

The modelling and analysis of queueing systems with QNM-
ExSpect
Citation for published version (APA):
Aalst, van der, W. M. P. (1991). The modelling and analysis of queueing systems with QNM-ExSpect.
(Computing science notes; Vol. 9133). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fa8f3d67-dbfb-473c-baa2-5bac974e449a

Eindhoven University of Technology

Department of Mathematics and Computing Science

The Modelling and Analysis of Queueing
Systems with QNM-ExSpect

by

W.M.P. van der AaIst

Computing Science Note 91/33
Eindhoven, December 1991

91/33

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only <Uld are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

The Modelling and Analysis of Queueing Systems
with QNM-ExSpect

W.M.P. van der Aalst
Eindhoven University of Technology

Dept. of Mathematics and Computing Science

Abstract

In this paper the application of ExSpect to Queueing Networks (QN) is described.
ExSpect is a simulation tool based on a formal framework closely related to Coloured
Petri Nets (CPN). ExSpect supports hierarchical models and user defined modules.
The fact that systems can be combined into larger systems is a very powerful feature
and allows a structured top-down design. The module concept combined with the
possibility to customise a system encourages the reuse of already specified components
and the creation of 'toolboxes'. One of those toolboxes is the Q N M toolbox, developed
to analyse queueing networks. The design interface of ExSpect permits the user to
define the queueing network in a graphical manner and automatically generates a
simulation model. If simulation takes too long to produce reliable results one can
decide to use an analytical model. On certain conditions, it is possible to generate the
network structure and parameters for such an analytical model from the description
in QNM-ExSpect. In this paper we show how to translate a model in QNM-ExSpect
to a BCMP network.

Keywords: Simulation tools, High level Petri nets, Queueing networks.

1 Introduction

In the last twenty years, queueing networks have become popular in the field of perfor­
mance analysis of computer systems, communication networks and production systems. A
common feature of all of these systems is the fact that there is a limited resource which
must be shared among a number of competing customers who require service. Examples
of typical shared resources are CPUs, memory, I/O devices, transport aids or machines.

1

Since these resources are limited, customers may have to wait. These waiting customers
form a queue in front of the shared resource. This is the reason these systems are called
queueing systems. In other words: a queueing system is a network of queues and servers
containing a number of customers circulating in the network. For example, a computer
system can be seen as a network of queues and servers (CPU's,terminals) and a collection
of customers (clients,tasks). Another example is a production system with a set of jobs
needing some service performed by machines, vehicles and humans.
There exist two approaches for the analysis of queueing networks.
The most flexible and easy to use method is simulation. Simulation can be applied in
many situations and, by nature, it enables the modelling and analysis of systems which
are mathematically intractable.
Simulation is not the only way to analyse queueing systems, "pure" queueing systems
also allow for analytical methods. In fact the main reason for which queueing networks
have become so popular is due to the product form solution property that holds for a
fairly large class of queueing networks (see [8)). The shortcomings of these analytical
methods are mainly due to their lack of descriptive power in presence of phenomena such as
synchronisation, blocking and the splitting of customers because they destroy the existence
of a product form solution.

We propose a mixed approach. We have developed a "toolbox" containing building blocks.
These building blocks allow for the modelling of a large class of queueing networks, in a
graphical manner. The software package ExSpect automatically generates a simulation
model allowing for all kinds of measurements. On certain conditions, it is possible to
translate such a model into a BCMP network ((4]). Such a network can be analysed using
analytical techniques. Even when these conditions are violated, the simulation results are
still useful to obtain parameters for an approximated BCMP network or to compare these
results with the results of an analytical technique.

Our approach is based on a formal framework which makes it easy to model complex
computer and production systems. This framework has been developed at Eindhoven
University of Technology ([5]). Every complex system that fits into this framework is
called a discrete event system (DES). The framework is related to Coloured Petri Nets
([7)), therefore we can use Petri net theory to verify structural properties ([9)). To model
dynamic systems we have extended Coloured Petri nets with a time concept ([5]).
A DES consists of two kinds of components: processors and channels (corresponding to
respectively transitions and places in Petri nets).
A processor is connected to one or more input channels and zero or more output channels.
To each input channel of a processor a certain (positive integer) weight is attached (in
most cases weights are equal to 1). This allows a channel to be a multiple input channel
of a processor. With each channel a type is associated and with each processor a function.
The signature of the function of a processor p corresponds with the types and weights of
input channels of p and the types of its output channels.
Channels may be shared by several processors as input or output channel. At any moment

2

channels may contain tokens. A token has a value that belongs to the type of the channel
and a time stamp. There may be more tokens in the same channel with the Same value
and time stamp. So a channel actually contains a bag of tokens over its type.
At any moment a transition may occur, which means that the configuration of tokens,
called the state, changes (our terminology attaches another meaning to the term transition
than Petri net theory). Such a transition occurs instantaneously and is executed by the
processors. A processor is enabled if it is able to select the right number of tokens from
each of its input channels. The number of tokens to be selected from an input channel by
a processor p is equal to the weight of the input channel for p. Only enabled processors
may execute. The execution or firing of a processor means that the selected tokens are
consumed (deleted) and that new tokens are produced for the output channels of the
processor. The number of tokens produced and the values of these tokens depend on the
function associated to the processor that fires. Note that a token can be consumed only
once.
An event is a set of simultaneous processor executions. The event time at which an
event may occur is the maximum of the time stamps of the tokens to be consumed. The
transition time of a system in a certain state is the minimum of the possible event times.
Being in a certain state, a system will select an event of which the event time is the
transition time and execute it, causing a state transition. The time stamps of produced
tokens will be at least equal to the event time. It is thus clear that the transition times of
successive events will be non-descending.

In this paper we start with a short introduction to the language ExSpect, which allows us
to specify a DES. This language is supported by a software package also called ExSpect.
This software package contains a number of tools: a graphical design interface, a type
checker, a run-time interface and an analysis tool. This way it possible to perform all
kinds of analysis, for example simulation or Petri net based analysis ([I)).
In section 3 we describe the Queueing Network Module, a toolbox build on top of ExSpect.
The design interface of ExSpect permits the user to define the queueing network in a graph­
ical manner and automatically generates a simulation model. This approach is not new,
many authors propose graphical special purpose simulation tools. Consider for example
the Queueing Model Generator, described in [lOJ.
There are, however, some important differences between these graphical special purpose
simulation tools and QNM-ExSpect. With our approach it is possible to define new (user
defined) building blocks. Because of the hierarchy construct, called system, it is possible
to create new building blocks by composing existing ones. The hierarchy construct also
allows for the structuring of large complex models. Because our approach is based on Petri
nets, we provide a number of formal analysis techniques based on Petri net theory. Finally,
we facilitate the transformation of a simulation model into an queueing model allowing for
analytical analysis methods. If simulation takes too long to produce reliable results one
can decide to use an analytical model. It is possible to generate the network structure
and parameters for such an analytical model from the description in QNM-ExSpect. In
section 4 we show how to translate a model in QNM-ExSpect to a BCMP network ([4]).

3

Finally, we give an example that illustrates our approach.

2 ExSpect

At Eindhoven University of Technology the language ExSpect, has been developed for the
specification of discrete event systems. Since it is executable, it can be used for prototyping
and simulation.
A typechecker and an interpreter have been implemented. The typechecker checks the
specification for correctness, completeness and consistency. The interpreter can be used to
execute such a specification.
The user can view or influence a running simulation via the ExSpect (run time) user
interface. This interface is asynchronous, which means that the user and the running
simulation model do not have to wait for each other. Another attractive feature is the
possibility to synchronise the (scaled) simulation time with the real time. These two
options make real-time interactive simulation possible.
The software is written in the language C and runs under UNIX at a SUN workstation in
a window environment. Also a stripped version of the software is available for the personal
computer (PC). More information about the ExSpect system is presented in [5] and [3].
The language ExSpect consists of two parts: a functional part and a dynamic part. The
functional part is used to define types and functions. The type system consists of some
primitive types and a few type constructors to define new types. A 'sugared lambda
calculus' is used to define new functions from a set of primitive functions. ExSpect is
a 'strongly typed' language since it allows all type checking to be done statically. A
strong point of the language is the concept of type variables: it provides the possibility of
polymorphic functions. A more formal discussion regarding the functional part of ExSpect
is given in [6].
The dynamic part of ExSpect is used to specify the network of processors, channels and
stores and therefore the interaction structure. A store is a special kind of channel: it always
contains precisely one token. The behaviour of a processor is described by functions.
ExSpect has five primitive types: void, bool, num, real and str. The type constructors are
set ($), cartesian product (><) and mapping (-». From a set of types and type operators
we can form type expressions that symbolize new (composite) types. We can attach names
to type expressions, thus defining new types .. The following example illustrates some type
definitions:

type operation from str;
type load from real with [x] x> 0.;

type job from operation >< load;
type process-id from num;
type processor...status from process_id -> job;

Note that we can add a with part to restrict a type.

4

Likewise we can construct new functions. Our set of basic functions includes all well-known
set-theoretical, logical and numerical constants and functions. Because of some 'sugaring'
it is possible to write these functions in their usual symbolic infix or 'circumfix' notation.
As an example we show two function definitions operating on the types defined above:

p_t := { « 14220 , « 'disk-io', 0.1256 » »,
« 14223 , « 'swapper', 0.1348 » »,
« 14227 , « 'mail', 0.0673» »,
« 14097 , « 'rpc', 0.0089 » »,
« 10034 , « 'deamon', 0.0056 » »,
« 14090 , « '-shell', 0.1562 » »,
« 10235 , « 'disk_io' , 0.2288 » »

} : processor...status;

processor-'load[x:processor...status]
:= if dom(x) = {}

then O.
else pi2(pi2(pick(x))) + processor-'load(frest(x))

fi: real;

The functions pil, pi2 (projections), dom, pick and frest (respectively domain, taking
and deleting from a mapping) are examples of basic functions. The result of the function
application processor-'load(p_t) equals 0.7272 .
It is also possible to define polymorphic functions using type variables:

range[x:T -) S]
:= if dom(x) = {}

then {}
else ins(pi2(pick(x)),range(frest(x)))

fi: T -) S;

T and S are type variables, therefore the range function can be used to calculate the
range of any mapping. The range function uses recursion and the ins (inserting into a
set) function to calculate the result.
Processor definitions are split in a header and contents part. The header part (sometimes
called signature) contains the processor name, its interaction structure and its parameters.
The interaction structure is given by (possibly empty) lists of input channels, output
channels and stores. The contents part consists of concurrent (conditional) assignments of
expressions to output channels and stores. Consider the following processor definition:

proc bus [in send:T, out receive:T , val d:time]
:=

receive <- send delay d;

5

This processor models the transportation of a job via a bus as a simple delay. The time
between the moment the job is sent and the moment the job is received is set by a value
parameter val d. If the keyword delay is omited, a delay of zero is assumed. Note that T
is a type variable, this makes the processor bus polymorphic. The only restriction is that
the type of the channel connected to send "matches" the type of the channel connected to
receive.
A store is a special kind of channel: it always contains precisely one token. One can think
of a store as a variable. We define a system as an aggregate of processors, connected by
channels and stores. A system can also contain other (sub) systems. This way it is possible
to make hierarchical models, which is extremely useful when specifying large and complex
processes. Moreover, the system concept allows both bottom-up and top-down design.
If a system has no interaction with its environment we call it a closed system else an open
system. Open systems communicate with the outside world via input and output channels
and stores. Therefore, a system definition consists of a header similar to a processor header
and a contents part. A system can have value, function, processor and even system param­
eters. So it its possible to define generic systems. This way a system can be customised or
fine-tuned to a specific situation. The contents part is a list of all the objects (processors,
systems and local stores and channels) in the system and their relations.
As an example we show a simple system to model a central processor unit (CPU) (see
figure 1). Note that we represent a processor by a triangle and a channel by a circle. The
cpu system has one input channel (inj ob) to accept incoming jobs and one output channel
(out j ob) to release finished jobs. The ExSpect specification of this system is shown in the
box.

free

"" ,g' -f\
0 ,1\ '0 '[
lnjob \ I out job

accept
busy

release

Figure 1: The cpu system

The cpu system has a one function (fun) parameter which is used to calculate the time
needed to perform a certain operation. Processor accept is activated if there is at least one
job and the CPU is free. The CPU is free if there is a token available in the channel free.
If accept is activated the operation corresponding to the token consumed from injob
is executed. This is represented by the production of a token on the internal channel
busy with a delay specified by the function parameter processingtime. Now the CPU is
occupied until the processor release is activated.
As we saw there are four kind of definitions; type, function, processor and system defini­
tions. These definitions are stored in modules. Definitions become visible outside a module

6

sys Mach1ne L 1n 1n]0l? : Jol?,
out outJob : Job,
fun processingtime[x: job]: time

] .=
~hannel free: signal init signal,
channel busy : joo,
accept(in injob, free, out busy),
release(in busy, out out job, free)
where

proc

:=

accept [in injob : job, free
out busy : Job

]

signal,

busy (- injob delay processingtime(injob);

proc release [in busy : job,
out out job : job, free : signal

]
:=
free <- signal,
out job (- ousy;

end;

if they are preceded by the keyword export. The typechecker creates a header file con­
taining the declarations of exported definitions. You can use these definitions by including
this header file, this way it is possible to reuse definitions easily. If you make a module
with type definitions and operations acting on these types then the internal representation
of these types remains hidden in the module. A module hides the format of a particular
data structure. You cannot access the information by directly manipulating the module's
data structure. This way ExSpect enables information hiding.
The fact that systems can be combined into larger systems is a very powerful feature and
allows a structured top-down design. The module concept combined with the possibil­
ity to customise a system encourages the reuse of already specified components and the
development of 'toolboxes'.

3 The Queueing Network Module

We have used ExSpect to specify a broad class of systems; protocols, information systems,
logistic systems and flexible manufacturing systems. The application of ExSpect to logistic
systems is described in [3), the application to flexible manufacturing systems is described
in [2).

Queueing networks have proved to be useful in practical situations. Therefore we have
created the Queueing Network Module (QNM). This is a part of the environment of the
simulation language ExSpect. The combination of ExSpect and QNM is called QNM­
ExSpect.
One can think of QNM as an interface on top of ExSpect. This interface prevents the user
familiar with queueing networks from having to learn a new formalism. It fully utilises the
features of the language ExSpect such as polymorphism, value and function parameters

7

and information hiding via the module concept.
The Queueing Network Module consists of a number of building blocks such as a server,
queue, generator, ., . These building blocks are generic ExSpect systems (see section 2).
Each system has a number of parameters. If an input channel or an output channel
represents the flow of customers (called entities), then the type is described by a type
variable (for instance T, S or U). This allows the user to define the relevant attributes of
the entities. If (s)he does not want to bother about this, (s)he should include the default
entity type client.

3.1 Building blocks

3.1.1 Generator

~enera\;olj---_

The generator generates the entities (customers, clients) of the model. These may be cus­
tomers entering a bank, jobs arriving at a production unit, or a request for some processing
power generated by a terminal in a computer network. An entity may have user-declared
attributes; all ExSpect types are permitted. Every generator has a name. The time be­
tween arrivals is specified by a probability distribution. It is also possible to specify the
number of entities generated each time. The value of the entity generated may depend
upon the name of the generator, the number of entities already generated and the actual
generation time.

sys generator [
out o:T,
val name:str. seed:real. nofbatches:num. batchsize:num.
fun interarrivaltime[r:real]:real. value[name:str.n:num.t:real]:T.

class [x: T] : class
] ;

The box shows the signature of the generator system. There is one output channel 0 whose
type is polymorphic. The name of the generator and the initial seed are specified via the
value parameters name and seed. The value parameters nofbatches and batchsize are
used to indicate the total number of arrivals and the number of entities generated per
arrival respectively. The first arrival is always at time 0.00 . Set nofbatches to 1 if you
want to generate closed clients. Closed clients are entities which never leave the system,
i.e. a closed client visits one or more servers infinitely often. Set nofbatches to INF for
the unlimited generation of open clients. An open client enters the system, visits one or

8

more servers and then leaves the system. The function parameter interarrivaltime is
used to calculate the time between two arrivals. This interarrival time may depend upon
r, a random number generated by the random generator inside the generator system.
Such a random number is a real between 0 and 1. The value of an entity generated by
the system is specified by the function parameter value. The result type of this function
has to be of the same type as the type of the output channel. Note that the result may
depend upon the name of the generator (name), the number of entities already generated
(n) and the actual generation time (t). The final function parameter class is only used for
reporting. This function ,assigns a customer to a specific class. All results (see section 3.3)
are expressed in terms of these classes, for example the number of customers generated in
each class.

3.1.2 Terminal block

/

term

If an entity enters the system called term it disappears. In other words: the entity leaves
the system. Note that the scope of the queuing system is given by the location of generator
and term blocks. Remember, closed clients never leave the system.

sys term~ .
in i:T,
val name:str,
fun rep[x:T,t:real]:real,

class[x:T]:class
] ;

The term system has one input channel i of an arbitrary type. The name is defined
by the value parameter name. Function parameter rep can be used to customise the
measurements, for example to measure the throughputtimes of the entities. The value
of rep may depend upon the value of the arriving entity x and the present time. The
result is always a real, use the bargraph program to observe these measurements. The
function parameter class is used for reporting. This function assigns an entity (customer)
to a specific class. All results are expressed in terms of these classes, for example the
throughput times of the entities.

9

3.1.3 Server

The entities in the network travel from server to server until they leave the system. At each
server they offer a certain amount of work (the workload) and they wait until the server
has completed the service. One can think of a server as service point or a workstation.
A server is always connected to a queue (sometimes indirectly via an assemble and/or
an assign system. If the server is free and there are entities waiting to be processed by
this server then the server system starts serving this job. The service time is given by a
probability distribution which may depend upon the value of the entity. One can also use
the server system to model a number of identical parallel servers or an infinite server.

sys server[
in i:5,
out o:T, sig:eignal,
val name:str, seed:real, nofservers:num,
fun servicetime[x:5,r:real]:real, transform[x:S]:T,

classl[x:S]:class, class2[x:T]:class
] ;

The server system has an input channel i and an output channel 0 both with a polymor­
phic type. These are used to model the arrival and departure of clients. There is also an
output channel, called sig, that is used to inform the preceding queue system (or assign
or assemble system) that the server is ready to process another client. The output channel
sig is of type signal, a predefined type with only one element, also called signal. The
value parameter name is used to specify the name of the system and seed is used to set
the random generator. The number of parallel servers inside the server system can be
specified via nofservers, this value parameter is set to INF to model an infinite server.
The service time of an entity is given by the function parameter servicetime which may
depend upon the value of the entity (x) and a random number (r). Note that the service
time may be fixed, calculated by an expression or random with a particular probability
distribution. Since, a service can change the attributes of a client, a function parameter
called transform is supplied. The input of this function is the value of the arriving en­
tity (x), the output is the value of the processed entity. Note that the result type of this
function and the type of the output channel 0 have to "match". The function parameters
class 1 and class2 are used to report the changing of classes and the servicetimes per
class.

10

3.1.4 Queue

----I' [[[[[[[: 1;m: [[1 [[[110-------,

A queue is used to store the entities waiting to be served. The order in which the entities
leave the queue is defined by the service discipline, for example FIFO (first-in-first-out),
LIFO (last-in-first-out) or SIRO (select-in-random-order). A queue system is always fol­
lowed by a server, assemble or assign system.

sys queu'!'[..
~n i:T, s~g:s~gnal,
out o:T,
val name:str, seed:real,
fun disciEline[n:num,x:T,r:real]:real,

class [x: TJ : class
J ;

The queue system has an input channel i and an output channel 0 both of a polymorphic
type. These are used to model the arrival and departure of clients in a queue. The input
channel receives entities from generator, server and selector systems. There is also an
input channel called sig used by a server, assemble or assign system to send a message
to tell the queue that it is ready to accept new clients. If the queue contains entities
(customers,clients) and there is a token in the input channel sig, then an entity is selected
and sent to the server, assemble or assign system. The name of the queue is specified
by a value parameter called name. The function parameter discipline is used to specify
the service discipline; it may depend upon the arrivalnumber (n), the value of the client
(x) and a random number (r). The function returns a real value for every queued entity,
the queue always selects the entity with the highest value to leave the queue. If there are
multiple entities having the same value, assigned by the function parameter discipline, then
the order in which they are selected is not defined.

11

3.1.5 Assemble

assemble

The assemble system is placed between two queue systems and a server (or assign)
system. It denotes an operation in which two entities (parts) are assembled into a new
entity.

sys assemble (
in il:S, i2:T. sigin:signal,
out o:U, sigoutl:signal, sigout2:signal,
fun transform[x:S,y:T]:U

] ;

One queue is connected to the input channel il and the output channel sigoutl, the
other queue is connected to the input channel i2 and the output channel sigout2. The
remaining channels (0 and sigin) are connected to a server or assign system. It is also
possible to connect these channels to another assemble system to model the assembly of
three or more entities. There is one function parameter transform to calculate the value
of the new entity. Note that the parameter types of this function correspond to the types
of the input channels il and i2. The result type equals the type of the output channel o.

3.1.6 Assign

assign

The assign system is placed between a queue or assemble system and two server systems.
If both servers are able to accept new clients, then the server to process the next client
on, is chosen by probability. If only one of the two servers is free then the free server is
selected.

12

ays assign [
1n i:T, siginl:signal, s;gin2:signal.
out 01:T, 02:T, slgout:slgnal,
val seed:real

j
prool:real, prob2:real,

class [x:T : class
]

One server is connected to the input channel sigin1 and the output channel 01, the other
server is connected to the input channel sigin2 and the output channel 02. The remaining
channels (i and sigout) are connected to a queue or assemble system. It is also possible
to connect two assign systems to each other, this way it is possible to model the random
selection of three or more (free) servers. The value parameter seed is used to set the
random generator, the two other value parameters are used to specify the probability of
selecting the first or the second server. The first server is selected with probability probi
/ (probi + prob2) the second with probability prob2/ (probi + prob2). Remember that
if only one of the servers is free these probabilities do not apply.

3.1. 7 Selector

The selector system has one input channel and two output channels. For every arriving
entity an output channel is chosen by probability or by the value of the entity.

sys selector[
in i:T,
out o1:T, o2:T,
val name:str,seed:real,
fun select[x:T.r:real):num.

class[x:T):class,
] ;

The selector system has one input channel i and two output channels 01 and 02 of the
same polymorphic type. A generator or server system may be connected to i. The
output channels can be connected to queue or term systems. It is also possible to connect
two selector systems to each other to model the selection between three of more systems.
The value parameter seed is used to set the random generator. The function parameter
select is used to select the output channel, if the result is 1 then 01 is selected if the
result is 2 then 02 is selected. Note that select may depend upon the value of the entity
(x) and a random number (r). The final function parameter class is only used to report

13

the routing per class. The function assigns a customer to a specific class.

3.2 The standard entity type: client

There is a predefined type called client, in many cases it is very convenient to use this type
for the channels connecting the building blocks (except for the channels of type signal).
The best way to do this is to copy the contents of the file client. ex into your module,
because this file also contains some default function definitions which can easily be adapted.

A value of type client has three attributes; the name of the generator, an identification
number and the time of creation. Some functions are supplied to access these attributes
(see box on page 15). The default function definitions are straightforward. Three standard
service disciplines are supplied; FIFO, LIFO and SIRO.

3.3 Measurements

While simulating the model the runtime interface of ExSpect reports:

• the current location of the entities (customers) in the queueing system

• the current state of the servers

• the current state of the queues

• the average (and variance in) waiting time for each (customer) class for each queue

• the average (and variance in) service time for each (customer) class for each server

• the average (and variance in) queue lengths

• the average (and variance in) throughput time

There is also a trace option which allows for analysis by a statistical package or an analytical
queueing model. In the next section we will discuss this subject.

Compared to other simulation tools using QNM-ExSpect has a number of advantages.
For standard applications you do not have to program. It is very easy to customise the
components and measurements. It is also possible to build your own components (systems)
using the hierarchy construct (system). You can use your own predefined client type with
a number of personal attributes. Finally the tool allows you to import and export data.

14

-- mo~u.l.~ ""'+"'0.' :1>1.
include 'basic.h';
include 'utils.h';
include 'stat.h';
include 'qn.h';

-- CLIENT
export export type client from (str >< num) >< real;

export clienttype (x : client] : =
pil(pil(x» : str;

export clientid(x : client] :=
pi2(pil(x» : num;

export clienttime[x : client] :=
pi2(x) : real;

--- DEFAULTS
----- USED IN GENERATOR
--------- INTERARRIVALTIME
export interarrivaltime(r real]:=

r : real;

--------- VALUE
export value (name : str, n : num, t real]: =

««name,n»,t» : client;

----- USED IN TERM
--------- REP
export rep(x : client, t : real] :=

t-clienttime(x) : real;

----- USED IN SERVER
--------- SERVICETlKE
export servicetime(x client, r real]:=

r : real;

--------- TRANSFORM
export transform(x client]:=

X : client;

----- USED IN QUEUE
--------- DISCIPLINE
export discipline(n : num, x : client, r : real] :=

-(real(n» : real;

export FIFO(n : num, x client, r real]
- (real (n» : real;

export LIFO(n : num, x
real(n) : real;

client, r real]

export SIRO (n : num, x
r : real;

client, r real]

----- USED IN ASSEMBLE
--------- TRANSFORM
export transform(x : client, y client]:=

x : client;

----- USED IN SELECTOR
--------- SELECT
export select(x : client, r : real] :=

if r < 0.5 then 1 else 2 fi : num;

15

:=

:=

:=

4 If simulation is not efficient enough

One of the logical consequences of the offered flexibility is a reduced performance. This will
be improved by programming the standard module QNM in a conventional programming
language (C, PASCAL). If simulation still takes too long to produce reliable results one
can decide to use an analytical model.
In the development of an analytical model it is often necessary to use a higher level of
abstraction. To be able to solve the model it is also necessary to impose some constraints
on the network structure.
Nearly all analytical models allowing for exact analysis are based on queueing networks
with a product form solution. This means that the steady-state probability distribution
can be found by studying the individual queues of the network. See [8] for an introduction
to these queueing models.
In 1975 Basket, Chandy, Muntz and Palacios ([4]) showed that mixtures of open and closed
networks possess the desired product form solution. Furthermore a number of service
disciplines where shown to allow non-exponentially distributed service times, while still
conserving the product form solution. In this paper we restrict ourselves to this class of
queueing networks, commonly referred to as the class of BCMP networks. This is one
of the largest (known) classes of queueing networks having a product form solution and
therefore allowing for an efficient computation of performance indices.

A BCMP network contains an arbitrary but finite number (M) of service stations. There
is an arbitrary but finite number R of customer classes. Customers travel through the
network and change class according to transition probabilities. Thus a customer of class
r who completes service at service centre i will next require service at centre j in class s
with a probability denoted Pi,r;i," The transition matrix P == [Pi,r;i,'] can be considered as
defining a Markov chain whose states are labeled by the pairs (i,r). The network may be
closed with respect to some classes of customers and open with respect to other classes of
customers. For open or mixed networks the arrival process (Poisson) may depend upon the
state. A service station will be referred to as type 1,2,3 or 4 according to which condition
it satisfies.

Condition 1 The service discipline is first-come-first-served {FCFS or FIFO)j all cus­
tomers have the same service time distribution at this service center, and the service
time distribution is negative exponential. The service rate may depend upon the
number of customers at the center. An exponential FCFS single job class service
center with more than one server is equivalent to a similar service center with one
server and suitably chosen service rates depending on the number of customers at
the server.

Condition 2 There is a single server at a service center, the service discipline is processor
sharing, and each class of customers may have a distinct service time distribution.
The service time distributions have rational Laplace transforms.

16

Condition 3 The number of servers in the service center is greater or equal to the max­
imum number of customers queued at this center in a feasible state, and each class
of customers may have a distinct service time distribution. The service time distri­
butions have rational Laplace transforms.

Condition 4 There is a single server at the service center, the service discipline is preemptive­
resume last-come-first-served (LCFS or LIFO), and each class of customers may have
a distinct service time distribution. The service time distributions have rational
Laplace transforms.

In terms of our building blocks this means that we have to impose some constraints on
the network structure. Only the building blocks generator, term, server, queue and
s.elector are allowed. A service station in a BCMP network corresponds to the combina­
tion of one queue and one server system. This combination has to correspond to a service
station of type 1 or type 3. Because there is a 1 to 1 relation between servers and queues
in a BCMP network we supply 4 service stations corresponding to one of the conditions.
This way it is also possible to use the results for processor sharing and preemptive-resume
last-come-first-served service centers.

If we only use these components, satisfying the conditions just described, and the number
of different customers is small then a direct translation to a BCMP network is possible.
If the number of different entities (customers) is to large to be handled by an analytical
model, a direct translation to a BCMP network is not possible. In this case we define
some coherent customer classes. Every customer (enti ty) is assigned to a specific class (use
the class parameters). A small simulation gives us insight in the transition matrix P by
observing the trace files (trace option). The simulation also provides information about the
distribution of the service time per customer class. If this situation satisfies the conditions,
then we have obtained the parameters of the corresponding BCMP network.

We use the trace option to estimate the the distribution of service times and the matrix
P. The QNM module produces 4 kinds of files: arrival files, service files, selector files and
termination files.
During a simulation all generated entities (customers) are written to the arrival file, in the
following format: CLASS, GENERATION TIME. All completed services are written to the
service file: CLASS, SERVER NAME, NEW CLASS, SERVICE TIME. Every time a selector
system routes an entity to the next queue it reports: CLASS, SELECTOR NAME, PORT

NUMBER. Finally the term system registers every arriving entity as follows: CLASS, TERM

NAME, RESULT OF rep.
It is easy to verify that these files contain sufficient information to obtain the parameters
of a BCMP queueing network.

If a BCMP assumption is violated then we adapt the original network such that it becomes
a BCMP network. Now we simulate this adapted queueing network and compare the results

17

with the results of the original one. If the differences are small we can interpret the results
for the BeMP network as an approximation. This way it is possible to estimate the effect
of non-standard queueing disciplines, general service distributions and blocking.

There are also a number of software tools to approximate performance measures for a larger
class of queueing networks. An example of such a tool is the Queueing Network Analyser
([ll)). Most of these tools allow for non-Poisson arrival processes and non-exponential
distributed service times. The general approach is to approximately characterise the arrival
processes and service time distributions by the first two moments. Note that the trace files
generated by QNM-ExSpect contain enough information to supply the required parameters.
The Queueing Network Analyser (QNA) also has an option to allow the creating and
combining of customers at the stations (following the completion of service).

5 An example

To demonstrate the approach presented in this paper, we present an example which shows
the application of QNM.ExSpect to a jobshop producing rolled products. The jobshop
receives iron bars from a blast-furnace plant. The jobshop transforms these bars into steel
plates using rolling mills to flatten the iron bars and cutting machines. This transformation
process takes a number of steps. The sequence of operations transforming an iron bar into
a finished product is called a job:

type product from str;
type operation from str;
type date from real;
type duration from real;
type job from product ><

(num -> operation >< duration) ><
date ><
date;

product code
operation sequence
start date
due date

Instead of the default type client we use the job type. A job has four attributes; a product
code, a sequence of operations, a start date and a due date. The product code specifies
the type of product that has to be produced. The sequence of operations represents the
(ordered) set of operations that have to be performed before the product is ready. For
every operation we specify the estimated processing time. The start date is the date the
job has been released. The due date represents the date the product has to be available.

18

Figure 2: A jobshop modelled with QNM-ExSpect

A value of type job is shown below:

lO~
product operatIOn seq. I date date

num I operatlon I duratlon I

~ we!<!mg~4~~: t:~ 'weldingB476'
'AA34234' 3 'cuttingC132' 0.2 28.11 5.12

4 'weldingB462' 2.0
5 'cuttin.e:C773' 0.4

The jobshop described in this example has two rolling machines; a "two-high rolling mill"
and a "universal rolling mill". For convenience, we will call these machines machine A and
machine B. Every rolling operation is assigned to precisely one rolling mill, i.e. operations
are machine specific. There is also one universal cutting machine (machine C). A rolling
operation is always followed by a lubrication operation, performed by machine D. This
machine applies a lubricant to make the product smooth.

Figure 2 shows the corresponding queueing network in terms of the QNM building blocks.
Every server system corresponds to a machine. The service time distribution at a server
depends on the type of operation. The selector system takes care of the routing of jobs.
The service discipline of the cutting machine is fist-in-fist-out (FIFO). The two roIling mills
have a queueing discipline to minimise the lateness of jobs. This service discipline is called
EarliestDueDate: jobs with the earliest due date are selected first.

19

EarliestDueDate[n: nwn, x
:= - pi2(x) : real;

job, r real]

Note that jobs are selected in descending order of their due date (pi2(x»). Machine D
uses priority scheduling, jobs are discriminated by the machine they come from. Products
coming from machine A have priority over products coming from machine B, because they
tend to be voluminous. Products coming from the same machine are serviced in FIFO
order.
All results are expressed in terms of so-called classes. Jobs (products) are partitioned into
three classes depending on the first character of the product code:

class[x: job]
:= head(pil(pil(pil(x»» class;

The graphical representation (figure 2) of the jobshop was created with de design interface
of ExSpect. The structure of the model is defined in a totally graphical way. This only takes
a few minutes. To feed the model with parameters (distributions, queueing disciplines, etc.)
also takes a few minutes. Then the model is ready to be simulated. The runtime interface
allows the user to observe a running simulation. The performance measures defined in
section 3.3 are reported in various windows. It is also possible to export all kinds of data
to a statistical package or presentation software.
We have simulated this jobshop under various loads. Figure 3 shows a running simula·
tion. We also compared these simulation results with results obtained using approximated
analytical queueing models. The parameters of such an analytical model are based on
a simulation run. The accuracy of the results obtained using approximated analytical
queueing models depends on the example and the load, therefore it is hard to make gen­
eral statements.
For more information on the modelling of jobshops with ExSpect, we refer to [2].

6 Concluding remarks

The DES formalism together with the ExSpect language and software offer a complete set
of tools for the design, specification and simulation of complex systems.
The modelling effort depends on the availability of generic systems in standard modules.
We aim at a "80/20"-situation, where 80 percent of the components needed are already
available in standard modules and take up only 20 percent of your time. But the 20 percent
you have to create yourself take up 80 percent of your time.
In case of queueing systems we have created a "lOO/lOO"-situation; all components needed
are already available in the QNM module. This module fully exploits the graphical ca­
pabilities of ExSpect. The approach presented combines the advantages of a simulation
package (focused on a limited field of applications) and a simulation language (flexible,

20

'Tj
~.

oq

'" ~
~

;J>
U>

l
'" s
'" 8..
~

gJ. "" §
.....

~
~.

g
~
::r
.0
Z
~ ,
M
)<
r:n

'" " g.

, , , , ,
::--'\ .:-, , '

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

21

..
"

•

•

.... \ . , ~
- ~
, , '

0 1
0 1
0 1

• 1
0 1

• 1

• 1

• 1
0 1

• t

• 1
0 1

• 1
0 1
0 1

week L-­
day L-­
ti_ G4:"15

1il....,.·tol" .• rrfll.lf11.
.,chi neA YIII'" ••• 1'"

MachlneA. aerver. serviceftle
.,chineS. cont-.-t ...
•• chineS. lIat 4

1 lIachlneC. .and
1 ... chlnee.

l"aU"''''1 1 .achlneD.'
1 MachineD. r

1 1:\,,*-,2.
1 queu..3.qu. •• u "'1111119151' on
1 qlJ8Ua.4.~ d .. p""
1 queue. quI." .heard .1f
I selector.2.selector-fll .1.c ... " .11 Gff
1 •• lktor.3 .•• 1'clorff 1 "'~II' on/11ft

...... 11 ...

...... k on

lIraak I.' 1 - .-

•

PW4f Of THE QUEtJE

STATE OF THE QUEUE

AVERAGE Qt£:1£ LENGTH

...... '--­
'-

0.050879579]

'II.ITINGTlPES IN fIo£ QUEUE

CU8t~8r claS$

,
•

tW4E OF THE SERVER

stAn Of THE SERVER

IJCCUIATtIJK RATE

a ... era!JO runbsr of
ar,.1vl', tHn.; ttllW

2828. __
2829. __

N.chlneB-.­
O.23SalS0B7]

0.16183363]
0.14617646]

SER't'ICETItoES IN THE SERVER

QJSt~ar o:;h.9.9

"­,

f'Ullber of
."1'1 1.

2ti28. __
2ti29. __

.... Braga
..,.. ... lc. time

0.61078310]
O.elSIM94S]

varlancu In
lA'ti"V timo

O.11302S39:]
0.21353099J

vlrlancs in
..,.vfcl. tlma

0.38349075J
0..661'39271]

....
-SI -47 -31 -u -ZO -11 -1 , u ~ W ~ U " n H • n ~ ~ ~ ~ ~ ~ W

but not easy to use). An other advantage is the possibility to create your own building
blocks using hierarchy constructs. This is an important improvement compared to other
graphical simulation tools.
If simulation is not feasible because it takes too long to produce reliable results, then it is
possible to generate the network structure and parameters for an analytical model.

References

[IJ W.M.P. van der Aalst. Interval Timed Petri Nets and their analysis. Computing
Science Notes, Eindhoven University of Technology, Holland, 91/09, 1991.

[2J W.M.P. van der Aalst and A.W. Waltmans. Modelling Flexible Manufacturing Sys­
tems with EXSPECT. In B. Schmidt, editor, Proceedings of the 1990 European Sim­
ulation Multiconference, pages 330-338, Nuremberg, Germany, June 1990. Simulation
Councils.

[3] W.M.P. van der Aalst and A.W. Waltmans. Modelling logistic systems with
EXSPECT. In H.G. Sol and K.M. van Hee, editors, Dynamic Modelling of Infor­
mation Systems, pages 269-288. Elsevier Science Publishers, North-Holland, 1991.

[4] F. Basket, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, Closed and Mixed
Networks of Queues with Different Classes of Customers. Journal of the Association
of Computing Machinery, 22(2):248-260, April 1975.

[5] K.M. van Hee, L.J. Somers, and M. Voorhoeve. Executable specifications for dis­
tributed information systems. In E.D. Falkenberg and P. Lindgreen, editors, Pro­
ceedings of the IFIP TC 8 / we 8.1 Working Conference on Information System
Concepts: An In-depth Analysis, pages 139-156, Namur, Belgium, 1989. Elsevier Sci­
ence Publishers, Amsterdam.

[6] K.M. van Hee and P.A.C. Verkoulen. Integration of a Data Model and Petri Nets. In
Proceedings of the 12th International Conference on Applications and Theory of Petri
Nets, pages 410-431, Aarhus, Denmark, June 1991.

[7J K. Jensen. Coloured Petri Nets: A High Level Language for System Design and
Analysis. In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 342-416. Springer-Verlag, New York, 1990.

[8] M. Ajmone Marsan, G. Bablo, and G. Conte. Performance Models of Multiprocessor
Systems. The MIT Press, 1986.

[9J T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541-580, April 1989.

22

[10] S. Raczynski. Graphical description and a program generator for queueing models.
Simulation, 55(3):147-152, Sept 1990.

[11] W. Whitt. The Queueing Network Analyser. The BELL Systems Technical Journal,
62(9), Nov. 1983.

23

In this series appeared:

89/1 E.Zs.Lepoeter-Moinar

89/2 R.H. Mak
P.Souik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.souik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.c.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89{17 MJ. van Diepen
K.M. van Hee

Reconsouction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic speCification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Baninger-
C. Courcoubetis-D. Gabbay
R.Gerth-B.1onsson-A.Pnueli
M.Reed-J .Sifakis-J. Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 1.A. Brzozowski
1. C. Ebergen

90/6 A.U .M. Marcelis

90(7 A.J.I.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems. p. 17.

Dynamic process creation in high-level Petri nets.
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - • p. 38.

Decomposition of delay-insensitive circuits. p. 25.

On the delay-sensitivity of gate networlcs. p. 23.

Typed inference systems: a reference document. p. 17.

A logic for one-pass. one-attributed grammars. p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model.
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra. p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation. p. 84.

A proof theory for a sequential version of POOL. p. 110.

Proving tennination of Parallel Programs. p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems. p. 17.

A fully abstract model for concurrent logic languages. p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences. p.
29.

90/18 J. Coenen
E. v .d.Sluis
E.v.d.Velden

90{19 M.M. de Brouwer
P.A.C. VeIt.oulen

9O{20 M.Rem

90{21 K.M. van Hee
P.A. C. VeIt.oulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91{07 E.Poll

91/08 H. Schepers

91{09 W.M.P.v.d.Aalst

91{10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls. p. IS.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
speCification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
Itif .. "tben ... ", p. 26.

Parallel Programs for the ReCOgnition of P-invariant
Segments. p. 16.

Performance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypermedia Package. Why and how it was
built. p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 AJ.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
LJ. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 l.C.M. Baeten
F.W. Yaandrager

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query Solving. p. 35.

Some categorical properties for a model for second order
lambda calculus with sUbtyping. p. 21.

Knowledge Base Systems. a Formal Model. p. 21.

Assertional Data Reification Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Fonnal semantics for BRM with examples. p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52.

The GOOD based hypertext reference model. p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation. p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p.31.

An Algebra for Process Creation. p. 29.

91{31 H. ten Eikelder

91{32 P. Struik

91{33 W. v.d. Aalst

91/34 J. Coenen

91{35 F.S. de Boer
lW. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Rooman

92/03 J.C.M. Baeten
J.A. Bergstra

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

	Abstract
	1. Introduction
	2. ExSpect
	3. The Queueing Network Module
	3.1 Building blocks
	3.1.1 Generator
	3.2.1 Terminal block
	3.1.3 Server
	3.1.4 Queue
	3.1.5 Assemble
	3.1.6 Assign
	3.1.7 Selector
	3.2 The standard entity type: client
	3.3 Measurement
	4. If simulation is not efficient enough
	5. An example
	6. Concluding remarks
	References

