

Computing a partial generalized real Schur form using the
Jacobi-Davidson method
Citation for published version (APA):
Noorden, van, T. L., & Rommes, J. (2005). Computing a partial generalized real Schur form using the Jacobi-
Davidson method. (CASA-report; Vol. 0541). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/08787c79-aa82-41ec-8021-5635d4b98270

Computing a partial generalized real Schur form

using the Jacobi-Davidson method ∗

T.L. van Noorden and J. Rommes

Abstract

In this paper, a new variant of the Jacobi-Davidson method is pre-

sented that is specifically designed for real unsymmetric matrix pencils.

Whenever a pencil has a complex conjugated pair of eigenvalues, the

method computes the two dimensional real invariant subspace spanned

by the two corresponding complex conjugated eigenvectors. This is ben-

eficial for memory costs and in many cases it also accelerates the conver-

gence of the JD method. In numerical experiments, the RJDQZ variant

is compared with the original JDQZ method.

1 Introduction

Real unsymmetric matrices or real unsymmetric matrix pencils may have com-
plex eigenvalues and corresponding eigenvectors. Therefore, the (partial gener-
alized) Schur form may consist of complex matrices. In some situations, (e.g.,
in a continuation context [1]) it is more desirable to compute a real (partial gen-
eralized) Schur form. This decomposition consists for a matrix of an orthogonal
real matrix and block upper triangular matrix, which has scalars or two by two
blocks on the diagonal. The eigenvalues of such a two by two block correspond
to two complex conjugated eigenvalues of the matrix (pencil) itself. Advantages
of the real Schur form are that it requires less storage since for every complex
conjugated pair of eigenvalues only two real vectors need to be stored instead of
two complex vectors, and that complex conjugated pairs of eigenvalues always
appear together.

In this paper, a variant of the JDQZ method [2] is considered for the compu-
tation of a partial generalized real Schur form of a matrix pencil. The original
JDQZ method [2] does not use the fact that the pencil is real: (1) it does not
exploit the fact that eigenvalues are real or appear in complex conjugated pairs
and (2) it needs complex arithmetic, even when only real eigenvalues appear.
This is in contrast with other iterative eigenvalue solvers such as the Arnoldi
method.

∗This research was carried out in the context of the dutch NWO Scientific Computing
project “Rapid Changes in Complex Flows” and the BRICKS (MSV1) project of the dutch
government.

1

Algorithm 4.1 proposed in [3] solves the problem (1). This algorithm consists
of an outer iteration in which the partial Schur form is expanded by a scalar
block whenever the inner iteration, which may consist of the Jacobi-Davidson
method applied to a deflated matrix, returns a real eigenvalue, and with a two
by two block if the inner iteration returns an eigenvalue with non-zero imaginary
part. Algorithm 4.1 in [3] does not solve problem (2): the inner iteration still
needs complex arithmetic, even when only real eigenvalues are computed.

The variant of the Jacobi-Davidson method that is implemented in this pa-
per does take into account in the inner iteration that either a real eigenvalue
and eigenvector are computed, or a two dimensional invariant subspace corre-
sponding to a pair of complex conjugated eigenvalues. It is shown that this
approach has several advantages.

In [4], it is stated that a real implementation of the JD method is used
for a comparison with the Ricatti method, but implementation details and a
comparison with the original JD method are not presented. Also in [2] (Remark
1), the authors hint at a real version of the JD method, but do not pursue this
matter further.

The structure of this paper is as follows. In Section 2, the JDQZ method
[2] is discussed. The RJDQZ method is presented in Section 3, and in Section
4, different ways to solve the correction equation in the RJDQZ method are
discussed and compared. A comparison of the computational and memory costs
between the original JDQZ method and the RJDQZ method is found in Section
5 and a numerical comparison in Section 6. Section 7 concludes.

2 A Jacobi-Davidson style QZ method

In this section the JDQZ method [2] for the construction of a partial generalized
Schur form of an unsymmetric matrix pencil is discussed.

2.1 The Jacobi-Davidson Method for the Generalized

Eigenvalue Problem

The Jacobi-Davidson (JD) method [5] iteratively computes approximations to
eigenvalues, and their corresponding eigenvectors, that are close to some speci-
fied target τ , of the generalized unsymmetric eigenvalue problem

Aq = µBq, (1)

where A and B are in general unsymmetric n× n matrices. In each iteration, a
search subspace colspan(V) and a test subspace colspan(W) are constructed. V
and W are complex n × j matrices with j � n and have orthonormal columns
such that V ∗V = W ∗W = I . In the first part of an iteration, an approximation
to an eigenvector of the generalized eigenvalues problem (1) is obtained from
the projected eigenvalue problem

W ∗AV u = µW ∗BV u. (2)

2

Note that this is a small eigenvalue problem of size j × j, so that a full space
method like the QZ method can be used to compute all the eigenvalues and
eigenvectors of the eigenvalue problem (2).

Suppose (µ̃, u) is the eigenpair of the projected eigenvalue problem (2), of
which the eigenvalue µ̃ is closest to τ . An approximation (µ̃, q̃) to an eigenpair of
the full sized eigenvalue problem (1) can be constructed by computing q̃ = V u.
The residual vector r of the approximate eigenpair (µ̃, q̃) is defined by

r := Aq̃ − µ̃Bq̃.

The second part in a JD iteration is the expansion of the search and test
space. The search space V is expanded by an approximate solution x of the
linear equation

(I − z̃z̃∗)(A − µ̃B)(I − q̃q̃∗)x = −r. (3)

This equation is called the Jacobi-Davidson correction equation. Here z̃ is the
vector z̃ = (κ0A + κ1B)q̃. The test space W is expanded with the vector
w = (κ0A + κ1B)x. This procedure is repeated until ||r|| is small enough.

There are several possible choices for the complex numbers κ0 and κ1, and
the performance of the JDQZ method is affected by this choice. An effective
choice of κ0 and κ1 depends on whether the target value τ is located near
extremal eigenvalues of the pencil (A, B) or whether τ is located in the interior
of the spectrum of (A, B). For a detailed discussion on the choice of κ0 and κ1,
see [2]. An effective choice for interior eigenvalues is κ0 = (1 + |τ |2)−1/2 and
κ1 = −τ(1 + |τ |2)−1/2. This choice corresponds to the harmonic Petrov value
approach [2].

If P is a preconditioner for the matrix (A−µ̃B), then the correction equation
(3) can be preconditioned as follows [2]:

(I −
ẑq̃∗

q̃∗ẑ
)P−1(A − µ̃B)(I −

ẑq̃∗

q̃∗ẑ
)x = −r̃, (4)

with r̃k = (I − ẑq̃∗

q̃∗ẑ)P−1r, and ẑ = P−1z̃.

2.2 The JDQZ Method

The JDQZ method is a Jacobi-Davidson style method that is designed to com-
pute an approximation to a partial generalized Schur form of the matrix pair
(A, B)

AQk = ZkSk, BQk = ZkTk, (5)

where Qk and Zk are n× k matrices with orthonormal columns, and Sk and Tk

are k × k upper triangular matrices. Eigenvalues of the pair (Sk, Tk) are also
eigenvalues of the pair (A, B).

The first column of Qk is an eigenvector of the pair (A, B), and can thus
be computed with the JD method. Suppose that a partial Schur form (5) is

3

computed already. Now one would like to compute the next Schur vector qk+1

and the corresponding eigenvalue µk+1. It can be shown [2] that this Schur
vector satisfies Q∗

kqk+1 = 0 and

(I − ZkZ∗

k)(A − µk+1B)(I − QkQ∗

k)qk+1 = 0. (6)

Note that this is again a generalized eigenvalue problem, and therefore it can
be solved using the JD method. The eigenvalue problem (6) shares n− k eigen-
values with the generalized eigenvalue problem (1), and the already computed
k eigenvalues of (1) are shifted to zero. The eigenvalue problem (6) is called
the deflated eigenvalue problem. It is clear that the matrices V , containing
the search space, and W , containing the test space in the JD method satisfy
the extra condition V ∗Qk = W ∗Zk = 0. The projected generalized eigenvalue
problem that has to be solved can be written as

W ∗(I − ZkZ∗

k)A(I − QkQ∗

k)V u = µW ∗(I − ZkZ∗

k)B(I − QkQ∗

k)V u. (7)

Let (µ̃, ũ) denote an eigenpair of the projected eigenvalue problem (7). Again
an approximation (µ̃, q̃) to the eigenpair (µk+1, qk+1) of the eigenvalue problem
(6) can be constructed by computing q̃ = V ũ. In order to expand the search
space V , an approximate solution x of the correction equation

(I − z̃z̃∗)(I − ZkZ∗

k)(A − µ̃B)(I − QkQ∗

k)(I − q̃q̃∗)x = −r, (8)

is computed, where z̃ = (κ0A+κ1B)q̃, and r = (I−ZkZ∗

k)(A−µ̃B)(I−QkQ∗

k)q̃.
The test space W is expanded with the vector w = (κ0A + κ1B)x

Observe that complex arithmetic needs to be used to compute approxima-
tions to solutions of equation (8) whenever µ̃ has a non-zero imaginary part, or
whenever the matrices Qk and Zk contain entries with non-zero imaginary part.

When the JD correction equation (8) is solved exactly in each step of the
JDQZ method, then it can be shown that the method converges quadratically
to an eigenvector. Solving the correction equation exactly, however, can be
expensive. It may be better for the overall performance of the JDQZ method
to solve the correction equation (8) only approximately. In [2], based on an
analogy of the JD method with Newton’s method, it is suggested to solve the
correction equation with a Krylov subspace method, and to stop the iterative
solver when

||ri||2 < 2−j ||r0||2,

where ri is the ith residual vector of the Krylov subspace method, and j the
iteration number of the JDQZ step. In [2] it is shown that this choice leads to
an efficient method.

If B = I the generalized eigenvalue problem (1) reduces to the standard
eigenvalue problem Aq = µq. In this case it is possible to simplify the JDQZ
method in order to reduce the memory requirements and the computational
costs. This simplified method is called the JDQR method [2], and it computes
a partial Schur form of the matrix A. For the standard eigenvalue problem the
eigenvalues of the projected eigenvalue problem (7) are called (harmonic) Ritz
values, instead of (harmonic) Petrov values [2].

4

3 A JDQZ Method for Real Matrix Pencils

In this section a Jacobi-Davidson style method that is specifically designed for
real unsymmetric matrix pencils, is discussed.

3.1 The RJDQZ Algorithm

A generalized partial real Schur form of the real matrix pencil (A, B) is a de-
composition of the following form

AQk = ZkSk, BQk = ZkTk,

where now Qk and Zk are real matrices with orthonormal columns, and Sk and
Tk are real block upper triangular matrices with scalar or two by two diagonal
blocks. The eigenvalues of the two by two diagonal blocks correspond to complex
conjugated pairs of eigenvalues of the pencil (A, B).

In [3] an adaptation of the JDQR algorithm for the standard eigenvalue
problem is proposed (in Algorithm 4.1) to compute a partial real Schur form.
Translated to the generalized case, this procedure proceeds just as the JDQZ
method, the only difference being that if a complex eigenvalue µk, with corre-
sponding eigenvector qk, is computed of the eigenvalue problem (6), then the
partial generalized Schur form is augmented not only with the eigenvector qk

but with a real basis of the space spanned by qk and q̄k. In the proposed proce-
dure, the search V and the test space W do not have to be real, and, therefore,
the Petrov values (i.e. the eigenvalues of the projected eigenvalue problem) do
not have to appear in complex conjugated pairs. This causes difficulties for the
identification of complex pairs of eigenvalues of the original eigenvalue problem,
see e.g. Chapter 8 in [6], and it also introduces additional rounding errors when
an computed approximate eigenvalue with small imaginary part is replaced by
its real part.

A way around this problem is to keep the search and test space real, which
can be done as follows. Suppose one has already a real search space V and a
real test space W . Then one has to compute the eigenvalues of the projected
generalized eigenvalue problem (2):

W T AV u = µW T BV u.

Since the projected matrices W T AV and W T BV are real, the eigenvalues are
either real or form a complex conjugated pair, and since the projected eigenvalue
problem is small, all eigenvalues can be computed accurately and cheaply. From
these eigenvalues one eigenvalue (or complex conjugated pair) is selected with
a given selection criterion (closest to a target value, or largest real part, etc.).
Denote the selected Petrov value by µ̃ and the corresponding eigenvector by ũ.

In the actual algorithm, instead of an eigenvalue decomposition of the pro-
jected eigenvalue problem (2), a sorted real generalized Schur form is computed.
How this form is computed in an efficient and stable way can be found in [7, 8, 3]

5

for the standard eigenvalue problem and in [9, 10, 11] for the generalized eigen-
value problem. As mentioned above, it is in the construction of the sorted real
generalized Schur form where it is decided (up to machine precision) whether
an eigenvalue is real or appears in a complex conjugated pair.

If the selected Petrov value µ̃ is real then the matrix and the right hand side
in the correction equation (8):

(I − z̃z̃∗)(I − ZkZ∗

k)(A − µ̃B)(I − QkQ∗

k)(I − q̃q̃∗)x = −r,

are both real, and, assuming that a Krylov subspace solver is used, the Krylov
subspace build by the solver will also be real, and therefore also the approximate
solution will be real. In this case the correction equation can be solved using
real arithmetic. This also holds in the preconditioned case, as long as the
preconditioner is real. This means that if the selected Petrov value is real, then
the search and test space are expanded with a real vector.

If the selected Petrov value µ has non-zero imaginary part, then the matrix
and the right hand side in the correction equation (8) also have non-zero imagi-
nary parts, and the JD correction equation will have to be solved using complex
arithmetic, and one will obtain a complex approximate solution v. In order to
keep the search space real, it is expanded with the two dimensional real space
U = span{<(v),=(v)}, which contains the vector v. It is easily seen that the
space U is also spanned by v and its complex conjugate v̄ and it is instructive
to think of the space U as an approximation to a two dimensional generalized
invariant subspace that can be spanned by two real vectors.

Remark 1: If the selected Petrov value has non-zero imaginary part, then
there exists also a Petrov value µ̄. Assuming the target τ to be real, then both µ
and µ̄ have an equal distance to τ . In this case selecting the Petrov value might
appear to be a problem, but in fact it is irrelevant whether µ or µ̄ is selected,
since it is not hard to see that in both cases the space U with which the search
space is expanded will be the same. This also solves a problem from which the
original JD method suffers when the target value is real (see Section 6.2.1 for
more details).

Remark 2: Note that if the target value τ has a non-zero imaginary part
then κ1 (see below equation (3)) will not be real in the harmonic Petrov ap-
proach. Thus in the case of a non-real target value combined with the harmonic
Petrov approach, the proposed method looses most of its advantages, although
keeping the search space real by expanding it with a two dimensional real space,
when appropriate, might still accelerate the convergence of the JD method. Note
that in this case also other iterative eigenvalue solvers such as the shift and invert
Arnoldi method will need complex arithmetic [12].

6

4 Formulating and solving the correction equa-

tion

If a real Petrov pair is selected, the correction equation can be solved using
real arithmetic. If a complex Petrov pair is selected, there are three ways to
formulate the correction equation for the real variant of Jacobi-Davidson QZ:
(1) the correction equation can be formulated as a complex equation (the usual
way), (2) the complex correction equation can be made real by defining two
coupled equations for the real and imaginary part, or (3) a generalized real
Sylvester equation can be formulated for the correction of the approximate two
dimensional invariant subspace. In the following it will be shown that these three
formulations are equivalent and that approach (3) is the preferred approach from
a conceptual point of view, while approach (1) is more efficient in practice.

4.1 Complex correction equation

For a Petrov pair (µ, q), the JDQZ correction equation is of the following form:

(I − ZZ∗)(A − θB)(I − QQ∗)t = −r, (9)

with Q = [Qk, q] and Z = [Zk, z]. If θ ∈ C and q ∈ Cn, the correction
equation becomes complex and can be solved using complex arithmetic. To
keep the search space real, it is expanded with the two dimensional real space
span(<(t),=(t)).

4.2 Real variant of complex correction equation

Let θ = ν + iω, t = u + iv and r = x + iy. Then it follows that

(A − θB)t = −r ⇐⇒

[

A − νB ωB
−ωB A − νB

][

u
v

]

= −

[

x
y

]

.

The matrices with already converged right and left Schur vectors Qk and Zk

are real. Let q = q1 + iq2 with q∗1q1 + q∗2q2 = 1. Then

(I−qq∗)t = (I−(q1q
∗

1+q2q
∗

2))u+(q2q
∗

1−q1q
∗

2)v+i((I−(q1q
∗

1+q2q
∗

2))v−(q2q
∗

1−q1q
∗

2)u).

The equivalent real block formulation becomes

(I − qq∗)t ⇐⇒ Pq

[

u
v

]

≡

[

I − (q1q
∗

1 + q2q
∗

2) q2q
∗

1 − q1q
∗

2

−(q2q
∗

1 − q1q
∗

2) I − (q1q
∗

1 + q2q
∗

2)

][

u
v

]

.

By using q∗1q1 +q∗2q2 = 1 and some basic linear algebra, it can be shown that Pq

is indeed a projector. In a similar way, Pz for z = z1 + iz2 and z∗1z1 + z∗2z2 = 1
can be defined as

Pz ≡

[

I − (z1z
∗

1 + z2z
∗

2) z2z
∗

1 − z1z
∗

2

−(z2z
∗

1 − z1z
∗

2) I − (z1z
∗

1 + z2z
∗

2)

]

.

7

The real equivalent of the correction equation (9) becomes

PzZk

[

A − νB ωB
−ωB A − νB

]

QkPq

[

u
v

]

= −

[

x
y

]

, (10)

where

Zk =

[

I − ZkZ∗

k 0
0 I − ZkZ∗

k

]

and Qk =

[

I − QkQ∗

k 0
0 I − QkQ∗

k

]

.

4.3 Real generalized Sylvester equation

An advantage of the RJDQZ algorithm is that approximations to complex con-
jugate pairs appear in conjugate pairs. The corresponding residual for the ap-
proximate two dimensional invariant subspace

[

q1 q2

]

is

[

x y
]

= A
[

q1 q2

]

− B
[

q1 q2

]

[

ν ω
−ω ν

]

.

The correction equation for
[

u v
]

becomes a real generalized Sylvester equation

(I − ZZ∗)(A(I − QQ∗)
[

u v
]

− B(I − QQ∗)
[

u v
]

[

ν ω
−ω ν

]

) = −
[

x y
]

The equivalent block formulation becomes

PzZk

[

A − νB ωB
−ωB A − νB

]

QkPq

[

u
v

]

= −

[

x
y

]

, (11)

which is the same as the one obtained in (10).
An alternative formulation of the correction equation can be obtained if one

considers a sorted real generalized Schur form instead of an eigenvalue decom-
position (see also [2]). The selected approximate Schur quartet for the deflated
problem is (

[

q1 q2

]

,
[

z1 z2

]

, S, T), with S, T ∈ R2×2, T upper triangular,
[

q1 q2

]

⊥ Qk and
[

z1 z2

]

⊥ Zk. The residual is computed as

[

x y
]

= (I − ZkZ∗

k)(A
[

q1 q2

]

S−1 − B
[

q1 q2

]

T−1),

and the correction equation becomes

PzZk

[

s−1
11 A − t−1

11 B s−1
21 A

s−1
12 A − t−1

12 B s−1
22 A − t−1

22 B

]

QkPq

[

u
v

]

= −

[

x
y

]

. (12)

4.4 Approximate solution of the correction equation

The real and imaginary part of the exact solution of (9) and the exact solutions
of (10) and (11), and (12) span the same two dimensional real subspace. In
practice however, the correction equation is only solved approximately using an

8

iterative linear solver like GMRES. The rate of convergence of linear solvers de-
pends, among others, on the condition number of the operator, the distribution
of the eigenvalues, and the quality of the preconditioner. The following propo-
sition states that the eigenvalues of the complex matrix A− θB in equation (9)
are also eigenvalues of the equivalent real block matrix in equations (10) and
(11), together with their complex conjugates and furthermore that the condition
numbers of the matrices are the same..

Proposition 1 Let A, B ∈ Rn×n, θ = ν + iω ∈ C and (A − θB)vj = µjvj , j =
1, . . . , n with vj ∈ Cn and µj ∈ C. Then the eigenpairs of

C =

[

A − νB ωB
−ωB A − νB

]

∈ R
2n×2n (13)

are (µj ,
[

vT
j , (−ivj)

T
]T

), (µ̄j ,
[

vT
j , (−ivj)

T
]∗

) for j = 1, . . . , n.
Furthermore Cond(C)=Cond(A − θB).

Proof. For an eigenpair (µ, v) of A − θB it holds that

(A − νB)v − ωBiv = µv, −(A − νB)iv − ωBv = −µiv.

Using this it easily follows that

[

A − νB ωB
−ωB A − νB

] [

v
−iv

]

= µ

[

v
−iv

]

.

The first part of the proposition follows by noting that because matrix (13) is
a real matrix, its eigenpairs appear in complex conjugate pairs. The equality
of the condition numbers for C and A− θB follows from the fact that for every
x = v + iw ∈ C

n it holds that

x∗(A − θB)∗(A − θB)x

x∗x
=

v
T CT Cv

v
T
v

,

where v = (vT wT)T . 2

Using similar arguments, this relation can be extended to the operator in
equation (12). From proposition 1 it follows that no big differences in conver-
gence are to be expected if the approximate solution is computed with a linear
solver. This is also confirmed by numerical experiments.

If a preconditioner K ≈ A − τB is available for a target τ ∈ R, it can be
used for the block systems as well:

K̃ =

[

K 0
0 K

]

.

Using proposition 1, the condition numbers of K−1(A− θB) and K̃−1C are the
same. So the use of a preconditioner also is not expected to cause big differences
in speed convergence between the three approaches.

9

Table 1: Costs of operator application for the three approaches. BLAS terms
are used: MV(A) is Ax, AXPY = αx + y.αx. The solve of y from LUy = x,
given LU -factors, is denoted by LU .

Approach MV(A) MV(B) AXPY MV(Z) LU
complex (9) 2 2 4 4 2
real (10) 2 2 4 4 2
Sylvester (12) 2 2 4 4 2

The three approaches, however, may lead to different approximate solutions
because the inner product of two complex n-vectors is different from the inner
product of the equivalent real 2n-vectors. Furthermore, it will most likely require
more steps of the linear solver to reduce the residual norm to a certain tolerance
for a real problem of size 2n than for a complex problem of size n. This is
confirmed by numerical experiments.

4.5 Complexity and practical notes

Table 1 shows the costs of an application of the operator in equations (9), (10)
and (12). Operations are counted in purely real operations: if x ∈ Cn, then an
MV (Ax) costs two real MVs. Furthermore, operations are counted for n × n
matrices and n× 1 vectors, because in a practical situation the 2n× 2n systems
are never constructed explicitly.

Operator applications cost the same for all three approaches1. The approach
in (12) is the most elegant approach because no complex arithmetic is involved
at all for the RJDQZ algorithm. If the correction equation is solved exactly, it
is more efficient to solve the complex correction equation: the solve of complex
linear system of order n costs half the solve of a real linear system of order
2n. Furthermore, if an iterative method is used to solve the correction equa-
tion approximately, it is expected that within a fixed number of iterations, the
approximate solution of the complex correction equation will be most accurate.
Therefore, in practice the most efficient approach will be to solve the complex
correction equation.

4.6 Numerical examples

The three approaches are equivalent, but in finite arithmetic rounding errors
may lead to different results. Also, if an iterative method is used to solve the
correction equation, the approximate solutions may differ, as explained above.
This effect may be limited, however, because the condition number of the re-
spective operators remains the same. The numerical experiments in this section
confirm this. If the correction equation is solved exactly, the differences between

1It must be noted that straightforward application of the operator in (12) costs an addi-
tional 3 SCALs (αx). Clever implementation saves these 3 SCALs.

10

0 10 20 30 40 50 60
−12

−10

−8

−6

−4

−2

0

2

iteration i

 lo
g1

0|
|r i||

RJDQZ, complex cor. eq.

RJDQZ, real Sylvester eq.

RJDQZ, real cor. eq.

0 2 4 6 8 10 12 14 16 18 20
−14

−12

−10

−8

−6

−4

−2

0

2

iteration i

 lo
g1

0|
|r i||

RJDQZ, complex cor. eq.

RJDQZ, real Sylvester eq.

RJDQZ, real cor. eq.

Figure 1: Convergence history for the six rightmost eigenvalues of CC100 with
GMRES(10) (left) and GMRES(10) with LU = A preconditioning.

the three approaches are hardly observable, as expected, and therefore they are
not shown. If the correction equation is solved with an iterative solver, the
differences are more pronounced but not dramatic. Figure 1 shows the conver-
gence history for the problem CC100 (B = I) with GMRES(10) as solver (left
graph), and with GMRES(10) with LU = A as preconditioner (right graph).
Solving the complex correction equation leads to the fastest convergence, but
the approaches differ by at most three iterations.

Figure 2 shows the convergence history for the problem ODEP400 with GM-
RES(5) and GMRES(10). For both processes the preconditioner is LU = A.
For the GMRES(10) process, the difference is more pronounced: again solving
the complex correction equation is the most efficient. It is also clearly observ-
able that this approach takes the most advantage from an increased number of
GMRES iterations: apparently it is able to reduce the residual more than the
other two approaches in the same number of iterations. Note that the conver-
gence histories for the different ways of solving the correction equation coincide
until the first complex Ritz pair is selected.

5 RJDQZ versus JDQZ

For a precise account of the computational and memory costs of the JDQR and
JDQZ methods, see [2]. In this section only the main differences in the costs
between the JDQZ and the RJDQZ method are mentioned.

5.1 Differences in Memory Costs

The orthonormal bases for the search and test space in the JDQZ method are
expanded with one complex vector in each iteration (depending on the imple-
mentation). For the RJDQZ, the bases of the search and test space are expanded
with one real vector if the selected Ritz value is real or with two real vectors if
the selected Ritz value appears in a complex conjugated pair. This means that,

11

0 5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

2

iteration i

 lo
g1

0|
|r i||

RJDQZ, complex cor. eq.

RJDQZ, real Sylvester eq.

RJDQZ, real cor. eq.

0 5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

2

iteration i

 lo
g1

0|
|r i||

RJDQZ, complex cor. eq.

RJDQZ, real Sylvester eq.

RJDQZ, real cor. eq.

Figure 2: Convergence history for the six rightmost eigenvalues of ODEP400
with LU = A preconditioning for GMRES(5) (left) and GMRES(10).

although the dimension of the search and test space for the RJDQZ method can
grow twice as fast as for the JDQZ method, the storage requirements are the
same at most, and probably less. The numerical experiments give evidence that
the larger subspace in the RJDQZ method is beneficial for the convergence.

5.2 Differences in Computational Costs

• The correction equation: When in the RJDQZ method a real Petrov value
is selected, the correction equation can be solved in real arithmetic. In the
original JDQZ method this needs not be the case due to rounding errors:
an approximation of a real eigenvalue can be a complex Ritz (Petrov)
value with very small imaginary part. This approximately halves the
number of (real) matrix-vector products that is needed (depends on how
many iterations are used for the approximate solution of the correction
equation). When a Petrov value is selected that appears in a complex
conjugated pair, then the JDQZ and the RJDQZ method need the same
work for the approximate solution of the correction equation. Note that
the RJDQZ methods requires two implementations of the solver for the
correction equation: a real and a complex version.

• The projected eigenproblem: In the RJDQZ method the real Schur forms
of real projected eigenproblems are computed, but these may be twice as
large as the complex projected eigenproblems that appear in the JDQZ
method. Assume that computing a Schur form costs O(n3) operations
[13] and that an operation in complex arithmetic costs in average four
operations in real arithmetic. Then it is easily deduced that computing
the Schur form of a real eigenvalue problem costs about twice as much as
computing the Schur form of a complex eigenvalue problem that is twice
as small.

• Orthogonalization: The other point where the RJDQZ method may be

12

computationally more expensive than the original JDQZ, is the orthogo-
nalization procedures. One has to compare these two cases:

– Orthogonalize a complex vector x against k other complex vectors.
This requires 4k real inner products for the projection plus 2 real
inner products for the scaling.

– Orthogonalize two real vectors a and b against 2k other real vectors.
This requires 2k inner products for projecting the first vector a plus
one inner product for scaling. For the next vector b, 2k + 1 inner
products are needed for the projection plus one for the scaling. This
adds up to 4k + 3 inner products.

In the worst case, one iteration of the RJDQZ method will cost about the
work of one inner product and one (low dimensional) Schur decomposition
more than an iteration of the original version of the JDQZ method. If the
initial approximation is a real vector, then the cost of the extra inner
product in the RJDQZ method is eliminated, and the orthogonalization
process in the RJDQZ method will cost at most as much as in the JDQZ
method.

6 Numerical Comparison

The RJDQZ method is compared with two variants of the JDQZ method: the
original JDQZ method as described in [2] and a variant that here is denote by
JDQZd, which is the method described for the standard eigenvalue problem in
[3]. This method proceeds just as the original JDQZ method, except when one
has computed an eigenvalue with non-zero imaginary part. In that case the
partial generalized Schur form is augmented not only with the corresponding
eigenvector, but also with its complex conjugate.

6.1 Hardware and software

The experiments were performed on a Sunblade 100 workstation using Matlab
6. The Matlab code that was used for the RJDQZ method is given in Tables
5-7. The cpu-time results are included. Note that these cpu-time results do
not always give very accurate information, but they at least give an impression
of how the methods perform in comparison to each other. If not mentioned
otherwise, the target value in each experiment equals 0, and the tolerance is set
to 10−9

6.2 Results for the Real JDQR Method

The ideas presented in this paper are easily incorporated in a QR version of the
algorithm for the standard eigenvalue problem. In this section, numerical results
for the QR version are reported. For all the results presented in this section,
the correction equation is solved approximately using at most 10 iterations of

13

Table 2: Results for QR methods
Bi-CGSTAB GMRES

CRY10000 JDQR JDQRd RJDQR JDQR JDQRd RJDQR
iterations 46 42 76 57
dim. search sp. 36 38 66 63
mat.vec. 1432 751 1532 733
Cpu (secs) 246 116 386 158

AF23560 JDQR JDQRd RJDQR JDQR JDQRd RJDQR
iterations 83 74 53 52 41 36
dim. search sp. 71 65 78 40 32 42
mat.vec. 3002 2708 1603 1622 1244 782
Cpu (secs) 4071 4255 2825 2303 1686 1107

CC100 JDQR JDQRd RJDQR JDQR JDQRd RJDQR
iterations 42 31 34 62 49 47
dim. search sp. 32 25 39 52 43 57
mat.vec. 1214 878 883 1226 1006 657
Cpu (secs) 5 3 2 17 10 3

the Bi-CGSTAB method [14] or the GMRES method [15]. No restart strategy
is used in the JD part of the algorithm, in order to focus on the differences in
the performance of the methods caused by the different strategies for expanding
the search and test space.

For the first test matrix is the matrix CRY10000 (from the NEP collection
at http://math.nist.gov/MatrixMarket/). This is a large real unsymmetric
standard eigenvalue problem that arises from the stability analysis of a crystal
growth problem. The matrix has dimension 10000 by 10000. The target value
τ = 7 is selected (this corresponds to the rightmost eigenvalues). Six eigenvalues
closest to the target are computed. The convergence tolerance is set to 10−8.
The preconditioner that is used for the correction equations is the incomplete
LU (ILU) factorization of the matrix A− τI (where A is the CRY10000 matrix)
with drop tolerance 1e-3. In Table 2 the number of iterations, the number of
matrix-vector products, and the dimension of the final search space is given. For
the dimension of the final search space, it is important to note that no restarting
is used, and also that in the tables the dimension of the search space is given,
which means that for the original, complex JDQR method, this number should
be multiplied by two to obtain the number of real vectors that are needed to
store the basis of the search space.

The computed eigenvalues are all real. The selected Ritz values in the inter-
mediate JD iterations need not be, and in fact were not, all real. This explains
why both the RJDQR and JDQR constructed a search space of approximately
the same dimension, while the RJDQR method required fewer iterations to build
this search space. Note that if only real eigenvalues are computed, the JDQR
and JDQRd method coincide. Therefore the results for the JDQRd method are
not given for the CRY10000 matrix.

For the second test problem, some of the eigenvalues with largest real part
of the matrix AF23560 are computed (also from the NEP collection at Ma-
trixMarket). The test matrix arises from the transient stability analysis of

14

-1 1 0 0 0 0 0 0 0 0

-1 -2 1 0 0 0 0 0 0 0

0 0 -3 1 0 0 0 0 0 0

0 0 -1 -4 1 0 0 0 0 0

0 0 0 0 -5 1 0 0 0 0

0 0 0 0 -1 -6 0 0 0 0

0 0 0 0 0 0 -7 0 0 0

0 0 0 0 0 0 0 -8 0 0

0 0 0 0 0 0 0 0 -9 0

0 0 0 0 0 0 0 0 0 -10

Figure 3: The upper left 10 by 10 block of the matrix CC100.

Navier-Stokes solvers. The order of the test matrix is 23560. The eigenvalues
and eigenvectors are associated with small perturbation analysis of a finite dif-
ference representation of the Navier-Stokes equations for flows over airfoils. The
preconditioner that is used for the correction equations is the ILU factorization
of the AF23560 matrix with drop tolerance 1e-3. Seven eigenvalues with largest
real part are computed. Three of the computed eigenvalues are real and the
other four are formed by two complex conjugated pairs. Observe that again the
RJDQR method needs fewer iterations but builds a subspace that is larger than
the JDQR method. Note that, although the dimension of the search space for
the RJDQR method is larger, it needs far less storage than the JDQR method
to store the basis, since it only stores real vectors.

The test matrix CC100 is constructed for the purpose of comparing the
JDQR and the RJDQR method in the case that only complex conjugated pairs
of eigenvalues are computed. The matrix has order 100, has the numbers -1
to -100 on the diagonal, and has some off-diagonal elements only in the upper
left corner. The upper left 10 by 10 corner is given below in Fig. 3. The six
eigenvalues with largest real part are computed. No preconditioner is used for
the correction equations.

Observe that even in cases when only complex pairs of eigenvalues are com-
puted, the RJDQR method may need fewer matrix-vector products than the
JDQR method. There can be two different reasons: the intermediate selected
Ritz values can be real so that real arithmetic can be used in intermediate
RJDQR iterations, and secondly, in case the selected Ritz value is not real, then
the dimension of the search space grows faster in the RJDQR method, which
may result in a faster convergence and thus fewer matrix-vector products.

6.2.1 Ritz value selection

When a real target is supplied, and a complex conjugated pair of eigenvalues
is to be computed, then these two eigenvalues have exactly the same distance
to the target. The approximating Ritz values do not necessarily have the same
distance to the target. Therefore it may happen that in one iteration the Ritz

15

0 5 10 15 20 25 30 35−12

−10

−8

−6

−4

−2

0

2

iterations
lo

g 10
(r)

0 5 10 15 20 25 30 35−5
−4
−3
−2
−1

0
1
2
3
4
5

iterations

Im
(µ

k)

Figure 4: Left graph: the residual for the JDQR, adapted JDQR and RJDQR
method versus the number of iterations for the convergence to an eigenvalue
with non-zero imaginary part. Right graph: the imaginary part versus the
number of iterations. Dotted lines: JDQR, dashed lines: adapted JDQR, solid
lines: RJDQR.

value with positive imaginary part is selected and in the next iteration the Ritz
value with negative imaginary part. This may hamper the convergence of the
method. This is illustrated in Fig. 4. The dotted line in the left and right graph
shows the convergence of the JDQR method to an eigenvalue with non-zero
imaginary part. In the right graph the imaginary part of the selected Ritz value
is plotted versus the iteration number. The sign of the imaginary part of the
selected Ritz value changes a number of times. Note that when this happens
the residual becomes larger. In order to prevent the sign of the imaginary part
of the selected Ritz value from changing, the JDQR method can be adapted
such that only Ritz values with non-negative imaginary part are selected. The
convergence of this adapted method is depicted with the dashed lines. For the
adapted method, the sign of imaginary part of the selected Ritz value does not
change, and the convergence is faster. The solid line depicts the convergence
of the RJDQR method. For the RJDQR method it does not matter if the sign
of the imaginary part of the selected Ritz value changes. For this particular
example it does not change. The convergence of the RJDQR method is faster
than the convergence of the adapted JDQR method. This is entirely due to the
larger search space.

6.3 Results for the Real JDQZ Method

As for the JDQR method, for all the numerical results presented in this section,
the correction equation is solved approximately using at most 10 iterations of
Bi-CGSTAB [14] or GMRES [15]. No restart strategy is used in the JD part of
the algorithm.

The generalized eigenvalue problem BFW782 (from the NEP collection at
MatrixMarket) arises in the finite element analysis of Maxwell’s equation for
finding the propagating modes and magnetic field profiles of a rectangular
waveguide filled with dielectric and PEC structures. The eigenvalues and cor-

16

Table 3: Results for QZ methods
Bi-CGSTAB GMRES

BFW782 JDQZ JDQZd RJDQZ JDQZ JDQZd RJDQZ
iterations 28 28 33 33
dim. search sp. 18 18 23 23
mat.vec. 558 279 456 228
Cpu (secs) 13 8 13 8

QG6468 JDQZ JDQZd RJDQZ JDQZ JDQZd RJDQZ
iterations 87 64 52 106 72 58
dim. search sp. 69 51 76 88 59 87
mat.vec. 3176 2378 1744 2072 1412 1009
Cpu (secs) 1154 800 548 1090 640 412

ODEP400 JDQZ JDQZd RJDQZ JDQZ JDQZd RJDQZ
iterations 44 37 27 42 31 26
dim. search sp. 22 22 24 20 16 29
mat.vec. 1202 1180 570 462 386 243
Cpu (secs) 13 14 4 8 6 3

responding eigenvectors of interest are the ones with positive real parts, which
correspond to the propagation modes of a waveguide. The matrix A is non-
symmetric and B is symmetric positive definite. Six eigenvalues with largest
real part are computed. The preconditioner that is used for the correction
equations is the ILU factorization of A with drop tolerance 1e-3. In Table 3 the
number of iterations, the number of matrix-vector products, and the dimension
of the final search space is given.

The computed eigenvalues are all real. Observe that the JDQZ and the
RJDQZ method both need exactly the same number of iterations and build
a search space of the same dimension. From the intermediate iterations (not
shown), it can be concluded that the two methods perform exactly the same
steps, the only difference being that the RJDQZ method performs the steps
in real arithmetic and the JDQZ method performs the steps using complex
arithmetic. This explains why the JDQZ method needs twice as many matrix-
vector products as the RJDQZ method.

The generalized eigenvalue problem QG6468 arises in the stability analysis
of steady states in the finite difference approximation of the QG model described
in [16]. The eigenvalues and corresponding eigenvectors of interest are the ones
with largest real parts. The matrix A is non-symmetric and B is symmetric
positive semi definite. Six eigenvalues with largest real part are computed. The
preconditioner that is used for the correction equations is the ILU factorization
of A with drop tolerance 1e-7.

For this matrix pencil, two of the computed eigenvalues are real, and the
other computed eigenvalues form four complex conjugated pairs. One sees that
the RJDQZ method needs fewer iterations, but builds a larger search space
than the JDQZ method. The storage requirements for the RJDQZ method is,
however, still less than for the JDQZ method.

The generalized eigenvalue problem ODEP400 (from the NEP collection at
MatrixMarket) is obtained as the finite differences approximation of the differ-

17

Table 4: Restarting JDQR and RJDQR for the CRY10000 matrix, using 10
iterations of Bi-CGSTAB for the correction equation.

JDQR RJDQR
jmin = 3 iterations >100 >100
jmax = 6 mat.vec. ? ?
jmin = 6 iterations 95 56

jmax = 12 mat.vec. 3640 1387
jmin = 5 iterations >100 >100

jmax = 10 mat.vec. ? ?
jmin = 10 iterations 49 40
jmax = 20 mat.vec. 1708 862
no restarts iterations 46 37

mat.vec. 1582 841

ential equation

y′′ + µ2y = 0,

with boundary conditions

y(0) = 0 and y′(0) + 0.001y′(1) = 0.

Eigenvalues and corresponding eigenvectors with largest real part are computed.
The matrix A is non-symmetric and B is symmetric positive semi definite. Six
pairs of complex conjugate eigenvalues that are computed with largest real part.
The preconditioner that is used for the correction equations is the LU factor-
ization of A.

For this matrix pencil, a similar conclusion as for the CC100 matrix can be
drawn. The computed eigenvalues are all complex, but still the RJDQZ method
needs fewer iterations and fewer matrix-vector products than the JDQZ method.

6.4 Restarts

In this section, the effect of restarts is studied. In Tables 4-7, the number
of iterations and the number of real matrix-vector products for the different
methods and for different restart parameters jmin and jmax are given. For
a fair comparison of the different methods, one should compare the methods
JDQR and JDQRd with parameters jmin and jmax with the RJDQR method
with parameters 2jmin and 2jmax. In this case the memory usage and the work
per iteration is approximately equal for all the methods. The same holds for
the QZ methods. In all the experiments, the RJDQR and RJDQZ variants need
fewer iterations and fewer matrix-vector products than the other methods, also
with restarts incorporated.

6.5 Non-real target

As mentioned before in Remark 2, if the target value τ is non-real, the har-
monic Petrov approach looses most of its advantages in the RJDQR and RJDQZ

18

Table 5: Restarting JDQR, JDQRd and RJDQR for the CC100 matrix, using
10 iterations of Bi-CGSTAB for the correction equation.

JDQR JDQRd RJDQR
jmin = 3 iterations 50 37 34
jmax = 6 mat.vec. 1550 1130 1030
jmin = 6 iterations 42 32 32

jmax = 12 mat.vec. 1214 920 883
jmin = 5 iterations 44 34 33

jmax = 10 mat.vec. 1298 1004 925
jmin = 10 iterations 42 33 31
jmax = 20 mat.vec. 1214 962 820
no restarts iterations 42 33 31

mat.vec. 1214 962 820

Table 6: Restarting JDQZ and RJDQZ for the BFW782 pencil, using 10 itera-
tions of GMRES for the correction equation.

JDQZ RJDQZ
jmin = 3 iterations 30 31
jmax = 6 mat.vec. 530 287
jmin = 6 iterations 28 28

jmax = 12 mat.vec. 486 243
jmin = 5 iterations 28 28

jmax = 10 mat.vec. 486 243
jmin = 10 iterations 29 29
jmax = 20 mat.vec. 508 254
no restarts iterations 29 29

mat.vec. 508 254

Table 7: Restarting JDQZ, JDQZd and RJDQZ for the ODEP400 pencil, using
10 iterations of GMRES for the correction equation.

JDQZ RJDQZd RJDQZ
jmin = 3 iterations 65 52 39
jmax = 6 mat.vec. 1168 1014 705
jmin = 6 iterations 49 36 27

jmax = 12 mat.vec. 816 662 441
jmin = 5 iterations 56 42 31

jmax = 10 mat.vec. 970 794 529
jmin = 10 iterations 41 34 22
jmax = 20 mat.vec. 640 618 331
no restarts iterations 41 33 22

mat.vec. 640 596 331

19

Table 8: Results for JDQZd and RJDQZ for the MHD416 pencil.
Bi-CGSTAB GMRES

Harm. Petr. JDQZd RJDQZ JDQZd RJDQZ
iterations 47 55
dim. search sp. 32 40
mat.vec. 1724 1080
κ0 = 1, κ1 = 0 JDQZd RJDQZ JDQZd RJDQZ
iterations 55 33 55 46
dim. search sp. 40 46 40 72
mat.vec. 2060 1136 1080 882
κ0 = 0, κ1 = 1 JDQZd RJDQZ JDQZd RJDQZ
iterations 50 32 60 45
dim. search sp. 35 44 45 70
mat.vec. 1850 1094 1190 860

methods: when the search space V is expanded with the real vector x, in the
harmonic Petrov approach, the test space should be expanded with the vector
w = (κ0A + κ1B)x, where κ0 = (1 + |τ |2)−1/2 and κ1 = −τ(1 + |τ |2)−1/2. In
the case that τ is non-real, κ1 will also be non-real, and thus the test space has
to be expanded with a non-real vector. This spoils the realness of the projected
eigenvalue problem and thus the idea behind the RJD methods breaks down.

One could of course abandon the harmonic approach, and choose κ0 and κ1

to be real. In this section two such alternatives to the harmonic approach are
studied using numerical experiments. For the experiments, the pencil MHD416
(available at MatrixMarket) is used as an example. The six eigenvalues closest to
the target value τ = 0.7i are computed. As preconditioner the LU factorization
of A − 0.7iB is used. The results of the experiments in Table 8 show that
though the harmonic Petrov approach is most effective for the JDQZd method,
the RJDQZ method may be more effective even if it is not using the harmonic
Petrov approach.

7 Conclusions

In this paper, an adapted version of the Jacobi-Davidson method is presented.
This version is intended for real unsymmetric matrices or pencils.

In all the presented numerical experiments, the RJDQR and RJDQZ variants
needed fewer iterations, fewer matrix-vector products and less storage than the
original JD methods. The difference is most pronounced for the cases where only
real eigenvalues are computed. The better performance of the RJD methods
can be attributed to two reasons: first, the method uses real arithmetic where
possible, which results in fewer (real) matrix-vector products, and second, the
dimension of the search space may grow twice as fast (while it does not use
more storage) which accelerates the convergence, resulting in fewer iterations.

20

A Matlab-style code for RJDQZ method

In the Figures 5-7, the Matlab-style code is presented for the RJDQZ method.
The code for the approximate solution of the correction equation is not given.
Note that the correction equation can be solved using real arithmetic if the
approximate eigenvalue (α, β) is real. Otherwise is must be solved using complex
arithmetic.

The routine “realqzsort” computes the ordered generalized real Schur form
of the pencil (MA, MB), with respect to the target value τ . The logical output
variable “complex” should be true if the leading harmonic Petrov value (i.e.,
the harmonic Petrov value closest to the target) has a non-zero imaginary part,
and should be false is the leading harmonic Petrov value is real.

The routine “mgs” is a modified Gram-Schmidt routine as described in the
appendix of [2].

References

[1] D. Bindel, J. W. Demmel, and M. J. Friedman. Continuation of invariant
subspaces for large and sparse bifurcations problems. In online proceed-
ings of SIAM Conference on Applied Linear Algebra, Williamsburg, 2003.
http://www.siam.org/meetings/la03/proceedings/.

[2] Diederik R. Fokkema, Gerard L. G. Sleijpen, and Henk A. Van der Vorst.
Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix
pencils. SIAM J. Sci. Comput., 20(1):94–125 (electronic), 1998.

[3] J. H. Brandts. Matlab code for sorting real Schur forms. Numer. Linear
Algebra Appl., 9(3):249–261, 2002.

[4] J. H. Brandts. The Riccati algorithm for eigenvalues and invariant sub-
spaces of matrices with inexpensive action. Linear Algebra Appl., 358:335–
365, 2003. Special issue on accurate solution of eigenvalue problems (Hagen,
2000).

[5] Gerard L. G. Sleijpen and Henk A. Van der Vorst. A Jacobi-Davidson
iteration method for linear eigenvalue problems. SIAM J. Matrix Anal.
Appl., 17(2):401–425, 1996.

[6] Youcef Saad. Numerical methods for large eigenvalue problems. Algorithms
and Architectures for Advanced Scientific Computing. Manchester Univer-
sity Press, Manchester, 1992.

[7] Zhaojun Bai and James W. Demmel. On swapping diagonal blocks in real
Schur form. Linear Algebra Appl., 186:73–95, 1993.

[8] A. Bojanczyk and P. Van Dooren. Reordering diagonal blocks in real schur
form. In M. Moonen, G. H. Golub, and B. De Moor, editors, Linear Algebra

21

for Large-Scale and Real-Time Applications. Kluwer Academic Publishers,
1993.

[9] B. K̊agström. A direct method for reordering eigenvalues in the generalized
real schur form of a regular matrix pair (a, b). In M. Moonen, G. H. Golub,
and B. De Moor, editors, Linear Algebra for Large-Scale and Real-Time
Applications. Kluwer Academic Publishers, 1993.

[10] B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigen-
values of a regular matrix pair (a, b) and condition estimation: Theory,
algorithms and software. Technical Report UMINF 94.04, Institute for In-
formation Processing, University of Ume̊a, Ume̊a, Sweden, 1994. LAPACK
Working Note 87.

[11] P. Van Dooren. A generalized eigenvalue approach for solving Riccati equa-
tions. SIAM J. Sci. Statist. Comput., 2(2):121–135, 1981.

[12] Beresford N. Parlett and Youcef Saad. Complex shift and invert strategies
for real matrices. Linear Algebra Appl., 88/89:575–595, 1987.

[13] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3
of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, MD, second edition, 1989.

[14] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 13(2):631–644, 1992.

[15] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 7(3):856–869, 1986.

[16] H. A. Dijkstra and C. A. Katsman. Temporal variability of the wind-
driven quasi-geostrophic double gyre ocean circulation: basic bifurcation
diagrams. Geophys. Astrophys. Fluid Dynamics, 85:195–232, 1997.

22

function [Q, Z, RA, RB] =RJDQZ(A, B, K, τ, v0, ε, kmax, jmin, jmax)
Q = []; Z = []; RA = []; Y = []; H = [];
V = []; VA = []; VB = []; W = []; MA = []; MB = [];
γ =

√

1 + |τ |2; α0 = τ/γ; β0 = 1/γ; k = 0; j = 0;
while k < kmax

if j == 0
v = v0

else
Solve correction equation for v

end
input(Expand)
[UL, UR, SA, SB , complex] = realqzsort(τ, MA, MB);
j = j + 1; found= 1;
while found

if complex
α = SA(1 : 2, 1 : 2); β = SB(1 : 2, 1 : 2);
q = V UR(:, 1 : 2); z = WUL(:, 1 : 2);
rA = VAUR(:, 1 : 2); [rA, sA] = mgs(Z, rA);
rB = VBUR(:, 1 : 2); [rB , sB] = mgs(Z, rB);
r = rA/α − rB/β;
found= (||r|| < ε) and (j > 1|k = kmax − 1);
if ||r|| > ε

[UL, UR, SA, SB] = qz(α, β);
α = SA(1, 1); β = SB(1, 1);
q = qUR(:, 1); z = zUL(:, 1);
rA = rAUR(:, 1); [rA, sA] = mgs(Z, rA);
rB = rBUR(:, 1); [rB , sB] = mgs(Z, rB);
r = rA/α − rB/β;

end
y = K−1z;
Q̃ = [Q, q]; Ỹ = [Y, y]; Z̃ = [Z, z];
H̃ = [H, Q∗y; q∗Y, q∗y];

else
α = SA(1, 1); β = SB(1, 1); q = V UR(:, 1);
z = WUL(:, 1); y = K−1z;
r = VAUR(:, 1); [r, sA] = mgs(Z, r);
rB = VBUR(:, 1); [rB , sB] = mgs(Z, rB);
r = r/α − rB/β;
found= (||r|| < ε) and (j > 1|k = kmax − 1);
Q̃ = [Q, q]; Ỹ = [Y, y]; Z̃ = [Z, z];
H̃ = [H, Q∗y; q∗Y, q∗y];

end
input Found and restart

end
end

Figure 5: The RJDQZ method.
23

if isreal(v)
v = mgs(V, v); v = v/||v||; vA = Av; vB = Bv;
w = (β0vA − α0vB); w = mgs(Z, w);
w = mgs(W, w); w = w/||w||;
MA = [MA, W ∗vA; w∗VA, w∗vA];
MB = [MB , W ∗vB ; w∗VB , w∗vB];
V = [V, v]; VA = [VA, vA]; VB = [VB , vB]; W = [W, w];

else
ṽ = [real(v), imag(v)];
for i = 1 : 2

v = ṽ(:, i); v = mgs(V, v); v = v/||v||; vA = Av; vB = Bv;
w = (β0vA − α0vB); w = mgs(Z, w);
w = mgs(W, w); w = w/||w||;
MA = [MA, W ∗vA; w∗VA, w∗vA];
MB = [MB , W ∗vB ; w∗VB , w∗vB];
V = [V, v]; VA = [VA, vA]; VB = [VB , vB]; W = [W, w];

end
end

Figure 6: Expand

if found
Q = Q̃; Z = Z̃;
RA = [RA, sA; zeros(1 + complex, k), α];
RB = [RB , sB ; zeros(1 + complex, k), β];
k = k + 1 + complex; if k ≥ kmax, break; end
Y = Ỹ ; H = H̃;
J = [2 + complex : j]; j = j − 1 − complex;
V = V UR(:, J); VA = VAUR(:, J); VB = VBUR(:, J);
W = WUL(:, J); SA = SA(J, J); SB = SB(J, J);
MA = SA; MB = SB ; UR = I ; UL = I ;
[UL, UR, SA, SB , complex] = realqzsort(τ, MA, MB);

elseif j ≥ jmax

j = jmin; J = [1 : j];
V = V UR(:, J); VA = VAUR(:, J); VB = VBUR(:, J);
W = WUL(:, J); SA = SA(J, J); SB = SB(J, J);
MA = SA; MB = SB ; UR = I ; UL = I ;

end

Figure 7: Found and restart

24

