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Abstract   

The hydraulic conductivity of unsaturated anisotropic soils has recently been described with a 

tensorial connectivity-tortuosity (TCT) concept.  We present a mathematical formalization of the 

connectivity-tortuosity tensor, assuming that its principal axis coincide with those of the 

hydraulic conductivity tensor at saturation.  The hydraulic conductivity of such unsaturated 

anisotropic soils is given as the product of a scalar variable, the symmetric connectivity tortuosity 

tensor, and the hydraulic conductivity at saturation.  The influence of the degree of saturation on 

hydraulic conductivity is illustrated for four well defined synthetic soils through radial plots of 

the hydraulic conductivity scalar and of the reciprocal hydraulic resistivity scalar, both as 

function of the saturation.  The resulting curves are ellipses.  The eccentricity of these ellipses is a 

measure of the degree of anisotropy of the soil at the particular saturations. 

Introduction 

Anisotropic soils occur widely in nature and provide an interesting challenge to describe 

mathematically.  Significant work has been done to describe saturated anisotropic soils (e.g., 

Scheidegger, 1954, 1956; Maasland, 1957; Raats, 1965; Bear, 1972; Dullien, 1979), but 

unsaturated anisotropic soils largely remain an enigma.  Mualem (1984) proposed a conceptual 

model to quantify saturation-dependent soil anisotropy.  The soil was assumed to consist of 
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numerous thin parallel layers having different hydraulic properties.  Variation of the hydraulic 

conductivity at saturation among the layers was described by a probability density distribution.  

The model indicated that the degree of anisotropy of unsaturated soil may vary considerably from 

its value at saturation.  However, the model may only be applicable to stratified soils.  Theoretical 

analysis based on stochastic methods (Yeh et al., 1985) suggests that in a steady flow field the 

anisotropy of a stratified heterogeneous soil should increase as the mean pressure head and water 

content of the soil decrease.  Using the stochastic approach, Polmann et al. (1991) presented a 

generalized model to account for tension-dependent anisotropy.  They adopted a Gardner (1958) 

exponential relationship between the hydraulic conductivity and the pressure head, and further 

assumed that the horizontal correlation scale was much larger than the vertical correlation scale.  

However, application of the Polmann et al. (1991) model requires the knowledge of the variance 

of ln Ks , with Ks  being the hydraulic conductivity at saturation, the correlation between 

hydraulic parameters, and the vertical correlation length.  Typically, such information is not 

readily available. 

Recently, Zhang et al. (2003) proposed a tensorial connectivity-tortuosity (TCT) concept 

to describe the hydraulic conductivity of anisotropic unsaturated soil.  The TCT concept assumes 

that, in the hydraulic conductivity of unsaturated anisotropic soil, the anisotropy is not merely 

expressed by a proportionality to the hydraulic conductivity at saturation, but also by three 

connectivity-tortuosity coefficients , corresponding to the three principal 

directions.  This TCT concept was tested using synthetic soils with four levels of heterogeneity 

and four levels of anisotropy.  The results show that, while the soil water retention curves are 

dependent on soil heterogeneity but independent of direction, the connectivity-tortuosity 

coefficients are functions of both soil heterogeneity and direction.  The TCT model can 

accurately describe the hydraulic functions of anisotropic soils and can be easily introduced into 

commonly used relative permeability functions for use in numerical solutions of the flow 

equation.  Zhang et al. (2003) regarded the connectivity-tortuosity coefficient as a tensor, which 

suggest that  be the components of a symmetric connectivity-tortuosity tensor in 

the three principal directions.  However, there is no mathematical basis for such a tensorial 

character, this despite the fact that the triple (  reflects directional dependence.  In this 

paper we show that, nevertheless, a relative connectivity-tortuosity tensor can be defined, namely 

Li = L1, L2 , L3(

L1,L2 ,L

)

)

)

Li = L1, L2 , L3(

3
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the tensor   , with principal components T .  We present a 

mathematical formalization of this connectivity-tortuosity tensor, assuming that its principal axis 

coincide with those of the hydraulic conductivity tensor at saturation.  The hydraulic conductivity 

tensor of such unsaturated anisotropic soils is shown to be the product of a scalar saturation 

dependent variable, the connectivity-tortuosity tensor T , and a hydraulic conductivity 

tensor at saturation. 

T Se ,Li( ) )i = Se
Li = Se

L1 ,Se
L2 ,Se

L3(

 Se ,Li( )

K

KsSe
LA S

L

θ −θr( )

θr

Expression for the hydraulic conductivity tensor for unsaturated soils. 

In the context of the Richards equation, the relationships among the volumetric water content θ , 

the pressure head h , and the hydraulic conductivity  define the hydraulic properties of a soil.  

Different classes of soils have been identified using different functions approximating the 

physical properties.  Two groups of parametric expressions describing the hydraulic properties 

for isotropic soils are: 

• A group yielding flow equations that can be solved analytically, in most cases as a result of 

linearization following one or more transformations; 

• A group that is favored in numerical studies and to a large extent shares flexibility with a 

rather sound basis in Poiseuillean flow in networks of capillaries. 

With regard to the second group, following Hoffman-Riem et al (1999; see also Raats, 1993), 

Zhang et al (2003) observe that the hydraulic conductivity characteristic is commonly defined by 

an expression of the form  

 

K = e ,β,γ( ),         (1) 

 

where Ks  is the hydraulic conductivity at saturation,  is a lumped parameter accounting for 

connectivity and tortuosity, Se  is the effective saturation  defined by 

 

Se = θs − θr( ),        (2) 

 

where θs  is the volumetric water content at saturation and  is the residual volumetric water 

content, and A Se, β,γ( ) is defined by 
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A Se, β,γ( )=
h−β dSe( )

0

Se

∫

h−βdSe( )
0

1

∫

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

γ

,        (3) 

 

where β  and γ  are empirical constants.  

The water retention curve h S  is a relationship between the scalar variables pressure 

head h  and effective saturation 

e( )
Se , and Zhang et al (2003) assumed that for anisotropic soils it is 

still described by a scalar relationship, such as the Brooks and Corey (1966) or the van 

Genuchten  (1980) relationship.  This assumption automatically implies particular expressions for 

the scalar variable A Se, β,γ( ) defined by (3).  Zhang et al (2003) assumed that the volumetric 

flux vector    of the water in an unsaturated soil is given by: f

 

        (4)   f = −K Se( )∇ h − z( )= −K Se( )∇ H,

 

where z  is the vertical coordinate taken positive downward, H = h − z

 f

 is the total head, and 

 is the hydraulic conductivity tensor.  The volumetric flux  and the driving force ∇  K Se( ) H  

being vectors, it follows from the so-called quotient law (McConnell, 1957) that    is a 

second order tensor. 

K Se( )

For the hydraulic conductivity characteristic K  of an anisotropic unsaturated soil, 

Zhang et al (2003) assumed that there exist at each location three principal directions i , 

for each of which apply expressions analogous to equation (1): 

 Se( )
=1,2,3

 

 Ki Se( )= KisSe
Li A Se, β,γ( ),        (5) 

 

where, corresponding to the three principal directions i ,  

are the components of the symmetric hydraulic conductivity tensor at saturation 

=1,2,3 Ki Se( )= K1 Se( ),K2 Se( ),K3 Se( )( )
Se , 

 are the components of the symmetric hydraulic conductivity tensor at Ksi = Ks1, Ks2, Ks3( )
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saturation , and  are the connectivity-tortuosity parameters.  This means 

that they assumed    to be a symmetric second order tensor, which in a coordinate system 

coinciding with the three principal directions can be represented as: 

Se = 1(

Se( )=
K1

) )Li = L1, L2 , L3(
)

0 0
K2 Se( ) 0

0 0 K3 Se( )

K Se(

Se( )
0

Se( )=
K1 Se( )

0
0 0

K2 Se( ) 0
0 0 K3 Se( )

=1,2,3

Ks

e

A Se, β,γ( )

2 ,Se
L3( )Li = Se

L1 ,Se
L

Ks1, Ks2

Se( )= A S

, Ks3( )

e ,β,γ( ) T Se, Li( )Ks

 

 

  

K = A Se ,β,γ( )
Ks1Se

L1 0 0
0 Ks2Se

L2 0
0 0 Ks3Se

L3

.  (6) 

 

Equation (6) can also be written as: 

 

  

K = A Se ,β,γ( )
Ks1 0 0
0 Ks2 0
0 0 Ks3

 
Se

L1 0 0
0 Se

L2 0
0 0 Se

L3

. (7) 

 

Equation (7) suggests that we can regard Ti Se( )= Se
Li = Se

L1 , Se
L2 ,Se

L3( ) as the principal 

components of the relative connectivity-tortuosity tensor  corresponding to the three 

principal directions i .  Note that it is tacitly assumed that the principal axis of the 

hydraulic conductivity tensor   

 T Se( )

 at saturation and the relative connectivity-tortuosity tensor 

 coincide.  With this interpretation, the hydraulic conductivity K  at the effective 

saturation 
  T Se( ) ) Se(

S  is given as the product of three factors: 

• the scalar variable ; 

• the symmetric relative connectivity-tortuosity tensor T , with principal components 

; 

 Se ,Li( )
Ti = Se

• the symmetric hydraulic conductivity tensor  Ks  at saturation, with principal components 

: Ksi =

 

    K .       (8) 
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Note that at saturation the relative connectivity-tortuosity tensor  reduces to the unit 

second order tensor   , i.e.   . 
 T Se ,Li( )

)

)

I T Se = 1, Li( )= I

With the tensorial nature of the saturation-state dependent hydraulic conductivity tensor 

established, various other concepts are easily defined, generalizing concepts long known in the 

context of saturated soils. (see e.g. Scheidegger, 1954, 1956; Maasland, 1957; Raats, 1965; Bear, 

1972; Dullien, 1979).  In the following we mainly generalize the presentation by Raats (1965, 

subsection 4.1.6) for saturated anisotropic soils to unsaturated anisotropic soils. 

The hydraulic conductivity vector and hydraulic conductivity scalar 

At some point, let    be a unit vector in some arbitrary direction.  The hydraulic conductivity 

vector    associated with the    direction is defined by: 

n

k n Se( n

 

 .         (9)   k n Se( )= K Se( )n
 

The physical significance of    becomes evident on dividing (4) by the magnitude k n Se( ∇ H  of 

the driving force ∇ H : 

  

 

 
  

f
∇ H

= −K Se( ) ∇ H
∇ H

= K Se( )n  .       (10) 

 

Comparison of (9) and (10) shows that  

 

 
  
k n Se( )=

f
∇ H

,         (11) 

 

i.e., the hydraulic conductivity vector k  associated with the n  direction is the flux vector of 

the water resulting from unit driving force 
 n Se( )  

∇ H =1

e)
 in the n  direction.  Only for the principal 

directions, the direction of   , and hence  k , will coincide with the direction of   . 

 

f  n S( n

The hydraulic conductivity scalar k  associated with the n  direction is defined by:  n Se( )  
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 ,       (12)   kn Se( )= n ⋅ kn Se( )= n ⋅K Se( )n
 

or, in a coordinate system coinciding with the principal directions of K  in which the direction 

cosines of the    direction are denoted by 
 Se( )

n l, m, n : 

 

 .      (13)   kn Se( )= l2K1 Se( )+ m2K2 Se( )+ n2K3 Se( )

)
 

The conductivity scalar    associated with the n  direction is the component of the 

conductivity vector    in the    direction.  Or in view of (11), the conductivity scalar k  

associated with the    direction is the component of the flux in the n  direction resulting from unit 

driving force in the    direction.  In the context of the saturated case, Bear (1972) refers to k  

as the directional hydraulic conductivity in the direction of the flow. 

kn Se(
)

 

k n Se(
n

n

n  n Se( )

 n Se( )
 

According to (13), a radial plot of 1 kn Se( ) gives a family of ellipsoids with Se  as a 

parameter.  These ellipsoids have semi-axes 1 Ki Se( ) = 1 K1 Se( ),1 K2 Se( ),1 Se( )K3( ).  
For stratified soils, such as the synthetic anisotropic soils of Zhang et al. (2003), two of the 

principal components of the hydraulic conductivity tensor are equal to each other.  It is then 

sufficient to consider the family of ellipses with semi-axes 

1 Ki Se( ) = 1 Kpar Se( ),1 Knor Se( )( ), where  and  are the principal 

components of the hydraulic conductivity tensor corresponding to the directions parallel and 

normal to the strata.  Figures 1a-d show four families of such ellipses for the four sets of 

parameters considered by Zhang et al. (2003) in their Figures 4a-d.  Note that parameters a , , 

Kpar Se( ) )Knor Se(

n

Ksp , and Ksn  are similar among the four sets, while  decreases and  increases from Figs. 1a 

through 1d.  The individual ellipses are labeled by 

Lp Ln

Se .  Larger ellipses are for smaller saturation.  

The distance of a point on the ellipses to the center represents the magnitude of )Se(k/ n1  for 

the  direction coinciding with the flow direction.  The minor axes of the ellipses in Fig. 1 

correspond to the principal direction with larger hydraulic conductivity.   
  n

 7



 

QuickTime™ en een Photo - JPEG
decompressor zijn vereist om
deze afbeelding te bekijken.

 

Figure 1. Radial plots of )(/ eSkn1 as a family of ellipses at different saturations for the four 

soils of Zhang et al. (2003) in their Figures 4a-d.  The numbers on the ellipses are saturations. 

 

 

The eccentricity of the ellipses measures the degree of anisotropy of the soil at the 

particular saturations.  A more eccentric ellipse at a certain saturation indicates stronger 

anisotropy at that saturation.  For a nearly isotropic soil, as represented in Fig 1a, the ellipses are 

near concentric circles.  Since the hydraulic conductivities corresponding to the principal 
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directions are a function of saturation, the eccentricity of the ellipses is, in principle, also a 

function of time.  Therefore, even when the direction of the total head  gradient remains 

unchanged, the flow direction may vary with saturation and consequently with time.  

The hydraulic resistivity tensor and the inverse relative connectivity-tortuosity tensor. 

The hydraulic resistivity tensor    is defined as the inverse of K  K−1 Se( )

)

 Se( )
 

 ,         (14)   K Se( )K−1 Se( )= I

 

where    is the unit second order tensor.  In particular at saturation, the hydraulic resistivity tensor 

 is defined by: 

I

  Ks
−1

 

 .          (15)   KsKs
−1 = I

 

From (14), (8), and (15) it follows that the hydraulic resistivity tensor    can be 

decomposed as: 

K−1 Se(

 

   K
−1 Se( )= A−1 Se ,β,γ( ) T−1 Se ,Li( )Ks

−1,      (16) 

 

where    is the inverse of the relative connectivity-tortuosity tensor defined by: T−1 Se, Li( )

)
)

,

 

  T Se ,Li( )T−1 Se, Li( )= I .        (17) 

 

The physical significance of the hydraulic resistivity tensor K  becomes clear if one 

multiplies equation (4) by    and uses (14) to obtain: 
 

−1 Se(
K−1 Se(

 

  K
−1 Se( )f = −∇ h − z( ) = −∇ H        (18) 

 

expressing the balance of the driving force −∇  and the drag force   . h − z( )= −∇ H −K−1 Se( )f
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In analogy with the hydraulic conductivity vector k  and the hydraulic conductivity 

scalar   , one can define the hydraulic resistivity vector r  and the hydraulic resistivity 

scalar    by: 

 n Se(

 n S(
)

) )

)
)

)

)

kn Se(
rn Se( )

e

 

 ,         (19)   rn Se( )= K−1 Se( )n
 

  rn Se( )= n ⋅ rn Se( )= n ⋅K−1 Se( )n .       (20) 

 

The hydraulic resistivity vector    associated with the n  direction is the driving force 

required to produce unit flux in the    direction.  The hydraulic resistivity scalar    associated 

with the    direction is the component of the resistivity vector r  in the    direction.  In other 

words, the resistivity scalar    associated with the n  direction is the component of the driving 

force in the    direction needed to produce unit flux in the n  direction. 

rn Se(
n

)

 

 n

rn Se(
n Se( n

rn Se(  

n  

Since    is a scalar, the reciprocal hydraulic resistivity scalar k  exists, 

and is, according to (20), given by 

rn Se(  n
* Se( )= rn

−1 Se( )

 

 
  
kn

* Se( )=
1

n ⋅ K−1 Se( )n ,         (21) 

or, in a coordinate system coinciding with the principal directions of K  in which the direction 

cosines of the    direction are denoted by 
 Se( )

n l, m, n : 

 

 
  
kn

* Se( )=
l2

K1 Se( )+
m 2

K2 Se( )+
n2

K3 Se( )
 

 
  

 

 
  

−1

,  or  
 

1
kn

* Se( ) =
l2

K1 Se( ) +
m2

K2 Se( )+
n2

K3 Se( ). (22) 

 

Equation (22) can also be written as 

 

  

l kn
* Se( )( )2

K1 Se( ) +
m kn

* Se( )( )2
K2 Se( ) +

n kn
* Se( )( )2

K3 Se( ) = 1.     (23) 
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The reciprocal resistivity scalar    associated with the n  direction is the magnitude 

of the flux in the    direction produced by a driving force whose component in the    direction is 

of unit magnitude.  In the context of the saturated case, Bear (1972) refers to    as the 

directional hydraulic conductivity in the direction of the gradient. 

kn
* Se( )= rn

−1 Se( )  

n n

kn
* Se( )

)According to (23), a radial plot of  kn
* Se(  gives a family of ellipsoids with Se  as a 

parameter.  These ellipsoids have semi-axes Ki Se( ) = K1 Se( ), K2 Se( ), K3 Se( )( ).  For 

stratified soils, such as the synthetic anisotropic soils of Zhang et al. (2003), two of the principal 

components of the hydraulic conductivity tensor are equal to each other. It is then sufficient to 

consider the family of ellipses with semi-axes Ki Se( ) = Kpar Se( ), Knor Se( )( ), where 

 and  are the principal components of the hydraulic conductivity tensor 

corresponding to the directions parallel and normal to the strata.  Figures 2a-d show four families 

of such ellipses for the four sets of parameters considered by Zhang et al. (2003) in their Figures 

4a-d.  Again, the individual ellipses are labeled by 

Kpar Se( ) )Knor Se(

Se . Smaller ellipses are for smaller saturations. 

The distance of a point on the ellipses to the center represents the magnitude of )S(k e
*
n for the 

 direction coinciding with the hydraulic gradient.  Contrary to Fig. 1, the minor axes of the 

ellipses in Fig. 2 correspond to the principal direction with smaller hydraulic conductivity. 
  n

Again, the eccentricity of the ellipses measures the degree of anisotropy of the soil at the 

particular saturations.  Using the capillary tube network model and computer simulation, Bear et 

al (1987) appear to have been the first to introduce the two directional hydraulic conductivities in 

the context of the unsaturated case.  Corresponding to our Figure 2, in their Figure 6 ellipses are 

shown for a soil for which K1 > K2 for Se < 0.87, K1 = K2  for Se = 0.87 , and K1 < K2 for 

Se > 0.87, where (  is the K1 Se( ),K2 Se( )) Se -dependent pair of principal values of the hydraulic 

conductivity.  However, Bear et al. (1987) did not try to describe the Se -dependence 

mathematically.  
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Figure 2. Radial plots of )(*
eSkn as a family of ellipses at different saturations for the 

four soils of Zhang et al. (2003) in their Figures 4a-d.  The numbers on the ellipses are 

saturations.  
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Discussion 

The hydraulic conductivity scalar    and the reciprocal hydraulic resistivity scalar    can 

be regarded as the directional hydraulic conductivities corresponding to the    direction.  In 

general the two directional hydraulic conductivities are not equal to each other, i.e.  

kn Se( ) )kn
* Se(

n

 

  
kn

* Se( )=
1

n ⋅ K−1 Se( )n ≠ n ⋅K Se( )n = kn Se( ).      (24) 

 

For the saturated case, Scheidegger (1954) originally assumed the equality of the two directional 

hydraulic conductivities   ksn  and   .  Later Maasland noticed and Scheidegger admitted the error 

(Scheidegger, 1956).  In his classic treatment of soil anisotropy and land drainage, Maasland. 

(1957) only discusses the directional hydraulic conductivities k .  Dullien (1959) and Bear 

(1972) discussed both   

ksn
*

 sn
*

ksn  and   , as did Carslaw and Jaeger (1959, section 1.20) for the 

analogous process of thermal conduction.  

ksn
*

In principle, the two directional hydraulic conductivities  and k  can be measured 

as follows (cf. Carslaw and Jeager, 1959): 
 kn Se( ) )

)

 n
* Se(

• The saturation dependent, directional hydraulic conductivity k  associated with the n  

direction can be determined by cutting a plane slice of the soil, so that its normal is in the n  

direction, and measure the hydraulic conductivities as a function of 

 n Se(  

 

Se  by applying a 

sequence of appropriate total head gradients across it. 

• The saturation dependent, directional hydraulic conductivity k  associated with the n  

direction can be determined by cutting in the n  direction a narrow tube of material and 

measure its hydraulic conductivity as a function of 

 n
* Se( )  

 

Se . 

Jump conditions at interfaces between different unsaturated isotropic soils have been 

discussed by Raats (1972, 1973).  The refraction of streamlines and equipotentials at interfaces 

between saturated anisotropic soils is analyzed in detail for the 2-dimensional case in Raats 

(1972) and for the 3-dimensional case in Raats (1973).  The analysis for the 3-dimensional case 

for saturated soils shows that whereas the planes of incidence and refraction of the hydraulic 

gradient ∇ H  always coincide, the planes of incidence and refraction of the flux coincide only in 

some very special cases (Raats, 1973).  It appears that the swirly streamlines found 
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computationally by Hemker (2001), Bakker and Hemker and (2002), Hemker and Bakker (2002), 

and Hemker et al (2004) for flow in layered, anisotropic aquifers are directly related to non-

coincidence of planes of incidence and refraction of the flux.  Although in principle 

generalization to unsaturated anisotropic soils is straightforward, computational and 

observational implementation for 3-dimensional cases with different principal directions at the 

two sides of the interface still presents quite a challenge. 

Conclusions 

We presented a mathematical formalization of the tensorial connectivity-tortuosity (TCT) 

concept of Zhang et al. (2003), assuming that the principal axis of the relative connectivity-

tortuosity tensor coincide with those of the hydraulic conductivity tensor at saturation.  The 

hydraulic conductivity of such anisotropic unsaturated soils is given as the product of a scalar 

variable, the symmetric relatve connectivity-tortuosity tensor, and the hydraulic conductivity at 

saturation.  The influence of the degree of saturation on hydraulic conductivity is illustrated for 

four well defined synthetic soils through radial plots of the hydraulic conductivity scalar and of 

the reciprocal hydraulic resistivity scalar, both as function of the saturation.  The resulting curves 

are ellipses.  The eccentricity of these ellipses is a measure of the degree of anisotropy of the soil 

at the particular saturations. 
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