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Abstract: This paper deals with a rigorous derivation (using the singular perturbation
technique) of the effective model for the enhanced diffusion through a narrow and long 2D pore.
We start with a pore scale model for transport of a reactive solute in a pore space by convection
and diffusion. The pore contains initially a soluble substance and the same substance, at different
concentration, is injected at © = (. The solute particles undergo a first-order chemical reaction

on the pore surfaces. We place ourselves in the conditions of Taylor’s study and also in presence of
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” Modélisation micro-macro des phénomenes couplés de transport-chimie-déformation en
milieux argileuz ”



chemical reactions. The upscaled behavior for important Peclet’s and Damkohler’s numbers, using
the ratio of the the characteristic transversal and longitudinal times as a measure of smallness, is
given. Furthermore, we give a rigorous mathematical justification of the effective behavior, being
an approximation of the physical problem. The error estimate is obtained, first in the energy
norm, and then in L™ and L' norms with respect to the space variable. They guarantee the
validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion
formula. In our knowledge, this is the first time that the Taylor dispersion formula is justified in

mathematically rigorous way.

1 Introduction

We study the diffusion of the solute particles transported by the Poiseuille
velocity profile in a semi-infinite 2D channel. Solute particles are participants
in a first-order chemical reaction with the boundary of the channel. They
don’t interact between them. The simplest example, borrowed from [8], is
described by the following model for the solute concentration c*

oc* oc* 0*c* 0%c*

S D DTS <0 i 0= (0 ko0 x (< H), (1)

where ¢(z) = Q*(1 — (z/H)?) and Q* (velocity) and D* (molecular diffusion)
are positive constants. At the lateral boundaries z = +H the first-order
chemical reaction with the solute particles is modeled through the following
boundary condition :

D*0.c*+k*c*=0 onz==4H, (2)

where £* is the surface reactivity coefficient.

The natural way of analyzing this problem is to introduce the appropri-
ate scales. They would come from the characteristic concentration ¢, the
characteristic length Lg, the characteristic velocity (Qr, the characteristic
diffusivity D and the characteristic time T,.. The characteristic length Lg
coincides in fact with the 7 observation distance ”. Set now

c* x* z t* Q* D~ k*
c 67'1; LRay H) TC,Q QR’ DR’ 0 ij ( )
Then
Q=(0,400) x (—=1,1), Iy =(0,400) x {—1,1}. (4)



Then the dimensionless form of (2) reads

@ QRTC

4 dc I)RjﬁC DRYjC
ot Lg

P 2 —_— e — _——— prm— 1
Q(1 y)ax 7 DO,.c 7 DOyyc=0 inQx(0,7) (5)

On T',, we impose the condition (2)

DDRgT, Oc T
- 8_y = kﬁc on Iy x (0,7). (6)

Problem involves the following time scales:

L
T}, = characteristic longitudinal time scale = Q_R
R
2
Tr = characteristic transversal time scale = Do
R
Tr = superficial chemical reaction time scale = .
R
and the following characteristic non-dimensional numbers
L
Pe = LiQnr (Peclet’s number)
R
Da — Lihn (Damkohler’ ber)
a = amkohler’s number
HDpg

H
Further we set ¢ = I << 1 and choose T, = Ty. Solving the full prob-

lem for arbitrary Valugs of coefficients is costly and practically impossible.
Consequently, one would like to find the effective (or averaged) values of the
dispersion coefficient and the transport velocity and an effective correspond-
ing 1D parabolic equation for the effective concentration.

In the absence of the chemical reaction, in [15] Taylor obtained, for the
equation (1) describing only a diffusive transport of a passive scalar, an
explicit effective expression for the enhanced diffusion coefficient. It is called
in literature Taylor’s dispersion formula.

The problem studied by Sir Taylor could be easily embedded in our set-

T H
ting. We choose Q = O(1), and — = QR&? = O(*®) = &2 Pe. Then

Ty, DR




the situation from Taylor’s article [15] corresponds to the case when o = 1,

1
i.e. Peclet’s number is equal to —, and ky = 0. Our equations in their
€

non-dimensional form are

o _

%—l— Q1 — y2)8x De®8ypc + D ?0yc in IRy x (0,1) x (0,T) (7)
c(z,y,0)=1, (2,y) € Ry x(0,1), (8)

1 Da
—Déa_28y0|y:1 = —Dmaydy:l = koﬂdy:l = k0€a+ﬂ6|y:1 (9)
9,c(z,0,t) =0, (z,t) € Ry x (0,T) (10)

where it was used that c is antisymmetric in y and Damkohler’s number was
set to €. Our domain is now the infinite strip Z+ = IR, x (0,1). We study
the behavior of the solution to (7) -(11), with square integrable gradient in

x and y, when ¢ — 0. Clearly, the most interesting case is and

and we restrict our considerations to this situation.
In this paper we prove that the correct upscaling of the problem (7)-(11)
gives the following 1D parabolic problem

( 2 4k k
Mau 0 2—a Mau 0 2—a\ Mau
oyc +Q(—3+—45D5 )80 + 0( 3D€ )c =
\ «@ 8 Q2 —« Mau - EF]
(DE + —945 _D 52 )Gmc mn B+ X (O, T) ( )

CMau|z:0 — 07 CMau|t:0 — 17 axCMau c L2(R+ % (O,T))

\

We note that for kg = 0 and o = 1 this is exactly the effective model of Sir
Taylor.

What is known concerning the derivation of the effective problem (EFF),
with or without chemical reactions?

o In the absence of the chemical reactions, there is a formal derivation by
R. Aris, using the method of moments. For more details see [1].

¢ There have been numerous attempts at providing a rigorous justification
for the approximation in absence of the chemical reactions. The most con-
vincing is the 7 near rigorous ” derivation using the centre manifold theory
by G.N. Mercer and A.J. Roberts. For details see [9] , where the initial value



problem is studied and the Fourier transform with respect to x is applied.
The resulting PDE is written in the form u = Au + F(u), with v = (k,¢) .
Then the centre manifold theory is applied to obtain effective equations at
various orders. Since the corresponding centre manifold isn’t finite dimen-
sional, the results aren’t rigorous.

o When the chemistry is added (e.g. having an irreversible, 1st order,
chemical reaction with equilibrium at y = 1, as we have), then there is a
paper [11] by M.A. Paine, R.G. Carbonell and S. Whitaker. The authors
use the ”single-point” closure schemes of turbulence modeling by Launder to
obtain a closed model for the averaged concentration.

Hence the mentioned analysis don’t provide a rigorous mathematical
derivation of the Taylor’s dispersion formula and in the presence of the chem-
ical reactions it is even not clear how to average the starting problem.

It should be noted that the real interest is in obtaining dispersion equa-
tions for reactive flows through porous media. If we consider a porous
medium comprised of a bundle of capillary tubes, then we come to our prob-
lem. The disadvantage is that a bundle of capillary tubes represents a geo-
metrically oversimplified model of a porous medium. Nevertheless, there is
considerable insight to be gained from the analysis of our toy problem.

Our technique is strongly motivated by the paper [14] by J. Rubinstein
and R. Mauri, where effective dispersion and convection in porous media is
studied, using the homogenization technique. Their analysis is based on the
hierarchy of time scales and in getting the dimensionless equations we follow
their approach. In our knowledge the only rigorous result concerning the
effective dispersion in porous media, in the presence of high Peclet’s num-
bers (and no chemistry), is in the recent paper [2] by A. Bourgeat, M. Jurak
and A.L. Piatnitski. Nevertheless, their approach is based on the regular
solutions for compatible data for the underlying linear transport equation.
They suppose a high order compatibility between the initial and boundary
data, involving derivatives up to order five, construct a smooth solution to
the linear transport equation and then add the appropriate boundary layer,
initial layer and the correction due to the perturbation of the mean flow.
The effective solution obtained on this way is an H'-approximation of order
¢ and an L?-approximation of order 2. Nevertheless, in problems involv-
ing chemistry, it is important to have a jump between the initial values of
the concentration and the values imposed at the injection boundary z = 0.
This is the situation from [15] and simply the compatibility of the data isn’t
acceptable for the reactive transport.



Homogenization of a problem with dissolution/precipitation at the grain
boundaries in porous media, for small Peclet’s number, (o = 0) is in [3].

For the bounds on convection enhanced diffusion in porous media we refer
to papers by Fannjiang, Papanicolaou, Zhikov, Kozlov, Piatnitskii . ...

Plan of the paper is the following : In the section 2 we study the homog-
enized problem. It turns out that it has an explicit solution having the form
of moving Gaussian as the 1D boundary layers of parabolic equations, when
viscosity goes to zero (see [6]). Its behavior with respect to € and ¢ is very
singular.

Then in section 3 we give a justification of a lower order approximation,
using a simple energy argument. In fact such approximation doesn’t use
Taylor’s dispersion formula and gives an error of the same order in L>(L?)
as the solution to the linear transport equation. Furthermore, when o > 4/3
this approach doesn’t give an approximation any more!

In the section 4 we give a formal derivation of the upscaled problem
(EFF), using the approach from [14].

Construction of the spatial boundary layer taking care of the injection
boundary is in Section 5.

Then in sections 6 and 7 we prove that the effective concentration sat-
isfying the corresponding 1D parabolic problem, with Taylor’s diffusion co-
efficient and the reactive correction, is an approximation in L*°(L?) and in
L (L) for the physical concentration.

To satisfy the curiosity of the reader not familiar with the singular per-
turbation techniques, we give here the simplified version of the results stated
in Theorems 21, 22 and 23 in Section 7. For simplicity, we compare only
the physical concentration ¢¢ with ¢M®. Keeping the correction terms is
necessary in order to have the precision reached in Theorems 21, 22 and 23,
Section 7. Throughout the paper H(z) is Heaviside’s function.

Theorem 1. Let cM* be given by (EFF). Then we have

Ce?3e/2 if a<1

3/ € Mau ’ ’

18946 = o= oy < { O3P8 550, if 25>a>1 1)
1¢? (CE - CMW) 22007520 (z+)) < Ce* @

loc

||t3 (Ca . CMau) ||L2(0,T;L2 (z+) < 0(52—504/4[{(1 . a) + 63/2_3a/4H(CY -1

loc

||t38yc€HL2(0,T;LZQOC(Z+)) < 0(82_50‘/4]:7(1 —a) 2B (o — 1))



||t38$ (Cs . CMau) ||L2(0,T;LZQOC(Z+)) < 0(52—7a/4H(1 . a) + 63/2—5&/4]_](@ . 1))
(16)

Corollary 2. In the conditions of Taylor’s article [15], o = 1 and ko = 0,
we have

||253(C6 — CMau)HLoo((QT)Xzﬂ < 081/2_6, Vo > 0, (17)
18 (e — M) 2001 (z+)) < Ce (18)
Our result could be restated in dimensional form:

Theorem 3. Let us suppose that Ly > max{Dgr/Qr, QrH?/Dg, H}. Then
the upscaled dimensional approximation for (1) reads

oceft 2 4 Ocrelt | 1 8 O2crelt
i 5 T Vo Y (1-:pD *’eff:D*<1 O p 2)
o (3T Pan) Qg+ (1-gDar)e 915 1) Bz
(19)
*H k*H
where Pep = @ 1s the transversal Peclet’s number and Dar = oL 18

the transversal Damkohler’s number.

Finally, let us note that in the known literature on boundary layers for
parabolic regularization, the transport velocity is supposed to be zero at
the injection boundary (see [5]) and our result doesn’t enter into existing
framework.

One could try to get even higher order approximations. Unfortunately,
our procedure from Section 4 then leads to higher order differential operators
and it is not clear if they are easy to handle. In the absence of the bound-

aries, determination of the higher order terms using the computer program
REDUCE was undertaken in [9)].

2 Study of the the upscaled diffusion-convection
equation on the half-line

For Q,D,c > 0 and k > 0 , we consider the problem

O+ Q0yu + ku = YDOpeu in IRy x (0,T), O,u € L*(IRy x (0,T))
u(z,0) =1 in R,, u(0,t) =0 at = =0.
(20)



The unique solution is given by the following explicit formula

_ 1 l +oo 9 400 9
O (A Jovi@ e i [soug e an) @
2\/vDt 2\/vDt

The explicit formula allows us to find the exact behavior of u with respect
to 7. We note that for a € [0,1], we will set v = ¢* For a € [1,2),
we choose v = &27®. The derivatives of u are found using the computer
program MAPLE and then their norms are estimated. Since the procedure
is standard, we don’t give the details. In more general situations there are no
explicit solutions and these estimates could be obtained using the technique
and results from [6].

1. STEP | First, by the maximum principle we have

0 <u(x,t;y) =u(z,t) <1 (22)

2. STEP | Next we estimate the difference between x,.g: and u. We have

Lemma 1. Function u satisfies the estimates

/0 |e’]_“tx{x>@t} —u(t,z)| de =3/ ’yDte*Et + Cv (23)
le™ X zsqny — ullz=riznimyy < O/, Wp e (1,4+00).  (24)
3. STEP | For the derivatives of u the following estimates hold

Lemma 2. Let ¢ be defined by

t \r _
<D_’}/) fOTOStSD’}/,

1 otherwise,

with r > q > 1. Then we have

||C(t)8tu||L‘1((O,T)><R+) + ||C(t)8:cu||Lq((0,T)><R+) S C(VD)min{1/(2(1)—1/2,2/‘1—1}’ q 7é 3

(26)
— 1
IC@ o) + IOl 01 xm < C((1D) log(—5)) ™
(27)



Now we estimate the second derivatives :

Lemma 3. Let ( be defined by (25). Then the second derivatives of u satisfy
the estimates

1€ wat|| Laqo.ryxmy) + ICE) Utz || Lago,r)xm 1) + IS () Uzal| Laqo.1)x Ry )

< Cy(yDymnt/@o=12/a=2) g 24 3/2 (28)
IS wat| 20y x sy + IS Wil L3201y x sy + 1€ Uae || L3720,y xR )
— 1 \2/3
< C((yD) tlog(—= 29
< C((vD) og(vD)) (29)

For the 3rd order derivatives we have :
Lemma 4. Let ¢ be defined by (25) . Then

102z (C(1)w) || La(0,7) x ) + 1|C () Onattt|| Lag(0.1) x )

FN¢ () Butrttl| a0y x ey < Co(¥D)H 773, g > 1 (30)
||amm( ( ) )HL1 ((0,T)xRy) T ||<( ) thHL1 ((0,T)xR+)
1
IS Darevell L1 0,1y x ey < CL(¥D)~ 110g7_D (31)

3 A simple L? error estimate

The simplest way to average the problem (7)-(11) is to take the mean value
with respect to y. Supposing that the mean of the product is the product of
the means, which is in general wrong, we get the following problem for the ”
averaged ” concentration ¢5// (z, 1) :

acgff @acoff h Ceff _ gaDacgff
ot 3 ox 00

in Ry x (0,7),

!l e LR, x (0,7)), /f)o=1, &l,_p=0.

~ 2 _ _
This is the problem (20) with @ = §Q’ k = ko and D = D. The small
parameter 7y is equal to €*. Let the operator L£* be given by

o= QU= - D (Ouc 4 0,0) (9



The non-dimensional physical concentration ¢* satisfies (7)-(11), i.e.

L =0 in Ry x(0,1)x (0,T) (34)
(0,y,t) =0 on (0,1) x (0,7) (35)
0yc*(x,0,t) =0 on IRy x (0,7 (36)

—De* 729, (w,1,t) = koc*(x,1,1)  on Ry x (0,7) (37)

E(r,y,00 =1 on IRy x (0,1) (38)

We want to approximate ¢ by cgf . Then
Lo(c) = —kocs + QpcgT (1/3 =) = R
Lo -y =—R in R, x(0,1) % (0,7) and (39)
—De® 20, (" (x,1,t) — cgff) = koc*(z,1,t) on IR, x (0,T) (40)

Let U(z) = 1/(x + 1). Then (9,9?)?/¥? < 4¥2. We have the following
proposition, which will be useful in getting the estimates :

Proposition 4. Let ¢°, £ and R° be such that Vg° € H (ZTx(0,T)), ¥ €
L2(Z*) and UR® € L2(Z+x(0,T)). Let€, Ue € C([0,T); LA(Z+)), UV, € €
L*(Z* x (0,T)), be a bounded function which satisfies the system

L(6) = —F in 2% % (0,T) (41)
—De®?0y&|y=1 = koly=1 + ¢ly=1 and 0,&|y=0 =0 on Ry x (0,T) (42)
flimo=¢& on ZT and€&|,—o=0on (0,1) x (0,7). (43)

Then we have the following energy estimate

6.t = [ ware wiy+ g= [ [ wwp{eoeps

t t
|8x§|2} dxdydr + ko/ §2|y:1\112($) dxdr < —/ / \II(:B)QRaf dxdydT—
0o JRy 0o Jz+

¢ ¢
/ / gs|y:1§|y:1\112(x) dxdr + 2D€a/ / \I/(x)2§2 dxdydr. (44)
o JR, 0o Jz+

10



Proof. We test (41)-(43) by ¥?(z)¢ and get
1 22 o | 2 -2 2 2
= () () dedy + De v (x){s |0y€]° + 0:¢] } dxdydT+
2 )7+ 0 Jz+
t “+o0 1
ko/ / 2,21 V? dwdr < —/ (65)*V?% () dwdy—
0 Jo 2 Jz+
t +o00 t
ko/ / (9°8)|y=1V? dzdr — Daa/ 0,60, 9% (z) dadydr.  (45)
0 Jo 0 Jz+
Next, we use that
t D t
Dea/ 0,£€0,V? () dzdr < —5“/ / U?(1)|0,£)? dedydr
0 Jz+ 2 Jo Ja+
t
+2De0 / / V2(2)|¢? dadydr (46)
0 Jz+

and get (44). O
This simple proposition allows us to prove

Proposition 5. In the setting of this section we have

¢ oy FO
10 (2)(c* — 57| e 0,722y x(0,1)) < € /QE (47)
. o F°
10 (2)0 (¢ — /)| 2002 (R x(0,1)) < € o (48)
¢ o F°
10 ()0, (¢ — ")l 20.702(m % (0,1)) < €2 o (49)
where FY = CfHaxcgffHLz(OT) + CFky < CFeo/ (50)

Proof. We are in the situation of Proposition 4 with £ = 0 and g° = kocf//.
Consequently, for £ = ¢ — cgf T we have

t +o00 1
EEt) < ko/ / cgff(/ & dy — ¢f|y=1)V? dadr + 2Ds"-
0 Jo 0

t t
/ / 202 (z) dedydr — / Q(1/3 — y*)Ed,c W dadydr.  (51)
0 Jz+ 0 JZzZ+

11



It remains to estimate the first and the third term at the right hand side of
(51). We have

| / /Z ) QoM (1/3 — )% () dadydr| =

| / / QO (43 — y 13)0,6 V() dudydr] (52)
_D t
and koy/ / cgff(/ € dy — €] y=1)¥? dadr| < —ga/ /
0 0 0 8 0 Z+
k2 t “+o0
U2 (2)]0,¢)* dadydr + 5%?—& / / (I Y22 dudr. (53)
0 0

After inserting (52)-(53) into (51) we get

. o [P 2k, 32 Q? .
£ — 1) < & /0/0 (L) + 5 5 (Duci) 02 dadr

t 1 “+o00
+ / / / 2D (z) (¢ — /1?2 dadydr, (54)
0 0 0

and after applying Gronwall’s inequality, we obtain (47)-(49). O

Corollary 6.

[c® — Co ||L°°(0TLZOC(1R+><(O,1)) < Cgl3e/4 (55)

Remark 7. It is reasonable to expect some L' estimates with better powers
for e. Unfortunately, testing the equation (39) by the regularized sign (¢ —
cgff), doesn’t lead to anything useful. Hence at this stage claiming a +/c
estimate in L' is not justified.

Remark 8. There are recent papers by Grenier and Gues on singular per-
turbation problems. In [5] Grenier supposes that Q is zero as x at x = 0,
together with its derivatives. Such hypothesis allows better estimates.

Remark 9. The estimate (23) implies that exp{—Fkot}x (o>t} s an approa-

imation for the physical concentration which is of the same order in L°°(L?)

as 7.

Remark 10. For a > 4/3 the estimate (55) is without any value.

12



4 The formal 2-scale expansion leading to Tay-
lor’s dispersion

The estimate obtained in the previous section isn’t satisfactory. At the other
hand, it is known that the Taylor dispersion model gives a very good 1D
approximation. With this motivation we briefly explain how to obtain for-
mally the higher precision effective models and notably the variant of Taylor’s
dispersion formula, by the 2-scale asymptotic expansion.

We start with the problem (34)-(38) and search for ¢© in the form

¢ = (x,tye) Fect(x,y,t) + 2 (2, y,t) + ... (56)
After introducing (56) into the equation (34) we get
60{8tco + Q1 — y*0," — Dao‘_lﬁyycl} + 5{8t01+
Q1 — y?)d,ct — D19, — Dsa—layy&} — O(e?) (57)

In order to have (57) for every ¢ € (0,¢¢), all coefficients in front of the
powers of € should be zero.
The problem corresponding to the order £° is

{ —Ddyyct = —e'7Q(1/3 — y*)0,c” — (9, + 2Q0,c°/3) on (0,1),
dyct =00on y=0 and — DI,c! =koe' P on y=1

(58)
for every (x,t) € (0,400) x (0,T). By the Fredholm’s alternative, the prob-
lem (58) has a solution if and only if

0ic® +2Q0,°/3 + koc® =0 in (0,L) x (0,7T). (59)

Unfortunately our initial and boundary data are incompatible and the hy-
perbolic equation (59) has a discontinuous solution. Since the asymptotic
expansion for ¢¢ involves derivatives of ?; the equation (59) doesn’t suit our
needs. In [2] the difficulty was overcome by supposing compatible initial and
boundary data. We proceed by following an idea from [14] and suppose that

Oic” +2Q0,%/3 + ko = O(e)  in (0, +00) x (0,7). (60)

The hypothesis (60) will be justified a posteriori, after getting an equation

for .

13



Hence (58) reduces to

(61)

—DOyct = —eQ(1/3 — y?)0p® + e koc® on (0,1),
9yt =0on y=0 and — DI,c' = ko' " on y=1

for every (z,t) € (0,+00) x (0,7), and we have

Qv v, o ko
)&Ec+D

T
50 -5 (s =)+ Colw,1),  (62)

My, t) = 8170[(
where Cj is an arbitrary function.
Let us go to the next order. Then we have

—Ddy® = —7Q(1 — y*)0pct + DOyp® — 170yt + Dedyct
—e7(0,c" 4 2Q0," /3 + ko®)  on (0, 1),
dy*=00on y=0 and — DI,c* =koe' “cton y=1
(63)
for every (x,t) € (0,4+00) x (0,7"). The problem (63) has a solution if and
only if

1
0”4+ 2Q0," /3 + ko( + ec'|,=1) + 88t(/ c! dy) — e*D0Oyppc’+
0
1
sagg(/ (1—9*)ct dy) =0 in (0,+00) x (0,7). (64)
0

(64) is the equation for ¢® . In order to get the simplest possible equation for

¥ we choose C giving fol ¢t dy = 0. Now ¢! takes the form

Mz, y.t) = gl—a(9<y— L Tt s B Te) (6)

and the equation (64) becomes

2 4k k ~
8t00+Q(§+45—lO)€2_0‘)3x00+k‘0(1—3—1[))62_“)00ZEO‘Damco in (0, +oo)z<6(6()>,T).
with q Q2

D=pD4+ S X 20
+ 05 D € (67)
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Now the problem (63) becomes

( 2 2 4
po, el DLy w0r 8 g WY
- 0,00 2 (1 ) -_Y 0% 5,0 —
ot oy G = P+ G5 o
ko o (?/_2 _Yy L)(a 09 £ QB,auc”) — (68)
8D, 06 12180 "D e
(6 - %)(&coﬁo — 5ak06mco)} on (0,1), 9,c*=0on y=0
and — DO,c* = %62’2“8 CO3 — k—(%g?’zaco on y=1
( Y D 745 3D '

If we choose ¢? such that fol c? dy = 0, then

2 281 23 37 1
2 £ — 2—2a{_Q_am o( 2 4 6
c(@y,t) =¢ D2%=“ \ 153600 T 15127 ~ 21607 T 1207
1 Q 0 Q o/ 31 7, oyl ys
6727 ) (a0 = & 50 ) 7565~ 360Y T 75~ 360) T
%8 Co(yﬁ ' 11y? 1 ) ko o o

60 18Im0 w10 Tlapede
2

Ko any 0 vty 7 Qko o, o kg oy 1 5
=) (= 5+~ 1) * (0 ~ )G )} (69

5 Boundary layer

If we add corrections to c°, the obtained function doesn’t satisfy any more
the boundary conditions. We correct the new values using the appropriate
boundary layer.

Let Z+ = (0, +00) x (0, 1).

—A,. =0 for (z,y) € Z".

—y62:Of40r y7:1, and for y =0, (70)
Y Y
P=% "1 1 =0

Using the elementary variational theory for PDEs, we get the existence of
a unique solution 3 € L2 (Z7) such that V3 € L2 (ZT)?. Next, we note

loc loc
that the average of the boundary value at z = 0 is zero. This implies that

15



fol B(z,y) dy = 0, for every z € (0,400). Now we can apply the Poincaré’s
inequality in H':

1 1 1 1
/902 dyép/ 0y|* dy, V90€H1(0,1),/<pdy=0, (71)
0 0 0

and conclude that in fact 3 € H'(Z*). In order to prove that 3 represents
a boundary layer, one should prove the exponential decay. We apply the
theory from [10] and get the following result describing the decay of (§ as
Z — +00:

Proposition 11. There exists a constant vg > 0 such that the solution G for
(70) satisfies the estimates

400 1
/ / V.07 dydz < coe™ ™%, 2> 0 (72)

z 0
1By, 2)] < coe ™, V(y,2) € Z" (73)

6 First Correction

The estimate (55) isn’t satisfactory. In order to get a better approximation
we take the correction constructed using the formal 2-scale expansion in
Section 4.

Let 0 < a < 2. We start by the O(g?) approximation and consider the
function

I (ayy,tie) = M (x b e) + 7 2 (5 — = — —)
D'6 12 180
8CMCLU kfo 1 y2 Mau
ot B g te) (74)

where ¢M® is the solution to the effective problem with Taylor’s dispersion

coefficient and reaction terms:

( au 2 4k —« au k —a au
8th + Q(g + 45_252 )amCM + kO(l - 3%82 )CM =

8 2
(De” + %%SQ_Q)GMCM““, in R, x(0,7)

(75)

CMaulm:O — 07 CMau|t:0 — 17 8szau c L2(R+ % (O,T)),

\

16



8 2
D = De* + %%5 ~% is Taylor’s dispersion coefficient. The cut-off in

time ( is given by (25) and we use to eliminate the time-like boundary layer
appearing at t = 0. These effects are not visible in the formal expansion.

Let £° be the differential operator given by (33). Following the formal
expansion from Section 4, we know that £ applied to the correction without
boundary layer functions and cut-offs would give F} + F5 + F5 + Fy + F%,
where

2 2 4
MauQ 2—« 8 Y ) 7
= 1— 2 _ 2 _
D¢ {945“ VG 1 180>}

— axcMau%E:Za{ o 3 4 (1 o y2)(1 o y_Q)}

,
g

D 45 6 2
2 4
€ —a(Y Y MauQ a Mau (76)
Fe=gre( - L -
T 180 O™ Iy = € Ora e Q}
o/l 2 K
F46 — 52 a(a _ y_){@thCLuﬁo e meMaukO}

e __ 2 « MaquO k(?] Mau
F, { &v D + ap¢
These functions aren’t 1ntegrab1e up to t = 0 and we need a cut off ¢ in order
to deal with them.
After applying £° to ¢!/, we find out that

2
eff Fa 2—a MauQ_ 8 1/3 — /2 Mau
E (5 Oy Do Q(1/3 —y*)0c

kM) (1= 60+ ¢ 0 (D B~ 4 -

k au &€ 15 € 15 (4 € 15
2;)(3 — )M ) =& and —L() =£5(¢ =Ty = —95  (77)
At the lateral boundary y = 1 we have
—De*?0,¢iM =1 = ( () ko™ ™ (78)
k
kociff|y:1 _ kO(CMau 2 QQC( ) a Mau 62—a_OcMau<(t)) (79>

17



Now ¢& — ¢/ satisfies the system

L5 -y = -5 in ZF % (0,7) (80)
De20,(¢" — 5/ )ymr = Kol — ¢ )yor + gy on R x (0,T) (1)
Ay(c® — &/ |y=o =0 on R, x (0,T) (82)

(¢ =)o =0 on Z* and (&€ — &) |amo =5 on (0,1) x (0,T). (83)

with

= RoG(0)= Qa2 e ) (1 Qe (34)

45D 3D
2 4 7 Q
d e:_Q—a tazMauxi y__y__ 85
and 1 = —e* (M o (B — L - ) E (89)

Now we should estimate ®{ to see if the right hand side is smaller than
in Section 3. We have

Proposition 12. Let Or = R, x (0,1) x (0,T). Let o € H'(Or), ¢ =0 at
x =0. Then we have

¢
|/ /Z+ CFy dedydr| < 053(2_a)/2||§(7')8mcM““||L2(07t;L2(B+))||5a/2_18y<p||Lz(Ot)
0

< 0(53—5a/2H<1 ) e (o — 1))||6°‘/2_18y90||L2(0t) (86)

¢
|/ X (1) F5 ¢ dedydr| < Ce3?-)/2 <||C(T)8xth““||Lz(0,t;Lz(1pL+))—|—
0o Jz

1C(7)Dnac™ “||L2<o,t;m<w) N80 o <

C(*2H(1 — a) + " *2H(a — 1)) /2718, 120 (87)

t 2
|/ / (1—4)3chM““52_a%90 drdydr| < Ce*77||£20, 0| 12(0,):
0 Jz+
I(

1-— )8 CMauHLz(Ojt;Lz(RjL)) S 062_3a/2”Ea/zala@”[;(@t) (88)
|/ /Z+ (1-0Q(1/3—y )8 My dxdydr| < Cel~ o‘/2||80‘/2_18y<,0||L2(0t)-
— )M 2022y < C' € 0yl 20, (89)
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2 4
£2- M Q 3/ Y 7 ko 1 2\ M
(0% 8 au J < (= au .
|/ < De { ple 1m0 2z v

¢ drdydr| < Ce®3/2||¢’ axCMau||L2(O,t;L2(R+))||€a/2_18y(10||L2(Ot) <
C(*5PH(1 - a) + 2 H(a — 1) e 9,0l 1209 (90)

Proof. Let us note that in (86)-(87) and (89)-(90) the averages of the poly-
nomials in y are zero. We write them in the form P(y) = 0,Pi(y), where
P, has zero traces at y = 0, 1, and after partial integration and applying the
results from Section 2, giving us the precise regularity, obtain the estimates.
Since (1 — €)™ isn’t square integrable, we use the x-derivative in order

to obtain (88). O

Proposition 13. Let Op = R, x (0,1) x (0,T). Let ¢ € H'(Or), ¢ =0 at
x =0. Then we have

t
|/ - (F5¢ dxdydr| < 053(1_a/2)HC&cCMWHL?(O,t;LZ(zm))|’5a/2_18y90“L2(0t)
0
< C(e¥™IH(1 — a) + 27 H(a — 1)) |19y 1200 (91)
t
|/ (Fyip drdydr| < 053_30“/2(||C8th““||L2(07t;L2UR+))+
0o Jz+

5aHCaxxCMauHLz(o,t;m(m))> e oyl r20,) <

C(2VH(1 - a) + @ H(a — 1)) [1e**7 10,0l 12(0,) (92)

t —+o0 1
| / / (DM / @ dy — ply—1) dzdr| <
0o Jo 0

1
052_a||3xCMau||L2(0,t;L2(1R+))“/ ¢ dy = ply=1ll2(0,)
0
< C(E¥ ™ H(L - a) + L0 H (o — 1) |e** 0yl 20 (93)

t —+o0 1
[ cneese [ dy = ol doar <
0 0 0

C0=2/21e22710, 0| 1200, (94)
“+00 1
| / / (1 - C(t)eMa( / o dy — ¢l,1) dudr| <
0
C(eH(1 — @)+ &> “H(a — 1))[|e*2 0, 12 (00) (95)
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Corollary 14. Let ¢ € HY(Or), ¢ =0 at x = 0. Let ®5 be given by (77)
and g° by (84). Then we have

t t
‘/ / Ol dardyd7+/ / G |y=1|y=1 dxdr| < C(sl’a/ZH(l —a)
0o Jz+ 0o JRy
el (o 1)){”€a/2_13y90HL2(0t) n Hffa/anSOHLz(ot)} (96)

Next we should correct the values at x = 0 and apply Proposition 4. Due
to the presence of the term containing the first order derivative in x, the
boundary layer corresponding to our problem doesn’t enter into the theory
from [10] and one should generalize it. The generalization in the case of the
periodic boundary conditions at the lateral boundary is in the paper [12].
In our knowledge, the generalization to the case of Neumann’s boundary
conditions at the lateral boundary, was never published. It seems that the
results from [12] apply also to this case ([13]). In order to avoid developing
the new theory for the boundary layer, we simply use the boundary layer
for the Neumann problem for Laplace operator (70). Then the transport
term is ignored and a large error in the forcing term is created. The error
is concentrated at small times and by eliminating them we would obtain a
good estimate.

In order to use this particular point, we prove the following proposition :

Proposition 15. Let ¥(x) =1/(1+x). Let g¢ and ®° be bounded functions
such that Ug° € HY(Z* x (0,T)) and V®° € L*(ZT x (0,T)). Let &, V€ €
Co0([0,T); L*(Z1)), OV, & € L*(ZT x(0,T)), be a bounded function which

satisfies the system

L&) =—-d° in Zt x(0,T) (97)
_D8a72ay§|y=1 = ko€ly=1 + ¢°ly=1 and 9y¢|y=0 =0 on Ry x (0,T) (98)
Elimo=0 on Z* and&|,—o=0on (0,1) x (0,7T). (99)

Then we have the following energy estimate

E(thet) = t%/

Z+

t
W (z)2€E2(t) dxdy+Dz—:o‘// \I/(x)QT%{s_2|8y§|2+
0o Jz+
¢ ¢
|axf|2} dxdyd7+ko/ / 72R¢2|, U (x) dedr < C’1|/ / R0 (2)20°¢ dedydr
0o JRy 0o Jz+
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t t
—I—/ / 72 6% y=1€|y=1 V2 () dwdT| + CgDsa/ / 700 (2)2€? dadydr, Vk > 1.
o Jm, 0o Jzt
(100)

Remark 16. Clearly we have in our mind &€ = ¢ — &7, Then ¢(t)8,cM*

has the required regularity, since the cut-off erases the singularity. With

cMav things are more complicated. By a direct calculation we have 0,cM™ €

L0, T; L*(IR,)), ¥q € [1,1%4/3) and we get the required Holder regqularity
1

by the Sobolev imbedding. / / &(z,y,t)|* dady is Hélder-continuous with

some exponent ag > 0, VA < 400, which is independent of . In complete
analogy, cgf ! defined by (32) has also the required regularity. Finally, the
difference & — &/ satisfies the equations (39) and (40) and it is zero at
x =0 and at t = 0. Then the classical parabolic reqularity theory (see e.g.
[7]) implies the Holder reqularity in time of the L*-norm with respect to x,y.
After putting all these results together, we get the required reqularity of €.

Proof. By the supposed Hélder continuity, there is ¢y, € [0, 77, tp > 0, such
that

+00 +oo
[ et dody = s [ et e ae

teo, T] taO
(101)
Then we have

tar 2 t tav
/ k2t / €[202(x) dadydr < / €T ar) §0M>qu<m> / fr?=tteo g7
0 zZ+ zZ+ tM 0

k Qk/ 2 2

and

1 t “+o0
§tﬁ/ |§|2(tM)\I/2(x) dxdy + ko/ / 72k§2|y:1@2(x) dxdr+
Z+ o Jo

/tMD(€a/ 700,€ (1) VP (x )dacdy+6o‘_2/ 72(0,€2(r) W (x )dwdy) dr

tar “+o00
/ / TP dxdydr—ko/ / 75| y=19 =1V (2) dwdT+
Z+

tar tar
De / / P (2)E dudydr + / / P ¢PU? dndydr (103)
0 7+ 0 zZ+
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Using (102) we get (100) for t = t); and with Cy = 0. Getting the estimates
(100) for general ¢t € (0,7") is now straightforward. O

Next, in order to use this estimate we should refine the estimates from
Propositions 12 and 13 . First we note that the estimate (28) changes to

185 0uc™ || Lagoryx ey + [0k c™ ™ | ooy ey + [ 0uac™ ™| Lago,m)x 1)
< Cy(k)(y D)/ =1, (104)

Hence one gains £*/* (respectively £!/27%/4) for the L?>-norm. In analogy with
Propositions 12 and 13 we have

Proposition 17. Let Or = R, x (0,1) x (0,T). Let ¢ € H'(Or), ¢ =0 at
z=0and k > 1. Then we have

t o] 1
|/ / / TkCFf(p dzxdydr| < 053(2_")/2||Tk8mcM““||L2(07t;L2(IR+))||5“/2_13y<p||L2(0t)
0 0 0
< C(MH(1 = a) + 273 H(a — 1)) 16> 10,0 12 (00) (105)

t 00 1
|/0 /0 /0 TS dudydr| < 053(2_0‘)/2(HTkawth‘“’“||L2(0,t;L2(IR+))+

||Tkaxa:cMau||L2(O,t;L2(R+))> e 0yl 20 < C (2" H(1 — a)+
e3/2 73/ (o — 1)) He"‘/%l@ygoHLz(ot) (106)
| /0 t . (TFFS drdydr| < O30 75C0,eM™ | oo 2 (m ) 16777 Oyl 12000
< C(THH(1 - a) + 275 H (o — 1)) 16710, 12 (00) (107)
|/t . (TR S dedydr| < 053_30‘/2(||CTkﬁtha“||L2(07t;L2(IR+))—|—
0

5a||ngaxxCMau||L2(0,t;L2(R+))> 210, 20y <

C(2YH(1 — a) + @ H(a — 1)) |e** 10,0 || 1204 (108)
t 400 1
|/ / CTkaxCMa%z_“(/ 0 dy — ply=1) dedr| <
0 0 0

1
Ce | 7% 0™ 20 4,02 (s | / © dy — @ly=1ll2(0)
0

< C(E¥™H(1 - a) + 2 H (o — 1)) |e*/27 00| 12 (00) (109)
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t —+o0 1
[ et [ g — gl dor| <
0 0 0

6’53(1_0‘/2)||50‘/2_16yg0||L2(0t) (110)

Proof. These estimates are straightforward consequences of Propositions 12
and 13 . n

We gain more with other terms:

Proposition 18. Let Op = R, x (0,1) x (0,T). Let ¢ € H'(Or), ¢ =0 at

xz =0. Then we have

2
|// / (1-¢ kﬁmcM‘wQ 2=y drdydr|

< O (1 = O)r* 0™ ™| 2 iz €2 020l 22000

S C<€ko¢+2 3a/2H(1_ )+5 k(2—a)+2— 3a/2H( o ))“804/28 90||L2(Oz) (111>

|/ / / (1—-O7Q(1/3 — y*)0.cM*™ ¢ daxdydr| <

1 a/2|| ka CMau||L2 0.LL2(R ) )||€a/2 18 SOHL2 o) <

(J(s’““+1 “/2H(1— )+s’“(2 DR H (0 = 1) Oyl 20y (112)

2 4
k2a MauQ Yy Y 7 k’o 1 2\ Mau
B¢ CO S S N .
‘/ Z+< Ds { o6 12 w0 apz v

¢ dxdydr| < Ce3~ 30‘/2||C’Tk8xcMa“||L2(07t;L2(]R+))||€a/2_18yg0||L2(ot) <

0(63—3a/2+a(k—1)H(1 . a) + 53—3a/2+(2—a)(k—1)H(a i 1)) ||5a/2_lay80||L2(Ot)
(113)

Before applying Proposition 15 and getting the final estimate, we should
correct the trace at x = 0. It is done by adding

Eiff _ _62—ag<t>ﬂ58xcMau%’ (114)

where §°(z,y) = B(x/e,y) is the boundary layer function given by (70).
Then for £° = ¢° lef lef we have

Q

Ee(g) — P = _q)i + 8tC€2—aaxcMauDﬁe + 52_056(@){8“0]\4&“9_

D
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2
e x:c:cCMauQ} + 8:0653(1 . y2><—€2—aaxcMau o E2—o¢anxcMauc(t) (2601 xﬁi_

(1 — y2)%) in ZT x (0,7T) (115)
—Dea_zay££’y=l = kDf’yzl + 9€|y:1 - kogz_ac%axcMauﬁa|y=1 on R‘i‘ X (O’T)
(116)
and 0,&%|y=0 =0 on R, x (0,7) (117)
Elimo=0 on Z% and &|,—o=0o0n (0,1) x (0,T). (118)

We need an estimate for new terms. The estimates will follow from the
following auxiliary result

Lemma 5. Let 3 be defined by (70), let k > 1 and ™™ the solution for
(75). Then we have

175" 8700 ™ || 20y x 2+) < Csk_3/4{6_a/4H(1 —a)+
412 (o — 1)} < Ot (119)
17810 | 2 0y < cgk+1/4{ga/4y<1 o)t
VA2 (o — 1)} < Cek (120)
175C0p 07 0uc™ ™| 20,y x 2+) < Cﬁk_3/4{8_a/4H(1 —a)+
12 (0 — 1)} < Cek! (121)
||7'kC3xﬁaatCMau||L2((o,t)xz+) < C«Ek—5/4{6a/2H(1 — o)t
2 H (o — 1)} < Ceh5/4 (122)
177¢ 37 0nac™ || L2 (0,0 x 2+) < Cak{(€1/4o‘/2 + e/A3MH(1 — a)+

(E:a/275/4 4 5*5/2+3°‘/4)H(a _ 1)} < k=T (123)
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175C0: 07 Onac™ ™ || L2 (0, x 2+) < C'Ek_l{(€_1/4_a/2 4 e/ABMH(1 — o)+
(ga/275/4 + 875/2+3o¢/4)H(Oé . 1)} < C€k77/4 (124>
Proof. We have
(z — TQ)Q} dx
2vDt D

M 2 x
Oy MG de < C ex expy —
/o ‘ ‘ N /o p{ yrD

< C(eD7) Y2 exp{—Cy7/c} dzdr (125)

Now (119) , (120) and (121) follow by integration with respect to 7. Next,
oo oo 2v0T (x —7Q)%, dx
O,cMavge|2 1 < O/ 2 _ o — - —

J A ) e e e = s

< C(eD7®) V2 exp{—Cyr/e} dadr (126)

and (122) follows. Since

1778 0uac™ ™ || 120,y 2+) < C(ITCB° 0™ ™| L2 (0.0 x 24+
||7‘kCﬁ£(9tha“||L2((07t)XZ+))(E_O‘H(l —a)+ 50‘_2H(a - 1)) (127)

we get (122) and (123). O
Proposition 19. Let ¢ € HY(O7), ¢ =0 at x = 0. Then we have

¢
]/ /+ 62_0‘71“((7)55{81th“”% — e mmcMa“Q}go dxdydr|
0o Jz

< Cer <{ 1CT*0, M ™ 0,87 || 120,y x 2+) + 17O Da™ || L2((00)x 2+) } -

ol 20 xz+) + & 2 LNCTR 0™ ™ B | o0, x 24y + EXTFC 0™ ™ || 20y x 2+) }

||€“/20x90||L2<<o,t>xz+>> < CEFVY (||l 2 (0,9x 24y + 1€ 20ul 20, 2+))
(128)

|/ /Z+ 2macrk g, Mty ( ﬂaQ( y?) + 2 xﬁa)) dxdydr|

< Ce¥ (177008 0uac™ ™ || 120,y x 2+ + |75 €08 O™ | L2 ((0,0)x 24))
leliz20n < C* 4 oll12(0,) (129)
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t
| / / 2T 0, M0, 07 (1 — yP)p dadydr]
0 zZ+
< O 7700 0:M " | 120,y x 20) 2l 22000 < C¥ ol 220, (130)
t +oo
A
0 JO

< Ce 7700851 00™ ™ | 20,0y ) 12122000 < CE* M oly=1ll 20,y x 1))
(131)

t
|// 2= (1) R0, M M p B dadydr|
0 Jz+
< O k¢ B0, oyl liscon < CEF ¥ ilgllizoy (132)

Now the application of Proposition 15 is straightforward and after con-
sidering various powers we get

Theorem 20. Let ¢M% be given by (75), let &7 be given by (74) and &1
by (114). Then we have

1£3(cF — 7 (2, t;6) — éiff)HLOO(O,TLz (Ryx(0,1)) < 0(53_9a/4H(1 —a)+

"loc

SU-/D2E (o 1)) (133)
120, (¢ — i (2, t;€) — & ) 2oz, (e x(0.1)) <
Cgl—a/Q (53—904/4H(1 _ &) + 53(1—04/2)/2]—](0_/ — 1)) (134)
1820, (¢ = 7 (2, t5€) — &) 20222, (0 0,1)) <
G2 (S9I(1 — ) + 02 (o — 1) (135)

7 Error estimate involving the second order
in expansion

The most important power of « is @ = 1, which describes Taylor’s scaling.
In this case our approximation is of order £3/%. Nevertheless, it is interesting
to reach the order ¢ at least in this case. Also, it could be of interest to get
the higher order estimates, which can be useful for € which is not very small.

Clearly, the estimate isn’t sufficiently good due to the terms (F7 and (F5.
When deriving formally the effective equation, we have seen that they could
be eliminated by introducing the next order correction. Following the formal
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expansion we find out that ¢’/ should be replaced by ¢/ + ¢5//, where

eff _  4-2a @ { Mau [ 281 23 37 4 L g
“ = Dt (D @ke (453600 T 512Y T 2160”1207

éyg - Bl) — (DM — DD, ppcM) ( — %y‘i + %y‘l - %yZ—
% - Bz) } + 542a%<(t){ancMau <6—10y6 - 1_18y4 + %yz - % - Bs)
—l—%(@th““ — De®0yp M) ( — 1—12y4 + éyQ — %() — B5> +
%&CCM‘”‘ (% —y’ - 54) —~ %CM““ (é — y2) } (136)
where Bj, j=1,...,5, are solutions to the boundary layers analogous to (70)

which correct those new values at x = 0.
Using this additional correction term we have

Theorem 21. Let ¢M™ be given by (75), let 77 be given by (74), &7 by
(114) and ¢’ by (136). Then we have

[£°(c — Ciff(xa tie) — Eiff)HLoo(O,T;H (Ryx(0,1) < 0(5471‘%/4[{(1 —a)+

loc

0=/ (¢ — 1)) (137)
[£0y (¢* = 7 (. t58) — &) 20122, (s x(0.1)) <

Cel=o/? (54’130‘/4H(1 —a)+ 83(1704/2)/2H(05 - 1)) (138)
120, (" = i (. t;€) — &) 2oz, (max0.1)) <

a0/ (54—13a/4H(1 o)+ 53(1—a/2)/2H(a _ 1)) (139)

Proof. After applying the operator £¢, given by (33), to ¢ — ¢!/ —&// — 51/
we obtain a forcing term @3, analogous to (115). Let us study it. In fact
it is enough to study what happened with ¢ 25:1 F;. As we have seen in
Proposition 18, Lemma 5 and Proposition 19, other terms are small. We
have
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e I and Ff are replaced by

(. L Q2et2e o

Fr= (1= 00 R IQ + O
Deo‘ﬁmmcM““)PG(y)}

Ff = = 0) 5 { e 200D bt

—2a Q au ey au @ au
54 2 PG(y)ﬁ a:cttCM —2D¢ 8&733:1:th +52 azzxa::ch D2

Py~ BL B o 3T, 1
sW) = 3500 T 15127 2160Y T 1307 g2

2 4

vyt T 1 1 7 31
Py =LY _ L opy=—— .
i) =% — 15~ 1590 FoW) AT s

(140)
Using (31) we find out, in analogy with (105)-(106), that

/// CUFE| + | 2D\ dedydr <

0(84—13a/4H<1 —a)+ 53/2_3a/4H(a _ 1)) el z204)s (141)

Vo € H'(Or), p=0at x =0 and k > 2.

e 5 and Fy are replaced by

( 4-—2

e Qk € “ auQ D au 1
I35 :(1—y2)—0D D™ S P (y) + (Durc™ ™ 5 —
Q

1 k
e xa:a:cMaué)P4(y> + (45_Da CMau i 6_10)0Mau)P2(y)}

F46 _ 4 2ap( )QD;]{axtCMau _ @ xszMauD}‘i‘

ko
4 2aP ( ) 8ttCMau 2D6a Ixthau + D2€2aax;m;ICMau}

2D?
- ko [ @Q ko
4 2aP 0 _aw Mau a Mau
e B % T
DQ:® Dkoe®
axxz Mau axx Mau ’
e c + 5 c }

28



Yoyt 11yP 11

here Py(y) =1/3 —y? and Py = 2- — == U 31
where Py(y) = 1/3 —y* and By = o5 — 7o+ oo — oo+ Using (31)
we find out, in analogy with (107)-(108), that
/ / / COES| + D)ol dadydr <
0(54_110‘/4H(1 — )+ 2 (o — 1)) el 2204 (143)

Vo € H'(Or), p=0at x =0 and k > 2.

e It should be noted that the means of the polynomials in y, contained
in F} and F3 aren’t zero any more. Hence we can’t gain some powers
of € using the derivative with respect to y of the test function.

2 k
e Fy and the boundary term ko (t)e*™*(9,cM*™—= ¢ cM‘“‘—O) are can-

45D 3D
celed. At the boundary y = 1 we have a new non-homogeneous term
~E au —zQ Qk au
0 = (1= QkocM™ — (e*2 (45Dga Mt Pl e+
k k
(s Mot — @ 209, Ma) Pyl y) (144)

2D? 2D

and the principal boundary contribution is given by

20Qk2 ko
4 2a 0 Mau Mau
|/ / / 45D2a Pl 1+ (5psde

—& 2DaxxCMau)P4|y 1)<P|y 1 dxdng' < C( - 9a/4H(1 - Oé)+

0 (0 = 1)) el o (145)
e Other terms are much smaller and don’t have to be discussed.

After collecting the powers of € and applying Proposition 15 we obtain the
estimates (137)-(139). O
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Theorem 22. Let ¢M* be given by (75), let 77 be given by (74), &7 by
(114) and &' by (136). Then we have

Hts (CE - Ciff(fl% tie) — éiff - Cgff) HLQ(OT sLL (R4 x(0,1)) <
Ce**H(l-a)+ gZ*O‘H(a —1)) (146)
[#° (Ca - Ciff(xat% €) — Eiff - )HL2 (0.T:L2, (Ry x(0,1)) =

C(e*™ ™ H(1—-a)+ 52 “H(a—1)) (147)

Proof. First we prove the L>®(L')-estimates (146). We test the equation for
€= — M (x,t;6) — &I — 577 with regularized sign of € multiplied by W2
and get

e <>\sr<>dxdy+ko//m P [ (1) dadr <

// P (g |<I>5|dxdydr+// 220167 [ 2 (2) dvdr|+

z+ Ry

Cgaa// 2R (2)? €] dxdydT—i—k// TP dodydr,  (148)
0 Jz+ 0 Jz+

Vk > 3. As before, the L'-norm of ¥2¢ is Holder continuous in time with
some exponent oy > 0. Consequently, arguing as in Proposition 15, we obtain

Sup W2 () | 21z < CUNY RS 21z x 0y + 1925 |y=1 122 (s x (0.7)))

(149)

and (146) is proved.
The improved L*(L?)-estimate (147) follows from (146), (138) and the
Poincaré’s inequality in H' (see e.g. [4]). O

Next we prove the corresponding L (L>)-estimate. We have

Theorem 23. Let ¢M* be given by (75), let 77 be given by (74), &7 by
(114) and &' by (136). Then we have

18°(c = 7 (w, t6) = & = &) ee(0myx ey 0,0y < C(8) (™2 H(1 =
+&27 0 H(a — 1)), V5> 0. (150)

Remark 24. From the proof we see that C(6) has an exponential growth
when § — 0.
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Proof. Let M > 0, € = & — &M (x,t;6) — & — &7 and €y = sup{the —
M,0}.We test the equation for & with ¥2¢), and get

/ W (x)*E5(t) dedy + De® // 2)?10:60 (1) |* dadydr+

¥ 2/ / |8y£M (7)? da:dyd7+k0/ (Enrly=1+
Z+ Ry

MT*)epr|y=1 V2 () dodr < C’1|/ / D5\ & dedydr

+ / / T35 | y=1€nsly=1 V2 (7) dodT| + Coc® / / R0 (2)2€2, dadydr
0 JIRy 0 Jz+
(151)

Vk > 3, where 770§ = —7F®5 + kT, We suppose that

koM > sup 78|05 (7)|yet ||l zoo(mey = co(54_5"‘/2]-1(1—04)—1—53(1_‘1/2)1{((1—1))

o<r<T
(152)
As in the classical derivation of the Nash-Moser estimate (see [7], pages 181-
186)) we introduce

T
w(M) = / / U? dadydt (153)
0 Z+n{tke—M>0}

Now in exactly the same way as in [7], pages 181-186, on a time interval
which could be smaller than [0, 7], but suppose equal to it without loosing
the generality, we get

ferlt, = s [ wareho iy + D= [ [ Wi deigar

0<t<T
D=t [ W ) dedudr < B 5 mn(V)'
q>2. (154)

Next, the estimate (154) is iterated in order to conclude that £y, = 0. Here
we should modify the classical argument from [7], pages 102-103, and adapt
it to our situation.
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We note that, after making appropriate extensions,

[l a2+ x01)) < COH\P§0||1L/222+X (0,7)) ||\I/SD||115{12 (Z+x(0,1)) = 005_Q/4||<P||V27
(155)
Vo € Vo, plz=0 = 0. As in [7], page 102, now we take the sequence of levels
kp=M(2—-2""), h=0,1,.... Then

Bg—a /4

(kn1 — k) (kngr) < 1%, ezt 0y < ——— -~
+

kahHVQ (156>

and

2630l|TF P5Y| La(z+ x 0,y
M

M1/4(k?h+1) <2 M(HE)MU%), k=1-=2/q>0.

(157)
14 (kppr) will tend to zero for h — oo if u'/4(M) satisfies
243 ke . —a/4N —1/k
H1/4(M) S ( /BBOHT 3 ij(erX(O,T))E ) 2_1/,%2 (158)

(158) is satisfied if M equals the right hand side of the estimate (150). [

Next result concern higher order norms. It it not very satisfactory for
large av and we state it without giving a proof, which follows from the demon-
strations given above.

Theorem 25. Let ¢M® be given by (75), let 77 be given by (74), &7 by
(114) and ¢’ by (136). Then we have

1820, (¢ — ¢i7 (. t;€) — &) | e o112 (R x(0,1)) < C (P H (1 — )+

loc

5(1 04/2)/2H( _ 1)) (159)
[£°0 (c* — i (x,t;e) — ! )HL2 (0,312, (Ry x(0,1)) =
C(e P H(1 - a) + 122 H(a - 1)) (160)

Final improvement concerns the L*°(L?)-norma for small values of a.
As mentioned in the proof of Theorem 21, the reason was that Ff and F;
didn’t have zero means with respect to y. Nevertheless, when computing
the term ¢? in the asymptotic expansion, there was a liberty in adding an
arbitrary function Cs of x and ¢. This function can be chosen such that
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the appropriate means are zero and estimates (137)-(139) are multiplied by
£'=/2_ Unfortunately, there is a new contribution of the form QP (y)3d,C,.
Its norm destroys the estimate for o > 4/5. Since this amelioration isn’t of
real importance we just give it as a result. Proof is completely analogous to
the preceding ones.

Corollary 26. Let cM® be given by (75), let ciff be given by (74), ceff by
(114) and &5’ by (136). Let the polynomials P;(y) be defined by (140) and
after (142). Finally, let Cy be given by

802 2@ 802 o a2CY2 o Qko MauQ/
o "3 or Pz = DN L=y)Rly) dy
1 1. [t Q
Mau_~—  _« Mau — _ v Mau
O 55 = 005 1= PIP) dy+ (500

g_l(’)cMaU) /01(1 — %) Pa(y) dy} gz (t ){ — D™ ™Q /01(1 — ") Ps(y) dy

1
+(Opat ™™ — De®0ppgnc™ ™) / (1 —9*)Ps(y) dy} in IR, x (0,T), (161)
0
89602 € LQ(R_,_ X (O,T)), 02|t:0 =0, 02|a::0 = 0. (162)
Then for o € [0,4/5] we have

18°(c° — Ciff - Cfff - Cgf C2)||L°° (0.T:L2, (Ry x(0,1)) = CePme/t (163)
[£°0, (¢ — —cfh -l - )HL2 (0,312, (Ry x(0,1)) = Ceb19a/4 (164)
||t56x(08 . Ciff . éiff

- Cg — O9)ll 20,22, (e x(01)) < 719t (165)
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