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Brownian dynamics(BD) simulations of a linear freely jointed bead—rod polymer chain with
excluded volumeEV) interaction have been performed under elongational flow with and without
the use of fluctuating hydrodynamic interactidi). The dependence of the chain size, shape and
intrinsic elongational viscosity on the elongational rateare reported. A sharp coil-stretch
transition is observed when exceeds a critical valug,.. The inclusion of the HI leads to a shift

in the coil-stretch transition to higher flow values. Chain deformation due to elongational flow is
observed to first consist of the alignment of the chain with the direction of flow without significant
chain extension followed by additional alignment of the bond vectors with the flow direction and
chain extension as flow rate is increased further. The distribution function for the chain’s radius of
gyration becomes significantly broader within the transition region which implies an increase in
fluctuations in the chain size in this region. The structure factors parallel and perpendicular to the
flow direction illustrate different elongational rate dependencies. At high rates, the structure factor
in the direction of the flow exhibits an oscillating dependence which corresponds to the theoretically
predicted shape for a rigid-rod model. The mean squared orientation of each bond within the chain
with respect to the flow direction as function of bond number is nearly parabolic in shape with the
highest degree of orientation found within the chain’s interior. The dependence of the critical
elongational rateg., on the chain lengthl, is observed to bé.~N~1% when hydrodynamic
interactions are not employed aig N~ 1>*when they are invoked. These scaling exponents agree
well with those obtained in previous BD simulations of bead-FEWNE., finitely extensible
nonlinear elastic spring chains as well as with the theoretical predictions:of N~2 and &,
~N~15 without and with hydrodynamic interactions based on the Rouse and Zimm models,
respectively. ©2002 American Institute of Physic§DOI: 10.1063/1.1493187

I. INTRODUCTION Gennes approximatioriP—dG.2° It was shown that the
ScoiI—stretch transition may be continuo(isecond order?)

to elongational flow has been of interest to the polymer phy59r d|scont|nl_Jou$c‘)‘f|rst order_“ )- Slmllar ideas have been pre-
ics community for several decadkd® This issue is relevant Sented by Hinch? A three-dimensional dumbbell model with

to important applications such as turbulent drag reductior? confprrlnatlonal dependent friction coefficient was used by
and enhanced oil recovery. Fraekal® used an opposing Brestkin” where the P—dG approximation was not invoked.
flow apparatus to first observe the currently well-knownPesPpite this, a discontinuous coil-stretch transition was ob-
sharp transition of a flexible macromolecule between dained.

coiled state and a stretched stéte., the coil—stretch tran- Magda et al** modified Fixman's techniqié and ap-
sition) under the influence of an elongational fldfvThis  Plied it to a bead—spring Zimm model with up to 500 beads
phenomenon occurs when the elongational ratexceeds a and preaveraged hydrodynamic interactions that depend on
critical value, &,, and has been observed for a variety ofdeformation rate. It was revealed that the incorporation of
chemically distinct polymer$.” Direct visualization of a these conformational-dependent hydrodynamic interactions
conformation of a single DNA molecule in an elongational shifted the onset of the coil—stretch transition relative to that
flow are presented in the works of Perkins and co-workérs. predicted by Zimm. Bead—FENH.e., finitely extensible

A theoretical investigation into the behavior of a linear poly- nonlinear elasticspring chains were considered within the
mer chain in dilute solution under elongational flow was firsttheoretical efforts of Wieset al** Chains of length 7, 10,
performed by de GenndsWithin this effort, the chain is and 20 beads were employed. It was observed that the coil-
represented as a dumbbell with a conformationally depenstretch transition for this model is gradual and that springs
dent elasticity and friction and invokes the Peterlin—dewithin the middle of the chain were slightly more extended

The response of a dilute solution of long polymer chain

0021-9606/2002/117(8)/4030/12/$19.00 4030 © 2002 American Institute of Physics

Downloaded 11 Mar 2008 to 131.155.151.13. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 Simulation of linear polymers under elongational flow 4031

at intermediate flow rates. Four different stages of extensioto-end distance on elongational rate. At elongational flow
were identified as the equilibrium coil, the deformed coil, therates near a critical value, they found that the distribution
stretched spring, and the unfolded chain. Further detailefunction of the end-to-end distance is bimodal reflecting the
information on theoretical and experimental efforts dealingpresence of a mixture of coiled and stretched chains. The
with linear polymer chains in elongational flow is found same dumbbell model was used I&tdor the BD simulation

within Ref. 2. of a polymer chain in oscillatory elongational planar flow
Within the last three decades, molecular dynanidp) between two linear arrays of rotating cylinders.
and Brownian dynamics(BD) computer simulations Some of the first computational investigations into the

method$®*! have emerged as powerful tools not only for elongational rate dependence of the chain size and the intrin-
the confirmation of theoretical predictions but equally, if notsic elongational viscosity of bead—spring polymer chains
more so, for the unique insight that they offer in their ownwith rigorous inclusion of HI and excluded volum&V)
right. The first MD®~1" and BD'®2°~?%efforts addressed the have been carried out by de la Torre and co-worlers
behavior of both unperturbed linear polymer chains andver the last 10 years. These studies employed a variety of
chains in various external fields using both elastic and rigiddifferent soft potentials to constrain the bond lengths.,
bond chain models. The BD investigations usually did notRouse, Morse, FENE springand reported the dependence
take hydrodynamic interaction@ll) into account. Acierno of the chain end-to-end distance on elongational rate. The
et al'® and Rallison and Hincéi simulated bead—rod chains transition between coiled and stretched states defined to oc-
without HI in uniaxial flow and observed that the unfolding cur ate, was studied as a function of chain lenghh, It is
of back loops leads to large viscous stresses. Larson devaieported® that for FENE chairi.~N~*®both for theta and
oped a simple dynamic kink modélto describe this back- good solvent conditions when HI were taken into account
loop unfolding and obtained that the viscous stress scalednd&.~N~2%° without HI.
with the third power of the end-to-end distance, Hiftalised The steady state and transient rheological behavior of
a three-dimensional model of a bead—rod chain without HI inrbead—FENE spring chains with and without the inclusion of
addition to a one dimensional model of kink dynamics toEV and HI in extensional flow has also been studied by
describe chain uncoiling in elongational flow. It was ob- Fetsko and Cumming®. The parameter setting the maxi-
served that at large extensions the elongational flow ratenum extent of extension of the FENE springs was observed
dependence of the end-to-end distance were similar for botto have a pronounced effect on the simulated results by con-
models. trolling the dependence of the elongational viscosity on elon-
Liu?* proposed an algorithm to simulate the motion of agational rate. For example, for the situation with EV and
freely jointed bead—rod chain with constant hydrodynamicwithout HI, the elongational viscosity increased with elonga-
interactions in steady state shear and elongational flow. Fdional rate for a chain with soft FENE bonds but decreased
elongational flow, he addressed the elongational rate depemth elongational rate for chains with stiff FENE bonds.
dence of the steady state elongational viscosity and the meaBlarification of any confusion generated by this behavior is
squared end-to-end distance for chains of 10 and 20 beads.dvailable only through similar elongational flow simulations
was observed that for longer chains the coil—stretch transising chain models with rigid bond lengths both with and
tion was sharper and occurred at smaller elongational ratesithout HI.
The rheological and optical behavior of a Kramers bead—-rod To the authors’ knowledge, the only simulation of a
chain without HI in dilute solution under uniaxial exten- bead—rod model of a linear polymer chain in elongational
sional flow were studied by Doylet al?® They used the flow and in the presence of HI are the two recent efforts of
algorithm suggested by Liu and showed that the BrowniarAgarwal et al3’ They used one chain length bf=100 and
stress dominates in steady state uniaxial extensional flow &V were not invoked. The SHAKE—HI algoritfthwas em-
small flow rates and that the stress—optical law is validployed which has been criticized from a theoretical view-
within this region. Larsoret al?® used the BD method to point by Qtinger***® The behavior of the chain within the
investigate the steady state extensional behavior of a beadlew was characterized in the first paper solely by the change
spring chain model without HI but with a “wormlike” elas- in the end-to-end distance which was observed to undergo a
ticity for each spring. Snapshots of this wormlike polymersharp coil-stretch transition above a critical rate. Incorpora-
chain were compared with snapshots of a single DNA mol+tion of HI displaced this value of to higher flow values.
ecule within elongational flow obtained by Perkins with The intrinsic elongational viscosity was calculated only in
co-authoré’ within the laboratory. The dependence of chainthe absence of HI. In the second paplethe behavior of 10
extension on elongational rate was also intercompared. Sigadividual chains with different initial conformations was
nificant “molecular individualism™?® was observed arising calculated with and without HI. The initial conformation of
from a dependence of the onset and the shape of the coilthe chain was observed to influence greatly the chain exten-
stretch transition on the initial configuration of the molecule.sion process in agreement with the earlier experimental ef-
Darinskii and co-workerf$?® employed Brownian dy- forts of Perkins and co-workersind the simulation work of
namics computer simulations to study the coiling and uncoilLarson and co-worker%.
ing of a polymer chain modeled as a dumbbell with confor-  In the present paper, Brownian dynamics simulations of
mational dependent parameters by Brownian dynamics. Thefyeely jointed bead—rod chains of different length in steady-
calculated the effective potenfiaiue to de Gennes for this state elongational flow are performed for the first time in the
model and investigated the dependence of the average enpresence of both EV and fluctuating HI. A similar chain
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without HI is studied for comparison. The simulations arealong thex axis. v2, vioy, andv?, are the components of the
analyzed in terms of solvent velocity at the positiox’, y°, andz? of theith bead.

. . The solvent within these simulations is represented as a
(1) the average size and the shape of the chain as a whole . . . - .

) . Structureless continuum with chain—solvent collisions mim-
(2) the structure factor of the deformed chain at different’

elongational rates: icked by the vectord? which has a variance—covariance
(3) the local orientation of each chain monomer along theMatrix given by

chain; _ . (BAADPBO(At))=2AtDY. )
(4) the birefringence and stress—optical relationship under
the influence of elongational flow; For the case when HI are neglected, one has
(5) the depend_ence of the intrinsic elongational viscosity on Di<iaﬁ>0: (KeT/0) g, 1=1,..N, (33
the elongational flow rate; and
(6) the dependence of the critical elongational ratgs, on D{*#°=0, fori#j=1,.N, (3b)
chain length.

whered, g is a unit matrix @, 8=Xx,y,z). A constraint force,

This paper also represents the first paper in a series dfi» cting on a beagl arises from neighboring beads along
articles on the behavior of chains with different architecturedn® chain according to
in elongational flow. It complements an earlier R N-1 90
investigatiori® of linear polymers, dendrimers and hyper- Fi=— k( ) , 4
branched polymers employing a bead—rod model with EV r
and HI within a shear flow. The use of rigid connectors af-whereo-k is an equation of rigid constraint for theh bond,
fords better insight into structural and dynamic details occur- o L2 12 _
ring on a more local level where bonds are not deformed as o= (e =M)"= 1% k=1,..N-1 ©)
much at high elongational rates as they would be within and \| is a corresponding Lagrange multiplier. The bead
FENE chain model. In Sec. II, the model of the polymer positions and the diffusion tensor employed in SHARENd
chain is introduced and the details of the simulation algo-SHAKE—HI*! are based on trajectory points of the previous
rithm are explained. The simulated behavior of the chairtime step. Within this study, the bead positions and the dif-
under elongational flow is reported in Sec. Ill. A generalfusion tensor employed are based on trajectory points mid-
summary is presented in Sec. IV. way between the previous time step and the current uncon-
strained step which is consistent with the approach suggested
by Ottinge***in addition to the recent efforts of Petera and
Il. MODEL AND ALGORITHM DETAILS Muthukumaf® which employed the @inger algorithm

The chain is composed of identical centers of viscous within BD simulations of a freely jointed bead—rod chain
friction ¢ linked by N,=N—1 rigid rods of length. Within ~ With EV and HI in shear flow.
a Brownian dynamics simulation, the motion of the simu- A further contribution to the force on a given bead
lated particles is dictated by the Langevin equation in thedrises from the Lennard-Jones potentldl,;, imposed be-
high friction limit where the inertial term is neglected. tween beads andj separated by more than one bond where
Brownian dynamics algorithms to simulate the motion of a o\12 [ 5\6
bead—rod polymer chains with HI have been proposed by Uy ;= 2 480(( —(—
Fixman?® Ermak and McCammoff, Ottingef**“® and oth- i=if=4 il
ers. This investigation employs the approach used in our preFhe parameters=0.8 and £;=0.3%gT are used as pro-
vious simulation® of linear polymer chains, dendrimers and posed by Reyet al® to reproduce correctly the molecular-
hyperbranched polymers in shear flow. For this study, twownveight dependence of the mean squared end-to-end distance,
modifications were made to the algorithm. First, all calcula{R?), on chain length for a linear chain in @solution. A
tions are performed within the frame of the center of mass ofutoff of 2.57 is also invoked and)®*°"— U (2.5¢). HI are
the polymer chain. Second, the calculation of the constraintepresented rigorously by means of the Rotne—Prager—
forces due to the rigid bondsee belowis performed in a Yamakawa interaction tensdr*® In this case diagonal ele-

+U cutoff_ (6)

rij

fashion similar to @&inger44° ments of the diffusion tensdd;; are given by Eq(3a and
The equation of motion has the form for nonoverlapping beads one has
At . a D& =h*(7/3)YA(3kgT/4L)(1/R;;
Fi:_,io_l_ﬁz Dﬂ-F?+17i()-At+q)?(At), ij ( ) ( B 5)( |])
B Als o RiRE\  2a2 3R} R -
i=1,..N, (1) " RE 3R\ R )

wherer? andf; are the position vectors for beatiefore and ~ whereR,; j is the separation between beadsndj each with
after an unconstrained timestéyt, kgT is the Boltzmann hydrodynamic radius and ¢ is the friction coefficient. The
factor,Dﬂ is the diffusion tensor, anﬂ? is the velocity of the  strength of the HI effects is represented by the parameter
solvent at the position of beddFor steady uniaxial e(l)onga- h* = (3/7)Y2all. A value ofh* =0.25 is used which corre-

tional flow with an elongational rate Gf, vﬁxzx?é, Viy= sponds to the hydrodynamic radias=0.257. If the beads

—0.5%, 1?,=—0.520, where the direction of flow lies are allowed to overlapR;;<2a) this tensor is
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a

3 |\ RiRf
—1 (7

op 9R;j

In this paper, dimensionless quantities are used where
length (1), energy kgT), and translational friction{
=6mn.a of chain bead$7, represents the solvent viscosity
are set to unity. It follows that time is reduced Bi¥/kT and
elongational rate bkT/Z12. Any physical quantity within
the remainder of this paper refers to dimensionless values
using this set of dimensionless units unless otherwise indi-
cated.

Elongational rates spanning a range from 0 to 10 and a
time step betweem\t=2.5x10"* and 1x10 2 are used
within this investigation. Different chain lengths froid
=10 to N=94 are considere¢i.e., N=10, 17, 22, 33, 46, d
94). A randomly coiled starting configuration was employed £ b b iidd
for each simulation. An equilibration period of X30° to E” ‘ ‘ ‘ SRRERRRRREY ’ ’ “!
2.5x 10’ time steps, depending on the chain length and elon-
gational rate, was performed before trajectories were saved
for analysis. The achievement of steady-state conditions was X

monitored through the end-to-end-vect&, the radius of FIG. 1. Clouds of points corresponding to the projections of bead coordi-
gyration, Rg, and the components of the inertia tensbr, nates onto theXZ plane for theN=22 chain with HI at various times
Fonowing equi”bration, production runs were performed andthl’OUghOUt the simulatiop trajectory at different elongational ratese

the resulting trajectories analyzed. Each production run was ©:0003,(b) £=0.15,(c) £=0.3,(d) £=2.0.

between 5 10° and 5x 10’ time steps in length depending

on the chain length, the elongational rate and the magnitude . .
of the time step. smaller clouds become increasingly narrow as the elonga-

The remaining sections of this paper investigate the detional rate is increased with each cloud representing the fluc-

pendence of the steady state size, shape, and the intrindi¢@tions of a single bead. It is clearly seen in Fige) and
elongational viscosity of the chain on elongational rate. Errort(d) that bead fluctuations parallel to the flow direction are
bars for all plotted data points are smaller than the size of th¥SS than fluctuations perpendicular to the flow.

symbol used unless otherwise indicated. Furthermore, lines

connecting data points within figures are an aid to the eye. Radius of gyration and monomer density

v

unless otherwise indicated. distribution
Figure Za) reveals the distribution function of the radius

ll. RESULTS AND DISCUSSION of gyration for theN=22 bead chain at different elonga-
A. Dependencies of chain characteristics on tional rates. The dlstrlbythn .Of the radius of gyranory at
elongational rate small elongational rates is similar to that at zero elongational

] ) o rate. At elongational rates which correspond to the transition
1 S'It?e and shape of chains: Projections of bead region[curve 2, Fig. 2a)], the distribution becomes signifi-
positions

cantly broader and is shifted to highy values. This broad-
Clouds of points corresponding to bead positions relativeening indicates an increase in the fluctuations of the chain’s
to the N=22 chain’s center-of-mass projected onto X size in the vicinity of the transition. At higher rates, the dis-
plane are plotted in Figs.(d-1(d). Projections are taken at tribution continues to shift to highd®, values but begins to
various times throughout the trajectory which employed Hl.narrow. At very high rates where the chain is close to being
Figure Xa) reveals a spherically symmetric coiled distribu- completely elongated, the distribution is very sharply
tion of chain beads under a small elongational flow. Thispeaked. Figure ®) illustrates the density distribution func-
distribution deforms and become more and more prolate ition, p(h), of monomers as a function of the distante,
the direction of flow when the elongational rate increasesfrom theN=22 chain’s center-of-mass for a variety of elon-
Figure Xb) shows the cloud of beads at an elongational rategational rates. The distribution at small elongational rates is
of e=0.15 at the beginning of coil-stretch transition. Sig- qualitatively similar to that in the absence of flow. At elon-
nificantly more constrained configurations are depicted fogational rates which correspond to the coil—stretch transition
elongational flow rates of =0.3 which lies approximately region, this distribution becomes broader with peaks begin-
half way through the coil—stretch transition afne 2.0 (i.e.,  ning to appear at various positions along the curve. At the
near the top of the transition regipm Figs. 1c) and 1d), highest rates, the distribution is comprised of a series of
respectively. Figures(l) and Xc) reveal that at the transi- separate sharper peaked curves which correspond to the av-
tion, the conformation is dumbbell-like with the previously erage bead positions of a chain near complete elongation.
observed single large cloud of points being not only de-The increasing ease of identifying peaks within Figb)2
formed but also separated into several smaller clouds. Theeparated by areas of negligible if not zero density as the
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T T T 3. Structure factor

0.04l- N The structure factorS(k), for each stored molecular
’ 3 conformation is calculated along three Cartesian axes, and
defined as

p(Rg)

0.021- -1

1 i|?
S(ka)=<m > a=X.)y,z. (8a)
The angular brackets denote averaging over the entire trajec-
tory at a given elongational rate. In the absence of flow, the
calculation is performed for each of the three projections
0.00 . e | with the quantityS(k) = 1/ S,(k) + S,(k) + S,(k) ] being in-
(a) 000 2.00 4.00 6.00 vestigated. Under elongational flow, the structure factor
9 along the flow directionS;.(k) = S(k), and perpendicular
to the flow direction Sy (k) = 1/2(S,(k) + S,(k)), are calcu-
lated. The magnitude of the scattering vectgrspans the
0.04} - range 0<k<2m/l wherel is a bond length. Plots d,,(k)
andS,¢(K) at different flow rates are depicted in Figcfor
the N=22 bead chain as function & The former are la-
beled as curves 1-4 while the latter are labeled as curves
1'-4'. These flow rates are the same as those for the data
0.02 7 within Figs. 1, Za), and 2b). The shape o5,.(k) is ob-
2 served not to change nearly as much as thagfg(k) when
- the elongational rate is increased. The shap&,gfk) and
Spe(K) are qualitatively similar to the shape of structure fac-
4 [T tors Sya(k) andS,e(k) obtained by Pierlionét al*® for long
®) ° 2 4 6 8 10 chains stretched by pair forces applied to their ends. How-
ever, all curves are not observed to overlap at highs
reported by Pierlionet al*° This difference is possibly con-
nected with the different mechanisms by which the external
forces act on chain. In the case of Pierlietial., pair forces
act directly on the chain ends only which may have limited
effect on the local structure of the chain’s interior. Within
this study, the effect of the elongational flow operates di-
rectly on each bead. Furthermore, in addition to the stretch-
ing forces in operation along the flow direction, there are
also compressive forces operating perpendicular to the flow
direction. Moreover, for elongational flow the overall exten-
. sional forces are stronger in the middle of the chain in com-
oy ot parison to the chain ends.
© 0.10 ) 1.00 The shape of5,¢(k) is similar at all values of elonga-
tional flow & with the observed slope changes with flow
FIG. 2. (a) The distribution function of the radius of gyration of tie  arising from changes in the chain’s radius of gyration.
=22 chain at the elongational ratel) =0.0003,(2) £¢=0.15, (3) & SpelK) is described well by the Debye functigie., dashed

=0.3,(4) £=2.0.(b) The distribution function of bead positions relative to lines through points labeled’ +4")
the center-of-mass for a chain consistinghbf 22 beads at the same elon-

ph)

10.00

1.00

LRERL ]

S(k)

0.10

0.01

gational rates as if@). (c) Structure factor for directions parallgh,.(k); 2N
curves 1-4and perpendicular to the flofB,(k); curves 1—4'] as func- Sper( k)= _Az -(exp(— Aper) -1+ Aper): (8b)
tion of k for the N=22 bead chain with HI at the elongational rates used per

within (&) and(b). The dashed lines running through tBg(k) data labeled where Aper: kZRS e/2_ As the value OfRS er is obtained

1’'—4' are parameter free fits to the Debye function, B). The dashed . 2 2 2 L2
line running through the5;,(k) data set labeled 4 reflects a theoretical from the simulation aSng+ Rgz)/z’ the fit Ofspef(k) to Eq.

prediction of a rigid rodRef. 50 [see Eq(8c)]. (8b) is parameter free.
The shape oB,,(k) changes significantly with elonga-
tion rate. At moderate and highvaluesg|i.e., lines 3 and 4 in
Fig. 2(c)], Spa(k) begins to oscillate dramatically. At the
) o ) ) ) _ highest elongational flow rate in Fig(Q (i.e., line 4, the
elongational rate is increased is consistent with the qua“ta(')scillating shape foB,,(k) agrees well up t&<3 with the
tive behavior observed in Figs(d—1(d) where increasing theoretical prediction for a structure factor in the limiting
elongational flow leads to the increased segregation in thease of a rigid rod of length with N beads uniformly dis-
clouds. tributed along i°
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FIG. 3. (a) The elongational rate dependence of the ratio of mean square

end-to-end distancéR?) to its maximum valug(R2,) for a chain ofN
=22 beads withtfilled squaresand without(open squargd! in addition to
N=94 beads with(filled six pointed starand without(open six pointed
stap HI. (b) The dependence ¢R?)/(R2,.,) for chain ofN= 10 (circles, 22
beads(squares 33 beadgdiamond$, 46 beadgfive pointed stars and 94
beads(six pointed starson elongational raténormalized to its critical

value in the absence of HI. The lines are theoretical predictions of Gotlib

squared end-to-end distance parallel to the flow directiom., (R2);
squares and perpendicular to the flog.e., (R2); many pointed stajsfor
the chain withN=22 beads without H{open symbolsand with HlI (filled
symbolg. Both quantities are normalized by their values at zero flow rates.

to occur at slightly higher values éfstarting near 0.1 for the
shorter chain with a relatively larger HI-induced shift to a
value of é=0.01 observed for the longer chain. This was
observed in earlier computational efforts of Cifre and de la
Torre®**>for bead—FENE spring chains. Agarvetlal*’ ob-
tained this dependence for a bead—rod model at one chain
length of N=100 in the absence of excluded volume inter-
actions. The extension of the chain as a whole can be char-
acterized also by the means of squared gyration ra(d?é}a
ft is observed thath) behaves similarly and plots of these
quantities are therefore not shown.

In Fig. 3(b) the ratio of(R?) to its fully stretched value
is plotted as a function of the ratio of the elongational rate to
its critical value in the absence of HI. Results for chains of
N=22, 33, 46, and 94 beads are plotted and it is clearly seen

et al. (Ref. 5] for chains consisting ofi= 10, 50, 250 beads labeled 1, 2, that all points lie nearly on the same curve. The lines repre-

and 3, respectively.

2N
S(K) = ez (1~ coskL).

( (80

Agreement between the data and the theoretical rigid ro@

prediction becomes worse at highewhere fluctuations be-
gin to dominate the systematic effects as pointed out by Pie
leoni et al. (see Fig. 3 of Ref. 49

4. Elongational rate dependence of chain size

The ratio of mean squared end-to-end dista(R®) to
its fully stretched value is plotted in Fig(& as a function of
the elongational rate for chains lengths ME22 and N
=94 with and without HI. At small elongational rates,
<1, chains both with and without HI form coils with a char-
acteristic unperturbed size. Increasing the elongational ra

leads to a pronounced stretching of the chain. For chains

without HI (open symbols the steady-state coil—stretch
transition is clearly seen in Fig(& as a very sharp change
of (R?) starting neak =0.06 forN=22 and neag =0.002

r_

sent the theoretical predictions of this ratio as a function of
relative elongational rate for multisegmental bead—spring
models with fixed contour length due to Gotkbal® in the
absence of HI for chain lengths df=10, 50, and 250 beads
(curves 1, 2, and 3, respectivehit £/&.>1, curves for the
ifferent N values vary very little and the good agreement
etween theory and simulation is observed. This indicates
that a multisegmental model with a fixed contour length de-
scribes the extension of bead-rod chain within an elonga-
tional flow well. A similar theoretical approach was used in
the work of Hoffmanet al®? These authors found a similar
elongational flow dependence on the end-to-end distance for
a chain with a fixed contour length and for a freely joint
bead-rod model with rigid bond lengths where the con-
straints were determined via Lagrange multipliers.

tg' Elongational rate dependence of chain shape

The average shape of the polymer chain as whole in
uniaxial elongational flow can be further characterized quan-
titatively by projections of the mean squared end-to-end dis-
tance in the direction of flow(R?), and perpendicular to the

for N=94. Hydrodynamic interactions cause this transitiondirection of flow. As they and z projections are practically
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FIG. 5. (a) The elongational rate dependence of the orientation of\thke22 chain as a wholéi.e., (cos Og,); dashed lines labeled 1 and and the
orientation of chain bond§.e., (co€ 6); solid lines labeled 1 and 2) in the direction of flow. Open symbols represent a chain without HI while filled
symbols represent a chain with Hb) The elongational rate dependence of the normalized birefringéecg cog 6,)—(cog 6,)) (circles,N=10; triangles,

N=17; squaresiN=22; diamondsN = 33; five pointed stard\=46; and six pointed stardj=94). The line labeled 1 represents the theory of Gotlital.

(Ref. 51. The lines labeled 2 and 3 represent experimental results cited in Ref. 51 for polystyrene of molecular weighit02d¥sltons and 4.2

x 10° daltons correspondinglyc) The dependence of the relative mean squared end-to-end distance of chain on normalized birefirgefues 6,)

—(cog 9,)) for different chain lengthgcircles, N=10; trianglesN=17; squaresN=22; diamondsN=33, five pointed stariN=46; six pointed starN

=94). Open symbols represent simulations without HI and filled symbols for those performed with HI. The solid line represents the theoretical grediction o
Kuhn—-Grun(Ref. 53. (d) The mean squared cosine of the angle between each bond and the flow direction as a functidftrdrihelized bond number

along the chain backbone at the elongational réts =0.0003,(2) £=0.15,(3) £=0.3, and(4) £=2.0. The solid lines reflect the best fit parabola at each
value ofe.

indistinguishable, onMR2> is presented as the prOJectlon ized by the projections of the squared radii of gyrathRﬁQ
perpendicular to the direction of flow. Values @R2) and  and <RZZ). It was observed tha¢R . and (RZZ) behave
(R2) for a chain length oN=22 are shown in Fig. 4 both in similar to<R2> and(R?) and plots of these quantities are not
the absence of Hlopen symbolsand in the presence of HI shown. The decrease ()Rgz) with & can also be described
(filled symbolg normalized by their zero flow values. The by a power law for the chain with and without HI with ex-
overall behavior ofRZ) and(R2) as a function of elonga- ponents of—0.98 and—0.96, respectively.
tional rate is qualitatively similar for cases where HI are
invoked and where they are neglected At small elongational
rates, all values o{RX) and(RZ> are similar and indepen- 6. Global and local orientation of the chain, and chain
dent of &. At higher elongational rategR?) begins to in- birefringence
crease andR?) begins to decrease towards a value near zero  The average orientation of the chain as whole relative to
at high elongational rates. The behavio Bf) is similar to  the direction of elongational flow can be characterized by the
that of the mean squared end-to-end distance within Figangle, ®, or by (cos Og=(R2/(R?) which is plotted in
3(a). At high ¢ where the chain is nearly completely ex- Fig. 5@ for N=22 (dashed linesfor simulations in the
tended,(R2) plateaus at a value near the contour length ofabsence of HI and in the presence of (Hé., lines 1 and 2,
chain. The decrease ¢RZ) with & can be described by a respectively. Both curves illustrate similar features. At val-
power law for the chain with and without HI with exponents ues ofé <0.003, the value ofcos Og,) for a chain without
of —0.97 and—0.96, respectively. HIl is 1/3, denoting random chain orientation, and is virtually
The shape of the chain as a whole can also be charactenrdependent of elongational rate. Asncreases, the inclina-
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tion of the chains depicted by both curvés., with and induced changes in the local orientation of monomers corre-
without HI) undergoes a transition to a plateau of nearly 1 orlates with the chain extension. The data within this figure
the y axis which corresponds to complete alignment of thereveals (cog 6)—(cog 6,) and RZ,.=(R*/(R%,) are
chain as a whole along the direction of flow. Hydrodynamicstrongly correlated. This behavior is compared with the the-
interactions tend only to delay the onset of this step transieretical prediction of Kuhn and Grafirelating birefrigence
tion and, again, this behavior is qualitatively similar to thatto relative chain extension which is illustrated as a solid line
of the mean squared end-to-end distance within Fi@).3 within Fig. 5(c). This curve is a numerical approximation of
However, the increase @R2)/(R?) in Fig. 5a) occurs ear- the inverse Langevin function and has the form/n,
lier than that for(R2) for the same chain lengttie., N =0.6R2,+0.2R% . +0.2RS . Overall agreement is excel-
=22) for the cases with and without HFig. 3(@), open and lent with slight differences observed only for short chains
filled squareg Similar behavior was observed for all other consisting ofN=10 (circleg andN=17 bead<triangleg at
chain lengths. The orientation of the chain as a whole irsmall values of chain extension.
elongational flow can also be characterized (lops’ Org,) Figure 8d) illustrates the mean squared cosine of the
:<R§Q/<R§>- Itis observed thatcos’ Oy, behaves similarto  angle between each bond and the flow direction as function
(cog B, and plots of these quantities are therefore not il-of bond numbei along the chain backbor@ormalized by
lustrated. N) at different elongational rates. At very low shear rates, all
A similar analysis is depicted in Fig.(& for N=22  bond orientations are near 1/3 reflecting the equal probability
(solid lines for a local orientational angld),, representing Of orientation of each bond in the, y, and z directions.
the average angle between the flow direction and the indiWhen flow increases, the middle bonds begin to be more and
vidual rigid bonds of the chain. This angle is plotted in Fig. more oriented in the direction of flow. At the same time, the
5(a) as{cog 6,) (i.e., lines T and 2, respectively which is orientation of bonds close to the chain ends is only slightly
computed as the ratiQI§>/<I2> where(lf) is the mean affected by flow even at elongational rates close to the
squaredk projection of a chain bond averaged over all chainMiddle of the coil—stretch transition. The general profile of
monomers_<|2> equa|s a constant for a bead—rod chaincurves 2 and 3 within Flg(ﬂ) is similar to the theoretically
which is unity within the current set of dimensionless units.Predicted parabolic profifé with some deviation noticed
The general shape of the curves representing the avera§éar the chain interior. The observation that the maximum

orientation of the chain as a whole and the curves represen@xtent of local orientation and elongation is found near the
ing the local orientation of the chain are similar. However, amiddle of the chain is consistent with experimental efforts of

sharp transiton from randomly oriented bondge., chain scission within elongational fléwhere breaks always

(cog 6)=1/3) to completely oriented bondécos 6,)=1) occur near the chain center. Increasing elongational flow fur-
occurs at a significantly larger value than for the orienta- ther increases all bond orientation with an accompanying
tion of the chain as a whole. Once again HI cause the onségduction in the difference between midchain and chain end
of the transition to be delayed to higher elongational flow.orientation.

This implies different values of. would be predicted de-

pending on whether the onset of the coil-stretch transition

was detected by the step change(@os’ 6,), which is con- 7. intrinsic elongational viscosity

nected with birefringence, or bjcos Og,). Additionally, the

onset of the local orientatidii.e., Fig. 5a), lines 2’ and 2 ] . The primary rheolggical property of interest in this study
is nearly the same as the onset of the transition in the med§ the stress tensor, given by the Kramers expre$Sion
squared end-to-end data within Fig(aBfor the sameN 7=—noe —N(RF)+nl, 9

=22 chain(i.e., open and filled squares for chain without . . . .
and with HI, respectively wheree is the rate-of-strain tensor ang is the elongational

By defining a (co$6,) in a manner analogous to visc_osity of the solvent. For simple elongational flasy,=

(co€ 6)), the dependence ¢to€ 6)—(cod 6,), which is the ~  2Fyy~ ~2&,;— & and all off diagonal components of the

normalized chain birefringence, on the relative eIongationaf"?‘te'Of'Str"’."n tensor are zero. Here thés the number den-

ratez /¢ is illustrated in Fig. &) for the case oN=22, 33, sity of qhams,RF is 'the' virial tensor fgr a single chain. The

46, and 94 without HI. Also included within this figure as the e_IongannaI viscosity is expressed in terms of the elonga-

line labeled 1 is the theoretical prediction of Gotébal>! tional stress as

for multisegmental chains of fixed contour length without HI Tux— T2z R,F,—R,F,

under elongational flow. The dashed lines represent experi- eI~ — =notnN————

mental polystyrene data cited in Ref. 51 of molecular

weights of 2.0% 1 (i.e., line 2 and 4.2<1C° (i.e., line 3 and the corresponding intrinsic elongational viscosity is cal-

daltons. The agreement between the simulation results witulated using Eq(10a as

the theoretical predictions and the experimental findings is (o= 70)

observed to be good. [ 7a]= —}
Figure Hc) is a cross plot depicting the dependence of 70

the normalized value of the birefringence versus normalized he intrinsic elongational viscosityr ] afforded by simu-

chain extension defined &&8?)/(R?2_.,). The birefringence is lations with and without Hl is plotted in Fig.(& for the N

defined as for Fig. ®). This plot offers insight into how flow =22 chain as a function of elongational rate. Each set of data

: (10a

(10b)
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tional rates as in earlier figures for chain extension and chain
orientation. At high elongational rates, the plateau value of
[ 7] for the model with HI is observeflFig. 6(@)] to be
significantly lower than 7] values without HI. This obser-

8000~ . vation is expected since HI between chain beads act to de-
E crease chain friction and hence viscosity relative to the case
< A2
— where HI are absefit.
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The simulated values ¢fy,] without HI were compared
with the theoretical predictions of Hassayjen the follow-
ing two limiting cases:

2.

RN
90

[ 6] =[ 7el]™ at small &, (119

24 )
N2 at large &, (11b

[77e|]=[77e|]m3"<1— N2z
where[ 7¢]™" and[ 7,]™* are limiting values of character-
istic elongational intrinsic viscosity at low and high flow
rates, respectively. After truncating Eq41a and (11b) to
the first two terms as shown above within the parentheses on
the right-hand side of each equation, it is notéidure not
shown that Eq.(11a describes the behavior pf ] well at
small ¢ before the transition. Equatiofl11lb) describes the
data for chains with and without HI well from the high
plateau to the middle of the transitigfigure not showhn A
similar conclusion was also made both by Dogleal > as
well as Agarwalet al®’ for a bead—rod model without HI.

The plateau values of the intrinsic elongational viscosity,

[ 7ellmax: @t large elongational rates for chains of lengith
=10 toN=94 are plotted on Fig.(6) as function of chain
lengthN on a double log scale. Filled symbols correspond to
simulations where HI are invoked with open symbols repre-
senting simulations performed in the absence of HI. The
lines running through the symbols indicdt@e] s~ N for
simulations performed in the absence of HI angy]nax
~N2®7 for simulations performed in the presence of Hl.
These dependencies can be compared with theoretical results
for chains without and with HI. For a freely draining chain,
[ 7eldmax N@s been shown to scale BE in the theoretical
efforts of Larsonet al?® The slope obtained from the simu-
lation which invoked Hl is in reasonable agreement with the
average slope of the curve for a rigid rod with HHle.,

FIG. 6. (a) The elongational rate dependence of the intrinsic elongational : s :
viscosity for aN=22 chain. Open symbols reflect simulations performed _daShed line within Fig. (@)] §|;4e8nerated from data tabulated

without HI with closed symbols reflecting simulations invoking ki) The N the monograph of Biret a
dependence of the plateau values of the intrinsic elongational viscosity,

[ 7ellmax, ON chain lengthN. Open symbols reflect simulations performed g Stress —optical law

without HI with closed symbols reflecting simulations invoking HI. The . . ) . .
solid lines are best fits implying a power law relationship betweesil max The stress—optical relationship predicts that the index of
andN. The dashed line represents the theoretical dependeriog,df.xon  refraction tensor should be proportional to the stress tefisor.
N for a rigid rod with HI from Ref. 48(c) The ratio of the birefringence to For the case of uniaxial eIongationaI flow, this rule implies

the difference in the stress components parallel and perpendicular to thﬁ-1 hain birefri . i | to the diff .
flow directionsli.e., stress—optical relationshiief. 48] as a function of € chain bireiringence Is proportional 1o 'e merence In
the flow rate. The data is for a chain Nf=22 beads. Open symbols reflect the stress components parallel and perpendicular to the flow

simulations performed without HI with closed symbols reflecting simula- directions. This can be written as
tions invoking HI. The data on thg axis has been normalized by its value
at an elongational rate of zero. An

— =const. (12
Txx~ Tzz
reveals a transition from an unperturbed coil at low elonga-  Figure Gc) reveals this law is valid both for chain mod-
tional rates to a highly stretched rodlike conformation at highels without and with HI before the onset of the coil—stretch
elongational rates. Hydrodynamic interactions are observettansition. Values on thg axis of this plot have been nor-
to displace occurrence of this transition to higher elongamalized by their values at zero elongation rate. Within the
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1.00) T T T vector in bead—rod model is initially due to increased orien-
tation of the chain as a whole rather than increased orienta-

tion of the individual bonds.

toaa gl

B. Dependencies of transition rate on chain length

0.10 The dependence of the mean square end-to-end distance

on ¢ has been calculated for chains of lendthk 10, 17, 22,

33, 46 andN=94 with and without HI. These data allow
quantitative estimations of the critical value of elongational
rate,z., to be made and its dependence on chain length to be
u investigated. In Fig. 7, the critical valué., is plotted as
100.0 function of chain lengthN for simulations performed with
and without HI. These . are obtained from mean squared

L . end-to-end versus data. The same procedure was done to
FIG. 7. The dependence of the critical value of the elongational rate on btaing.. at N (plot not sh f the d d f
chain length for chains without Hbpen symbolsand with HI (filled sym- obtaine at eac (p ot not shown from the epenaence o

bolg) drawn from the mean squared end-to-end data for chainsaf0, 17,  the average local chain Ol'ien'[ati()C'OS2 6,), of chain mono-
22, 33, 46, and 94. Solid lines reflect best fits implying a power law rela-mers ong. The resulting power law paramete("se., éc
tionship between the critical value of the elongational rate and the chain_ Kny) extracted from best-fit lines of the double Iogarith-
length. . . . .
g mic plots are given in Table I. The ratio of prefactoks for
bead—rod chains without and with HI obtained from chain

transition region, the difference in the stress components incxtension and from the local orientation is cllose to 2. This is
imilar to the analogous value of this ratio for a FENE

creases faster than the birefringence leading to an overal

;35 _
decrease in the ratio within E(L2). This decrease is nearly cham. Th_e value qf the prgfactor for_a bead—rod model
. . ) with and without HI is approximately twice that for a FENE
linear on this plot's log—log scale Exponents for the powe

r a5 . ; L
law describing this decay are0.96 and—0.97 for a chain chair?® with and without Hl, respectively. However, this dif-

with and without HI which corresponds well with the power ference could be linked 1o the portigne., onset or mid-

. o oint) of the transition used to defing,. The slopes ob-
law decays of the perpendicular projections of the end-to-end . : . : .
: . : o ained from chain extension and from the local orientation of
distance and the radius of gyration. Similar results were ob:,

tained by WiesY for models of polymer chains composed of the monomers, respectively, are very simifae., 1.97 and

N=5, 10, and 20 FENE springs under the P—dG approxima-l'% without HI and 1.56 and 1.55 with HIThey agree well

) 25 . with slopes for bead—FENE spring simulations of de la Torre
tion and by Doyleet al.® for a Kramers bead-rod chains o ¢'vii"and with EV and with HI and EV2.00 and 1.55,
without HI. Wiest interpreted the result in terms of the con-

formational properties of the chain. He revealed that for arespecu_vely and _to theoretical pre_d|ct|oﬁ$2_.0 and 1.5 for
. o . chain with and without HI, respectivelypbtained on the ba-

FENE chain the moment of inertia of the chain about the”. . .
. . sis of the Rouse and Zimm models, respectively. Further-

flow axis undergoes a transition at smaller values of elonga-

tional flow than the end-to-end distariéé” Wiest attributed  M°'e» (e exponent of around 1.50 to 1.56 for simulations

this observed flow induced decrease of the chain size perpeH-SIng HI is in reasonable agreement with available experi-

dicular to the flow direction to the orientation of the indi- mental datd.

vidual bond vectors. However, Fig.(@® within this paper

reveals the onset of increased or|epta}t|on _of the bonds Wlthlll’\/' SUMMARY

the bead-rod model employed within this study occurs at

higher values of elongational flow relative to analogous  Brownian dynamics simulations of the statistical and

guantities for whole-chain orientation. This implies that therheological properties of a bead—rod model of a polymer
decrease of the perpendicular component of the radius afhain under elongational flow of different lengths with ex-

gyration and the perpendicular component of the end-to-endluded volume have been performed. Both chains with and

€
T

e sl

0.01-

TABLE |. Parametersc and y extracted from fitting the data in Fig. 7 t'Qav« kN~

Model (R®I(R2.y onN (cog 6) onN
Bead-rod chain with HI, xk=31.8t1.3 k=35.9+12
(Fig. 7 filled symbol$ y=1.56+0.04 y=1.55+0.03
Bead-rod chain without HlI, k=63.1+1.1 k=73.5t1.2
(Fig. 7 open symbo)s y=1.97+0.03 y=1.96+0.03
Bead—spring FENE chain k=14.1t1.1
with HI (Ref. 35 y=1.55+0.03
Bead-spring FENE chain k=28.6£0.3
without HI (Ref. 35 y=2.005+0.011
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