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The emission properties of self-assembled InAs quantum(@ids) and lattice-matched GalnNAs
guantum wells(QWs) emitting around 1.3xm were investigated by temperature-dependent and
time-resolved photoluminescen@@Ll). The QDs have much higher PL efficiency at low excitation,

but saturate faster as the excitation is increased, due to the lower density of states. Lifetime
measurements show that nonradiative recombination plays a more important role in the GalnNAs
QW than in QDs. ©2002 American Institute of Physic§DOI: 10.1063/1.1447595

Optical gain materials that enable long wavelengtt8 The effect of temperatur€ on the continuous waview)
and 1.55um) amplification and emission on GaAs substratesphotoluminescencéPL) of both samples is shown in Fig. 1.
are attractive for the realization of temperature insensitivd=or the PL experiment the samples were excited with a
lasers and vertical cavity surface emitting lasers. The mosti:sapphire laser system tuned to 800 nm. At low excitation
promising materials are GalnNAs quantum wel@Ws!  densityG=20 Wicnt on the InAs QD samplésee the inset
and InAs quantum dot$QDs).> However, the physics in- of Fig. 1, solid lineg a peak can be observed at low tempera-
volved into these two approaches is quite different. In thgures with a transition energy of 1.01 eV, which redshifts at
Ga _«InyN,As, _, system the addition of a small concentra- room temperature to 0.94 e £1.31um). The GalnNAs
tion of nitrogen leads to a dramatic redshift of the band gag’L (dashed linesis peaked at 1.04 evtd K and at 0.97 eV
energy® and allows one to tune the host material to the(A=1.27um) at room temperatureq=110 W/cnf). Note
desired wavelength. With the appropriaiy concentrations that a much stronger PL signal is obtained from the QDs at
the quaternary material can be lattice matched to Ga@s. low excitation density. The two materials exhibit quite dif-
the other hand, in InAs QDs the difference in lattice paramferent temperature dependences. In the range o3 K
eter between GaAs and InAs results in the formation of co-<100 K the integrated intensity of the QW decreases dra-
herently strained three dimensional InAs islafids,which ~ matically (Fig. 1, dashed lings whereas the value for the
partly relaxes the elastic energy and delays the appearence @Ps stays more or less constdsblid lines. Due to higher
dislocations. The electronic states in these self-assembled igarrier localization inside the QDs, nonradiative recombina-
lands then strongly depend on their $%and shape and on tion becomes important only above 100 K.
the strain field around thefi.To lower the transition energy, In order to investigate the role of the different density of
the QDs can be embedded in an InGaAs QW, which leads to

lower quantum confinement, to reduced sttain the QDs
and to an increase in height of the QDs due to spinoidal

activated decompositiof?. 410 -8- GalnNAs QW 1
In this letter we investigate the radiative properties of -

identical structures of both materials under the same experi- : 3 Wavelength [nm] |

mental conditions. The comparison allows us to present evi- 5 1300 1200 1100

dence of the role of the density of states and defects, two key ‘'@ STk ]

parameters of laser performance. Both samples were grown *2 2 ::j . .

by molecular beam epitaxy and consist of a single active 5 @ =

layer: InAs QDs covered by 5 nm of InGaAst a 6 nm % E

Ga, _,In,N,As; _, QW (x=0.36y=0.015), both embedded §a 1 s 5 T

in a 200 nm GaAs matrix. The areal dot density of the QD = "bn

sample is % 10'° cm~2, derived from transmission electron
microscopy(TEM) measurements. Both samples have thin
AlAs barriers on both sides of the active region. Details of
growth are given elsewheté&!’

FIG. 1. Temperature dependence of the PL integrated intensity of the
GalnNAs QW(dashed lingand the InAs QDsgsolid ling). The inset shows
PL spectra from both samples B4 K and at room temperature.
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—_ ] FIG. 3. Temperature dependence of the lifetimes of the GalnNAs QW
= g (dashed lingand the InAs QDssolid line). The inset shows the decay curve
«; 1.0 o Ve = of both samples at=100 K.
= | = g
S i g
S "% = and the wetting layer leads to increased nonradiative recom-
= 05 ' bination. Note that the full width at half maximu@WHM)
a of the GalnNAs PL lines increases with the excitation den-
sity (from 50 to 97 meV at room temperatirelue to the
\ e increasing population of high energy states.
----------------- Time-resolved photoluminescence was used to obtain in-
080 085 100 105 1.10 1 15 1.20 formation about the dynamics of interband radiative recom-
Energy [eV] bination. The experiment was performed by exciting the

FIG. 2. PL from the GalnNAs QWdashed lingand the InAs QDgsolid sample with a J_'OO_ MHz, 8.pS pUIsed T|:sapph|re laser with
line) at three different excitation densiti€— 200, 1500 and 9800 W/dn &N average excitation density Gf=370 W/cnf, and detect-

(@) at T=100 K and(b) at room temperature. The insets show the integrateding the PL with a Hamamatsu streak camera with an
intensity of the CT%'T.NAS %Wfpia(‘dlasAhed gnﬁ of thg t‘t)“’;" 'nASkQDS infrared-enhanced photocathode. The time-dependent trace
e e oncon o e st oy * 1 P4 for both samples at a temperature of 100 K at the PL maxi-
mum is shown in the inset of Fig. 3. The decay part of each
curve was empirically fitted on a single exponential function
states in the luminescence of the two materials, we measurefl order to extract a decay time constant. The QDs’ ground
PL spectra at high excitation densit{¢sg. 2(a) at 100 Kand  state showed larger deviations from single exponential decay
Fig. 2(b) at room temperatuie At 100 K and atG  than the QW due to refilling effects from higher energy
=200 W/cnt a small PL signal from GalnNA§Fig. 2@@),  states. The time constants obtained at different temperatures
dashed linebwas detectable. At that excitation of the InAs at the PL maximum are displayed in Fig. 3. For QDs we find
QD sample(solid lineg three peaks are observed that corre-a lifetime of about 900 ps, constant over temperature within
spond to three energy states. The appearance of excited statagperimental error. The QW lifetimes decrease with the tem-
in the spectrum is clear evidence of population saturation irperature from 180 to 80 ps, indicating an increase in nonra-
the ground state, due to the limited density of states. As theliative recombination. Unlike the QDs the QW shows a
power is increased, the peak height of the QW increasestrong energy dependence of the decay time. Figure 4 depicts
superlinearly with the pump power, whereas the QDs'the variation of the QW decay times detected at different
ground state peak only increases slightly. Furthermore, thenergy positions relative to the respective PL maximum for
peak intensities of the QDs’ first and second excited statelifferent temperatures. The decay time strongly varies with
transitions gain factors of up to 1.9 and 6.7, respectivelythe energy, particularly at low. This is strong evidence of
Obviously the available QD ground states are already nearlgarrier localization. At lower thermal energies carriers are
filled and only higher energy states can contribute to a highetrapped in localized potentials with longer lifetimes. The oc-
PL intensity. That behavior becomes more evident in the ineurrence of these localized exciton states is likely due to
set of Fig. 2a), which correlatesG with the integrated PL In—N clusters, leading to lower leveltils) in the density of
intensity. The dashed line refers to the GalnNAs QW, and thetates of the QW, as already reportéd?® When the tem-
lower solid line curve to the QDs’ ground state peak only, agerature is increased carriers gain enough thermal energy to
deduced from a Gaussian fit, and the upper solid line curveopulate the free exciton states in the QW with a shorter
takes into account all available states in the QDs. While thdifetime. Progressive carrier transfer from localized exciton
ground state emission is almost completely saturate@ at states to free exciton states leads to less variation of the
=1000 W/cn3, the total amount of QD emission shows sub- decay times. However, compared to in the case in Ref. 18, in

linear growth, indicating that population of the excited stateghe sample under investigation the deviation in lifetimes is
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