A proof of the nonexistence of a binary $(55,7,26)$ code

Citation for published version (APA):

Tilborg, van, H. C. A. (1979). A proof of the nonexistence of a binary $(55,7,26)$ code. (EUT report. WSK, Dept. of Mathematics and Computing Science; Vol. 79-WSK-09). Technische Hogeschool Eindhoven.

Document status and date:

Published: 01/01/1979

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

A proof of the nonexistence of a binary $(55,7,26)$ code
by
H.C.A. van Tilborg

T.H. -Report 79-WSK-09

November 1979

I. Introduction

In the past a great number of articles have appeared on the problem of determing the smallest length $n=n(k, d)$ of a binary (n, k, d) code, where k denotes the dimension and d the minimum distance.

We quote the basic results in this field.

Theorem 1.1 (Griesmex, [6]). Let $\lceil\mathbf{x}]$ denote the smallest integer $\geq \mathbf{x}$, then

$$
\begin{align*}
& n(k, d) \geq d+n(k-1,\lceil d / 2\rceil) \tag{1.1}\\
& n(k, d) \geq g(k, d):=\sum_{i=0}^{k-1}\left\lceil d / 2^{i}\right\rceil \tag{1.2}
\end{align*}
$$

Theorem 1.2 (Solomon and Stiffler, [9]). Let

$$
\begin{aligned}
& s=\left\lceil d / 2^{k-1}\right\rceil \text { and } s \cdot 2^{k-1}-d=\sum_{i=1}^{p} 2^{u_{i}-1}, \\
& \text { where } k>u_{1}>u_{2}>\ldots>u_{p}>0 . \text { Then } \\
& \sum_{i=1}^{p} u_{i} \leq s \cdot k \rightarrow n(k, d)=g(k, d) .
\end{aligned}
$$

Theorem 1.3 (Belov, [4]). Let $s=\left\lceil d / 2^{k-1}\right\rceil$ and

$$
\begin{aligned}
& s \cdot k-d=\sum_{i=1}^{p} 2^{u_{i}-1}, \text { where } k>u_{1}>\ldots>u_{p}>0 \\
& \text { If } \\
& \min \left(p, \sum_{i=1}^{s+1}\right) u_{i} \leq s \cdot k \\
& \text { or } \\
& u_{s}-u_{p}=p-s \text { and } u_{p} \epsilon\{1,2\} \\
& \text { then } n(k, d)=g(k, d) \text {. }
\end{aligned}
$$

Theorem 1.4 (Logałev, [7])

$$
\text { If } 3 \leq d \leq 2^{k-2}-2 \text {, then } n(k, d) \geq g(k, d)+1
$$

Theorem 1.5 (van Tilborg, [11])

$$
\text { If } 2^{k-2}+3 \leq d \leq 2^{k-1}-2^{k-3}-4 \text { then } n(k, d) \geq g(k, d)+1
$$

So while Theorems 1.2 and 1.3 give sufficient conditions for equaitty in (1.2), we see that Theorems 1.4 and 1.5 give ranges of values of d (in terms of k), where strict inequality in (1.2) holds. It follows from Theorem 1.4 that

$$
\begin{equation*}
n(7,26) \geq 55 \text {. } \tag{1.3}
\end{equation*}
$$

In Alltop ([1]), one can find the construction of a $(56,7,26)$ code, so

$$
\begin{equation*}
n(7,26) \leq 56 . \tag{1.4}
\end{equation*}
$$

It is our aim to prove that $\mathrm{n}(7,26)=56$.

II. Some techniques

Definition 2.1. Let G be the generator matrix of a binary linear code C with top row c. Then the residual resp. derived code of C with respect to C (abbreviated to: w.r.t c) is the code generated by the restriction of G to the columns where c has a zero resp. a nonzero entry. We shall often denote these codes by C^{0} resp. C^{1} and similarly the corresponding parts of G by G^{0} resp. G^{1}.

Lemma 2.1. Let c be a (n, k, d) code, $c \in c$ of weight w, where $\left\lfloor\frac{w}{2}\right\rfloor<d$. Then the residual code c^{0} of c w.r.t. c has parameters ($n-w, k-1, d^{0}$), where $d^{0} \geq d-\left\lfloor\frac{W}{2}\right\rfloor$.

Proof. Let $c^{\prime} \in c, c^{\prime} \neq 0, c^{\prime} \neq c$. Then c^{\prime} or $c^{\prime}+c$ has inner product $\leq\left\lfloor\frac{w}{2}\right\rfloor$ with c. So the restriction of c^{\prime} to c has weight $\geq a-\left\lfloor\frac{w}{2}\right\rfloor$.

Lemma 2.2. Let C be a (n, k, d) code with generator matrix G. If G has two repeated columns then shortening C on these two positions yields a ($n-2, k-1, d$) code C *.

Proof. W.l.o.g. G has the form
$\left(\begin{array}{cc|cccc}1 & 1 & * & \star & & \star \\ \hline 0 & 0 & & & \\ \vdots & \vdots & & & G^{\star} & \\ 0 & 0 & & & \end{array}\right)$
where G^{*} clearly generates the ($n-2, k-1, d$) code C^{*}.

Definition 2.3. (Farrell, [5]). An (m, k, δ) anticode is a k-dimensional, linear code of length m in which the maximal weight equals δ.

Lemma 2.4. (Farrell, [5]). Let G be the generator matrix of a (n, k, d) code. By punturing a set of columns of G, that generates an (m, k^{\prime}, δ) anticode, one obtains an ($n-m, k n, d-\delta$) code.

On page 127 in $[B]$ one can find the following result by MacWilliams.

Theorem 2.5. Let C be a binary, linear code. Let A_{k} and $B_{k}, 0 \leq k \leq n$, denote the number of codewords of weight k in C, resp. in its dual code. Then

$$
B_{k}=|C|^{-1} \sum_{i=0}^{n} A_{i} K_{k}(i) \quad, \quad 0 \leq k \leq n
$$

where

$$
K_{k}(i)=\sum_{\ell=0}^{k}(-1)^{\ell}\binom{n-1}{k-\ell}\binom{i}{\ell}, \quad 0 \leq i, k \leq n .
$$

Table 2.6.

$$
\begin{aligned}
& K_{0}(i)=1 \\
& K_{1}(i)=n-2 i \\
& K_{2}(i)=\left(\frac{n}{2}\right)-2 n i+2 i^{2}, \\
& K_{3}(i)=\frac{1}{3}\left\{3\left(\frac{n}{3}\right)-\left(3 n^{2}-3 n+2\right) i+6 n i^{2}-4 i^{3}\right\} .
\end{aligned}
$$

III. A proof that $n(7,26)$ equals 56 .

It follows from $(1,3)$ and $(1,4)$ that we must prove that a $(55,7,26)$ code C cannot exist. So let us assume that C is a $(55,7,26)$ code. Let A_{W} and B_{w}, $0 \leq w \leq 55$, denote the weight enumerator of C resp. the dual code of C. Let $26 \leq w \leq 51$ with A_{w} not equal to zero. Then the residual code of C w.r.t. a weight-w codeword has parameters (55-w, 6, 26- $\left\lfloor\frac{w}{2}\right\rfloor$). This, however, contradicts Theorems 1.1 or 1.4 for some values of w in the range from 26 to 51. One obtains

$$
\begin{gather*}
A_{w}=0 \text { for } w \in\{27,31,33,34,35,39,41,42,43,45,46,47, \\
49,50,51\} \tag{3.1}
\end{gather*}
$$

Let C^{0} be the residual code of C w.r.t. a codeword $c \in C$ of weight 29 (resp. 37). c^{0} has parameters $(26,6,12)$ (resp. $(18,6,8)$) by Lemma 2.1. Let d^{0} be a minimum weight vector in C^{0}, and let it be the restriction of $\underline{d} \in c$ to c^{0}. Then it follows from the minimum distance of c that d or $\underline{c}+\underline{d}$ has weight 27 , a contradiction with (3.1).
Hence

$$
\begin{equation*}
A_{29}=A_{37}=0 \tag{3.2}
\end{equation*}
$$

Since the sum of a codeword of weight 53 or 55 and a minimum weight codeword must have weight 27,29 or 31 , we can conclude from (3.1) and (3.2) that

$$
\begin{equation*}
A_{53}=A_{55}=0 \tag{3.3}
\end{equation*}
$$

In view of (3.1) - (3.3) we do know now that C must be an evenweight code. If C has repeated columns, one has by Lemma 2.2 a code C^{*} with parameters $(53,6,26)$. By the same Lemma and Theorem $1,1 c^{*}$ cannot have repeated colomns. So

$$
\begin{equation*}
A_{0}=B_{0}=1, \quad B_{1}=0, \quad B_{2} \in\{0,1\} \tag{3.4}
\end{equation*}
$$

If we now take $k=0,1,2$ in theorem 2.5, we obtain after some elementary row operations the following equations
$\begin{array}{llllllllllll}A_{26} & A_{28} & A_{30} & A_{32} & A_{36} & A_{38} & A_{40} & A_{44} & A_{48} & A_{52} & A_{54}\end{array}$

We are now going to exclude the occurence of certain weights, one after another.
$A_{54}=0$
Suppose the contrary i.e. $A_{54} \neq 0$.
It follows from $d=26$ that $A_{54}=1$ and $A_{i}=0$ for $30<1<54$. If we now also assume that $A_{30} \neq 0$, then it follows from $d=26$ that the residual code c^{0} of C w.r.t. a weight 30 codeword (which has parameters $(25,6,11)$) must contain the all-one vector. The residual code of c^{0} w.r.t. a weight 12 codeword would have parameters $(13,5,5)$, contradicting Theorem 1.4. So $A_{12}{ }^{0}=A_{13}{ }^{0}=0$ (here A_{i}^{0} is the weight ennumerator of C^{0}):

$$
A_{0}^{0}=A_{25}^{0}=1 \quad, \quad A_{11}^{0}=A_{14}^{0}=31
$$

If one now computes the number of weight-2 codewords in the dual code of c^{0} by Theorem 2.5, one obtains a non integer number.
We conclude that $A_{54} \neq 0$ implies

$$
A_{54}=1 \quad \text { and } A_{i}=0 \quad \text { for } \quad 30 \leq i<54
$$

From (3.5) we find the unique weight enumerator

$$
A_{0}=A_{54}=1 \quad A_{26}=31 \quad A_{28}=95
$$

However the 3 rd equation in (3.5) yields a negative number for B_{2}, a contradiction.
$A_{52}=0$

Assume the contrary. Then it follows from $d=26$ that $A_{52}=1$ and $A_{i}=0$ for $32<i<52$. The existence of a codeword of weight 32 leads to a residual
code with parameters $(23,6,10)$ which contains the all-one vector, in exactly the same way as above one can obtain a contradiction, so $A_{32}=0$. In view of (3.4) and (3.5) we now have two solutions

$$
\begin{array}{lllll}
A_{0}=1 & A_{26}=69 & A_{28}=18 & A_{30}=39 & A_{52}=1 \\
A_{0}=1 & A_{26}=77 & A_{28}=2 & A_{30}=47 & A_{52}=1
\end{array}
$$

From Theorem 2.5 one can now compute the weight enumerator of the dual code of C. One gets

$$
B_{0}=1 \quad B_{1}=0 \quad B_{2}=0 \quad B_{3}=59 y_{2}
$$

resp.

$$
B_{0}=1 \quad B_{1}=0 \quad B_{2}=1 \quad B_{3}=58 \frac{L_{2}}{2} .
$$

Since B_{3} is non integer, we have obtained a contradiction
$A_{48}=0$

Suppose that $\underline{c}_{1} \in C$ is of weight 48. Since the residual code of C w.r.t.. $c_{\text {, }}$ has parameters $(7,6,2)$ we may assume that the generator matrix G of C has the following form:

where I_{6} is a 6×6 identity matrix. Because $d=26$ we may conclude that the rows $\underline{c}_{1}, 1 \geq 2$, and the sums $c_{i}+c_{j}, 2 \leq i<j \leq 7$, have intersection 24 with c_{1}. So w. $1.0 . g$. the restriction of \underline{c}_{2} and \underline{c}_{3} to the non zero coordinates of \underline{c}_{1}. looks like

$$
\begin{aligned}
& \quad+12 \rightarrow+12++12 \rightarrow+12 \rightarrow \\
& c_{2} 11 \ldots 1011 \ldots 10000 \\
& c_{3} 11 \ldots 100 \ldots 0
\end{aligned}
$$

Let p, q, r and s be the intersection numbers of c_{4} with these four 12-typles. From the arguments used above it follow that $p+q+r+s=24$ and $p+q=p+r=12$ i.e. $q=r=12-p$ and $s=p$. From $w\left(\underline{c}_{2}+\underline{c}_{3}+\underline{c}_{4}\right) \geq 26$ and $w\left(c_{1}+c_{2}+c_{3}+c_{4}\right) \geq 26$ it now follows that $4 p+4 \geq 26$ and $4(12-p) \geq 26$ i.e. $p=6=q=r=s$. This divide the first forty-eight coordinates in a natural way into eight 6-tuples. In exactly the same way as above one can show that c_{5} (and \underline{c}_{6} and c_{7}) intersects each of these 6-tuples in three positions. So w.l.0.g. we have the following picture

However now $w\left(\sum_{i=2}^{6} c_{i}\right) \geq 26$ and $w\left(\sum_{i=1}^{6} c_{i}\right) \geq 26$ yields $16 . a+6 \geq 26$ resp. $16(6-a)+6 \geq 26$ 1.e. $1.25 \leq a \leq 1.75$, a contradiction.
${ }^{A} 44=0$

Suppose that c contains a codeword c of weight 44. The residual code c^{0} of C w.r.t. C has parameters $(11,6,4)$. Let $A_{i}{ }^{0}$ and $B_{i}{ }^{0}, 0 \leq i \leq 11$, be the weight enumerator of C^{0} resp. its dual code. We shall first try to find the weight ennumerator of c^{0}.
It follows from Lemma 2.1 that $A_{7}{ }^{0}=0$. Since the complement of a weight-4 vector has weight 7 it follows from $A_{7}{ }^{0}=0$ that $A_{11}{ }^{0}=0$. Now assume that $A_{5}^{0} \neq 0$. and Let $\underline{u}_{1} \in c^{0}$ be of weight 5 . Since the residual code of c^{0} w.r.t. u_{1} has parameters $(6,5,2)$, one has w.l.o.g. the following generator matrix for c^{0} :

By adding \underline{u}_{1} to the following rows if necessary, one has w.l.o.g. that all $\underline{u}_{i}, 2 \leq i \leq 6$, have innerproduct 2 with \underline{u}_{1}. It now follows from the minimum distance 4 in C^{0} that ${\underset{-}{u}}$ and $\underline{u}_{j}, 2 \leq i<j \leq 6$, must intersect in exactly one of the first five positions. So w:l.o.g. we have the following two cases

$$
\left(\begin{array}{lllll|llllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & & 0 & 0 & 0 & 1 & 0 & 1 \\
& & & & & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

In both cases it is impossible to finish the next row, so $A_{5}{ }^{0}=0$. Since $A_{9}^{0} \leq\left\lfloor\frac{11}{2}\right\rfloor$ and the number of odd weight vectors in C^{0} is either 32 or 0 it follows that $A_{9}{ }_{0}^{0}=0$.
In other words C^{0} must be an even weight code.
It follows from Lemma 2.2 and Theorem 1.4 that C^{0} cannot have repeated columns, so

$$
B_{0}^{0}=1 \quad, \quad B_{1}^{0}=B_{2}^{0}=0
$$

Since $A_{10} 0^{0} \leq 1$ one can find the following two solutions to the equations $k=0,1$ and 2 in Theorem 2.5 .
a)
B)

$\mathrm{A}_{0}{ }^{0}$	$\mathrm{~A}_{4}{ }^{0}$	$\mathrm{~A}_{6}{ }^{0}$
1	26	24
1	25	27

$A_{8}{ }^{0}$
13
10

Let uw now return to the original code C with a weight 44 codeword C . In the following table one can find how many codewords in C have a certain intersection number with \subseteq resp. the complement of c.

${ }_{11 \ldots \ldots} 44$	$\longleftarrow 11 \longrightarrow$	number of times
0,44	0	1
22,22	4	$\mathrm{A}_{4}{ }^{0}$
$\begin{aligned} & 20,24 \\ & 22,22 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	${ }_{A_{6}}^{0}-x$
$\begin{aligned} & 18,26 \\ & 20,24 \\ & 22,22 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0, \text { since } A_{34}=0 \\ & u_{8} 0-u \end{aligned}$
$\begin{aligned} & 16,28 \\ & 18,26 \\ & 20,24 \\ & 22,22 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & p \\ & q \\ & 0, \text { since } A_{34}=0 \\ & A_{10} 0-p-q_{q} \end{aligned}$

If one now tries α) as weight enumerator for c^{0} we get the following weight enumerator for $C \quad A_{0}=A_{44}=1, A_{26}=52+x, A_{28}=48-2 x+u$, $\mathrm{A}_{30}=26+\mathrm{x}-2 \mathrm{u}, \mathrm{A}_{32}=\mathrm{u}$.
From the 3 rd equation in (3.5) one now finds

$$
x+u=55+8 B_{2}
$$

contradicting the fact that $x \leq A_{6}{ }^{0}=24$ and $u \leq A_{8}{ }^{0}=13$. Similary B) leads to the equation

$$
x+u+9 p+4 q=55+8 B_{2}
$$

contradicting $x \leq A_{6}{ }^{0}=27, u \leq A_{8}{ }^{0}=10$ and

$$
9 p+4 q \leq 9(p+q) \leq 9 A_{10} 0^{0}=9
$$

Before we deal with A_{40}, we shall treat A_{38}
$A_{38}=0$

The residual code c^{0} of c w.r.t. a weight 38 codeword has parameters $(17,6,7)$, so can be extended to a $(18,6,8)$ code $c^{0, e x}$. As before we shall first try to determine the weight enumerator $A_{i}{ }^{0}, 0 \leq i \leq 17$, of c^{0}. Let $A_{i}{ }^{0}$, ex and $B_{i}{ }^{0, e x}, 0 \leq i \leq 18$, denote the weight enumerator of $c^{0, e x}$, resp. its dual code. If follows from Lemma 2.1 and Theorem 1.4 that $A_{10}{ }^{0, \text { ex }}=A_{14}{ }^{0, \mathrm{ex}}=0$.
Moreover since the sum of a weight 8 and weight 18 codeword in $c^{0, \text { ex }}$ would have weight 10 , it follows that also $A_{18} 0, \mathrm{ex}=0$.
Since $\mathrm{B}_{0}^{0, \mathrm{ex}}=1$ and $\mathrm{B}_{1}{ }^{0, \mathrm{ex}}=1$ one can express the weight enumerator of $C^{0, e x}$ in terms of $\mathrm{B}_{2}{ }^{0, \text { ex }}$ by means of Theorem 2.5:
$\mathrm{A}_{0}^{0, \mathrm{ex}}=1, \mathrm{~A}_{8}^{0, \mathrm{ex}}=45+\mathrm{B}_{2}^{0, \mathrm{ex}}=18-2 \mathrm{~B}_{2}^{0, \mathrm{ex}}, \mathrm{A}_{16}^{0, \mathrm{ex}}=\mathrm{B}_{2}^{0, \mathrm{ex}}$.
We have two cases:
$A: B_{2}^{0, e x}=0$ i.e. $A_{8}^{0, e x}=45, A_{12}^{0, e x}=18, A_{16}^{0, e x}=0$.
According to a theorem by Assmus and Mattson ([2]) one has that the codewords of fixed weight in $c^{0, e x}$ form a 1 -design. So the weight enumerators of c^{0} and $c^{0, e x}$ are related by:

$$
\begin{aligned}
& 18 A_{2 i-1}^{0}=21 A_{2 i}^{0, e x} \\
& A_{21-1}^{0}+A_{21}^{0}=A_{2 i}^{0, e x}
\end{aligned}
$$

This uniquely determines the weight enumerator of c^{0} :
$A_{0}^{0}=1, A_{0}^{0}=20 \quad A_{8}^{0}=25 \quad A_{11}^{0}=12 \quad A_{12}^{0}=6$
$\mathrm{B}: \mathrm{B}_{2}{ }^{0, \mathrm{ex}} \neq 0$.
By Lemma $2.2 c^{0, \text { ex }}$ has the following generator matrix
$G^{0, e x}\left(\begin{array}{cc|c}1 & 1 & \underline{u} \\ \hline 0 & 0 & G^{1} \\ \vdots & \vdots & \end{array}\right]$
where G^{1} generates a $(16,5,8)$ code C^{1}. This code C^{1} is unique; it is the first order Reed-Muller code of length 16 . Since $c^{0, \text { ex }}$ has miminum distance 8, it follows that u must be at distance at least 6 to C^{1}. However the covering radius of the first order RM code of length 16 equals 6 , moreover it is known (see tabel IV in [10]) (and not difficult to check) that all
possible choices of \underline{u} are essentially equivalent. This means that w. . . 0.g. G^{0},ex has the following form:

1	1	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0			
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
0	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1			
0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1			
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	$	\quad$	
:---	:---																			
$x_{1} x_{2}+x_{3} x_{4}$																				

It is not difficult to check that depending on whether one deletes one of the first 2 columns or one of the last 16 , one obtains the following weight enumerators for c^{0} :
$A_{0}^{0}=1 \quad A_{7}^{0}=16 \quad A_{8}^{0}=30 \quad A_{11}^{0}=16 \quad A_{12}^{0}=0 \quad A_{15}^{0}=0 \quad A_{16}^{0}=1$
$A_{0}^{0}=1 \quad A_{7}{ }^{0}=21 \quad A_{8}^{0}=25 \quad A_{11}{ }^{0}=10 \quad A_{12}{ }^{0}=6 \quad A_{15}^{0}=1 \quad A_{16}{ }^{0}=0$

As befor we now return to our original code C (with a codeword c of weight 38). Again we make a table of all intersection numbers of codewords with c resp. the complement of c.
c

$\begin{aligned} & \longleftrightarrow 38 \longrightarrow \\ & 11 \ldots \ldots \ldots 1 \end{aligned}$	$\begin{aligned} & \leftarrow 17 \longrightarrow \\ & 00 \ldots 0 \end{aligned}$	number of times
0,38	0	1
19,19	7	$\mathrm{A}_{7}{ }^{0}$
18,20	8	$A_{8}{ }^{0}$

$\begin{aligned} & 15,23 \\ & 17,21 \\ & 19,19 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 0, \text { since } A_{34}=0 \\ & p \\ & A_{11}{ }^{0}-p \end{aligned}$
$\begin{aligned} & 14,24 \\ & 16,22 \\ & 18,20 \end{aligned}$	12 12 12	$\begin{aligned} & q \\ & 0, \text { since } A_{34}=0 \\ & A_{12}^{0}-q \end{aligned}$
$\begin{aligned} & 11,27 \\ & 13,25 \\ & 15,23 \\ & 17,21 \\ & 19,19 \end{aligned}$	15 15 15 15 15	$\begin{aligned} & 0, \text { since } A_{42}=0 \\ & r \\ & s \\ & A_{15}-r-s \\ & 0, \text { since } A_{34}=0 \end{aligned}$
$\begin{aligned} & 10,28 \\ & 12,26 \\ & 14,24 \\ & 16,22 \\ & 18,20 \end{aligned}$	16 16 16 16 16	$\begin{aligned} & 0, \text { since } A_{44}=0 \\ & 0, \text { since } A_{42}=0 \\ & t \\ & A_{16} 0-t \\ & 0, \text { since } A_{34}=0 \end{aligned}$

This leads to the following weight enumerator for C :
$A_{0}=1$

We are now able to compute B_{2} from the 3 rd equation in (3.5):
$15+2 A_{11}{ }^{0}+4 A_{12}{ }^{0}+13 A_{15}{ }^{0}+18 A_{16}{ }^{0}+p+6 q+8 r+3 s+4 t=$ $=117+8 B_{2}$.

Since $p \leq A_{11}{ }^{0}, q \leq A_{12}{ }^{0}, 8 r+3 s \leq 8(r+s) \leq 8 A_{15}{ }^{0}$ and $t \leq A_{16}{ }^{0}$, we find the following inequality:
$3 A_{11}{ }^{0}+10 A_{12}{ }^{0}+21 A_{15}{ }^{0}+22 A_{16}{ }^{0} \geq 102+8 B_{2}$.

The weight enumerators in (3.6) and (3.7) do not satisfy this inequalty. For the weight enumerator of (3.8) we go back to the original equation (3.9).

$$
p+6 q+8 r+3 s+4 t=45+8 B_{2}
$$

Now $p \leq A_{11}{ }^{0}=10, q \leq A_{12}{ }^{0}=6, r+s \leq A_{15}{ }^{0}=1$ and $t \leq A_{16}{ }^{0}=0$. Moreover we are in the case, where we did not shorten one of the repeated columns, i.e. $B_{2}=1$. So we have the equation

$$
p+6 q+8 r+3 s=53
$$

$p \leq 10, q \leq 6, x+s \leq 1$.

It follows that $p=9, q=6, r=1$ and $s=0$, i.e.
$A_{0}=1, \quad A_{26}=73, \quad A_{28}=35, \quad A_{30}=2, \quad A_{32}=9$,
$A_{36}=6, A_{38}=A_{40}=1$

If one now computes the weight enumerator of the dual code of C by Theorem 2.5 one finds of course $B_{0}=1, B_{1}=0, B_{2}=1$, but also $B_{3}=1391_{1}$, an impossibility.

We now treat the case A_{40}, which we have omitted before.
${ }^{A} 40=0$

Let C^{0} be the residual code of C w.r.t. a weight 40 codeword C and let $A_{1}{ }^{0}$ and $B_{i}{ }^{0}, 0 \leq i \leq 15$, be the weight enumerator of c^{0} resp. its dual code. c^{0} has parameters $(15,6,6)$. It follows from Lemma 2.1 and Theorems 1.4 or 1.1 that $A_{7}{ }^{0}=A_{11}{ }^{0}=0$. Suppose that C^{0} contains a codeword u of weight 9 . Let c^{00} be the residual code of c^{0} w.r.t. u. Then c^{00} has parameters $(6,5,2)$. However any codeword in C^{0} corresponding to a weight-2 codeword in C^{00} has weight 7 or its sum with u has weight 7 , contradicting $A_{7}{ }^{0}=0$. So $A_{9}^{0}=0$. Since $A_{13}{ }^{0}+A_{15}{ }^{0} \leq 1$ and the total number of odd weight codewords in c^{0} is 0 or 32 it follows that $A_{13}{ }^{0}=A_{15}{ }^{0}=0$ i.e. C^{0} is an even weight code. It follows from Lemma 2.2 and Theorem 1.4 that c^{0} cannot have repeated columns so

$$
B_{0}^{0}=1, \quad B_{1}^{0}=B_{2}^{0}=0 .
$$

Since $A_{14}{ }^{0} \neq 0$ implies $A_{14}{ }^{0}=1$ and $A_{12}{ }^{0}=0$ the following weight enumerators are possible by Theorem 2.5 :

${ }^{A_{0}}{ }^{0}$	$A_{6}{ }^{0}$	$A_{8}{ }^{0}$	$A_{10}{ }^{0}$	$A_{12}{ }^{0}$	$A_{14}{ }^{0}$
1	27	23	12	0	1
1	30	15	18	0	0
1	29	18	15	1	0
1	28	21	12	2	0
1	27	24	9	3	0
1	26	27	6	4	0
1	25	30	3	5	0
1	24	33	0	6	0

As before we make a list of possible innexproducts of codewords with the weight 40 codeword c resp. its complement.

	$\begin{aligned} & \leftarrow 15 \longrightarrow \\ & 00 \ldots 0 \end{aligned}$	number of times
0,40	0	1
20,20	6	A_{6}^{0}
$\begin{aligned} & 18,22 \\ & 20,20 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & A_{8} \\ & { }_{8}-p \end{aligned}$
$\begin{aligned} & 16,24 \\ & 18,22 \\ & 20,20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0, \text { since } A_{34}=0 \\ & q \\ & A_{10} 0-q \end{aligned}$
14,26 16,24 18,22 20,20	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0, \text { since } A_{38}=0 \\ & r \\ & 0, \text { since } A_{34}=0 \\ & A_{12}-r \end{aligned}$
$\begin{aligned} & 12,28 \\ & 14,26 \\ & 16,24 \\ & 18,22 \\ & 20,20 \end{aligned}$	14 14 14 14 14	$\begin{aligned} & 0, \text { since } A_{42}=0 \\ & s \\ & 0, \text { since } A_{38}=0 \\ & A_{14}-s \\ & 0, \text { since } A_{34}=0 \end{aligned}$

This leads to the following weight enumerator for C :

The 3 rd equation in (3.5) now yields
$21+2 A_{10}{ }^{0}+6 A_{12}{ }^{0}+13 A_{14}{ }^{0}+p+q+4 r+8 s=117+8 B_{2}$.
Since $p \leq A_{8}{ }^{0}, q \leq A_{10}{ }^{0}, \quad r \leq A_{12}{ }^{0}$ and $s \leq A_{14}{ }^{0}$ one can deduce the following inequalty:
$A_{8}{ }^{0}+3 A_{10}{ }^{0}+10 A_{12}{ }^{0}+21 A_{14}{ }^{0} \geq 96+8 B_{2}$.

All weight enumerators in (3.10) contradict this inequalty. We now come to our last case:
$A_{36}=0$

Let $\underline{c}_{1} \in c$ be of weight 36 . The residual code c^{0} of c w.r.t. \underline{c}_{1} has parameters $(19,6,8)$. Let $A_{1}{ }^{0}$ and $B_{i}{ }^{0}, 0 \leq i \leq 19$, denote the weight enumerator of C^{0}, resp. its dual code. Let $\underline{c}_{2} \in C$ correspond to a codeword $\underline{u}_{2} \in C^{0}$ of weight 8. It follows from $d=26$ that \underline{c}_{2} has innerproduct 18 with \underline{c}_{1}. The residual code c^{00} of c^{0} w.r.t. \underline{u}_{2} has parameters $(11,5,4)$. Let \underline{c}_{3} be a codeword in C, whose restriction \underline{v}_{3} to c^{00} has weight 4. Then we have w.1.0.g. the following picture

| | $\leftarrow a \rightarrow$ | $+18-a \rightarrow$ | $b \rightarrow$ | $+18-b \rightarrow$ | $+c \rightarrow$ | $+8-c+$ | $+4 \rightarrow$ | $+7 \rightarrow$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \underline{c}_{1} | $11 \ldots 1$ | $11 \ldots 1$ | $11 \ldots 1$ | $11 \ldots 1$ | $0 . .0$ | $0 . .0$ | $0 . .0$ | 00.0 |

It follows from the minimum distance of c^{0} that

$$
c+4 \geq 8 \quad \text { and } \quad(8-c)+4 \geq 8 \quad \text { i.e. } c=4
$$

Since $d=26$, we get from $\underline{c}_{3}, \underline{c}_{1}+\underline{c}_{3}, \underline{c}_{2}+\underline{c}_{3}, \underline{c}_{1}+\underline{c}_{2}+\underline{c}_{3}$ that:

$$
\begin{aligned}
a+b+8 & \geq 26 \\
(18-a)+(18-b)+8 & \geq 26 \\
(18-a)+b+8 & \geq 26 \\
a+(18-b)+8 & \geq 26
\end{aligned}
$$

i.e. $\quad a=b=9$.

The residual code c^{000} of c^{00} w.r.t. \underline{v}_{3} has parameters $(7,4,2)$. Suppose that ${ }_{-4} \in C$ has a restriction to $c^{000^{-3}}$ of weight 2 . Let the innerproducts of \underline{c}_{4} with the various sets of coordinates be as depicted below:

	$\leftarrow 9 \rightarrow$	$\leftarrow 9 \rightarrow$	$\leftarrow 9 \rightarrow$	$\leftarrow 9 \rightarrow$	$\leftarrow 4 \rightarrow$	$+4 \rightarrow$	$+4 \rightarrow$	$\leftarrow 7 \rightarrow$
c_{1}	$11 \ldots 1$	$11 \ldots 1$	$11 \ldots 1$	$11 \ldots 1$	0000	0000	0000	$00 \ldots 0$
\underline{c}_{2}	$11 \ldots 1$	$11 \ldots 1$	$00 . .0$	00.0	1111	1111	0000	$00 \ldots 0$
\underline{c}_{3}	$11 \ldots 1$	$00 \ldots 0$	$11 \ldots 1$	00.0	1111	0000	1111	$00 \ldots 0$
\underline{c}_{4}	α	B	γ	δ	κ	λ	μ	2

It follows from the minimum distance of c^{00} that $\mu=2$. Similarly by interchanging \underline{c}_{2} and \underline{c}_{3} one gets $\lambda=2$. From the minimum distance of c^{0} it follows that $k=2$. By taking all linear combinations of $\underline{c}_{1}, \underline{c}_{2}$ and \underline{c}_{3} with \underline{c}_{4} one gets 8 inequlities, yielding the unique solution $\alpha=\beta=\gamma=\delta=4 \frac{1}{2}$. We conclude that C^{000} has parameters $(7,4,3)$ (in stead of $(7,4,2)$), which code is unique and generated by

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The following property is a consequence of the observations made above: Any two codewords of weight 4 in the $(11,5,4)$ code c^{00} have an intersection of at most 1.

We shall now show that this property implies that c^{00} is unique and equivalent to the code generated by

$$
\left(\begin{array}{llll|lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.11}\\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

We do know that c^{00} is generated by

$$
\mathbf{G}^{00}=\left(\begin{array}{llll|lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & & & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
& & & 0 & 1 & 0 & 0 & 1 & 1 \\
& & & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \begin{aligned}
& \mathbf{v}_{3} \\
& \underline{v}_{4} \\
& \underline{v}_{5} \\
& \underline{\mathbf{v}}_{6} \\
& \underline{v}_{7}
\end{aligned}
$$

By adding \underline{v}_{3} to $\underline{v}_{1}, i \geq 4$, if necessary, we can assume that the 4 th coordinate of $\underline{v}_{1}, i \geq 4$, is zero.
We distinguish 2 possibilities:

A: Each of the weight 3 codewords in c^{000} corresponds to a weight 5 codeword in c^{00}. For $\underline{v}_{4}, \underline{v}_{5}$ and \underline{v}_{6} we have w.I.O.g. three possibilities for the first four coordinates:
A
A"
$A^{\prime \prime \prime}$
1100
1100
1100
1010
1100
1100
0110
1100
1010

In case $A^{\prime} \underline{v}_{4}+\underline{v}_{5}+\underline{v}_{6}$ has weight 3 , contradicting the minimum aistance of c^{00}. In case $A^{\prime \prime} \underline{v}_{4}+\underline{v}_{5}$ and $\underline{v}_{4}+\underline{v}_{6}$ are two codewords of weight 4 in c^{00} with innerproduct 2, contradicting (*). Case A"' leads to:

$$
\left(\begin{array}{llll|lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
a & b & c & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \underline{v}_{3}
$$

Since $\underline{v}_{7}+\underline{v}_{i}, 1=5,6$, has weight 3 , when restricted to c^{000} we have the following equations:

$$
\begin{aligned}
& (1-a)+(1-b)+c=2 \\
& (1-a)+b+(1-c)=2
\end{aligned}
$$

It follows that $a=0$ and $b=c$. If $b=c=0$ then $\underline{v}_{4}+\underline{v}_{5}$ and \underline{v}_{7} sontradict (*), otherwise $\underline{v}_{4}+\underline{v}_{5}$ and $\underline{v}_{5}+\underline{v}_{6}+\underline{v}_{7}$ contradict (*).

B: At least one codeword of weight 3 in c^{000} corresponds to a weight 4 (or 6 by adding v_{3} to $i t$) codeword in c^{00}.
It follows from the transitive automorphism group of the $(7,4,3)$ code, that w.l.o.g. ${\underset{-}{4}}^{\text {has this property, so one has }}$

$$
\mathbf{G}^{00}=\left(\begin{array}{llll|lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
a & b & c & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
p & q & r & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
u & v & w & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \begin{aligned}
& \mathbf{v}_{3} \\
& \underline{v}_{4} \\
& \mathbf{v}_{5} \\
& \underline{v}_{6} \\
& \underline{v}_{7}
\end{aligned}
$$

Since the residual code of c^{00} w.r.t. $\underline{-}_{4}$ must also be a $(7,4,3)$-code, it follows that the three pairs $(b, c),(q, r)$ and (u, w) must all be different and not equal to $(0,0)$. By interchanging ${\underset{-}{5}}$ and \underline{v}_{6} and the coordinates 2 and 3 , we can restrict ourselves to the following two possibilities:
$B^{\prime}:$

$$
G^{00}=\left(\begin{array}{llll|lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\mathrm{a} & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\mathrm{p} & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\mathbf{u} & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \begin{aligned}
& \mathbf{v}_{3} \\
& \mathbf{v}_{4} \\
& \mathbf{v}_{5} \\
& \mathbf{v}_{6} \\
& \underline{v}_{7}
\end{aligned}
$$

If $a=0$ the residual code of \underline{v}_{5} yields the information that $p+u=1$. Both solutions are quivalent to the matrix in (3.11) (if $p=1$ and $u=0$, apply $\underline{v}_{6}+\underline{v}_{6}+\underline{v}_{4}, \underline{v}_{7} \rightarrow \underline{v}_{7}+\underline{v}_{4}$ and a column permutation to get $p=0$ and $u=1$). Since v_{5} and v_{6} can be exchanged we have as other possibility that $a=p=1$. If $u=0$ then $\underline{v}_{3}+\ldots+\underline{v}_{6}$ and $\underline{v}_{5}+\underline{v}_{6}+\underline{v}_{7}$ contradict (*), while if $u=1$ we get a matrix equivalent to (3.11) by the transformation $\underline{v}_{5} \rightarrow \underline{v}_{5}+\underline{v}_{7}$, ${\underset{-6}{6}} \rightarrow \mathrm{v}_{6}+\mathrm{v}_{7}$.

B'' :

$$
\mathrm{G}^{00}=\left\lvert\, \begin{array}{cccc|ccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\mathrm{a} & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\mathrm{p} & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\mathrm{u} & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \underline{\mathrm{v}}_{-4}\right.
$$

By comparing $\underline{v}_{5}+\underline{v}_{6}+\underline{v}_{7}$ with $\underline{v}_{6}+\underline{v}_{7}, \underline{v}_{3}+\underline{v}_{5}+\underline{v}_{7}$ and $\underline{v}_{4}+\underline{v}_{-5}+\underline{v}_{6}$ in the cases $a=0, p=u$, resp. $a=p=1, u=0$ resp. $a=u=1, p=0$ one gets a contradiction with ($*$). So $a+p+u=1$. From the row operations $\underline{v}_{5} \rightarrow \underline{v}_{5}+\underline{a v}_{4}, \underline{v}_{6} \rightarrow(1-u) \underline{v}_{4}+\underline{v}_{5}+\underline{v}_{6}, \underline{v}_{7} \rightarrow \underline{p}_{4}+\underline{v}_{5}+\underline{v}_{7}$ one obtains a matrix equivalent to the matrix of (3.11).

We now turn back to c^{0}. Let \underline{u}_{4}, c^{0} correspond to the unique weight 7 codeword in c^{000}. Let its innerproduct with \underline{u}_{2} and \underline{u}_{3} be as depicted below

From (3.11) we now know that $c \in\{0,4\}$. By interchanging \underline{u}_{2} and \underline{u}_{3} one gets $b \in\{0,4\}$. By replacing \underline{u}_{2} by $\underline{u}_{2}+\underline{u}_{3}$ one obtains that $a \in\{0,4\}$. By adding \underline{u}_{2} and/or \underline{u}_{3} to \underline{u}_{4} if necessary, one may assume that $b=c=0$. If also $a=0$ then \underline{u}_{4} has weight 7 , which is less than the miminum distance of c^{0}. On the other hand if $a=4$ then $\underline{u}_{3}+\underline{u}_{4}$ has weight 11 , while the residual code of c^{0} w.r.t. a weight 11 codeword has parameters $(8,5,3)$, contradicting Theorem 1.4.

Now that we know that $A_{i}=0$ for $i \geq 36$ one can reduce (3.5) to

$$
\begin{aligned}
A_{26}-A_{30}-2 A_{32} & =18 \\
A_{28}+2 A_{30}+3 A_{32} & =109 \\
A_{30}+3 A_{32} & =117+8 B_{2}
\end{aligned}
$$

Subtracting the 3rd equation from the 2nd yields

$$
A_{28}+A_{30}=-8-8 B_{2}
$$

[1]
L.O. Baumert and R.J. MCEliece, A note on the Griesmer bound, IEEE Trans. Inform. Theory, vol. IT 19 (1973), 134-135.
[4] B.I. Belov, A conjecture on the Griesmex bound, Optimalization methods and their applications (All-Union Summer Sem., Khakusy, Lake Baikal, 1972) (Russian), 100-106, 182. Sibirsk. Energet. Inst. Sibirsk, Otdel, Akad. Nauk SSSR, Irkutsk, 1974.
[5] P.G. Farrell, An introduction to anticodes, CISM Summer School: Algebraic coding theory and applications, 1978.
[6] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. and Develop., 4 (1960), 532-542.
[7] V.W. Logatev, An improvement of the Griesmer bound in the case of small code distances, Optimization methods and their applications (All-Union Summer Sem., Khakusy, Lake Baikal, 1972) (Russian), 107-111, 182 Sibirsk. Energetic. Inst. Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk, 1974.
[8] F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting codes, North Holland Mathematical Library, Vol. 16, North Holland, Amsterdam, 1977.
[9] G. Solomon and J.J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control, 8 (1965), 170-179.
[10] H.C.A. van Tilborg, on weights in codes, Report 71-WSK-03, Department of Mathematics, Eindhoven University of Technology, The Netherlands.

[11] H.C.A, van Tilborg, on the uniqueness resp, nonexistence of ectain codes meeting the Griesmer bound, to appear in Information and Control.

