P. v.d. Aalst

J.CM. Baeten and T. Basten

J.CM. Baeten and C.A. Middelburg

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR '98, p. 27.

Structured Operational Semantics of>:, p. 27

Diagnosing Workflow Processes using Woflan, p. 44

Final Dialgebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

Efficient Evaluation of Triangular B-splines, p. 13

Inheritance of Work flows: An Approach to tackling problems related to change, p.

Second Worlcshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

Proceedings of the first international syposium on Visual Fonnal Methods-

Requirements Specification and Analysis of Command and Control Systems

The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
,u CRL, p. 44.
Process Algebra with Timing: Real Time and Discrete Time, p. 50.

Process Algebra with Probabilistic Choice, p. 38.

A Framework for Component Based Software Architectures, p. 19

Why men (and octopuses) cannot juggle a four ball cascade, p. 10

An algorithm for the asynchronous Write-All problem based on process collision·,
p. II.

A Software Architecture for Generating Hypermedia Applications for Ad-Hoc
Database Output, p. 13.

Inheritance of Behavior, p.83

Partial-Order Process Algebra (and its Relation to Petri Nets), p. 79

Real Time Process Algebra with Time-dependent Conditions, p.33.

99120 Proceedings Conferentie Informatiewetenschap 1999
Centrum voor Wiskunde en Informatica

00/01

00/02

00/03

00/04

OOIOS

12 november 1999, p.98 edited by P. deBra and L. Hardman

J.C.M. Baeten and J.A. Bergstra

J.C.M. Baeten

S. Mauw and M.A. Reniers

R. Bloo, J. Hooman and E. de Jong

J.F. Groote and M.A. Reniers

Mode Transfer in process Algebra, p. 14

Process Algebra with Explicit Termination, p. 17.

A process algebra for interworkings, p. 63.

Semantical Aspects of an Architecture for Distributed Embedded
Systems", p. 47.

Algebraic Process Verification, p. 65.

00106

00107

00108

00109

'00/10

00/11

00/12

00/13

00/14

OOilS

00/16

00117

00118

00/19

00/20

01101

01102

01103

J,F. Groote and J. v. Warnel The Parallel Composition ofUnifonn Processes wit Data, p. 19

C.A. Middelburg Variable Binding Operators in Transition System Specifications, p. 27.

1.0. van den Eode Grammars Compared: A study on detennining a suitable grammar for parsing and
generating natural language sentences in order to facilitate the translation of natural
language and MSC use cases, p. 33.

R.R. Hoogerwoord A Fonnal Development of Distributed Summation, p. 35

T. Willemse, 1. Trebnans and A. Klomp A Case Study in Fonnal Methods: Specification and Validation on the OM/RR
Protocol, p. 14.

T. Basten and D. Bo~nacki Enhancing Partial-Order Reduction via Process Clustering, p. 14

S. Mauw, M.A. Reniers
and T.A.C. Willemse Message Sequence Charts in the Software Engineering Process, p. 26

J.C.M. Baeten, M.A. Reniers Tennination in Timed Process Algebra, p. 36

M. Voorhoeve, S. Mauw Impossible Futures and Detenninism, p. 14

M. Oostdijk An Interactive Viewer for Mathematical Content based on Type Theory, p. 24.

F. Kamareddine, R. Bloo, R. NederpeJt Characterizing A,-tenns with equal reduction behavior, p. 12

T. Borghuis, R. Nederpelt Belief Revision with Explicit Justifications: an Exploration in Type Theory, p. 30.

T. Laan, R. Bloo, F. Kamareddine, Parameters in Pure Type Systems, p. 41.
R. Nederpelt

J. Baeten, H. van Beek, S. Mauw Specifying Internet applications with DiCons. p. 9

Editors: P. v.d. Vet and P. de Bra Proceedings: Conferentie Informatiewetenschap 2000, De Doelen,
Utrecht,S april 2000, p. 98

H. Zantema and 1. v.d. Pol A Rewriting Approach to Binary Decision Diagrams, p. 27

T.A.C. Willemse Interpretations of Automata, p. 41

0.1. Joigov Systems for Open Terms: An Overview, p. 39

Olf04 P.l.L. Cuijpers, M.A. Reniers, A.G. Engels Beyond Zeno-behaviour, p. 15

01105 D.K. Hammer, J. Haaman, M.A. Reniers, Design of the mine pump control system, p. 69
O. van Roosmalen, A. Sintotski

01106 J.C.M. Baeten and E.P. de Vink Axiomatizing OSQS with termimttion, p. 22

01110 7 e Nederlandse Testdag
editors L.M.G. Feijs, N. Goga, S. Mauw, T A.C. Willemse

0\111 Editors: P. de Bra, P. Brusilovsky
and A. Kobsa

Proceedings: Third Workshop on Adaptive Hypertext and Hypennedia
Sonthofen, Gennany, July 14,2001
Arhus, Denmark, August IS, 2001

T U Ie technische universiteit eindhoven

P.O. Box 513
5600 MB Eindhoven
The Netherlands

/ department of mathematics and computing science

	Abstract
	1. Introduction
	2. Preliminaries
	3. Generating equations for the tagh-format
	4. Soundness
	5. Completeness
	6. Concluding remarks
	References

