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Abstract. Analytical solutions are derived for one-dimensional consolidation, free swelling and
electrical loading of a saturated charged porous medium. The governing equations describe infinites-
imal deformations of linear elastic isotropic charged porous media saturated with a mono-valent ionic
solution. From the governing equations a coupled diffusion equation in state space notation is derived
for the electro-chemical potentials, which is decoupled introducing a set of normal parameters, being
a linear combination of the eigenvectors of the diffusivity matrix. The magnitude of the eigenvalues
of the diffusivity matrix correspond to the time scales for Darcy flow, diffusion of ionic constituents
and diffusion of electrical potential.

Key words: osmosis, biological tissue, cartilage, clay, shale.

Nomenclature

α s,f,+,-.
β, γ f,+,-.
i +,-.
A diffusivity matrix electro-chemical potentials.
Es Green strain tensor of the solid.
B friction tensor.
D0

i diffusion tensor ion i in free solution.
κκκ permeability tensor.
u displacement vector solid.
vβs velocity vector difference constituent β and the solid.
µβ electro-chemical potential constituent β.
p pressure.
ξ electrical potential.
nα volume fraction constituent α.
λi eigenvalue corresponding to ηi .
V̄ β molar volume constituent β.
F Faraday’s constant.
R universal gas constant.
T temperature.
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� osmotic coefficient.
zβ valence constituent β.
r apparent hindrance factor.
G shear modulus.
ν Poisson’s ratio.
ε capacity.

1. Introduction

Shales, clays, gels and biological tissues exhibit swelling and shrinkage beha-
vior induced by changes in external salt concentration Lai et al. (1991), Huyghe
and Janssen (1997). Swelling and shrinkage results from the interaction between
the fixed charges on the solid and ions present in the fluid resulting in Donnan-
osmosis, electro-osmosis, streaming potentials and streaming currents, Mitchell
(1993), Sachs and Grodzinsky (1987). In biological applications swelling is ob-
served for cartilage, glycogalyx, cell and skin behavior. Swelling of shales is of
major concern for petroleum engineering during active drilling, Heidug and Wong
(1996), Oort (1997).

Lai et al. (1991) derived a small deformation triphasic formulation for soft
charged hydrated tissues, considering all constituents incompressible. Huyghe and
Janssen (1997) extended the chemo-electro-mechanical model to finite deform-
ation behavior of a porous medium consisting of an electrically charged solid,
liquid, cations and anions. This model has been implemented in a finite element
formulation and is verified experimentally on one-dimensional transient behavior
of annulus fibrosus tissue by Frijns et al. (1997). Similar numerical work has been
done by Sun et al. (1999). Molenaar et al. (1998) recasted Frijns et al. (1997) model
by including compressibility, an important feature of shales.

The verification of these models should be done on two levels. First one should
address the question: does the numerical model solve the equations it claims to
solve? Second, one should address the question: does the equations of electrochem-
omechanical theory describe the relationship between deformation, composition,
mechanical load and external salt concentration in the material of interest correctly
or not? The second question definitely requires experiments. But it also requires a
reliable numerical solution procedure. Which requires to answer the first question
first. The present paper addresses the first question not the second. In order to
validate a numerical code to solve a set of partial differential equations analytical
solutions are the only bench mark as is done for finite elasticity, Green and Zerna
(1968) viscoelasticity, Laso and Öttinger (1993) and biphasic theory, Terzaghi
(1923). The purpose of this paper is to fill this gap for electrochemomechanical
theories and provide analytical solutions for transient conditions in addition to the
simple equilibrium analytical solutions.

The governing equations of incompressible quadriphasic mechanics are presen-
ted shortly for the case of infinitesimal deformation of a mixture. For a one-dimen-
sional situation these equations are decoupled giving a set of uncoupled diffusion
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equations. Analytical solutions are presented for consolidation, free swelling and
electrical loading under conditions of near electro neutrality, small deformations
and concentration variations.

2. Theory

In this section the governing equations, as derived by Huyghe and Janssen (1997),
are given in the special case of infinitesimal quadriphasic mechanics of incompress-
ible charged porous media. Firstly the contribution of ions in the saturation condi-
tion is neglected, Section 2.1, consistent with Huyghe and Janssen (1997) where-
after they are incorporated, Section 2.2. Specific constitutive material behavior
is considered and corresponding relations for the osmotic pressure and electrical
potential at equilibrium are given. Finally the governing equations are reduced for
a one-dimensional configuration and decoupled.

2.1. GOVERNING AND BALANCE EQUATIONS

Proceeding from Huyghe and Janssen (1997) the momentum balance, neglecting
inertia and considering linear elastic solid behavior, reads

2G∇ · Es + 2Gν

(1 − 2ν)
∇trEs − ∇p = 0, (1)

with G, ν, p and Es the shear modulus, Poisson ratio, pore pressure and strain
tensor of the solid. The last is defined, under infinitesimal deformation, as Es =
1/2(∇u + (∇u)T ), with u the displacement vector of the solid. Mass balance of
constituent α equals

∂nα

∂t
+ ∇ · (nαvαs

) = 0, (2)

with nα the volume fraction of constituent α and vαs the velocity of constituent α

with respect to the solid. In this paper α denotes all constituents, that is electrically
charged solid (s), fluid (f), cations (+) and anions (−); β, γ all constituents except
the charged solid matrix; i only ionic constituents. The mixture is assumed to be
fully saturated giving the following relation for the saturation condition, neglecting
the contribution of ionic constituents

∇ · vs + ∇ · (nfvfs) = 0. (3)

Contrary to Huyghe and Janssen (1997) a small departure from electro-neu-
trality is considered for mathematical reasons as discussed later.

This results in the following analogy of Gauss’ law, Lorrain et al. (1987):

∂

∂t

∑
β=f,+,−

F
zβnβ

V̄ β
= ε

∂ξ

∂t
, (4)
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with F , ξ , ε, zβ and V̄ β Faraday’s constant, electrical potential, capacity, the va-
lence and molar volume of constituent β respectively. Temporary storage may
be related to polarization of ions, water molecules and hydroxyl groups of pro-
teoglycan fibers in human tissues or those on the surface of montmorillonites or
shales, Lorrain et al. (1987), Karaborni et al. (1996). If relationships

−nβ∇µβ =
∑

γ =f,+,−
Bβγ · vγ s for β = f, +, − , (5)

are fulfilled, with Bβγ positive definite symmetric friction matrices, the second law
of thermodynamics is complied. In relationship (5) the electro-chemical potentials,
µβ are defined as

µf = ∂W

∂nf
+ Fzf

V̄ f
ξ + p, (6)

µi = ∂W

∂ni
+ Fzi

V̄ i
ξ for i = +, −, (7)

with W the strain energy function.

2.2. INCORPORATION IONS IN THE SATURATION CONDITION

If the volume fraction of the cations and anions are not neglected we find contrary
to (3)

∇ · vs +
∑

β

∇ · (nβvβs) = 0, (8)

and instead of (7), Huyghe and Janssen (1997)

µi = ∂W

∂ni
+ Fzi

V̄ i
ξ + p for i = +, −. (9)

In principle, the pressure is always part of the electrochemical potential Katchal-
sky and Curran (1965). The relative importance of the pressure in the chemical
potential is characterized by the ratio p∗V̄ /RT ln c/cref with p∗ and c∗ the char-
acteristic pressure and molar concentration respectively. For dilute solutions at
atmospheric pressure p∗V̄ /RT ln c/cref is small and consequently the contribution
of the pressure to the electro-chemical potential of the ionic constituents can be
neglected. With increasing pressure, that is at high depths during oil drilling, this
is no longer justified. Under transient conditions the associated time scale of the
individual contributions in conjunction with their relative magnitude to µi need to
be considered.

2.3. CONSTITUTIVE BEHAVIOR

To focus the attention and without loss of generality, the strain energy function, W ,
is postulated to equal
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W(Es, nβ) = µf
0nf + µ+

0 n+ + µ−
0 n− − RT �

(
n+

V̄ + + n−

V̄ −

)
ln nf +

+RT
n+

V̄ +

(
ln

n+

V̄ +
V̄ +

n+
ref

− 1

)
+ RT

n−

V̄ −

(
ln

n−

V̄ −
V̄ −

n−
ref

− 1

)
+

+ G

(1 − 2ν)
trEstrEs + 2GEs : Es, (10)

with � the osmotic coefficient. Expression (10) assumes linear isotropic elasti-
city and Donnan-osmosis as the driving force for swelling. Differentiating Equa-
tions (6) and (7) to time, rearranging and using the hypothesized relation for the
strain energy function, W = W(Es, nβ) gives

∂

∂t

(
µf − Fzf

V̄ f
ξ − p

)
=

∑
γ =f,+,−

Wfγ ∂nγ

∂t
, (11)

∂

∂t

(
µi − Fzi

V̄ i
ξ

)
=

∑
γ =f,+,−

Wiγ ∂nγ

∂t
for i = +, − (12)

with Wβγ = ∂2W/∂nβ∂nγ and use is made of the observation that ∂2W/∂Es∂nα =
0. The components of the friction matrix are related to diffusion coefficients of
fluid and ions as derived by Molenaar et al. (1999)

Bff = n2
f K−1 − (1 − r) Bf+ − (1 − r) Bf−, (13)

Bii = − Bif

1 − r
, (14)

Bif = −nfRT ciD0
i

−1
, (15)

B+− = 0, (16)

with R the universal gas constant, r the hindrance factor, T the absolute temperat-
ure, K the permeability tensor, D0

i the ion diffusion tensor in free water and ci the
concentration. Contrary to Mow et al. (1998) and Lai et al. (2000) the components
Bif are unequal to zero.

2.4. EQUILIBRIUM RELATIONSHIPS

Finally relations are given valid at equilibrium. At Donnan-equilibrium the internal
and external electro-chemical potentials of the fluid and ions are equal, µ

β

i = µ
β
e .

This gives for the osmotic pressure, Huyghe and Janssen (1997)

p = RT
(
�(c+

i + c−
i ) − (c+

e + c−
e )
)

. (17)

The electrical potential difference between the external solution and the porous
medium is given by the Nernst potential

ξ = RT

F
ln

(
c+

e

c+
i

)
. (18)
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Fulfilling electro neutrality at equilibrium the following relations for internal ionic
concentrations and volume fractions are obtained, Huyghe and Janssen (1997)

c+
i = 1

2

(
−cfc +

√
cfc2 + 4c+

e
2

)
, (19)

c−
i = 1

2

(
+cfc +

√
cfc2 + 4c−

e
2

)
, (20)

n+ = nfV̄ +c+
i , n− = nfV̄ −c−

i , (21)

with cfc the fixed charge concentration.

2.5. REDUCTION TO ONE-DIMENSIONAL CONFIGURATION

The general constitutive relations presented above are simplified for a one-dimen-
sional situation assuming constant material parameters, small deformations and
concentration variations. Momentum balance (1) reduce to

H
∂2u

∂x2
− ∂p

∂x
= 0, (22)

with H = 2(1− ν)G/(1−2ν) the one-dimensional bulk modulus. Following Terz-
aghi (1923) the momentum balance equation is integrated with respect to the x-
coordinate yielding:

H
∂u

∂x
− p = f(t), (23)

differentiated with respect to time giving

H
∂2u

∂x∂t
− ∂p

∂t
= ∂f(t)

∂t
. (24)

In the two preceding equations f(t) is the external load on the sample. For
consolidation an instantaneous mechanical loading at t = t0 is considered and the
external mechanical loading remains unaltered for free swelling. Therefore in both
cases the right-hand side of Equation (24) equals zero for t > t0. Substitution of the
obtained Equation (24) into the reduced saturation condition in order to eliminate
the displacement yields

1

H

∂p

∂t
− ∂nf

∂t
= 0. (25)

Manipulation of Equation (5) and substitution into the mass balance of constituents
β results in

∂nβ

∂t
−

∑
γ =f,+,−

Pβγ ∂µγ

∂x2
= 0 for β = f, +, −, (26)
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with the matrix P equal to Pβγ = nβnγ (B−1)βγ . The preceding equation assumes
P constant considering spatial volume fraction variations to be sufficiently small.
Substitution of Equations (11) and (12) into Equations (25), (4) and (26) gives(

1

H
+ Cff

)
∂p

∂t
−

∑
β=f,+,−

Cfβ ∂

∂t

(
µβ − Fzβ

V̄ β
ξ

)
= 0, (27)

∑
β=f,+,−

F
zβ

V̄ β


 ∑

γ =f,+,−
Cβγ ∂

∂t

(
µγ − Fzγ

V̄ γ
ξ

)
− Cβf ∂p

∂t


 = ε

∂ξ

∂t
, (28)

∑
γ =f,+,−

[
Cβγ ∂

∂t

(
µγ − Fzγ

V̄ γ
ξ

)
− Pβγ ∂2µγ

∂x2

]
− Cβf ∂p

∂t
= 0

for β = f, +, −, (29)

with C = W−1. Equations (27) and (28) are rewritten in state-space notation com-
monly used in dynamics and control engineering giving, Slotine and Li (1991)

Z
∂

∂t

[
p ξ

]T = Q
∂

∂t

[
µf µ+ µ− ]T , (30)

with

Z =




1/H + Cff
∑

β

Cfβ Fzβ

V̄ β

∑
β

F
zβ

V̄ β
Cβf

∑
β

∑
γ

Cβγ F 2zβzγ

V̄ βV̄ γ
+ ε


 , (31)

Q =



Cff Cf+ Cf−∑
β

F
zβ

V̄ β
Cβf

∑
β

F
zβ

V̄ β
Cβ+ ∑

β

F
zβ

V̄ β
Cβ−


 . (32)

Substitution of Equation (30) into (29) gives

∂

∂t

[
µf µ+ µ− ]T = A

∂2

∂x2

[
µf µ+ µ− ]T (33)

with

A = E−1 · P, (34)

E = C − QT · Z · Q. (35)

This coupled set of equations can be decoupled using the matrix identity

A = M · %%% · M−1. (36)
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The diagonal matrix %%% has the eigenvalues of A on the diagonal elements and M
the corresponding eigenvectors, Slotine and Li (1991). A set of normal parameters
is introduced, resulting in three uncoupled diffusion equations

∂ηi

∂t
= λi

∂2ηi

∂x2
for i = 1, 2, 3 (37)

with,[
η1 η2 η3

]T = M−1 [ µf µ+ µ− ]T . (38)

The derivation for the case where the contribution of the volume fractions of the
ions is incorporated into the saturation condition is along the same line as presented
above. Solutions of the diffusion equation are thoroughly treated in for example
Carslaw and Jaeger (1957).

3. Consolidation, Free Swelling and Electrical Loading

In this section solutions are given for consolidation, free swelling and electrical
loading of a porous medium with respect to an initial steady reference state at
t = t0 assuming constant material parameters and small deformations. A homogen-
eous sample is considered placed frictionless in a holder. At the bottom, x = 0, the
sample is in contact with a glass filter saturated by a sodium chloride solution. An
impermeable piston is placed on top of the sample, x = L, where an external mech-
anical load is applied. The following mixture parameters and initial conditions are
considered and capacity is chosen small, ε = 10−24 C2/Nm4, Weast (1976)

H = 2 × 102 MPa, cfc = −0.2 moleq/l, � = 0.9 [−],
D+

0 = 13.3 × 10−10 m2/s, c+
e = c−

e = 1.0 mol/l, nf = 0.2,

D−
0 = 20.3 × 10−10 m2/s, V̄ + = 2.3 × 10−6 m3/mol, r = 0.4,

κ = 5.0 × 10−17 m4/Ns, V̄ − = 15.2 × 10−6 m3/mol, T = 293K,

typical for clays.

3.1. CONSOLIDATION

For consolidation a stepwise change of the load on the piston is applied at t = t0
equal to f (t) =−p0H(t−t0), with H(t−t0) the Heaviside function. The magnitude
of p0 is assumed sufficiently small in order to ensure that W and P are constant
in time. For consolidation the following initial and boundary conditions on the
electro-chemical potentials, pressure, electrical potentials and displacement with
respect to the steady reference state at t = t0

µf(0, t) = 0, ∂µf/∂x(L, t) = 0, µf(x, t0) = p0,
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µ+(0, t) = 0, ∂µ+/∂x(L, t) = 0, µ+(x, t0) = 0,

µ−(0, t) = 0, ∂µ−/∂x(L, t) = 0, µ−(x, t0) = 0,

p(0, t) = 0, p(x, t0) = p0, ξ(x, t0) = 0,

u(0, t) = 0, u(x, t0) = 0, ξ(0, t) = 0. (39)

Utilizing the method of separation of variables a relation for the electro-chem-
ical potentials is obtained given by

 µf(x, t)

µ+(x, t)

µ−(x, t)


 = 4

π

∞∑
n=0

1

2n + 1
sin

(
2n + 1

2

π

L
x

)
M · Rn · M−1 ·


 p0

0
0


 ,

(40)

with Rn a diagonal matrix with on its diagonal elements

Rii
n = exp

((
2n + 1

2
π

)2
λi(t − t0)

L2

)
. (41)

Using relation (30) and incorporation of the initial and boundary conditions on
the pore pressure and electrical potential gives[

p(x, t)

ξ(x, t)

]
= Z−1 · Q · 4

π

∞∑
n=0

1

2n + 1
sin

(
2n + 1

2

π

L
x

)
×

×M · (Rn − I) · M−1 ·

 p0

0
0


+

[
p0

0

]
. (42)

Substitution of the obtained relation for the pressure in Equation (23), integrat-
ing with respect to x and incorporation of the boundary condition u(0, t) = 0 gives
for the displacement

u(x, t) = 1

H

[
1 0

] · Z−1 · Q · 8L

π2
×

×
∞∑

n=0

1

(2n + 1)2

(
1 − cos

(
2n + 1

2

π

L
x

))
×

×M · (Rn − I) · M−1 ·

 p0

0
0


 . (43)

3.2. FREE SWELLING

A change in the external concentration is considered for free swelling of the sample.
The electro-chemical potentials for the sodium chloride solution in the glass filter
are equal to
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µf = −RT
(
c+

e + c−
e

)
, µi = RT

V̄ i
ln

ci
e

ci
ref

+ Fzi

V̄ i
ξ, (44)

with ci
e the external concentrations. For free swelling the following set of boundary

conditions is applied with respect to the initial steady state situation

µf(0, t) = −RT
(
+c+

e + +c−
e

)
,

∂µf

∂x
(L, t) = 0, µf(x, t0) = 0,

µ+(0, t) = RT

V̄ + ln
c+

e (t+
0 )

c+
e (t−

0 )
,

∂µ+

∂x
(L, t) = 0, µ+(x, t0) = 0,

µ−(0, t) = RT

V̄ − ln
c−

e (t+
0 )

c−
e (t−

0 )
,

∂µ−

∂x
(L, t) = 0, µ−(x, t0) = 0,

p(0, t) = 0, p(x, t0) = 0, ξ(x, t0) = 0,

u(0, t) = 0, u(x, t) = 0, ξ(0, t) = 0, (45)

with +c+
e , +c−

e the change in external concentration of cation and anion and t−
0

and t+
0 time just before and after t0 when chemical loading is applied. The change

in the external concentration is considered sufficiently small such that firstly W and
P are considered constant in time and secondly the change of the electro-chemical
potentials of the ions is approximately linear. Introducing a new parameter as,

ζi(x, t) = ηi(x, t) − ηi(0, t), (46)

a set of homogeneous boundary conditions and inhomogeneous initial conditions
similar to consolidation are obtained. The solution for the electro-chemical poten-
tials, pore pressure, electrical potential and displacement are obtained analogous to
consolidation as described in the preceding section.

3.3. ELECTRICAL LOADING

Electrical loading of charged saturated porous media can be used to characterize
material parameters, Sachs and Grodzinsky (1987). A pure hypothetical situation
is considered where the piston and holder are considered as perfect electrical in-
sulators and an electrical potential is applied at the filter resulting in boundary
conditions at x = 0 equal to

ξ(x, t) = ξ0, µf (0, t) = 0, µi (0, t) = Fzi

V̄ i
ξ0, (47)

with remaining initial and boundary conditions at x = L given in Equation (45).
As boundary conditions are identical to free swelling the solution obtained for free
swelling can be applied directly.

In the case of incorporation of the ion volume fractions into the saturation con-
dition only the boundary conditions for consolidation change as follows directly
from Equation (9).
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4. Results

4.1. NEGLECTING IONS IN THE SATURATION CONDITION

In this section results are presented for consolidation, free swelling and electrical
loading for the material model where the contribution of the ions in the saturation
condition is considered to be small. For the material parameters considered the
three eigenvalues equal

λ1 = 1.04 × 10−8 m2/s, λ2 = 9.44 × 10−10 m2/s,

λ3 = 1.58 × 100 m2/s. (48)

First consolidation is considered where the external mechanical load is equal to
p0 = 0.05 MPa, with boundary conditions given by relation (39). The pore pressure
at x = L, just below the impermeable piston, is presented in Figure 1. The time for
consolidation to occur is approximately equal to t − t0 ≈ 0.035 h. The transient
behavior of the displacement is self-similar as they are directly coupled by the mo-
mentum balance, such that the contribution of pore pressure and solid deformation
balances the external load at all times.

In order to let the sample swell the external salt concentration is decreased with
a small amount from c+

e = c−
e = 1.0 mol/l to c+

e = c−
e = 0.995 mol/l, with boundary

Figure 1. Pore pressure at x = L for consolidation.
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Figure 2. Pore pressure at x = L during free swelling for neglecting (—) and incorporating
(− − −) the ions in the saturation conditions.

condition given in relation (45). The pore pressure and displacement at x = L are
presented in Figures 2 and 3 respectively. The pore pressure increases fast reaching
a maximum value at approximately t − t0 ≈ 0.035 h, whereafter the sample partly
shrinks till an equilibrium is obtained after t − t0 ≈ 0.6 h. Changing the external
concentration results in a fluid flux in and an ionic flux out of the sample. The
overshoot of the pore pressure and corresponding displacement results from the
faster fluid flow into compared to the flux of ionic constituents out of the sample.
The osmotic pressure and electrical potential (not shown) at equilibrium are equal
to the difference between the values obtained via relationship (17) and (18) respect-
ively evaluated for the old and new external concentration, using relationships (19)
and (20).

Finally an increase of the electrical potential equal to ξ = ξ0 is applied at the
filter with boundary conditions given by relations (45) and (47). For increasing
magnitude of ε an approximately linear decrease of time scale is observed, cor-
responding to increasing temporarily polarization within the sample. The transient
electrical potential response from ξ = 0 to ξ = ξ0 is similar to that of an ordinary
diffusion equation, characterized by the third eigenvalue, λ3, till the equilibrium
value is reached of ξ0 = 0.01 mV.
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Figure 3. Displacement at x = L during free swelling for neglecting (—) and incorporating
(− − −) the ions in the saturation conditions.

4.2. INCORPORATION OF THE IONS IN THE SATURATION CONDITION

In this subsection the results are shown for the transient behavior of the pore
pressure and displacement during free swelling if the volume fractions of the ions
are incorporated into the saturation condition, Equation (8). Considering identical
material parameters as above the eigenvalues equal

λ1 = 1.02 × 10−8 m2/s, λ2 = 9.33 × 10−10 m2/s,

λ3 = 1.58 × 100 m2/s. (49)

The magnitude of all three eigenvalues have changed only slightly, about 3% for
the first and less than 1% for the second. The pore pressure and displacement
are presented in Figures 2 and 3 respectively. The pore pressure increases fast
reaching a maximum at t ≈ 0.035 h whereafter the pore pressure reduces till an
equilibrium state is reached. The maximum pore pressure has however reduced
with about 5% compared to the previous case where the contribution of the ionic
volume fractions is neglected. For increasing difference between λ1 and λ2 the
difference in maximum pore pressure increases strongly. Furthermore the change
in Donnan-pressure at equilibrium is slightly lower.
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5. Discussion

Analytical solutions are presented for the elecrochemomechanical theory as de-
veloped by Lai et al. (1991) and Huyghe and Janssen (1997). They can serve as
benchmarks for the transient behavior of finite element codes developed for the
theory. The solutions are however restricted to small deformation and concentration
variations and have no practical application.

In Section 3 the analytical solutions are presented for consolidation, free swell-
ing and electrical loading. These solutions are only applicable if the eigenvalues
are positive, that is A is positive definite. Otherwise finite perturbations in the
external load or external salt concentration would result in infinite deformations.
Although both W and B are required to be positive definite, Huyghe and Janssen
(1997), it is not evident that these restrictions are sufficient to demonstrate positive
definiteness of the matrix A. Introduction of temporary storage of charge, by means
of a dielectric constant is done to positively influence the stability of the matrix A
and has a small influence on the macroscopic behavior.

As shown in the preceding section the time corresponding to both the end
of consolidation to and the maximum pore pressure development occurs at t −
t0 ≈ 0.035 h. From this it may be concluded that the term λ1/L2 is closely related
to the typical time scale for fluid flow. Further it is noted that the value of λ1/L2

corresponds to the typical time scale of fluid flow in a bi-phasic mixture which is
equal to κH/L2. The second eigenvalue is related to the time scale correspond-
ing to ionic mass transfer incorporating the hindrance factor r, λ2/L2 ≈ 2(1 −
r)(1/D+

0 + 1/D−
0 )/L2, Kemenade (1998). For the considered material parameter

the magnitude of λ2/L2 gives a first indication for the time when equilibrium is
reached for free swelling as the reduction of the ionic electro-chemical potentials
is partly achieved by an increase of the fluid content. The third eigenvalue is associ-
ated with the diffusion of electrical potential and is strongly dependent on capacity,
ε. In view of the observations made by Lai et al. (2000) it is noted that increasing
the fixed charge concentration decreases both λ1 and λ2.

If the contribution of the ions is not neglected a difference in the swelling beha-
vior is observed even for dilute solutions, which increases for increasing difference
in magnitude between λ1 and λ2. The interpretation of the eigenvalues is identical
as discussed above. The magnitude of the maximum pore pressure is observed to
reduce with about 5% together with a slight change in Donnan-pressure. If elec-
troneutrality holds, ε = 0, only two time scales are present associated with fluid
flow or pore pressure diffusion and diffusion of ionic constituents, describing the
transient behavior of the mixture.

Solutions for axisymmetric configurations may be obtained under plain stress
or strain conditions. For a more general configuration the route taken by Biot
(1956) may be used. Application to compressible mixtures theories of Biot (1956),
Molenaar et al. (1998) can be easily made.
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