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Brownian dynamics~BD! simulations of a linear freely jointed bead–rod polymer chain with
excluded volume~EV! interaction have been performed under elongational flow with and without
the use of fluctuating hydrodynamic interactions~HI!. The dependence of the chain size, shape and
intrinsic elongational viscosity on the elongational rate«̇ are reported. A sharp coil–stretch
transition is observed when«̇ exceeds a critical value,«̇c . The inclusion of the HI leads to a shift
in the coil–stretch transition to higher flow values. Chain deformation due to elongational flow is
observed to first consist of the alignment of the chain with the direction of flow without significant
chain extension followed by additional alignment of the bond vectors with the flow direction and
chain extension as flow rate is increased further. The distribution function for the chain’s radius of
gyration becomes significantly broader within the transition region which implies an increase in
fluctuations in the chain size in this region. The structure factors parallel and perpendicular to the
flow direction illustrate different elongational rate dependencies. At high rates, the structure factor
in the direction of the flow exhibits an oscillating dependence which corresponds to the theoretically
predicted shape for a rigid-rod model. The mean squared orientation of each bond within the chain
with respect to the flow direction as function of bond number is nearly parabolic in shape with the
highest degree of orientation found within the chain’s interior. The dependence of the critical
elongational rate,«̇c , on the chain length,N, is observed to be«̇c;N21.96 when hydrodynamic
interactions are not employed and«̇c;N21.55when they are invoked. These scaling exponents agree
well with those obtained in previous BD simulations of bead-FENE~i.e., finitely extensible
nonlinear elastic! spring chains as well as with the theoretical predictions of«̇c;N22 and «̇c

;N21.5 without and with hydrodynamic interactions based on the Rouse and Zimm models,
respectively. ©2002 American Institute of Physics.@DOI: 10.1063/1.1493187#
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I. INTRODUCTION

The response of a dilute solution of long polymer cha
to elongational flow has been of interest to the polymer ph
ics community for several decades.1–13 This issue is relevan
to important applications such as turbulent drag reduc
and enhanced oil recovery. Franket al.1 used an opposing
flow apparatus to first observe the currently well-know
sharp transition of a flexible macromolecule between
coiled state and a stretched state~i.e., the coil–stretch tran
sition! under the influence of an elongational flow.1,2 This
phenomenon occurs when the elongational rate,«̇, exceeds a
critical value, «̇c , and has been observed for a variety
chemically distinct polymers.2–7 Direct visualization of a
conformation of a single DNA molecule in an elongation
flow are presented in the works of Perkins and co-worker2,7

A theoretical investigation into the behavior of a linear po
mer chain in dilute solution under elongational flow was fi
performed by de Gennes.8 Within this effort, the chain is
represented as a dumbbell with a conformationally dep
dent elasticity and friction and invokes the Peterlin–
4030021-9606/2002/117(8)/4030/12/$19.00
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Gennes approximation~P–dG!.8,9 It was shown that the
coil–stretch transition may be continuous~‘‘second order’’!
or discontinuous~‘‘first order’’ !. Similar ideas have been pre
sented by Hinch.10 A three-dimensional dumbbell model wit
a conformational dependent friction coefficient was used
Brestkin11 where the P–dG approximation was not invoke
Despite this, a discontinuous coil-stretch transition was
tained.

Magda et al.12 modified Fixman’s technique13 and ap-
plied it to a bead–spring Zimm model with up to 500 bea
and preaveraged hydrodynamic interactions that depend
deformation rate. It was revealed that the incorporation
these conformational-dependent hydrodynamic interacti
shifted the onset of the coil–stretch transition relative to t
predicted by Zimm. Bead–FENE~i.e., finitely extensible
nonlinear elastic! spring chains were considered within th
theoretical efforts of Wiestet al.14 Chains of length 7, 10,
and 20 beads were employed. It was observed that the
stretch transition for this model is gradual and that sprin
within the middle of the chain were slightly more extend
0 © 2002 American Institute of Physics
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4031J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 Simulation of linear polymers under elongational flow
at intermediate flow rates. Four different stages of extens
were identified as the equilibrium coil, the deformed coil, t
stretched spring, and the unfolded chain. Further deta
information on theoretical and experimental efforts deal
with linear polymer chains in elongational flow is foun
within Ref. 2.

Within the last three decades, molecular dynamics~MD!
and Brownian dynamics ~BD! computer simulations
methods15–41 have emerged as powerful tools not only f
the confirmation of theoretical predictions but equally, if n
more so, for the unique insight that they offer in their ow
right. The first MD15–17 and BD18,20–26efforts addressed th
behavior of both unperturbed linear polymer chains a
chains in various external fields using both elastic and ri
bond chain models. The BD investigations usually did n
take hydrodynamic interactions~HI! into account. Acierno
et al.18 and Rallison and Hinch22 simulated bead–rod chain
without HI in uniaxial flow and observed that the unfoldin
of back loops leads to large viscous stresses. Larson de
oped a simple dynamic kink model42 to describe this back
loop unfolding and obtained that the viscous stress sc
with the third power of the end-to-end distance, Hinch23 used
a three-dimensional model of a bead–rod chain without H
addition to a one dimensional model of kink dynamics
describe chain uncoiling in elongational flow. It was o
served that at large extensions the elongational flow
dependence of the end-to-end distance were similar for b
models.

Liu24 proposed an algorithm to simulate the motion o
freely jointed bead–rod chain with constant hydrodynam
interactions in steady state shear and elongational flow.
elongational flow, he addressed the elongational rate de
dence of the steady state elongational viscosity and the m
squared end-to-end distance for chains of 10 and 20 bea
was observed that for longer chains the coil–stretch tra
tion was sharper and occurred at smaller elongational ra
The rheological and optical behavior of a Kramers bead–
chain without HI in dilute solution under uniaxial exten
sional flow were studied by Doyleet al.25 They used the
algorithm suggested by Liu and showed that the Brown
stress dominates in steady state uniaxial extensional flo
small flow rates and that the stress–optical law is va
within this region. Larsonet al.26 used the BD method to
investigate the steady state extensional behavior of a be
spring chain model without HI but with a ‘‘wormlike’’ elas
ticity for each spring. Snapshots of this wormlike polym
chain were compared with snapshots of a single DNA m
ecule within elongational flow obtained by Perkins wi
co-authors2,7 within the laboratory. The dependence of cha
extension on elongational rate was also intercompared.
nificant ‘‘molecular individualism’’43 was observed arising
from a dependence of the onset and the shape of the c
stretch transition on the initial configuration of the molecu

Darinskii and co-workers27,28 employed Brownian dy-
namics computer simulations to study the coiling and unc
ing of a polymer chain modeled as a dumbbell with conf
mational dependent parameters by Brownian dynamics. T
calculated the effective potential8 due to de Gennes for thi
model and investigated the dependence of the average
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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to-end distance on elongational rate. At elongational fl
rates near a critical value, they found that the distribut
function of the end-to-end distance is bimodal reflecting
presence of a mixture of coiled and stretched chains.
same dumbbell model was used later29 for the BD simulation
of a polymer chain in oscillatory elongational planar flo
between two linear arrays of rotating cylinders.

Some of the first computational investigations into t
elongational rate dependence of the chain size and the in
sic elongational viscosity of bead–spring polymer cha
with rigorous inclusion of HI and excluded volume~EV!
have been carried out by de la Torre and co-workers30–35

over the last 10 years. These studies employed a variet
different soft potentials to constrain the bond lengths~i.e.,
Rouse, Morse, FENE springs! and reported the dependenc
of the chain end-to-end distance on elongational rate.
transition between coiled and stretched states defined to
cur at «̇c was studied as a function of chain length,N. It is
reported35 that for FENE chain«̇c;N21.55 both for theta and
good solvent conditions when HI were taken into acco
and «̇c;N22.00 without HI.

The steady state and transient rheological behavio
bead–FENE spring chains with and without the inclusion
EV and HI in extensional flow has also been studied
Fetsko and Cummings.36 The parameter setting the max
mum extent of extension of the FENE springs was obser
to have a pronounced effect on the simulated results by c
trolling the dependence of the elongational viscosity on el
gational rate. For example, for the situation with EV a
without HI, the elongational viscosity increased with elong
tional rate for a chain with soft FENE bonds but decreas
with elongational rate for chains with stiff FENE bond
Clarification of any confusion generated by this behavior
available only through similar elongational flow simulatio
using chain models with rigid bond lengths both with a
without HI.

To the authors’ knowledge, the only simulation of
bead–rod model of a linear polymer chain in elongatio
flow and in the presence of HI are the two recent efforts
Agarwal et al.37 They used one chain length ofN5100 and
EV were not invoked. The SHAKE–HI algorithm41 was em-
ployed which has been criticized from a theoretical vie
point by Öttinger.44,45 The behavior of the chain within the
flow was characterized in the first paper solely by the cha
in the end-to-end distance which was observed to underg
sharp coil–stretch transition above a critical rate. Incorpo
tion of HI displaced this value of«̇c to higher flow values.
The intrinsic elongational viscosity was calculated only
the absence of HI. In the second paper,37 the behavior of 10
individual chains with different initial conformations wa
calculated with and without HI. The initial conformation o
the chain was observed to influence greatly the chain ex
sion process in agreement with the earlier experimental
forts of Perkins and co-workers7 and the simulation work of
Larson and co-workers.26

In the present paper, Brownian dynamics simulations
freely jointed bead–rod chains of different length in stead
state elongational flow are performed for the first time in t
presence of both EV and fluctuating HI. A similar cha
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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without HI is studied for comparison. The simulations a
analyzed in terms of

~1! the average size and the shape of the chain as a wh
~2! the structure factor of the deformed chain at differe

elongational rates;
~3! the local orientation of each chain monomer along

chain;
~4! the birefringence and stress–optical relationship un

the influence of elongational flow;
~5! the dependence of the intrinsic elongational viscosity

the elongational flow rate; and
~6! the dependence of the critical elongational rates,«̇c , on

chain length.

This paper also represents the first paper in a serie
articles on the behavior of chains with different architectu
in elongational flow. It complements an earli
investigation38 of linear polymers, dendrimers and hype
branched polymers employing a bead–rod model with
and HI within a shear flow. The use of rigid connectors
fords better insight into structural and dynamic details occ
ring on a more local level where bonds are not deformed
much at high elongational rates as they would be withi
FENE chain model. In Sec. II, the model of the polym
chain is introduced and the details of the simulation al
rithm are explained. The simulated behavior of the ch
under elongational flow is reported in Sec. III. A gene
summary is presented in Sec. IV.

II. MODEL AND ALGORITHM DETAILS

The chain is composed ofN identical centers of viscou
friction z linked by Nb5N21 rigid rods of lengthl. Within
a Brownian dynamics simulation, the motion of the sim
lated particles is dictated by the Langevin equation in
high friction limit where the inertial term is neglected
Brownian dynamics algorithms to simulate the motion o
bead–rod polymer chains with HI have been proposed
Fixman,39 Ermak and McCammon,40 Öttinger44,45 and oth-
ers. This investigation employs the approach used in our
vious simulations38 of linear polymer chains, dendrimers an
hyperbranched polymers in shear flow. For this study, t
modifications were made to the algorithm. First, all calcu
tions are performed within the frame of the center of mass
the polymer chain. Second, the calculation of the constr
forces due to the rigid bonds~see below! is performed in a
fashion similar to O¨ ttinger.44,45

The equation of motion has the form

rW i5rW i
01

Dt

kBT (
j

Di j
0
•FW j

01nW i
0
•Dt1FW i

0~Dt !,

i 51,...,N, ~1!

whererW i
0 andrW i are the position vectors for beadi before and

after an unconstrained timestepDt, kBT is the Boltzmann
factor,Di j

0 is the diffusion tensor, andnW i
0 is the velocity of the

solvent at the position of beadi. For steady uniaxial elonga
tional flow with an elongational rate of«̇, n i ,x

0 5xi
0«̇, n i ,y

0 5
20.5yi

0«̇, n i ,z
0 520.5zi

0«̇, where the direction of flow lies
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along thex axis.n ix
0 , n iy

0 , andn iz
0 are the components of th

solvent velocity at the positionxi
0, yi

0, andzi
0 of the i th bead.

The solvent within these simulations is represented a
structureless continuum with chain–solvent collisions mi
icked by the vectorFW i

0 which has a variance–covarianc
matrix given by

^FW i
0~Dt !FW j

0~Dt !&52DtDi j
0 . ~2!

For the case when HI are neglected, one has

Dii
~ab!05~kBT/z!dab , i 51,...,N, ~3a!

Di j
~ab!050, for iÞ j 51,...,N, ~3b!

wheredab is a unit matrix (a,b5x,y,z). A constraint force,
FW j , acting on a beadj arises from neighboring beads alon
the chain according to

FW j52 (
k51

N21

lkS ]sk

]rW j
D

r

, ~4!

wheresk is an equation of rigid constraint for thekth bond,

sk5~rWk112rWk!
22 l 2, k51,...,N21 ~5!

and lk is a corresponding Lagrange multiplier. The be
positions and the diffusion tensor employed in SHAKE15 and
SHAKE–HI41 are based on trajectory points of the previo
time step. Within this study, the bead positions and the
fusion tensor employed are based on trajectory points m
way between the previous time step and the current unc
strained step which is consistent with the approach sugge
by Öttinger44,45 in addition to the recent efforts of Petera an
Muthukumar46 which employed the O¨ ttinger algorithm
within BD simulations of a freely jointed bead–rod cha
with EV and HI in shear flow.

A further contribution to the force on a given beadj
arises from the Lennard-Jones potential,ULJ , imposed be-
tween beadsi and j separated by more than one bond whe

ULJ5 (
u i 2 j u>4

4«0S S s

r i j
D 12

2S s

r i j
D 6D1Ucutoff. ~6!

The parameterss50.8l and «050.3kBT are used as pro
posed by Reyet al.19 to reproduce correctly the molecula
weight dependence of the mean squared end-to-end dista
^R2&, on chain length for a linear chain in au solution. A
cutoff of 2.5s is also invoked andUcutoff2U(2.5s). HI are
represented rigorously by means of the Rotne–Prag
Yamakawa interaction tensor.47,48 In this case diagonal ele
ments of the diffusion tensorDi i are given by Eq.~3a! and
for nonoverlapping beads one has

Di j
ab5h* ~p/3!1/2~3kBT/4z!~ l /Ri j !

3F S dab1
Ri j

a Ri j
b

Ri j
2 D 1

2a2

3Ri j
2 S dab2

3Ri j
a Ri j

b

Ri j
2 D G , ~7a!

whereRi j is the separation between beadsi and j each with
hydrodynamic radiusa andz is the friction coefficient. The
strength of the HI effects is represented by the param
h* 5(3/p)1/2a/ l . A value of h* 50.25 is used which corre
sponds to the hydrodynamic radiusa50.257l . If the beads
are allowed to overlap (Ri j ,2a) this tensor is
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Di j
ab5~kBT/z!F S 12

9Ri j

32a D dab1S 3

32aD Ri j
a Ri j

b

Ri j
G . ~7b!

In this paper, dimensionless quantities are used wh
length ~l!, energy (kBT), and translational frictionz
56phsa of chain beads~hs represents the solvent viscosit!
are set to unity. It follows that time is reduced byz l 2/kT and
elongational rate bykT/z l 2. Any physical quantity within
the remainder of this paper refers to dimensionless va
using this set of dimensionless units unless otherwise i
cated.

Elongational rates spanning a range from 0 to 10 an
time step betweenDt52.531024 and 131023 are used
within this investigation. Different chain lengths fromN
510 to N594 are considered~i.e., N510, 17, 22, 33, 46,
94!. A randomly coiled starting configuration was employ
for each simulation. An equilibration period of 2.53106 to
2.53107 time steps, depending on the chain length and el
gational rate, was performed before trajectories were sa
for analysis. The achievement of steady-state conditions
monitored through the end-to-end-vector,RW , the radius of
gyration, Rg , and the components of the inertia tensor,T.
Following equilibration, production runs were performed a
the resulting trajectories analyzed. Each production run
between 53106 and 53107 time steps in length dependin
on the chain length, the elongational rate and the magnit
of the time step.

The remaining sections of this paper investigate the
pendence of the steady state size, shape, and the intr
elongational viscosity of the chain on elongational rate. Er
bars for all plotted data points are smaller than the size of
symbol used unless otherwise indicated. Furthermore, l
connecting data points within figures are an aid to the
unless otherwise indicated.

III. RESULTS AND DISCUSSION

A. Dependencies of chain characteristics on
elongational rate

1. Size and shape of chains: Projections of bead
positions

Clouds of points corresponding to bead positions rela
to the N522 chain’s center-of-mass projected onto theXY
plane are plotted in Figs. 1~a!–1~d!. Projections are taken a
various times throughout the trajectory which employed
Figure 1~a! reveals a spherically symmetric coiled distrib
tion of chain beads under a small elongational flow. T
distribution deforms and become more and more prolate
the direction of flow when the elongational rate increas
Figure 1~b! shows the cloud of beads at an elongational r
of «̇50.15 at the beginning of coil–stretch transition. S
nificantly more constrained configurations are depicted
elongational flow rates of«̇50.3 which lies approximately
half way through the coil–stretch transition and«̇52.0 ~i.e.,
near the top of the transition region! in Figs. 1~c! and 1~d!,
respectively. Figures 1~b! and 1~c! reveal that at the transi
tion, the conformation is dumbbell-like with the previous
observed single large cloud of points being not only d
formed but also separated into several smaller clouds.
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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smaller clouds become increasingly narrow as the elon
tional rate is increased with each cloud representing the fl
tuations of a single bead. It is clearly seen in Figs. 1~c! and
1~d! that bead fluctuations parallel to the flow direction a
less than fluctuations perpendicular to the flow.

2. Radius of gyration and monomer density
distribution

Figure 2~a! reveals the distribution function of the radiu
of gyration for theN522 bead chain at different elonga
tional rates. The distribution of the radius of gyration
small elongational rates is similar to that at zero elongatio
rate. At elongational rates which correspond to the transit
region @curve 2, Fig. 2~a!#, the distribution becomes signifi
cantly broader and is shifted to higherRg values. This broad-
ening indicates an increase in the fluctuations of the cha
size in the vicinity of the transition. At higher rates, the d
tribution continues to shift to higherRg values but begins to
narrow. At very high rates where the chain is close to be
completely elongated, the distribution is very sharp
peaked. Figure 2~b! illustrates the density distribution func
tion, r(h), of monomers as a function of the distance,h,
from theN522 chain’s center-of-mass for a variety of elo
gational rates. The distribution at small elongational rate
qualitatively similar to that in the absence of flow. At elo
gational rates which correspond to the coil–stretch transi
region, this distribution becomes broader with peaks beg
ning to appear at various positions along the curve. At
highest rates, the distribution is comprised of a series
separate sharper peaked curves which correspond to th
erage bead positions of a chain near complete elonga
The increasing ease of identifying peaks within Fig. 2~b!
separated by areas of negligible if not zero density as

FIG. 1. Clouds of points corresponding to the projections of bead coo
nates onto theXZ plane for theN522 chain with HI at various times

throughout the simulation trajectory at different elongational rates:~a! «̇

50.0003,~b! «̇50.15, ~c! «̇50.3, ~d! «̇52.0.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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4034 J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 Neelov et al.
elongational rate is increased is consistent with the qua
tive behavior observed in Figs. 1~a!–1~d! where increasing
elongational flow leads to the increased segregation in
clouds.

FIG. 2. ~a! The distribution function of the radius of gyration of theN

522 chain at the elongational rates:~1! «̇50.0003, ~2! «̇50.15, ~3! «̇

50.3, ~4! «̇52.0. ~b! The distribution function of bead positions relative
the center-of-mass for a chain consisting ofN522 beads at the same elon
gational rates as in~a!. ~c! Structure factor for directions parallel@Spar(k);
curves 1–4# and perpendicular to the flow@Sper(k); curves 18– 48# as func-
tion of k for the N522 bead chain with HI at the elongational rates us
within ~a! and~b!. The dashed lines running through theSper(k) data labeled
18– 48 are parameter free fits to the Debye function, Eq.~8b!. The dashed
line running through theSpar(k) data set labeled 4 reflects a theoretic
prediction of a rigid rod~Ref. 50! @see Eq.~8c!#.
Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AI
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e

3. Structure factor

The structure factor,S(k), for each stored molecula
conformation is calculated along three Cartesian axes,
defined as

S~ka!5K 1

N2 U(
j 51

N

eikar a
j U2L , a5x,y,z. ~8a!

The angular brackets denote averaging over the entire tra
tory at a given elongational rate. In the absence of flow,
calculation is performed for each of the three projectio
with the quantityS(k)51/3@Sx(k)1Sy(k)1Sz(k)# being in-
vestigated. Under elongational flow, the structure fac
along the flow direction,Spar(k)5Sx(k), and perpendicular
to the flow direction,Sper(k)51/2(Sy(k)1Sz(k)), are calcu-
lated. The magnitude of the scattering vector,k, spans the
range 0,k,2p/ l wherel is a bond length. Plots ofSpar(k)
andSper(k) at different flow rates are depicted in Fig. 2~c! for
the N522 bead chain as function ofk. The former are la-
beled as curves 1–4 while the latter are labeled as cu
18– 48. These flow rates are the same as those for the
within Figs. 1, 2~a!, and 2~b!. The shape ofSper(k) is ob-
served not to change nearly as much as that forSpar(k) when
the elongational rate is increased. The shape ofSpar(k) and
Sper(k) are qualitatively similar to the shape of structure fa
torsSpar(k) andSper(k) obtained by Pierlioniet al.49 for long
chains stretched by pair forces applied to their ends. Ho
ever, all curves are not observed to overlap at highk as
reported by Pierlioniet al.49 This difference is possibly con
nected with the different mechanisms by which the exter
forces act on chain. In the case of Pierlioniet al., pair forces
act directly on the chain ends only which may have limit
effect on the local structure of the chain’s interior. With
this study, the effect of the elongational flow operates
rectly on each bead. Furthermore, in addition to the stre
ing forces in operation along the flow direction, there a
also compressive forces operating perpendicular to the fl
direction. Moreover, for elongational flow the overall exte
sional forces are stronger in the middle of the chain in co
parison to the chain ends.

The shape ofSper(k) is similar at all values of elonga
tional flow «̇ with the observed slope changes with flo
arising from changes in the chain’s radius of gyratio
Sper(k) is described well by the Debye function~i.e., dashed
lines through points labeled 18– 48!

Sper~k!5
2N

Aper
2 ~exp~2Aper!211Aper!, ~8b!

where Aper5k2Rg,per
2 /2. As the value ofRg,per

2 is obtained
from the simulation as (Rgy

2 1Rgz
2 )/2, the fit ofSper(k) to Eq.

~8b! is parameter free.
The shape ofSpar(k) changes significantly with elonga

tion rate. At moderate and high«̇ values@i.e., lines 3 and 4 in
Fig. 2~c!#, Spar(k) begins to oscillate dramatically. At th
highest elongational flow rate in Fig. 2~c! ~i.e., line 4!, the
oscillating shape forSpar(k) agrees well up tok,3 with the
theoretical prediction for a structure factor in the limitin
case of a rigid rod of lengthL with N beads uniformly dis-
tributed along it50
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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S~k!5
2N

~kL!2 ~12cos~kL!!. ~8c!

Agreement between the data and the theoretical rigid
prediction becomes worse at higherk where fluctuations be
gin to dominate the systematic effects as pointed out by P
leoni et al. ~see Fig. 3 of Ref. 49!.

4. Elongational rate dependence of chain size

The ratio of mean squared end-to-end distance^R2& to
its fully stretched value is plotted in Fig. 3~a! as a function of
the elongational rate for chains lengths ofN522 and N
594 with and without HI. At small elongational rates,«̇
!1, chains both with and without HI form coils with a cha
acteristic unperturbed size. Increasing the elongational
leads to a pronounced stretching of the chain. For cha
without HI ~open symbols!, the steady-state coil–stretc
transition is clearly seen in Fig. 3~a! as a very sharp chang
of ^R2& starting near«̇50.06 for N522 and near«̇50.002
for N594. Hydrodynamic interactions cause this transiti

FIG. 3. ~a! The elongational rate dependence of the ratio of mean squ
end-to-end distancêR2& to its maximum valuê Rmax

2 & for a chain ofN
522 beads with~filled squares! and without~open squares! HI in addition to
N594 beads with~filled six pointed star! and without~open six pointed
star! HI. ~b! The dependence of^R2&/^Rmax

2 & for chain ofN510 ~circles!, 22
beads~squares!, 33 beads~diamonds!, 46 beads~five pointed stars!, and 94
beads~six pointed stars! on elongational rate~normalized to its critical
value! in the absence of HI. The lines are theoretical predictions of Go
et al. ~Ref. 51! for chains consisting ofN510, 50, 250 beads labeled 1, 2
and 3, respectively.
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to occur at slightly higher values of«̇ starting near 0.1 for the
shorter chain with a relatively larger HI-induced shift to
value of «̇50.01 observed for the longer chain. This w
observed in earlier computational efforts of Cifre and de
Torre34,35for bead–FENE spring chains. Agarwalet al.37 ob-
tained this dependence for a bead–rod model at one c
length of N5100 in the absence of excluded volume inte
actions. The extension of the chain as a whole can be c
acterized also by the means of squared gyration radius^Rg

2&.
It is observed that̂Rg

2& behaves similarly and plots of thes
quantities are therefore not shown.

In Fig. 3~b! the ratio of^R2& to its fully stretched value
is plotted as a function of the ratio of the elongational rate
its critical value in the absence of HI. Results for chains
N522, 33, 46, and 94 beads are plotted and it is clearly s
that all points lie nearly on the same curve. The lines rep
sent the theoretical predictions of this ratio as a function
relative elongational rate for multisegmental bead–spr
models with fixed contour length due to Gotlibet al.51 in the
absence of HI for chain lengths ofN510, 50, and 250 bead
~curves 1, 2, and 3, respectively!. At «̇/ «̇c.1, curves for the
different N values vary very little and the good agreeme
between theory and simulation is observed. This indica
that a multisegmental model with a fixed contour length d
scribes the extension of bead–rod chain within an elon
tional flow well. A similar theoretical approach was used
the work of Hoffmanet al.52 These authors found a simila
elongational flow dependence on the end-to-end distance
a chain with a fixed contour length and for a freely joi
bead–rod model with rigid bond lengths where the co
straints were determined via Lagrange multipliers.

5. Elongational rate dependence of chain shape

The average shape of the polymer chain as whole
uniaxial elongational flow can be further characterized qu
titatively by projections of the mean squared end-to-end d
tance in the direction of flow,̂Rx

2&, and perpendicular to the
direction of flow. As they and z projections are practically

FIG. 4. The elongational rate dependence of the projection of the m
squared end-to-end distance parallel to the flow direction~i.e., ^Rx

2&;
squares! and perpendicular to the flow~i.e., ^Rz

2&; many pointed stars! for
the chain withN522 beads without HI~open symbols! and with HI ~filled
symbols!. Both quantities are normalized by their values at zero flow ra

ed
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 5. ~a! The elongational rate dependence of the orientation of theN522 chain as a whole~i.e., ^cos2 QRx&; dashed lines labeled 1 and 2! and the
orientation of chain bonds~i.e., ^cos2 ux&; solid lines labeled 18 and 28! in the direction of flow. Open symbols represent a chain without HI while fil
symbols represent a chain with HI.~b! The elongational rate dependence of the normalized birefringence~i.e., ^cos2 ux&2^cos2 uz&! ~circles,N510; triangles,
N517; squares,N522; diamonds,N533; five pointed stars,N546; and six pointed stars,N594!. The line labeled 1 represents the theory of Gotlibet al.
~Ref. 51!. The lines labeled 2 and 3 represent experimental results cited in Ref. 51 for polystyrene of molecular weight 2.073106 daltons and 4.2
3106 daltons correspondingly.~c! The dependence of the relative mean squared end-to-end distance of chain on normalized birefringence~i.e., ^cos2 ux&
2^cos2 uz&! for different chain lengths~circles,N510; triangles,N517; squares,N522; diamonds,N533, five pointed star,N546; six pointed star,N
594!. Open symbols represent simulations without HI and filled symbols for those performed with HI. The solid line represents the theoretical pref
Kuhn–Grun~Ref. 53!. ~d! The mean squared cosine of the angle between each bond and the flow direction as a function of theN-normalized bond number

along the chain backbone at the elongational rates~1! «̇50.0003,~2! «̇50.15,~3! «̇50.3, and~4! «̇52.0. The solid lines reflect the best fit parabola at ea

value of «̇.
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indistinguishable, onlŷ Rz
2& is presented as the projectio

perpendicular to the direction of flow. Values of^Rx
2& and

^Rz
2& for a chain length ofN522 are shown in Fig. 4 both in

the absence of HI~open symbols! and in the presence of H
~filled symbols! normalized by their zero flow values. Th
overall behavior of̂ Rx

2& and ^Rz
2& as a function of elonga

tional rate is qualitatively similar for cases where HI a
invoked and where they are neglected. At small elongatio
rates, all values of̂Rx

2& and ^Rz
2& are similar and indepen

dent of «̇. At higher elongational rates,^Rx
2& begins to in-

crease and̂Rz
2& begins to decrease towards a value near z

at high elongational rates. The behavior of^Rx
2& is similar to

that of the mean squared end-to-end distance within
3~a!. At high «̇ where the chain is nearly completely e
tended,̂ Rx

2& plateaus at a value near the contour length
chain. The decrease of^Rz

2& with «̇ can be described by
power law for the chain with and without HI with exponen
of 20.97 and20.96, respectively.

The shape of the chain as a whole can also be chara
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ized by the projections of the squared radii of gyration,^Rgx
2 &

and ^Rgz
2 &. It was observed that̂Rgx

2 & and ^Rgz
2 & behave

similar to ^Rx
2& and^Rz

2& and plots of these quantities are n
shown. The decrease of^Rgz

2 & with «̇ can also be describe
by a power law for the chain with and without HI with ex
ponents of20.98 and20.96, respectively.

6. Global and local orientation of the chain, and chain
birefringence

The average orientation of the chain as whole relative
the direction of elongational flow can be characterized by
angle,QRx or by ^cos2 QRx&5^Rx

2&/^R2& which is plotted in
Fig. 5~a! for N522 ~dashed lines! for simulations in the
absence of HI and in the presence of HI~i.e., lines 1 and 2,
respectively!. Both curves illustrate similar features. At va
ues of«̇,0.003, the value of̂cos2 QRx& for a chain without
HI is 1/3, denoting random chain orientation, and is virtua
independent of elongational rate. As«̇ increases, the inclina
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tion of the chains depicted by both curves~i.e., with and
without HI! undergoes a transition to a plateau of nearly 1
the y axis which corresponds to complete alignment of
chain as a whole along the direction of flow. Hydrodynam
interactions tend only to delay the onset of this step tra
tion and, again, this behavior is qualitatively similar to th
of the mean squared end-to-end distance within Fig. 3~a!.
However, the increase of^Rx

2&/^R2& in Fig. 5~a! occurs ear-
lier than that for^R2& for the same chain length~i.e., N
522! for the cases with and without HI@Fig. 3~a!, open and
filled squares#. Similar behavior was observed for all oth
chain lengths. The orientation of the chain as a whole
elongational flow can also be characterized by^cos2 QRgx&
5^Rgx

2 &/^Rg
2&. It is observed that̂cos2 QRgx& behaves similar to

^cos2 QRx& and plots of these quantities are therefore not
lustrated.

A similar analysis is depicted in Fig. 5~a! for N522
~solid lines! for a local orientational angle,ux , representing
the average angle between the flow direction and the i
vidual rigid bonds of the chain. This angle is plotted in F
5~a! as^cos2 ux& ~i.e., lines 18 and 28, respectively! which is
computed as the ratiôl x

2&/^ l 2& where ^ l x
2& is the mean

squaredx projection of a chain bond averaged over all cha
monomers.^ l 2& equals a constant for a bead–rod cha
which is unity within the current set of dimensionless uni
The general shape of the curves representing the ave
orientation of the chain as a whole and the curves repres
ing the local orientation of the chain are similar. However
sharp transition from randomly oriented bonds~i.e.,
^cos2 ux&51/3! to completely oriented bondŝcos2 ux&51!
occurs at a significantly larger«̇ value than for the orienta
tion of the chain as a whole. Once again HI cause the o
of the transition to be delayed to higher elongational flo
This implies different values of«̇c would be predicted de
pending on whether the onset of the coil–stretch transi
was detected by the step change in^cos2 ux&, which is con-
nected with birefringence, or bŷcos2 QRx&. Additionally, the
onset of the local orientation@i.e., Fig. 5~a!, lines 18 and 28#
is nearly the same as the onset of the transition in the m
squared end-to-end data within Fig. 3~a! for the sameN
522 chain~i.e., open and filled squares for chain witho
and with HI, respectively!.

By defining a ^cos2 uz& in a manner analogous t
^cos2 ux&, the dependence of^cos2 ux&2^cos2 uz&, which is the
normalized chain birefringence, on the relative elongatio
rate«̇/ «̇c is illustrated in Fig. 5~b! for the case ofN522, 33,
46, and 94 without HI. Also included within this figure as th
line labeled 1 is the theoretical prediction of Gotlibet al.51

for multisegmental chains of fixed contour length without
under elongational flow. The dashed lines represent exp
mental polystyrene data cited in Ref. 51 of molecu
weights of 2.073106 ~i.e., line 2! and 4.23106 ~i.e., line 3!
daltons. The agreement between the simulation results
the theoretical predictions and the experimental findings
observed to be good.

Figure 5~c! is a cross plot depicting the dependence
the normalized value of the birefringence versus normali
chain extension defined as^R2&/^Rmax

2 &. The birefringence is
defined as for Fig. 5~b!. This plot offers insight into how flow
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induced changes in the local orientation of monomers co
lates with the chain extension. The data within this figu
reveals ^cos2 ux&2^cos2 uz& and Rnorm

2 5^R2&/^Rmax
2 & are

strongly correlated. This behavior is compared with the t
oretical prediction of Kuhn and Grun53 relating birefrigence
to relative chain extension which is illustrated as a solid l
within Fig. 5~c!. This curve is a numerical approximation o
the inverse Langevin function and has the formDn/n0

50.6Rnorm
2 10.2Rnorm

4 10.2Rnorm
6 . Overall agreement is excel

lent with slight differences observed only for short chai
consisting ofN510 ~circles! andN517 beads~triangles! at
small values of chain extension.

Figure 5~d! illustrates the mean squared cosine of t
angle between each bond and the flow direction as func
of bond numberi along the chain backbone~normalized by
N! at different elongational rates. At very low shear rates,
bond orientations are near 1/3 reflecting the equal probab
of orientation of each bond in thex, y, and z directions.
When flow increases, the middle bonds begin to be more
more oriented in the direction of flow. At the same time, t
orientation of bonds close to the chain ends is only sligh
affected by flow even at elongational rates close to
middle of the coil–stretch transition. The general profile
curves 2 and 3 within Fig. 5~d! is similar to the theoretically
predicted parabolic profile54 with some deviation noticed
near the chain interior. The observation that the maxim
extent of local orientation and elongation is found near
middle of the chain is consistent with experimental efforts
chain scission within elongational flow2 where breaks always
occur near the chain center. Increasing elongational flow
ther increases all bond orientation with an accompany
reduction in the difference between midchain and chain
orientation.

7. Intrinsic elongational viscosity

The primary rheological property of interest in this stu
is the stress tensor, given by the Kramers expression48

t52h0«̇2n^RF&1nI , ~9!

where«̇ is the rate-of-strain tensor andh0 is the elongational
viscosity of the solvent. For simple elongational flow,«̇xx5
22«̇yy522«̇zz5 «̇ and all off diagonal components of th
rate-of-strain tensor are zero. Here then is the number den-
sity of chains,RF is the virial tensor for a single chain. Th
elongational viscosity is expressed in terms of the elon
tional stress as

hel52
txx2tzz

«̇
5h01n

RxFx2RzFz

«̇
, ~10a!

and the corresponding intrinsic elongational viscosity is c
culated using Eq.~10a! as

@hel#5F ~hel2h0!

nh0
G . ~10b!

The intrinsic elongational viscosity@hel# afforded by simu-
lations with and without HI is plotted in Fig. 6~a! for the N
522 chain as a function of elongational rate. Each set of d
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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reveals a transition from an unperturbed coil at low elon
tional rates to a highly stretched rodlike conformation at h
elongational rates. Hydrodynamic interactions are obser
to displace occurrence of this transition to higher elon

FIG. 6. ~a! The elongational rate dependence of the intrinsic elongatio
viscosity for aN522 chain. Open symbols reflect simulations perform
without HI with closed symbols reflecting simulations invoking HI.~b! The
dependence of the plateau values of the intrinsic elongational visco
@hel#max, on chain length,N. Open symbols reflect simulations performe
without HI with closed symbols reflecting simulations invoking HI. Th
solid lines are best fits implying a power law relationship between@hel#max

andN. The dashed line represents the theoretical dependence of@hel#max on
N for a rigid rod with HI from Ref. 48.~c! The ratio of the birefringence to
the difference in the stress components parallel and perpendicular to
flow directions@i.e., stress–optical relationship~Ref. 48!# as a function of
the flow rate. The data is for a chain ofN522 beads. Open symbols refle
simulations performed without HI with closed symbols reflecting simu
tions invoking HI. The data on they axis has been normalized by its valu
at an elongational rate of zero.
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tional rates as in earlier figures for chain extension and ch
orientation. At high elongational rates, the plateau value
@hel# for the model with HI is observed@Fig. 6~a!# to be
significantly lower than@hel# values without HI. This obser-
vation is expected since HI between chain beads act to
crease chain friction and hence viscosity relative to the c
where HI are absent.48,55

The simulated values of@hel# without HI were compared
with the theoretical predictions of Hassager56 in the follow-
ing two limiting cases:

@hel#5@hel#
minS 11

N2«̇

90
1¯ D at small «̇, ~11a!

@hel#5@hel#
maxS 12

24

N2«̇
2¯ D at large «̇, ~11b!

where@hel#
min and@hel#

max are limiting values of character
istic elongational intrinsic viscosity at low and high flo
rates, respectively. After truncating Eqs.~11a! and ~11b! to
the first two terms as shown above within the parenthese
the right-hand side of each equation, it is noted~figure not
shown! that Eq.~11a! describes the behavior of@hel# well at
small «̇ before the transition. Equation~11b! describes the
data for chains with and without HI well from the high«̇
plateau to the middle of the transition~figure not shown!. A
similar conclusion was also made both by Doyleet al.25 as
well as Agarwalet al.37 for a bead–rod model without HI.

The plateau values of the intrinsic elongational viscos
@hel#max, at large elongational rates for chains of lengthN
510 to N594 are plotted on Fig. 6~b! as function of chain
lengthN on a double log scale. Filled symbols correspond
simulations where HI are invoked with open symbols rep
senting simulations performed in the absence of HI. T
lines running through the symbols indicate@hel#max;N3 for
simulations performed in the absence of HI and@hel#max

;N2.67 for simulations performed in the presence of H
These dependencies can be compared with theoretical re
for chains without and with HI. For a freely draining chai
@hel#max has been shown to scale asN3 in the theoretical
efforts of Larsonet al.26 The slope obtained from the simu
lation which invoked HI is in reasonable agreement with t
average slope of the curve for a rigid rod with HI@i.e.,
dashed line within Fig. 6~b!# generated from data tabulate
in the monograph of Birdet al.48

8. Stress –optical law

The stress–optical relationship predicts that the index
refraction tensor should be proportional to the stress tens48

For the case of uniaxial elongational flow, this rule impli
the chain birefringence is proportional to the difference
the stress components parallel and perpendicular to the
directions. This can be written as

Dn

txx2tzz
5const. ~12!

Figure 6~c! reveals this law is valid both for chain mod
els without and with HI before the onset of the coil–stret
transition. Values on they axis of this plot have been nor
malized by their values at zero elongation rate. Within t
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transition region, the difference in the stress components
creases faster than the birefringence leading to an ov
decrease in the ratio within Eq.~12!. This decrease is nearl
linear on this plot’s log–log scale Exponents for the pow
law describing this decay are20.96 and20.97 for a chain
with and without HI which corresponds well with the pow
law decays of the perpendicular projections of the end-to-
distance and the radius of gyration. Similar results were
tained by Wiest57 for models of polymer chains composed
N55, 10, and 20 FENE springs under the P–dG approxim
tion and by Doyleet al.25 for a Kramers bead–rod chain
without HI. Wiest interpreted the result in terms of the co
formational properties of the chain. He revealed that fo
FENE chain the moment of inertia of the chain about
flow axis undergoes a transition at smaller values of elon
tional flow than the end-to-end distance.14,57Wiest attributed
this observed flow induced decrease of the chain size per
dicular to the flow direction to the orientation of the ind
vidual bond vectors. However, Fig. 5~a! within this paper
reveals the onset of increased orientation of the bonds wi
the bead–rod model employed within this study occurs
higher values of elongational flow relative to analogo
quantities for whole-chain orientation. This implies that t
decrease of the perpendicular component of the radiu
gyration and the perpendicular component of the end-to-

FIG. 7. The dependence of the critical value of the elongational rate
chain length for chains without HI~open symbols! and with HI ~filled sym-
bols! drawn from the mean squared end-to-end data for chains ofN510, 17,
22, 33, 46, and 94. Solid lines reflect best fits implying a power law re
tionship between the critical value of the elongational rate and the c
length.
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vector in bead–rod model is initially due to increased orie
tation of the chain as a whole rather than increased orie
tion of the individual bonds.

B. Dependencies of transition rate on chain length

The dependence of the mean square end-to-end dist
on «̇ has been calculated for chains of lengthN510, 17, 22,
33, 46 andN594 with and without HI. These data allow
quantitative estimations of the critical value of elongation
rate,«̇c , to be made and its dependence on chain length to
investigated. In Fig. 7, the critical value,«̇c , is plotted as
function of chain lengthN for simulations performed with
and without HI. These«̇c are obtained from mean square
end-to-end versus«̇ data. The same procedure was done
obtain«̇c at eachN ~plot not shown! from the dependence o
the average local chain orientation^cos2 ux&, of chain mono-
mers on «̇. The resulting power law parameters~i.e., «̇c

;kN2g! extracted from best-fit lines of the double logarit
mic plots are given in Table I. The ratio of prefactors,k, for
bead–rod chains without and with HI obtained from cha
extension and from the local orientation is close to 2. This
similar to the analogous value of this ratio for a FEN
chain.35 The value of the prefactor for a bead–rod mod
with and without HI is approximately twice that for a FEN
chain35 with and without HI, respectively. However, this dif
ference could be linked to the portion~i.e., onset or mid-
point! of the transition used to define«̇c . The slopes ob-
tained from chain extension and from the local orientation
the monomers, respectively, are very similar~i.e., 1.97 and
1.96 without HI and 1.56 and 1.55 with HI!. They agree well
with slopes for bead–FENE spring simulations of de la To
without HI and with EV and with HI and EV~2.00 and 1.55,
respectively! and to theoretical predictions2 ~2.0 and 1.5 for
chain with and without HI, respectively! obtained on the ba-
sis of the Rouse and Zimm models, respectively. Furth
more, the exponent of around 1.50 to 1.56 for simulatio
using HI is in reasonable agreement with available exp
mental data.2

IV. SUMMARY

Brownian dynamics simulations of the statistical a
rheological properties of a bead–rod model of a polym
chain under elongational flow of different lengths with e
cluded volume have been performed. Both chains with a

n

-
in
TABLE I. Parametersk andg extracted from fitting the data in Fig. 7 to«̇c'kN2g.

Model ^R2&/^Rmax
2 & on N ^cos2 ux& on N

Bead–rod chain with HI, k531.861.3 k535.961.2
~Fig. 7 filled symbols! g51.5660.04 g51.5560.03

Bead–rod chain without HI, k563.161.1 k573.561.2
~Fig. 7 open symbols! g51.9760.03 g51.9660.03

Bead–spring FENE chain k514.161.1
with HI ~Ref. 35! g51.5560.03

Bead–spring FENE chain k528.660.3
without HI ~Ref. 35! g52.00560.011
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without HI were studied and compared at different elon
tional rates. The distribution function of the radius of gyr
tion and the distribution of monomers around the center
inertia of the chain were obtained at different flow rate
These distribution functions significantly broaden near«̇c

which corresponds to increased fluctuations of the chain
in this region. Structure factors for directions parallel a
perpendicular to the direction of flow were calculated. T
perpendicular component is described well by the De
function without any adjustable parameters. The para
component oscillates significantly at large extensions in
cordance with previous results of Pierleoniet al.49 for a
chain extended by pairwise forces and with the theoret
formula of Onuki50 in the limit of a rigid rod. It was shown
that bond orientation depends significantly on their posit
along the chain at intermediate flow rates. The profile
bond orientation as a function of bond number along
chain is nearly parabolic with the maximum extent of orie
tation occurring in the middle of the chain. This result is
agreement with the theoretical prediction of Henyey a
Rabin54 and the experimental observation that linear cha
under elongational flow are observed to break near
middle of the chain. A ‘‘flat-topped’’ deviation from the para
bolic shape is observed near the chain center. Both the a
age chain extension and chain orientation have been ca
lated as a function of«̇. It is observed that critical values o
the elongational rates obtained from chain extension a
whole and from the local orientation of the monomers dur
the coil–stretch transition are nearly the same@see Fig. 5~c!#.
At the same time, the orientation of the chain as whole
curs at smaller values of«̇ especially for longer chains. In
clusion of HI leads to a shift of the coil–stretch transition f
all these conformational and orientational characteristics
higher values of«̇. It was found that the limiting intrinsic
elongational viscosity at high elongational rate is smaller
the chain with HI than for the chain without HI. The depe
dence of critical elongation rate«̇c on chain length,N was
calculated for the first time for a bead–rod model with flu
tuating HI. Despite the different critical value of«̇c for the
bead–rod chain and the FENE chain, both models rev
nearly the same scaling behavior as a function of ch
length which is in good agreement with the theoretical p
dictions of the Rouse and Zimm models.
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