EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Operational semantics for Petri net components

Citation for published version (APA):
Groote, J. F., & Voorhoeve, M. (2003). Operational semantics for Petri net components. (Computer science
reports; Vol. 0308). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fc9339c7-9bcd-4036-be66-eeaf6ae386d2

Operational semantics for Petri Net components

Jan Friso Groote and Marc Vloorhoeve

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, the Netherlands
J.F.Groote@tue.nl M.Voorhoeve@tue.nl

Abstract

We develop a theory for net components with labeled interface places and transitions. Nets are
shown to be isomorphic to algebraic terms, with marked places and transitions as atoms and
arc addition, fusion and relabeling as operators. Net terms with the step firing rule are given a
Plotkin-style SOS semantics, yielding compositionality of the operators. Some rules for reducing
nets modulo strong and branching bisimilarity are given.

1 Introduction

In engineering, all kinds of models are created related to the artifacts to be built. In Software En-
gineering, a marked division exists between graphical (e.g. UML) and character-based (algebraic)
approaches. Graphical models are used mostly in the initial requirements phases of a project and have
gained wide acceptance, despite their often shaky semantics. Theorists are busy plugging holes, like
in [14], but this seems a slow process which necessarily restricts the use of the modeling approach.
Algebraic models are often used in the later design phases. Due to their formal semantics, they allow
various kinds of manipulations and consistency checks, although they are harder to understand and
discuss with end users.

It is claimed that Petri net based modeling languages, like Design/CPN [10] and ExSpect [8] combine
an intuitive, graphical approach with mathematical rigor. This allows the use of the same modeling
paradigm throughout the artifact's construction. However, the hierarchy concept supported by these
languages presents some semantic problems. It is certainly possible to define the semantics of a
marked net, e.g. by indicating enabled transitions and successor states, but this definition neglects the
fact that nets modeling systems are “open” to interactions by an environment.

The approach usually taken is to “close” such nets by embedding it into some standard environment
(context) that can exhibit any allowed interaction. However, one cannot be sure whether the behavior
of the embedded net is indicative for its behavior in another context. Suppose two closed nets behave
the same in their standard context. It must be proved that they then behave the same in any context.

This has been done in [16], featuring a definition for open nets and several operators to combine open
subnets. The semantics of such an open net is defined by embedding it in a “universal context”. Itis
proved that open nets with the same semantics behave the same w.r.t. the operators defined.

In this paper we take their approach a step further. We give a structured operational semantics for open
nets as algebraic terms, without any context. As in [16], we have unconnected places and transitions
as atoms, the merge as binary operator and several unary operators: consumption/production (arc
addition), node relabeling (hiding) and place/transition fusion (melding). A difference between our
approach and [16] is the labeling of nodes; all nodes that are not labeled with the “internal’dabel
external nodes that can be interfaced with. Different external nodes can have the same label, causing
nondeterminism. This complicates the definition of the unary operators, but in return operators are
unconditional: any operator applied to any net yields some result net.

By labeling both places and transitions, our semantics respects the dual (place vs. transition) nature
of Petri nets. By adopting a temporal language like HML [9], it is possible to express and verify
properties of open nets that are both state and event basedif Bkeequest has arrived which has

not been answered yet, place p is markedlid“if place p is marked, an answer will be issued”
Net-based modeling does benefit from the ability to reason about both states and events [12].

Our paper is structured as follows. After a preliminary section, we define labeled nets, net operators
and terms. We then give a semantics for nets and show the equivalence of this semantics for net terms
with another semantics defined by SOS rules [15]. In a next section, we explore the equivalence no-
tions between nets that follow from our semantics and show some simple rules for reducing nets while
staying within the same equivalence class. We terminate with a brief discussion and a comparison with
related approaches.

2 Preliminaries

2.1 Relations and tuples

A relation between seté and B is a subset ofA x B. Special subsets of the power&tA x B)

are the sets of functionsA(— B). If f is a function we writey = f(x) iff x Ry If fisa
function andX a set, thenf | X = {(x, f(X)) | X € dom(f) N X}. The composition; of two

relations is defined by (R;S) z < 3y : x R yAy S z The compositionf o g of two functions
f, g is the function defined byg; f, so(f o g)(X) = f(g(x)). Thek-iteration of a relationR is

defined byR! = R, R“1 = R*; RandR* = | J,_, R¥. The inverse of a relatioR is defined by
x Ry & y R x The identity functions are defined i A) = {(a, a) | a € AJ.

2.2 Bags

Let Abe aset. The s@(A) of finite A-bags is the set of termmg[a;]+. . .+ny[ax] with theg € Aand

n; in N*. We denote the empty bag by [] and writg [= 1[a], [ab] = [a] + [b], [aa] = [a’] = 2[a]
and so on. We define addition and multiplication by integeesN in the obvious way. We set <

iff I3y ca+y =B,8=>aiffa < Bandf—y =« iff a +y = B. If @, B are bags, then their
quotiente + B is defined as the largeste N such thaing < «. Application of a bag to an element
is defined by [{a) = 0, a = 1, [b](a) = 0 forb # aand(a + B)(a) = x(a) + B(a).

Definition 2.1. Arelation R € B(A) x B(B) is calledadditively closedff[] R[] andVvx,y, z, w :
X RyAz Rw = (X+ 2 R (y+ w). Theadditive closureof a relationR € B(A) x B(B) is the
smallest additively close® such thatR € S. If R € A x B(B), thenR C B(A) x B(B) is the
additive closure of([a], 8) | a RB}. If RS A x B, thenR € B(A) x B(B) is the additive closure

of {([a], [b]) |a R b.

If f € A— Bis afunction, thenf is a function too, satisfyind (Zi[x]) = Zi[f (x)].

2.3 Transition systems

We presuppose a séf events and a specisilenteventr € £. A transition systens a pair(S, —),
whereSis set of states and— € P(S x £ x S) a ternary transition relation. We write —=s X' iff
(X, e,x") € —>. The interpretation ok %5 X' is that the system can move from statéo statex’

2

Figure 1: Example MLN

by evente. The setR(X) of stategeachablefrom X is defined as the smallest set containguch
that for anye € £;: Y € R(X); Y’ € Swith Y — Y’ we haveY’ € R(X).

We now define an equivalence relation between states of a transition system. Bisimilarity abstracts

from states; branching bisimilarity also abstracts from silent events.

Definition 2.2. Let (S, —) be a transition system. A relatidR € P(S x S) is called asimulation
iff forall x,y,x € S; e e £ we have

XRYAX —>X =@y €S:y—>yYAX RY).

A simulation R is abisimulationiff R~ is a simulation too. The state§ Y € Sare callecbisimilar
(notation X ~ Y) iff there exists a bisimulatioR such thatX R Y.

The definition of branching bisimilarity requires an auxiliary notion [3]. We define'® X’ iff

X 55 X'v(e=1AX=X). Also X = X' iff X(~2)*X'.
Definition 2.3. Let S, — be a transition system. A relatidR € P(S x S) is called am-simulation
iff for all x,y, X" € S; e € £ we have

X RYAX —> x’:>£|y”,y’:y:>y”ﬂ> YAXRY AX RY.
An p-simulation R is called abranching bisimulationiff R~! is an n-simulation too. The states
X, Y e Sare calledbranching bisimilar(notation X ~y, Y) iff there exists a branching bisimulation
RsuchthatX RY.

Bisimulation is also calledtrongbisimulation. A strong bisimulation is also a branching bisimulation.
The bisimilarity notions are equivalence relations on states.

3 Labeled nets

In labeled nets, nodes (both places and transitions) are labeled. A special iladiehtesinternal
nodes. The nodes with a different label are external, and constitute thémetface We assume a
countably infinite universgV” of node labels with € N and setN® = N \ {¢}. We define nets as
tuples i.e. functions with as domain a finite set.Tifis a tuple and. € dom(T), we write Lt instead
of T(L). We omit the subscripT if there is no confusion possible.

Definition 3.1. A marked labeled nefMLN) is a tuple with domain{P, T, F, I, O, L, M}, satis-
fying the following constraints. X is an MLN, thenPyx, Tx are disjoint finite sets (the places and
transitions respectivelyFx € B((Tx x Px)U(Px x Tx)) is the flow function,| x, Ox € Tx — B(Px)
satisfyOx (t)(p) = Fx(t, p) andlx(t)(p) = Fx(p,t) forallt € Tx, pe Px, Lx € (PxUTx) - N

is a labeling function aniy € B(Px) is the initial marking.

3

Figure 2: Examples of MLN operators

We draw MLNs as bipartite directed graphs like in Figure 1. There, an MLN is depicted with places
X, ¥, z and transitiond, u, v. The nodeg, x have labels in boldface labels are omitted.

SoP ={x,y,z, T={t,u,v},L={, f),x, plU{u,v,y,z} x{t}), M =[r?]and

F = {[t,), y)(v, X)(v, X)(X, W) (Y, v)(Z, 1)(z, v)]}.

The elements oP U T are thenodesof an MLN. The placep € P is said to contairM (p) tokens.
Usually | (t), O(t) are written ast andt® respectively. Sincé can be constructed from O and
vice versa, we introduce the functionf, cio to construct MLNs. We havX = cf(P, T, F, L, M)
iff Px = P,Tx =T,Fx = F,Lx = LandMy = M andX = cio(P, T, |, O, L, M) iff Px =
P,Tx =T,Ix =1,0x = O,Lx = L andMx = M. An MLN is called neatiff no two places or
transitions have the same label. It is calledconcreteresp. T -concreteiff no places or transitions
aret-labeled. AP- andT-concrete neat MLN is callecontrollable

We define isomorphy for MLNs. This is an equivalence relation; we tacitly assume that isomorphic
MLNs are the same.

Definition 3.2. An isomorphismbetween the MLNsX andY is an injective functionf such that
{f(p) | pePx} = Py, {f(t) | teTx} = Ty,Lyo f = Lx, f(Mx) = My andvVa,b:a Fx b &
f(a) Fv f(b). The MLNsX andY areisomorphiciff there exists an isomorphism between them.

3.1 Net operators

In this subsection, we treat operators for combining labeled nets. The binary merge opgator (
juxtaposes two MLNs with disjoint nodes (disjointness being achieved by applying an isomorphism
if necessary). The other operators are unary: consumptigngdding an arc from a-labeled place

to ana-labeled transition), productionr{ ,,, adding an arc from aa-labeled transition to b-labeled
place), transition fusiongg, p ¢, fusing ana andb-labeled transition into e-labeled one), place fusion

(¢a, fusing all places with the label) and renaming 4;, applying a relabeling functiorf to the
nodes). A special case of renaming is hiding & pg, with g = id(N \ A) U (A x {i}), labeling all
nodes with labels irA to ;). To these operators we add the atomic MLIRs,, consisting of one place

with labela andn initial tokens andTl},, being a transition with labéd.

We may omit brackets when the operator order is clear. An illustration of the operator’s intentions is
given in Figure 2. In the figure all nets are controllable; we identify nodes with labels. Wethave

T, = {teT| L #a} U {t,ppeTxP|Lt =anlL(p) =Dhb},
LO=10ifteTNT, . Lt,p=1M+[plifteT, \T,
O,H=00ifteTNT, , Ot,p=0M1ifteT, \T,
L,x)=LxifxePU(TNT,) , L,tp=LMOIfteT, \T.

T, = {teT|L{ #a} U {t,ppeTxP|Lt =anlL(p) =Dhb},
L,O)=1MifteTNT, , lLt,p=1MifteT, \T,

O, H)=0MifteTNT, , O;t,p=0@®) +[p]lifteT,\T,
L.X)=LX)ifxePU(TNT,) , L,t,p=LM)ifteT,\T.

Ty = fteT|LM g{a,b}} U {t,uyeTxT]|L({t)=anL(u) =Dhb},
l,()=1{M)ifteTNT, =T +1(WifteTy\T,
O,t)=0M)ifteTNT, . Opt,u)=0@1)+ O ift e Ty \ T,
L¢(X)=L(X)|fX€PU(TﬂT¢) , L¢(t,U)=CiftET¢\T.

P,= {peP|L(p)#a} U {{peP|L(p) =a}}

F,t,p=Ft, pifpePnNP, , Fyt Q) =ZXpoF(t,pifQeP,\P,
Fo(py =F(p,yif pe PNP, , F,(Q,t) =X%poF(p,t)if Qe P,\ P,
L.x)=Lx)ifxe(PNP)H)UT , Ly,(Q) =aif QeP,\P,
M,(p)=M(p)if pe PNPR, . My(Q) =ZpeoM(pif Qe P, \ P

Table 1: Net operator elaborations

A| B (merge),D = ¢pen(C) (transition fusion),E = yea(C) (consumption) andd = ¢4(p (C))
(renaming, then place fusion), whefe= id(N®\ {a}) U {(a, d)}.

The actual definition of the operators is somewhat intricate, due to the fact that in “messy” (non-
neat) MLNs several choices may exist for transition fusion or arc addition. This problem is solved by
copying transitions that face a nondeterministic choice.

Definition 3.3. Let X andY be MLNSs such that the se U Tx, Py U Ty, (Px U Tx) x (Px U Tx)
andP(Pyx U Tx) are mutually disjoint. Led,b,c e N, ne N, f ¢ N®* - N; A € P(N®) such that
a, b, c differ.

Then the net operators are defined by

place Pa.n = cf({a}, 9,9, id({a}), n[a])

transition Ty = cf@, {b}, 0, id{b}),[])

consumption Yap(X) = cio(Px,T,,1,,0,,L,, M)

production wap(X) = cio(Px, T, I, Oy, Ly, M)

transition fusion ¢apc(X) = cio(Px, Ty, I, Op, Ly, M)

place fusion @a(X) = cf(P,, Tx, Fy, Ly, My)

relabeling pi(X) = cf(Px, Tx, Fx, (f U{(,)}) o Lx, Mx)

merge X”Y = Cf(PxU Py, Tx UTy, Fx U/, Lx ULy, Mx + My)

where theT,, etc. are given in Table 1.

Note that the actual nodes are abstracted from by isomorphy, so the disjointness requirements present
no problem. We can show that the operators are congruences w.r.t. isomorphy. For example if

is an isomorphism betweeK andY, then f U {((n, m), (f(n), f(m))) | n,m € don(f)} is an
isomorphism betweep, ,(X) andy, p(Y).

The operators, p, ma p andea p c are quite simple for neat MLNSs if the labedsb occur in it. In that
caseyap, Tap @dd an input resp. output arc aggy fuses two transitions. The place fusippfuses

5

Figure 3. Messy consumption

all places with labed; for neat MLNs a place can be renamed in order to obtain two places with the
same label that can be fused, resulting in a neat MLN. In this case, our operators are similar to the
ones in [16], as illustrated in Figure 2. However, our operatorsiacenditional they are defined for

any MLN. For example, if an MLNX does not possedslabeled placesy, p(X) is derived fromX

by removing alla-labeled transitions.

As stated, the operators become somewhat tricky for messy MLNSs. Figure 3 gives an example. There,
Y = yap(X). Since there are twb-labeled places, each of tlaelabeled transitions is doubled and
for eacha, b-combination, an input arc is added.

We prove a few simple equations for the operators. The merge function is symmetric and associative
and they andx functions do commute w.r.t. composition.

Lemma3.4. ForMLNsX,Y, ZwehaveX | (Y || Z) = (X||Y) || ZandX |Y =Y || X. Furthermore
fog=go f forany twof, g € {yap | a, b e N® oranytwof,g e {map | a, b € N¢}.

Proof: The merge equations follow from the symmetry and associativity of the union and bag addition.
The y-commutativity is proved by writing out the components of the resulting MLNs. # a we
obtain

Yab(Yed(X)) = cio(Px, T, 1, O, L', M),
T = {teTx|Lx(®) ¢{ac}}
U {(t,p) € Tx x Px | Lx(t) =aA Lx(p) = b}
U {(t,p) € Tx x Px | Lx(t) =cALx(p) =d},
|/(t) = |X(t) ift e Tx N T/,
I'(t, p) = Ix®)+[plifteTx\T,
O/(t) = Ox(t) ifte Tx N T/,
o', p) = OxM)ifteTx\T/,
L' (x) = Lx(X)ifxePxu(TNT),
L/(t, p) S Lx(t) ifte T)(\ T.
For the case = a we have
Yab(Yad(X)) = cio(Px, T',1’,0, L, M),
T = {teTx|Lx() #a}
U {(t,p,q) € Tx x Px x Px | Lx(t) =aA Lx(p) =bALx(q) =dj,
|/(t) = |x(t) ifte TX N T/,
I'(t, p. Q) = Ix@® +[pl+[q]if t e Tx\ T,
O/(t) = Ox(t) ifte Tx N T/,
Ot,pg) = Ox()ifteTx\T,
L/(X) = Lx(X) if x e Px U (Tx N T/),
L/(t, p) = Lx(t) ifte Tx \ T.

Clearly both MLNs are symmetric; they do not depend on the order. sTFbemmutativity is fully
analogous. O

With atoms, variables and operators we can build net terms)/ lbet a set of variables.
Definition 3.5. The set7 (V) of net termds defined as the smallest set satisfying

e VU{PinlaeNAneN U{T,|beN}CTV)
o if X, Y e TW)thenX|Y € T(V),
e if X € T(V); gaunary operator, theg(X) € T (V).

The set7T (9) is the set ofclosed termsand 7 ({¢£}) is the set ofcontexts i.e. terms with a single
variable&. Closed net terms clearly represent MLNs; different terms may represent the same MLN.
We prove that every MLN is isomorphic to a closed net term in normal form. In order to define this
normal form, we give some auxiliary definitions. We define addition for functions with bags as range
and use it to define extended production and consumption operators.

Definition 3.6. Fora € B(N® x N®), we define the unary MLN operatof,, 1, by

ry(X) = X, My(X) = X,
L@ (X) = yan(X), [(a,0](X) = ma,n(X),
Corp(X) =T (Tg(X)), TMayp(X) = I (T1g(X)).

By Lemma 3.4 the definitions df, andI1, do not depend on the order in which the kags con-
structed. By the same lemma, we can adopt the notdliienX;) for the repeated merge of MLNSs.

Definition 3.7. A closed MLN term T is innormal formiff it has the form

(oL o Mo o T) ((ltet To) II (lper Pp,m(p))
Theorem 3.8. Every MLN is isomorphic to a closed net term in normal form.

Proof: Let X be an MLN. Choosé\ C N® such that there exist a bijectiane ((Px U Tx) — N).
SetP’ = ¢(Px), T = ¢(Tx),F' = Fxogp L L' = Lxogp L, M = Mxog¢ L LetY; =
(ltet T I (Ul pepr Pp,mrcpy)- ThenYy = (P, T/,], id(P'UT"), M"). LetY, = Mgnrxp) (TrapxT) (Y1))-
ThenY, = (P, T, F',id(P"UT’), M). LetY = p_(Y2). ThenY =cf(P’, T’, F’, L', M), which is
isomorphic toX. O

4 Operational semantics of MLNs

We define an operational semantics of MLNs in terms of processes. In an MLN, tokens can be added
and (if present) removed explicitly from labeled places (cf. the “open” places of [2]). Also firing steps
can occur, causing the implicit consumption and production of tokens. We denote addition, removal

and firing steps respectively as tie>, “= and— relations. For example, if the ML satisfies
My > 2[p] andLx(p) = a, thenX satisfiesX 225 X', with M}, = Mx — 2[p] and alsoX'’ 2@lE .
If t € Tx, Ix(t) = [p], Ox(®) = [I, Lx(t) = bthenX also satisfiex 2 X'.

-2 x2] L= [y 2]

il m 0
S

B A [= [

Figure 4: MLN Transition system

Our eventst are thus{a | @ € BIN®)} U {a+ | @ € BIN®)} U {a— | « € B(N®)} and our states are
the MLNs. Our silent event is [], the empty firing. The rules for addition are completely determined
by the global rulex AN y & y —> X, so we only state the rules fef—. We define addition for
removals and additions: + +8+ = « + S+.

Formally, if X is an MLN andA € B(Px), we denote the MLN:F(Py, Tx, Fx, Lx, Mx + A) by
A> X. Furthermore, we writdf = A< X iff X = A>Y. We also make use of trieandlioperators in
Definition 2.1, adding a third such operatorLife A — N/, thenl € B(A) — B(N®) is the additive
closure of{([a], [L(@)]) | L(@) # U {(al.[]) | L@ = 4.

Definition 4.1. The MLN transition system is the paim, —), where M is the set of all MLNs
and— is smallest set of triples satisfying for any MLXland anyA € B(Px), B € B(Tx)
AsX BT X[£ Ly(A),

M (B)>X 28 6y (By>X.

The condition [] £ Lx(A) for removals entails that tokens cannot be removed (or added, due to the
global rule) from internal places. Note that isomorphic MLNs are bisimilarf i§ an isomorphism
betweenX andY, then the relatiorR = {(cf(Px, Tx, Fx, Lx, M), cf(Py, Ty, Fy, Ly, f(M)) | M €
B(Px)} is a bisimulation such thaX R Y.

Example: In Figure 4, part of the process of the MLN in Figure 1 is depicted. Two MLNs are depicted
fully; the others are indicated by their stai only. We have added identifiers in italics to the nodes.
For example, from the stat&], transitionst, u can fire concurrently resulting in ste]to state

[xy]. The firing ofu is hidden (i.e. labeled with the empty bag []) but does not go unnoticed, since it
removes a labeled (visible) token. ¢ From staled.g. the bag 2{] can be added explicitly, resulting

in the state 3{].

Note that every MLNX satisfiesX % x 0% x B, X. The—> relations resulting from firing
constitute a step semantics of nets, which is what the above semantics amounts to in case all places
are unlabeled. Our operators should be compositional w.r.t. this semantigsBlare MLNs with

the same semantics, then for any contéxthe MLNsSE(A), E(B) should have the same semantics.

To this end, we introduce an alternative structure operational semantics (SOS) for closed net terms.

Definition 4.2. The relation—s is the smallest relation satisfying the rules in Table 2 and in addition
X 25 X' o X' 25 X. The parameters in Table 2 atem € Ny a, b, ¢ € N& o, B € B(N®); A €
PWN®); f e N® - N and the MLNsX, X’, X”, X, Y, Y’ such thag, b, c differ.

r(emoval) s(tep)
AT - -
Pansm ™ p oS T, Pan 0 Pap To 4 T,
XS XLY Sy X5 XY sy
ME (a+p)— a+p
XY B x v XY 5 x vy
o— (a(b).[a])— a
X X/ " /
co i:> X aX —> X
Va,b(x) [Va,b(x/) Va,b(x) > Va,b(x/)
o / (er(b).[a])+ [
X X " !
PR r:) X aX — X
Tap(X) —> map(X) Tap(X) —> Tap(X')
- X 25 X! X “He8 s w(@) = a(b) = 0
Pan.c(X) > dapo(X)) apc(X) T o b o(X))
or X 5 X! X P o Mo o 2 x
@a(X) F— @a(X') @a(X) > @a(X')
X+ X[£ f(a X 5 X/
RE f_(a)[J = (/) f(a) ,
pi(X) — ps(X') pi(X) — pi (X')

Table 2: SOS rules for net operators

We prove that the two semantics agree when applicable, using an auxiliary definition and some lem-
mas.

Definition 4.3. Thestructural equivalenceelation< between closed net terms is the smallest relation
such that for any € £, n, m € N and any unary net operatét,

X=X XX, YoV
FOX) = F(X) "~ (X[IY) = (X' |Y)

9
Ta = Ta, Pa,n < Pa,m

Note that thec relation addresses the structure of terms, so we can have ¥nhsuch thatX = Y
but notX < Y.

Lemma 4.4. Let X be a closed net term and ktX’ such thatX —%, X', Then there exists a closed
net termX” such that’ = X” andX < X”.

Proof: According to Definition 4.1, is is sufficient to prove that for any closed net t¥rmve have
X = (A>X) and X = (A< X) wheneverAr- X and/or A< X are defined. We prove this by induction
w.r.t. the structure oK.

If X is a transition, therA> X exists only if A = [], so A>X = X. If X is a placeP, ,, then A> X
exists only if A = m[a] and A> X = P, nym. In both casesX < A>X.

If X =Y | ZandA> X is defined, stA € B(Px), then by the disjointness of the merge, we can write
A =B+ C,whereB € B(Py), C € B(Pz) and thusA> X = (Br>Y) || (C>2Z), and by the induction
hypothesis we infer that < (Br>Y) andZ < (C>Z).

If X = yap(Y)andAr X is defined, then by Definition 3.3>Y is defined too anX = y, ,(A>Y).
We can use induction as above. The other unary operators except place fusion are analogous.

If X = ¢a(Y)andAr-X is defined, scA € B(Px), then we can writéA = B + C, whereB € B(Py)
andC = Xiki[p] € B{{p € Py | Ly(p) = a}}). Letk = Zik; be the size ofC. If k > 0, we can
find ap € Py such that_y (p) = aandAx>X = ¢,((B + k[p])r>Y). So we can use induction.

The « cases are similar to the case. O

Note that the rules in Table 2 can be written as a set of rules of theRgrm>) - C(—) about the
> relation (P is the premise an@ the conclusion). The next lemma discusses replaeirg by
— in those rules.

Lemma 4.5.
1. If P(—)F C(—) isarule in Table 2, theR(—>) = C(—>).

2. If X =< X’ for some closed net terix, there exists a rul® (—) = C(—) in Table 2 such
thatC(—>) equalsX —> X' andP(—>) holds.

Proof: The proof of the lemma is by tedious case analysis and will be treated in Appendix AQ
We now prove our theorem.

Theorem 4.6. Let X be a closed net term. Then for any eveaind closed net terrd’

X -5 X e X X,

Proof: If X X', there exists a finite derivation chain of ruleg+—) + C;(+—) allowing to
deduce this fact. By Lemma 4.5.1, the ruR$—>) = C;(—) hold, so we can prov 5 X
We use induction on the structure ¥fto prove thatX = X implies X > X'. If X is an atom,
andX — X/, then by Lemma 4.5.2 there is a rule such tfat— X’ equalsC(—); the only
rules that apply are AT rules having the empty premisgg}, so P(——) holds and thu€ (—) and
henceX — X'.

If X is not an atom, it is of the fornX, || X, or f (Y) for some unary operatof. If X %5 X/, then

by Lemma 4.5.2 there is a rule such that—s X’ equalsC(—) andP(—) holds. There is only
one set of rules that apply, depending on the operator. In each of these rules, the présnigehe

, d n ,
form X, N X5, Xo N X5 in the merge case and M Yiinthe unary operator case.
By Lemma 4.4, the final termX;, X5, Y" and any intermediary terms are structurally equivalent to

X1, X2, Y respectively. By the induction hypothesis, we may thus assumeXthafs> X/, X, 2>
X, orY 2 ..+ v’ and from the ruleP - C we deduceX > X'. O
As a corollary, we deduce the desired compositionality of the operators w.r.t. the semantics.

Theorem 4.7. Let X, Y be MLNs andE a context. IfX ~ Y thenE(X) ~ E(Y) and ifX ~, Y then
E(X) ~p E(Y).

Proof: Let X', Y’ be closed net terms isomorphic XoandY respectively. Since isomorphy implies
bisimilarity and since bisimilarity is transitive, we dedu&é ~ Y’. By Theorem 4.6 and since the

10

SOS rules are in tyft/tyxt format [7]JE(X’) ~ E(Y’). Since the operators and thus contexts are
congruences w.r.t. isomorphig,(X) ~ E(Y).

We can repeat the same proof for branching bisimilarity, using [6] instead of [7]. It is essential that the
a-labeled node cannot be relabeled. We do not need rootedness due to the absence of a choice-like
operator. O

5 Net equivalence

In this section, we will discuss the equivalence notions we have so far: isomorphy, strong and branch-
ing bisimilarity. We already saw that isomorphy implies strong bisimilarity implies branching bisim-
ilarity. Bisimilarity is connected to HML (Hennessy-Milner) temporal logic, which we define below.

In order to avoid inconsistencies, conjunction is restricted.

Definition 5.1. The sets4 of HML predicates satisfying is the smallest set such that

LeH A C H countable LeH,aeN

TeH, ,)
—-LeH NAeH Oal e H

Let X be an MLN. The set of predicatéssuch thatX satisfiesL (notationX = L) is the smallest
set satisfying

XEL VYMeA:XEM 3IxX:X -5 XAXEL

XET XgE-L XEAA X E OaL
We introduce the following abbreviations:
1 = =T LAM = Af{L,M} VA = - A{-L|LeA
LvM = V{L, M} O,L = —=0,—L Viel:Li = AfLiliel}
di el L =\/{Li|i€|}

The combination of HML with our semantics allows to formulate both state-based and action-based
properties of a component, liké,O,_T (after everya-step ab-labeled token is present).

Two MLNs are bisimilar iff they satisfy the same HML formula’s. Two MLNs are branching bisimilar
iff they satisfy the same formula’s from a somewhat weaker language [5] that abstracts from silent
events. Instead of the unafy, operator this subset has the binary “until” operddgr wherepU, v is

equivalenttd/ Ly, whereL , is the se{p AQa, pAQ (DA QaV), AOH(PA D (PAQaY)) .. .}
We define subclasses of MLNs for which the equivalence notions coincide.

Theorem 5.2. For controllable MLNSs, bisimilarity coincides with isomorphy. Rorconcrete MLNS,
bisimilarity coincides with branching bisimilarity.

Proof: Let X, Y be controllable MLNs. We can find, W isomorphic toX, Y respectively such that
Lz, Lw are identity functions. 1Z £ W, since we can interchangé andW, one of the following
statements must hold forme Pz,t € Tz or e witha < Mz.

1 p¢Pw

2 tgTw

3 « f MW

4 Mz=Mw/\t€Tw/\|z(t)le(t)

5 Mz=MwAteTwA(Oz(@®) —1z(1) £ (Ow(®) — lw()

11

[+ O[O
A~~~ O~y

o(=fa] PO~
2O~ O~

c D

Figure 5: Equivalent nets

In each case, we give a HML predicdtesuch thatZ = L andW & L. So if Z andW are bisimilar,
thenZ = W and thusX, Y are isomorphic. We now give the choices fgrwriting («) instead of),,.

1 ([pH)T

2 (IzO+H)[tHhT

3 {(a—)T

4 (Mz=){IzO+)[tHT

5 (IzO+H)([tH{((Mz(®) + Oz(t)—)T
If Ris a branching bisimulation, its restriction Teconcrete processes is a strong bisimulation. This
fact proves the second statement. O

In Figure 5 a few MLNs are depicted. The nétsB andC are bisimilar but not isomorphic. Nets
andD are branching bisimilar but not bisimilar.

Bisimilarity of nets is undecidable [4], but we give some simple rules for the reduction of nets modulo
bisimilarity. We define the following reduction operatoiR; (node removal)® 5 (place fusion) and
Ws.c (place weaving).

Definition 5.3. Let X be an MLN with a noden € Px U Ty, a place seA C Px such thatvp, q €

A: L(p) = L(g) and place setB, C € Px. ThenR,(X) =Y, ®a(X) = Z, W c(X) = W, where

Y, Z, W are the MLNs defined in Table 3. By isomorphy, we may assume that added nodes in that
table are new.

Note thatp,(X) = ®a(X) with A = {p | Lx(p) = a}. Also, the place weave operativ, g
resembles transition fusion. We will conditions under which the application of a reduction operator
leads to a result bisimilar to the operand net. We start by defining some concepts.

Definition 5.4. Let X be an MLN. A place autobisimulatiorof X is a relationR € Px x Py
containing the identity relatioft(Px) such that the relatiofA>(Mx<1X), B>(Mx<X)) | ARB) is
a bisimulation. Placep, g € Px areplace autobisimilariff there exists a place bisimulatioR such
thatp R g

A placep € Py is calledredundantn X iff Lx(p) =t and forallY € R(X) andg € B(Tx) we have
My(p) > (My = Iy(B) Iy (B)(P).

It is easy to prove that place autobisimilarity itself is a place autobisimulation. It can be computed by
starting with the relatiof(p, q) | Lx(p) = Lx(q)} and removing pairs that turn out not to be related,
c.f. [1]. If p, g are place autobisimilar, they must have the same label.

Redundancy of a place means thap never contains too few tokens compared to the other places; if
a stepB cannot occur, it cannot occur even if an arbitrary amount of tokens were adgedXtfen,
redundancy of a place can be proved by invariants.

We now formulate reduction rules allowing place fusion, node removal and weaving respectively.
Place removal is allowed for redundant places and transition removal is allowed for duplicate transi-

12

Py = Px \ {n}, Ty = Tx \ {n}

Fy = Fx [(Fy UTy) x (Py UTy))

Ly =Lx [(PyUTy)

My = Mx | Px

Pz =(Px\ A U{A}, Tz =Tx

VteTz, pe PxNPz:lz()(p) = Ix(M)(p) A Oz(t)(p) = Ox(t)(p)
Vte Tz 1 1z()(A) = Zpeal x()(P) A Oz () (A) = ZpcaOx(H)(P)
vn e (Pz N Px) UTZ . Lz(n) = Lx(n)

Vpe A:Lz(A) = Lx(p)

Vp € (PzN Px) : Mz(p) = Mx(p)

Mz(A) = ZpeaMx(p)

Pw=(Px\(BUC)U{(p,a) | pe BAgqeCAb#c}

Tw = Tx

Vt € Tz, pe Px N Pw : Iw®(p) = Ix(®)(pP) A Ow®)(p) = Ox(t)(p)
vt e Tz, (P,) € Pw \ Px : lw(®)(p, q) = Ix(®)(p) + Ix(1)(Q)

vVt € Tz, (p,q) € Pw \ Px : Ow(®)(p, q) = Ox(t)(p) + Ox(t)(q)
vn e (PW N Px) UTW . Lw(n) = Lx(n)

V(p,q) € Pw\ Px:Lw(p,q) =1

Vp e (Pw N Px) : Mw(p) = Mx(p)

V(p,d) € Pw\ Px : Mw(p, Q) = Mx(p) + Mx(Q)

Table 3: Reduction operator elaborations

tions or:-labeled transitions with identical input and output bags. Weaving is allowed between input
and output sets aflabeled transitions that have no conflicts.

Theorem 5.5. Let X be an MLN.

1. If pis redundant irX, thenX andR,(X) are bisimilar.

2. Ift € Ty such thatx(t) = Ox(t) andL x(t) = ¢ or if there exist transitions, u in Tx such that
Ix(t) € Ix(u) andlx(u) + Ox(t) = Ix(t) + Ox(u) andLx(t) = Lx(U), thenX andR;(X)
are bisimilar.

3. If Ris a place autobisimulation of andF C Py such tha¥p,q € F : p R g then®g(X) is
bisimilar to X.

4. Ift € Tx with Lx(t) = ¢ such that there exigk, B C Px andlx(t) = Xca[p] andOx(t) =
Ypes[P] @andLx(Ix(t)) = Lx(Ox(t)) =[] andvu € Tx,r € Ix(t) :r & Ix(u)(r),
thenX andR: (Wi,). ox) (X)) are branching bisimilar.

Proof: We start with redundant place removal.

Let p be a redundant place M. SetY = Ry(X) andY, = My<Y. We prove that the function
R={(Z, (Mz — Mz(p)[pD>Yo) | Z € R(X)} is a bisimulation andMx R My. If U RV, then
sinceU e R(X), the redundancy op entails that for eacls € B(Ty) we havely (8) = Iv(B). If

U -5 U andaisa step, that there exists a a lfag B(Ty) and alUg such that) = lu(B)>Ug and
U’ = Oy (B)>Ug anda = Ly (B). Let V' such that)’ R V'. From the above it is easy to prove that
V -5 V. For additions/removals the fact thag (p) = ¢ is sufficient.

13

Next comes transition removal.

The relationR = {(Z, R(2)) | Z € R(X)} is a bisimulation. Its proof is by case analysis, but rather
straightforward.

Next comes the fusion rule.

SetY = ®(X) and letXg = Mx<X, Yy = My<Y. Letf = id(Px N Py)U{(p,F) | p e F}.
By the definition of the fusion operatatA> Xo) —> (A'>Xo) = (f(A>Ye) — (f(A)>Yy) and
(B>Yo) — (B'>Yp) implies3A, A : f(A) =B A f(A) = B' A (A>Xg) —> (A'>Xo).

Let Q = {(A>Xo, B>Yy) | AfB}. We shall prove tha® is a bisimulation. LetU Q V, where
U= A>Xo soV = f(AB>Yy IfU -5 U/ (whereU’ = A'>Xp), then we can choose’ =
f (A)>Yo, soQ is a simulation. Conversely, ¥ 25 V/, there existAg, A such thatf (Ag) =
f(A), V' = f(A)>Yoand(Ag>Xo) —> (Ay>Xo). Sincef (Ag) = f(A), we have by the definition
of f that Ay R A SinceR is a place bisimulation, there exists @& such thatU =5 (A>Xop)
and f(A) = f_(Ag). So we can choosd’ = A'>X,, proving thatQ—! is a simulation. Clearly,
f (Myx) = My, soX andY are bisimilar.

Finally comes the weave rule.

SetY = Wi, 1).ox1) (X). We show that theX andY are branching bisimilar. Sincey(t) = ¢ and
ly(t) = Oy(t) we can then apply the transition removal rule.

SetUp = A>(Mx<1X). We show that the functiori = {(Ua, Wi, 1).0xt)(Un)) | A € B(Px)}is a
branching bisimulation. Ldt) € dom(f), soU and X only differ in theirM component (as dd (U)
and f (X)) andLy(My) = Lyuy(Miw)). fU 25 U’ thenf(U) == f(U). If f(U) 5V,
there exists ab)’ such that) =~ U’ andV’ = f(U’). The global rule takes care of additions.
For steps, note that by the weave constructiby (u\)<U) = Iy, ()< fU) if My > Iy(u) and
f(Oy(uU) = O¢ (> f(U) for allu € Tx andU e dom(f). Suppose) —5 U/, then there
exists ag € B(Ty) andUg such thatU = iy (8)>Ug andU’ = Oy (B)>Up andL(B) = «. By

the weave constructiorf,(U) = rf(U)(ﬁ)Df(Uo) and f (U") = éf(U)(lB)Df(UO). So f(U) Lﬂﬂ)

f(U’) andL ¢y andLy are the same on transitions, §QU) =5 fU).

ForU e dom(f),letg(U) =U —n.Iy () +n.Oy), withn = U = Iy (t). We havef (U) = f(V)

iff g(U) = g(V), so alsof(g(U)) = f(U). By the condition that & Ix(u) if u € Tx,r € Ix(t)

and sinceL x(t) = ¢, it follows that if U —> U’, theng(U) — g(U’). LetV e ran(f). Let

h ={(fU),gU)) | U e donm(f)}, which is a function. By the construction df, it follows that

if V - V/, thenh(V) == h(V'). Soif f(U) — V’, we setU” = h(U) and we can find

U’ =g(V’) sothaty — U” 5 U/, f(U”") = f(U)andfU’) = V'. Therefore,f is a branching
bisimulation. O

Note that after nontrivial place fusion duplicate transitions can be removed. Also note that the weave
rule may remove a transition by augmenting the number of places, so it does not necessarily simplify
the net. In Figure 6, examples of net reductions are given. In that fiyure,(Ry o Ry o ®(x 5 o

Dyy.)) (X) is bisimilar to X by the fusion and transition removal rules. AMO= (R o Wy y} (p} ©

R,)(Z) is branching bisimilar taZ by the place removal (since the plazdés redundant inz) and

weave rules.

14

Figure 6: Net reduction examples

6 Example

We use MLNs to model components. The tokens in the labeled places define the component’s visible
state, that can be inspected and updated by components in its interface. The transitions represent the
actions or methods that can be called by interfacing components, directly by fusion (rendez-vous) or
indirectly by message passing. The unlabeled places and transitions represent the internal state and
hidden methods of the component.

The specification of a component is the equivalence class modulo branching bisimilarity of its MLN
model. The MLN itself defines the component’s implementation. It is possible to change the imple-
mentation without altering the specification. By compositionality, the specification of a component
will remain the same if the specification of the subcomponents is not changed.

We give a small data communication example. A buéfehat can be filled with tokens is connected
to a component that offers them one-by-one to the netwdik The network transfers them to
another location, where the tokens are inserted in byffey a third componen©. The interface
betweenl, O and N is by transition fusion, betweeh and«a by consumption and betweed and

B by production. In Figure 7, the specifications of the subcomponents and their interconnection are
shown.

Net X is Puoll I [N O |l Pgo. NetY is (tjacc} © Yaw © Tu,p © Psr.c © s 1) (X). By the “weave”
rule, the middle transitions can be short-circuited modulo branching bisimilarity, leadifig is

not branching bisimilar to/; V satisfies(T U3+ T)U,—~(TU,-T): we can pass from the stage
wherea has two tokens to the stage wherés empty by a single hidden step. This cannot occur in
Z (andY). The netsZ andV are weakly bisimilar, though. The n®{ is not equivalent td in any
way; in W, tokens consumed from appear immediately if.

7 Conclusion

This paper uses techniques combines Petri net modeling and techniques from process algebra. The
aim is to support Petri net modeling, in contrast to the Petri box algebra [13] where Petri nets support
algebraic modeling.

We define a semantics for “open” nets (MLNs) and operators for combining them. The semantics
preserves the state-event duality typical of Petri nets. Our step semantics does not preserve causal
dependencies between events, unlike e.g. [16, 11]. Sacrificing causality allows simple SOS rules and
the possibility to interface with algebraically specified components.

15

O @* | oi * O
. o O B-O
“ g«?@»@z@jﬂ

J OO0

Figure 7: Token transfer example

In order to arrive at a fully compositional net-based specification language, we need to address some
version of “colored” nets [10, 8]. The addition of color does not invalidate the approach presented
here; problems are mainly technical.

References

[1] C. Autant and Ph. Schnoebelen. Place Bisimulations in Petri Nets. In K. Jensen, &gfiby,
cation and Theory of Petri Nets 1992, 13th. International Conference, Proceegigme 616
of Lecture Notes in Computer Scienpages 45-61. Springer—Verlag, Berlin, 1992.

[2] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of reactive systems
using open nets. IProceedings CONCUR 'Qlvolume 2154 ofLecture Notes in Computer
Sciencepages 502-518. Springer—Verlag, Berlin, 2001.

[3] T. Basten. Branching Bisimilarity is an Equivalence Indeebtiformation Processing Letters
58:141-147, 1996.

[4] P.Jarar. Undecidability for Petri nets and some related problefigoretical Computer Sci-
ence 148(2):281-301, 1995.

[5] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulatidmurnal of the
ACM, 42(2):458-487, 1995.

[6] W.J. Fokkink. Rooted branching bisimulation as a congruedoarnal of Computer and System
Sciences60(1):13-37, 2000.

[7] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a con-
gruence.Information and Computatigrii00(2):202—260, 1992.

16

[8] K.M. van Hee. Information Systems Engineering: a Formal Approa€@ambridge University
Press, Cambridge, 1994.

[9] M. Hennesy and R. Milner. Algebraic Laws for Nondeterminism and Concurrefmytnal of
the ACM 32(1):137-161, 1985.

[10] K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical ESECS
monographs on Theoretical Computer Science. Springer—Verlag, Berlin, 1992.

[11] E. Kindler. A compositional partial order semantics for Petri net components. Indf&znd
G. Balbo, editorsProceedings ATPN '9Aolume 1248 ofecture Notes in Computer Science
Springer—\Verlag, Berlin, 1997.

[12] E.Kindler and T. Vesper. ESTL: A temporal logic for events and states. In J. Desel and M. Silva,
editors,Proceedings ATPN '98/0lume 1420 ot ecture Notes in Computer Scien&pringer—
Verlag, Berlin, 1997.

[13] M. Koutny and E. Best. Operational and denotational semantics for the box alGéle@retical
Computer Scien¢11:1-83, 1999.

[14] W.E. McUmber and B.H.C. Cheng. A general framework for formalizing UML with formal
languages. IfProceedings ICSE 'Qlpages 433—-442. IEEE press, 2001.

[15] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Computer Science Dept., Aarhus University, 1981.

[16] L. Priese and H. Wimmel. A uniform approach to true-concurrency and interleaving semantics
for Petri nets.Theoretical Computer Scienc206:219-256, 1998.

17

Appendix A:

We prove Lemma 4.5 here. We start with the first proposition:

If P(—)F C(—)isarulein Table 2, theR(—) = C(—>).

Proof: The proof is by case analysis, using Definitions 3.3 and 4.1.

AT: (the premise is true, so we must prove the conclusions)

We haveP, nim el (mla]< Pantm) = Pan. We haveT, = (n.17,>Tp) by, (Or,>Ty) = Ty and of
courseP, N PanandTy I Tp.

ME:

If X 25 X’ andY 25 Y/, then there exis@., B with Lx(A) = a, Lx(B) = B such thatX’ = A< X
andY’ = B4Y, soX’ | Y’ = (A+ B)<(X | Y) and sincef] £ A+ B, we haveX || Y 27 x/ |y
The proof for the step relation is even simpler.

COr,PRr, TFr,PFr:

If X =5 X/, then there is amA with [x(A) = « such thatX’ = A<X. Then we also have
f(X) = Aaf(X) for f € {yab, Tap, Panc). There is also a\ with L,,x)(A) = « such that
Pa(X)) = A< pa(X). So f(X) == f(X')in all these cases.

RE:

If X <5 X/, then there is am\ with Lx(A) = « such thatX’ = A<X. Thusps(X') = A< p¢(X)

and if [] £ f(a), then] £ L, x)(A), s0p(X) (@ ,1(X'). The REs rule is analogous, but
simpler since the extra condition is missing.

COs,PRs:

i x “OE o o X', then there is an = a(b) and A, E with Lx(A) = n[a] and Lx(E) = «
such thatX’ = Ox(E)>(Ix(E)<i(A<X). Since(I:x(E))(b) = n, we can find a list of transition-
place pairs(ty, p1) ... (tn, pn) such thatLx(p;)) = a, Lx(tj) = b for all i and Xi[p]] = A and
I:X(E — Zi[tD(b) = 0. This means that the bdg = E — Xi[t;]] + Zi[(t;, pi)] contains transitions
of Y = yap(X) andLy(F) = « and thaty’ = Oy(F))>(Iy(F)<Y) exists andY’ = y,p(X'). So
Y - Y. The production step rule is fully analogous.

TFs:

If X “™% %’ anda(a) = «(b) = 0, then there ar&, F such thatl x(E) = «, Lx(F) = n[ab]

and X’ = Ox(E + F)>(Ix(E + F)<iX). We can find a list of transition paird;, us) ... (tn, Un)

such thatLx(tj) = a, Lx(u;) = b for all i and%i[tj, u;]] = F. Sincea(a) = «a(b) = 0, the bag
G = E+3i[(t, up)]is atransition bag of = ¢ap.c(X) andiy(G) = Ix(E+F), Oy(G) = O(E+F)

andL(G) = a + n[c]. ThusY’ = Oy (G)>(Iv(G)<1Y) exists andY’ = ¢ o(X). SoY T8y,
PFs:
Let X M5 n[a]— NN n[a]+ N —) X’ for somen > 0. Sothere aré, B ¢ B(Py) andE e B(Tx) such that

X" = B>(A<X) andX’ = Ox(E)>(Ix(E)<X”) andLx(A) = Lx(B) = n[a] and LX(E) =«a. By
Definition 3.3, we have that = ¢4(X) = ¢.(X”), thatTy = Tx and thatY’ = Oy (E)r>(Iv(E)<Y)
satisfiesy’ = ga(X'). S0@a(X) — @a(X)). a
We now move to the second proposition:

If X - X’ for some closed net terX, there exists a rul® (—) = C(—) in Table 2 such that
C(—>) equalsX —> X’ andP(—>) holds.

Proof: Again we use case analysis for each rule type and Definitions 3.3 and 4.1. Note that the term
X and evene determine what rule type should be used.

18

AT:
If X is an atom andK — X', the existence of a rule in the AT row of Table 2 is immediate from the
two definitions.

ME:

If X=U |V andX —25 X/, then there existE € B(Ty U Ty) such thatX’ = Ox (E)>(Ix(E)<X)
andLx(E) = «. We can wri}eE =F + G, whe[eF €]B%(Tg), G e]@%(TV). SipceU andV have
disjoint nodes, we know thady (F) + Oy (G) = Ox(E) andly(F) + 1y (G) = Ix(E) and so there
exists = Ly(F) andy = Ly(G) such thaty -2 U’ andV > V' and X’ = U’||V'. This
corresponds to the MEs rule of Table 2. The MEr rule is similar.

COr,PRr, TFr:

If X = f(Y), wheref ¢ {vab, Tabs Pab,c} andX == X/, then there exists a bafy € B(Px) such
that X’ = A<X and] £ Lx(A). Then by Definition 3.3Px = Py andY’ = AQY exists and
X" = f(Y") and sinceLy(p) = Lx(p) for all p € Px, we have indeet 25y

PFr:

If X = ¢a(Y) andX == X/, then there exists a bafy € B(Px) such thatX’ = A«gX and] £
Lx(A). Letg € Py — Py be defined byg(p) = pif Ly(p) # aandg(p) = {q | Ly(q) = a} if
Ly(p) = aand leth = §. By Definition 3.3, there exists a bd8j € B(Py) with h(B) = A such that
Y’ = B<Y exists andX’ = f(Y’). SinceLy(B) = Lx(A), we have indeetf == Y’.

RE:
If X = p;(Y)andX == X/, then there exists a baly € B(Px) such thatX/ A<1X andLx(A) =

a. Of course, {] £ «. Thus,Y’ = A<Y exists and f o Ly)(A) = a. SoY > Y and [] £ f(a).
The REs rule is similar.

COs,PRs:

If X = yapY andX — X/, then there exists a bdg € B(Tx) such thatX’ = Ox(E)p>(Ix(E)<iX)
ande(E) = «. By Definition 3.3,Px = Py, Mx = My andY’ = Ox(E)i>(Ix(E)>Y) exists. We
can writeE = Eg + Eq whereEg € B(Tx N Ty) andEg € B(Tx \ Ty). The transitions infx \ Ty
are pairs(t, p) and we deflnqﬁ € TX — Ty by ¢(t) =tifteTy and¢(t p) =tif (t,p) & Tv.
Let F = ¢(E). We havely(F) = Lx(E) = o andOx(E) = OY(F) andlx(E) Iv(F) + = [pi],
whereLl y (3 [p]) = a(b)[a]. SoY” = £,[pi]<Y exists anddy (F)>(Iy(F)<Y”) = Y. By using

Definition 4.1, we conclude that guly Y” -5 Y’. The production step rule is analogous.

TFs:

If X = ¢apcY andX P2 X/, then there exists a bdg e B(Tx) such thatX’ = Ox(E)p>(Ix(E)<iX)
ande(E) B. By Definition 3.3,Px = Py, Mx = My andY’ = Ox(E)i>(Ix(E)>Y) exists. We
can writeE = Es + Eq whereEg € B(Tx N Ty) andE4 € B(Tx \ Ty). The transitions iy \ Ty are
pairs(t, u) and we deflneb €Ty — [(]TY) byet) =[t]if t € Ty ande(t, u) = [t, u] if (t,u) € Ty.
LetF = ¢(E) We haveOy (E) = Oy (F) and likewise forl. SoY’' = Oy (F)r>(Iy(F)>Y) exists
andLy(F) = Ly(Es) + n[ab], wheren equals the number of transitionskiy. Thusg can be written
asa + n[c] and sinceX cannot contain ang- or b-labeled transitions, we havé v with
(@) =a(d) =

PFs:

If X = @Y andX 25 X/, then there exists a ba-t‘g IS IB(TX) such thatX’ = Ox(E)>(Ix (E)<1X)
andI:X(E) /3 By Definition 3.3 T)(= Ty, Lx(lx(E)) = Ly(ly(E)) Lx(OX(E)) = Ly(OY(E))
andIy(E) = A + B, whereA contains onlya-labeled places (st.y(A) = m[a]) and B all the
other places. Soy(E)<I(A>Y) exists andLy (A + My — Iv(E)) = m[a] + Lx(Mx — Ix(E)).

19

So there exists & € B(Y) with Ly(C) = m[a] such that(C + Iy (E))<(A>Y) exists. LetD be
the largest bag such thét < AandD < CandletA = A—D,C'+C —-D,n[a] = Ly(A) =
Lv(C),Y = Oy(BE)-((C+Iv(E)<(A>Y)). Then(C+ Iy (E)<(A>Y) = Iv(BE)<(A>(C'«aY))

andY ™5 c'ay ™ A (c'aY) —% Y. This completes the proof. O

20

