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Constitutive Hybrid Processes

P.J.L. Cuijpers, J.F. Broenink and P.J. Mosterman

June 1, 2004

1 Introduction

When modeling a physical system, it is common practice to describe the components that con-
stitute the system, using so-called constitutive relations on the physical variables that play a
role in the system. The intersection of all these relations then forms a model of the system as
a whole. The behavior of physical systems is usually assumed to be continuous and, therefore,
the constitutive relations are often stated as differential algebraic equations. When part of the
continuous behavior occurs very fast, however, as is for example the case when studying impact
phenomena, it may be convenient to describe this behavior as being discontinuous. The constitu-
tive relations that are used to describe the system, should in that case not only contain algebraic
differential equations (for the large time-scale behavior), but using also equations that describe
the discontinuous behavior (for the behavior during impact).

In this report, we describe the constitutive relations of many more-or-less standard components
in physical modeling, using the hybrid process algebra HyPA [4]. This algebra allows us to describe
combinations of continuous and discontinuous behavior as one, hybrid, process (hence, the title
of this report). As a vehicle for our thoughts, we use a graphical language named bond graphs
[11] to formalize our physical models, before engaging in the construction of constitutive relations
for them. Bond graphs generalize all domains of physics, such as electronics, hydraulics, and
mechanics, in one framework. Recently, they have been extended with elements that are suitable
for describing discontinuous behavior [10, 9, 1, 12]. This report, can therefore also be considered
an attempt to give a formal semantics to hybrid bond graphs. Our expectation is, that after we
have explained how to derive hybrid constitutive processes using hybrid bond graphs, it will also
be easier to derive these processes directly, without using bond graphs as an intermediate step.
Nevertheless, the construction of a bond graph sometimes gives additional insight in the workings
of a system, and can facilitate analysis in many ways (see for example [8, 14, 3, 2]). In general,
different model representations have strengths in different kinds of analysis.

In the next section, we give a short discussion on the modeling of physical systems through
constitutive relations, using an example from mechanical engineering. Then, we briefly explain
the traditional bond graph modeling method and discuss the need for abstraction from small time-
scale behavior. In section 3 we briefly discuss the syntax and semantics of hybrid process algebra
[4]. In section 4, we turn back to the bond graph modeling formalism, to see how the constitutive
relations of the bond graph elements can be extended to include discontinuous behavior. In the
last section, we give modeling examples that show how hybrid bond graph models can be made of
several physical systems, and how these bond graph models can be turned into constitutive hybrid
processes describing the systems algebraically.
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2 Modeling physical systems

2.1 Constitutive equations

In dynamic systems theory, a common approach to build a model of a physical system, is by
decomposing the system into separate components, and capturing the physical properties of those
components in so-called constitutive relations on the physical variables that play a role in the
system under study.

For example, in mechanics, traditionally five major variables play a role: energy E, momentum
p, force F , displacement x and velocity v. All mechanical behavior, can be expressed in terms of
interaction between these variables, and the way they change over time. A change in momentum
corresponds to a force, leading to the constitutive differential equation F = ṗ, where ṗ denotes
the time-derivative of p. A change in displacement corresponds to a velocity v = ẋ, and a change
in energy (i.e. power) is the product of force and velocity Ė = F · v. These three relations play
a role in every mechanical component, and are (implicitly or explicitly) part of the constitutive
relations of every component.

Three major mechanical components can be distinguished: masses, springs and dampers. A
mass gives rise to a constitutive relation between momentum p and velocity v. A spring gives a
constitutive relation between displacement x and force F . A damper gives a constitutive relation
between force F and velocity v. Often, these relations are non-linear, but in idealized models we
represent masses, springs and dampers using linear algebraic equations, that depend on the factors
m,k and b respectively:

Mass : p = m · v

Spring : F = k · x

Damper : F = b · v

As an example of a non-linear relationship, one might consider a damping effects like friction, in
which a constant normal force counteracts the direction of movement,

Friction : F = sign(v) · FN

and stiction, in which an initial additional force is necessary to get an object to move.

Stiction : F =

{

FS ; v = 0
0 ; v 6= 0

A connection of mechanical components leads to an exchange of energy between these compo-
nents, in such a way that the momentum of the components is preserved, or the displacement of
the components is preserved, depending on the connection. If we have conservation of momentum,
the change in displacement of all components involved is equal. While if we have conservation of
displacement, the change in momentum is equal. For n components, these types of connection are
reflected in the following equations. The connection with conservation of momentum is described
using

















Ė1 + . . . + Ėn = 0
ṗ1 + . . . + ṗn = 0
q̇1 = . . . = q̇n

















.

These equations turn out to hold, if and only if








F1 + . . . + Fn = 0
v1 = . . . = vn








.
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Observe, that the equation for conservation of energy is redundant. Dually, conservation of dis-
placement is described using:

















Ė1 + . . . + Ėn = 0
q̇1 + . . . + q̇n = 0
ṗ1 = . . . = ṗn

















,

which is equivalent to stating









v1 + . . . + vn = 0
F1 = . . . = Fn







 .

In figure 1, a mass-spring-damper system is depicted, as well as a set of constitutive equations
that can be derived for it. All forces and directions are defined to be positive in the upward
direction. This has to be taken into account when writing down the relations for conservation
of momentum and displacement. Note, that the constitutive equations that are shown, give all

F

m

kb

Ground

























































F = Fm + Fk + Fb

vm = vk = vb

pm = m · vm

Fk = k · xk

Fb = b · vb

ṗm = Fm, ẋm = vm, Ėm = Fm · vm

ṗk = Fk, ẋk = vk, Ėk = Fk · vk

ṗb = Fb, ẋb = vb, Ėb = Fb · vb

























































Figure 1: Constitutive equations for a mass-spring-damper system

relations between all five major variables. And, although we already left out the equations for
conservation of energy, there is still quite some redundancy in this set of equations. In this report,
we will mainly concern ourselves with the construction of a set of constitutive relations for hybrid
systems, not with the elimination of redundant variables in the resulting model.

For other fields in physics, such as thermodynamics, electronics, and fluid dynamics, similar
ways of deriving constitutive equations apply. Based on this observation, a unifying approach to
dynamic systems modeling, called bond graphs, was developed by the late H.M. Paynter in the
late fifties [11].

2.2 Bond graphs

The main observation behind bond graphs, is that the notions of force and velocity from mechanical
systems, have analog notions in many other fields of physics, so that we can generalize these
notions and the laws that apply to them. In bond graph theory, the generalization of force is
called effort (denoted e) and the generalization of velocity is called flow (denoted f). For the
generalized momentum, denoted p, we have the constitutive relation ṗ = e, and for the generalized
displacement, denoted q, we have q̇ = f . In table 1 we have summarized the analogies between
different fields in physics, and their bond graph generalizations. Energy E, is already a domain
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independent term, but, although this variable is fundamental in the physics behind bond graphs,
it does not play an important role in bond graph modeling, because of the redundancy that
was already pointed out in the previous section. In continuous models, the energy is completely
determined by the other four variables.

Table 1: Bond graph variable analogies

generalized generalized
effort e flow f momentum p displacement q

trans. mech.: force F velocity v momentum p displacement x
rot. mech.: torque τ ang. vel. ω ang. mom. b angular Θ
electronics: voltage u current i flux link. λ charge q
hydraulics: pressure P volume-flow Q press. mom. pp volume V

The fundamental idea behind a bond graph, is that it depicts the way in which energy is stored
in a component, and the way in which components exchange energy. Energy can be stored in a
component in the form of generalized momentum or generalized displacement. The multiplicative
relation between a change in energy and a change in generalized momentum and generalized
displacement, given in equation (1), is called the power relation.

Ė = ṗ · q̇ = e · f. (1)

Now, let us consider a set C of components, that are connected in an energy conserving way.
This means that the total energy that is stored in the components does not change. We obtain
the equation:

∑

c∈C

Ėc =
∑

c∈C

ec · fc = 0 . (2)

Furthermore, if the connection between components conserves generalized momentum, we obtain
∑

c∈C

ṗc =
∑

c∈C

ec = 0 , (3)

while, if it preserves generalized displacement, we have
∑

c∈C

q̇c =
∑

c∈C

fc = 0 . (4)

This gives us the basic constitutive equations for describing the energy in a component, and the way
in which components may exchange energy. As we will see further on, conservation of generalized
momentum is always associated with equal flows of the components, while conservation of general
displacement is associated with equal efforts. This is in line with the connection of mechanical
components mentioned in the previous section.

The components themselves, can be described by giving a relation between p, q, e and f . We
distinguish the following types of components, based on certain properties of their constitutive
relation. Note, that we use the same symbol (in small capital letters) for the function defining the
constitutive relation, as for the representation of an element in a bond graph. Also, the functions
may depend on other variables of the system than the ones that are explicitly mentioned, as long
as the given constraints are met.

• A resistance (bond graph symbol r), is a component with a constitutive relation e = r(f)
such that the function r satisfies x · r(x) ≥ 0 for all x. Consequently, Ė = e · f ≥ 0, which
models that a resistance dissipates energy from the rest of the system.
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• An inductance (bond graph symbol i), is a component with a constitutive relation f = i(p).
This models a component that stores energy in the form of generalized momentum. For

intrinsic stability of the component, it is usually assumed that the function i satisfies ∂i(p)
∂p

> 0

(see [2]).

• A capacitance (bond graph symbol c), is a component with a constitutive relation e = c(q).
This models a component that stores energy in the form of generalized displacement. For

intrinsic stability, it is usually assumed that the function c satisfies ∂c(q)
∂q

> 0.

• A flow-source (bond graph symbol sf ), is a component with a constitutive relation f = sf ,

such that the function sf satisfies
∂sf

∂p
= 0. Recall, that the value of sf may depend on

the value of variables other than p. A flow-source enforces a certain change in generalized
displacement, and has an arbitrary generalized momentum at its disposition to achieve this.

• An effort-source (bond graph symbol se), is a component with a constitutive relation e = se,
such that the function se satisfies ∂se

∂q
= 0. It enforces a certain change in generalized

momentum, and has an arbitrary generalized displacement at its disposition to achieve this.

In table 2, we have summarized the analogies between the bond graph elements above (except
for the sources), and what they represent in different fields in physics. In this table, we have
assumed that the components are characterized by linear constitutive equations, and have also
mentioned the (more or less) standard notations that are used in the different fields to denote
variables and parameters. The linear equations are:

Resistance : e = r(f) = R · f

Inductance : f = i(p) =
1

I
· p

Capacitance : e = c(q) =
1

C
· q .

In these equations, we have adopted the standard letters that are used in bond graph theory
for the parameters of the linear equations. In the remainder of the report, we always use generic
constitutive relations (denoted by small capital letters) in the development of the theory, and linear
constitutive equations (with the parameters as defined above) in the examples, unless otherwise
specified.

Table 2: Bond graph element analogies

inductance I capacitance C resistance R

trans. mech.: mass m spring 1
k

damper b
rot. mech.: rot. inertia J rot. spring 1

k
rot. damper c

electronics: inductor L capacitor C resistor R
hydraulics: fluid-inertia I reservoir C resistor R

It is important to note, that not all variables are involved in the constitutive relations of every
component. The constitutive relations of a resistance only deal with e and f , not with p and
q. Also, the constitutive relations of an inductance deal with p and f , not with q and e, and
vice versa for the capacitance. The variables that do not occur in the definition of a specific
component, are considered to be auxiliary variables for that component. As it turns out, in some
cases, these auxiliary variables do not even have a physical interpretation. In this report, we adopt
the assumption that if the variables p and q occur as auxiliary variables, then they cannot engage
in discontinuous behavior. The consequences of this, will become clear section 2.3.
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When we draw a bond graph, a bond graph element is always drawn together with a half arrow
(called a bond). This arrow represents the energy connection between the element and the rest
of the system. A bond always points in the positive direction of power. In other words, if the
flow and effort are both positive, the arrow points towards the element if it stores or dissipates
energy (as is the case with inertia, capacitances and resistances), and away from the element if it
supplies energy to the system (as is the case with sources of effort and flow). This is depicted in
figure 2. It is important to verify that the choice of the directions of the bonds coincides with the

i c r se sf

Figure 2: Power directions for standard bond graph elements

choice of positive directions in the model. For example, to make a bond graph that represents the
mechanical system pictured in figure 1, we have to take care that the positive direction of velocity
(in this case upward) coincides with the positive direction of power in the bond graph. In case of
a conflict, it is usually possible to leave the power directions of figure 2 intact, and only change
the direction of bonds between junctions.

A connection between a set C of components, that is based on conservation of generalized
displacement, is called a 0-junction. Therefore, in a 0-junction, we have the equations (2) and (4).
Additionally, we have the equation

ec = ec′ , for all c, c′ ∈ C, (5)

expressing that effort on all connected components is equal in all connected components. The
1-junction describes exchange of energy through exchange of generalized momentum. In a 1-
junction, we have the equations (2) and (3), and additionally

fc = fc′ , for all c, c′ ∈ C, (6)

expressing that the flow through all connected components is equal. As before, one may observe
that preservation of energy (2) follows from the combination of equations (1), (4) and (5), and
also from the combination of (1), (3) and (6). In the description of physical system, preservation
of energy is therefore, usually, considered implicit. Further on, we will see that in hybrid systems,
it cannot be considered implicit anymore.

When there are elements connected to a junction of which the power directions point outward,
they have a negative effect on the exchange of generalized momentum or generalized position.
The equations given above, are therefore for the case where all bond arrows point inwards, into
the junction. Some possible configurations, and the associated constitutive equations, have been
depicted in figure 3.

To facilitate the creation of a set of constitutive relations for a bond graph model, each bond is
usually given a unique number that is used as a subscript for all the variables associated with that
bond. As an example, the mechanical system of figure 1 is turned into the bond graph of figure 4 as
follows. Firstly, the position of the mass is defined relative to the position of the ground, while the
position of the spring and damper refers to the amount with which they are stretched. The force
F is connected to the mass, so their positions are equal. Secondly, we define a change of position
in the upward direction to be positive. From figure 1, it is then clear, that a change in position
of the mass, leads to an equal change in position of the force, the spring and the damper. This
suggests a 1-junction between the bond graph elements representing these components. Thirdly, if
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1

1

2

3

(

e1 + e2 + e3 = 0
f1 = f2 = f3

)

1

1

2

3

(

−e1 + e2 − e3 = 0
f1 = f2 = f3

)

Figure 3: Constitutive equations for junctions with different power directions

we want the power directions of the bond graph elements to point in the directions given in figure
2, we need to define the direction of the force F , and the forces generated by the spring and the
damper, to be positive in the upward direction. Lastly, because everything is modeled relative to
the ground, it is not necessary to model the ground explicitly. We use linear constitutive relations
for our components, and write the parameters that play a role in these linear relations near the
bond graph elements, separated by a colon. Writing down the constitutive relations for this model,

i : m
mass

se : F
force

1

r : b
damper

c : 1
k

spring

1 2

3 4

Figure 4: Bond graph for a mass-spring-damper system

and renaming the variables appropriately, indeed gives us the set of equations in figure 1.

2.3 Time-scale abstraction

In the first part of this section, we explained a general way of modeling continuous physical systems
using a mass-spring-damper system as an example. In order to explain the need for time-scale
abstraction and hybrid modeling, we study a different system, namely, a collision between two
bodies, as depicted in figure 5.

v1 v2
m1 m2

Figure 5: Two colliding bodies

In classical physics, there is the assumption that energy can only be transported from one
point in time and space to another, by a continuous trajectory. This is also called the principle
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of continuity of power and is attributed to the British physicist Oliver Heaviside [7]. A direct
consequence of this principle, is that in the situation of figure 5, we cannot simply model the two
colliding bodies as masses. The reason for this, is that the momentum of a mass determines its
kinetic energy, which cannot change discontinuously. The model is inconsistent with respect to
continuity of power. Indeed, if we wish to model the collision of bodies in a consistent way, we must
model the way in which the energy is transferred more precisely. For example, we might model
the bodies as masses that are momentarily connected via a spring-damper system at impact, as
shown in figure 6. This reflects the elastic effects and the dissipation of energy that occur during
impact.

m1 m2

Figure 6: Power continuous model of two colliding bodies

However, for many modeling applications, the extension of a model to make it consistent with
the principle of continuity of power is impractical. Due to its greater size, such a model may be
harder to analyze, and, more importantly, not all parameters may be known for the components
involved in the extension. In the example of the impact between bodies, the elasticity of the
bodies, and the precise damping factors, may not be known. In such a situation, it may prove
convenient to abstract from the exact behavior, and model it as a discontinuous change. Naturally,
the modeler should verify that the abstraction from impact dynamics, is indeed a valid one with
respect to the goal of the model.

Given the constitutive relations for continuous behavior, we can attempt to derive constitutive
relations for discontinuous behavior. In these relations, we use x− to denote the value of x before
the discontinuity, and x+ to denote the value of x afterwards. As a shorthand notation, we use x′

for (x+ − x−). Preservation of energy, for example, can be expressed as

Σc∈C (E+
c − E−

c ) = Σc∈C E′
c = 0 . (7)

In general, discontinuous behavior is a result of a change in the connection structure between
components. We are abstracting away from the precise behavior that happens during this change
in structure. Note, that this behavior may include the dissipation of energy by the environment
of the system. Due to a change in structure, some energy in the system may be thus be lost.
Therefore, if there is a change in connection structure, we use the following equation for the
energy of connected components.

Σc∈C E′
c ≤ 0 . (8)

For the derivation of the constitutive relations describing the discontinuous behavior of the
components, we base ourselves on the descriptions of the continuous behavior. As it turns out, we
can calculate the changes in stored energy, generalized displacement, and generalized momentum,
for many of the components. However, if generalized displacement and generalized momentum
occur as auxiliary variables, as mentioned in section 2.2, it is difficult to calculate changes, without
knowledge of the exact amount of time that is abstracted away from. Therefore, in the derivations
below, we have assumed that the change in these variables is negligible. The modeler needs to
verify that this assumption is indeed justified, if the auxiliary variables have physical meaning!
Further on, we will briefly discuss some examples of what can be done if this is not the case.
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• For a resistance, the variables p and q are both auxiliary. Indeed, we cannot conclude from the
constitutive relation e = r(f) that p′ = r(q′). The change in energy, generalized momentum
and generalized position, depends on the precise behavior during the discontinuity. We
therefore assume that resistances do not take part in the discontinuous behavior, and that
E′ = q′ = p′ = 0. As a result, the only dissipation during discontinuous behavior, is in
the changing connection structure. Note, that for example in the mechanical domain, this
means that the position q does not change during discontinuous behavior.

• For an inductance we have the continuous relation Ė = ṗ · q̇ = ṗ · i(p). We integrate over the

trajectory of p to find E′ =
∫ p+

p−
i(x) dx for the change in stored energy as a function of the

change in generalized momentum (see for example 5.4.2 in [6], for the substitution rule from
differential calculus we used here). Furthermore, generalized displacement q is an auxiliary
variable for an inductance. Therefore, we assume that q′ = 0.

• For a capacitance we find, dual to the inductance, that E′ =
∫ q+

q−
c(x) dx and p′ = 0.

• For a flow-source, we find that E′ =
∫ p+

p−
sf dp = sf · (p+ − p−) = sf · p′. Note, that these

relations are similar to that of an inductance, apart from the fact that
∂sf

∂p
= 0. As with

inductances, we assume that q′ = 0.

• For an effort-source, we find that E′ =
∫ q+

q−
se dq = se · q

′. As with capacitances, we assume

that p′ = 0.

Note, that for example the calculation of the integral E′ =
∫ p+

p−
i(x) dx, is only valid if i does not

depend on other variables than x. If it does, we need to assume, at least, that the change in these
other variables is negligible during the discontinuous behavior. Something that, again, has to be
verified by the modeler.

For 0-junctions, we still have conservation of generalized displacement

Σc∈C q′c = 0 , (9)

while all changes in generalized momentum are equal

p′c = p′c′ , for all c, c′ ∈ C . (10)

For 1-junctions we have conservation of generalized momentum

Σc∈C p′c = 0 , (11)

while all changes in generalized displacement are equal

q′c = q′c′ , for all c, c′ ∈ C . (12)

Note, that it is not the case that E′ = p′ · q′. Hence, the energy equation (7) can no longer be left
implicit when describing junctions.

Using the constitutive relations for discontinuous behavior that we found above, we can model
the impact of bodies shown in figure 5 as a discontinuous behavior of two masses. If we use the
linear constitutive differential equation q̇ = f = 1

m
· p for the colliding bodies, with p the momen-

tum, m the mass, q the position of the bodies, and f the velocity, we obtain the discontinuous
constitutive relations given below, for the behavior at time of impact.

E′
1 + E′

2 ≤ 0
p′1 + p′2 = 0
q′1 = q′2 = 0

E′
1 =

∫ p
+

1

p
−

1

( 1
m1

· p)dp =
(p+

1
)2−(p−

1
)2

2·m1

E′
2 =

∫ p
+

2

p
−

2

( 1
m2

· p)dp =
(p+

2
)2−(p−

2
)2

2·m2
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As a last remark, we would like to discuss the assumption we made earlier, that certain variables
do not change during the discontinuous behavior. Especially, to get a feeling of the implications
of this assumption, we would like to study three examples, of situations in which this assumption
does not hold.

The first example, is that of a model of a discontinuous effort-source (think, for example, of
a voltage source that can be switched on). In this model, the relation se changes during the
discontinuity. Because of this, we cannot use the discontinuous constitutive relations derived
above. The partial integral that is used there, is incorrect. However, if we add the assumption
that the value of se stays within the bounds s

−
e and s

+
e during the discontinuous behavior, we

may still approximate the discontinuous behavior using the equations E′ ≤ min(s−e , s+
e )q′ and

E′ ≥ max(s−e , s+
e )q′. This shows, that the assumption that the continuous constitutive relation

se does not change, can be omitted if we have other assumptions to guide the construction of
the discontinuous constitutive relations. Incidentally, a discontinuous effort-source can also be
modeled using the bond graph elements discussed in section 4.6.

The second example, is that of an external force (or effort source), acting on one of the two
colliding masses of figure 5. We know, from basic physics, that in such a case the law of conservation
of momentum does not hold during the collision. Energy may be transferred from the effort source
to the colliding masses. The change in the auxiliary variable p, associated with the effort source,
models the way in which the change in momentum of the masses is influenced by the external
force. Our assumption that auxiliary variables do not change (p′ = 0), implies in this case that we
consider the influence of the external force to be negligible. However, if the force is relatively large,
or the masses are relatively small, this assumption may not hold. In that case, simply dropping
the requirement that p′ = 0, as we did in the previous example, leads to an arbitrary change in
the velocity of the masses. This is clearly not desirable. We suspect, that in this situation it is
not possible to model the impact as a discontinuous behavior.

The third, and last, example, is that of an extremely low, or high, resistance. If the value
of a resistance approaches infinity, it is unlikely that a change in connection structure between
components will be fast enough to prevent the dissipation of some energy in this resistance. Also,
if the value of a resistance is close to zero, the assumption that there is no change in the value
of the auxiliary variable q, is likely to be flawed. If we still want to model the behavior of the
system discontinuously, we can replace the equation E′ = 0 by E′ ≥ 0 and drop the requirement
that p′ = 0, in case of a high resistance. In case of a low resistance, we can drop the requirement
that q′ = 0. Modeling a resistor in this more flexible way, has the same drawback as in the
previous example on the high external force in a collision. There may be behaviors introduced
in the model, that are not actually possible in the physical system. This needs to be verified by
the modeler, to be sure. Similar situations arise when a mass or elasticity approaches zero, and
hence the associated inductance i or capacitance c approaches infinity. In this report, we will not
consider the constitutive relations that are needed for those special cases any further, and stick
to the assumption that the change in auxiliary variables and continuous constitutive relations is
negligible during discontinuous behavior.

In section 4, we will combine the constitutive relations for continuous and discontinuous be-
havior into so-called hybrid constitutive processes. We will also describe bond graph elements
that can be used for modeling a change in connection structure [9, 1, 12]. Before we can do so,
however, we need to formalize the way in which we describe these combinations of continuous and
discontinuous behavior. The formalism we use for this, is called hybrid process algebra (HyPA).
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3 Hybrid process algebra

The hybrid process algebra HyPA (see [4] for a complete treatment), allows its user to write down
models containing both continuous and discontinuous behavior of a system. The full algebra also
allows for the modeling of software components, through abstract computational actions, but since
this is outside the scope of this report, we will not discuss the constructs dealing with those here.
In our discussion, we limit ourselves to the following signature of constants and function symbols:

1. flow clauses (V |Pf),

2. process re-initializations [V |Pr] À ,

3. alternative composition ⊕ ,

4. disrupt I , and

5. parallel composition ‖ .

Terms in this signature will be used to describe process behavior, consisting of continuous flows
and discontinuities, in the following way.

Continuous and discontinuous behavior are described using predicates over model variables Vm.
In this report, continuous behavior is described using flow predicates Pf on the model variables
Vm and their time derivatives V̇m = {ẋ p x ∈ Vm}. Discontinuous behavior is described using
re-initialization predicates Pr on model variables signed with a minus V−

m , to denote conditions
that only hold at the start of a re-initialization, and on model variables signed with a plus V+

m ,
to denote conditions that hold only at the end of a re-initialization. As before, we write primed
versions V ′

m of the model variables, denoting a difference in the value of model variables.

A flow clause is an atomic process that models the repeated execution of physical behavior.
It is denoted as a pair (V |Pf) of a set of model variables V ⊆ Vm, signifying which variables are
not allowed to jump in between flows, and a flow predicate Pf ∈ Pf modeling which flow behavior
can be executed by the clause. A process re-initialization [V |Pr] À p models the behavior of a
process p where the model variables are first submitted to a discontinuous change. This change is
specified by the set of model variables V ⊆ Vm and the re-initialization predicate Pr. In the case of
process re-initializations, the set V models which variables are allowed to change. Note that this
is precisely opposite to flow clauses. In this report, we will always explicitly model the changes
that take place using re-initializations. Therefore, V = Vm in all flow-clauses and re-initialization
clauses that are used. Since this is the case, we will not bother to write down V explicitly, and we
write [Pr] for [Vm|Pr] and (Pf) for (Vm|Pf).

The alternative composition p ⊕ q models a (non-deterministic) choice between the processes
p and q. The disrupt p I q models that process q may take over execution from process p at
any moment. In other words, it models a mode switch from p to q. The parallel composition p ‖ q
models concurrent execution of p and q. For the restricted version of HyPA we use in this report,
the intuition behind parallel composition is simply that processes synchronize the execution of
their continuous and discontinuous behavior.

Finally, we can define more complex processes using recursive specifications X ≈ p, where X
is a process variable and p is a term possibly containing X and other process variables. Amongst
others, recursion is a powerful way to express repetition in a process. Note that we use ≈ to
denote equivalence of processes, while = is used in flow and re-initialization predicates.

The binding order of the operators of HyPA is as follows: I , À, ‖ , ⊕ , where alternative
composition binds weakest, and the disrupt binds strongest.
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Hybrid process algebra allows us to write down a constitutive process for each element of a
bond graph, describing its continuous behavior as well as its discontinuous behavior. As we will
see in the next section, a constitutive process is always a process of the form

X ≈









[

Vm

∣

∣ Pr1

]

À


 Vm

∣

∣ Pf 1





⊕ . . . ⊕
[

Vm

∣

∣ Prn

]

À


 Vm

∣

∣ Pfn













I X .

This models a repetitive choice on the execution of discontinuities followed by continuous behavior.
For most elements, there is only one possible discontinuous and continuous behavior possible, which
is repeated indefinitely. Only in the case of controlled junctions and switches there are more. A
complete system is modeled as a parallel composition of constitutive processes, i.e.

S ≈ X0 ‖ . . . ‖ Xm .

We conjecture, without proof, that any parallel composition of constitutive processes as described
in this report, can always be rewritten into the form of a constitutive process again. Note, however,
this is not a trivial result, and that it is not true in general for the form given above. The formal
details still have to be worked out.

Note, that it is not possible to execute several discontinuities consecutively without performing
continuous behavior in between. This means that a physically feasible state must be reached after
every discontinuity, and that no two consecutive discontinuities can occur. In principle, it is
possible to allow singleton solutions to flow clauses in the semantics of HyPA. Singleton solutions
are flows with the interval [0, 0] as domain. This means that multiple discontinuities can occur
without the passage of time in between. However, the definition of the notion of singleton solution
is difficult for differential equations, because the derivative operator is not defined on a function
with the interval [0, 0] as domain. In this report, we do not consider those solutions. In the
analysis of Newton’s cradle in section 5.4, it becomes clear why this choice does not influence the
behavior of our models severely.

4 Constitutive hybrid processes

In this section, we give a hybrid description of every element of the bond graph formalism as a
constitutive hybrid process. We also give constitutive processes for the hybrid elements defined in
[9, 1], that describe a changing connection structure between the elements of a bond graph. The
parallel composition of constitutive hybrid processes leads to an algebraic description of the whole
bond graph.

4.1 Bond

The main variables that we describe in our constitutive processes are the stored energy E, the
generalized momentum p, the effort e, the generalized displacement q, and the flow f of an element.
The standard relations between those variables are reflected in the constitutive process for a bond,
although often, we leave those relations implicit for brevity of the presentation. Note, that a bond
does not restrict the behavior during discontinuities, which is reflected in the re-initialization
clause [Vm| true], or more concisely [true]. The subscript i refers to the labeling of the bond in
the bond graph.

Bondi ≈





[

true
]

À

















Ėi = ei · fi

ṗi = ei

q̇i = fi



















 I Bondi
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4.2 Resistance

A resistance models dissipation of energy. As we mentioned in 2.3, however, during discontinuous
behavior, the dissipation of energy through resistors is assumed to be negligible. Hence, the
energy of a resistance is not allowed to change discontinuously. Furthermore, also the generalized
momentum and displacement are considered to be auxiliary variables, and are not allowed to
change. The continuous behavior is described using the constitutive relation e = r(f), for which
we assume that x · r(x) ≥ 0 for every x. This ensures that a resistor models dissipation of energy
Ė ≥ 0.

Resistancei(r) ≈









E′
i = 0

p′i = 0
q′i = 0



 À


 ei = r(fi)






 I Resistancei(r).

4.3 Inductance and capacitance

As was already explained in 2.3, the generalized position of an inductance is considered an auxiliary
variable, and is not allowed to change during discontinuous behavior. The generalized momentum
of an inductance always has a physical interpretation, and may therefore change arbitrarily. The
change in stored energy is determined by the momentum-integral over the constitutive relation.

The continuous behavior of an inductance is described by the equation fi = i(pi), where ∂i(pi)
∂pi

> 0.

The modeler should verify that the relation i(pi), and the value of qi, do not change significantly
during discontinuous behavior.

Inductancei(i) ≈

([

E′
i =

∫ p
+

i

p
−

i

i(x)dx

q′i = 0

]

À


 fi = i(pi)




)

I Inductancei(i).

A capacitance is the dual of an inductance, regarding generalized momentum and generalized
displacement, and so we reason that its constitutive process must be:

Capacitancei(c) ≈

([

E′
i =

∫ q
+

i

q
−

i

c(x)dx

p′i = 0

]

À


 ei = c(qi)




)

I Capacitancei(c),

with ∂c(qi)
∂qi

> 0.

4.4 Sources

For a flow source we have the constitutive relation f = sf , while for an effort source we have

e = se. For these relations, we require
∂sf

∂p
= 0 and ∂se

∂q
= 0. The modeler should verify, that

the relations sf and se, and the auxiliary variables qi, for a flow source, and pi, for an effort
source, do not change significantly during discontinuous behavior. In particular, this means that
we cannot model discontinuous sources, using the constitutive hybrid process below. In section 2.3,
we discussed an alternative constitutive description that is fit for modeling discontinuous sources.
Also, the controlled junctions in section 4.6 may be used for this.

Flow-Sourcei(sf ) ≈

([

E′
i = sf · p′i

q′i = 0

]

À


 fi = sf





)

I Flow-Sourcei(sf ).

Effort-Sourcei(se) ≈

([

E′
i = se · q

′
i

p′i = 0

]

À


 ei = se





)

I Effort-Sourcei(se).
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4.5 Junctions

As before, the 0-junction represents conservation of total energy and total generalized displace-
ment at an equal change in generalized momentum. Dually, the 1-junction represents conservation
of total energy and total generalized momentum at an equal change in generalized displacement.
The discontinuous behavior is such that total generalized momentum and total generalized dis-
placement are still preserved or changing equally, respectively, and that also the total energy in
the system is preserved. Later, when we study junctions that display switching behavior, we will
find examples of a junction in which energy is dissipated during discontinuous behavior.

Bear in mind, that the positive direction of power, determines the sign of the contribution of
variables to the summations, as in the explanation of junctions in section 2.2. This is also the case
for the summation of energy. To emphasize this, we have used the notation ± in front of every
variable that should be positive when the the power direction points inward and negative when
outward.

0-junctionC ≈









∑

c∈C ±E′
c = 0

∑

c∈C ±q′c = 0
∀c,c′∈C p′c = p′c′



 À









∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′











 I 0-junctionC ,

1-junctionC ≈









∑

c∈C ±E′
c = 0

∑

c∈C ±p′c = 0
∀c,c′∈C q′c = q′c′



 À









∑

c∈C ±ec = 0
∀c,c′∈C fc = fc′











 I 1-junctionC .

4.6 Controlled junctions and switches

In this section, we discuss several hybrid bond graph elements, as they were proposed earlier in
literature. The controlled junctions are based on the work of [9, 1]. The switching element, was
proposed in [12]. As we will see further on, we can express the switch in terms of controlled
junctions and 0-sources.

When active, a controlled junction acts like the junction it is associated with. When inactive,
it acts like a collection of 0-effort sources or a collection of 0-flow sources, depending on the specific
type of the controlled junction. The 0/E, and 1/E type act as an effort source when inactive, while
the 0/F and 1/F type act as a flow source. The predicates Act and Inact, model when a controlled
junction is active or inactive, respectively. These are predicates over Vm only. We use Act− to
denote the predicate Act where all variables x ∈ Vm are replaced by x−, and similarly for Inact−.

As we explained in section 2.3, a change in connection structure between components may
give rise to a dissipation of energy. Therefore, when switching from Act to Inact, or vice versa,
we allow a decrease in the total energy of the system. The discontinuous behavior of the other
variables during this decrease, is governed by either the equations for the discontinuous behavior
of the associated junction or the equations for the 0-effort or flow-source. Since we are switching
from one mode to another, both are possible. Note, that due to the sign convention, a decrease in
energy in the system, is associated with a positive change in total energy in the junction. In the
equations below, we use the same notation (±) as with junctions, to emphasize the dependence of
signs on the power direction of the bonds.
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We obtain the following hybrid constitutive process for the (0/E)-junction.

(0/E)C(Act,Inact) ≈

















Act−
∑

c∈C ±E′
c = 0

∑

c∈C ±q′c = 0
∀c,c′∈C p′c = p′c′









À















Act
∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′















⊕





Inact−

∀c∈C

{

E′
c = 0

p′c = 0



 À









Inact
∀c∈C ec = 0









⊕









Inact−
∑

c∈C ±E′
c ≥ 0

∑

c∈C ±q′c = 0
∀c,c′∈C p′c = p′c′









À















Act
∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′















⊕









Act−
∑

c∈C ±E′
c ≥ 0

∑

c∈C ±q′c = 0
∀c,c′∈C p′c = p′c′









À









Inact
∀c∈C ec = 0









⊕





Inact−

∀c∈C

{

±E′
c ≥ 0

p′c = 0



 À















Act
∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′















⊕





Act−

∀c∈C

{

±E′
c ≥ 0

p′c = 0



 À









Inact
∀c∈C ec = 0













I (0/E)C(Act,Inact)

It is straightforward to construct the dual definitions for 1/E, 0/F and 1/F. Some of the re-
initialization clauses that are used above, may be combined using the equivalence d À x ⊕ d′ À
x ≈ (d ∨ d′) À x (which is one of the axioms of HyPA [4]). We presented the constitutive hybrid
process in the disjunctive way, to put more emphasis on the structure of the process.

A switch, acts like a 0-effort source when active, and as a 0-flow source when inactive. As before,
when switching modes, energy may be dissipated while the other variables behave according to the
equations of one of the sources. Because the power bond of a switch is always pointing outward, the
decrease in energy is associated with the constitutive equation (E+

i − E−
i ) ≤ 0. The constitutive
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hybrid process of a switch has a similar structure as that of a controlled junction.

Switchi(Act,Inact) ≈









Act−

E′
i = 0

p′i = 0



 À









Act
ei = 0









⊕





Inact−

E′
i = 0

q′i = 0



 À









Inact
fi = 0









⊕





Inact−

E′
i ≤ 0

p′i = 0



 À









Act
ei = 0









⊕





Act−

E′
i ≤ 0

p′i = 0



 À









Inact
fi = 0









⊕





Inact−

E′
i ≤ 0

q′i = 0



 À









Act
ei = 0









⊕





Act−

E′
i ≤ 0

q′i = 0



 À









Inact
fi = 0













I Switchi(Act,Inact)

Note, that a switch can also be represented as a 0-effort source acting on a controlled 1/F-
junction. Dually, representing a switch as a 0-flow source acting on a controlled 0/E-junction
(with the switching predicates reversed), is also possible of course. We find that the three bond
graphs depicted in figure 7 are equivalent, if we abstract from the variables associated with bonds
2 and 3.

Switch:(Act,Inact)

rest of the system

1

Se : 0

(1/F):(Act,Inact)

rest of the system

2

1

Sf : 0

(0/E):(Inact,Act)

rest of the system

3

1

Figure 7: Three equivalent switches

Switch:(Act,Inact)

1

2 3

(1/F):(Act,Inact)
2 3

Figure 8: Two non-equivalent switches

The two bond graphs depicted in figure 8, perhaps surprisingly, are not equivalent. In the left
bond graph, there is a situation where the total energy of bonds 2 and 3 may decrease, while the
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switch acts like a 0-effort source. Still, some energy may go from 2 to 3, or vice versa. Using
calculations, we obtain the following subprocess:





Act
E2 + E3 = −E′

1 ≥ 0
q′1 = q′2 = q′3 = 0



 À









Inact
f2 = f3 = 0









In the right bond graph, given that same situation, the energy of each of the bonds, separately,
has to decrease, clearly indicating that the elements are disconnected. We find the subprocess:









Act
E′

2 ≥ 0
E′

3 ≥ 0
q′2 = q′3 = 0









À









Inact
f2 = f3 = 0









This detail makes that we have a slight preference for the use of controlled junctions over switching
elements. However, the physical consequences of each have to be investigated in more detail still,
so no fixed answer can be given yet to which is better. In the examples we give further on, we will
only use the controlled junctions to model discontinuities in our systems.

Intermezzo For standard bond graph theory, there is a set of graph reduction rules, that lead to
equivalent bond graphs (modulo elimination of variables associated with connections between junc-
tions) [3]. We conjecture, that those rules are still valid for the hybrid case, with the exception that
special elements, like resistors of value 0, and infinite resistances, inductances and capacitances,
need special treatment due to the observations made at the end of section 2.3. For the formal
derivation of bond graph reduction rules, we need a notion of abstraction from continuous variables
in HyPA. Such a notion of abstraction is currently being developed. Using this notion, also new
rules for dealing with hybrid elements, like the informal rule of figure 7, can be developed. Even
without these abstraction rules, we can prove, for example, that 1-junctionC = (1/E)C(true,false),
which illustrates that a controlled junction behaves like an ordinary junction if it is always acti-
vated.

4.7 Transformers and gyrators

Two standard bond graph elements that have not been discussed so far, are the transformer and
the gyrator. They are used to model conversion between different physical domains. Examples
are motors, levers, pumps etc. Transformers and gyrators always define a certain ratio m between
the flow and effort on the one, and on the other side of the element. As before, the modeler
should verify that this ratio does not change significantly during discontinuous behavior. The sign
contribution on variables used in transformers and gyrators, depends on the positive direction of
power. In the case of transformers and gyrators, all variables are negated when the direction of
power of a certain bond is outward.

Transformer{i,j}(m) ≈








±E′
i ± E′

j = 0
±p′i = m · ±p′j
±q′j = m · ±q′i



 À









±ei = m · ±ej

±fj = m · ±fi











 I Transformer{i,j}(m),

Gyrator{i,j}(m) ≈








±E′
i ± E′

j = 0
±p′i = m · ±q′j
±p′j = m · ±q′i



 À









±ei = m · ±fj

±ej = m · ±fi











 I Gyrator{i,j}(m).
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5 Examples

In this section, we will discuss several examples of hybrid modeling, and the resulting process
algebraic descriptions. We start by revisiting the collision example of section 2.3, and subsequently
apply the same principle in a model of an impact control unit as produced by Assembleon and
Philips CFT. Next, we study a model of an electrical circuit containing diodes, and show how, in
this model, implicit switching takes place, leading to a model with less modes of operation than
one might expect on first sight. Subsequently, we perform a deeper study of the phenomenon
of implicit switching, using a model of Newton’s cradle. Lastly, we give a model of a vacuum
chamber, as it is produced by ASML, and suggest a specification of a safe controller for this
system. In all models, except that of the vacuum chamber, we use linear constitutive equations
for all components.

5.1 Collision

In this subsection, we revisit the example of a collision between two masses of section 2.3. The
bond graph that is associated with the problem of collision, is depicted in figure 9.

The controlled 1/E-junction is active, modeling the exchange of momentum between the two
masses, when the position of the masses is equal, and either the velocity of the left mass is greater
than that of the right mass, or the velocities are equal and the acceleration of the left mass
is greater than that of the right mass. The acceleration of an inductance can be expressed as
ḟ = ∂i

∂t
(p) + i(ṗ), and for the linear masses we use in this model we find ḟ = 1

m
· e. Ultimately, we

obtain (q1 = q2 ∧ f1 > f2) ∨ (q1 = q2 ∧ f1 = f2 ∧
1

m2
· e1 ≥ 1

m2
· e2) for the Act predicate. For the

Inact predicate, modeling the case where the masses do not touch, we have (q1 ≤ q2), expressing
that the first mass cannot get past the second.

i : m1

mass
(1/E):(Act, Inact)

i : m2

mass

1 2

Act : (q1 = q2 ∧ f1 > f2) ∨ (q1 = q2 ∧ f1 = f2 ∧
1

m1
· e1 ≥ 1

m2
· e2)

Inact : (q1 ≤ q2)

Figure 9: Modified bond graph for a collision

From this bond graph, we construct the following parallel composition of constitutive processes.

Collision ≈ Bond1 ‖ Inductance1(m1) ‖ (1/E){1,2}(Act,Inact) ‖ Bond2 ‖ Inductance2(m2)

Elimination of the parallel composition through algebraic reasoning (see [4]), gives us the
following constitutive process for the whole system. For the sake of brevity, we have left the bond

18



definitions implicit.
Collision ≈




































E′

1 =
(p+

1
)2−(p−

1
)2

2·m1

E′

2 =
(p+

2
)2−(p−

2
)2

2·m2

E′

1 + E′

2 = 0

p′

1 + p′

2 = 0

q′1 = q′2 = 0

Act
−



















À































p1 = m1 · f1

p2 = m2 · f2

e1 + e2 = 0

f1 = f2

Act































⊕









E′

1 = E′

2 = 0

p′

1 = p′

2 = 0

q′1 = q′2 = 0

Inact
−









À























p1 = m1 · f1

p2 = m2 · f2

e1 = e2 = 0

Inact























⊕



















E′

1 =
(p+

1
)2−(p−

1
)2

2·m1

E′

2 =
(p+

2
)2−(p−

2
)2

2·m2

E′

1 + E′

2 ≤ 0

p′

1 + p′

2 = 0

q′1 = q′2 = 0

Inact
−



















À































p1 = m1 · f1

p2 = m2 · f2

e1 + e2 = 0

f1 = f2

Act































⊕



















E′

1 =
(p+

1
)2−(p−

1
)2

2·m1

E′

2 =
(p+

2
)2−(p−

2
)2

2·m2

E′

1 + E′

2 ≤ 0

p′

1 + p′

2 = 0

q′1 = q′2 = 0

Act
−



















À























p1 = m1 · f1

p2 = m2 · f2

e1 = e2 = 0

Inact









































I Collision .

In the next subsection, we will use the same principle of modeling collision, in a slightly more
advanced model of an impact control module as used in a component mounting machine produced
by Assembleon and Philips CFT.

5.2 Impact control at Assembleon

In this subsection, we discuss an application of the collision model to a real-life example. Assem-
bleon is working on the design of a component mounting machine, for placing electrical components
on a printed circuit board (PCB). Typically, the goal is to bring a component as fast as possible to
the PCB, and then press it on the PCB for a sufficient time, with sufficient force, to make the ad-
herent that is used for connection stick. In the actual mounting machine a number of components
can be placed at the same time, using several impact modules. A simplified model of one such an
impact module is drawn in figure 10. Because the nature of the components and the PCB’s that
are used varies wildly, it is not desirable to model the impact in too great detail. However, one of
the requirements on the module is to prevent cracking of the component. Therefore, it is necessary
to model the amount of energy that is absorbed during the actual impact of the component on
the PCB.

The bond graph that is associated with the schematic model of figure 10 is given in figure 11.
It is important to note, that this bond graph model is only valid, if the influence of the external
force, and the influence of the spring damper system on the impact behavior, are indeed negligible.
The actual validation of that assumption, is outside the scope of this report.

Note, that the power directions in the bond graph suggest that the velocity of the masses and
the positive direction of the force are defined upward. In other words, the force vector in figure
10 is drawn in the negative direction. Furthermore, the switching conditions are slightly different
from those in the previous section. Because we need to calculate the difference in acceleration as
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Figure 10: Schematic model of the impact module

it would have been if the junction were inactive, we have to take the effort that flows through the
(1/E)-junction into account. The resulting condition, admittedly, is rather complex. This seems
to arise from the physical intuition that a system always takes the route of the least resistance. In
this case, the impact system seems to have a preference for the case where there is no connection
between the masses. In process algebra, such a preference is usually modeled using a choice
operator that has a preference for one of its arguments. However, such an operator has not been
developed yet for HyPA, so the use of it in constitutive hybrid processes is a topic for future
research.

i : ms

mass sled
se : F

steering force
1

(1/E):(Act,Inact)

1
i : mp

mass PCB

r : b
friction PCB

c : 1
k

stiffness PCB

1 2

3

4

5 6

7

Act : (q1 = q5 ∧ f1 > f5) ∨ (q1 = q5 ∧ f1 = f5 ∧
1

ms
· (e1 + e3) ≥

1
mp

· (e2 − e4))

Inact : (q1 ≤ q5)

Figure 11: Bond graph model for the impact module

After calculations that are similar to the ones used in the previous subsection, we obtain the
following constitutive hybrid process for the impact module as a whole. Note, that this process
has roughly the same structure as the one we found in the previous section.
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I Module .

5.3 An electrical circuit

In this section, we study the electrical circuit depicted in figure 12. The bond graph that is
associated with this circuit, is depicted in figure 13. It is taken from [10], and uses controlled
junctions to model the electrical switch and the diode. The state of the diode depends on the flow
and effort in the bond, or bonds, connected to it. For the electrical switch, we use the predicate
Closed to represent a closed switch, and the predicate Open to represent an open switch.

After calculation on the parallel composition of constitutive hybrid processes of the bond graph
depicted in figure 13, it turns out that there are essentially six possible re-initializations, and four
possible flow clauses. Furthermore, the switching predicates restrict the combination of those. We
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Figure 12: Electrical circuit with switch and diode
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Figure 13: Bond graph model using controlled junctions

obtain the following constitutive process for the whole circuit.
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in which we use the following abbreviations, for which the bond definitions are left implicit:
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It is arguable, whether our constitutive hybrid process for a controlled junction, forms a good
representation of a diode, because we do not expect a diode to dissipate energy during switching.
Adapting the constitutive hybrid process of the diode, in such a way that no energy dissipation
takes place, leads to a new definition of the re-initialization clauses d4 and d5, which makes them
coincide with d3 and d2, respectively.

d4 = d3 =













E′
1 = E′

2 = 0

E′
3 = E′

4 =
(p+

4
)2−(p−

4
)2

2·L ≤ 0
p′1 = p′2 = 0
p′3 = p′4
q′1 = q′2 = q′3 = q′4 = 0













d5 = d2 =













E′
1 = E′

2 = E′
3 = E′

4 = 0
p′1 = p′2 = 0
p′3 = p′4
q′1 = q′2 = q′3 = q′4 = 0
(p+

4 )2 = (p−4 )2













The analysis in the remainder of this subsection, is independent of the choice to model a diode as
a dissipating element during discontinuities, or not.

Further study on the flow clauses, shows a peculiarity in the behavior of c2. Using calculation
on derivatives, we obtain e4 = ṗ4 = 0. As it turns out, the only case where time progresses in c2,
is when both the voltage over the diode, and the current through the diode are zero. Interestingly,
the set of solutions of c2 is a subset of the set of solutions of c4, indicating that the diode can be
interpreted as both conducting and blocking.

Algebraic manipulation of the constitutive hybrid process, allows us to combine the flow clauses
c2 and c4, showing character of implicit switching more clearly. The complete derivation is outside
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the scope of this report, but in it, we use the fact that all solutions from c4 that start with p4 = 0,
are also solutions from c2. We obtain the following alternative description of the circuit.

Circuit ≈
((

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

À c1

⊕
(

d3 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

À c3

⊕
(

((d1 ∧ p+
4 = 0) ∨ d4) ∧

[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

À c4

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

À c1

⊕
(

d4 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

À c3

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

À c4

⊕
(

d3 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

À c1

⊕
(

d2 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

À c3

⊕
(

((d4 ∧ p+
4 = 0) ∨ d5) ∧

[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

À c4

⊕
(

d4 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

À c1

⊕
(

d5 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

À c3

⊕
(

d1 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

À c4

)

I Circuit

From this description, it becomes clear that, when the switch is opened, this enforces that the
diode starts conducting. If the current through the inductance is negative, the implicit switch from
blocking to conducting, leads to an energy loss, such that after the discontinuity, the generalized
momentum of the inductance, and the current through the inductance, are zero. This implicit
switching, was also described, for example, in the work of [10]. In the next example, on Newton’s
cradle, we will study another occurrence of implicit switching.

5.4 Newton’s cradle

Figure 14: Newton’s cradle

Newton’s cradle, see figure 14, is a famous toy for physicists. It can be used to study con-
servation of momentum and energy in collisions. A standard way to model Newton’s cradle, see
for example [15], is to model the collision between two masses, and then study what happens if
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multiple masses engage in these simple collisions interleavingly. As a result, there is a multiplicity
of discontinuities when more than masses collide. When we model it using constitutive hybrid
process, however, it turns out that these discontinuities are all collected, and executed as one
single discontinuity.

i : m1

ball 1

i : m2

ball 2
i : mi

ball i
i : mn−1

ball n − 1

i : mn

ball n
1 1 11/E 1/E 1/E 1/E

3 3i 3n-3

1 2 4 3n-4 3n-2 3n-1

Figure 15: Bond graph model of Newton’s cradle

In figure 15, we have depicted a bond graph model of Newton’s cradle, for an arbitrary number
of balls (n > 2). The switching conditions for the controlled junctions depend on the effort
and flow of the colliding masses, as was the case for the simple collision of section 5.1. We find
Act : (q3i = q3i+3 ∧ f3i > f3i+3) ∨ (q3i = q3i+3 ∧ f3i = f3i+3 ∧ 1

mi
· e3i+1 ≥ 1

mi+1
· e3i+2) and

Inact : (q3i ≤ q3i+3) for the the collision between mass i and i + 1, with 1 < i < n. Similar
conditions apply if i = 1 or i = n, but the numbering is slightly different for these border cases.
The constitutive hybrid process, for the case where we have three balls, is given below. We have
assumed there, that all balls have the same mass m.

Cradle ≈ ((A12 ∧ A45 ∧ daa) À caa ⊕ (A12 ∧ A45 ∧ das) À cai

⊕ (A12 ∧ A45 ∧ dsa) À cia ⊕ (A12 ∧ A45 ∧ dss) À cii

⊕ (A12 ∧ I45 ∧ das) À caa ⊕ (A12 ∧ I45 ∧ dai) À cai

⊕ (A12 ∧ I45 ∧ dss) À cia ⊕ (A12 ∧ I45 ∧ dsi) À cii

⊕ (I12 ∧ A45 ∧ dsa) À caa ⊕ (I12 ∧ A45 ∧ dss) À cai

⊕ (I12 ∧ A45 ∧ dia) À cia ⊕ (I12 ∧ A45 ∧ dis) À cii

⊕ (I12 ∧ I45 ∧ dss) À caa ⊕ (I12 ∧ I45 ∧ dsi) À cai

⊕ (I12 ∧ I45 ∧ dis) À cia ⊕ (I12 ∧ I45 ∧ dii) À cii)

I Cradle

In this process definition, we used the following definitions for the clauses. Note, that especially
in the flow-clauses, it was possible to simplify the switching conditions considerably.

A12 =
[

(q−1 = q−3 ∧ f−
1 > f−

3 ) ∨ (q−1 = q−3 ∧ f−
1 = f−

3 ∧ e−1 ≥ e−2 )
]

A45 =
[

(q−3 = q−5 ∧ f−
3 > f−

5 ) ∨ (q−3 = q−5 ∧ f−
3 = f−

5 ∧ e−4 ≥ e−5 )
]

I12 =
[

q−1 ≤ q−3
]

I45 =
[

q−3 ≤ q−5
]
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daa =



































E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 = 0
E′

1 = −E′
2

E′
4 = −E′

5

p′1 + p′3 + p′5 = 0
p′1 = −p′2
p′4 = −p′5
q′1 = q′2 = q′3 = q′4 = q′5 = 0



































das =



































E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
E′

1 = −E′
2

E′
1 + E′

3 = E′
4

p′1 + p′3 + p′5 = 0
p′1 = −p′2
p′4 = −p′5
q′1 = q′2 = q′3 = q′4 = q′5 = 0



































dsa =



































E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
E′

2 = E′
3 + E′

5

E′
4 = −E′

5

p′1 + p′3 + p′5 = 0
p′1 = −p′2
p′4 = −p′5
q′1 = q′2 = q′3 = q′4 = q′5 = 0



































dss =



































E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
E′

2 = E′
3 − E′

4 ≤ −E′
1

E′
4 ≤ −E′

5

p′1 + p′3 + p′5 = 0
p′1 = −p′2
p′4 = −p′5
q′1 = q′2 = q′3 = q′4 = q′5 = 0



































dai =























E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m
E′

1 + E′
3 = E′

4 = E′
5 = 0

E′
1 = −E′

2

p′1 + p′3 = p′4 = p′5 = 0
p′1 = −p′2
q′1 = q′2 = q′3 = q′4 = q′5 = 0























dsi =























E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m
E′

1 + E′
3 ≤ E′

4 = E′
5 = 0

E′
2 = E′

3

p′1 + p′3 = p′4 = p′5 = 0
p′2 = p′3
q′1 = q′2 = q′3 = q′4 = q′5 = 0























dia =























E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 = E′
2 = E′

3 + E′
5 = 0

E′
4 = −E′

5

p′1 = p′2 = p′3 + p′5 = 0
p′4 = −p′5
q′1 = q′2 = q′3 = q′4 = q′5 = 0























dis =























E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

3 + E′
5 ≤ E′

1 = E′
2 = 0

E′
3 = E′

4

p′3 + p′5 ≤ p′1 = p′2 = 0
p′3 = p′4
q′1 = q′2 = q′3 = q′4 = q′5 = 0























dii =





E′
1 = E′

2 = E′
3 = E′

4 = E′
5 = 0

p′1 = p′2 = p′3 = p′4 = p′5 = 0
q′1 = q′2 = q′3 = q′4 = q′5 = 0





caa =







































f1 = 1
m

· p1

f3 = 1
m

· p3

f5 = 1
m

· p5

e1 = e2 = e3 = e4 = e5 = 0
f1 = f2 = f3 = f4 = f5

q1 = q3 = q5







































cai =







































f1 = 1
m

· p1

f3 = 1
m

· p3

f5 = 1
m

· p5

e1 = e2 = e3 = e4 = e5 = 0
f1 = f2 = f3 = f4

q1 = q3 ≤ q5







































cia =







































f1 = 1
m

· p1

f3 = 1
m

· p3

f5 = 1
m

· p5

e1 = e2 = e3 = e4 = e5 = 0
f2 = f3 = f4 = f5

q1 ≤ q3 = q5







































cii =







































f1 = 1
m

· p1

f3 = 1
m

· p3

f5 = 1
m

· p5

e1 = e2 = e3 = e4 = e5 = 0
f2 = f3 = f4

q1 ≤ q3 ≤ q5






































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To simplify the above presentation, we abstract from the variables associated with bonds 2
and 4. As explained before, this cannot be done formally in HyPA yet. However, our intuition
on elimination of variables is such, that we expect to find that the the switching conditions for
the re-initialization clauses can be simplified, because the flow conditions are such that e1 = e2 =
e3 = e4 = e5 = 0, except initially. We find:

A12 =
[

q−1 = q−3 ∧ f−
1 ≥ f−

3

]

A45 =
[

q−3 = q−5 ∧ f−
3 ≥ f−

5

]

I12 =
[

q−1 ≤ q−3
]

I45 =
[

q−3 ≤ q−5
]

Furthermore, for the other clauses we obtain

daa =



















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 = 0
p′1 + p′3 + p′5 = 0
q′1 = q′3 = q′5 = 0



















das =



















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
p′1 + p′3 + p′5 = 0
q′1 = q′3 = q′5 = 0



















dsa =



















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
p′1 + p′3 + p′5 = 0
q′1 = q′3 = q′5 = 0



















dss =



















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 + E′
3 + E′

5 ≤ 0
p′1 + p′3 + p′5 = 0
q′1 = q′3 = q′5 = 0



















dai =















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m
E′

1 + E′
3 = E′

5 = 0
p′1 + p′3 = p′5 = 0
q′1 = q′3 = q′5 = 0















dsi =















E′
1 =

(p+

1
)2−(p−

1
)2

2·m

E′
3 =

(p+

3
)2−(p−

3
)2

2·m
E′

1 + E′
3 ≤= E′

5 = 0
p′1 + p′3 = p′5 = 0
q′1 = q′3 = q′5 = 0















dia =















E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =

(p+

5
)2−(p−

5
)2

2·m
E′

1 = E′
3 + E′

5 = 0
p′1 = p′3 + p′5 = 0
q′1 = q′3 = q′5 = 0















dis =















E′
3 =

(p+

3
)2−(p−

3
)2

2·m

E′
5 =
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
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


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3 = E′
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
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




























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To illustrate the way in which multiple discontinuities are collected into one single discontinuity,
we study the case where, initially, all balls have the same position, and the most left ball has a
velocity in the direction of the others. We discuss the completely elastic, as well as the completely
inelastic collision of the balls.

If the balls collide completely elastically, the first ball will transfer its momentum to the second,
and the second will transfer it to the third. Internally, there seem to be two discontinuities involved.
However, the ultimate solution is that the first ball comes to a stand still, while the third ball
flies off with the initial velocity of the first. It is not hard to verify, that this is indeed one of the
possible solutions of the subprocess (I12 ∧ A45 ∧ dss) À cai.

If the balls collide completely inelastically, the first ball gives half of its momentum to the
second, which then has a higher velocity than the third, and thus shares its momentum with the
third. After this, the first ball has a higher velocity than the second, and gives half of its momentum
(a quarter of the initial momentum) to the second. This continues ad infinitum, but the sequence
of events converges to the situation where all balls have one third of the original velocity. This
convergence point, indeed, is one of the possible solutions of the subprocess (I12 ∧ A45 ∧ dsa) À
caa.

5.5 Vacuum chambers at ASML

As an example of a model from the domain of flow-dynamics, we briefly study a model of a vacuum
chamber, as it is used in a wafer-stepper produced by ASML. The vacuum chamber, sketched in
figure 16 has two sluices that provide access to the outside world. Through one sluice, wafers enter
the chamber, while through the other sluice, the finished wafers leave the chamber. One of the
requirements of the system, naturally, is to schedule the entering and leaving of the wafers in such
a way that the air pressure in the vacuum chamber remains low.

Chamber : C0

C1

C2

Pump 1

Pump 2

Door 1 Door 2

Door 3 Door 4

Figure 16: Schematic model of the vacuum chamber

A bond graph model of this system is depicted in figure 17. The predicates A1, A2, A3, A4,
I1, I2, I3 and I4 where used to model the conditions under which the sluices open and close.
Furthermore, we have assumed that Ii ⇒ ¬Ai. The continuous constitutive relation for the pumps
that we used is r(e) = R · e for e ≥ 0 and r(e) = 0 for e ≤ 0. Naturally, such a pump can also
be modeled using a linear resistor and a 1/F -junction, although the discontinuous behavior may
then be subtly different.

The associated hybrid constitutive process is too complex to show in this report. However,
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se : 1 atm
Air pressure

c : C0

Chamber

c : C1

Sluice 1

c : C2

Sluice 2

r : non-linear
Pump 1

r : non-linear
Pump 2

1/F : (A1, I1)
Door 1

1/F : (A2, I2)
Door 2

1/F : (A3, I3)
Door 3

1/F : (A4, I4)
Door 4

0

0

0

0
1

2

3

4 5

6

7

8

14

13

12 11

10

9

Figure 17: Bond graph model for vacuum chamber

using the bond graph alone, we can already explain some of the insights it gives us about the
system.

For example, the objective of the vacuum chamber, is to guarantee that the pressure in the
chamber stays below a certain threshold Pmax < 1 atm. Obviously, the outside and inside door
of one sluice should not be open at the same time, since there would be a connection between
the chamber and the outside air. But, studying the bond graph, we also find that it is unsafe
to simultaneously close the inner door and open the outer door. The bond graph indicates that
even then, there is a temporary connection. We conclude, that we have to control the vacuum
chamber in such a way that, in certain situations, only one door is opened, or closed, at the same
time. For simplicity, we assume this in all situations. The, still complex, switching behavior of
the controller, is then expressed by the following process:

Controller ≈

([

I1− ∧ I2−

I3− ∧ I4−

]

À








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




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
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
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






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




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




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
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
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
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⊕

[
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I Controller

We have to add that the inner doors should not open if the pressure in the sluice is too high. We
find the following constraints on the conditions A2 and A4:

A2 ⇒
[

C1·e5+C0·e8

C1+C0
≤ Pmax

]

A4 ⇒
[

C2·e11+C0·e8

C2+C0
≤ Pmax

]

.

Note, that these constraints may become more complex, if we allow simultaneous opening of the
inside doors of the sluices.

We conjecture, that together, these requirements lead to a safe switching structure for the
vacuum chamber. This switching structure can serve as a specification for a controller that is to
be implemented in either a physical, computational or hybrid way. The proof that the switching
structure is indeed safe, as well as the design of the actual controller, are outside the scope of this
report. Safety of the controller could, for example, be proven using the techniques described in
[5]. However, before engaging in such proofs, it is desirable to first develop some tool support for
the manipulation of HyPA process descriptions.

6 Conclusions

When modeling a physical system, it is common practice to describe the components that consti-
tute the system, using so-called constitutive relations on the physical variables that play a role in
the system. In this report, we have described a method to find a hybrid process algebraic descrip-
tion of these constitutive relations, in case the physical system contains discontinuities as a result
of abstraction from small time-scale behavior. As a vehicle towards these so-called constitutive
hybrid process descriptions, we assumed a hybrid bond graph model of the physical system under
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study. For every bond graph element, a constitutive hybrid process was derived, based on the
possible behaviors of the continuous constitutive equations for that element. The parallel com-
position of the processes associated with the separate elements, leads to an algebraic description
of the system as a whole. An alternative look at our work, is that we have developed a process
algebraic semantics to hybrid bond graphs.

We have shown the construction of constitutive hybrid processes, for several examples, in which
collision of mechanical objects, the behavior of electrical switches and diodes, and the behavior
of sluices and pumps played an important role. Analysis of these constitutive processes, amongst
others, has clarified the consequences of implicit switching and of the behavior of consecutive
discontinuities in a bond graph model.

Perhaps the most interesting observation in the construction of constitutive processes for bond
graph elements, is that a change in connection structure, may lead to a dissipation of energy.
The exact energy loss is not specified for the controlled junctions and switch elements, which
sometimes results in a model with branching behavior. For example, this is the case in our
collision model, where the elasticity of impact is undetermined. We argued that this kind of
branching is reasonable, since it allows the modeler to reason about processes of which not all
parameters are known. If elasticity of the impact were known, the collision dynamics could have
been modeled explicitly, leading to a more detailed model, in which switching does occur between
collision and free movement of the masses, but no discontinuous behavior takes place. Sometimes,
more detailed models are even necessary. For example, if the influence of external forces on a
collision cannot be neglected.

In the analysis of hybrid bond graphs, it turned out to be convenient to be able to eliminate
variables that are associated with bonds between junctions, from a constitutive hybrid process.
Also, in some cases, it would be appropriate to eliminate variables associated with certain source
elements. In this report, we have treated the elimination of variables informally, because, at the
moment, we do not have a formal treatment of such eliminations in HyPA. However, work on an
elimination operator that is fit for the task is currently being carried out, and we have a fairly
good idea of how to develop it, because a similar kind of abstraction is already available, in part,
for the hybrid χ language [13].

In section 4.6, we mentioned that, for standard bond graph theory, there is a set of graph re-
duction rules, that lead to equivalent bond graphs, modulo elimination of variables associated with
connections between junctions [3]. Based on what we already know about a possible elimination
operator, we conjecture, that those rules are still valid for the hybrid case, with the exception of
special elements, like resistors of value 0, and infinite resistances, inductances and capacitances.
These elements need special treatment due to the observations made at the end of section 2.3.
Awaiting a formal treatment of elimination in HyPA, the development of new graph reduction
rules for the hybrid case, is left as future work.

One important aspect of bond graph theory, namely the causality analysis of a bond graph, has
not been touched in this report. Causality analysis is a useful tool when we want to simulate the
behavior of a system. Amongst others, it allows the user to transform the constitutive relations
into so-called ordinary differential equations, which are differential equations of the form ẋ = f(x)
and y = g(x). The solutions of such equations are easier to approximate computationally than the
solutions of the constitutive equations we discussed in this report. The basis of causality theory
for bond graphs, lies in the assignment of an input or output status to the effort and flow variables
in a graph. In hybrid bond graphs, a suitable distinction between input and output cannot always
be made, because it can depend on the current connection structure which status is preferable for
a certain variable. In HyPA, it should be possible to treat different connection structures, and the
discontinuous behavior when switching between these structures, separately. We hope, therefore,
that the constitutive hybrid process semantics that we have given in this report, can be helpful
in the development of causality theory for hybrid bond graphs, and will lead to new insights in
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possible ways to simulate and analyze hybrid systems.
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