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I. Introduction

In the past a great number of articles have appeared on the probl~m of

determing the smallest length n • n(k,d) of a binary (n,k,d) code, where

k denotes the dimension and d the minimum distance.

We quote the basic results in this field.

Theorem 1.1 (Griesmer, [6]). Let r x 1 denote the smallest integer ~ x ,

then

n(k,d) ~ d + n(k-l,rd/21)

k-l
n(k,d) ~ g(k,d) := L rd/2 i l

i=O

Theorem 1.2 (Solomon and Stiffler, [9]). Let

(1. 1)

(1.2)

S = rd/2
k

-
11 and s'2

k
-

1
- d = !

i=1

u -1
2 i ,

g(k,d)

where k > u1 > u2 > ••• > up > a . Then

! u i ~ s'k • n(k,d)
i=1

Theorem 1.3 (Belov, [4]). Let s • rd/2k- 11and

u -1
2 i

If

min(p,s+1)
1: ui:s; s'k

1=1

or

, where k > u1 >••• > up > 0 •

Us - up = p - sand up E: {1, 2}

then n(k,d) = g(k,d) •

Theorem 1.4 (Loga~ev, [7])

If k-23 :s; d ~ 2 - 2, then n(k,d) ~ g(k,d) + 1 •

Theorem 1.5 (van Tilborg, [110)
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So while Theorems 1.2 and 1.3 give sufficient conditions for equality

in (1.2), we see that Theorems 1.4 and 1.5 give ranges of values of d

(in terms of k), where strict inequality in (1.2) holds.

It follows from Theorem 1.4 that

n(7,26).<::55. (1.3)

In Alltop ([1]), one can find the construction of a (56,7,26) code, so

n(7,26) 556 • (1.4)

It is our aim to prove that n(7,26) = 56 •

II. Some techniques

Definition 2.1. Let G be the generator matrix of a binary linear code C

with top row £. Then the residual resp. derived code of C with respect to £.

(abbreviated to: w.r.t =) is the code generated by the restriction of G to

the columns where c has a zero resp. a nonzero entry. We shall often denote
o 1these codes by C resp. C and similarly the corresponding parts of G by

GO resp. G
1

•

Lemma 2.1. Let C be a (n,k,d) code, £ E C of weight w, where lIJ < d.
o 0Then the residual code C of C w.r.t. c has parameters (n-w, k-l,d),

where dO ~ d - lIJ .

~. Let c' E C, £' ~ Q, £' ~ £. Then £' or £.' + £ has inner product

5 lIJ with c. So the restriction of c' to C has weight ~ d - lIJ . 0

Lemma 2.2. Let C be a (n,k,d) code with generator matrix G. If G has two

repeated columns then shortening C on these two positions yields a

*(n-2,k-1,d) code C •
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Proof. W.l.o.g. G has the form---
( 1 1

I
* * *

a a

I
*G

[) 6

* *where G clearly generates the (n-2,k-1,d) code C

Definition 2.3. (Farrell, [5]). An (m,k,o) anticode is a k-dimensional,

linear code of length m in which the maximal weight equals o.

o

Lemma 2.4. (Farrell, [5]). Let G be the generator matrix of a (n,k,d) code.

By punturing a set of columns of G, t.hat generates an (m,k I ,0) anticode,

one obtains an (n-m, k" , d- 0) code.

on·page 127 in [sJ one can find the following result by MacWilliams.

Theorem 2.5. Let C be a binary, linear code. Let A
k

and Bk , a ~ k ~ n,

denote the number of codewords of weight k in C, resp. in its dual code.

Then

where

a ~ k ~ n ,

~(i) =

Table 2.6.

a ~ i, k ~ n •

= n - 2i ,

Ko(i) = 1

K
1

(i)

K
2

(!)
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III. A proof that n(7,26) equals 56.

It follows from (1,3) and (1,4) that we must prove that a (55,7,26) code C

cannot exist. So let us assume that C is a (55,7,26) code. Let A~ and B~,

° ~ w ~ 55, denote the weight enumerator of C resp. the dual code of C.

Let 26 s w s 51 with A not equal to zero. Then the residual code of C
w

w.r.t. a weight-w codeword has parameters (55-w,6,26-l~J). This, however,

contradicts Theorems 1.1 or 1.4 for some values of w in the range from 26

to 51. One obtains

A = 0 for WE {27,31,33,34,35,39,41,42,43,45,46,47,
w

49,50,51} (3.1)

Let cO be the residual code of C w.r.t. a codeword c E C of weight 29

°(resp. 37). C has parameters (26,6,12) (resp. (18,6,8» by Lemma 2 .1.
o 0

Let £ be a minimum weight vector in C , and let it be the restriction of

dEC to cO. Then it follows from the minimum distance of C that d or c + d

has weight 27, a contradiction with (3.1).

Hence

(3.2)

Since the sum of a codeword of weight 53 or 55 and a minimum weight code­

word must have weight 27,29 or 31, we can conclude from (3.1) and (3.2) that

(3.3)

In view of (3.1) - (3.3) we do know now that C must be an evenweight code.

*If C has repeated columns, one has by Lemma 2.2 a code C with parameters

*(53,6,26). By the same Lemma and Theorem 1.1 C cannot have repeated colomns.

So

(3.4)

If we now take k = 0,1,2 in theorem 2.5, we obtain after some elementary

row operations the following equations
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A26 A28 A30 A32 A36 A38 A40 A44 A48 A52 AS4

1 -1 -2 -4 -S -6 -8 -10 -12 -13 • 18

1 2 3 5 6 7 9 11 13 14 • 109 (3.S)

1 3 10 15 21 36 55 78 91 • 117 + 8B2

We are now going to exclude the occurence of certain weights, one after

another.

Suppose the contrary i.e. AS4 ~ O.

It follows from d = 26 that A54 = 1 and Ai • 0 for 30 < i < 54. If we now

also assume that A30 ~ 0, then it follows from d • 26 that the residual code
oC of C w.r.t. a weight 30 codeword (which has parameters (25,6,11» must

ocontain the all-one vector. The residual code of C w.r.t. a weight 12

codeword would have parameters (13,5,5), contradicting Theorem 1.4. So

A12
0 • A13

0 = 0 (here Ai
O is the weight ennumerator of CO):

A 0 =o = 1 = 31 •

oIf one now computes the number of weight-2 codewords in the dual code of C

by Theorem 2.5, one obtains a non integer number.

We conclude that A54 # 0 implies

and Ai = 0 for 30 :s: i < 54 •

From (3.5) we find the unique weight enumerator

However the 3rd equation in (3.5) yields a negative number for B2, a contra­

diction.

Assume the contrary. Then it follows from d = 26 that A52 • 1 and Ai = 0 for

32 < 1 < 52 • The existence of a codeword of weight 32 leads to a residual
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code with parameters (23,6,10) which contains the all-one vector. 1n

exactly the same way as above one can obtain a contradiction, so A
32

= 0 •

In view of (3.4) and (3.5) we now have two solutions

From Theorem 2.5 one can now compute the weight enumerator of the dual

code of C. one gets

resp.

Since B3 is non integer, we have obtained a contradiction

SUppose that £1 E C is of weight 48. Since the residual code of C w.r.t •• £,

has parameters (7,6,2) we may assume that the generator matrix G of C

has the following form:

1••...•..••••• 1
+~--- 48 ----+
1

+--6----+ +1+
o..•••• •• 0

1

1

where 16 is a 6 x 6 identity matrix.

Because d • 26 we may conclude that the rows £1' i ~ 2, and the sums

c i + £j , 2 S i < j S 7, have intersection 24 with £1 • So w.l.o.g. the

restriction of £2 and £3 to the non zero coordinates of £1 .looks like

+ 12 + + 12 + + 12 + + 12 +

11. .1

11 •• 1

11. •• 1

00 ••• 0

00 •• 0

11 •• 1

00 ••• 0

00 ••• 0
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Let p,q,r and s be the intersection numbers of ~ with these four

12-typles. From the arguments used above it follow that p + q + r + s = 24

and p + q = p + r 12 i.e. q = r = 12 - P and s = p. From

w(£2 + £3 +~) ~ 26 and w(c l + c2 + c3 + c4 ) ~ 26 it now follows that

4p + 4 ~ 26 and 4(12 - p) ~ 26 i.e. p = 6 = q = r = s. This divide the

first forty-eight coordinates in a natural way into eight 6-tuples.

In exactly the same way as above one can show that c5 (and ~ and £7)

intersects each of these 6-tuples in three positions. So w.l.o.g. we have

the following picture

£1 111111111111111111111111111111111111111111111111 1

£2 111111111111111111111111 1 1

£3 111111111111 111111111111 1 1

~ 111111 111111 111111 111111 1 1

£S 111 111 111 111 111 111 111 111 1 1

~ a 3-a 3-a a 3-a a a 3"'l!l 3-a a a 3-a a 3-a 3-a a 1 1

11

6 6
However now w( I £i) ~ 26 and w( l £1) ~ 26 yields 16.a + 6 ~ 26 resp.

i=2 i=l
16(6 - a) + 6 ~ 26 i.e. 1.25 ~ a ~ 1.75 , a contradiction.

Suppose that C contains a codeword c of weight 44. The residual code cO of C
- 0 °w.r.t. £ has parameters (11,6,4). Let Ai and Bi ' °SiS 11, be the

weight enumerator of cO resp. its dual code. We shall first try to find

the weight ennumerator of cO.

°It follows from Lemma 2.1 that A = 0. Since the complement of a weight-4

7 ° °vector has weight 7 it follows from A7 = ° that All = ° . Now assume
00. °that AS ,& O. and Let ~1 € C be of wc~ght 5.• Since the residual code of C

w.r.t. ~ has parameters (6,5,2), one has w.l.o.g. the following generator

matrix for cO
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~1 1 1 1 1 1 a a a a a a
1 a a a a 1

a 1 a 0 a 1

001 a 0 1

a a a 1 a 1

a 000 1 1

By adding ~1 to the following rows if necessary, one has w.l.o.g. that

all ~i' 2 ~ i ~ 6, have innerproduct 2 with ~1. It now follows from the minimum

distance 4 in cO that u. and u., 2 ~ i < j ~ 6, must intersect in exactly one
-1. -J

of the first five positions. So w~l.o.g. we have the following two cases

1 1 1 1 1 a a 0 0 o 0 1 1 1 1 1 a a 0 o 0 0

1 1 o 0 a 1 0 0 o 0 1 1 1 o 0 0 1 o 0 o a 1

1 a 1 a a o 1 a a 0 1 1 a 1 o 0 0 1 a o 0 1

1 0 a 1 a 0 a 1 a 0 1 or 0 1 1 o 0 o 0 1 0 0 1

1 o 0 o 1 a a 010 1 0 o a 1 0 1

a a a 0 1 1 a o a a 1 1

. 0
In both cases it is impossible to finish the next row, so AS ..

o lllJ 0Ag ~ :f and the number of odd weight vectors in C is either

follows that A 0 .. 0 •
9 0

In other words C must be an even weight code.

O. Since

32 or 0 it

oIt follows from Lemma 2.2 and Theorem 1.4 that C cannot have repeated columns,

so

B a
a 1 B 0 .. B a .. 0

1 2 •

Since A10
a ~ lone can find the following two solutions to the equations

k .. 0,1 and 2 in Theorem 2.5 •

a)

S)

a
A

4
26

25

a
A6

24

27

a
AS

13

10

Let uw now return to the original code C with a weight 44 codeword c •

In the following table one can find how many codewords in C have a

certain intersection number with £ resp. the complement of c •
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c
• 44 I +--11----+
11 ........... 1 00 •• a number of times

0,44 a 1

22,22 4 A a
4

20,24 6 x 0
22,22 6 A6 - x

18,26 8 0, since A34 = a
20,24 8 u a
22,22 8 AS - u

16,28 10 P
18,26 10 q
20,24 10 0, since A34

=: a
22,22 10 a

Ala - p - q

oIf one now tries a} as weight enumerator for C we get the following

weight enumerator for C AO ~ A44 = 1 A26 = 52 + x , A28 = 48 - 2x + u,

A30 = 26 + x - 2u , A32 =: u .

From the 3rd equation in (3.5) one now finds

x + u =: 55 + 8B2

contradicting the fact that x ~ A 0
6

leads to the equation

= 24 and u ~ A 0 =:
8

13 • Similary e>

x + u + 9p + 4q =: 55 + 8B2

contradicting x S A
6

0
=: 27 , uSA a = 10 and

S

9p + 4q o
~ 9(p + q) S 9 Ala = 9 •

Before we deal with A40 , we shall treat A38
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the weight

° S i ~ 18,

°The residual code C of C w.r.t. a weight 38 codeword has parameters
° ex(17,6,7), so can be extended to a (18,6,8) code C ' As before we

aenumerator Ai ,0 ~ i ~ 17, of

denote the weight enumerator of

If follows from Lemma 2.1 and Theorem 1.4 that

shall first try to determine
cO L t A O,ex d B O,ex

• e i an i '
O,exC , resp. its dual code.

A O,ex A O,ex °
10 = 14 =.

Moreover since the sum of a weight 8
a exand weight 18 codeword in c' would

a exhave weight 10, it follows that also A
l8

' = 0.
o ex ° exsince BO ' = 1 and B1 ' = lone can express the weight enumerator of

CO,ex i t f B O,ex b f h 2 5n erms 0 2 Y means 0 T eorem • :
Aoo,ex= 1, A

8
0,ex = 45 + B

2
0,ex = 18 - 2B

2
0,ex , A

16
0,ex = B

2
0,ex.

We have two cases:

A • B O,ex ° i A O,ex = 45 ,A O,ex 18 A O,ex =°. 2 = .e. 8 12 ~ '16 •
According to a theorem by Assmus and Mattson ([2J) one has that the code­

O,exwords of f1xed weight in C form a I-design. So the weight enumerators
o O,ex

of C and C are related by:

° 0 • AO,ex
A 21-1 + A2i 2i •

has the following generator matrix

(3.6)

o
weight enumerator of C :

o 0
All =12 A12 • 6

determines the

A °= 258

This uniquely

° 0AO • 1 , A7 = 20

B : B.
2
0,ex" ° .

By Lemma 2.2 cO,ex

( 1 1 u

o °. .. .
° a

where G1 generates a (16,5,8) code c 1• This code c 1 is unique; it is the

first order Reed-Muller code of length 16. Since cO,ex has miminum distance
18, it follows that u must be at distance at least 6 to C • However the

covering radius of the first order RM code of length 16 equals 6, moreover

it 1s known (see tabel IV in [10J) (and not difficult to check) that all
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possible choices of ~ are essentially equivalent. This means that w,l.o.g.
O,ex form:G has the following

~ a a a I a a a I a a a 1 1 I 1 a x1X2 + x3X4

a a I 1 1 I 1 1 1 I 1 I 1 1 1 I I 1

a a a a a a a a a a I 1 1 1 1 1 1 I Xl

a a 000 a 1 1 1 100 0 0 1 1 1 1 x2
o 0 0 a 1 1 a a 1 I o a I 100 1 1 x3
o 0 0 1 a 1 0 1 a I 010 101 0 1 x4

It is not difficult to check that depending on whether one deletes one of

the first 2 columns or one of the last 16, one obtains the following weight

enumerators 0for C :

A 0 .. 1 A 0 .. 16 0 .. 30 a .. 16 0 .. 0 a .. 0 A16
0 1 (3.7)AS All A12 A15

..
a 7

A a .. 1 A 0 .. 21 0 -= 25 0 10
0 .. 6 0 .. 1 0 0 (3. S)AS All .. A12 A15

A16 =0 7

As befor we now return to our original code C (with a codeword £ of weight

3S). Again we make a table of all intersection numbers of codewords with c

resp. the complement of c.

• 38 -17---•
11 ........... 1 00 •• a number of times

0,38 0 1

19,19 7 A 0
7

18,20 S A 0
8
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15,23 11 0, since A34 "" 0

17,21 11 p

19,19 11 All
0

- P

14,24 12 q

16,22 12 0, since A34 == 0

18,20 12 A12
0

- q

11,27 15 0, since A42 "" 0

13,25 15 r

15,23 15 s

17,21 15 A15
0 - r- s

19,19 15 0, since A34 == 0

10,28 16 0, since A44 == 0

12,26 16 0, since A42 == 0

14,24 16 t

16,22 16 A16
0

- t

18,20 16 0, since A34 "" 0

This leads to the following weight enumerator for C:

AO = 1

A26 =
A28 =
A30 =
A32 =

A36 =
A38 = 1 +

A40 =

+ q

+ p + r

- p - q + s + t

+ P - q - r - s - t

+ q - r - s

+ S - t

r + t
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We are now able to compute 82 from the 3rd equation in (3.5):

o 0 0 015 + 2A11 + 4A
12

+ 13A
15

+ 18A
16

+ P + 6q + 8r + 3s + 4t

(3.9)

= 117 + 88
2

•

o 0
Since p ~ All ' q ~ A12 ' 8r + 38 ~ 8 (r+s)

we find the following inequality:

000 0
3A11 + 10A12 + 21A

15
+ 22A

16
~ 102 + 882 •

o
and t ~ A16

The weight enumerators in (3.6) and (3.7) do not satisfy this inequalty.

For the weight enumerator of (3.8) we go back to the original equation

(3.9) •

p + 6q + 8r + 3s + 4t = 45 + 882 •

Now P ~ A11
0 = 10 , q ~ A12

0 = 6 , r + 8 ~ AlSO = 1 and t ~ A16
0 = 0 •

Moreover we are in the case, where we did not shorten one of the repeated

columns, i.e. 82 = 1. So we have the equation

p + 6q + 8r + 3s = 53 ,

p ~ 10 , q ~ 6, r + s ~ 1 •

It follows that p = 9, q = 6, r = 1 and s 0, Le.

If one now computes the weight enumerator of the dual code of C by Theorem

2.5 one finds of course 80 = 1, 81 = 0, 8
2

• 1, but also 83 - 139;, an

impossibility.

We now treat the case A40 , which we have omitted before.



- 14 -

Let cO be the residual code of C w.r.t. a weight 40 codeword £ and let Ai
O

o 0and B. , 0 ~ i ~ 15, be the weight enumerator of C resp. its dual code.
o ~

C has parameters (15,6,6). It follows from Lemma 2.1 and Theorems 1.4 or
o 0 01.1 that A7 =: All = O. Suppose that C contains a codeword ~ of weight 9.

00 0 00Let C be the residual code of C w.r.t. u. Then C has parameters (6,5,2).
O. 00However any codeword in C corresponding to a weight-2 codeword in C has

o 0weight 7 or its sum with ~ has weight 7, contradicting A7 = O. So A9 = O.

Since A13
0 + AlSO ~ 1 and the total numberof odd weight codewords in cO is

000o or 32 it follows that A13 = A15 = ° i.e. C is an even weight code.

It follows from Lemma 2.2 and Theorem 1.4 that cO cannot have repeated

columns so

B °= 1o ' B a = B 0 = 0
-1 2 •

o 0Since A14 ~ 0 implies A14
are possible by Theorem 2.5

o1 and A12 = 0 the following weight enumerators

A 0 A 0 A 0
Ala

0 0 a
a 6 8 A12 A14

1 27 23 12 0 1

1 30 15 18 0 0

1 29 18 15 1 0

1 28 21 12 2 0 (3.10)

1 27 24 9 3 0

1 26 27 6 4 0

1 25 30 3 5 0

1 24 33 0 6 0

As before we make a list of possible innerproducts of codewords with the

weight 40 codeword £ resp. its complement.
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I 40 I +--15 ---+-

11 ............ 1 00 •• 0 number of times

0,40 0 1

20,20
0

6 A
6

18,22 8 P

20,20 0
8 A8 - P

16,24 10 0, since A34 "" a
18,22 10 q

20,20 10 0
Ala - q

14,26 12 0, since A38 "" a
16,24 12 r

18,22 12 0, since A34 "" 0
020,20 12 A12 - r

12,28 14 0, since A42 = 0

14,26 14 s

16,24 14 0, since A38
.. 0

18,22 14
0

A14 - s

20,20 14 a, since A34 "" 0

This leads to the following weight enumerator for c:

AO = 1

A26 = 2A 0 + P6
A28 = 2A 0 - 2p + q + r + s

8 0
A

30 2A10 -I P - 2q
0 0

- 2r - sA32 = 2A12 + A14 + q
0A36 = A14 + r - s

A40 "" 1 + s
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The 3rd equation in (3.5) now yields

00021 + 2A10 + 6A12 + 13A14 + P + q + 4r + 8s .. 117 + 8B
2

.

oSince p :;; A
8

wing inequalty:

r :;; A12
0 and s :;; A14

0 one can deduce the fo110-

All weight enumerators in (3.10) contradict this inequa1ty.

We now come to our last case:

o
Let £1 E C be of weight 36. The residual code C of C w.r.t. £1 has para-

o 0meters (19,6,8). Let Ai and Bi ' 0 ~ i ~ 19, denote the weight enumerator
o 0

of C , resp. its dual code. Let £2 E C correspond to a codeword ~2 E C of

weight 8. It follows from d = 26 that £2 has innerproduct 18 with £1'

The residual code COO of cO w.r.t. ~2 has parameters (11,5,4). Let £3 be a
00codeword in C, whose restriction ~3 to C has weight 4. Then we have w.l.o.g.

the following picture

+ a+ + 18-a+ + b+ +18-b+ +c+ +8-c+ +4+ +7+

£1 11. .. 1 11. •• 1 11. •• 1 11. •• 1 O•• 0 O••0 O•• 0 00 •• 0

£2 11. .. 1 11. •• 1 00 ••. 0 00 ••• 0 1. .1 1•• 1 O•• 0 00 •• 0

£3 11. •• 1 00 ••• 0 11. •• 1 00 ••• 0 1. .1 O•• 0 1•• 1 00 •• 0

It follows from the minimum distance of cO that

c + 4 .~ 8 and (a-c) + 4 ~ 8 i.e. c .. 4

a + b + 8 ~ 26

(l8-a) + (l8-b) + 8 <!: 26

(la-a) + b + a ~ 26

a + (l8-b) + a ~ 26

i.e. a .. b .. 9
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000 00
The residual code C of C w.r.t. ~3 has parameters (7,4,2). Suppose

000that £4 E C has a restriction to C of weight 2. Let the innerproducts

of =. with the various sets of coordinates be as depicted below:

+9-+- +9-+- + 9 -+- +9-+- +4-+- +4-+- + 4-)0- +7-+-

£1 11 •• 1 11 •• 1 11. .1 11 •• 1 0000 0000 0000 00 •• 0

£2 11. .1 11. .1 00 •• 0 00 •• 0 1111 1111 0000 00 •• 0

£3 11. .1 00 •• 0 11. .1 00 •• 0 1111 0000 1111 00 •• 0

~ a f3 y 6 K A 1J 2

It follows from the minimum distance of cOO that 1J • 2. Similarly by inter­

changing £2 and £3 one gets A = 2. From the minimum distance of cO it follows

that K = 2. By taking all linear combinations of £1' £2 and £3 with ~ one

gets 8 inequlities, yielding the unique solution a = a = Y • 6 • 4~.
000We conclude that C has parameters (7,4,3) (in stead of (7,4,2», which

code is unique and generated by

r 1 0 a 0 1 1 0

0 1 a 0 1 0 1

0 a 1 0 a 1 1

0 0 a 1 1 1 1

The following property is a consequence of the observations made above:

00Any two codewords of weight 4 in the (11,5,4) code C have an intersection

of at most 1.

00
We shall now show that this property implies that C is unique and equi-

valent to 'the code generated by

1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 1 0

a 1 0 0 0 1 0 0 1 a 1 (3.11) .
a 0 1 0 0 0 1 0 0 1 1

J1 1 0 0 a 0 1 1 1 1

00
byWe do know that C is generated
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1 1 1 1 a 0 0 0 0 0 u y"3
1 0 a 0 1 1 0 !.4

GOO: a 1 a a 1 a 1 ~
a a 1 a a 1 !ti
0 0 a 1 1 1 y"7

By adding Y3 to Yi' i ;'2: 4, if necessary, we can assume that the 4th coor-

dinate of ~, i ;'2: 4, is zero.

we distinguish 2 possibilities:

000A: Each of the weight 3 codewords in C corresponds to a weight 5 codeword

in cOO. For !.4' ~ and !ti we have w.1. o. g. three possibllities for the

first four coordinates:

• ., , , ,
A A A

1 1 o 0 1 1 o 0 1 1 o 0

1 a 1 a 1 1 a a 1 1 o a
a 1 1 a 1 1 a a 1 010

In case A' !.4 + ~ + !ti has weight 3, contradicting the minimum distance of
00 00c . In case AIt !.4 + .Ys and !.4 + !ti are two codewords of weight 4 in C

with innerproduct 2, contradicting (*). Case A'" leads to:

1 1 1 1 a a a 0 a a a Y3
1 1 a a 1 0 a 0 1 1 a !.4
1 1 0 0 a 1 0 a 1 O· 1 Ys
1 a 1 0 a 0 1 a a 1 1 ~
a b c a 0 0 0 1 1 1 1 Y7

Since Y7 + ~ , i : 5,6, has weight 3, when restricted to cOOO we have the

following equations:

(1-a) + (1-b) + c : 2

(1-a) + b + (1-c) : 2
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It follows that a = 0 and b == c. If b == c == 0 then ~ + ~ and ~7 contra­

dict (*), otherwise ~ + ~ and ~ + ~ + '!...7 contradict (*).

B: At least one codeword of weight 3 in 000 to a weight 4 (or 6c corresponds

by adding Y3 to it) 00codeword in C •

It follows from the transitive automorphism group of the (7,4,3) code, that

w.l.o.g. ~ has this property, so one has

r:
1 1 1 0 0 0 0 0 a 0 YJ
0 0 0 1 0 0 0 1 1 a ~

GOO a b c 0 0 1 0 a 1 a 1 ~
P q r 0 a 0 1 a 0 1 1 ~

l u v w a a a 0 1 1 1 Y7

Since the residual code of cOO w.r.t. ~ must also be a (7,4,3)-code, it

follows that the three pairs (b,c), (q,r) and (u,w) mUt;t all be different

and not equal to (0,0). By interchanging ~ and ~ and the coordinates 2 and 3,

we can restrict ourselves to the following two possibilities:

B I 1

o
1

o
1

1

a
o
1

1

1

a
a
o
o

o a
1 a
a 1

a a
o 0

a
a
o

1

o

o
a
a
o
1

o
1

1

o
1

a
1

a
1

1

o
()

1

If a == a the residual code of ~ yields the information that p + u == 1. Both

solutions are quivalent to the matrix in (3.11) (if P = 1 and u = 0, apply

~ .... ~ + ~ , '!...7 .... !..7 + ~ and a column permutation to get p 0 and u == 1).

Since !..S and ~ can be exchanged we have as other possibility that a == p == 1.

If u = 0 then!..3 + •• + ~ and!..S + ~ +!..7 contradict (*), while if u == 1

we get a matrix equivalent to (3.11) by the transformai:ion Ys .... ~ + !..7 '

:!6 .... .Yt; + !..7·
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B' , 1 1 1 1 0 ° 0 ° 0 0 ° ~3
1 0 0 0 1 0 0 0 1 1 ° ~

GOO = a 1 0 0 ° 1 0 0 1 0 ~
p 1 1 0 0 0 1 0 0 1 ~
u ° 1 0 0 0 0 1 1 1 1 '!...7

By comparing '!...s + ~ + '!...7 with ~ + '!...7' ~3 + ~ + '!...7 and ~ + '!...s + ~

in the cases a = O,p = u, resp. a p 1, u = 0 resp. a = u = 1, P = 0 one

gets a contradiction with (*). So a + p + u = 1 • From the row operations

~ -+ '!...s + a~ ' ~ -+ (1-u)~ + ~ + ~' '!...7 -+ p~ + '!...s + '!...7 one obtains

a matrix equivalent to the matrix of (3.11).

o 0
We now turn back to C • Let ~ ' C correspond to the unique weight 7 code-

000
word in C • Let its innerproduct with ~2 and ~3 be as depicted below

1 1 1 1 1 1 1 1 0 0 0 000 000 0 0

1 1 1 100 0 0 1 1 1 0 0 0 0 0 0 0

a b c 1 1 1 1 111

From (3.11) we now know that c E {O,4} • By interchanging ~2 and ~3 one

gets b E {0,4} • By replacing ~2 by ~2 + ~3 one obtains that a E {0,4} •

By adding ~2 and/or ~3 to ~ if necessary, one may assume that b = c = O.

If also a = 0 then ~ has weight 7, which is less than the miminum distance
o

of C • On the other hand if a = 4 then ~3 + ~ has weight 11, while the
oresidual code of C w.r.t. a weight 11 codeword has parameters (8,5,3),

contradicting Theorem 1.4.

Now that we know that Ai o for i ~ 3 6 one can reduce (3.5) to

18A30 - 2A32

A28 + 2A30 + 3A32 109

Subtracting the 3rd equation from the 2nd yields

a clear contradiction.
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