

A network flow algorithm for just-in-time project scheduling

Citation for published version (APA):
Levner, E. V., & Nemirovsky, A. S. (1991). A network flow algorithm for just-in-time project scheduling.
(Memorandum COSOR; Vol. 9121). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/2bf26b69-fdf0-4e05-b654-5c7a55c37993

TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica

Memorandum COSOR 91-21

A NETWORK FLOW ALGORITHM

FOR JUST-IN-TIME PROJECT SCHEDULING

E.V. Levner
A.S. Nemirovsky

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands

ISSN: 0926·4493

Eindhoven, September 1991

The Netherlands

1
This report

Internacional

(Baikal Lake,

for Applied

International

Universite de

A NETWORX FLOW ALGORITHM

FOR JOST-IN-TIME PROJECT SCHEDULING1

E.V. Levner

Eindhoven University of Technology
P.O. Box 513

5600 ME Eindhoven
The Netherlands

A.S. Nemirovsky

Central Economical-Mathematical Institute
of the Academy of Sciences of the USSR

Krasikova st. 32
117418 Moscow

The USSR

is a revised version of our two talks presented at the

School-Seminar on Optimization Methods and Applications

USSR, 1989), organized by the International Institute

Systems Analysis, Laxenburg, Austria, and the Second

Workshop on ?roject. Management and Scheduling,

:'echnologie de Compiegne, France, 1990.

A NETWORK FLOW ALGOR.ITHM

FOR. JUST-IN-TIME PROJECT SCHEDULING

E.V. Levner
Eindhoven University of Technology, Eindhoven, Netherlands

A. S. Nemirovsky
Central Economical-Mathematical Institute, Moscow, USSR

Abstract

We show the polynomial solvability of the PERT-COST project
scheduling problem in the case of: (i) the objective being a
piecewise-linear, convex (possibly, non- monotone) function of the
job durations as well as of job start/finish times, and (ii) the
precedence relations between jobs being presented in the form of a
general (not necessary, acyclic) directed graph with arc lengths of
any sign. For the latter problem, we present a network flow
algorithm (of pseudo-linear complexity) which is easy to implement
and which behaves well when the objective values grow slowly with
the growth of the problem size while the number of breakpoints in
the objective grows fast.

1. Introduction

This work contributes to the mathematical analysis of a

PERT-COST project scheduling problem with the "just-in-time"

oriented objective/constraints (JIT-PSP). The latter problem can

be used as an auxiliary bounding problem within the branch-and-bound

and Lagrangian relaxation computational schemes for solving more

general resource-constrained project scheduling problems (see, e.g.,

[3], [12]) and, besides, it is of interest on its own, being a

mathematical model of "just-in-time" scheduling, very important for

contemporary flexible manufacturing.

Several studies have been reported in the literature related

to some restricted cases of our project scheduling problem.

In their pioneering papers, Kelley [8] and Fulkerson [6] have

employed linear programming duality for solving the linear project

scheduling problem (PSP) in the (acyclic) PERT network and found out

the following fundamental fact: the linear PSP is dual to the

problem of finding the minimum cost flow in a network. Kelley [8]

has also showed how to reduce the piecewise-linear PSP to the

linear one by adding into the original network as many new arcs as

the total amount of linear pieces in all piecewise-linear

components of the objective function.

Adelson-Velsky, Voropaev and Kalinovska [1], and Kerbosch and

Schell [9] have treated the so-called generalized PERT networks

(with negative arc lengths and negative cycles), however they

considered only temporal network characteristics, not touching upon

the costs. Levner [10] has extended the latter approach by

considering the case of the cost objectve linearly depending both

on the job durations as well as on the job start/finish times, and

has shown that the problem of finding the optimal project cost of

this type in the generalized PERT nerworks is reducible (in

polynomial time) to a min-cost network flow problem.

Elmaghraby and Pulat [4] (see, also, [12]) have extended the

Kelley-Fulkerson project scheduling model introducing deadlines for

certain 'milestone' events and developing an adequate modification

of the Kelley-Fulkerson network flow algorithm. In [11], we have

given a general description of the problem and algorithm to be

considered in more detail in the present paper. In [5], Foldes and

Soumis have described another, Lagrangian, approach to solving a

similar network scheduling problem, in their model the PERT

networks being acyclic and the convex objective functions

depending only on the job durations.

The main result of this paper is to show the existence of an

efficient network flow algorithm for solving the PERT-COST

scheduling problem in the case if: (i) the objective is a

piecewise-linear, convex (possibly, non-monotone) function of job

durations as well as of job start/finish times, and (ii) the

precedence relations between jobs are presented in the form of a

general (not necessarily, acyclic) directed graph with arc lengths

of any sign.

We start, in Section 2, by presenting a piecewise-linear

programming formulation of our scheduling problem. Next, in

Section 3, we show its polynomial solvability by reducing it to a

minimum cost flow problem (in an extended network with cycles

and with the cost coefficients of any sign). Finally, in Section 4,

we present a network flow algorithm which does not require the

excessive growth of the network size and escape calculations of

flows in negative cycles. Each its iteration consists in finding

maximal flow in a network of the same size as the original one;

this algorithm has pseudo-polynomial (in fact, pseudo-linear)

complexity. In Appendix we give the proof of the validity of the

algorithm.

2.

2. Problem for.mulation

The project scheduling problem can be formulated as follows:

There is a set T of jobs ("tasks", "activities") constituting

a project, and there is a set E of events (starting and finishing

points of various jobs of the project) .

The jobs of the project are interrelated through precedence

relations of two types, NOT BEFORE and NOT LATER. Let E={l, .•• ,n}

be a given set of events, and t. the (unknown) time at which the
~

event i occurs. The NOT BEFORE relations denote that some job can

be started (and/or, equally possible, can be finished) not before

3.

than in a(i,j), the given amount of time units, after some other

job has started (and/or finished): a(i,j)st .-t., (i,j)eVCExE,
] ~

V being the given set of ordered pairs of related events.

The NOT LATER relations denote that some job is to be started

(and/or, equally possible, to be finished) not later than the

given time b (i, j) before some other job will start (finish):

t .-t .sb(i,j), (i,j)eVcExE,
] ~

where -ooSa(i,j)sb(i,j)s+m for all (i,j)ev. Evidently, a (i,j)=-oo

(and, respectively, b(i,j)=+oo) means that there is no corresponding

NOT BEFORE (NOT LATER) relation between the events i and j.

For each job TET, there are:

- release times r(e) and deadlines d(e) for its start/finish,

- limits ale) and b(e) on its time duration.

The objective function of the problem is the project cost

which is assumed to involve components of two types: a

piecewise-linear convex cost funct ions t/> T (t (T» depending on the

(unknown) job duration t (T) (and representing penalties incurred

for the project jobs implemented too slowly as well as too hasty),

and, also, a piecewise-linear convex cost functions t/>. (t.) each
~ ~

depending on the (unknown) occurence time of the event i, and

representing penalties incurred for the project jobs started

(finished) too late as well as too early.

Let us construct the PERT network N corresponding to our

problem: its nodes are identified with events iEE={l, •.. ,n}, and

its arcs are identified with the ordered pairs of events (i, j) EV

appearing above, the numbers a (i, j) and b (i, j) being assigned to

the arcs (it is clear that some arcs of N depict project jobs while

some other are dummy) .

Observe that if V contains both a pair (i,j) and its

"inverse", (j, i) then one of these pairs (in fact, anyone of

them) is superfluous.

Indeed, a pair of inequalities

a (i, j)St .-t .sb (i, j),
] ~

a(j,i)St.-t .sb(j,i)
~]

is equivalent to an inequality

a' (i, j)=max{a (i, j), -b (j, i) }St .-t .sb' (i, j)=min{b (i, j), -a (j, i)}.
] ~

Thus, we can delete the arc (j,i) and modify the bounds

(namely, a (i, j) :=a' (i, j), b (i, j) :=b' (i, j» and the cost function

(~ .. (T):=(cjJ .. (T)+cjJ .. (-T», assigned to the remaining arc (i,j), the
~] ~]]~

latter guaranteeing the equivalence between the initial and new

problems.

Thus, from now on we assume that

(i,j)ev,* (j,i)eV.

The problem, which we call the "just-in-time" version of a

project scheduling problem, JIT-PSP, is: by the choice of job

durations t(i,j) and event occurence times t., to find the minimal
~

total cost of the project subject to the precedence and

arrival/deadline constraints:

4.

minimize \' </> • •(t(i,j» +L ~]

(i, j) eT

subject to

r ,St .sd., ieE,
~ ~ ~

\' </>. (t.)L ~ ~

ieE

t(i,j)+t ,-t .SO, (i,j)eVCExE,
~]

a (i, j) St (i, j) Sb (i, j), (i, j) evcExE.

It is quite clear that any variable t (i, j) in the latter

formulation may be substituted by a difference of variables of the

form t -t., where u is a node added into arc (i,j), and after that
u ~

our piecewise-linear programming problem may be rewritten in terms

of variables t. only (the proof is given in Appendix 1):
~

minimize

subject to

\' cjJ .. (t .-t .)L ~J] ~

(i,j)eV

(1)

a(i,j)St .-t.sb(i,j), (i,j)eVCExE,
] ~

(2)

where associated with each pair (i, j) ev is its cost function

f/> •• (t .-t ,), f/>. ,(T) being the given convex, piecewise-linear
~J] ~ ~J

(not necessarily monotone) function on the real axis.

Let us denote by r the directed graph (E, V) with the set of

nodes E and the set of arcs V, and let V'=((j,i) I (i,j)eVj be the

set of arcs "inverse" to the arcs of r.
* *Let V =lAJv' and r be the directed graph with the set of

*nodes E and the set of arcs V • Let us define a (i, j) and f/>., for
~J

(i,j)eV' as follows: a(i,j)=-b(j,i), f/>. ,(T)=O.
~J

*Now a (i, j) and f/> •. are defined for all (i, j)ev .
~J

JIT-PSP (1)-(2) is obviously equivalent to the following

problem:

5.

minimize

subject to

\' f/> • •(t .-t.)L ~J] ~

*(i, j) ev

(3)

*a (i,j) +t .-t ,sO, (i,j)eV.
~]

(4)

Let us characterize now the difference between our JIT-PSP

model and the conventional PSP.

First, while traditional PSP models usually work with acyclic

PERT networks (see, e.g., [4]-[6], [8]), our JIT-PSP model focuses on

the generalized PERT networks permitting of negative arc lengths and

cycles (of non-positive length). The latter gives us the possibility

to include into the model: (i) the "just-in-time"-oriented

constraints of the form tiSdi, ieE, and Itj-tiISb(i,j), (i,j)eV, and,

also, (ii) the job-overlapping constraints.

Second, while in the traditional PSP the job cost is a

function of the job duration only, in JIT-PSP the cost function

(1) is "just-in-time"-oriented, i.e., it embraces, also, convex

penalties incurred both in the case if the activity begins too

late/too early just as in the case if it ends too late/too early.

Formally, in JIT-PSP each term in (1) depends on the time shift,

t ,-t., between events i and j, whereas in the Kelley-Fulkerson PSP
] ~

model each cost term depends on the duration of the activity,

t(i,j), which may be less than the corresponding time shift, the

latter fact not permitting us to express the t. variables in terms
~

of job durations t(i,j).

3. JI'f-PSP and network flows

Now we show that even in the presence: (i) of the (non

negative) cycles in the PERT networks, and (ii) of the terms in the

project cost (3) depending not only on the job durations but also

on the event ocurrence times, our scheduling problem (3)-(4) can be

reduced to a minimum cost network flow problem. The reduction is

done just in the same way as it has been performed by Kelley [8]

(see, also, [13]) for the restricted case of the acyclic network

and the objective depending only on the job durations.

Let us fix (i,j)EV. Let the piecewise-linear function t/J(T)=

6.

t/J • • (T)
~]

be equal to (3 +'1 Tr r
for T ~T~T,

r-l r
l~r~R, where

a(i,j)=TO<T1<... <TR=b(i,j) (all the parameters depending on (i,j).

Let us replace the arc (i, j) of the PERT network N by a set of

sequential arcs (uO=i,u
1
), (ul,u2)"",(uR_l,uR=j), with the event

occurance times subjected to the constraints

O~t
U

r
-t ~

ur - 1
T -T , 2~~R.

r r-l

The corresponding cost functions are defined as follows:

t/J (T) =(31 +'11
T ,

U O' U 1

Observe that the linear JIT-PSP on the extended network

obtained in the described above manner is equivalent to the initial

JIT-PSP, the equivalence following from the convexity of the

initial cost functions.

Now let us consider a linear JIT-PSP, i.e. the problem

of minimizing the linear cost function

\c .. (t.-t.)
L~]] ~

*(i,j)EV

subject to the constraints

(where
d

c ..= dT t/J • • (T»
~] ~]

*a(i,j)+t.-t .~O, (i,j)EV.
~]

*V denoting (only here) the arcs of the extended network.

Clearly, the problem P, dual to this one, is formulated as

follows:

7.

minimize L-aij

*(i,j)EV

A ..
~]

by choosing nonnegative A.. subject to the constraints
~]

\ A ..L ~]

*i: (i,j)EV

LA ij = Lc ij

* *i: (j,i)EV i: (i,j)EV

\ c .. p., jEEL ~]]
*i:(j,i)EV

(notice that Lp .=0) .
]]

We see that P is a minimum cost network flow problem (with

infinite capacities of the arcs). The coefficients -a(i,j) can be

negative as well as positive (observe that in the Kelley-Fulkerson

formulation of PSP these coefficients are nonnegative) .

Thus, one evident way to solve efficiently JIT-PSP is to

reformulate it as a linear JIT-PSP on an extended network and then

apply to its dual a flow network algorithm which is able to cope

with cycles and negative cost coefficients. Such algorithms (for

example, the so called "Out-of-Kilter Method") have been presented,

e.g., in [4], [6], [8] (see, also, surveys [2], [7]). These network

flow algorithms are not discussed in this paper.

On the other hand, in some practical applications, when

the extended network turns out to be inadmissibly large, it is

desirable to solve JIT-PSP without extending the original network.

In the next section, we present the corresponding algorithm which

reduces the solution of JIT-PSP to a series of calculations of

maximal flow in a network of the same size as the original

(not-extended) network. The computational complexity of the algorithm

is 0 (R*c), where c is a (polynomial) complexity of finding the

maximal network flow (see, e.g. , [2] , [7] for further datails), and

* ** *R=<!J(t) -If> (t) , t being some initial problem's solution,

**t the optimal one.

8.

4. Algorithm

4.1. Obtaining a feasible solution

For the sake of simplicity from now on we assume that our

JIT-PSP satisfies the following conditions, not too restrictive

from the practical viewpoint:

(A) There exists an initial node i*eE such that for each

*other node keE there exist two directed paths 7 and 7' in r , the

first one going from i* to k and the second going from k to i* such

that a(i,j»~ for all arcs (i,j)e7U7'.

It is clear that Assumption (A) together with (2) implies the

existence of a constant L such that

It. -t. I~L (5)
~ ~*

of (1)-(2).

and b(i,j) in (1)-(2) are

for each feasible solution {t .}
~

(B) All the quantities a(i,j)

integers (or too) ; all the cost

piecewise-linear functions taking

functions 4>.. are convex
~]

integer values at integer

points, their breakpoints being also integer.

Notice that the integrality condition (B) is important for

providing the pseudo-polynomiality property of the algorithm to be

presented below.

(C) For all (i,j)eV, a(i,j)<b(i,j) (see (2)).

This assumption, in fact, does not lead to the loss of

generality, since in the case of a(i,j)=b(i,j) for some (i,j)eV,

structure.

or,

by

equivalently,

substituting

t .-t .=a (i, j),
] ~

t .=t .+a (i, j),
] ~

we can eliminate the variable t.,
]

without breaking the problem

The following Proposition is valid:

Proposition. JIT-PSP (3) - (4) is consistent iff the

* *corresponding graph r = (E, V =vUV'), with arc lengths being

defined as

a* (i,j) = { a(i,~),. if, (i,~)~V, ,

- b(],~), ~f (~,])eV,

has no cycles of positive total length. In the case of consistency

* * *the set of numbers {t. =0; t.= maximal length of paths in r
~* ~

starting at i* and finishing at i, i~i*} is a feasible solution

to (3)-(4). A consistent JIT-PSP is solvable.

9.

Proof. The set of inequalities (2) can be rewritten as

has a nonpositive length. Conversely, if all

*(i,j)eV; so in the case of consistency each cycle in*t ,-t ,;?:;a (i, j),
] ~

*r *the cycles in rare

*of nonpositive lengths, then the above numbers t, are well defined
~

(since in this situation the lengths of paths linking i* and i~i* are

bounded from above and not all of these lengths are equal to -oodue to

*(A)). It is clear that t" by virtue of their origin, satisfy the
* * * ~ * *relations t,-t,;?:;a (i,j), (i,j)eV, so {t,} is a feasible solution.
] ~ ~

It remains to verify that the consistent JIT-PSP is solvable.

Indeed, {t,} is feasible to the problem iff {t~= t,-t, } is feasible,
~ ~ ~ ~*

and both of the feasible solutions are of the same cost. So the

additional restriction t,
~*

o does not change objective's optimal

value in (3) - (4); but under this restriction the set of feasible

solutions, due to (5), is a compact (which is nonempty when the

problem is consistent). So the solvability of the consistent JIT-PSP,

satisfying (A), is obvious.

Proposition shows that, by using the standard

graph theory, one can either find an integer feasible

to our JIT-PSP problem or find out that the problem is

techniques of

*solution {t,}
~

inconsistent,

performing this in no more than O(nl) operations, n being the number

*of nodes and 1 being the number of arcs in r .

4.2. Constructing the £10w network

Each iteration of the algorithm to be described below,

*consists of finding the maximum flow in a flow network N (t)

depending on the feasible solution {t}.

Let us describe now how we construct the auxiliary network

*N(t) and then extend it to the network N (t).

The node set of the network N(t) is E.

The arc set, V(t), of N (t) will be constructed from V and

for each arc (i,j)eV, V(t) will contain one and only one of two

arcs {(i, j), (j, i)}. In order to define V(t), we need to observe

that for the given (i,j)eVand our {t,}, one and only one case,
~

A, B or C, is possible:

either a(i,j)<t,-t,<b(i,j) (case A(i,j»,
] ~

or a (i, j) =t ,-t ,<b (i, j) (case B (i, j),
] ~

or a (i, j) <t ,-t ,=b (i, j) (case C (i, j) .
] ~

These cases are disjoint since a(i,j)<b(i,j), due to Assumption

(C) •

Now we can define the arcs in V(t) and their capacities in

the following way. In the case A (i, j) we include (i, j) into V(t)

and assign to it the capacity d(i,j)=¢'(t ,-t,+O)-~'(t ,-t,-O),
] ~] ~

where f'(t+O) denotes the right, and f'(T-O) - the left derivative

of a piecewise linear function f at a point T. In the case B(i,j)

10.

(respectively, C(i,j) we include into V(t) the arc (j, i)

(respectively, (i, j) and assign to it the capacity d (0,0) =+aJ.

Notice that the capacities are nonnegative due to the convexity of

~oo'

It remains to describe the sources and the sinks in the flow

network N (t) we are constructing. Let for (i,j)eV(t) the

quantities p(i,j) be defined as follows:

~{
~~ ,(t ,-t ,-0), in the cases A (i, j) and C(i,j),
~]] ~

p(i,j)
-~'., (t .-t .+0), in the case B(j,i).

]~ ~]

Let us for keE define

(6)

tr (k) L p(i,k)

i: (i,k)eV(t)

L p(k,i).

i: (k,i)eV(t)

(7)

The nodes k with tr (k) >0 (respectively, tr (k) <0) by the

construction, be the sources (respectively, the sinks) of our flow

network; the value of a source/sink k is, by definition, Itr(k) I. The

network we have produced is the desired auxiliary network N(t).

Let us extend the network N(t) by two nodes, s (a "supersource")

and f (a "supersink") and by arcs from s to each of the sources k (of

capacities d(s,k) = tr(k) and by arcs from each of the sinks k to f

of capacities d(k,f) = Itr(k)l. Let E+ and V+(t) denote the set of

*nodes (arcs) of the extended network, N (t).

4.3 Description of the algorithm

Our algorithm works as follows. At the beginning of each

iteration of the algorithm there is an integer feasible solution to

(3)-(4), t={t,J. At the iteration either it is established that
~

this solution is optimal, or the solution is transformed into

another integer feasible solution, t'={t~J, such that
~

~(t') :s ~(t)-l. (8)

The current iteration of the algorithm consists of solving

*the following Max-Flow Problem P(t) in the network N (t):

11.

maximize the flow value

n(A) = ~ A(s,i)
. . +
~: (s,~)eV (t)

(9)

subject to

O~A(i,j)~d(i,j),
.. +

(~,])eV (t), (10)

and

divkA= ~ A(i,k)
.. +
~: (~,k)eV (t)

- ~ A(k,i)

. k' +~: (,~)eV (t)

0, keE (11)

Notice that, by (B) and the integrality of t, the values of

*sources and sinks in the network N (t) are integers, and the

capacities of all arcs are integers or ±~.

Let us solve P (t) (there is a lot of appropriate alorithrns

arebe its value. Since the capacities in P (t)

solving the problem with the complexity polynomial in the size of the

*[2], [7]), and let A be the correspondingflow network, see, e.g.

*maximal flow and n
*integer, the quantities A (0,0) can be chosen to be integral too

(this is the well-known property of the Max Flow Problem) .

It is clear that

n*- L A(s,i)
. . +
~: (s,~)eV (t)

L A* (i, f) ~
.. +
~: (~, f)eV (t)

(1'(k)= ~
is a source keE, k

(1' (k)

is a sink

(12)

(where the first equality holds by virtue of (11), the second by

virtue of ~ (1' (k) =0, the latter being a corollary of (7)).

keE
If the inequality in (12) turns out to be an equality, we

claim that t is an optimal solution to our JIT-PSP and terminate.
* s fOtherwise we find the minimal cut in N (t), (E,E),

corresponding to the maximal flow A* (recall that E
S

consists of s

and of all the nodes linked with s by paths with arcs being not

d b fl ~* . f +\ S h .saturate y the ow ~ , wh1le E =E E). It turns out t at 1n

*the case under consideration (i.e. in the case of n <n
t

), both of
s f

the sets E ()E=Esand E ()E=Efare nonempty. Then we construct the

new solution, t', in the following way:

ifti = { t i ,

t. + 1,
~

ieE ,
s (13)

Under Assumptions (A)-(e), the above procedure, being applied

to an arbitrary integer feasible solution to (3)-(4), t, has the

following properties:

*Theorem 1. In the case of W =n , the vector t is an optimal
t

solution to (3)-(4) .

*Theorem 2. In the case of W <We t' produced by (13) is well

defined and it is the integer feasible solution to (3)-(4) such

that (8) holds.

These theorems justifying the above algorithm are proved in

Appendix 2.

Corollary. Under Assumptions (A)-(C), JIT-PSP (3)-(4) is

**either inconsistent, or possesses an integer optimal solution t

One can find out, in no more than O(nl) running time, which of the

*cases takes place by seeking for the feasible solution t described

**in Proposition, and then one can obtain the optimal t (if it

* **exists) in no more than R=¢ (t) -¢ (t) iterations of the above

algorithm, each consisting in solving the max-flow problem P(t).

5. Concluding remarks

The algorithm presented in the paper is "pseudo-polynomial",

(in fact, pseudo-linear) though not polynomial (recall that this

means that the complexity of the algorithm is bounded by a

polynomial in the length of input and in the magnitude of the

residual R though not in the length of problem's input only).

12.

Apparently, this complexity bound for JIT-PSP is

theoretically improvable. Indeed, JIT-PSP can be reduced to the

minimum cost network flow problem, and, the latter problem admits

polynomial and even strongly polynomial algorithms (the latter term

means that the complexity of the algorithm is polynomial in the

problem size, (n,l); see [2], [7] for further details).

However, if compared with the Ednmonds-Karp-Dinic scaling

technique as well as with the strongly polynomial Tardos method,

our algorithm has evident, practically important, advantages: it is

very easy to implement and it behaves good if the objective values

grow slowly with the growth of the problem size, while the number

of breakpoints in (3) grows fast. More thorough experimental study

of this algorithm seems to be rather useful; moreover, apparently, it

can be transformed into the polynomial one (using techniques

described, e. g., in [2], [7]), however, these questions fallout of

limits of this paper and may be considered to be possible directions

for further research.

Appendix 1

In this appendix we prove the reducibility of the conventional

project scheduling problem, PSP, to JIT-PSP. Recall the formulation

of PSP as presented in [6] and [8]:

By the choice of durations of activities T(i,j) and

event occurence times T(i), to minimize

L c(i,j) (B(i,j) - T(i,j))
(i,j)eA

subject to

T (f) -T (s)ST,

T (i, j) +T (i) -T (j) SO, (i, j) eA,

A (i, j) ST (i, j) SB (i, j) , (i, j) eA,

A(i,j), B(i,j), c(i,j), T being the given integers, A being the set

of arcs in the corresponding PERT network representing the project,

s/f being the initial/final event of the project.

In order to reformulate the latter problem as the JIT-PSP, we,

first, add into each arc (i,j)eA a new node, u, so replacing (i,j)eA

by two sequential arcs (i, u) and (u, j). Then, by substituting (for

13.

each (i,j)eA)

unequalities

t .=T (i),
~

in the PSP

t .=T(j), t =T(i)+T(i,j), we can reduce the
J u
corresponding to a pair (i,j)eA to the

JIT-PSP form: a(i,u)st -t,Sb(i,u), OSt,-t, where a(i,u)=A(i,j),
u ~ J u

b (i, u) =B (i, j) .

As for the inequality T (f) -T (s) ST, by including the arc (s, f)

into the network representing the project, we can make it to become a

JIT-PSP type inequality.

It remains to take the functions ~, (T)=C • • (B(i,j)-T), ~ .=0
~u ~J UJ

as the cost functions in the JIT-PSP reformulation of (3) - (6), and

the reduction of PSP to JIT-PSP is completed.

Notice that we can easily include into the JIT-PSP model the

'deadline constraints' t.sd" ieM. Indeed, let us introduce a
~ ~

special, initial, event s and extend the original network by

inserting new arcs (s,i), ieM; let also a(s,i)=~, b(s,i)=d., ~ .=0,
~ s~

ieM. It is clear that if {t.} is a feasible solution to the
~

resulting JIT-PSP, then {t, - t } is also feasible (and of the same
~ s

cost as the initial one); so the optimal solution to JIT-PSP can be

found in the set of feasible solutions with t =0, and these
s

solutions are exactly those which, besides the precedence conditions,

satisfy the deadline constraints.

Appendix 2

In this appendix we prove Theorems 1 and 2.
.. +For all (~,J)ev (t) let us denote

*1~ .. (u + t. - t.) - {p (i, j) + A (i, j) } u, case A(i,j),
~J J ~

*h .. (u) - tP •• (-u + t. - t.) - {p (i, j) + A (i, j) } u, case B(j,i),
~J J~ ~ J

*tP • •(u + t. - t.) - {p (i, j) + A (i, j) } u, case C(i,j) .
~J J ~

Let T={T,} be a feasible, not necessarily integral, solution to
~

(3)-(4) and let ~={~,=T,-t.}. Then we have
~ ~ ~

14.

+

(h,,(~,-~,)-h,.(O)} +
~J J ~ ~J

(i, j) eV(t)

*{p (i, j) +A (i, j) } (~ ,-~ ,) =
J ~

(i,j)eV(t)

1 t' (h,,(~.-~')-h"(O)}}+{t' r(j)L ~J J ~ ~J .L
(i, j) eV(t) 1 JeE

where for each keE

~ ,}
J 2

(A1)

r(k)= L *{A (i,k)+p(i,k)} - *{A (k, i) +p (k, i)}=

i: (i, k) ev(t) i: (k,i)eV(t)

*=a- (k) +div/, -£ (k) =a- (k) -£ (k), (A2)

*A (s,k), if k is a source,

0, if k is neither a source nor a sink,

*-A (k,f), if k is a sink

(A3)

*(we have taken into account (12) and (15); notice that A is a

*flow, so divkA =0).

Let us first prove the following

Lemma. Each term in the sum denoted by { }1 (see (A1»

is nonnegative:

h . ,(~ .-~ ,) ~h . ,(0) .
~J J ~ ~J

Proof. Let us fix an arc (i,j)eV(t).

Assume that the case A(i,j) takes place. Then we have

(A4)

*{p (i, j) +"A (i, j)}E [p (i, j), P (i, j) +d (i, j)) =

= [4>~ ,(t ,-t ,-0), 4>~, (t ,-t ,+0))
~]] ~ ~]] ~

(AS)

15.

(we have used in turn (10), (6) and the definition of d (i, j) in

the case under consideration). Inclusion (AS) means that

OE [h~ ,(T-O) I 0' h~, (T+O) I 0] and (A4) holds since h is
~] T= ~] T=

convex.

The calculations above show that the following implications hold:

*{(i,j)EV(t) and the flow "A saturates the arc (i,j)} *
h~ ,(T+O) I 0=0.
~] T=

(A6)

*((i,j)EV(t), the case A(i,j) takes place, and "A (i,j)=O} *
h~ ,(T-O) I 0=0. (A7)
~] T=

Indeed, in the cases B(j,i) and C(i,j) the capacity of the arc

(i, j) EV(t) is infinite, so the arc cannot be saturated by the flow

*"A • Thus, the premise in (A6) implies that the case A (i, j) takes

*place. Now "A (i, j) =d (i, j) (the latter is the premise in (A6» means

*that {p (i, j) +"A (i, j) }=4>~ ,(t .-t ,+0) (due to (6) and to the definition
~]] ~

of d(i,j) in the case A(i,j». The latter equality and the definition

of h, ,(0) immediately lead to the conclusion in (A6).
~]

Further, the premise in (A7) states that the case A(i,j) takes

*place. Then "A (i, j) =0 (the latter is included into the premise in

*(A7» implies that {p (i, j) +"A (i, j) }=4>~ ,(t ,-t ,-0) (by (6) and since
~]] ~

A (i, j) takes place). The latter equality and the definition of h, ,(0)
~]

lead to the conclusion of (A7).

Assume that the case B(j,i) takes place. Then we have

*{p (i, j) +"A (i, j) }E [p (i, j) , +00) = [-4)', , (t ,-t ,+ 0) , +00)
]~ ~]

(due to (10) and (6».

The latter relation together with the definition of h" means
~]

that h', ,(t-O) I O~O, so, by the convexity of h, " h" (u) ~h , ,(0), if
~] t= ~] ~] ~]

u~O.

Since t,-t .=a(j,i) in the case B(j,i) and, besides, t is
~]

feasible to (3)-(4), i.e. t,-t .~a(j,i), we have D, -D,~O, and (A4)
~]] ~

holds in the case B (j, i). The above considerations also prove the

implication

*((i,j)EV(t), the case B(j,i) takes place, "A (i,j)=O} *
(AS)

Assume that the case C(i, j) takes place. Then considerations

similar to those of the previous case show that h" (u) ~h , ,(0), if
~] ~]

u~O; the latter in the case under consideration leads to (A4). By

the same reasons the following implication holds:

By the similar reasons, the following holds:

*((i,j)ev(t), the case C(i,j) takes place, A (i,j)=O) *

h~ . (T-O) I 0=0.
~] T=

Lemma is proved.

Notice that (A7), and (AB) lead to the implication

16.

*((i,j)ev(t), A (i,j)=O) * h~ ,(T-O) I 0=0.
~] T=

(A9)

*Proof of Theorem 1. Let us prove that in the case of n =nt'

the right hand side in (A1) is nonnegative for each feasible T.

Since { }1 is nonnegative due to Lemma, it suffices to verify that

{ }2 = O. (A10)

b ' 1 'N* +\ 'o V10US y, 1n the network (t) there is the cut ({s), E (s}) w1th
+the capacity nt' as well as the cut (E \ {f}, (fJ) of the same

capacity (see (12». In the case under consideration the maximal

*flow value, n , equals to the capacity of each of these cuts, so

the arcs in v+(t) leading from s to the sources and from the sinks

* *to f are saturated with the flow A , or A (s,k)~(k) for any

*source k and A (k,f)=~(k) for any sink k. Hence, £(k)~(k),

and r (k) =0, keE (see (A2), (A3», which immediately leads to

(A1D). Theorem 1 is proved.

Proof of Theorem 2. Assume that

(All)

We are going to verify that t'is well defined, feasible for the

problem (3)-(4), and that (B) holds.

First, the corresponding minimum
s

E
f

) of the networkcut (E ,
+ + (which, by the Max Flow -(E , V (t)) Min Cut Theorem, has the

* + (E+\ {f},capacity n) can be neither ({s) , E \(sJ) nor (fJ), since

the capacities of the latter cuts are equal to n
t

. Hence the sets
s f

Es=~ and Ef=E~ are both nonempty. By the standard properties of

the maximal network flow each arc in V(t) leading from E
s

into E
f

is

*saturated by A , while the flow in arcs leading from E
f

into Es
equals zero.

17 •

Let us verify that t' defined by (13) is feasible for (3)-(4),

and satisfies (8).

Indeed, let (i,j)eV(t). By (13) the quantity T~ .=t'.-t~
~]] ~

iff the arc (i,j) either leads from Es
2). In

differs from T • •=t .-t .
~]] ~

into E
f

(situation 1), or leads from E
f

into E (situation
s *

the situation 1 the arc is saturated by the flow ~ , and hence it

is of finite capacity i the latter can occur in the case A (i, j)

only. Thus, in the situation 1 the case A(i,j) takes place, while

the situation 2 can occur in each of the cases.

In the case A (i, j), by definition of the cases, one has

a(i,j)<T . .<b(i,j), while IT ..-T~ .1=1. These relations together
~] ~] ~]

with the integrality of the input data and of t, t' imply that

a (i, j) ~T ~ .~b (i, j) .
~]

In the case B(j,i) the arc (i,j) leads from E
f

into E
s

' so

by (13) T~.=T . .-l=t .-t .-l=-a (j, i) -1 (the latter is due to the
~] ~J] ~

definition of the case B(j,i», so t~-t'.=a(j,i)+l, and the
~]

integrality of the data leads to inequality (4) corresponding

to the arc (j,i)ev. By similar arguments in the case C(i,j)

the pair (t~,t~) satisfies inequality (4) corresponding to the
] ~

arc (i,j)eV.

Thus, t' is a feasible solution to (3)-(4).

It remains to prove that (8) holds. Let A.=t~-t., ieEi we
~ ~ ~

desire to verify that (see (A1»

o(t')~-l.

By (AI), it sufficies to show that

h . . (A .-A .) =h .. (0), (i, j) ev(t)
~J] ~ ~J

(A12)

and

(A13)

Let us prove (A12). For given (i,j)eV(t), by the same

reasons as above, one of three cases is possible:

(i) either A .-A.=O, or (ii) A.-A.=l, or (iii) A .-A.=-l.
] ~] ~] ~

In the case (i), (A12) is obvious.

Further, in the case (ii) we have:

{(jeE
f

) and (ieE
s
)} (due to (13»,

*{(jeE
f

) and (ieE
s
)} ~ (A(i,j) and (~ (i,j)=d(i,j)}

(by the reasons described above, in the proof of the feasibility of

t') ,

*(A(i,j) and (~ (i,j)=d(i,j»} ~ (h~ .(T+O) I O=O} (due to (A6»,
~] T=

{h~ . (T+O) I O=O} => {h .. (l)=h . . (OJ)
~] T= ~]~]

(since h •• , as well as ~ •• ' has only integer breakpoints).

So in the case (ii) relation (A12) also holds.

In the case (iii) we similarly have

{(jEE
S

) and (iEE
f
)} (due to (13»,

*{(jEEs) and (iEE
f

)} => {A (i,j)=O}

*(since the flow A in the arcs leading from E f into Es equals

zero) ,

18.

*{A (i,j)=O} => {h~ . (T-O) I O=O} (due to (A9»,
~] T=

{h . . (-l)=h . . (O)}
~] ~]

(since h •• , as well as ~ •• ' has only integer breakpoints). So in

all the cases relation (A12) holds.

Now let us prove (A13). From (13) it is clear that

(}2 = r 7(k).
kEE

f

If kEE
f

is a source, then the arc (s,k) leads from ES into E
f

*and hence is saturated by the flow A hence, by (A2) and (A3),

7(k)=0. Further, if kEE
f

is neither a source nor a sink, then, by

(A2), (A3) and by the definition of sources and sinks, 7(k) = O. Now

*let kEEfbe a sink. Then, by (A2), and (A3), 7(k)=A (k,f)-lcr(k)l.

Thus,

{ } =

2

*L {A (k,f)-lcr(k)IJ.

kEE
f

: k is a sink

(A14)

Notice now that if k is a sink and k does not belong to E
f

,

then the arc (k,f) leads from E
S

into E
f

and hence it is saturated

* *by the flow A , therefore A (k,f) =Icr(k) I. Thus, (A14) leads to

* *{ } = L {A (k,f)-cr(k) }=R -R .
2 kEE:k is a sink t

The latter quantity is a negative integer due to (All) and

therefore (A13) holds. The proof is over.

19.

References

[1] Adelson-Velsky, G.M., Voropaev, V.I., and Kalinovska 5.5.
"Planning on generalized network models", Proceedings of 4th
Winter School on Mathematical Programming, Central Economical
Mathematical Institute, Moscow, v. 3, 1972, 3-18 (in Russian) .

[2] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., "Network flows",
in:G.L.Nernhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds.),
Handbooks in Operations Research and Management Science,
Volume 1: Opt~zation, North-Holland, Amsterdam, 1989, 211-369.

[3] Anthonisse, J.M., Hee,K.M. van, and Lenstra, J.K.,
"Resource-constrained project scheduling: an international
exercise in DSS", Decision Support Systems, 3 (1988) 249-257.

[4] Elmaghraby, S.E., and Pulat, P.S., "Optimal project compression
with due-dated events", Naval Research Logistics Quarterly, 2
(1979) 331-348.

[5] Foldes, S, and Soumis F., "PERT and crashing revisited:
mathematical generalizations", Proceedings of 2nd International
Workshop on Project Management and Scheduling, Universite de
Technologie de Compiegne, France, 1990, 398-406.

[6] Fulkerson, D.R., "A network flow computation for project cost
curves", Management Science, 7 (1961), 167-178.

[7] Goldberg A. V., Tardos E., and Tarjan, R.E. "Network flow
algorithms", in: B.Korte, L.Lovasz, H.J.Promel, and A.Schrijver
(eds), Algorithm and Combinatorics, Volume 9: Paths, Flows, and

VLSI-Layout, Springer-Verlag, Berlin, 1990, 101-164.

[8] Kelley, J.E. Jr., "Critical-path planning and scheduling:
mathematical basis. Operations Research 9 (1961), 296-320.

[9] Kerbosch, J.A.G.M., and Schell H.J., "Network planning by the
Extended METRA Potential Method", Report KS-1.1, Eindhoven
University of Technology, Eindhoven, Netherlands, 1975.

[10] Levner, E.V., "A parametric network analysis model", in:
A.A.Fridman (ed.), Studies in Discrete Opt~zation, Nauka,
Moscow, 1976, 382-394 (in Russian) .

[11] Levner, E. V. ,
just-in-time
International
Universite de

Nemirovsky A.S., "A network flow algorithm for
project scheduling", Proceedings of the 2nd
Workshop on Project Management and Scheduling,
Technologie de Compiegne, France, 1990, 224-227.

E •W• , Project
Diagramming,

[12] Moder, J.J., Phillips, C.R., and Davis,
Management with CPM, PERT and Precedence
Van Nostrand Reinhold Company, New York, 1983

[13] Zukhovitsky, S.I., and Radchik, I.A. Mathematical Methods of
Project Management, Nauka, Moscow, 1965 (in Russian).]

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science
PROBABILITY THEORY, STATISTICS, OPERATIONS RESEARCH
AND SYSTEMS THEORY
P.O. Box 513
5600 MB Eindhoven, The Netherlands

Secretariate: Dommelbuilding 0.03
Telephone : 040-473130

-List of COSOR-memoranda - 1991

Number

91-01

91-02

91-03

91-04

91-05

91-06

91-07

91-08

91-09

91-10

91-11

Month

January

January

January

January

February

March

March

April

May

May

May

Author

M.W.I. van Kraaij
W.Z. Venema
J. Wessels

M.W.I. van Kraaij
W. Z. Venema
J. Wessels

M.W.P. Savelsbergh

M.W.I. van Kraaij

G.L. Nemhauser
M.W.P. Savelsbergh

R.J.G. Wilms

F. Coolen
R. Dekker
A. Smit

P.J. Zwietering
E.H.L. Aarts
J. Wessels

P.J. Zwietering
E.H.L. Aarts
J. Wessels

P.J. Zwietering
E.H.L. Aarts
J. Wessels

F. Coolen

The construction of a
strategy for manpower
planning problems.

Support for problem formu
lation and evaluation in
manpower planning problems.

The vehicle routing problem
with time windows: minimi
zing route duration.

Some considerations
concerning the problem
interpreter of the new
manpower planning system
formasy.

A cutting plane algorithm
for the single machine
scheduling problem with
release times.

Properties of Fourier
Stieltjes sequences of
distribution with support
in [0, l) .

Analysis of a two-phase
inspection model with
competing risks.

The Design and Complexity
of Exact Multi-Layered
Perceptrons.

The Classification Capabi
lities of Exact
Two-Layered Peceptrons.

Sorting With A Neural Net.

On some misconceptions
about subjective probabili
ty and Bayesian inference.

COSOR-MEMORANDA (2)

91-12

91-13

91-14

91-15

91-16

91-17

91-18

91-19

91-20

91-21

May

May

June

July

July

August

August

August

September

September

P. van der Laan

I.J.B.F. Adan
G.J. van Houtum
J. Wessels
W.H.M. Zijm

J. Korst
E. Aarts
J.K. Lenstra
J. Wessels

P.J. Zwietering
M.J.A.L. van Kraaij
E.H.L. Aarts
J. Wessels

P. Deheuvels
J.H.J. Einmahl

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

P. van der Laan

P. van der Laan

E. Levner
A.S. Nemirovsky

Two-stage selection
procedures with attention
to screening.

A compensation procedure
for multiprogramming
queues.

Periodic assignment and
graph colouring.

Neural Networks and
Production Planning.

Approximations and Two
Sample Tests Based on
P - P and Q - Q Plots of
the Kaplan-Meier Estima
tors of Lifetime Distri
butions.

Functional description of
MINTO, a Mixed INTeger
Optimizer.

MINTO, a Mixed INTeger
Optimizer.

The efficiency of subset
selection of an almost
best treatment.

Subset selection for an
grbest population:
efficiency results.

A network flow algorithm
for just-in-time project
scheduling.

