EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A network flow algorithm for just-in-time project scheduling

Citation for published version (APA):
Levner, E. V., & Nemirovsky, A. S. (1991). A network flow algorithm for just-in-time project scheduling.
(Memorandum COSOR; Vol. 9121). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/2bf26b69-fdf0-4e05-b654-5c7a55c37993

TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica

Memorandum COSOR 91-21

A NETWORK FLOW ALGORITHM
FOR JUST-IN-TIME PROJECT SCHEDULING

E.V. Levner
A.S. Nemirovsky

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.0. Box 513

5600 MB Eindhoven

The Netherlands

ISSN: 0926-4493

Eindhoven, September 1991
The Netherlands

A NETWORK FLOW ALGORITHM
FOR JUST-IN-TIME PROJECT SCHEDU'LING1

E.V. Lewner

Eindhoven University of Technology
P.0. Box 513
5600 MB Eindhoven
The Netherlands

A.S. Nemirovsky

Central Economical-Mathematical Institute
of the Academy of Sciences of the USSR
Krasikova st. 32
117418 Moscow
The USSR

5
“This report is a revised versioen of our two talks presented at the

International School-Seminar on Optimization Methods and Applications
(Baikal Lake, USSR, 1989), organized by the International Institute
for Applied Systems Analysis, Laxenburg, Austria, and the Second

International Workshop on Project Management and Scheduling,

Universite de Technologie de Compiegne, France, 1990.

A NETWORK FLOW ALGORITHM
FOR JUST-IN-TIME PROJECT SCHEDULING

E.V. Levner
Eindhoven University of Technology, Eindhoven, Netherlands

A.S. Nemirovsky
Central Economical-Mathematical Institute, Moscow, USSR

Abstract

We show the polynomial solvability of the PERT-COST project
scheduling problem in the case of: (i) the objective being a
piecewise-linear, convex (possibly, non- monotone) function of the
job durations as well as of job start/finish times, and (ii) the
precedence relations between jobs being presented in the form of a
general (not necessary, acyclic) directed graph with arc lengths of
any sign. For the latter problem, we present a network flow
algorithm (of pseudo-linear complexity) which is easy to implement
and which behaves well when the objective values grow slowly with
the growth of the problem size while the number of breakpoints in
the objective grows fast.

1. Introduction

This work contributes to the mathematical analysis of a
PERT-COST project scheduling problem with the "just-in-time"-
oriented objective/constraints (JIT-PSP). The latter problem can
be used as an auxiliary bounding problem within the branch-and-bound
and Lagrangian relaxation computational schemes for solving more
general resource-constrained project scheduling problems (see, e.g.,
[3], [12]) and, Dbesides, it is of interest on its own, being a
mathematical model of "just-in-time"™ scheduling, very important for
contemporary flexible manufacturing.

Several studies have been reported in the literature related
to some restricted cases of our project scheduling problem.

In their pioneering papers, Kelley [8] and Fulkerson [6] have
employed linear programming duality for solving the linear project
scheduling problem (PSP) in the (acyclic) PERT network and found out
the following fundamental fact: the linear PSP is dual to the
problem of finding the minimum cost flow in a network. Kelley (8]
has also showed how to reduce the piecewise-linear PSP to the
linear one by adding into the original network as many new arcs as
the total amount of linear pieces in all kpiecewise—linear

components of the objective function.

Adelson-Velsky, Voropaev and Kalinovska [1], and Kerbosch and
Schell [9] have treated the so-called generalized PERT networks
(with negative arc lengths and negative cycles), however they
considered only temporal network characteristics, not touching upon
the costs. Levner [10] has extended the latter approach by
considering the case of the cost objectve linearly depending both
on the job durations as well as on the job start/finish times, and
has shown that the problem of finding the optimal project cost of
this type in the generalized PERT nerworks is reducible (in
polynomial time) to a min-cost network flow problem.

Elmaghraby and Pulat [4] (see, also, [12]) have extended the
Kelley-Fulkerson project scheduling model introducing deadlines for
certain ‘milestone’ events and developing an adequate modification
of the Kelley~Fulkerson network flow algorithm. In [11], we have
given a general description of the problem and algorithm to be
considered in more detail in the present paper. In [5], Foldes and
Soumis have described another, Lagrangian, approach to solving a
similar network scheduling problem, in their model the PERT
networks being acyclic and the convex objective functions
depending only on the job durations.

The main result of this paper is to show the existence of an
efficient network flow algorithm for solving the PERT-COST
scheduling problem in the <case if: (i) the objective is a
piecewise-linear, convex (possibly, non-monotone) function of job
durations as well as of job start/finish times, and (ii) the
precedence relations between jobs are presented in the form of a
general (not necessarily, acyclic) directed graph with arc lengths
of any sign.

We start, in Section 2, by presenting a piecewise-linear
programming formulation of our scheduling problem. Next, in
Section 3, we show its polynomial solvability by reducing it to a
minimum cost flow problem (in an extended network with cycles
and with the cost coefficients of any sign). Finally, in Section 4,
we present a network flow algorithm which does not require the
excessive growth of the network size and escape calculations of
flows in negative cycles. Each its iteration consists in finding
maximal flow in a network of the same size as the original one;
this algorithm has pseudo-polynomial (in fact, pseudo-linear)
complexity. In Appendix we give the proof of the validity of the

algorithm.

2. Problem formulation

The project scheduling problem can be formulated as follows:

There is a set T of jobs ("tasks"™, "activities™) constituting
a project, and there is a set E of events (starting and finishing
points of various jobs of the project).

The jobs of the project are interrelated through precedence
relations of two types, NOT BEFORE and NOT LATER. Let E={1,...,n}
be a given set of events, and ti the (unknown) time at which the
event i occurs. The NOT BEFORE relations denote that some job can
be started (and/or, equally possible, can be finished) not before
than in a(i,j), the given amount of time units, after some other
job has started (and/or finished): a(i,j)Stj—ti, (i, j) EVCEXE,

V being the given set of ordered pairs of related events.

The NOT LATER relations denote that some job is to be started

(and/or, equally possible, to be finished) not later than the

given time b(i,) before some other job will start (finish):
tj—tisb(i,j), (i,) €eVCEXE,

where -wsSa(i,j)=<b(i,j)=+wo for all (i, j)€v. Evidently, a(i,j)=-w
(and, respectively, b(i,j)=+w) means that there is no corresponding
NOT BEFORE (NOT LATER) relation between the events i and j.

For each job TeT, there are:
- release times r(+) and deadlines d(*) for its start/finish,
- limits a(+) and b(*) on its time duration.

The objective function of the problem is the project cost
which is assumed to involve components of two types: a
plecewise-linear convex cost functions ¢T(t(T)) depending on the
(unknown) 3job duration t(T) (and representing penalties incurred
for the project jobs implemented too slowly as well as too hasty),
and, also, a piecewise-linear convex cost functions ¢i(ti) each
depending on the (unknown) occurence time of the event i, and
representing penalties incurred for the project Jjobs started
(finished) too late as well as too early.

Let us construct the PERT network N corresponding to our
problem: its nodes are identified with events i€E={1,...,n}, and
its arcs are identified with the ordered pairs of events (i,j)e€V
appearing above, the numbers a(i,j) and b(i,j) being assigned to
the arcs (it is clear that some arcs of N depict project jobs while
some other are dummy).

Observe that if V contains both a pair (i,j) and its

"inverse", (j,1) then one of these pairs (in fact, any one of
them) is superfluous.
Indeed, a pair of inequalities

a (il j)stj"tisb (il j) '
a(j,i)sti-tjsb(j,i)
is equivalent to an inequality
a'(i,j)Emax{a(i,j),—b(j,i)}Stj-tiSb'(i,j)smin{b(i,j),-a(j,i)}.

Thus, we can delete the arc (j,i) and modify the bounds
(namely, a(i,j):=a’(i,j), b(i,j):=b’(i,j)) and the cost function
(¢ij(r):=(¢ij(1)+q3i(_1))’ assigned to the remaining arc (i, 3j), the
latter guaranteeing the equivalence between the initial and new
problems.

Thus, from now on we assume that
(i,7)ev > (F,1i)eV.

The problem, which we call the "just-in-time" version of a
project scheduling problem, JIT-PSP, is: by the choice of job
durations t(i, j) and event occurence times ti' to find the minimal
total cost of the project subject to the precedence and

arrival/deadline constraints:

minimize Z ¢ij(t(1,J)) + Z ¢i(ti)
(i, j) €T i€E
» subject to

r st .,=<d,, i€E,
i i1

t(i,j)+ti-tjso, (i, j)€VCEXE,

a(i,j)=t(i,j)sb(i,j), (i,3F)eVCExE.

It is quite clear that any variable ¢t (i,3j) in the latter
formulation may be substituted by a difference of variables of the
form tu-ti, where v is a node added into arc (i,3j), and after that
our piecewise-linear programming problem may be rewritten in terms
of variables ti only (the proof is given in Appendix 1):

minimize @(t ... t) = Z 0 40t57t,) (1)

(i, j)ev

subject to

a(i,j)Stj-tiSb(i,j), (i, j) €VCEXE, (2)

where associated with each pair (i,j)eV is its cost function
¢ij(tj—ti), ¢ij(t) being the given convex, piecewise-linear
(not necessarily monotone) function on the real axis.

Let us denote by I' the directed graph (E,V) with the set of
nodes E and the set of arcs V, and let V'={(j,i)|(i,j)€V} be the
set of arcs "inverse" to the arcs of T.

Let V*=VUV’ and F* be the directed graph with the set of
nodes E and the set of arcs V*. Let us define a(i,j) and ¢ij for

(i, j)ev’ as follows: a(i,j)=-b(j,1i), ¢ij(t)§0.
*
Now a (i, j) and ¢ij are defined for all (i, j)ev .

JIT-PSP (1)-(2) is obviously equivalent to the following

problem:
minimize @(t ,...,t)= z¢ij(tj-ti) (3)
(i,j)ev’t
subject to
*
a(i,j)+ti—tj50, (i, j)ev . (4)

Let us characterize now the difference between our JIT-PSP
model and the conventional PSP.

First, while traditional PSP models usually work with acyclic
PERT networks (see, e.g., [4]1-[6]1, [8]), our JIT-PSP model focuses on
the generalized PERT networks permitting of negative arc lengths and
cycles (of non-positive length). The lattér gives us the possibility
to include into the model: (i) the "just-in-time"-oriented
constraints of the form t,sd,, i€E, and |tj-ti|5b(i,j), (i, j)e€v, and,
also, (ii) the job-overlapping constraints.

Second, while in the traditional PSP the 3job cost is a
function of the job duration only, in JIT-PSP the cost function
(1) is ™just-in-time"“-oriented, i.e., it embraces, also, convex
penalties incurred both in the case if the activity begins too
late/too early just as in the case if it ends too late/too early.
Formally, in JIT-PSP each term in (1) depends on the time shift,
tj—ti, between events i and j, whereas in the Kelley-Fulkerson PSP
model each cost term depends on the duration of the activity,
t(i,j), which may be less than the corresponding time shift, the
latter fact not permitting us to express the ti variables in terms

of job durations t(i,7).

3. JIT-PSP and network flows

Now we show that even in the presence: (i) of the (non-
negative) cycles in the PERT networks, and (ii) of the terms in the
project cost (3) depending not only on the job durations but also
on the event ocurrence times, our scheduling problem (3)-(4) can be
reduced to a minimum cost network flow problem. The reduction is
done just in the same way as it has been performed by Kelley [8]
(see, also, [13]) for the restricted case of the acyclic network
and the objective depending only on the job durations.

Let us fix (i,j)€V. Let the piecewise-linear function ¢(T)=

sT=< <rs
¢ij(t) be equal to Br+7ft for Tr_l_t_Tr, 1=r=R, where

a(i,j)ET0<T1<...<TREb(i,j) (all the parameters depending on (i, 3)}).

Let us replace the arc (i,j) of the PERT network N by a set of

sequential arcs (uOEi,ul), (ul,uz),...,(,uREj), with the event

Yr-1

occurance times subjected to the constraints

a(i, j)st -t =T
"1 Yo

The corresponding cost functions are defined as follows:

] (T)=B,+r.T,
uo,ul 171

¢Ur_IIUr(t)=7rt, 2<r=R.
Observe that the 1linear JIT-PSP on the extended network
obtained in the described above manner is equivalent to the initial
JIT-PSP, the equivalence following from the convexity of the
initial cost functionms.
Now 1let wus consider a linear JIT-PSP, i.e. the problem

of minimizing the linear cost function

_d
}:cij(tj-ti) (where cij_ dt ¢ij(T))

*
(i,j)ev

subject to the constraints

*
a(i, j) +ti—tj50, (i,7)ev .

*
V denoting (only here) the arcs of the extended network.
Clearly, the problem P, dual to this one, is formulated as
follows:
minimize Z -a,., A,
ij 1ij
. . *
(i, j)€V

by choosing nonnegative Aij subject to the constraints

LAy = Lry- Yoy - Loy ey JeE

. , s * . . . * * *
i:(i,7)ev i:(j,1i)ev i:(1,j)ev i:(j,1i)ev

(notice that Z pj=0).
J

We see that P is a minimum cost network flow problem (with
infinite capacities of the arcs). The coefficients =-a(i,j) can be
negative as well as positive (observe that in the Kelley-Fulkerson
formulation of PSP these coefficients are nonnegative).

Thus, one evident way to solve efficiently JIT-PSP is to
reformulate it as a linear JIT-PSP on an extended network and then
apply to its dual a flow network algorithm which is able to cope
with cycles and negative cost coefficients. Such algorithms (for
example, the so called "Out-of-Kilter Method") have been presented,
e.g., in [4], [6], [8] (see, also, surveys [2], [7]). These network
flow algorithms are not discussed in this paper.

On the other hand, in some practical applications, when
the extended network turns out to be inadmissibly large, it is
desirable to solve JIT-PSP without extending the original network.
In the next section, we present the corresponding algorithm which
reduces the solution of JIT-PSP to a series of calculations of
maximal flow in a network of the same size as the original
(not-extended) network. The computational complexity of the algorithm
is O(R*c), where c¢ is a (polynomial) complexity of finding the
maximal network flow (see, e.g., [2], [7] for further datails), and
R=¢(t*)-¢(t**), t* being some initial problem’s solution,

* %k

t the optimal one.

4. Algorithm
4.1. Obtaining a feasible solution

For the sake of simplicity from now on we assume that our
JIT-PSP satisfies the following conditions, not tooc restrictive
from the practical viewpoint:

(A) There exists an initial node i ,€E such that for each
other node k€E there exist two directed paths ¥ and 7’ in F*, the
first one going from i, to k and the second going from k to i, such
that a(i, j)>-w for all arcs (i,j)erlUy’.

It is clear that Assumption (A) together with (2) implies the

existence of a constant L such that

t.-t, |=L (5)
1 .1*

for each feasible solution {ti} of (1)-(2).

(B) All the quantities a(i,j} and b(i,j) in (1)-(2) are
integers (or #w); all the cost functions ¢ij are convex
piecewise-linear functions taking integer values at integer

points, their breakpoints being also integer.

Notice that the integrality condition (B) 4is important for

providing the pseudo-polynomiality property of the algorithm to be
presented below.

(C) For all (i,j)ev, a(i,j)<b(i,j) (see (2)).

This assumption, in fact, does not lead to the loss of
generality, since in the case of af(i,j)=b(i,j) for some (i, 3j)eV,
or, equivalently, tj—ti=a(i,j), we can eliminate the variable tj'
by substituting j=ti+a(i,j), without [breaking the problem
structure.

The following Proposition is wvalid:

Proposition. JIT-PSP (3)-(4) 1is consistent iff the
corresponding graph F*= (E, V*EWJV’), with arc lengths being
defined as
* a(i,j), if (i,3jlev,

a (i,j) =
- b(j, i), if (i,3j)ev’,
has no cycles of positive total length. In the case of consistency

* * *
the set of numbers {ti =0; tiE maximal length of paths in T
*

starting at i, and finishing at i, i#i } is a feasible solution

to (3)-(4). A consistent JIT-PSP is solvable.

Proof. The set of inequalities (2) can be rewritten as

* *
tj-tiza (i,3), (i,j)ev ; so in the case of consistency each cycle in

F* has a nonpositive length. Conversely, if all the cycles in F* are
of nonpositive lengths, then the above numbers t: are well defined
(since in this situation the lengths of paths linking i, and i#i, are
bounded from above and not all of these lengths are equal to -wdue to
(a)). It ii'cieai that t:, by Zirtue 2? their origin, satisfy the
relations tj—tiza (i,3), (i,j)ev , so {ti} is a feasible solution.

It remains to verify that the consistent JIT-PSP is solvable.

Indeed, {ti} is feasible to the problem iff {tiE ti_ti } is feasible,
*

and both of the feasible solutions are of the same cost. So the

additional restriction ti = (0 does not change objective’s optimal
*

value in (3)-(4); but under this restriction the set of feasible
solutions, due to (5), is a compact (which is nonempty when the
problem is consistent). So the solvability of the consistent JIT-PSP,
satisfying (A), is obvious.

Proposition shows that, by using the standard techniques of
graph theory, one can either find an integer feasible solution {t;}
to our JIT-PSP problem or find out that the problem is inconsistent,
performing this in no more than O(nl) operations, n being the number

*
of nodes and 1 being the number of arcs in T .

4.2. Constructing the flow network

Each iteration of the algorithm to be described below,
consists of finding the maximum flow in a flow network N*(t)
depending on the feasible solution {t}.

Let us describe now how we construct the auxiliary network
N (t) and then extend it to the network N*(t).

The node set of the network N(t) is E.

The arc set, V(t), of N(t) will be constructed from V and
for each arc (i,3j)eV, V(t) will contain one and only one of two
arcs {(i,3),(j,1i)}. In order to define V(t), we need to observe
that for the given (i,3j)e€eV and our {ti}, one and only one case,
A, B or C, is possible:
either a(i,j)<tj—ti<b(i,j) (case A(i,7)),
or a(i,j)=tj—ti<b(i,j) (case B(i, 7)),
or a(i,j)<tj-ti=b(i,j) (case C(i,7)).

These cases are disjoint since a(i,j)<b(i,j), due to Assumption

<) .

Now we can define the arcs in V(t) and their capacities in

the following way. In the case A(i,j) we include (i,3j) into V(t)
and assign to it the capacity d(i,j)=¢’(tj—ti+0)—¢’(tj—ti-0),

where f’ (t+0) denotes the right, and f’(t-0) - the left derivative
of a piecewise linear function f at a point T. In the case B(i, j)
(respectively, C(i,j)) we include into V(t) the arc (3j,1)
(respectively, (i,j)) and assign to it the capacity d(+,*)=+w.
Notice that the capacities are nonnegative due to the convexity of
0.

It remains to describe the sources and the sinks in the flow

network N (t}) we are constructing. Let for (i,3j)eV(t) the

quantities p (i, j) be defined as follows:

¢§j(tj-ti-0)' in the cases A(i,j) and C(i,3),

pli,j) = (6)
_¢3i(ti_tj+0)’ in the case B(j,1).

Let us for ke€E define

c(k) = Z p(i k) - z p(k,i). (7)
i:(i,k)e€vV(t) i:(k,1)ev(t)

The nodes k with o (k)>0 (respectively, o¢(k)<0) by the
construction, be the sources (respectively, the sinks) of our flow
network; the value of a source/sink k is, by definition, |0(k)|. The
network we have produced is the desired auxiliary network N (t).

Let us extend the network N(t) by two nodes, s (a "supersource")
and f (a "supersink") and by arcs from s to each of the sources k (of
capacities d(s,k) = o(k)) and by arcs from each of the sinks k to f
of capacities d(k,f) = |o(k)|. Let E' and V*(t) denote the set of

*
nodes (arcs) of the extended network, N (t).

4.3 Description of the algorithm

OQur algorithm works as follows. At the beginning of each
iteration of the algorithm there is an integer feasible solution to
(3)-(4), t={ti}. At the iteration either it is established that
this solution is optimal, or the solution is transformed into
another integer feasible solution, t'={t§}, such that

¢(t’) = ¢(t)-1. (8)

The current iteration of the algorithm consists of solving

*
the following Max-Flow Problem P (t) in the network N (t):

10.

maximize the flow value

) = Z Als, i)
i:(s,i)evf(t)
subject to
0=A (1,9)=d(1,9), (i,9)ev’(t),

and

div A= A(i, k) - A(k,i) = 0, keE
ii(i, K eV (t) i:(k,i1)ev’(t)

Notice that, by (B) and the integrality of t, the values of
*
sources and sinks in the network N (t) are integers, and the
capacities of all arcs are integers or *w.

Let us solve P (t) (there is a lot of appropriate alorithms

(9)

(10)

(11)

solving the problem with the complexity polynomial in the size of the

*
flow network, see, e.g. [2], [7]), and let A Dbe the corresponding

*
maximal flow and m be its value. Since the capacities in P (t) are

*
integer, the quantities A (*,*) can be chosen to be integral too

(this is the well-known property of the Max Flow Problem).

It is clear that

*

n= Vo - ¥ A (i,8) =
i:(s,i)evf(t) i:(i,f)ev+(t)

t , . .
keE, k 1s a source ke€E, k is a sink

(where the first equality holds by virtue of (11), the second by

virtue of Z o(k)=0, the latter being a corollary of (7)).
k€E
If the inequality in (12) turns out to be an equality, we

claim that t is an optimal solution to our JIT-PSP and terminate.
Otherwise we find the minimal cut in N*(t), (Es,Ef),
corresponding to the maximal flow A* (recall that Es consists of s
and of all the nodes linked with s by paths with arcs being not
saturated by the flow A*, while Ef=E+\Es). It turns out that in
the case under consideration (i.e. in the case of n*<nt), both of
the sets EsnEEES and thEEEf are nonempty. Then we construct the
new solution, t’, in the following way:

t, if i€E
.1' SI

=t = Z c(k)= Z o (k) (12)

t) = (13)
i

+ i] .
ti 1, if 1eEf

Under Assumptions (A)-(C), the above procedure, being applied

1.

to an arbitrary integer feasible solution to (3)-(4), t, has the
following properties:

Theorem 1. In the case of n*=nt, the vector t is an optimal
solution to (3)-(4).

Theorem 2. In the case of n*<nt, t’ produced by (13) is well
defined and it is the integer feasible solution to (3)-(4) such
that (8) holds.

These theorems Jjustifying the above algorithm are proved in
Appendix 2.

Corollary. Under Assumptions (A)-(C), JIT-PSP (3)-(4) is
either inconsistent, or possesses an integer optimal solution t**
One can find out, in no more than O(nl) running time, which of the
cases takes place by seeking for the feasible solution t* described
in Proposition, and then one can obtain the optimal t** (if it

* * &
exists) in no more than R=¢(t)-¢(t) iterations of the above

algorithm, each consisting in solving the max-flow problem P (t).
5. Concluding remarks

The algorithm presented in the paper is "pseudo-polynomial"®,
{(in fact, pseudo-linear) though not polynomial (recall that this
means that the complexity of the algorithm is bounded by a
polynomial in the length of input and in the magnitude of the
residual R though not in the 1length of problem’s input only).

Apparently, this complexity bound for JIT-PSP is
theoretically improvable. Indeed, JIT-PSP can be reduced to the
minimum cost network flow problem, and, the latter problem admits
polynomial and even strongly polynomial algorithms (the latter term
means that the complexity of the algorithm is polynomial in the
problem size, (n,1); see [2],[7] for further details).

However, if compared with the Ednmonds-Karp-Dinic scaling
technique as well as with the strongly polynomial Tardos method,
our algorithm has evident, practically important, advantages: it is
very easy to implement and it behaves good if the objective values
grow slowly with the growth of the problem size, while the number
of breakpoints in (3) grows fast. More thorough experimental study

of this algorithm seems to be rather useful; moreover, apparently,

can be transformed into the polynomial one (using techniques
described, e. g., in [2]}, (7)), however, these questions fall out of

limits of this paper and may be considered to be possible directions

for further research.

12.

13.

Appendix 1
In this appendix we prove the reducibility of the conventional
project scheduling problem, PSP, to JIT-PSP. Recall the formulation
of PSP as presented in [6] and [8]:
By the choice of durations of activities T(i,j) and
event occurence times T (i), to minimize
Y c(i,j) (B(i, 7) - T(i,3))
(i,3) €A

subject to
T(f)-T(s)=T,
T(i,j)+T(i)-T(j)=0, (i,3j)€A,
A(i,j)=t(i,j)=B(i,j), (1i,7)€A,

A(i,j), B(i,j), c(i,j), T being the given integers, A being the set
of arcs in the corresponding PERT network representing the project,
s/f being the initial/final event of the project.

In order to reformulate the latter problem as the JIT-PSP, we,
first, add into each arc (i,j)eA a new node, u, so replacing (i,j)e€A
by two sequential arcs (i,u) and (u,j). Then, by substituting (for
each (i,j)e€A) ti=t(i), tj=1(j), tu=1(i)+t(i,j), we can reduce the
unequalities in the PSP corresponding to a pair (i,j)€eA to the
JIT-PSP form: a(i,u)stu—tisb(i,u), OStj-tu, where a(i,u)=A(i, j),
b(i,u)=B(i, 7).

As for the inequality T (f)-T(s)=T, by including the arc (s,f)
into the network representing the project, we can make it to become a
JIT-PSP type inequality.

It remains to take the functions ¢iu(t)=cij(B(i,j)-T), ¢uj50
as the cost functions in the JIT-PSP reformulation of (3)-(6), and
the reduction of PSP to JIT-PSP is completed.

Notice that we can easily include into the JIT-PSP model the
‘deadline constraints' tisdi, ieM. Indeed, 1let us introduce a
special, 4initial, event s and extend the original network by
inserting new arcs (s,i), ie€M; let also a(s,1i)=-w, b(s,i)=di, ¢Si50,
ieM. It is clear that if {ti} is a feasible solution to the
resulting JIT-PSP, then {ti - ts} is also feasible (and of the same
cost as the initial one); so the optimal solution to JIT-PSP can be
found in the set of feasible solutions with ts=0, and these

solutions are exactly those which, besides the precedence conditions,

satisfy the deadline constraints.

Appendix 2

In this appendix we prove Theorems 1 and 2.

For all (i,j)eV*(t) let us denote
*
¢ij(u + tj - ti) - {p(i,j) + A (i,j)} u, case A(i,]),
*
hij(U)— ¢ji(—u + ti - tj) - {p(i,j) + A (i,3)} u, case B(j,1i),
*
¢ij(u + tj - ti) - {p(i,j) + A (i,7)} u, case C(i,7).

Let T={ti} be a feasible, not necessarily integral, solution to

(3)~(4) and let A={AiETi—ti}. Then we have

5(T)=¢ (T) -9 (t) = z (hy (B -B,)=h, (0} +
(i, j)ev(t)

*
+ z (P (i, 304X (1, 3) 1 (B,-B,) =
(1,j)ev(t)

= h,. (A -A,)-h, . (0 + i) A, (Al)
Z (hy (By=B) =h, (0)) 1 jZE 7(3) A ,
(i,3)ev(t)

where for each ke€E

* *
¥ (k)= z (A (i,k)+p(i,k)} - Z (A (k,i)+p(k, i) }=
i:(i,k)ev(t) i:(k,1)ev(t)
=0(k)+divkh*—£(k)=0(k)-8(k), (AZ2)

*
A (s,k), if k is a source,

€ (k)

0, 4if k is neither a source nor a sink, (A3)
*
-A (k,f), 4if k is a sink

(we have taken into account (12) and (15); notice that A is a
flow, so divkh*=0).

Let us first prove the following

Lemma. Each term in the sum denoted by { 1}, (see (Al))

1
is nonnegative:

h,.(A,-b8,)zh,_ (0). (a4)
3 R B A & |

Proof. Let us fix an arc (i, j)ev(t).

Assume that the case A(i, j) takes place. Then we have

14,

*
{p(irj)+k (ilj)}e[p(ilj)l P(izj)+d(irj)] =
= [¢§j(tj—ti—0), ¢;j(tj-ti+0)] (A5)

(we have used in turn (10), (6) and the definition of d(i,j) in
the case under consideration). Inclusion (A5) means that

’ - ’ . :
O [h] (T o) | hij(t+o)|r=0] and (A4) holds since h is

=0’
convex.

The calculations above show that the following implications hold:

*
{(i,j)ev(t) and the flow A saturates the arc (i,j)} =
. =0. A
hij(t+0)|r=o 0 (A6)

*
{(i,j)ev(t), the case A(i,j) takes place, and A (i,3j)=0} >
’ - =0. 7
hij(r 0)|T=0 0 (A7)

Indeed, in the cases B(j,i) and C(i,j) the capacity of the arc
(i,j)ev(t) is infinite, so the arc cannot be saturated by the flow
A*. Thus, the premise in (A6) implies that the case A(i,j) takes
place. Now A*(i,j)=d(i,j) (the latter is the premise in (A6)) means
that {P(i,j)+A*(i,j)}=¢£j(tj-ti+0) (due to (6) and to the definition
of d(i,j) in the case A(i,j)). The latter equality and the definition
of hij(o) immediately lead to the conclusion in (A6).

Further, the premise in (A7) states that the case A(i,j) takes
place. Then A*(i,j)=0 (the latter is included into the premise in
(A7)) implies that {p(i,j)+h*(i,j)}=¢§j(tj-ti-0) (by (6) and since
A(i,j) takes place). The latter equality and the definition of hij(°)
lead to the conclusion of (A7).

Assume that the case B(j,1) takes place. Then we have
*
{p(irj)+A (ilj)}e[p(ilj)l+m)=[—¢3i(ti—tj+o)l+m)

(due to (10) and (6)).

The latter relation together with the definition of hij means
that héj(t—0)|t=050, so, by the convexity of hij, hij(u)zhij(O), if
u=g0.

Since ti—tj=a(j,i) in the case B(j,i) and, besides, t is
feasible to (3)-(4), i.e. ti-tha(j,i), we have Dj —Diso, and (A4)
holds in the case B(j,i). The above considerations also prove the

implication
*
{(i, j)ev(t), the case B(j,1i) takes place, A (i,3)=0} =

’ - = A
hi 0) |, _p=0- (A8)

15.

Assume that the case C(i,j) takes place. Then considerations
similar to those of the previous case show that hij(u)zhij(O), if
u=0; the latter in the case under consideration leads to (A4). By
the same reasons the following implication holds:

By the similar reasons, the following holds:
*
{(i,j)ev(t), the case C(i,j) takes place, A (i,j)=0} >
4 - ==
h}(T-0) | gmg=0-
Lemma is proved.
Notice that (A7), and (A8) lead to the implication

*
{(i,7)ev(t), X (i,7)=0} = hj(t=0) | =0=0" (R9)

*
Proof of Theorem 1. Let us prove that in the case of =n =nt,
the right hand side in (Al) is nonnegative for each feasible T.

Since { }l is nonnegative due to Lemma, it suffices to verify that

{ }2 = 0. (A10)

Obviously, in the network N*(t) there is the cut ({s}, E+\{s)) with
the capacity nt, as well as the cut (E+\{f}, {f}) of the same
capacity (see (12)). In the case under consideration the maximal
flow value, n*, equals to the capacity of each of these cuts, so
the arcs in V+(t) leading from s to the sources and from the sinks
to f are saturated with the flow A*, or A*(s,k)=o(k) for any
source k and A*(k, f)=-0 (k) for any sink k. Hence, € (k)=c0(k),

and ¥ (k)=0, k€E (see (A2), (A3)), which immediately leads to

(A10) . Theorem 1 is proved.

Proof of Theorem 2, Assume that

*
n <Ht. (Al11)

We are going to verify that t’is well defined, feasible for the
problem (3)-(4), and that (8) holds.

First, the corresponding minimum cut (ES, Ef) of the network
(E+, V+(t)) {which, by the Max Flow - Min Cut Theorem, has the
capacity n*) can be neither ((s}, E+\{s}) nor (E+\(f}, {f}), since
the capacities of the latter cuts are equal to nt. Hence the sets
ES=EnEs and Ef=EnEf are both nonempty. By the standard properties of
the maximal network flow each arc in V(t) leading from Es into E_ is

f

*
saturated by A , while the flow in arcs leading from E_ into Es

f
equals zero.

Let us verify that t’ defined by (13) is feasible for (3)-(4),
and satisfies (8).

Indeed, let (i,j)eV(t). By (13) the quantity tijEtg—ti
differs from tijEtj-ti iff the arc (i,j) either leads from E
into Ef (situation 1), or leads from Ef into Es (situation 2). In
the situation 1 the arc is saturated by the flow A , and hence it
is of finite capacity; the latter can occur in the case A(d, j)
only. Thus, in the situation 1 the case A(i,j) takes place, while
the situation 2 can occur in each of the cases.

In the case A(i,j), by definition of the cases, one has
a(i,j)<tij<b(i,j), while |Tij-1ij =1. These relations together
with the integrality of the input data and of t, t/ imply that
a(i,j)srijsb(i,j).

In the case B(j,1i) the arc (i,3j) leads from E_ into Es' 50

f
by (13) Tij=1.,—l=tj~ti—1=-a(j,i)-l (the latter is due to the

definition ofljthe case B(j,i)), so ti—t3=a(j,i)+1, and the
integrality of the data leads to inequality (4) corresponding
to the arc (j,i)eV. By similar arguments in the case C(i,)
the pair (t;,t;) satisfies inequality (4) corresponding to the
arc (i,j)e€vV.

Thus, t’ is a feasible solution to (3)-(4).

It remains to prove that (8) holds. Let Ai=t£-ti’ i€E; we
desire to verify that (see (Al))

S(t’)=-1,
By (Al), it sufficies to show that

hij (Aj-Al.)=hij (0), (i,3j)ev(t) (Al12)
and

{ }2 = -1. (A13)

Let us prove (Al2). For given (i, j)€V(t), by the same
reasons as above, one of three cases is possible:
(i) either A ,-A,=0, or (ii) A . -A.=1, or (iii) A .-A.=-1.
J 2 J 2z J 3
In the case (i), (Al2) is obvious.

Further, in the case (ii) we have:
{(jeEf) and (ieEs)} (due to (13)),

{(jeEf) and (ieES)} 2 {A(i,j) and (A*(i,j)=d(i,j))}
(by the reasons described above, in the proof of the feasibility of
t'),
(A¢i,3) and A" (4,3)=d(1,3))) = (b7 (0+0)|_;=0) (due to (A6)),

17.

{h!_ (x+0)|__ =0} » {h, (1)=h, (0)}
ij T=0 17 13

(since h , as well as ¢.., has only integer breakpoints).
So in the case_(ii) relation (Al2) also holds.
In the case (iii) we similarly have

{(JEES) and (ieEf)} (due to (13)),

*
{(jeEs) and (ieEf)} 3 {A (i,7)=0}

*
(since the flow A in the arcs leading from E_ into Es equals

f
zero),

*
(A (i,7)=0} = {hij(r~0)|r=0=0} (due to (A9)),
{hij(r—0)|1=0=0} >y (~1)=h, (0)}

(since h_ , as well as ¢ , has only integer breakpoints). So in
all the cases relation (Al2) holds.
Now let us prove (Al3). From (13) it is clear that
(1,= 7 v,

2 kEEf
If keEf is a source, then the arc (s,t) leads from Es into Ef
and hence is saturated by the flow A ; hence, by (A2) and (A3),
¥ (k)=0. Further, if keEf is neither a source nor a sink, then, by
(A2), (A3) and by the definition of sources and sinks, ¥(k) = 0. Now
let keE_ be a sink. Then, by (A2), and (A3), 7(k)=A*(k,f)—|¢(k)|.
Thus,

()= S kf)-|ok) | (A14)

2 keEf: k is a sink

Notice now that if k is a sink and k does not belong to Ef,
then the arc (k,f) leads from E° into Ef and hence it is saturated
by the flow A, therefore A" (k, f) =|o (k) |. Thus, (A14) leads to

* *
{ 1= Z (A (k,D)-0(k)}=n -, -

2 k€E:k is a sink

The latter quantity is a negative integer due to (All)and

therefore (A13) holds. The proof is over.

18.

(1]

(2]

(3]

(4]

(3]

(6]

{7

(8]

[9]

(10]

[11]

(12}

[13]

19.

References

Adelson-Velsky, G.M., Voropaev, V.I., and Kalinovska S.S.
"Planning on generalized network models", Proceedings of 4th
Winter School on Mathematical Programming, Central Economical-
Mathematical Institute, Moscow, v. 3, 1972, 3-18 (in Russian).

aAhuja, R.K., Magnanti, T.L., and Orlin, J.B., "Network flows",
in:G.L.Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds.),
Handbooks in Operations Research and Management Science,

Volume 1: Optimization, North-Holland, Amsterdam, 1989, 211-369.

Anthonisse, J.M., Hee,K.M. van, and Lenstra, J.K.,
"Resource-constrained project scheduling: an international
exercise in DSS", Decision Support Systems, 3 (1988) 249-257.

Elmaghraby, S.E., and Pulat, P.S., "Optimal project compression
with due-dated events", Naval Research Logistics Quarterly, 2
{(1979) 331-348.

Foldes, S, and Soumis F., "PERT and crashing revisited:
mathematical generalizations", Proceedings of 2nd International
Workshop on Project Management and Scheduling, Universite de
Technologie de Compiegne, France, 1990, 398-406.

Fulkerson, D.R., "A network flow computation for project cost
curves", Management Science, 7 (1961), 167-178.

Goldberg A.V., Tardos E., and Tarjan, R.E. "Network flow
algorithms™, in: B.Korte, L.Lovasz, H.J.Promel, and A.Schrijver
(eds), Algorithm and Combinatorics, Volume 9: Paths, Flows, and
VLSI-Layout, Springer-Verlag, Berlin, 1990, 101-164.

Kelley, J.E. Jr., "Critical-path planning and scheduling:
mathematical basis. Operations Research 9 (1961), 296-320.

Kerbosch, J.A.G.M., and Schell H.J., "Network planning by the
Extended METRA Potential Method", Report KS-1.1, Eindhoven
University of Technology, Eindhoven, Netherlands, 1975.

Levner, E.V., "A parametric network analysis model", in:
A.A.Fridman (ed.), Studies in Discrete Optimization, Nauka,
Moscow, 1976, 382-394 (in Russian).

Levner, E.V., Nemirovsky A.S., "A network flow algorithm for
just-in-time project scheduling”, Proceedings of the 2nd
International Workshop on Project Management and Scheduling,
Universite de Technologie de Compiegne, France, 1990, 224-227.

Moder, J.J., Phillips, C.R., and Davis, E.W., Project
Management with CPM, PERT and Precedence Diagramming,
Van Nostrand Reinhold Company, New York, 1983

Zukhovitsky, S.I., and Radchik, I.A. Mathematical Methods of
Project Management, Nauka, Moscow, 1965 (in Russian).]

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science
PROBABILITY THEORY, STATISTICS, OPERATIONS RESEARCH
AND SYSTEMS THEORY

P.0O. Box 513

5600 MB Eindhoven, The Netherlands

Secretariate: Dommelbuilding 0.03
Telephone : 040-473130

-List of COSOR-memoranda - 1991

Number Month Author Title
91-01 January M.W.I. van Kraaij The construction of a
W.Z. Venema strategy for manpower
J. Wessels planning problems.
91-02 January M.W.I. van Kraaij Support for problem formu-
W.Z. Venema lation and evaluation in
J. Wessels manpower planning problems.
91-03 January M.W.P. Savelsbergh The vehicle routing problem

with time windows: minimi-
zing route duration.

91-04 January M.W.I. van Kraaij Some considerations
concerning the problem
interpreter of the new
manpower planning system

formasy.
91-05 February G.L. Nemhauser A cutting plane algorithm
M.W.P. Savelsbergh for the single machine

scheduling problem with
release times.

91-06 March R.J.G. Wilms Properties of Fourier-
Stieltjes sequences of
distribution with support

in [0,1).
91-07 March F. Coolen Analysis of a two-phase
R. Dekker inspection model with
A. Smit competing risks.
91-08 April P.J. Zwietering The Design and Complexity
E.H.L. Aarts of Exact Multi-lLayered
J. Wessels Perceptrons.
91-09 May P.J. Zwietering The Classification Capabi-
E.H.L. Aarts lities of Exact
J. Wessels Two-Layered Peceptrons.
91-10 May P.J. Zwietering Sorting With A Neural Net.
E.H.L. Aarts
J. Wessels
91-11 May F. Coolen On some misconceptions

about subjective probabili-
ty and Bayesian inference.

COSOR-MEMORANDA (2)

91-12

91-13

91-14

91-15

91-16

91-17

91-18

91-19

91-20

91-21

May

May

June

July

July

August

August
August
September

September

P. van der Laan

I.J.B.F. Adan
G.J. van Houtum
J. Wessels
W.H.M. 2ijm

J. Korst

E. Aarts
J.K. Lenstra
J. Wessels

P.J. Zwietering
M.J.A.L. van Kraaij
E.H.L. Aarts

J. Wessels

P. Deheuvels
J.H.J. Einmahl

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

M.W.P. Savelsbergh

G.C. Sigismondi
G.L. Nemhauser

P. van der Laan

P. van der Laan

E. Levner
A.S. Nemirovsky

Two-stage selection
procedures with attention
to screening.

A compensation procedure
for multiprogramming
queues.

Periodic assignment and
graph colouring.

Neural Networks and
Production Planning.

Approximations and Two-
Sample Tests Based on

P - P and Q - Q Plots of
the Kaplan-Meier Estima-
tors of Lifetime Distri-
butions.

Functional description of
MINTO, a Mixed INTeger
Optimizer.

MINTO, a Mixed INTeger
Optimizer. :

The efficiency of subset
selection of an almost
best treatment.

Subset selection for an
£~best population:
efficiency results.

A network flow algorithm
for just-in-time project
scheduling.

