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ON MAXIMUM NORM CONVERGENCE OF
MULTIGRID METHODS FOR

TWO-POINT BOUNDARY VALUE PROBLEMS*

ARNOLD REUSKENt

Abstract. Multigrid methods applied to standard linear finite element discretizations of linear
elliptic two-point boundary value problems are considered. In the multigrid method damped Jacobi
or damped Gauss-Seidel is used as a smoother. It is shown that the contraction number with respect
to the maximum norm has an upper bound which is smaller than one and independent of the mesh
size.

Key words, multigrid, convergence, maximum norm, two-point boundary value problems

AMS(MOS) subject classification. 65N20

1. Introduction. If we consider elliptic boundary value problems in RN (N
1, 2, 3) then multigrid methods can be used to solve the large sparse linear systems
that arise after discretization. If N 1 then often the matrix involved is tridiagonal,
and thus many efficient solvers exist. If N >_ 2 then, in general, there are only a few
efficient solvers and often multigrid is one of them.

There is extensive literature about the convergence analysis of multigrid methods.
We refer to Hackbusch [3], McCormick [4], and the references given therein. The
main feature of multigrid is that the contraction number has an upper bound which
is smaller than one and independent of the mesh size. In theoretical analyses this has
been shown for a broad class of problems and for several variants of multigrid. In
these analyses the contraction number is measured with respect to the energy norm
(for symmetric problems) or the Euclidean norm (or sometimes some other exotic

norm). However, there are no results with respect to the maximum norm. In this
paper we present some first results about multigrid convergence in the maximum
norm. We consider multigrid applied to two-point boundary value problems and we
prove the usual mesh-independent convergence of multigrid, but now with respect
to the maximum norm. An important part of the analysis has a straightforward
generalization to dimension N 2 (cf. Remark 7.2). The analysis for the case N 2
will be presented in a forthcoming paper.

The remainder of this paper is organized as follows: in 2 we introduce a class
of two-point boundary value problems and we give some regularity results. In 3 we
derive some properties of the usual linear finite element discretization. Our conver-
gence analysis of the multigrid method is based on the approximation property and
smoothing property as introduced by Hackbusch (cf. [3]). In 4 we prove the approxi-
mation property with respect to the maximum norm; our analysis is similar to the one
used in Hackbusch [3]. In 5 we prove the smoothing property in the maximum norm;
here a new approach is used. Based on the approximation property and smoothing
property we prove convergence of the two-grid method and of the multigrid W-cycle
in 6 and 7, respectively.
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lem
2. Continuous problem. Consider the linear two-point boundary value prob-

-(a(x)’)’ + b(x)’ + c(x) f(x) x e i (0, 1), (0) (1) O,

or, in weak form, the problem of finding e H(I) such that for all e H(I)

(2.2) a(,) f f(x)(x)dx
I

holds, with

a(, ) := f a(x)’(x)’(x)dx
I

+ /b(x)(x)(x)dx + f c(x)(x)(x)dx.
I I

We take f E L2(I) and make the following assumptions about the coefficients a, b, c:

(2.4.a) a, b e W1’(I), c e L (I),

(2.4.b) a(x) _> a0 > 0 for all x E I,

(2.4.c) c(x) >_ co >_ O, Ib(x)l <_ 5 axfld- for allxi, withS<2.

Remark 2.1. Due to the assumptions in (2.4) the bilinear form in (2.3) is H-
elliptic. We note that for the conditions in (2.4.c) there are alternatives; for exam-
ple, H-ellipticity is still guaranteed if the condition Ib(x)l <_ is replaced by
IID’IIL <_ 2c0. Moreover, the conditions in (2.4.c) are not essential; if (2.4.c) is deleted
our analysis is applicable with some technical modifications and the results still hold
provided the discretizations we use are "fine enough."

The L2-inner product is denoted by (., .). The following notation for Sobolev
spaces and corresponding norms is used.

WI’P(I) { e LP(I) e LP(I)}, W2’p(I) { e WI’P(I) e WI’P(I)},

IIIIWm’p E II(r)[[LP’ H(I) closure of C(I) in wl’2(I).
O_r_m

It is well known that for every y L2(I) the corresponding weak solution e H(I)
is also an element of W2’2(I) and satisfies

Note that for every E C(I) we have

(2.6) (a", ) ((b a’)’ + c f,
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The (continuous)imbeddings W2,2(I) -, wl,2(I) L(I) imply that for e
W2’2(I) we have 3, ’ e L(I). From (2.6) we then see that if f e L(I) then
a3" E n (I), and thus 3 E W2’0 (I) and

Combining the inequality in (2.7) with
IIllw, < c IIllL < C IIllL (of. (2,5)) yields that

(.8) if f e L0(I), then [[[[w:,oo < C []f[[Loo, with C C(a, b, c).

This regularity result will be used in the proof of the approximation property in 4.
3. Discretization and two-grid method. Let Ok be the nk-dimensional space

of functions with (0) (1) 0 that are piecewise linear on a mesh with nodes
xk,i for which 0 Xk,o < xk,1 < < Xk,, < Xk,nt:+l 1. Ok is constructed from
Ok-1 by using mesh refinement, so we get a sequence of nested spaces

(3.1) Oo C O C C Ok C C H(I).

Let hk,i "= xk,i- Xk,i- (i 1,..., nk + 1) and hk maxi h,i. We assume quasi-
uniformity of the meshes, i.e.,

(3.2) m.ax hk,ihk-,} <-- 70 with 70 independent of k.

Furthermore, the mesh refinement should be such that the following holds:

(3.3) hkhkl -< 71 with 71independent of k.

The standard basis on Ok is given by the hat functions k) which satisfy k)(Xk,j)
5ij. This basis induces a bijection

nk,

(3.4) Pk Uk ’’ Ok, Pk(u, u2,’", u,) E uik)"
i--1

On Uk we use a scaled Euclidean inner product

nk

(3.5) <u,> y: u,,.
i--1

The maximum norm on Uk is denoted by II I1. Below, adjoints are always defined
with respect to the L2-inner product on Ok and the scaled Euclidean inner product
on Uk.

The norms [[. [[o (on (Uk)k>O) and [1" [[Loo (on (Ok)k>O)induce associated
operator norms which are denoted by [[.

The sequences (Pk)k>o, (P[)k>o, (P)k>o, ((P)-)k>o are uniformly bounded
with respect to [[-

LEMMA 3.1. The following holds:

(1) IlPull Ilullo for all u e Uk,
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(3")’o) -1 119911L < IIPqo]]c <_ I]qllL for all qo e qk (70 as in (3.2)).

Proof. The result in (1) holds because Pku is piecewise linear and (PkU)(Xk,,)
equals the ith component of u.

Due to (1) the statement in (2) is equivalent with

(2’) (3o)- Ilull _< IIPPkull <_ Ilull for 11 u e Uk.

The matrix PPk is the well-known mass matrix

So PPk is symmetric tridiagonal with elements

(PPk)ii 1/2h-l(hk,i + h/,i+l) (PPk)i,i-i h-lhk,i =: ek,i.

Because Idk,l <_ and lek,l < we get IIPPkll --< 1 and thus the second inequality
in (2’) holds.

Let D "= diag(PP), R := PP- Dk. Then lID-lll < maxi dk--, <
0. Aso IID;RII ma,(d;,(,, + ,,+))(with e, "= e,=+ "= 0), and
thus IID-1Rk I[ < 7.1 So II(P?cPk)-XII _< IID-II(1- IID-XRIIo)-x <_ 370; this
proves the first inequality in (2).

Galerkin discretization results in a stiffness matrix Lk Vk --+ Uk defined by

(3.6) (Lku, V)k a(Pku, Pkv) for all u, v E U.

We also have

(3.7) a(PkL-lg, )) ((p;)-lg, 3) for all g e Vk, E k.

In 5 we prove the smoothing property for matrices which are weakly diagonally
dominant (i.e., -j#i IAijl < lAiil for all i). It is well known that often the stiffness
matrices Lk are weakly diagonally dominant. For completeness we give a few criteria.

LEMMA 3.2. Take k fixed and write Lk A + B + C with

A (a,) B (b,) C (c,) ( )).

L is weakly diagonally dominant if one of the following conditions is satisfied:
(1) all off-diagonal elements of Lk are nonpositive.

(2) A + B is weakly diagonally dominant with (A + B) 0 for all i, and C is
weakly diagonally dominant.

(3) hk al(llb]lL + hk I]C]lL) 1 (co as in (2.4.b)).
al(4) hk 5 IblIL 1 and ce Ok.

Proof. First we consider (1). Let Im= [Xk,m-l,Xk,m] and let n) be the corre-
sponding element stiffness matrix, i.e.,

(n)), k)).

Note that due to the ellipticity of a(., .) all diagonal elements of L) are nonnegative.

The pth row of Lm) contains at most one nonzero off-diagonal element; this element
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is of the form allm(j,p) with j E {p- 1,p+ 1}, and

V )I V,)I

-ali. (1 p, p) ali. (p, p) ali. (1, p) <_ (L(k’))pp.
So all element stiffness matrices are weakly diagonally dominant and have nonnegative
diagonal elements. This implies that the (global) stiffness matrix is weakly diagonally
dominant.

It is easy to show that Lk is weakly diagonally dominant if (2) holds. With respect
to (3) and (4), we note that some elementary analysis yields that if the inequality in
(3) holds then condition (1) is fulfilled, and if the conditions in (4) are fulfilled then
(2) holds. D

Remark 3.3. Note that if c is small (compared with b) or if c is smooth, then
the conditions in (3) and (4) in essence yield the usual bound for the Peclet num-
ber hk 1/2 a IlbllLo. It is well known that, in general, the standard finite element
Galerkin discretization yields a poor approximation if the Peclet number is large.
Other discretization techniques should be used in that situation.

For solving systems of the form LkUk gk we use a standard multigrid method.
The iteration matrix of the smoothing method is denoted by Sk. The prolongation
P Pk Uk-1 -- Uk that we use is the natural one:

(3.8) p= P[1Pk_l.
For the restriction r rk Vk ---+ Vk-1 we take

(3.9) r p*.

The iteration matrix of the two-grid method with presmoothing iterations is given
by

Tk() (I pLk_ rLk)S (L- pL-_r)LkS.

For convergence of the two-grid method we will prove the approximation property

(3.11) IIL- pL-_lrlloo
_
C h2k,

and the smoothing property

(3.12) IILkSllo
_
(v)h-2 (with

These proofs will be given in 4 and 5, respectively.

4. Approximation property. The proof of the approximation property is based
on optimal L error estimates which can be found, e.g., in Wheeler [10], Douglas-
Dupont-Wahlbin [2], and on the uniform boundedness of the sequences (Pk)k>o,
((P;)-)k>O.

LEMMA 4.1. The following holds with a constant C independent of k:

(4.1)

Proof. Take g Uk. In the proof different constants c, all independent of k and
g, are used.
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Let e H(I) be such that

a(,)= ((p)-lg, ) for all e H(I).

From (2.8) it follows that

(4.2) IIlIw,o _< c I](P:)-Ig[]L

Let k E (I)k, k-1 E (I)k- be such that

a(k,) ((P)-g, ) for all e (I)k,

a(k-, )-- ((P)-g,) for all e (I)k-1.

In [10], [2] it is shown that the following holds:

(4.3) I1, IIL <-- ch2m IIllw, for m e {k,k 1}.

Combining (4.2}, (4.3), and (3.3) yields

(4.4) IIk --k-llLO <_ c(h_ + h2) II(P)-lglIL <_ ch II(P)-glIL

From (3.7) it follows that PL-g, 99- Pk-Lk-l_lrg. Using Lemma 3.1 and
(4.4) we finally get

-1pLk_lr)gllc IlYkL;g Pk_lL-l_lrg]lLo

5. Smoothing property. The usual technique for proving the smoothing prop-
erty requires symmetry (or a nearly symmetric situation) and yields results in the
Euclidean norm or in the energy norm. We refer to Wittum [11], where smoothing
and the construction of smoothers are discussed in a general framework. A new ap-
proach to the smoothing property that does not use symmetry has been introduced in
Reusken [7]. A disadvantage of this new approach is that we need a damping factor
less than or equal to 0.5 (whereas the conditions for the damping factor in [11] are
less restrictive).

The results of this section can be found in a more general setting in [7]. For
completeness we also give proofs here.

Below we prove that the smoothing property, in the maximum norm, holds for
damped Jacobi and for damped Gauss-Seidel.

Let L Mk Nk be the splitting corresponding to the Jacobi method or the
Gauss-Seidel method (both without damping). We consider a relaxation method with
iteration matrix

1
(5.1) Sk I- - Mlnk(damping with factor 1/2). In our analysis we use that the splitting is such that

tlM[lNklloo <_ 1 holds. Therefore we introduce the following.
Assumption 5.1. For every k _> 0 the matrix Lk is weakly diagonally dominant.
Note that in Lemma 3.2 some criteria with respect to diagonal dominance are

given.
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LEMMA 5.2. Let A be an n n-matrix with IIAIIoo <_ 1. Then the following holds:

I1(I- A)(I + A)’II < 2 ( < 2+1 /2 (v > 1).

Proof.
(I- A)(I + A) (I- A) E k

k=O

I A+ + /2 /2E((k)-(k_l)) Ak"
k=l

So

Using

v

I](1- A)(I + A)]loo _<2+
k--1

(v)>( v ) 1(v+1), /2 Vand (k)=(/2_k)
we get

/2 /2E l(k )-(k-i )l
k=l

[(v+1)/2]

E (()-(k_l)) +
[(+)/21+

((kV-1)-( ))
[u/e] [,/21

E (()-(kV-i )) +E ((
m=l

)-(m-1))

2 E (()-(kV-1 ))
k--1

Combined with (5.3) this yields the first inequality in (5.2).
yields that

Elementary analysis

[1/2 -] -< for all v > 1.

For details we refer to [7]. [3

LEMMA 5.3. Suppose that Assumption 5.1 holds. Then for the damped Jacobi and
for the damped Gauss-Seidel relaxation (cf. (5.1)) we have the following smoothing
property:

1
(C independent of k,v).
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Proof. Let A :-- M[INk I- M[ILk. Then, due to Assumption 5.1, we have

IIAII _< 1. Using Lemma 5.2 we get

( 1
IILSII Lk I- -M[iLk

IIMk(I- A) (I +

<_ iiMkll 2v+l 2

2 I]Mkl]

1c ; (c c(, , )).

6. Convergence of the two-grid method. Lemm 4.1 and 5.3 together im-
mediately yield the following result.

THEOREM 6.1. Suppose that Assumption 5.1 holds. Let Tk() be the iteration
matrix of a two-grid method with presmoothing iterations of a damped Jacobi or a
dpd V-Sdon (f. (.0), (.1)). Thn hfoo hod:

C
(.) T() h Cdpd of k d ,.

Remark 6.2. Clearly Theorem 6.1 shows that for the twgrid method with
large enough (but fixed) the contraction number with respect to the maximum norm
h an upperbound which is smaller than one and independent of the mesh size.

7. Convergence of the multigrid method. The analysis of the multigrid W-
cycle follows the approach given in Hackbusch [3].

The error iteration matrix Mk() of the multigrid W-cycle with presmoothing
iterations on each level is recursively defined follows:

M() T1

Mk() Tk() + pMk-l()2L-_lrLkS, k>2.

THEOREM 7.1. Suppose that Assumption 5.1 holds. Let Tk() be as in Theo-
rem 6.1, and assume that, is large enough such that := IITk()ll < 1/2 (x/- 1)
holds. Let # be the smallest root of the polynomial p(x) (1 + )x2 x +. Now
the following holds:

IIM(’)l]oo _< #, < 1,

and also

# _< + 42(1 + ).

Proof. Let m():--IIM(’)II. Note that, due to Assumption 5.1, we have
1i+1IISklloo -III- 1/2 M[lLk[[oo II M[lNk[[oo _< 1. Note that ml() v, and
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for k> 2

< + IIM -x( )ll IlpL-11rLkSlloo (use IIP ll o

<_ u q- mk-1 (u)e(1 + ).

The iteration xl "= (, Xi+l := u -- (1 + )x/2 (i > 1) has a fixed point

( )#’=5(1+()-1 1-X/1-4(l+() <l,andforall/ xi<_#,holds. So the

inequalities in (7.1) hold. The inequality in (7.2) follows from

X2 for all x [0 1].1-x/1- x _< 1/2x+
Remark 7.2. With respect to a generalization of our analysis to the two-dimen-

sional situation we note the following: The arguments used in the proof of multigrid
convergence (Theorem 7.1) can be used for the two-dimensional case also, provided we
have an upper bound for the two-grid contraction number as in (6.1). Such an upper
bound is a direct consequence of the approximation property and the smoothing
property. The analysis of the smoothing property in 5 can also be used in two
dimensions. So in essence it is only the approximation property that needs to be
reconsidered. It is known from the literature (cf., e.g., [1], [5], [6], [8], [9]) that for
linear finite element Galerkin approximations in two dimensions the optimal L error
estimate is of the order h [log hk[ (instead of h). So in the approximation property
we do not expect an upper bound Ch as in (4.1) but an upper bound Ch Ilog hk].

Multigrid convergence in the maximum norm for two-dimensional elliptic bound-
ary value problems will be analyzed in detail in a forthcoming paper.
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