

The generalized two-server problem

Citation for published version (APA):
Sitters, R. A., & Stougie, L. (2005). The generalized two-server problem. (SPOR-Report : reports in statistics,
probability and operations research; Vol. 200515). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2874996c-4661-4472-8f27-0885c5612c29

The generalized two-server problem

René Sitters1 and Leen Stougie23?

1 Max-Planck-Institute für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

sitters@mpi-inf.mpg.de
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

P.O.Box 513, 5600 MB Eindhoven, The Netherlands

l.stougie@tue.nl
3 CWI, P.O.Box 94079, 1090 GB Amsterdam, the Netherlands

Abstract. We consider the generalized on-line two-server problem in which at each step

each server receives a request, which is a point in a metric space. One of the servers has to

be moved to its request. Thus, each of the servers is moving in his own metric space. The

special case in which both metric spaces are the real line is known as the CNN-problem. It

has been a well-known open question in on-line optimization if an algorithm with a constant-

competitive ratio exists for this problem. We answer this question in the affirmative sense

by providing the first constant competitive algorithm for the generalized two-server problem

on any metric space.

The basic result in this paper is a characterization of competitiveness for metrical service

systems that seems much easier to use when looking for a competitive algorithm. The exis-

tence of a competitive algorithm for the generalized two-server problem follows rather easily

from this result.

1 Introduction

In the generalized k-server problem we are given k servers each of which is moving in some metric
space Mi, i = 1, . . . , k, starting in some given point Oi ∈ Mi. They are to serve requests r ∈
M1×M2×· · ·×Mk which arrive one by one. A request r = (z1, z2, . . . , zk) is served by moving, for
at least one i, the server in space Mi to the point zi. The decision as to which server to move to
the next request is irrevocable and has to be taken without any knowledge about future requests.
The cost of moving the i-th server to zi is equal to the distance travelled by this server from his
current location to zi. The objective is to minimize the total cost to serve all given requests.

We measure the performance of an on-line algorithm through competitive analysis. An on-line
algorithm is c-competitive if, for any request sequence σ, the algorithm’s cost is at most c (c ≥ 1)
times the cost of the optimal solution of the corresponding off-line problem plus an additive constant
independent of σ. We say that an algorithm is competitive if it is c-competitive for some constant
c ≥ 1.

We can see the generalized k-server problem as a single server problem, by moving the server
in the metric space M = M1 × · · · × Mk, and interpreting the server positions and the requests
in the description above as the “coordinates” of the single server and the requests. Interpreted in
this way, it is a special case of a metrical service system. In a metrical service system each request
? Part of this research has been funded by the Dutch BSIK/BRICKS project.

2 René Sitters and Leen Stougie

can be any subset of the metric space, and is served by moving the one server to one of the points
in the request. Metrical service systems were introduced by Manasse, McGeoch, and Sleator [14]
who used the term forcing task systems and independently by Chrobak and Larmore [6] to provide
a formalism for investigating a wide variety of on-line optimization problems. A precise definition
is given in Section 2. In the same section we derive the basic theorem of this paper. It provides a
sufficient condition for the existence of constant competitive algorithms for general metrical service
systems. The result on the generalized two-server problem then becomes a matter of verifying this
condition.

The generalized k-server problem is a natural generalization of the well-known k-server problem
for which M1 = M2 = · · · = Mk and z1 = z2 = · · · = zk at each time step. The k-server problem
was introduced by Manasse, McGeoch and Sleator [14], who proved a lower bound of k on the
competitive ratio of any deterministic algorithm for any metric space with at least k + 1 points
and posed the well-known k-server conjecture saying that there exists a k-competitive algorithm
for any metric space. The conjecture has been proved for k = 2 [14], for some special metric spaces
such as the line, the star, and for all spaces with at most k +2 points [1,4,5]. For k ≥ 3 the current
best upper bound of 2k − 1 is given by Koutsoupias and Papadimitriou [12].

The weighted k-server problem turns out to be much harder. In this problem a weight is assigned
to each server and the total cost is the sum of the weighted distances. Fiat and Ricklin [9] prove
that for any metric space with at least k + 1 points there exists a set of weights such that the
competitive ratio of any deterministic algorithm is at least kΩ(k). For a uniform metric space (in
which all internode distances are one) and k = 2 Feuerstein et al. [8] give a 6.275-competitive
algorithm, which was improved by Chrobak and Sgall [7] who provided a 5-competitive algorithm
and proved that no better competitive ratio is possible.

A weighted k-server algorithm is called competitive if the competitive ratio is independent of
the weights. For a general metric space no competitive algorithm was known yet even for k = 2.
It is easy to see that the generalized k-server problem is a generalization of the weighted k-server
problem as well.

The generalized two-server problem in which both servers move on the real line has become
well-known as the CNN-problem. Koutsoupias and Taylor [13] emphasize the importance of the
CNN-problem as one of the simplest problems in a rich class of so-called sum-problems [2]. In the
sum-problem each of a set of systems gets a request and only one system has to serve this request.

Koutsoupias and Taylor [13] prove a lower bound of 6 +
√

17 on the competitive ratio of any
deterministic on-line algorithm for the generalized two-server problem, through an instance of
the weighted two-server problem on the real line. They also conjecture that the generalized work
function algorithm has constant competitive ratio for the generalized two-server problem. For the
generalized two-server problem the situation was even worse than for the k-server problem: the
question if any algorithm exists with constant competitive ratio remained unanswered.

In Section 3 we answer this question affirmatively, by designing an algorithm and prove an
upper bound of 879 on its competitive ratio4. Our algorithm is a combination of the well-known
balance algorithm and the generalized work function algorithm. The result is merely checking the
condition of the general theorem for metrical service systems in Section 2, announced above.

Optimal off-line solutions of metrical service systems can easily be found by dynamic program-
ming (see [2]), which yields an O(k2nk) time algorithm for the generalized k-server problem. For
the classical k-server problem this running time can be reduced to O(kn2) by formulating it as a

4 An extended abstract [15], co-authored by the authors of this paper, shows a 105-competitive algorithm.

The generalized two-server problem 3

min-cost flow problem [4]. No such improvement should be expected for the generalized k-server
problem since the problem is NP -hard, as we will show in Section 4.

2 Competitiveness of metrical service systems

A metrical service system S = (M,R) is specified by a metric space M with distance function
d : M2 → R+ and a set R of all possible requests. Each request r ∈ R is a subset of M. An instance
of the system consists of an initial server position O ∈ M and a sequence σ = r1, r2, . . . of requests.
Every request ri must be served immediately and irrevocably by moving the one server to a point
si ∈ ri, before the future requests, ri+1, ri+2, . . ., are given. The cost of the solution is the length
of the path in M followed by the server.

The generalized work function algorithm is an important tool in the construction of a competi-
tive algorithm for metrical service systems. The generalized work function algorithm was introduced
independently by several people and has been shown to be competitive for several on-line problems.
In fact we go along with Koutsoupias and Taylor [13] in conjecturing that it is competitive for the
generalized two-server problem as well. The generalized work function algorithm bases its moves
on the position of the on-line server and the values of the work function.

Definition 1. Given a metrical service system S = (M,R) with origin O ∈ M, and request
sequence σ we define the work function Wσ : M → R+. For any point s ∈ M, Wσ(s) is the length
of the shortest path that starts in O, ends in s and serves σ.

We assume here that the work function is always well-defined, which might not be true if the
metric space is infinite. Thus, we assume that for any σ = r1, . . . , rn and any point s ∈ M there
are points si ∈ ri (i = 1, . . . , n) such that d(O, s1) + d(s1, s2) + · · · + d(sn−1, sn) + d(sn, s) ≤
d(O, t1) + d(t1, t2) + · · · + d(tn−1, tn) + d(tn, s) for any set of points ti ∈ ri (i = 1, . . . , n). Notice
that this implies Wr1,...,ri

(si) = d(O, s1) + d(s1, s2) + · · ·+ d(si−1, si) for all i ∈ {1, . . . , n}.
We will use the following properties, which are rather obvious. The work function on the empty

string ε of requests is Wε(s) = d(O, s) for all s ∈ M. The work function is Lipschitz continuous: for
any two points s and s′ in M, |Wσ(s) −Wσ(s′)| ≤ d(s, s′). It exhibits monotonicity with respect
to the request sequence for every s ∈ M: given any request sequence σ and any new request r,
Wσ,r(s) ≥ Wσ(s), for all s ∈ M. Equality holds for all s ∈ r.

Given a work function Wσ we say that point s is dominated by point t if Wσ(s) = Wσ(t)+d(s, t).
We define the support of Wσ as supp(Wσ) = {t ∈ M : t is not dominated by any other point}. If
Wσ,r is a well-defined work function then supp(Wσ,r) ⊆ r, since for any point s /∈ r there exists
a point t ∈ r such that Wσ,r(s) = Wσ,r(t) + d(t, s). For more properties and a deeper analysis of
work functions we refer to [3],[6].

The generalized work function algorithm is a work function-based algorithm parameterized by
some constant λ ≥ 1. We call it λ-Wfa. For any request sequence σ and any new request r, λ-Wfa

moves the server from the position s it had after serving σ to point

s′ = argmint∈r{Wσ,r(t) + (1/λ)d(s, t)}. (1)

Note that this minimum may not be well-defined if the request r contains infinitely many points of
the metric space. In Theorem 1 we assume that the minimum is always attained for some s′ ∈ r.
For λ = 1 the algorithm is known as the (standard) work function algorithm, which is 2k − 1
competitive for the classical k-server problem [12]. For λ > 1 the algorithm remains unchanged if

4 René Sitters and Leen Stougie

we replace argmint∈r by argmint∈M. To see this let t ∈ M\r be an arbitrary point not in the set r

of request points. Then there is a point t′ ∈ r such that Wσ,r(t) = Wσ,r(t′) + d(t′, t), implying

Wσ,r(t) + (1/λ)d(s, t) = Wσ,r(t′) + d(t′, t) + (1/λ)d(s, t)
> Wσ,r(t′) + (1/λ)(d(t′, t) + d(s, t))
≥ Wσ,r(t′) + (1/λ)(d(s, t′).

Thus, for λ > 1, an alternative definition of λ-Wfa is to move the server from s to point

s′ = argmint∈M{Wσ,r(t) + (1/λ)d(s, t)}. (2)

In this paper we always assume λ > 1.
The generalized work function algorithm is competitive for several classical systems, such as the

k-server problem [12] or the k-point request problem [3]. However, the analysis of this algorithm is
in general complicated. In this section we derive properties of an algorithm A, which by itself may
not be competitive for a metrical service system S, such that A combined with the generalized
work function algorithm results in a competitive algorithm for S.

2.1 A competitive, work function-based algorithm

The on-line algorithm we propose works in phases. The last move in each phase is based on the
generalized work function algorithm. We refer to these moves as the λ-Wfa-moves of the on-line
algorithm, though strictly speaking they differ from the move defined by (1) as we will point out
later. All other moves in a phase are dictated by some other algorithm A.

The phases of the algorithm induce a partition of the request sequence σ = r1, r2, . . . into
r1, . . . , ri1 ; ri1+1, . . . , ri2 ; ri2+1, . . . , ri3 ; . . . ; rih+1, . . . , rih+1 ; . . . where (using i0 = 0) rih−1+1, . . . , rih

is the subsequence of consecutive requests served in the h-th phase.
We denote by A(s, σ) the cost of algorithm A starting in s and serving request sequence σ. By

Opt(s, σ) we denote the cost of the shortest path starting in s and serving request sequence σ.
In the description of a generic phase h of the algorithm we denote by Oh the starting point of

phase h, i.e., the endpoint of phase h−1, the position of the server after the h−1-th λ-Wfa-move,
serving request rih−1 . Hence O1 = O. We denote by σh the sequence of requests served in the first
h phases, i.e., σh = r1, . . . , rih

, for h ≥ 1.
Apart from the parameter λ > 1 in the definition of λ-Wfa we employ a parameter γ ≥ 1 in

the description of the on-line algorithm.

Phase h of Online(A, γ, λ):

Given request rk (k ≥ ih−1 + 1), if A(Oh, rih−1+1, . . . , rk) ≤ γOpt(Oh, rih−1+1, . . . , rk), move the
server according to A and wait for the next request. Otherwise, move the server to a point s ∈ M
that minimizes Wr1,...,rk

(s) + (1/λ)d(Oh, s). In this case ih = k, Oh+1 = s and phase h + 1 is
started.

Two observations are worth making here. First we emphasize that the work function employed
in the λ-Wfa-move is defined over the complete input sequence, released so far, whereas the decision
whether to continue to make A-moves or not is based on a comparison with the optimal solution
during phase h, as if the sequence started in phase h with Oh as the origin. The second observation
is that the move at the end of the phase is in the strict sense not a λ-Wfa-move as defined in

The generalized two-server problem 5

(1) or (2), as the distance d(Oh, s) is not from the current position of the server here, but from
the origin Oh of the current phase. Still, we will continue calling it a λ-Wfa-move, or refer to it
alternatively as a work function step.

We are now ready to state our main theorem. The idea behind it is best explained by using
adversaries serving the same request sequence, but knowing the sequence in advance.

If algorithm A is not competitive for the metrical service system, then this means that it is
not competitive against a single adversary. Here we introduce an alternative model in which the
algorithm A is playing against a number of adversaries simultaneously, where each of them has
to serve the full sequence and moreover they are not allowed to operate too near to each other
in a sense which is defined precisely below. By the latter restriction, if there is a sufficiently high
number of adversaries in the game, then some of them will have to choose relatively expensive
paths in order to stay sufficiently far away from relatively cheap paths followed by others. A may
not be competitive against a single adversary, but it may be competitive against a number of such
adversaries if we compare the cost of A to the sum (not average) of the costs of the adversaries.

To formalize the notion of two paths being too near, we introduce dependency of two paths.
The definition should cover the situation that two paths cross, but should be more general than
that. We use |T | to denote the (weighted) length of a path T , as we will do throughout the paper.

Definition 2. Paths T1 from s1 to s′1 and T2 from s2 to s′2 are called dependent if |T1| + |T2| ≥
d(s1, s

′
2) + d(s2, s

′
1). Otherwise the paths are said to be independent.

If T1 and T2 go through the same point t, then the paths are dependent since |T1| + |T2| ≥
d(s1, t) + d(t, s′1) + d(s2, t) + d(t, s′2) ≥ d(s1, s

′
2) + d(s2, s

′
1). On the other hand, two paths could be

dependent without sharing a point of the metric space. Nevertheless it appears to be useful to call
two paths dependent if they are close in the above sense.

The theorem says that if the cost of A is bounded by a constant times the length of the optimal
path starting in the same point as A plus a constant times the sum of the lengths of m pairwise
independent adversary paths, then algorithm Online, which employs A within the phases in the
way described above, is competitive against the length of the optimal path serving all requests and
starting in O.

Theorem 1. Let S be a metrical service system on which the work function and λ-Wfa are well-
defined. If there exist an on-line algorithm A for S, and constants c1 ≥ 1, c2 ≥ 0 and m ≥ 2 such
that for any point s ∈ M, sequence ρ and pairwise independent paths T1, T2, . . . Tm that serve ρ

A(s, ρ) ≤ c1 Opt(s, ρ) + c2

m∑
i=1

|Ti|, (3)

then Online(A, γ, λ) with γ = c1 + c2 and λ = m is 15(c1 + c2)m2m-competitive for S.

The proof follows from combining an appropriate lower bound on the optimal cost with an ap-
propriate upper bound on the algorithm’s cost, which are derived in the following two subsections
separately. In both bounds the notion of pseudo-cost in a phase plays a central role.

Definition 3. The pseudo-cost of the algorithm Online(A, γ, λ) in phase h is defined by
∇h = Wσh

(Oh+1) + (1/λ)d(Oh, Oh+1)−Wσh−1(Oh).

6 René Sitters and Leen Stougie

Pseudo-cost has proven to be a useful concept in the analysis of the (generalized) work function
algorithm [3,12]. Typically, pseudo-cost is defined for a single λ-Wfa-move. In our case, the pseudo-
cost captures the cost of the λ-Wfa-move in each phase. As we shall prove in Lemma 13, the total
cost of all these moves is approximately λ times the sum over the pseudo-costs. On the other hand,
the pseudo-cost measures a local increase in the work function. If the metrical service system
allows for a competitive algorithm, then this local increase can be used, through an appropriate
potential function, to bound the optimal solution from below. Summarizing, the notion of pseudo-
cost provides a link between the total cost of the work function steps and the cost of the optimal
solution.

Let N be the number of phases which Online uses for serving the entire request sequence σ.
The first N −1 phases end with a work function step. We assume that phase N ends before a work
function step is made. We can do this without loss of generality when we allow the last phase to
be empty (hence with Online cost zero).

Theorem 1 is trivially true if Online happens not to take any λ-Wfa-move, i.e., the whole
sequence is served in one phase. In this case the competitive ratio is γ. Therefore, we assume that
at least one λ-Wfa-move is made.

The proof of Theorem 1 follows rather easily from the combination of a lower bound on the
optimal solution given in Lemma 8 (page 13) and an upper bound on the cost of algorithm Online

given in Lemma 14 (page 16). The lemmas are only cited in the proof of Theorem 1 below; they
are proven separately in Subsections 2.2 and 2.3, respectively.

Proof (Theorem 1). A lower bound on the optimal cost of serving the sequence σN−1, that is, the
sequence σ = σN minus the requests of the last phase, is given by Lemma 8:

Opt(O, σN−1) ≥
λ− 1

β1(λ + 1)

N−1∑
h=1

∇h, (4)

with β1 = 2
(

2λ
λ−1

)m−2

. An upper bound on the algorithm’s cost for serving the complete sequence
σ is given by Lemma 14:

Online(O, σ) ≤
(

4γλ

λ− 1
+ (2γ + 1)λ

)N−1∑
h=1

∇h − λ(2γ + 1)Opt(O, σN−1) +
2γλ

λ− 1
Opt(O, σ). (5)

Combining both bounds yields that Online(O, σ) is bounded from above by

Online(O, σ) ≤
((

4γλ

λ− 1
+ (2γ + 1)λ

)
β1(λ + 1)

λ− 1
− (2γ + 1)λ

)
Opt(O, σN−1)+

2γλ

λ− 1
Opt(O, σ).

Since λ > 1, we have β1(λ+1)
λ−1 ≥ 1, hence the expression before Opt(O, σN−1) is non-negative, and

we can use Opt(O, σN−1) ≤ Opt(O, σ) to arrive at:

Online(O, σ) ≤
((

4γλ

λ− 1
+ (2γ + 1)λ

)
β1(λ + 1)

λ− 1
− (2γ + 1)λ +

2γλ

λ− 1

)
Opt(O, σ). (6)

The generalized two-server problem 7

Now choose λ = m ≥ 2, by which (2γ + 1)λ > 2γλ/(λ − 1). Writing β1 = 2
(

2λ
λ−1

)m−2

=

m−1
m

(
2m

m−1

)m−1

, inequality (6) simplifies to

Online(O, σ) ≤
(

4γ(m+1)
m−1 + (2γ + 1)(m + 1)

)(
2m

m−1

)m−1

Opt(O, σ)

<
(

4γ(m+1)
m−1 + (2γ + 1)(m + 1)

)
e2m−1Opt(O, σ)

< 15γm2mOpt(O, σ).

ut

In Section 3 we show that for the generalized two-server problem the balance algorithm satisfies
the premise of this theorem with c1 = 2, c2 = 4 and m = 3. A competitive algorithm follows then
directly from the theorem.

2.2 A lower bound

For the proof of (4) we use a potential function argument. Our potential function is the same as
the one used by Burley [3] in his analysis of the k-point request problem. The function relies on the
concept of slack of a point relative to another point. Intuitively, the slack of a point s with respect
to a point t is the amount that the work function value in s can increase before the generalized
work function algorithm moves from s to t. More precisely, the generalized work function algorithm,
being in point s after serving sequence σ, moves away from s after a new request r is given if there
is a point t such that Wσ,r(t) + (1/λ)d(s, t) ≤ Wσ,r(s). The slack is the difference between the left
and right side of this inequality. Formally, given a request sequence σ we define the slack of a point
s ∈ M relative to a point t ∈ M as

Vσ(s; t) = Wσ(t) + (1/λ)d(s, t)−Wσ(s). (7)

We notice that this slack function is not symmetric, which we emphasize in the notation by writing
a semicolon between the two arguments of the function. It does satisfy the triangle inequality, i.e.,
Vσ(s1; s2) + Vσ(s2; s3) ≥ Vσ(s1; s3) for any sequence σ and for any three points s1, s2 and s3. Also
notice that Vσ(s; s) = 0 for any σ and any s ∈ M. For notational convenience we extend the
definition of slack to that of slack of a point s with respect to a finite set of points S:

Vσ(s;S) = min
t∈S

Vσ(s; t). (8)

We define potential function Φσ : Mm → R as

Φσ(s1, . . . , sm) = β1Wσ(s1)−
m∑

i=2

(βi min
j:j<i

Vσ(si; sj)),

with β1 = 2
(

2λ
λ−1

)m−2

and βi =
(

2λ
λ−1

)m−i

(i = 2, . . . ,m). We define

Ψσ = min
s1,...,sm∈M

{Φσ(s1, . . . , sm)}.

The following lemma shows that, for any request sequence σ, the value of the optimal solution
serving σ is at least Ψσ/β1.

8 René Sitters and Leen Stougie

Lemma 1. Ψσ ≤ β1 min
s∈M

Wσ(s) = β1Opt(O, σ) for every request sequence σ.

Proof. Notice that for every s ∈ M we have Ψσ ≤ Φσ(s, . . . , s) = β1Wσ(s). The equality is simply
implied by the definition of the work function. ut

The rest of the analysis is devoted to deriving a lower bound on Ψσ. In Lemma 3 we prove Ψε =
0, where, as before, we use ε to denote the empty string. In Lemma 7 we bound Ψσh+1 − Ψσh

for each phase h. Hence, using Ψσ0 = Ψε, summing over all phases except the last one yields∑N−1
h=1 Ψh − Ψh−1 = ΨσN−1 − Ψε = ΨσN−1 , which, using the above Lemma 1, will result, in Lemma

8, in the desired lower bound (4) on Opt(O, σN−1).
By definition we have βm = 1. The following additional equalities are easily verified.

(i) β1 = (1− 1/λ) + (1 + 1/λ)
m∑

j=2

βj ,

(ii) βi = 1 + (1 + 1/λ)/(1− 1/λ)
m∑

j=i+1

βj , for i ∈ {1, 2, . . . ,m− 1}.

When considering off-line solutions we are only interested in optimal solutions or so-called
adversary paths. Consider an adversary being in s′ after having served the consecutive sequences
σ and ρ. The length of the path followed by the adversary is exactly Wσ,ρ(s′). Let s be the point
in which the adversary was located after having served σ. The length of the path up to that point
is Wσ(s). Thus, the length of the path between s and s′ is Wσ,ρ(s′) −Wσ(s) ≥ d(s, s′). The next
lemma shows that when adversary i (i = 1, . . . ,m) moves from point si, after serving σ, to point
s′i, after serving σ, ρ, then the increase in the function Φ with respect to the ordered sets of points
s1 . . . , sm and s′1 . . . , s′m is at least a constant times the sum of the lengths of the adversary paths.

Lemma 2. If sequences σ and ρ and points s1, . . . , sm and s′1, . . . , s
′
m satisfy Wσ,ρ(s′i)−Wσ(si) ≥

d(si, s
′
i) for all i, then

Φσ,ρ(s′1, . . . , s
′
m)− Φσ(s1, . . . , sm) ≥ (1− 1/λ)

m∑
i=1

(Wσ,ρ(s′i)−Wσ(si)).

Proof. To simplify notation we denote Wσ,ρ(s′i) − Wσ(si) by ∆i for any i ∈ {1, . . . ,m}. First
we bound minj:j<i Vσ,ρ(s′i; s

′
j) − minj:j<i Vσ(si; sj) for i = 2, . . . ,m. Take any arbitrary i and let

k = argmin
j:j<i

Vσ(si; sj). Then

min
j:j<i

Vσ,ρ(s′i; s
′
j) − min

j:j<i
Vσ(si; sj)

= min
j:j<i

Vσ,ρ(s′i; s
′
j)− Vσ(si; sk)

≤ Vσ,ρ(s′i; s
′
k)− Vσ(si; sk)

= Wσ,ρ(s′k)−Wσ(sk) + Wσ(si)−Wσ,ρ(s′i) + 1
λ (d(s′k, s′i)− d(sk, si))

= ∆k −∆i + 1
λ (d(s′k, s′i)− d(sk, si))

≤ ∆k −∆i + 1
λ (d(s′k, sk) + d(s′i, si))

≤ (1 + 1/λ)∆k − (1− 1/λ)∆i

≤ (1 + 1/λ)
∑i−1

j=1 ∆j − (1− 1/λ)∆i.

The generalized two-server problem 9

The first equality holds by definition of k. For the second equality we simply use (7), the definition
of slack. The second inequality follows from the triangle inequality, and the third inequality is
obtained by applying the premise of the lemma: ∆i ≥ d(si, s

′
i) for all i = 1, . . . ,m. Now we use the

derived inequality to bound the increase of the potential function from below.

Φσ,ρ(s′1, . . . , s
′
m) − Φσ(s1, . . . , sm)

= β1(Wσ,ρ(s′1)−Wσ(s1))−
m∑

i=2

βi(min
j:j<i

Vσ,ρ(s′i; s
′
j)− min

j:j<i
Vσ(si; sj))

≥ β1∆1 −
m∑

i=2

βi

(1 + 1/λ)
i−1∑
j=1

∆j − (1− 1/λ)∆i

= β1∆1 − (1 + 1/λ)

m∑
i=2

βi

i−1∑
j=1

∆j + (1− 1/λ)
m∑

i=2

βi∆i

= β1∆1 − (1 + 1/λ)
m∑

i=2

βi∆1 − (1 + 1/λ)
m∑

i=2

βi

i−1∑
j=2

∆j

+ (1− 1/λ)
m∑

i=2

βi∆i

= (β1 − (1 + 1/λ)
m∑

i=2

βi)∆1 − (1 + 1/λ)
m∑

i=2

m∑
j=i+1

βj∆i + (1− 1/λ)
m∑

i=2

βi∆i

= (β1 − (1 + 1/λ)
m∑

i=2

βi)∆1 +
m∑

i=2

(1− 1/λ)βi − (1 + 1/λ)
m∑

j=i+1

βj

∆i

= (1− 1/λ)∆1 +
m∑

i=2

(1− 1/λ)∆i.

The last equality follows directly from inserting βm = 1 and equalities (i) and (ii) for the βi’s. ut

Lemma 3. For the empty string ε we have Ψε = 0.

Proof. Φε(O, . . . ,O) = 0. Now apply Lemma 2 with σ = ρ = ε, and s1 = s2 = · · · = sm = O. The
premise of Lemma 2 is satisfied since for any point s′i ∈ M we have Wε(s′i) −Wε(O) = Wε(s′i) =
d(s′i,O). Hence for any ordered set of points s′1, . . . , s

′
m we have Φε(s′1, . . . , s

′
m) = Φε(s′1, . . . , s

′
m)−

Φε(O, . . . ,O) ≥ (1− 1/λ)
m∑

i=1

(Wε(s′i)−Wε(O)) ≥ 0. ut

In Lemma 7 we derive a lower bound on the change in value of Ψ in any phase h which finishes
with a work-function move, i.e, all phases except the last one. In the proof we use Lemma 2 and
the following three preliminary lemmas. Recall the definition of the pseudo-cost ∇h of phase h on
page 5, and remember that we defined Oh as the location of the on-line server at the beginning of
phase h.

Lemma 4. ∇h ≤ Wσh
(s) + (1/λ)d(Oh, s)−Wσh−1(Oh) for every point s ∈ M.

Proof. By definition of the λ-Wfa-move of algorithm Online we have for every s ∈ M that
Wσh

(s) + (1/λ)d(Oh, s) ≥ Wσh
(Oh+1) + (1/λ)d(Oh, Oh+1) = ∇h + Wσh−1(Oh). ut

Lemma 5. Let ρh be the sequence of requests served in phase h; then

∇h ≤
λ + 1

λ
Opt(Oh, ρh).

10 René Sitters and Leen Stougie

Proof. Let t be the endpoint of a path that starts in Oh, serves ρh and has minimum length,
i.e., a path with length Opt(Oh, ρh). Application of Lemma 4 and using Wσh

(t) ≤ Wσh−1(Oh) +
Opt(Oh, ρh) yields

∇h ≤ Wσh
(t) + (1/λ)d(Oh, t)−Wσh−1(Oh)

≤ Wσh−1(Oh) + Opt(Oh, ρh) + (1/λ)d(Oh, t)−Wσh−1(Oh)
= Opt(Oh, ρh) + (1/λ)d(Oh, t)
≤ (1 + 1/λ)Opt(Oh, ρh).

(9)

ut

Lemma 6. Let sequence σ, ordered set of points s1, . . . , sm, and number q ∈ {2, . . . ,m} satisfy
minj:j<q Vσ(sq; sj) ≤ 0; then replacing sq by some point uq ∈ M for which minj:j<q Vσ(uq; sj) ≥ 0
cannot increase the value of Φσ:

Φσ(s1, . . . , sq−1, sq, sq+1, . . . , sm)− Φσ(s1, . . . , sq−1, uq, sq+1, . . . , sm) ≥ min
j:j<q

Vσ(uq; sj) ≥ 0.

Proof. Given the ordered set of points s1, . . . , sm we will use the notation Si for the set of the
first i points: Si = {s1, . . . , si}. Using the definition of slack of a point with respect to a set this
allows us to write Vσ(si;Si−1) for minj:j<i Vσ(si; sj). To facilitate the exposition further we write
u1, . . . , um for s1, . . . , sq−1, uq, sq+1, . . . , sm (thus, si = ui for all i 6= q) and Ui for {u1, . . . , ui}
(thus, Si = Ui for i ≤ q − 1).

By the definition of Φ we have

Φσ(s1, . . . , sm)− Φσ(u1, . . . , um) = β1(Wσ(s1)− Wσ(u1))+∑m
i=2 βi (Vσ(ui;Ui−1)− Vσ(si;Si−1)) .

(10)

Since si = ui for all i 6= q and Si = Ui for all i ≤ q − 1, we have Vσ(ui;Ui−1) = Vσ(si;Si−1)
∀i = 2, . . . q − 1. Hence the right hand side of (10) simplifies to

βq (Vσ(uq;Sq−1)− Vσ(sq;Sq−1)) +
m∑

i=q+1

βi (Vσ(si;Ui−1)− Vσ(si;Si−1)) . (11)

Consider the term in the summation for arbitrary i ∈ {q + 1, . . . ,m}. Since for i ≥ q + 1, Ui−1 =
(Si−1\sq) ∪ uq we have Ui−1 ∪ sq = Si−1 ∪ uq ∀i = q + 1, . . . ,m and therefore

Vσ(si;Ui−1) ≥ Vσ(si;Ui−1 ∪ sq) = Vσ(si;Si−1 ∪ uq) = min{Vσ(si;Si−1), Vσ(si;uq)}.

Hence, for all i ∈ {q + 1, . . . ,m}

βi (Vσ(si;Ui−1)− Vσ(si;Si−1)) ≥ βi (min{Vσ(si;Si−1), Vσ(si;uq)} − Vσ(si;Si−1))

= βi min{0, Vσ(si;uq)− Vσ(si;Si−1)}. (12)

Using the triangle inequality of the slack below in the second inequality we get for all
i ∈ {q + 1, . . . ,m}

Vσ(si;Si−1) ≤ Vσ(si;Sq−1)

= min
j:j<q

{Vσ(si; sj)}

≤ min
j:j<q

{Vσ(si;uq) + Vσ(uq; sj)}

= Vσ(si;uq) + Vσ(uq;Sq−1)

The generalized two-server problem 11

Inserting this bound in (12) and then using Vσ(uq;Sq−1) ≥ 0, a premise of the lemma, yields

βi (Vσ(si;Ui−1)− Vσ(si;Si−1)) ≥ min{0,−βiVσ(uq;Sq−1)} = −βiVσ(uq;Sq−1). (13)

Combining (10), (11) and (13), and using Vσ(sq;Sq−1) ≤ 0 (premise of the lemma), we obtain

Φσ(u1, . . . , um)− Φσ(s1, . . . , sm) ≥ βqVσ(uq;Sq−1)−
m∑

i=q+1

βiVσ(uq;Sq−1)

≥ (βq −
m∑

i=q+1

βi)Vσ(uq;Sq−1)

≥ Vσ(uq;Sq−1),

where we use property (ii) of βq for the last inequality. ut

The next lemma says that the increase in the function Ψ over a phase is at least (λ − 1)/(λ + 1)
times the pseudo-cost of the phase.

Lemma 7. Under the conditions of Theorem 1, we have for all phases h ∈ {1, . . . , N − 1} that
Ψσh

− Ψσh−1 ≥ λ−1
λ+1∇h.

Proof. Take an arbitrary phase h ∈ {1, . . . , N − 1}. Let ρh denote the subsequence of requests
served in this phase. In this proof we suppress subindices referring to the number of the phase: we
write O, ρ, and ∇ for Oh, ρh, and ∇h, respectively, and write W , Φ, Ψ , and V for Wσh−1 , Φσh−1 ,
Ψσh−1 , and Vσh−1 , respectively. Similarly, we write W ′, Φ′, Ψ ′, and V ′ for Wσh

, Φσh
, Ψσh

, and Vσh
,

respectively.
Assume that Φ′ attains its minimum at the points s′1, . . . , s

′
m, i.e., Ψ ′ = Φ′(s′1, . . . , s

′
m). For each

s′i there is a point si (not necessarily unique) and a path Ti from si to s′i such that Ti serves ρ and

W ′(s′i)−W (si) = |Ti| ≥ d(si, s
′
i) (i = 1, . . . ,m). (14)

Hence we may apply Lemma 2 to obtain

Φ′(s′1, . . . , s
′
m)− Φ(s1, . . . , sm) ≥ (1− 1/λ)

m∑
i=1

(W ′(s′i)−W (si)). (15)

We distinguish two cases.

Case 1: The paths T1, T2, . . . , Tm are pairwise independent.

Remember in what follows that O is Oh and not O. Since Online completed the phase with a
work function step we have A(O, ρ) > γOpt(O, ρ). On the other hand, condition (3) in Theorem 1
implies A(O, ρ) ≤ c1Opt(O, ρ) + c2

∑m
i=1 |Ti|. Combining both inequalities yields γOpt(O, ρ) =

(c1 + c2)Opt(O, ρ) < c1Opt(O, ρ) + c2

∑m
i=1 |Ti|. Hence,

Opt(O, ρ) <
m∑

i=1

|Ti| =
m∑

i=1

(W ′(s′i)−W (si)),

which together with (15), remembering that Ψ ′ = Φ′(s′1, . . . , s
′
m), implies

Ψ ′ − Ψ = Φ′(s′1, . . . , s
′
m)− Ψ

≥ Φ′(s′1, . . . , s
′
m)− Φ(s1, . . . , sm)

> (1− 1/λ)Opt(O, ρ).

12 René Sitters and Leen Stougie

By Lemma 5 we have Opt(O, ρ) ≥ λ
λ+1∇, implying

Ψ ′ − Ψ > (1− 1/λ)
λ

λ + 1
∇ =

λ− 1
λ + 1

∇.

Case 2: There is a pair Tp, Tq (p < q) of dependent paths.

Using Definition 2, of dependency, we have W ′(s′p) − W (sp) + W ′(s′q) − W (sq) = |Tp| + |Tq| ≥
d(sp, s

′
q)+d(sq, s

′
p). Hence, W ′(s′p)−W (sq) ≥ d(sq, s

′
p) or W ′(s′q)−W (sp) ≥ d(sp, s

′
q). Assume that

the latter is true. The other case is analogous although makes notation slightly more complicated.
By this assumption and by (14) the series s1, . . . , sq−1, sp, sq+1, . . . , sm and s′1, . . . , s

′
q−1, s

′
q, s

′
q+1, . . . , s

′
m

satisfy the premises of Lemma 2, whence

Φ′(s′1, . . . , s
′
m) − Φ(s1, . . . , sq−1, sp, sq+1, . . . , sm)

≥ (1− 1/λ)

(
W ′(s′q)−W (sp) +

m∑
i=1,i 6=q

(W ′(s′i)−W (si))

)
≥ (1− 1/λ)(W ′(s′i)−W (si)) ∀ i 6= q.

(16)

The last inequality is true since W ′(s′i) − W (si) ≥ d(si, s
′
i) ≥ 0 ∀i 6= q, and W ′(s′q) − W (sp) ≥

d(sp, s
′
q) ≥ 0.

If W ′(s′i) − W (si) ≥ (λ/(λ + 1))∇ for some i 6= q, then, again remembering that Ψ ′ =
Φ′(s′1, . . . , s

′
m), (16) immediately implies

Ψ ′ − Ψ ≥ Φ′(s′1, . . . , s
′
m)− Φ(s1, . . . , sq−1, sp, sq+1, . . . , sm)

≥ (1− 1/λ)(W ′(s′i)−W (si)) ≥
λ− 1
λ + 1

∇.

Hence, from now on we concentrate on the situation

W ′(s′i)−W (si) ≤ (λ/(λ + 1))∇ ∀ i 6= q. (17)

As in the proof of the previous lemma we define Si = {s1, . . . , si}. Notice that V (sp;Sq−1) ≤
V (sp; sp) = 0, since we assumed p < q. On the other hand, we will prove below that V (O;Sq−1) ≥ 0.
Lemma 6 then tells us that Φ will reduce if we replace sp (on position q) by point O. More precisely,

Φ(s1, . . . , sq−1, sp, sq+1, . . . , sm)− Φ(s1, . . . , sq−1, O, sq+1, . . . , sm) ≥ V(O;Sq−1). (18)

Now we will show that V(O;Sq−1) ≥ 0. Let k ∈ {1, . . . , q−1} be such that V (O;Sq−1) = V (O; sk).
The bound below follows from Lemma 4 (first inequality), the triangle inequality (second inequal-
ity), and W ′(s′k)−W (sk) ≥ d(sk, s′k) (third inequality):

V (O;Sq−1) = V (O; sk)
= W (sk) + 1

λd(O, sk)−W (O)
= W ′(s′k) + 1

λd(O, s′k)−W (O) + (W (sk)−W ′(s′k)) + 1
λ (d(O, sk)− d(O, s′k))

≥ ∇+ (W (sk)−W ′(s′k)) + 1
λ (d(O, sk)− d(O, s′k))

≥ ∇+ (W (sk)−W ′(s′k))− 1
λd(sk, s′k)

≥ ∇− (1 + 1
λ)(W ′(s′k)−W (sk))

(19)

The non-negativity follows directly, using (17):

V (O;Sq−1) ≥ ∇− (1 + 1/λ)λ/(λ + 1)∇ = ∇−∇ = 0.

The generalized two-server problem 13

Finally we combine (16)– (19). Remember again that Ψ ′ = Φ′(s′1, . . . , s
′
m) to see the first inequality

below. The second inequality is derived by applying (16), (18) and (19), and the third inequality
follows from (17).

Ψ ′ − Ψ ≥ Φ′(s′1, . . . , s
′
m)− Φ(s1, . . . , sq−1, O, sq+1, . . . , sm)

= Φ′(s′1, . . . , s
′
m)− Φ(s1, . . . , sq−1, sp, sq+1, . . . , sm)+

Φ(s1, . . . , sq−1, sp, sq+1, . . . , sm)− Φ(s1, . . . , sq−1, O, sq+1, . . . , sm)
≥ (1− 1/λ)(W ′(s′k)−W (sk)) +∇− (1 + 1/λ)(W ′(s′k)−W (sk))
= ∇− (2/λ)(W ′(s′k)−W (sk))
≥ ∇− (2/(λ + 1))∇
= ((λ− 1)/(λ + 1))∇.

ut

Accumulating over the consecutive phases we obtain lower bound (4) on Opt(O, σN−1).

Lemma 8.

Opt(O, σN−1) ≥
λ− 1

β1(λ + 1)

N−1∑
h=1

∇h,

where β1 = 2
(

2λ
λ−1

)m−2

.

Proof. Combining Lemmas 1, 3, and 7 yields

β1Opt(O, σN−1) ≥ ΨσN−1 = ΨσN−1 − Ψε =
N−1∑
h=1

(Ψσh
− Ψσh−1) ≥

λ− 1
λ + 1

N−1∑
h=1

∇h.

ut

2.3 An upper bound

We start the derivation of the upper bound (5) with two preliminary lemmas.

Lemma 9. For every h ∈ {1, . . . , N} and s ∈ M we have Wσh−1(s) ≥ Wσh−1(Oh)− (1/λ)d(Oh, s).

Proof. The lemma clearly holds for h = 1. If h ≥ 2 then we know that point Oh is the endpoint of
the λ-Wfa-move in the previous phase. Hence by definition of Online,

Wσh−1(Oh) + (1/λ)d(Oh, Oh−1) ≤ Wσh−1(s) + (1/λ)d(s,Oh−1),

for every point s ∈ M. Using the triangle inequality we obtain

Wσh−1(s) ≥ Wσh−1(Oh) + (1/λ)(d(Oh, Oh−1)− d(s,Oh−1)) ≥ Wσh−1(Oh)− (1/λ)d(Oh, s),

for every point s ∈ M. ut

Lemma 10. Let ρh be the sequence of requests served in phase h; then

Opt(Oh, ρh) ≤ 2λ

λ− 1
∇h + d(Oh, Oh+1).

14 René Sitters and Leen Stougie

Proof. We adopt the shorthand notation from the proof of Lemma 7: ρ = ρh, ∇ = ∇h, W =
Wσh−1 ,W

′ = Wσh
, O = Oh, and O′ = Oh+1.

Consider a path T that starts in O, serves the sequence σh, ends in O′ and has minimal length,
i.e., has length W ′(O′). Let s be the point in which this path starts phase h. Hence, the length of
this path within phase h is W ′(O′)−W (s). Obviously,

d(O′, s) ≤ W ′(O′)−W (s) (20)

Clearly, the length of the path that goes straight from O to s and then proceeds to O′, following
T , is an upper bound on Opt(O, ρ):

Opt(O, ρ) ≤ d(O, s) + W ′(O′)−W (s)
≤ d(O,O′) + d(O′, s) + W ′(O′)−W (s)
≤ d(O, O′) + 2(W ′(O′)−W (s)),

(21)

where (20) is used for the last inequality. Further, we know from Lemma 9 that

W (s) ≥ W (O)− (1/λ)d(O, s).

Combining this with ∇ = W ′(O′)−W (O) + (1/λ)d(O,O′) (Definition 3) yields

W ′(O′)−W (s) ≤ ∇− (1/λ)d(O, O′) + (1/λ)d(O, s)
≤ ∇+ (1/λ)d(O′, s))
≤ ∇+ (1/λ)(W ′(O′)−W (s)),

where (20) is used for the last inequality. Hence,

W ′(O′)−W (s) ≤ (λ/(λ− 1))∇. (22)

Combining (21) and (22) completes the proof. ut

In deriving the upper bound on Online’s cost we first bound in Lemma 11 the costs in each
phase h which ends with a work function move, i.e., h ∈ {1, . . . , N − 1}. Denote the cost of the
A-moves in each such phase h by CA

h = A(Oh, rih−1+1, . . . , rih−1). The last request rih
in such a

phase h is served by a work function step instead, which yields a cost that we denote by CW
h . The

total cost in the phase is Ch = CA
h + CW

h .

Lemma 11. For all phases h ∈ {1, . . . , N − 1} we have

Ch ≤ 4γ(λ/(λ− 1))∇h + (2γ + 1)d(Oh, Oh+1).

Proof. Consider any phase h ∈ {1, . . . , N−1}. Again, we use the shorthand notation of the previous
lemma. The cost CW

h of the work function step at the end of phase h is bounded from above by
CA

h + d(O, O′). Moreover, by definition of Online, we have CA
h = A(O, rih−1+1, . . . , rih−1) ≤

γOpt(O, rih−1+1, . . . , rih−1) ≤ γOpt(O, ρ). Hence,

Ch ≤ 2CA
h + d(O,O′) ≤ 2γOpt(O, ρ) + d(O,O′). (23)

Applying Lemma 10 yields

Ch ≤ 2γOpt(O, ρ) + d(O,O′) ≤ 2γ

(
2λ

λ− 1
∇+ d(O,O′)

)
+ d(O, O′).

ut

The generalized two-server problem 15

Lemma 12. The cost CN of the N th (and last) phase is at most (2γλ/(λ− 1))Opt(O, σ).

Proof. Remember that we assumed that the last phase ends before a work function step is made.
If there are no requests in the last phase, then CN = 0 and the lemma is trivially true. Otherwise,
CN = CA

N , and by definition of Online

CA
N ≤ γOpt(ON , ρ), (24)

where ρ is the request sequence of the last phase. The length of the path that starts in ON , goes
straight to O, and then optimally serves the whole sequence σ is an upper bound on Opt(ON , ρ):

Opt(ON , ρ) ≤ d(ON ,O) + Opt(O, σ)
≤ WσN−1(ON) + Opt(O, σ).

(25)

We shall bound WσN−1(ON). Again, we use Lemma 9 and apply the triangle inequality. For any
point s ∈ M

WσN−1(s) ≥ WσN−1(ON)− (1/λ)d(s,ON)
≥ WσN−1(ON)− (1/λ)(d(s,O) + d(O, ON))
≥ WσN−1(ON)− (1/λ)(WσN−1(s) + WσN−1(ON))
= ((λ− 1)/λ)WσN−1(ON)− (1/λ)WσN−1(s),

which implies
WσN−1(ON) ≤ ((λ + 1)/(λ− 1))WσN−1(s) ∀s ∈ M. (26)

Choosing s as the endpoint of an optimal path starting at O and serving all requests, i.e., all of
σN , we have WσN−1(s) ≤ WσN

(s) = Opt(O, σN). We combine this with (24), (25), and (26) to
obtain

CN = CA
N ≤ γOpt(ON , ρ)
≤ γ(WσN−1(ON) + Opt(O, σ))
≤ γ(((λ + 1)/(λ− 1))Opt(O, σ) + Opt(O, σ))
= (2γλ/(λ− 1))Opt(O, σ).

ut

Lemma 13.
N−1∑
h=1

d(Oh, Oh+1) ≤ λ
N−1∑
h=1

∇h − λOpt(O, σN−1).

Proof. For each phase h ∈ {1, . . . , N − 1}, by the definition of pseudo-cost,

(1/λ)d(Oh, Oh+1) = ∇h + Wσh−1(Oh)−Wσh
(Oh+1). (27)

Hence, using as before σ0 = ε, the empty string, we have

N−1∑
h=1

d(Oh, Oh+1) = λ
N−1∑
h=1

∇h + λ
N−1∑
h=1

(Wσh−1(Oh)−Wσh
(Oh+1))

= λ
N−1∑
h=1

∇h + λWε(O)− λWσN−1(ON).

The proof is completed by using Wε(O) = 0 and WσN−1(ON) ≥ Opt(O, σN−1) . ut

The above results combine to give the upper bound (5) on Online(O, σ) in the proof of The-
orem 1:

16 René Sitters and Leen Stougie

Lemma 14.

Online(O, σ) ≤
(

4γλ

λ− 1
+ (2γ + 1)λ

)N−1∑
h=1

∇h − λ(2γ + 1)Opt(O, σN−1) +
2γλ

λ− 1
Opt(O, σ).

Proof. First we combine Lemmas 11 and 12:

Online(O, σ) =
N−1∑
h=1

Ch + CN

≤
N−1∑
h=1

(
4γλ
λ−1∇h + (2γ + 1)d(Oh, Oh+1)

)
+ 2γλ

λ−1Opt(O, σ)

= 4γλ
λ−1

N−1∑
h=1

∇h + (2γ + 1)
N−1∑
h=1

d(Oh, Oh+1) + 2γλ
λ−1Opt(O, σ)

Applying the inequality of Lemma 13 completes the proof. ut

3 The generalized two-server problem

In the generalized two-server problem we are given a server, whom we will call the X-server, moving
in a metric space X, starting from point x0 ∈ X, and a server, the Y-server, moving in a metric
space Y, starting in y0 ∈ Y. Requests (x, y) ∈ X × Y are presented on-line one by one and are
served by moving one of the servers to the corresponding point in its metric space. The objective
is to minimize the sum of the distances travelled by the two servers. This problem can easily be
modelled as a metrical service system: There is one server moving in the product space X×Y and
any pair (x, y) ∈ X × Y defines a request r = {{x}×Y} ∪ {X×{y}}. For any two points (x1, y1)
and (x2, y2) in X×Y we define d((x1, y1), (x2, y2)) = dX(x1, x2) + dY(y1, y2), where dX and dY are
the distance functions of the metric spaces X and Y.

Lemma 15. The work function and λ-WFA are well-defined for the generalized two-server prob-
lem.

Proof. Let σ = (x0, y0), . . . , (xn, yn) be a request sequence for some generalized two-server problem,
where we assume, without loss of generality, that the first request is given at the origin O = (x0, y0).
Consider an arbitrary path serving σ and ending at some point (x, y). If at some request both servers
move, then the move of the server that does not serve the request can be postponed to the next
request at no extra cost. Hence, there exists a path ending at (x, y) of at most the same length
on which only one server is moved at each request, possibly with the exception of the last request.
Since the number of paths that move only one server with each request is 2n there exists a path
ending at (x, y) that has minimal length, whence the work function is well-defined. More precisely,
the endpoint of any such path is in the set S = {xn}×{y0, . . . , yn−1}∪{x0, . . . , xn−1}×{yn}. Hence
WO,σ(x, y) = WO,σ(s) + d(s, (x, y)) for some s ∈ S implying supp(WO,σ) ⊆ S. Since S has only a
finite number (2n) of elements the generalized work function algorithm λ-WFA is well-defined. ut

Thus, a part of the conditions of Theorem 1 is satisfied. We still need to define an algorithm A that
satisfies (3). That means, we must show that there are constants c1, c2 and m such that, for any
instance, the algorithm’s cost is at most c1 times the cost of the optimal solution plus c2 times the
total cost of m independent solutions. As such an algorithm we have chosen the simple Balance

algorithm, which keeps track of the costs incurred by the X- and Y-server and tries to balance their

The generalized two-server problem 17

costs. The Balance algorithm is not (constant-)competitive for our problem as it is known not
to be competitive for the two-server problem [14]. However, we will show that it satisfies condition
(3) with c1 = 2, c2 = 4 and m = 3.

We define Balance starting in (x0, y0) and serving the request sequence σ = (x1, y1), (x2, y2),
Let BX

j and BY
j be the total costs made by, respectively, the X- and the Y-server after the j-th

request has been served and let Bj := BX
j +BY

j . We denote the positions of the servers after serving
the j-th request by (x̂j , ŷj).

Balance

If BX
j + dX(x̂j , xj+1) ≤ BY

j + dY(ŷj , yj+1), then move the X-server to xj+1. Else move the
Y-server to yj+1.

The following lemmas give an upper bound on the cost of Balance. We denote by P X
ij (0 ≤ i < j)

the length of the path xi, xi+1, . . . , xj . We define P Y
ij (0 ≤ i < j) in a similar way.

Lemma 16. If Balance is applied to the request sequence (x1, y1), . . . , (xj , yj) starting from
(x0, y0), then Bj ≤ 2 min{P X

0j , P
Y
0j} ∀j ≥ 0.

Proof. Clearly, BX
j ≤ P X

0j and BY
j ≤ P Y

0j . Let the i-th request (xi, yi) be the last request served
by the X-server. Then, BX

j = BX
i ≤ BY

i−1 + dY(ŷi−1, yi) ≤ P Y
0i ≤ P Y

0j . Hence, BX
j ≤ min{P X

0j , P
Y
0j}.

Similarly it is shown that BY
j ≤ min{P X

0j , P
Y
0j}. ut

Let Opt((x0, y0), σ) denote the cost of an optimal path serving sequence σ and starting from
(x0, y0).

Lemma 17. If Balance is applied to the request sequence σ = (x1, y1), . . . , (xj , yj) starting from
(x0, y0), then Bj ≤ 2Opt((x0, y0), σ) + 4 min{P X

1j , P
Y
1j}.

Proof. If the optimal path uses only one server then Opt((x0, y0), σ) = min{P X
0j , P

Y
0j} ≥ Bj/2 by

Lemma 16. So assume the optimal path uses both servers and assume without loss of generality
P X

1j ≤ P Y
1j . Since the X-server of the optimal path serves at least one request, say x, we have

Opt((x0, y0), σ) ≥ dX(x0, x) ≥ dX(x0, x1) − dX(x1, x) ≥ P X
01 − P X

1j . Again using Lemma 16 yields
Bj ≤ 2P X

0j = 2P X
01 + 2P X

1j ≤ 2Opt((x0, y0), σ) + 4P X
1j = 2Opt((x0, y0), σ) + 4 min{P X

1j , P
Y
1j}. ut

Lemma 18. If T1, T2 and T3 are pairwise independent paths each serving the request sequence
σ = (x1, y1), . . . , (xj , yj), then |T1|+ |T2|+ |T3| ≥ min{P X

1j , P
Y
1j}.

Proof. For each i ∈ {1, 2, 3} let T X
i and T Y

i be the projections of path Ti on, respectively, metric
space X and metric space Y, and let pi = (pX

i , pY
i), qi = (qX

i , qY
i) be, respectively, the beginning and

ending point of Ti.
First we claim that for any pair T1, T2 and T2, T3 and T1, T3 there can be no two requests such

that one request is served by the two corresponding X-servers and the other request is served by
the two Y-servers. To see this assume on the contrary that paths T X

1 and T X
2 share a point x ∈ X

and paths T Y
1 and T Y

2 share a point y ∈ Y. Then for T X
1 and T X

2 we have, applying the triangle
inequality, |T X

1 | + |T X
2 | ≥ dX(pX

1 , x) + dX(x, qX
1) + dX(pX

2 , x) + dX(x, qX
2) ≥ dX(pX

1 , qX
2) + dX(pX

2 , qX
1).

Similarly, |T Y
1 |+ |T Y

2 | ≥ dY(pY
1 , qY

2) + dY(pY
2 , qY

1). Hence,

|T1|+ |T2| = |T X
1 |+ |T Y

1 |+ |T X
2 |+ |T Y

2 |
≥ dX(pX

1 , qX
2) + dX(pX

2 , qX
1) + dY(pY

1 , qY
2) + dY(pY

2 , qY
1)

= d(p1, q2) + d(p2, q1),

18 René Sitters and Leen Stougie

which would imply that T1 and T2 are dependent according to Definition 2, contrary to the premise
of the lemma. Thus, in particular it is impossible that two requests exist such that one is served
by the X-servers of T1 and T2 and the other is served by the Y-servers of T1 and T2. The same
applies to the pairs T2, T3 and T1, T3, which proves our claim.

Second, we claim that we may assume without loss of generality that the X-server of T1 shares
no request with the X-server of T2 and shares no request with the X-server of T3. To see this
consider a graph on three vertices t1, t2 and t3 and at most one edge between any two vertices.
More specifically, between ti and tj there is a red edge if the X-servers of Ti and Tj share a request,
a blue one if the Y-servers of Ti and Tj share a request, and no edge if neither the X- nor Y-servers
of Ti and Tj share a request. Above we argued that for no pair of paths Ti and Tj do both their
X-servers and their Y-servers share a request, and hence between any pair of vertices ti and tj
there cannot be both a blue and a red edge. Hence there are at most three edges in this graph
and there must be a vertex that is not incident to both a blue and a red edge. Without loss of
generality assume that t1 is not incident to any red edge. Translated back into the path language,
this says that the X-server of T1 shares no request with the X-server of T2 and shares no request
with the X-server of T3, which was indeed our second claim.

If the Y-server of T1 serves all requests then the lemma obviously holds. Otherwise, some request
r = (xi, yi) is served by the X-server of T1. By our second claim request r must be served by the
Y-servers of T2 and T3. But then, since the Y-servers of T2 and T3 share a request, the X-servers
of T2 and T3 are not allowed to share any request by our first claim. Combined with our second
claim, we are in the situation that for none of the pairs T1, T2 and T2, T3 and T1, T3 is there a
request that is served by the two corresponding X-servers. In other words, on the three tours each
request is served by at most one of the three X-servers, and therefore by at least two of the three
Y-servers. This implies that for each two consecutive requests at least one of the three Y-servers
serves both requests. Hence, |T1|+ |T2|+ |T3| ≥ P Y

1j . ut

The combination of the previous lemmas and Theorem 1 shows that the generalized two-server
problem allows for a constant competitive ratio.

Lemma 19. Algorithm Online(Balance, γ, λ) with γ = 6 and λ = 3 is 2160-competitive for the
generalized two-server problem.

Proof. By Lemma 15 the work function and λ-WFA are well-defined. Combining Lemma 17 and
Lemma 18 we see that Balance satisfies premise (3) of Theorem 1 with c1 = 2, c2 = 4 and m = 3.
Hence, Theorem 1 implies that Online(Balance, c1+c2,m) is 15(c1+c2)m2m = 2160-competitive
for the generalized two-server problem. ut

Inserting the values γ = 6 and λ = 3 directly into bound (6) we obtain the lower competitive ratio
of 879.

4 Concluding remarks

Unfortunately, Theorem 1 does not provide a competitive algorithm for the generalized k-server
problem for k ≥ 3 just as easily as for k = 2. The question as to whether a competitive algorithm
exists for k ≥ 3 remains unresolved. We believe that the generalized work function algorithm is
competitive for the generalized k-server problem for any k ≥ 1 and λ > 1.

The generalized two-server problem 19

A problem to which Theorem 1 applies directly is the k-point request problem. In this metrical
service system the set of possible requests consists of all k-element subsets of the metric space. For
any set of k + 1 or more paths that serve the same request sequence there must be two paths that
share a point and are therefore dependent. So for this problem the conditions of Theorem 1 are
satisfied for any algorithm A and γ ≥ 0 if m = k+1. Hence, the generalized work function algorithm
itself must be competitive. We can derive a bound of (λ+1)(2λ/(λ−1))k−λ on its competitive ratio
by substituting γ = 0 in (6). Burley [3] showed a slightly better bound ((λ+1)(2λ/(λ−1))k−1−λ)
and proved that this is tight. Our proof simplifies a lot if we restrict the analysis to the k-point
request problem and let Online be the generalized work function algorithm. In that case Lemma 11
and Lemma 12 are redundant. Case 2 of Lemma 7 simplifies a lot and case 1 becomes redundant
which allows for a better choice of the numbers βi. The modification of our proof to the k-point
request problem gives exactly Burley’s proof.

Condition (3) of Theorem 1 is imposed on an algorithm A. It would be more interesting to give
a (non-trivial) sufficient condition for a metrical service system to have a finite competitive ratio.
For example, Friedman and Linial [10] showed that a competitive algorithm exists if each request
is a convex set in R2. Even more interesting would be to find a sufficient condition on the system
for competitiveness of the generalized work function algorithm.

We conclude with the NP -hardness proof of the off-line version of the generalized k-server
problem. The proof is straightforward from the exact 3-cover problem. We first remind the reader
to the definition of the latter problem. For NP -Completeness of this problem we refer to [11].

Exact 3-cover:
An instance is given by a set Z with |Z| = 3q and a collection C of 3-element subsets of Z. The
question is whether C contains an exact cover for Z, i.e., a subcollection C ′ ⊆ C such that every
element of Z occurs in exactly one member of C ′.

Theorem 2. The (offline) generalized k-server problem is NP -hard.

Proof. Take any instance I of the exact 3-cover problem (with the notation as defined above).
We define an instance I ′ of the generalized k-server problem. For each 3-element subset ci ∈ C =
{c1, c2, . . . , c|C|} we define a metric space with its server. The |C| metric spaces are identical and
consist of an origin Oi, one point P i at distance 1 from the origin, and one point Qi at distance
q + 1 from the origin. For each element zj ∈ Z we define one request (r1

j , . . . , ri
j , . . . , r

|C|
j), which is

a |C|-tuple of points, one in each metric space. If zj ∈ ci then ri
j = P i and ri

j = Qi otherwise. A
small example is included below.

If there exists an exact 3-cover C ′ then we move all servers that correspond to a triple ci ∈ C ′

simultaneously to their point P i, where they will stay during the whole sequence. Every request
will be covered by exactly one server. The cost of this solution is q. On the other hand, if there is a
solution with cost at most q, then no server moves to a point Qi, since otherwise the cost would be
at least q + 1. Each server serves at most three requests. To serve all 3q requests at least q servers
have to move to their point P i. Since we assumed the cost to be at most q, exactly q servers must
move. This set of q servers induces an exact 3-cover.

To illustrate the reduction we give a small example. Let Z = {1, 2, 3, 4, 5, 6} and let C consist
of the subsets c1 = {1, 2, 3}, c2 = {4, 5, 6}, c3 = {2, 3, 4}, and c4 = {3, 4, 5}. Then the requests will
be r1 = (P 1, Q2, Q3, Q4), r2 = (P 1, Q2, P 3, Q4), r3 = (P 1, Q2, P 3, P 4), r4 = (Q1, P 2, P 3, P 4), r5 =
(Q1, P 2, Q3, P 4), and r6 = (Q1, P 2, Q3, Q4). The optimal solution is to move servers 1 and 2
(corresponding with c1 and c2) to, respectively, P 1 and P 2 and has cost 2. ut

20 René Sitters and Leen Stougie

Acknowledgement We acknowledge many detailed comments of anonymous referees, from which
we benefitted greatly in writing the present version.

References

1. Yair Bartal and Elias Koutsoupias, On the competitive ratio of the work function algorithm for the

k-server problem, Theoretical Computer Science 324 (2004), 337–345.

2. Allan Borodin, Nathan Linial, and Michael Saks, An optimal online algorithm for metrical task systems,

Journal of the ACM 39 (1992), 745–763.

3. William R. Burley, Traversing layered graphs using the work function algorithm, Journal of Algorithms

20 (1996), 479–511.

4. Marek Chrobak, Howard Karloff, Tom H. Payne, and Sundar Vishwanathan, New results on server

problems, SIAM Journal on Discrete Mathematics 4 (1991), 172–181.

5. Marek Chrobak and Lawrence L. Larmore, An optimal online algorithm for k servers on trees, SIAM

Journal on Computing 20 (1991), 144–148.

6. , Metrical service systems: Deterministic strategies, Tech. Report UCR-CS-93-1, Department

of Computer Science, University of California at Riverside, 1992.

7. Marek Chrobak and Jǐŕı Sgall, The weighted 2-server problem, Theoretical Computer Science 324

(2004), 289–312.

8. Esteban Feuerstein, Steve Seiden, and Alejandro Strejlevich de Loma, The related server problem,

Unpublished manuscript, 1999.

9. Amos Fiat and Moty Ricklin, Competitive algorithms for the weighted server problem, Theoretical

Computer Science 130 (1994), 85–99.

10. Joel Friedman and Nathan Linial, On convex body chasing, Discrete Computational Geometry 9 (1993),

293–321.

11. Richard M. Karp, Reducibility among combinatorial problems, Complexity of computer computations

(R.E. Miller and J.W. Thatcher, eds.), Plenum Press, New York, 1972, pp. 85–103.

12. Elias Koutsoupias and Christos Papadimitriou, On the k-server conjecture, Journal of the ACM 42

(1995), 971–983.

13. Elias Koutsoupias and David Scot Taylor, The cnn problem and other k-server variants, Theoretical

Computer Science 324 (2004), 347–359.

14. Lyle A. McGeoch Mark S. Manasse and Daniel D. Sleator, Competitive algorithms for server problems,

Journal of Algorithms 11 (1990), 208–230.

15. René Sitters, Leen Stougie, and Willem de Paepe, A competitive algorithm for the general 2-server

problem., ICALP03, Lecture Notes in Computer Science, vol. 2719, Springer, 2003, pp. 624–636.

