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AXIOMATIZING GSOS WITH TERMINATION 

J.C.M. Baeten! & E.P. de Vink!,2 

Abstract We discuss a combination of GSOS-type structural operational semantics with 
explicit termination, that we call the tagh-format (tagh being short for termination and 
GSOS hybrid). The tagh-format distinguishes between transition and termination rules, 
but allows besides active and negative premises as in GSOS,. also for, what is called 
terminating and passive arguments. We extend the result of Aceto, Bloom and Vaandrager 
on the automatic generation of sound and complete axiomatizations for GSOS to the 
setting of tagh-transition systems. The construction of the equational theory is based 
upon the notion of a smooth and distinctive operation, which have been generalized 
from GSOS to tagh. We prove the soundness of the synthesized laws and show their 
completeness modulo bisimulation. The examples provided indicate a significant, though 
yet not ideal, improvement over the axiomatization techniques known so far. 

Keywords Structured operational semantics, asos format, equational theories 

1 Introduction 

It has become very popular in the concurrency community to define various process operators 
by means of Plotkin-style operational rules (see e.g. [AFVOlJ). These are usually pretty 
intuitive, and they can be used to derive a transition system for each process expression. 
Properties of such a transition system can then be checked using a model checker. 

But it is also well-known that this approach has its restrictions. Often, transition systems 
become too large to be handled by model checkers, or, due to the presence of parameters, 
transition systems have infinitely many states. In these cases, an approach using theorem 
provers or deploying equational reasoning can be very helpful. 

In the face of these alternative approaches, it is often profitable to generate a set of laws 
or equations for an operator that is given by a set of operational rules. Moreover, we want 
two characterizations that match: the axiomatization should be sound and complete for the 
model of transition systems modulo (strong) bisimulation. The paper [ABV94] points the 
way in such an endeavour: in some cases an axiomatization can be derived by just following 
a recipe. Some other papers in this area are [Uli95, UliDD] (where other equivalence relations 
besides bisimulation equivalence are considered). However, in the years since the appearance 
of these papers, we have seen no application of the theory. The reader may wonder why this 
is so. 

In our opinion, this is due to the limited process algebraic basis employed in [ABV94]; in 
particular, termination and deadlock are identified. Any language, both programming and 
specification languages, involving some form of parallel composition will know the situation 
when no further action is possible, but components are not finished, e.g. when two compo
nents are waiting for different communications. This situation is usually called deadlock or 
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unsuccessful termination. Now if the language also involves some form of sequential compo
sition, we have to know when the first component in a sequential composition is finished, i.e. 
successfully terminated, in order for the second component to continue. In such a case, dead
lock must be distinguished from successful termination, and, subsequently, the axiomatization 
method of [ABV94] does not apply. 

There are three ways to handle this combination of parallel composition and sequential 
composition. First, we can do away with sequential composition as a basic operator, only 
have prefixing as a rudimentary form of sequential composition, and use tricks like a spe
cial communication to mimic some form of sequential composition. This is the solution of 
CCS [MiISO, MiIS9], in our opinion an unsatisfactory solution. Second, we can use implicit 
termination as in ACP [BK84, BW90], where successful termination is implicitly "tacked 
onto" the last action. Finally, in the majority of cases, we find explicit termination, usually 
implemented by having two separate constants, one denoting deadlock, inaction Or unsuc
cessful termination, the other one denoting skip or successful termination. Operationally, 
deadlock has no rules, and termination is denoted by a predicate On states. Examples are 
LOTOS [Bri89], SDL [EHS97], CSP [BHR84], X [BR97], and DiCons [JBMOl]. 

In this paper, we adapt the theory of [ABV94] for the case of explicit termination. We 
think that the theory presented can be extended in order to deal also with implicit termination, 
but leave this as future research. Starting from the GSOS-format (cf. [BIM95]), we extend it 
with termination to obtain the tagh-format (termination and GSOS hybrid). We also employ 
some additional generalizations so t.hat auxiliary operators are needed in fewer cases: for 
instance, the definition of sequential composition does not require auxiliary operators as in 
[ABV94). This does make the theory a lot mOre complicated, but we gain that the generated 
axiomatizations are almost optimal, intuit.ively understandable, and are sound and complete 
for the model of transition systems modulo bisimulation. 

The outcome is a recipe that can be applied in a straightforward manner. It is presented in 
Section 3. We also provide a few examples (sequential composition, leftmerge, disrupt and the 
priorit.y operator) to illustrat.e the technique. Section 2 provides the necessary preliminaries, 
while section 4 and Section 5 are devoted to the soundness and completeness of the generated 
theory. Some concluding remarks are collected in Section 6. We hope that our generalizations 
will lead t.o actual applications. 

2 Preliminaries 

We assume the reader to be familiar with the standard notions and examples of process 
algebra (cf. [BW90, FokOO, Mil89]). Below we present the transition system for the basic 
process language with explicit termination c, deadlock {) (which has no rules)' a prefixing 
operation 'a. ' for every a taken from the finite alphabet of actions Act, nondeterministic 
choice '+' and unary one-step restriction operations 81 for every subset B <;; Act. The 
expression 81 (t) indicates that the term t is not permitted to perform any action from B as 
a first step. However, this restriction is dropped after t has done a step outside of the action 
set B. For the termination predicate '.j.', we use the postfix notation t.j. meaning that the 
term t has an option to terminate immediately. (See [BaeOO] for a further discussion on the 
advantage of having explicit termination as first class citizen in a transition system.) 

Definition 1 
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(a) The transition system TS1 consists of the following transition and termination rules: 

a 
a.x --+ X 

X~X' 

x+y~x' 

X4-

(x+yH 

y..'!:t y' 

x + y..'!:t y' 

Y4-

(x+yH 

X~XI 
(a 1- B) 

&1(x)..'!:tx' 

X4-

&1(xH 

(b) The equational theory ET1 consists of the following equations: 

x+y = y+x &1(x + y) = &1(x) + &1(y) 

(x+y)+z = x + (y + x) &1(a.x) a.x if a 1- B 

x+x x &1(a.x) 0 if a E B 

x+o x &1(0) 0 

&1 (t:) = t: 

The operation '&1' is necessary to deal with negative premises. However, as no negative 
premises are involved in the transition for '&1', it will turn out that the axiomatization above 
for this operation can be obtained from the algorithm presented below, which implies that 
this axiomatization is sound and complete. 

We have the standard notion of strong bisimulation with predicates, in our set-up in the 
form of a termination condition (cf., e.g., [BW90, BV95]). 

Definition 2 A bisimulation relation R for a transition system TS is a binary relation for 
closed terms over TS such that whenever tlRt2 it holds that (i) tl ..'!:t t~ =* 3t~: t2..'!:t t~ II 
t~Rt~, (ii) t2..'!:t t~ =* 3t~: tl..'!:t t~ II t~Rt~, (iii) tl4- {==? t24-' Two terms tl, t2 are bisimilar 
with respect to TS if there exists a bisimulation relation R for TS with tlRt2, notation: 
tl ~TS t2 or just tl ~ t2' 

When proving soundness of the various laws that will be introduced in the sequel, the following 
property comes in handy. 

Lemma 3 Let tl, t2 be two closed terms such that tJ ~ t {==? 

closed terms t, and tl4- {==? t24-. Then it holds that tl ~ t2' 
t2 ~ t for all actions a and 

o 
The next basic soundness and completeness result can be shown with standard techniques. 
See, e.g., [MiI89, BV95J. 

Theorem 4 The equational theory ETb as given in Definition 1 b is sound and complete for 
Ts1 modulo bisimulation. 0 

The following property is straightforward. 

Lemma 5 Suppose t is a term of the form LiEl ai.t: or (LiE! ai.t;) + c with, for some set 
of actions B <;; Act, ai 1- B for all i E I. Then it holds that ET11- t = &1(t). 0 
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In Section 5, on completeness, we make use of the concept of head normalization. In the 
context of process algebra with explicit termination its definition is as follows. 

Definition 6 A term t of the form c, 0, LiE! ai.t: or (LiE! ai.tD + c with I a finite non
empty index set, is in head normal form. An equational theory ET is head normalizing if for 
all terms t there exists a term t' in head normal form such that ET I- t = t'. 

Below we will use tl == t2 to denote syntactic equality of the terms tl and t2. We also use 
expressions like G[Xk> Ye, zm] to indicate that only variables from the set 

{Xk IkE K }U{ Ye I £ E L }U{ Zm I mE M} 

occur in the context G[ ] with respect to some given index sets K, Land M. 

3 Generating equations for the tagh-format 

In this section we introduce the tagh-format for transition systems. The acronym tagh stands 
for termination and GSOS hybrid. It extends the GSOS-format as introduced in [BIM95] with 
a notion of explicit termination. We provide, at the end of this section, a general procedure to 
obtain, for each transition system in tagh-format, a disjoint extension TS' and an equational 
theory ET'. In later sections we investigate the soundness and completeness of ET' for TS'
bisimulation. As the transition system TS' is a disjoint extension of the transition system TS 
this amounts for terms t l , t2 over TS to coincidence of bisimulation with respect to TS and 
equality based on ET'. Thus, ET' is a sound and complete axiomatization of TS-bisimulation. 

Definition 7 

(a) A tagh-transition rule p for an n-ary operation f is a deduction rule of the format 

{Xi ~ Yip liE l,p E Pd {Xj J.. I j E J, bE B j } {Xk+ IkE K} (1) 

f (Xl, ... ,Xn ) ~ G[Xm' Yip] 

with I,J,K <;; {l, ... ,n}, fori E l, Pi a nonempty finite index set, for j E J, Bj a finite 
(possibly empty) set of actions from Act, and, Xm, Yip, for m E {I, ... ,n}, i E l,p E Pi, 
pairwise distinct variables, that are the only variables that may occur in the context 
G[Xm,Yip]. 

(b) A tagh-termination rule () for an n-ary operation f is a deduction rule of the format 

{Xk+ IkE K} 

f(xI, ... , xn).!. 

with Xl, ... ,Xn pairwise distinct variables and the index set K <;; {I, ... ,n}. 

(2) 

(c) A tagh-transition system is a transition system where any operation f different from 
'c', '0', 'a. ','+' and '81' has transition rules and termination rules of the tagh-format 
only. 
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In the context of a transition rule p of the format (1) we use act(p), neg(p), term(p), pass(p) 
to denote the index sets I, J, K, L, respectively, where L = {I, ... , n} \ (I U J UK). For a 
rule (j conforming to equation (2) we put term((j) = K. For a transition rule p like (1), we 
refer to f(Xl, .. ·, xn), or an instantiation of it, as the source of p, and to the term C[xm, Yip] 
as the target. Occasionally we will write t.j. if not t.j., i.e., t cannot terminate immediately. 

The tagh-format is an extension of the GSOS-format of [BIM95]. If we strip all aspects of 
termination from the definition we end up with the original format for GSOS. We have, as the 
tagh-format is subsumed by the panth-format of [Ver95], that bisimulation is a congruence, 
just as for GSOS. The syntactic format of general tagh-transition rules though, is much 
too liberal to allow for an automatic generation of axioms directly. We therefore introduce 
(cf. [ABV94J) a more restricted format, called smooth, where there are no clashes between 
active, negative, terminating and passive arguments. Also an active position is not permitted 
to have multiple transitions. Regarding an operation f it is profitable to further restrict the 
collection of rules. In essence we want that at any time at most one of the transition rules 
for f applies. If the rules for f have this additional property, the operation is called smooth 
and distinctive. 

Definition 8 Let TS be a tagh-transition system. 

(a) A transition rule p in TS for an n-ary operation f E Sig is smooth if it is of the 
format 

{Xi ~ Yi liE I} {Xj ~ I j E J, bE Bj } {Xk.j. IkE K} (3) 

f(x!, . .. , xn) ~ C[Yi, Xj, xe] 

where the index sets I, J, K, L form a partition of { 1, ... , n}, I", 0, Bj ~ Act a finite 
(possibly empty) subset of actions, and, where in the target C[Yi, Xj, Xl] only variables 
amongst {Yi liE I}, {xp I p E J U L} occur. We use act(p), neg(p), term(p), pass(p) 
to denote I, J, K, L, respectively. The operation f is smooth with respect to TS if all 
of its transition rules in TS are smooth, and, moreover, 

• for each position p in {I, ... ,n} it holds that p rf= pass(p) for some rule p for f 
in TS. 

(b) The rank of a rule p is the 4-tuple (pass(p), act(p), term(p), neg(p)), notation rank(p). 
For two rules p, p' for an n-ary operation f we say that rank(p) ~ rank(p') iff 

• neg(p) = neg(p'), pass(p) 2 pass(p') and term(p) t;; term(p'), and 

• pass(p) '" pass(P') =* act(p) n term(p') '" 0. 

(c) A smooth n-ary operation f is called smooth and distinctive with respect to TS if 

• the set {rank(p) I p a transition rule for f in TS} is totally ordered by the order
ing ~ introduced in part (b); 

• for any two distinct rules p, p' of the form (3) with rank(p) = rank(p') there exists 
an index i E act(p) = act(p') such that ai '" a;; 

• for each termination rule (j and each transition rule p for f in TS it holds that 
term((j) n act(p) '" 0. 
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For such an operation I it holds that neg(p) = neg(p') for any two transition rules p,p'. 
We define neg(f) = neg(p) and nonneg(f) = {I, ... , n} \ neg(p) where p is an arbitrary 
transition rule for I in TS. 

The intuition for the ordering on the transition rules for a smooth and distinctive n-ary 
operation I is the following: Suppose p and p' are two transition rules for I with p :;" p'. 
The ordering on >,0 then demands that a passive position in p' must be passive in p as well 
and, conversely, that a terminating position in p must also be terminating in p'. Now, let 
PI >,0 '" :;" Pm be in descending order and p E {I, ... ,n} a non-negative position in I· 
The position p can either be passive, active or terminating in p!, ... , Pm, but in view of the 
observation above we have that for suitable 0 :0; k < £ :0; m it holds that p E PasS(Pi) for 
I :0; i :0; k, p E act(Pi) for k < i :0; £ and p E term(Pi) for £ < i :0; m. So, in the context 
of I (Xl, ... , xn), the variable xp at position p has a life-cycle from passive, via active, to 
terminating (but, possibly, p doesn't start out as passive or doesn't reach the termination 
stage). 

For a smooth and distinctive n-ary operation I we have that for closed terms of the form 
I(tl,"" tn) where each ti =' 0, Ii, a'.t' at most one of the transition rules for I applies: If 
p and p' are two distinct rules for I, we either have rank(p) = rank(p') or, without loss of 
generality, rank(p) >- rank(p'). From the requirements of Definition 8c above we then obtain 
in the first case that for some i E {I, ... , n}, ti =' a'.t' with a' = ai (the action of the i-th 
premise for p), a' = a: (the action of the i-th premise for p') but also ai # a:. For the second 
case we obtain from rank(p) >- rank(p') that act(p) n term(p') # 0. So, for some i E {I, ... , n} 
we have ti =' ai.t' as ti matches the source of the i-th premise of p, but also ti =' 0 as according 
to the rule p' the term ti should terminate. All cases thus lead to a contradiction, and we 
conclude that I(t!, ... , tn) does not match two distinct transition rules p and p'. 

If we consider only transition rules p with empty sets term(p) and pass(p), the notion of 
smooth and distinctive for the tagh-format specializes to this notion for GSOS as introduced 
in [ABV94]. Note that, in the absence of termination conditions, a non-active argument can 
be regarded as a negative one with an empty set of forbidden actions, so that the requirement 
for smoothness of an operation becomes trivial. In [ABV94] there is another requirement for 
smooth operations, viz. that the negative arguments of all transition rules coincide. In the 
set-up here, this is subsumed by the condition of total ordering for smooth and distinctive 
operations: if p :;" p' we have neg(p) = neg(p'). In the set-up presented here there is for 
smooth rules the demand that the index set I is non-empty, which is not required by the 
definition of [ABV94J. 

The requirement of at least one active position in a smooth transition rule will be needed 
in our proof of the soundness of the distributive laws for negative arguments, introduced 
below and that are superfluous in the setting of [ABV94] but are essential for our treatment 
of termination (ef. Lemma 17). Likewise the condition for a position p of a smooth operation 
to occur non-passively in some rule p will be needed in the proof of the head-normalization 
result Lemma 24. We stress that our primary aim is to deal with explicit termination as well 
as to allow for what we have baptized 'passive' variables, since this will lead, in many cases, 
to a more satisfactory axiomatization. 

Examples 9 

(a) The binary operation ';' of sequential composition comes equipped, in the set-up 

6 



with explicit termination, with two transition rules and one termination rule: 

X~X' 
(SeqJ) a 

x; y -+ x'; y 
(S ) 

X,j. y'::" yf 
eq2 a 

X; y --+ yf 

S X,j. y,j. 
( eqe) (x; y)-!. 

We check that ';' in our set-up (contrasting [ABV94]) is a smooth and distinctive oper
ation. 

• It holds that rank(SeqJl = ({2}, {I}, 0, 0) ~ (0, {2}, {I}, 0) = rank(Se%). So, the 
set {rank(Seq1 ),rank(Seq2l} is totally ordered. 

• There are no two distinct rules of equal rank. Hence the condition on actions is 
trivially satisfied. 

• We have term(Seq,,) = {1,2} and 1 E act(Seqd, 2 E act(Seq2), so term(Seqe) n 
act (Seq;) i' 0 for i = 1,2. 

(b) The binary operation '/L', usually referred to as leftmerge, has one transition rule 
and one termination rule: 

x -!+ x' 
(LeftmergeJl---:;---:-

x/Ly'::" Xf II y 

X,j. y,j. 
(Leftmergee) --

(x/Ly)-!' 

We have act(/L) = {I}, neg(/L) = {2} and term(/L) = pass(/L) = 0. Note that the 
format (3) allows for an empty set of 'forbidden' actions. As the leftmerge has only 
one transition rule, it is clear that '/L' is a smooth and distinctive operation, since 
{I, 2} ~ act(LeftmergeJl U neg(LeftmergeJ). 

In concrete examples, such as the examples above, we prefer the usage of the more colloquial 
variable names like x, Xf, y, yf, etc. instead of the technical Xl, YJ, X2, Y2, etc., respectively. 
Also note that, in fact, we have transition schemes for (SeqJl, (Seq2) and (Leftmerge J) rather 
than transition rules, as we have transition rules (SeqJl, (Seq2) and (Leftmerged, respectively, 
for each action a E Act. 

Before we are ready to describe the axioms generated for a smooth and distinctive n-ary 
operation j for a tagh-transition system, we need some notation: If m E nonneg(f), there 
exists a, not necessarily unique, transition rule p, maximal in rank, such that m rt pass(p). In 
that situation we put rank(m) = rank(p) and act(m) = act(p), neg(m) = neg(p), etc. Also, 
if, for a 4-tuple R, we have that R = rank(p), we put act(R) = act(p), neg(R) = neg(p), etc. 
The index set handle(m), the handle of m with respect to j and TS, is defined as term(m) if 
mE nonneg(f), and as nonneg(f) if mE neg(f). 

The idea behind the notion of a handle is that for a smooth operation j and non-negative 
position m E {I, ... ,n} the set handle(m) consists of all positions that are required to be 
terminating when the position m becomes active, i.e., 

handle(m) = n{ term(p) 1m E act(p), p transition rule for j} 

For a negative position m for j, handle(m) simply consists of all non-negative positions. The 
handles are used in the formulation of distributivity laws; the subset-ordering on the handles 
of an operation induces an ordering on the applicability of these laws. 

The next definition describes the various laws associated with a smooth and distinctive 
operation. 
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Definition 10 Let I be a distinctive and smooth n-ary operation for a tagh-transition sys
tem TS. 

(a) For a position p E {l, ... ,n} the distributive law for p with respect to I is given as 
follows: 

1(10'" ,z; +z;'''',(n) = 1(10'" ,z;, ... ,(n) +1(r"",z;'''',(n) (4) 

where (q == c for q E handle(p) and (q == Zq for q f/: {p} U handle(p). 

(b) For a transition rule p of the format (3) the action law for p is given as follows: 

(5) 

where (i == ai.Z: for i E act(p), (j == 81 (Zj) for j E neg(p) with B j f 0 and (j == Zj 
J 

for j E neg(p) with Bj = 0, (k == c for k E term(p) and (e == Ze for e E pass(p). 

(c) For a rank R for 1 the deadlock laws are given as follows: 

(6) 

where (m is of the form c, 8 or a;".z;" for m E act(R) U term(R), (j is of the form Zj, 8, 
bj.zj or Zj + bj.zj for J' E neg(R) and (e == Ze for e E pass(R) such that, for each rule p 
for 1 in TS of the format (3), there exists a position p such that one of the following 
cases holds: 

* P E act(p) and (p == c, (p == 8 or (p == a~.z~ with a~ -I ap, or 

* p E neg(p) and (p == b~.z~ or (p == zp + b~.z; with b~ E B p, or 

* p E term(p) and (p == 8 or (p == a;.z;, 

and, for each termination rule e for I there exists a position p E {l, ... ,n} such that 
(p == 8 or (p == a;.z;. 

(d) For a termination rule e for 1 the termination law for e is given as follows: 

(7) 

where (p == c for p E term(e) and (p == zp for p f/: term(e). 

In the distributive laws we demand a 'fingerprint of c-s' for the particular position instead 
of allowing a variable for handle-arguments. This way, non-determinism at a position is only 
resolved if it is guaranteed that there is sufficient termination at other positions, as will 
be illustrated in the examples for sequential composition ';' and leftmerge '1L' below. Note 
that there is also a distributive law for negative positions (which is not present in [ABV94]). 
The action laws are similar to those of [ABV94]. Here, we also adopt the difference in the 
handling of a non-empty or empty set of negative actions Bj. For the deadlock laws, it should 
be syntactically guaranteed that no transition rule will match. If such can be established 
without instantiating passive arguments, this can be reflected by the rule having variables at 
that places. It should however be ascertained by the form of the term that no termination 
rule will apply. The termination laws themselves are straightforward translations of the 
corresponding termination rules. 
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Examples 11 

(a) The transition system for ';' generates, according to the definitions above, the fol
lowing equations: 

(Xl + X2); Y (Xl; y) + (X2; y) 1';0 0 

1'; (Yl + Y2) = (E;Yl) + (E;Y2) o;y 0 

(a.x');y a.(x'; y) E;E l' 

1'; (a.y') a.'!/ 

Note that, apart from the equation o;y = 0, the operation ';' has also other deadlock 
laws, viz. 0; l' = 0, 0; (a.y') = 0 and 0; (y + b.y'), which are special cases of the displayed 
law o;y = O. 

(b) Similarly, we obtain for the leftmerge 'IL ' the following axiom system: 

(Xl +X2)lLy (xllLy) + (X2ILy) 

Ell (yt+ Y2) (EILYl) + (EILY2) 

(a.x')lLy = a.(x' II y) 

ElLo = 0 

Ell (b.y') o 
= 0 

Again we omit the superfluous instantiations of the axiom 0; y = O. Note that actually 
we have exactly the preferred axiomatization, see e.g. [Vra97]. 

From the termination law 1'; l' = l' and Ell l' = l' in the examples above, one can see the 
necessity of a distributive law for a negative argument, here in both cases the second position. 
Without these distributive laws it is not possible to derive, e.g., c; (a.t + E) = a.t + l' and 
Ell (a.t + c) = 1', which is desired for our interpretation of optional termination. Another 
observation here is that the handles indicate which distributivity law should be applied first 
in a rewriting procedure. In the case of the sequential composition ';' given by the rules 
in Example 9 we have that handle(l) = 0, handle(2) = {I}. The distributivity law for the 
second position is only applicable when the term at the first position is terminating and hence 
deterministic. 

The disrupt or disabling operator '»' is well-known, e.g., from Lotos [BriS9] (see also [BBOO]). 
In the process X » y the subprocess X may proceed, unless the subprocess y takes over control. 
It terminates when either of the subprocesses does so. Thus, the disrupt operator has the 
following transition system: 

x~x' y~y' X.). y.). 

(x» y).). (x» y).). 

The disrupt operator, as can be seen from the transition rules, is a smooth but non-distinctive 
operation. However, if we split the operation '»' into two, introducing '»1' and '»2' say, for 
which the transition rules satisfy the distinctiveness restrictions, we end up with two smooth 
and distincti';e operations: 
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x.j. y -"t y' y.j. 

x »1 y -"t X' » y (x »1 y).j. x »2 y -"t y' (x »2 y).j. 

The idea of splitting up '»' is also present in the transition system for this operation in [BBOO). 
The relationship between the various disrupt operations is expressed by the law x » y = 
(x »1 y) + (x »2 y). Another instance of this trick is the representation of the merge 'II' in 
terms of left merge 'll.', right merge 'JJ ' and communication merge ' I ' using the law x II y = 

(xll.y) + (x JJ y) + (x I y). 
The same approach, as pointed out in [ABV94) and also applicable for the tagh-format, of 

partitioning of the set of transition rules and introducing smooth and distinctive suboperations 
works in general to split a smooth but non-distinctive operation I into a number of smooth 
and distinctive ones, h, ... ,Is say. Here we only present how the resulting equations can be 
derived. See Lemma 21 for the soundness of this law. 

Definition 12 Let I be a smooth but non-distinctive n-ary operation for the tagh-transition 
system TS. The n-ary operations h, .. . ,Is are called distinctive versions of I in a disjoint 
extension TS' of TS if the transition and termination rules for each Ir in TS' (1 :S r :S s) 
form, after renaming of Ir in the source of the rules by I, a partitioning of all the rules for I 
in TS. The equation 

I(z) = h(Z) + ... + Is(Z) 

is then referred to as the distinctivity law for I. 
(8) 

The previous definition addresses smooth but non-distinctive operations. However, some 
operations are not smooth at all. There may be several ways in which the transition rules of 
an operation I can violate the various conditions of the definition of smooth operations: there 
can be a transition rule for I that is not of the format (3), thus, either there are multiple 
premises for an action-argument or an active or terminating variable occurs in the target or 
there is overlap of the index sets or there is rio active premise. Additionally, there can be a 
position p for which there is no transition rule for I for which this p is non-passive. 

The latter situation is harmless: If a position p occurs passively only in the transition 
rules of an operation I we can simply interpret p as a negative position with an empty set 
of forbidden transitions. Thus removing p from the index set L and adding it to the index 
set J. 

If a transition rule for an n-ary operation I has an empty set of active premisses, we can 
consider an n + 1-ary operation f' obtained from I by adding a dummy variable Xo. For the 
dummy variable we require a dummy transition. By extending the transition system with a 
constant n, say, with (non-smooth) transition rule 

o 

instantiation of the dummy variable with n in I'(xo, X1, . .. ,xn) will yield a term bisimilar 
to I(X1,"" x n). We therefore add the law I(X1, ... , xn ) = f'(n, X1, ... , xn) to the equational 
theory. 

Let us consider, in order to illustrate this, the so-called don't care choice denoted by '$'. 
It is modelled by the transition rules with no premisses below. Therefore we interpret the 
first and second position to occur negatively in the two rules. 
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o o 
l r 

x$y~x x$y~y 

This way the operation '$' is not smooth. It is lacking an active premise. The defect, though, 
can be overcome easily; we simply add a dummy variable and extend the transition system 
with a fresh constant 0 with only an 0..'; O-transition and expand the equational theory 
with the w-law x $ y = $'(0, x, y). This will not contribute essentially to the dynamics of 
the operation '$" compared to '$', nor to its termination behavior. We thus arrive at 

w~w' w -::t w' 

$'(w,x,y)4x $'(w,x,y)4Y 
Now, both the first and second position of '$' are negative and the adapted left and right 
rule both have an active transition. Thus '$' is a smoothened version of the operation '$'. 

To illustrate the countermeasure for multiple active transitions, overlap over index sets 
and trespassing variable in the target, consider the following, synthesized, one-rule transition 
system adapted from [ABV94J. The operation I is non-smooth because there are multiple 

transitions for an active variable (viz. x -"t YI and x ~ Y2), the active and terminating vari
able x occurs in the target x + YI, the index sets overlap (its only position 1 occurs as active, 
as terminating and as negative argument). 

abc 
X~YI X~Y2 x-r+ x.j. 

d 
I(X)~X+YI 

x.j. 

I(x).j. 
The key idea is not to split I into new operations, but to split the variable x into new variables, 
i.e., we introduce separate copies Xl, X2, X3, X4 of the variable x to relieve the overlap and 
multiplicity. The rules for I are translated into rules for a fresh operation p. This yields the 
following transition system for which!' is a smooth operation: 

abc 
Xl ~ YI X2 ~ Y2 x3 -r+ X4.j. XI.j. X2.j. X3.j. X4.j. 

1'(XI,X2,X3,X4)..c;X3 +YI P(XI,X2,X3,X4).j. 
As connecting law for I we have I(x) = I'(x,x,x,x) which enforces that in the right-hand 
side we indeed have copies of the original argument. 

In the next definition we will formalize the idea for the general case. In the presentation 
below we introduce mappings ¢ and 'IjJ to make the correspondence explicit between a vari
able Xi and its splittings {x;, I ¢( i') = i} and the actions aip and output variables Yip and 
their new names a;, and Y;, with 'IjJ(i') = (i,p). 

Definition 13 Let I be a non-smooth n-ary operation of a tagh-transition system TS. The 
m-ary operation p is called the smooth version of I in a disjoint extension TS' of TS, if there 
exist mappings ¢: {1, ... ,m} ~ {I, . .. ,n} and 'IjJ: {I, ... ,m} ~ {I, ... ,n} x {I, ... ,m} and 
a 1-1 correspondence between the rules of I and P, such that 

(a) a transition rule p for I in TS of the form 

{Xi ~ Yip liE I,p E Pd {x/;,% Ij E J, q E Qj} {xk.j.1 k E K} (9) 

f(Xl 1 ••• ,xn) ~ C(Xil Xj, xk, Xl, Yip] 

corresponds to a smooth transition rule p' for I' in TS' of the form 

a'. II 
{x:~y: liE I'} {xj~ Ij E J',q E Qi} {x~.j.1 k E K'} (10) 

1'( , , ) a G'[' , 'J Xl' ... ,Xm ---+ Xi' Xl' Yip 
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· , a~ I ai , bjq bjq I I I . 
such that the mappmg xi ---t Yi r-+ X¢(i) ---t Y,p(i) , Xj -f+ r-+ X¢(j) -f+ , Xk+ r-+ X¢(k)+ IS a 
bijection between the premises of p and the premises of pi and C[Xi,Xj,Xk,X£,Yip] = 
X( C'[xj, x~, yiJ) for a substitution X with X(xj) = X¢(j) , X(x~) = X¢(£) , X(Y;) = Y,p(i), 

(b) a termination rule () for f in TS of the form on the left below corresponds to a 
termination rule for l' in TS' of the form on the right below 

{xdlkEK} 

f(XI,···,Xn)-\. 

where K' = q,-I(K). 

The equation 

{X~-\.I k E K'} 

1'(x~, ... ,x;"')-\' 

(11) 

with (p = Z¢(p) for p E {I, ... ,n}, is called the smoothening law for f. In case the index 
set I' is empty, l' will be an m + l-ary operation and to its transition rules we add the active 
premise x~ ~ y~. The transition system TS' is assumed to contain the transition n ~ n as 
only transition for the label w. In this case the equation 

(12) 

is referred to as the smoothening law for f. 

Example 14 The 'classical' example of a non-smooth operation is the priority operator () 
of [BBK86]. Assuming a partial ordering on '>' on Act, the action rules of the unary () and 
its binary smoothening ()' are the following: 

a I b ( ) x-+x X-f+ b>a 

()(x) ~ ()(X') 
x-\. 

()(X)-\. 

X~X' y.1 (b>a) 

()I(X, y) ~ ()(X') 

The smoothening law for the priority operator () is ()(x) = ()'(x, x). 

x-\. Y-\. 
()'(x, y)-\. 

In the above we have defined how to transform a non-smooth operation into a smooth one 
and how to split a smooth but non-distinctive operation into several smooth and distinctive 
ones. In these situations the transition system will be extended disjointly, i.e., the dynamics 
and termination of operations already in the transition system remain unaffected. Also we 
have defined the smoothening law (11) and its variant (12) and the distinctivity law (8) that 
connects the original and new operations. For smooth and distinctive operations we have 
introduced various equations describing distributivity, dynamics, deadlock and termination. 
Collecting this all together induces the notion of the transition system and the set of equations 
generated by a tagh-transition system. 

Definition 15 Let TS be a tagh-transition system. The tagh-transition system TS' gen
erated by TS and the equational theory ET' generated by TS are given by the following 
procedure: 

Step 0 Let TS' disjointly extend TS and Ts1. Let ET' contain the equations for '+' 
and '81'. 
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Step 1 For every non-smooth operation I of TS not in Ts1, extend TS' with the smooth 
version l' of I and add to ET' the corresponding smoothening law (ll) or (12). 

Step 2 For every smooth but non-distinctive operation I of TS' (as obtained after Step 1) 
but not in Ts1, extend TS' with the distinctive versions II, ... , Is and add to ET' the 
distinctivity law (S). 

Step 3 For each smooth and distinctive operation I of TS' (as obtained after Step 2) but not 
in Ts1 add to ET' the distributive laws (4), the action laws (5), the deadlock laws (6) 
and the termination laws (7). 

Examples 16 Application of the above procedure yields for the disrupt operator '»' and 
the priority operator () the following generated equational theories: 

x»y 

(Xl + X2) »1 y 

(a.x') »1 y 

()(x) 

()'(X1 +X2,y) 

()'(£, Y1 + Y2) 

(X »1 y) + (X »2 y) 

(Xl »1 y) + (X2 »1 y) 

= a.(x» y) 

= ()'(x, x) 

()'(X1,Y) + ()'(X2,Y) 

()'(£, yd + ()'(£, Y2) 

()'(a.x',86>a(Y)) = a.()(x') 

()'(a.x',b.y+z) = 6 ifb>a 

6 »1 y 6 

E »1 Y £ 

similar rules for '»2' 

()'(6, y) 6 

()'(£, b.y') = 6 

()'(x,6) = 6 

()'(a.x, £) = 6 

()'(£, £) = £ 

Note that the above axiomatizations are quite natural and improve upon the corresponding 
theory synthesized in [ABV94J. The equations for the disrupt operation coincide with those 
of [BBOOJ. The axiomatization for the priority operator avoids equations for the auxiliary 
'unless' operation '<l' (cf. [BBKS6]). However, one may want, as also discussed in [ABV94J, to 
optimize the equations regarding their rewriting properties by introducing a rule X »2 y = Y 
or to replace IJ'(a.x',86>a(Y)) = a.IJ(x') by the laws IJ'(a.x,b.y + z) = IJ'(a.x,z) if b 1- a, 
IJ'(a.x, £) = a.IJ(x) and IJ'(a.x, 6) = a.IJ(x). 

4 Soundness 

In this section we first address the soundness of the laws generated for a smooth and distinctive 
operation: distributive laws, action laws, deadlock laws and termination laws. Next, we 
address the distinctivity law for a smooth but non-distinctive operation and the smoothening 
law for a non-smooth operation. Taking all results together we obtain a soundness result 
for the generated equational theory with respect to the generated disjoint extension of the 
original transition system. 

As a direct consequence of the incorporation of explicit termination in our set-up, both in 
form of termination rules and in the form of having the possibility for termination premises in 
a transition rule, the proofs presented in this and in the next section are, at places, technically 
more involved. In particular, compared to the proofs of [ABV94J, there are more cases in the 
analysis of arguments, and our format demands for distributive laws for negative positions 
and also for termination laws (both are not present in the framework of Aceto et al.). The 
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latter is necessary to deal with termination, as was illustrated by the left merge law oIL 0 = 0 

above. 

Lemma 17 Let f be an n-ary smooth and distinctive operation of a tagh-transition sys
tem TS. Then it holds that the distributive laws for f are sound. 

Proof 

(a) Suppose m E nonneg(f) and f(tl,"" t;" + t::', ... , tn) = f(tl, ... , t;", ... , tn) + 
f(tl, ... , t::', ... , tn) is a closed instance of the distributive law (4). So tp == 0 for 
p E handle(m). We use Lemma 3 to show that the terms f(tl, ... , t;" + t::', ... , tn) and 
f(tl, ... , t;", ... , tn) + f(tl,"" t::', ... , tn) are bisimilar. 

(i) Assume I(t!, ... , t;" + t::', ... , tn) -:'r t via the rule p for some a and t. It holds 
that m ric pass(p): For, if m E pass(p), then rank(p) >- rank(m). So we can choose 

p E act(p) n term(m). Then, on the one hand, tp ~ t~ for suitable t~, but, on the other 
hand, p E handle(m) and tp == E. Contradiction. So m ric pass(p) and thus either 
mE act(p) or m E term(p). 

Suppose m E act(p). Then t;" + t::, ~ tm for some tm· By inspection of TS+ 
we derive that t;" ~ tm or t:;' ~ tm. Since all other premises of p with respect 
to I(tl, ... ,t;" + t::" ... ,tn), f(h, ... ,t;", ... ,tn) and f(tl, ... ,t::', ... ,tn) are the 
same, it follows that f(t!, ... , t;", ... , tn) -:'r t or f(tl, ... , t:;', .. . , tn) -:'r t and thus 
f(t!, ... , t;", ... , tn) + f(t!, ... , t::', ... ,tn) ~ t. 

Suppose m E term(p). Then we have that (t;" + t:;,).j.. It follows by defini
tion of '.j.' for '+' that t;".j. or t::'l Since all other premises of p with respect 
to j(t!, ... ,t;" + t::" ... ,tn), f(tl, ... ,t;", ... ,tn) and f(tl, ... ,t::', ... ,tn) are the 
same, we derive that j(t!, ... ,t;", ... ,tn)~t or f(tl, ... ,t:;', ... ,tn)-:'rt and thus 
f(tl, ... , t;", ... ,tn) + f(tl, ... , t::', ... , tn) ~ t. 

(ii) Assume that there is a transition f(tl, ... , t;", ... , tn) + f(tl, ... , t:;', ... , tn) ~ t 
via the transition rule p for some a and t. By inspection of Tsb it follows that 
f(t!, ... , t;", ... , tn) ~ tor f(t!, ... , t::', ... , tn) -:'r t. Without loss of generality we can 
assume f(tl, ... , t;", ... , tn) ~ t. As before it holds that m E act(p) or m E term(p). 

Suppose m E act(p). Then t;" ~ tm for some tm. So t;" + t;;, ~ tm. As the premises for 
positions different from m coincide, we obtain I(t!, . .. , t;" + t;;', . .. , tn) ~ t. Suppose 
mE term(p). Then t;".j.. So, by definition of '.j.' for '+', (t;" + t::,),j., hence, as all other 
premises for p with respect to f(tl, ... , t;" + t::', ... , tn) are satisfied, it follows that 
I(t!, ... , t;" + t;;', ... , tn) ~ t. 

(iii) Suppose f(t!, ... , t;" + t::', ... , tn),j. by some termination rule O. If m ric term(B), 
then also f(h, ... ,t;", ... ,tn).j. and f(t!, ... ,t::', ... ,tn),j., so f(tl, ... ,t;", ... ,tn) + 
f(t!, ... , t::', ... , tn),j.· Suppose m E term(II). Then we have that (t;" + t:;,),j. and tp.j. 
for p E term(O) \ {m}. It follows by definition of .j. for '+' that t;".j. or t::',J.. So, by 
application of 0, f(tl, ... , t;", ... , tn),j. or f(t!, ... , t::', ... , tn),j.. Again by definition of.j. 
for '+', we obtain f(t!, ... , t;", ... , tn) + f(h, ... , t::', ... , tn).j.. 

Suppose f(h, ... , t;", ... , tn) + I(t!, ... , t;;', ... , tn),j.. By definition of.j. for +, we then 
have f(tl,"., t;", ... , tn),j. or f(t!, ... , t:;', ... , tn),j.. Assume f(t!, ... , t;", ... , tn),j. by 
application of the termination rule II. If m ric term(lI) then also f (tl, ... , t;" +t;;', ... , tn),j. 
by application of II. If mE term(II), we have t;",J. and tp.j. for p E term(lI) \ {m}. We 
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conclude, by definition of.j. for '+', (t;" + t;;'H and hence I(tl, ... , t;" + t;;', ... , tnH by 
application of O. 

(b) Suppose m E neg(!) and consider a closed instance l(tl, ... , t;,. + t':,., ... , tn) = 

l(tl, ... , t;", ... , tn) + I(tl, ... , t;;', ... , tn) of the distributive law for m with respect 
to I. SO tp == £ for p E nonneg(f). Clearly, as act(p) ~ nonneg(f) and act(p) /0 
0, by definition, for every transition rule p for I, both l(tl, ... , t;,. + t;;', ... , tn) and 
l(tl, ... , t;", ... , tn) + l(tl, ... , t;;', ... , tn) have no transitions. Also (t;" + t;;'H iff t;,..j. 
or t;;,.j.. From this it follows that l(tl, ... , t;,. + t;;', ... , tnH iff l(tI, ... , t;", ... , tnH or 
l(tl, ... , t;;', ... ,tnH, and therefore I(t l , ... , t;,. + t;;', ... , tnH iff I (tl, ... , t;", ... ,tn) + 
I(tl, ... , t':,., ... , tnH· 0 

Note the observation that act(p) /0 0 which follows directly from Definition B in the last 
paragraph of the proof of the lemma. 

Next we consider the action laws. It is here that the notion of distinctivity comes into play. 
In short, distinctivity captures that for a source I(tl,· .. , tn), with I smooth and distinctive, 
at most one rule can apply. As can be seen from the proof sketch for the lemma, all conditions 
of Definition Bc regarding distinctivity are exploited. 

Lemma 18 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys
tem TS. Then it holds that the action laws for the operation I are sound. 

Proof Let p be a transition rule for I of the format (3). Let I(t" ... , tn) = a.C[t;, ti, tel be a 
closed instance of the action law (5) for the rule p for I· Hence ti == ai. t; for i E I, tj == 81

j 
(ti) 

for j E J and tk == £ for k E K. Again we apply Lemma 3 to show that I(tl, ... , tn) and 
a.C[t;, ti, tel are bisimilar. 

(i) Clearly, I(t" ... , tn)..", Crt;, ti, tel by application of p. This transition is matched 

by a.C[t;, ti, te]..", Crt;, ti, tel. Next we show, appealing to the distinctiveness of I, that 
I (tl, ... , tn ) admits no other transitions than the one based on p. 

Suppose I(t l , ... , tn) 4 t via some rule p' for I of the format (3) with p' /0 p. First 
we derive that rank(p') = rank(p) by falsification of the two cases rank(p) )-- rank(p') and 
rank(p) -< rank(p'): (1) Assume rank(p) )-- rank(p'), then either pass(p) \ pass(P') /0 0 
or act(p) n term(p') /0 0. In the first case we have, by distinctiveness of I (cf. the 2nd 
bullet of Definition Bb), that act(p) n term(p') /0 0. Hence, in both cases, we can choose 
a position q E act(p) n term(p'). But then we have tq == aq.t~ as q E act(p) and tl.j. as 
q E term(p'). Contradiction. (2) Assume rank(p) -< rank(p'). As before we can choose 

a' 
a position q E act(p') n term(p). But then we have tq ~ t~ as q E act(p') and tq == £ as 
q E term(p). Contradiction. Since neither rank(p) )-- rank(p') nor rank(p) -< rank(p') we 
conclude that rank(p) = rank(p') by distinctiveness of I (cf. the 1st bullet of Definition Bc). 

From rank(p) = rank(p') we obtain act(p) = act(p'). If p /0 p' we can choose, distinctive
ness of I (cf. the 2nd bullet of Definition Bc), an index i such that ai /0 ai· But then we have 

a'. 
both ti == ai.ti and ti -=+ t;' for some term t;'. Contradiction. We conclude that p and p' must 
coincide and that l(tl, . .. , tn) only admits the transition based on the transition rule p. 

(ii) The term a.C[ti, ti, tel admits exactly one transition, viz. a.C[t;, ti, tel..", Crt;, ti, tel 

which is matched by l(tl, ... , tn)..", C[ti, ti, tel. 
(iii) For every termination rule 0, we have act(p) n term(O) /0 0. Therefore, for each 0, 

3i E act(p) n term(O): ti == ai.t;. Hence, by definition of .j. for I, we have l(tl, ... ,tn}{.. Note 
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also a.C[ti, ti, ttH· o 

The soundness of the deadlock laws is straightforward. The particular rank, for which a 
deadlock law is formulated, does not playa role here, but will become important for the 
head-normalization result (see Lemma 24) in the next section. 

Lemma 19 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys
tem TS. Then it holds that the deadlock laws for the operation I are sound. 

Proof Let R be a rank of I and let I (tl' ... , tn) = Ii be a closed instance of a deadlock law 
for R. Hence tm ;: E, tm ;: Ii or tm ;: a;".t;,. for some a;", t;" for m E act(R) and for each 
rule p for I of the format (3) one of the following cases holds: (1) 3i E act(p): ti ;: Ii or 
ti ;: ai·ti and ai of. ai, (2) 3j E neg(p): tj ;: bi.ti or tj ;: t'j +b.ti for some t'j, b, ti with bE B j , 

(3) 3k E term(p): tk ;: Ii or tk ;: a~.t~. It follows that for each rule p for I of the format (3): 

(1) 3i E act(p): ti ~, (2) 3j E neg(p): tj!!' ti for some action b E Bj and some term tj, or 
(3) 3k E term(p): tkol·. 

We conclude that I(tl,"" tn) has no transitions, just as Ii does. Moreover, by definition 
of the deadlock law, we have, for each termination rule B, 3p E term(B): tp ;: Ii or tp ;: a~.t~. 
Hence I(tl,"" tnH· By definition of.j. for Ii, we also have Ii~. 0 

The proof of the last soundness lemma regarding a smooth and distinctive operation makes 
use of the fact that for a transition rule p of the format (3), it holds that act(p) n term(B) of. 0. 
So, the termination rule B guarantees the term E at a position where the transition rule p 

demands an action. 

Lemma 20 Let I be an n-ary smooth and distinctive operation of a tagh-transition sys
tem TS. Then it holds that the termination laws for the operation I are sound. 

Proof Let I(tl,"" tn) be a closed instance of a termination law for a termination rule B 
for I. Hence tp ;: E for all p E term( B). For all rules p for I we have that act(p) n term( B) of. 0 
by distinctiveness of I. SO I(tl,"" tn) has no transitions, just as E does. Moreover, both 
I (tl, ... , tn).j., since Vp E term(f): tp.j., and £.j. by definition. 0 

The next result concerns the soundness of the distinctivity law for a smooth but non
distinctive operation. The construction and its proof are a modest extension of the COr
responding lemma of [ABV94J. As only extra we need for the termination condition of Defi
nition 2 that a sum can terminate iff one its summands can terminate, a fact which directly 
follows from the termination rules for '+' in Ts1. 

Lemma 21 For an n-ary smooth operation I in a tagh-transition system TS, there exists a 
disjoint extension TS' with smooth and distinctive·n-ary operations h thru I" say, such that 
I(ZI, ... ,Zn) = h(ZI, ... ,zn) + '" +ls(ZI, ... ,zn) is sound for bisimulation modulo TS'. 
Proof Start, as in [ABV94], from a partitioning Rl, ... , Rs of the rules for I in TS such that 
I is smooth and distinctive with respect to each of the parts. Introduce, for each part 14, a 
fresh n-ary operation Ir with as its rules the collection 14 with I replaced by fr. Then Ir is 
a smooth operation. Moreover, we have that I(tl,"" tn) ~ t iff Ir(tl, ... , tn) ~ t for some 
r E {1, ... ,s}, and I(tl, ... ,tn).j. iff Ir(t 1 , •.. ,tn).j. for some r E {1, ... ,s}. 0 
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The soundness proof of the final building block, viz. the transition from a non-smooth opera
tion to a smooth one, is based on the construction of Definition 13. For simplicity we suppress 
the issue of absence of active transitions. Two points remain: (i) to establish the number of 
copies that should be introduced for each argument, and (ii) to verify that the two operations 
admit the same transitions. 

Lemma 22 Let I be a non-smooth n-ary operation of a transition system TS. Then there 
exist a disjoint extension TS' of TS with a smooth m-ary operation I' and an equation 
l(zl,· .. ,zn} = !'((I,·.·,(m) with zp, for p E {I, ... ,n}, all different and (q E {ZI, ... ,Zn}, 
for q E {I, ... , m} that is sound for bisimulation modulo TS'. 

Proof The proof follows the reasoning of [ABV94]: First we have to establish the number 
of 'copies' for each argument, using the so-called barb-factor. Then, we need a technical 
result (Lemma 4.12 of [ABV94]) to show that the copies will generate the same terms as their 
sources, i.e., that I (zJ, ... , zn) .!'c, t = !' ((I, ... , (m) .!'c, t. Finally we have to check that 
the termination condition for bisimulation with explicit termination holds. 0 

By now we have addressed all the laws raised in the previous section. Concatenation of the 
above lemmata now yields the desired soundness result. 

Theorem 23 Let TS be a transition system in tagh-Iormat with generated transition sys
tem TS' and generated equational theory ET'. Then the theory ET' is sound with respect 
to TS' modulo bisimulation. 0 

5 Completeness 

In this section we show, for a tagh-transition system TS, the completeness of the generated 
set of equations ET' for the generated transition system TS' modulo bisimulation. We follow 
the outline as provided in [ABV94]. 

The first result concerns head-normalization of the generated equational theory ET' and 
will be used as a tool to find a 'projection' t' / an (see below) of a term t over the signature 
{o, 0, a. , + } in the process algebra, such that ET' f- t' / an = t. The proof of the result requires 
a detailed case analysis that exploits the full machinery of handle, rank and the ordering >,0 

on transition rules. 

Lemma 24 Let TS be a transition system in tagh-format with generated transition sys
tem TS' and equational theory ET'. Then the theory ET' is head-normalizing for terms 
over TS'. 

Proof It suffices to show that for any n-ary smooth and distinctive operation I and closed 
terms tl, ... , tn in head-normal form, we have that ET' f- I(tl, . .. , tn} = t for some closed 
term t in head normal-form. We elaborate a detailed case analysis: 

1. Assume that 3m E nonneg(f): tm is nondeterministic. Choose the index m maximal 
such that tm is nondeterministic, say tm == t:" + t'/n. We distinguish two subcases: 

(a) [\'p E handle(m): tp == 0] Put t == I(tl, ... , t:", ... , tn) + I(t l , .. ·, t'/n, ... , tn) and 
apply the distributive law for m. 
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(b) [3p E bandle{m): tp == 0 or tp == a~.t~ for some a~, t~] Note that if p E bandle{m) 
then tp must be deterministic, since p E bandle{ m) implies rank(p) >- rank{ m) and 
m was chosen to be maximal with tm nondeterministic. 

Suppose I{t l , ... , tn) ~ t' for some term t' and rule p. By the assumption we then 
have term{p) rt term(m) , so rank{p) >- rank{m). If i E act{p), then rank{i) >-
rank{m), so ti is deterministic, and, hence, ti == ai.t;. For j E neg{p) we have tj .;:, 
for b E Bj, hence, by Lemma 5, tj = 81.(tj). If k E term(p) , then rank(k) >-

J 

rank(m) by distinctiveness of I, so tk is deterministic and therefore tk == c. Now, 
put t == a.C[t;, tj, ttl and apply the action law for p. 

Suppose I(t l ,.··, tn) admits no rules. For each rule p for I such that rank(p) >
rank( m) we have that tq is deterministic for q E act(p) U term(p) ~ nonneg(j). 
As such p does not match I{tl , ... , tn) it holds that (1) 3i E act(p): ti.'!it, (2) 

3j E neg{p): tj ~ tj for some action b E Bj and some term tj, or (3) 3k E term(p): 
tk.j.. From this we derive that (1) 3i E act(p): ti == C, ti == 0 or ti = a;.t; with 
a; '" ai, (2) 3j E neg(p): tj == b.tj Or tj == tj + b.tj for some action b E Bj and 
some term tj, or (3) 3k E term(p): tk == 0 or tk == a~.t~. 
For each rule p for I such that rank(p) ~ rank(m) We have that term(p) :2 
bandle(m). Since, by assumption, 3p E bandle(m): tp == 6 or tp == a~.t~, it fol
lows that 3k E term{p): tk == 0 or tk == a~.t~. If, for all termination rules B, 
3p E term(B): tp ¢ c, put t == 6 and apply the corresponding deadlock law 
for rank(m). If not, there exists a termination rule iJ for I such that Vp E term{B): 
tp == c. Put t == c and apply the termination law for B. 

2. Assume that '1m E nonneg(f): tm == c, tm == 6 or tm == a;,..t;,. for some a;", t;". We 
distinguish three subcases: 

(i) [J(tl, ... , tn) has a transition] Suppose I(t!, ... , tn) ~ Crt:, tj, tel for some rule p 
of the form (3). Put t == a.C[t;, tj, tel and apply the action law for p. 

(ii) [Vp E term{B): tm == c for some termination rule 11]. Put t == c and apply the 
corresponding termination law for B. 

(iii) [J(tl, ... , tn) admits no transition rule and, for no termination rule iJ, Vp E term(B): 
tm == 0] If '1m E nonneg{j): tm == 0 and 3j E neg(f): tj is nondeterministic, apply 
the distributive law for j. If not, putt == 0 and apply the deadlock law for a rank 
of I with pass(R) = 0 (which, by smootheness of I, exists as every position p is 
negative or becomes active or terminating eventually). 0 

Having the head-normalization result in place, we can conclude, using standard arguments, 
the completeness of the generated theory for finite processes. However, in order to deal with 
infinite behaviour, we need, in line with [ABV94], some extra machinery. First, we introduce 
a syntactic version of the Approximation Induction Principle (cf. Lemma 25). Next, we 
show that all 'projections' can be represented by a term for the basic transition system Ts1 
(ef. Lemma 26). The results are then combined (see Theorem 27) to obtain the announced 
completeness result. 

Let TS be a tagb-transition system. The transition system TS; is the disjoint extension 
of TS and TS1 with only one binary operation 'I', referred to as the hourglass operation. 
This hourglass operation is defined by the following rules: 
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X.:; x', y~ y' 

X/y':;X'/y' 

X.j. 

(X/y).j. 

Let u be an arbitrary action from Act, that we think as indicating a sandgrain for the 
hourglass. For n E N, the term un is defined by u O == 0, un+! == u.un. The Approximation 
Induction Principle, AlP for short, can now be reformulated in terms of the hourglass and 
sandgrains: 

x/un = y/un (\In E N) 

x=y 

We then have the following basic result, based on the finite branching of a tagh-transition 
system, i.e., that for all closed terms t over TS the set {(a, t') It':; t' in TS} is finite. 

Lemma 25 Let TS be a disjoint extension of TS;- Then TS 1= AlP, i.e., if, for closed 
terms tl, t2 over TS, it holds that \In E N: tl/un ~ t2/un with respect to TS, then also tl ~ t2' 

o 
The hourglass operation' /', as can be directly seen from its rules, is smooth and distinctive. 
Therefore, by the results of the previous section, we have that, amongst others, the following 
equations hold (with respect to any disjoint extension of TSj ): 

(XI + X2)/y = (xl/y) + (X2/Y) 

(a.x')/(b.y') = a.(x' /y') 

o/y = 0 

c/y c 

Lemma 26 Let TS be a tagh-transition system and TS' the disjoint extension of TSj with 
accompanying equational theory ET' generated by the procedure 15. Then it holds for any 
closed term t' for TS' and any n E N, that there exists a closed term t for Ts1 such that 
ET' f- t' / un = t and t' / un ~ t with respect to TS'. 

Proof The proof goes, as in [ABV94], by induction on n using the head-normalization result 
Lemma 24 and the equations for the operation' /' above. 0 

We are now in a position to provide the completeness result for the equations synthesized by 
the generation procedure. The proof of the theorem below is similar to the proof presented 
in [ABV94] for the GSOS-format. It is included here to show the reader the interplay of the 
various results presented above. 

Theorem 27 Let TS be a tagh-transition system. Let TS' be the disjoint extension of TSj 
and the generated extension of TS. Let ET' be the generated equational theory. Then ET' 
and AlP are sound and complete for equality modulo TS'. 
Proof If ET', AlP f- t' = til for two closed terms t', til over TS', then it follows from the 
soundness results of Section 4 and Lemma 25 that t' and til are bisimilar modulo TS'. 

Suppose t', til are closed and bisimilar terms over TS'. Then we have that t' / un and til/un 
are bisimilar modulo TS', for all n E N. Now, by virtue of AlP, it suffices to show that 
ET' f- t' / un = til / un for each n in N. So, pick n E N. Choose, using Lemma 26 two 
closed terms tl,t2 over TS+ such that ET' f- t'/un = tl and ET' f- til/un = t2' From the 
soundness of ET' we derive that t' / un and tl are bisimilar modulo TS' that and til/un and t2 
are bisimilar modulo TS'. Hence, tl and t2 are bisimilar modulo TS'. Note that TS' is 
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a disjoint extension of Ts1. We thus obtain that tl and t2 are bisimilar modulo Ts1. By 
the completeness result for Ts1, Lemma 4, it follows that ET1 f- tl = t2 and, a fortiori, 
ET' f- tl = t2. We conclude that ET' f- t'/un = tf//un, as was to be shown. 0 

6 Concluding remarks 

We have introduced the tagh-format for structured operational semantics. The tagh-format 
enhances the well-known GSOS-format with explicit termination. The format additionally 
allows for a finer distinction between the modes of the argument (viz. active, negative, ter
minating, passive). The method of automatic generation ofaxiomatizations as developed by 
Aceto, Bloom and Vaandrager for GSOS is extended for the case of tagh. We have shown that 
for a transition system in tagh-format the synthesized theory is sound and complete modulo 
bisimulation. Examples illustrate the technique and indicate the strength of the approach. 
The resulting laws are equal or close to hand-crafted axiomatizations. 

Many other examples than the ones mentioned have been examined already. E.g., the 
projection operator, renaming operator, encapsulation, restriction, state operator, generalized 
state operator and process creation operator can be treated within the framework of the 
tagh-format. Following the practical thread, our aim is to experiment with more extensive 
transition systems and to investigate the impact of the axiomatization method, for example 
for timed transition systems. A theoretical issue here is the adaptation of the techniques for 
the tagh-format to deal with implicit termination of the form x ~ ,;, a format at present also 
often used within process algebra. Note, since then we do not have the constant E, we loose 
the syntactical expression of termination at the term level. 

Another, theoretically important question concerns the application of the tagh-format 
in the setting of metric semantics and co-induction (cf. [BV96, RutOOJ). In this paper we 
have focussed on transition systems and their axiomatizations. Another view is to consider 
transition systems and denotational models (see, for example, [Rut90, AI96, TP97J). We 
believe, having the correspondence of the syntactic E with the empty semantical process p, 
of metric domain equations, it should be feasible to automatically construct higher-order or 
co-inductive definitions for semantical operators and a denotational semantics that is correct 
with respect to a transition system in tagh-format. 
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