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Summary

Most industrial metal forming processes are characterised by a complex strain path history,
which results from the sequential processing steps following each other. A change in strain
path may have a significant effect on the mechanical response of metals. Macroscopically,
the effect of a certain prestrain becomes manifest through an altered reloading yield stress,
transient hardening and strain at rupture, compared to a monotonic deformation path of
the same base material. Due to the complexity and significance of these effects numerical
simulations are an efficient tool for optimisation of forming operations. This thesis focuses on
the micromechanical modelling of strain path change effects with the aim to supply essential
fundamental knowledge leading to an adequate model for numerical simulations.

The physical origins of the strain path dependency reside in the textural anisotropy of the
material, anisotropy of the dislocation structure and the slip anisotropy. Each of these factors
is addressed in this thesis. In the first part, a crystal plasticity based procedure to determine
forming limit diagrams from textural inhomogeneities is proposed. The following three
parts concentrate on continuum modelling of dislocation structures and their effects on the
macroscopical behaviour. In the last part, the proposed model is extended to incorporate crystal
plasticity aspects and the associated slip anisotropy effects.

After an introduction to the subject in the first chapter, the effect of deformation texture on the
formability is dealt with in chapter two of the thesis. The initial crystallographic orientation
inhomogeneity is considered as a natural microstructure imperfection, potentially triggering
deformation instabilities. The structural instability criterion is used as an approximate
localisation indicator. A viscous crystal plasticity approach is employed for the microscopic
material behaviour which is implemented in a finite element framework. Proportional loading
of a metal sheet with an initially random distribution of the crystal lattice orientations has
been analysed using different uniform strain paths. The results demonstrate the ability of the
method to describe the development of strain localisation bands, from which the formability
can be assessed.

Next, the attention is concentrated on dislocation cell structures in chapter three. Their
presence and evolution in a material is commonly associated with an altered reloading yield
stress and transient hardening after a strain path change. The present research deals with
the explicit description of the dislocation cell structure. First, a phenomenological model is
proposed to capture the main influence of a cell structure on the overall mechanical response.
The structure is modelled as a composite consisting of a periodic array of two phases: hard cell
walls and soft cell interiors. For the scalar internal variables figuring in the model –cell size,
wall thickness, and dislocation density inside the walls– evolution equations are proposed to
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viii Summary

describe the cell development, dissolution and disruption. The simulations show a dependency
of the reloading yield stress on the amount of prestrain and the amplitude of the strain path
change. The predictions are in a good agreement with experimental data, including the cross
and Bauschinger effects.

In the fourth chapter the cell structure model is enhanced to gain more physical insight.
Investigation of the dislocation interactions in the cell structure material necessitates the
introduction of geometrically necessary dislocations (GNDs) at the interfaces between the
walls and the cell interiors. GNDs naturally induce a long range internal stress field in the
material. For the cell structure material, the internal stress is found as a function of the
plastic deformation incompatibility and the cell geometry, and is incorporated in the model
via kinematic hardening. The predicted macroscopic effects of moderate strain path changes
are consistent with experimental data. A numerical analysis showed that the reloading yield
stress after moderate strain path changes is determined by the influence of the geometrical
anisotropy due to the cell structure morphology and by the internal stresses developed during
prestraining. The transient hardening behaviour after a strain path change is related to the
adjustment of the internal stresses to the new loading.

The fifth chapter deals with the evolution of statistically stored dislocations (SSDs). Evolution
equations for SSD densities inside the cells and walls are defined. They describe the formation
of the cell structure during monotonic deformation as well as the dissolution of the cells after
a strain path change. Including these equations in the cell structure model results in improved
predictions for large strain path changes. The simulation results show a good agreement with
experimental data, including the well-known Bauschinger effect.

Finally, the cell structure model is modified to include crystal plasticity in chapter six. This
allows slip anisotropy and texture to be accounted for, but requires a proper adjustment of the
model to deal with polycrystal material. The proposed model is used to analyse the combined
effect of the dislocation structure, the slip anisotropy and the texture on the macroscopic
behaviour after a strain path change.

Summarising, a micromechanical approach to the modelling of the macroscopic material
behaviour of metals containing a dislocation cell structure is proposed. While the attention
is mainly focused on the cell structure, the effects of the slip and texture anisotropy are
also addressed. The developed approach is capable of describing material behaviour for
deformation processes with strain path changes. The implementation of the model is well
established, resulting in a computationally efficient method enabling its use in macroscopic
engineering computations.



Samenvatting

De meeste industriële metaal omvormprocessen worden gekarakteriseerd door een complexe
rekgeschiedenis. Deze is het gevolg van opeenvolgende bewerkingsstappen. Een verandering
van rekweg kan een significante invloed hebben op de mechanische responsie van metalen.
Vergeleken met monotone vervorming van een bepaald materiaal, manifesteert een bepaalde
voordeformatie zich op macroscopisch niveau door een veranderde vloeispanning na
herbelasting, tijdelijke versteviging, en een veranderde breukrek. Vanwege de complexiteit
en het belang van deze effecten, zijn numerieke simulaties een efficiënt middel voor de
optimalisatie van vormgevingsprocessen. dit proefschrift richt zich op de micromechanische
modellering van rekwegveranderingseffecten met het doel essentiële fundamentele kennis te
vergaren, leidend tot een geschikt model voor numerieke simulaties.

De fysische achtergrond van de rekweg afhankelijkheid moet gezocht worden in de anisotropie
van de textuur van het materiaal, de anisotropie van de dislocatie structuur en de anisotropie
van de plastische slip. Elk van deze factoren wordt afzonderlijk behandeld in dit proefschrift.
In het eerste gedeelte wordt een procedure gebaseerd op de theorie der kristalplasticiteit
voorgesteld om vervormingslimietdiagrammen te bepalen uitgaande van de inhomogeniteit
van de textuur. De volgende drie delen richten zich op de continuüm modellering van de
dislocatie structuren en hun effecten op het macroscopisch gedrag van het materiaal. In het
laatste gedeelte wordt het voorgestelde model uitgebreid met aspecten van de kristal plasticiteit
theorie om slip anisotropie effecten in rekening te brengen.

Na een introductie van het onderwerp in het eerste hoofdstuk, wordt in het tweede
hoofdstuk van dit proefschrift de invloed van deformatie textuur op de vervormbaarheid
behandeld. De inhomogene initiële oriëntatie van de kristallen wordt beschouwd als
een natuurlijke microstructurele imperfectie, die potentieel kan leiden tot deformatie
instabiliteit. Een structureel instabiliteitcriterium wordt gebruikt om lokalisatie te detecteren.
Viskeuze kristalplasticiteitstheorie is toegepast voor de beschrijving van het microscopische
materiaalgedrag. Ter bepaling van de macroscopische responsie is de theorie geïmplementeerd
in een eindige elementen methode programma. De proportionele belasting van een metalen
plaat met een initieel willekeurige verdeling van de kristal rooster oriëntaties is geanalyseerd
uitgaande van verschillende uniforme rekwegen. De resultaten tonen het vermogen van de
methode om de ontwikkeling van reklokalisatiebanden te beschrijven, aan de hand waarvan de
vervormbaarheid beoordeeld kan worden.

Vervolgens wordt in hoofdstuk drie de aandacht gevestigd op celstructuren gevormd
door ongelijkmatig verdeelde dislocatiedichtheden. Met hun aanwezigheid en evolutie in
een materiaal wordt normaal gesproken met een veranderde vloeispanning en tijdelijke
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x Samenvatting

versteviging na herbelasting in een andere richting geassocieerd. Het huidige onderzoek
behandelt de expliciete beschrijving van de dislocatiecelstructuur. Allereerst wordt een
fenomenologisch model gepresenteerd met de belangrijkste invloeden van de celstructuur op
de totale mechanische responsie. De dislocatiecelstructuur is gemodelleerd als een composiet,
bestaande uit twee periodiek geordende fasen: harde celwanden, met een relatief hoge
dislocatiedichtheid, en een zachte celkern, met een relatief lage dislocatiedichtheid. Voor
de interne variabelen die een rol spelen in het model –de afmetingen van de cellen, de
dikte van de celwanden, en de dislocatiedichtheden van deze componenten– worden evolutie
vergelijken geponeerd die de celontwikkeling, celdissolutie en celverstoring beschrijven. De
simulaties behorende bij een plotselinge rekwegverandering tonen een afhankelijkheid van de
vloeispanning op de hoeveelheid vooraf ondergane rek en de grootte van de verandering. De
voorspellingen laten e en goede overeenkomst zien met experimentele gegevens, onder andere
voor de ‘cross test’ en voor volledige omkering van de belasting (met het Bauschinger effect).

In het vierde hoofdstuk wordt het celstructuurmodel uitgebreid om een beter fysisch inzicht
te verkrijgen in het materiaalgedrag. Onderzoek van de interacties tusen dislocaties in het
celstructuurmateriaal maakt het nodig om geometrisch noodzakelijke dislocaties (GNDs)
te introduceren op de grenzen tussen de celwanden en de celkernen. GNDs veroorzaken
door hun ordening een ‘long-range’ spanningsveld in het celstructuurmateriaal waarbij de
interne spanningen kunnen worden bepaald als een functie van de plastische deformatie
incompatibiliteit en de celgeometrie. De interne spanningen komen in het model tot
uitdrukking in de vorm van kinematische versteviging. De voorspelde macroscopische effecten
veroorzaakt door beperkte veranderingen van de rekweg zijn consistent met experimentele
waarnemingen. De numerieke analyse wees uit dat de vloeispanning na herbelasting bepaald
wordt door de geometrische anisotropie veroorzaakt door de celstructuurmorfologie en door de
interne spanningen opgebouwd tijdens de initiële deformatie. Het tijdelijke versteviginggedrag
na een verandering van de rekweg is gerelateerd aan het aanpassen van de interne spanningen
aan de nieuwe belasting.

Het vijfde hoofdstuk behandelt de evolutie van de statistisch opgeslagen dislocaties (SSDs).
Vergelijkingen voor de ontwikkeling van de SSD dichtheden in de celkernen en de celwanden
worden opgesteld. De ontwikkeling van de celstructuur gedurende monotone deformatie wordt
beschreven, zowel als de afbraak van de cellen na een rekwegverandering. De resultaten van
de simulaties laten een goede overeenkomst zien met experimentele gegevens, inclusief het
bekende Bauschinger effect.

Tenslotte wordt in hoofdstuk zes het modelverfijnd door het gedrag van de componenten te
beschrijven met de theorie der kristalplasticiteit. Op deze manier kunnen slip anisotropie
en textuur mee in beschouwing genomen worden, na een herformulering van het model ten
behoeve voor toepassing op een polykristallijn. Het aangepaste model is gebruikt om een
analyse uit voeren van het gecombineerde effect van de dislocatiestructuur, de anisotropie
van de kristaldeformatie en de textuur, op het macroscopische materiaalgedrag na een
rekwegverandering.

Samengevat, een micromechanisch model is behandeld om het macroscopisch gedrag van
een metaal met een celstructuur, ontstaan door een ongelijkmatige verdeling van dislocaties,
te beschrijven. De aandacht is vooral gevestigd op de celstructuur, maar de invloed van
de anisotropie van de plastische slip en de textuur worden ook besproken. Met het model
kan het materiaalgedrag tijdens complexe deformatieprocessen, inclusief veranderingen in
de rekweg, beschreven worden. De implementatie van het model leidt tot een efficiënt
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berekeningsalgoritme, dat gebruikt kan worden voor simulaties van het macroscopisch gedrag
van configuraties uit de ingenieurspraktijk.



xii Samenvatting



Chapter 1

Introduction

The analysis of the formability of metals is a traditional topic in mechanical engineering,
which is still characterised by many open issues. In spite of many decades of research, this
field continues to trigger new challenges, especially promoted by industrial progress. The
growing need for more precision in forming processes and the exploitation of more complex
manufacturing processes, necessitates a better understanding of the relevant micromechanical
processes and the development of more sophisticated engineering tools.

The physical origins of the complex deformation behaviour observed for metals, reside, among
others, in the textural anisotropy of the material and the anisotropy of the dislocation structures
accompanying the plastic deformation. The microscopic deformation mechanisms, associated
with the presence and development of these microstructural entities, affect the macroscopical
behaviour of a metal, altering its formability.

This thesis addresses two major aspects of the formability analysis of metals, both based on the
underlying evolving microstructure: (1) the prediction of forming limits and (2) the prediction
of strain path change effects. The following sections shortly highlight the challenges in these
fields, from which the research scope of the thesis has been derived.

1.1 Forming limits

In industrial sheet metal forming, localised necking is known to be an important limitation of
the formability. For a wide range of metals and loading modes, experimental data on forming
limits are collected in handbooks in the form of commonly used forming limit diagrams
(FLDs). A forming limit diagram for a given sheet material is a curve in the major strain
ε1 - minor strain ε2 plane, connecting the loci of failure instabilities for a range of different,
usually uniform, strain paths. Fig. 1.1 shows an example of an FLD obtained for uniform and
complex strain paths. The experimental determination of FLDs is, however, time consuming
and tedious even in the case of pure proportional stretching. Furthermore, the formability
in the context of subsequent forming steps depends strongly on the deformation history of
the material and therefore demands the investigation of each individual case. The intrinsic
strain path dependency that characterises these more complex forming operations, needs to be
addressed in detail before trying to predict forming limits in their presence. This is outlined in
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2 Chapter 1

section 1.2.

Theoretical formability analyses often deal with the occurrence of a strain instability in a
uniform deformation process due to imperfections initially present in the material. This
is a realistic approach, since inhomogeneities of either geometrical or material origin are
unavoidable in practise. The most popular method widely used in engineering tools is based on
the Marciniak-Kuczynski (MK) approach [Marciniak and Kuczynski, 1967], where localised
necking is assumed to be initiated through a pre-existing groove-like thickness imperfection.
The results obtained with this MK method, however, are very sensitive to the geometry of
the initial imperfection prescribed. Since the geometrical input in the model is mostly an
assumption, the classical MK approach remains a diagnostic tool rather than a predictive one.

Strain

S
tr

es
s

Monotonic test

Cross test

Bauschinger test

(a) Equivalent stress versus equivalent strain diagrams.

Minor strain

Major strain

Prestrain (%):

0
5
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20

(b) Effect of equibiaxial prestraining on
the forming limit diagram.

Figure 1.1 — Schematic representation of strain path change effects.

In this thesis, an effort is done to develop a formability tool independent of any geometrical
imperfections, allowing the prediction of deformation localisation. The initial texture
inhomogeneity is considered as a natural microstructure imperfection, which is present in any
real metal, potentially triggering deformation instabilities.

1.2 Strain path dependency in FCC metals

Most of the industrial metal forming processes are characterised by a non-monotonic strain
history, in which different processing steps rapidly succeed each other. The induced changes
in strain path have a significant influence on the mechanical response of the metal involved,
thereby affecting the performance of the final product. Due to the complexity of the strain
path change effects, optimisation of forming operations by experimental means is time
consuming and expensive. This is the area where numerical simulations can provide a valuable
contribution to the designing process. This thesis focuses on the micromechanical modelling
of strain path change effects with the aim to supply essential fundamental knowledge leading
to an adequate basis for numerical simulations.

Strain path change effects are typically studied with the use of two-step tests. In the first step,
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also called the prestrain step, the loading is applied to produce a certain amount of initial
deformation in a given direction. Next, the specimen is unloaded and immediately reloaded
with a deformation mode different from the initial one. The magnitude of a strain path change
is commonly characterised by the measure ϑ:

ϑ= ε̇
p
1 : ε̇p

2

‖ε̇p
1 ‖ ‖ε̇p

2 ‖
(1.1)

where ε̇
p
1 and ε̇

p
2 are the plastic strain rate tensors prior to and after the strain path change. The

Bauschinger and the cross tests are typical examples of loading sequences including a strain
path change. The Bauschinger test is defined by ϑ=−1 and and the cross test by ϑ= 0.

Macroscopically, the effect of a certain prestrain becomes manifest through an altered
reloading yield stress, transient hardening, hardening recovery and failure shift compared
to the response during a monotonic deformation of the virgin material. In a quantitative
sense, the effect is influenced by the amount of prestrain. Furthermore, the effect is strongly
anisotropic and depends on the orientational difference between the successive deformation
modes. Typical engineering characteristics of the effect for FCC metals with a high stacking
fault energy are schematised in Fig. 1.1. The stress-strain curves in the left figure represent the
responses of a previously deformed material, whereby both the amount and orientation of the
prestrain have been varied. The amount of prestrain experienced by the material corresponds
to the horizontal shift along the global strain axis. Obviously, the response clearly depends on
the prestrain mode as well as on the amount of the prestrain applied. The right figure depicts
forming limit diagrams for a virgin metal specimen and for specimens prestrained by equi-
biaxial stretching. Depending on the amount and orientation, prestrain can cause a significant
reduction or increase of the formability.

Hardening behaviour of metals physically originates from a complex microstructure evolution.
The macroscopic strain path change effect at intermediate strains is commonly associated with
the development of dislocation structures under deformation. This work concentrates on the
proper understanding and modelling of the contribution of the dislocation cell structure to the
strain path change effect.

In undeformed material, the dislocation distribution is close to statistically homogeneous.
However, at the beginning of a deformation process, interacting dislocations tend to cluster
and form tangles, thereby creating regions with relatively increased dislocation densities. As
the strain increases, more dislocations participate in the evolution of the structure and the
tangles link up to form dislocation walls which envelop regions relatively free of dislocations.
This dislocation network, consisting of areas with low and high dislocation densities, is known
as a cell structure, Fig. 1.2.

The dislocation cell structure is formed under deformation and accommodates the current
deformation history at the microscopical level. The morphology of the dislocation structure
reflects characteristics of the deformation process that created it. After a strain path change,
the previously formed dislocation structure becomes ’unstable’ under a new loading since its
morphology is not ’favourable’ anymore. and, moreover, it degenerates by micromechanical
mechanisms promoting the new deformation. The resistance and adaptation of the dislocation
structure to a new loading is typically associated with the observed macroscopic strain path
change effects.
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Figure 1.2 — Dislocation cell structure in copper [McCabe et al., 2004].

1.3 Objective and outline

This research concentrates on the micromechanical modelling of the mentioned aspects
of the deformation behaviour of FCC metals, from which macroscopic effects should
result. The objective of the study is to develop an adequate approach to the modelling of
complex deformation processes that incorporates the essential deformation mechanisms in
a physically-based manner. From an engineering perspective, the modelling should result
in a computationally efficient method which is well applicable in macroscopic engineering
computations.

First, the formability effects are addresses in Chapter 2. A computational tool is developed
here to predict the formability of metals on the basis of the underlying microstructure, i.e.
the texture. The initial crystallographic orientation inhomogeneity is considered as a natural
microstructural imperfection, potentially triggering deformation instabilities.

Next, the attention is concentrated on the modelling of the deformation behaviour of metals
with a dislocation cell structure, from which the proper prediction of the macroscopic effects of
strain path changes should result. The proposed model fits in a ‘material point’ implementation
and lends itself for use in macroscopic engineering computations, such as the formability
assessment tool introduced in Chapter 2.

The approach introduced in Chapters 3–6 is based on the assumption that the strain path
change effects originate from the deformation response of a material with inhomogeneities,
which is here provided by a dislocation cell structure. The research addresses the mechanical
effect of the presence of a dislocation structure in a material on the macroscopic response.
Mesoscopical mechanisms promoting the deformation in an inhomogeneous metal with a cell
structure are studied, as well as mechanisms assisting the evolution of the dislocation structure
and, consequently, the evolution of the material inhomogeneity. The mechanisms identified as
relevant and significant are incorporated in the resulting continuum model.

The analysis done is restricted to moderate deformations of FCC metals with a high stacking
fault energy at room temperature. The study concentrates on the dislocation cell structure only.
Other types of dislocation structures are left out of consideration.

Chapter 3 proposes a phenomenological relation between the evolution of the cell structure
and the strain path change effect. This preliminary study aims to address two questions:
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(1) Is the presence and evolution of the cell structure responsible for the strain path change
hardening effects? (2) If so, which features of the cell structure and its evolution contribute to
the macroscopical effect? The result of this study indicates directions for a detailed modelling
of the dislocation structure and the strain path change effects.

The objective of Chapter 4 is to develop a continuum model of the cell structure that
incorporates internal stresses in a physically-based manner. The internal stresses are derived
here as a natural result of plastic deformation incompatibility. The approach also incorporates
the morphology and orientation anisotropy of the cell structure in an idealised manner. The
model offers a tool to predict strain path change effects and enables a theoretical study of the
internal stress and its influence on the macroscopic behaviour.

In chapter 5 the evolution of the dislocation structure is studied in more detail. The dislocation
redistribution in the cell structure upon load reversals is considered with the aim to describe
the macroscopical effects after large strain path changes, e.g. the Bauschinger effect. The
corresponding dislocation processes are incorporated in the continuum cell structure model
via evolution equations for the dislocation densities.

Chapter 6 concentrates on the contribution of plastic slip anisotropy to the strain path change
effects. The cell structure model is extended by employing a classical crystal plasticity
model for the local material behaviour. The simulation results are compared to the previously
obtained predictions to reveal the effect of slip anisotropy on the strain path change effect.
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A crystal plasticity based estimate for
forming limit diagrams from textural
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2.1 Introduction

In industrial sheet metal forming, localised necking is known to be an important limitation on
the formability. For a wide range of metals and loading modes experimental data on forming
limits are collected in handbooks in the form of commonly used forming limit diagrams
(FLDs). A forming limit diagram for a given sheet material is a curve in the major strain
ε1 - minor strain ε2 plane, connecting the loci with principal strains at failure instabilities for a
range of different, usually uniform, strain paths. Fig. 2.1 shows an example of an FLD obtained
for uniform strain paths. FLDs offer a convenient and useful tool for the formability prediction
in the analysis of sheet products manufacturing processes. The experimental determination
of FLDs is, however, time consuming and tedious even in the case of pure proportional
stretching. Furthermore, the formability in the context of subsequent forming steps depends
strongly on the deformation history of the material and therefore demands the investigation
of each individual case. This actuates the development of an efficient theoretical method for
formability prediction.

A variety of theoretical approaches have been developed to predict the forming limits. The first
analytical method was proposed by Hill [1952] considering strain instability as a bifurcated
state from an initially homogeneous sheet. The original bifurcation analysis was developed
to predict the loss of uniformity in the deep-drawing range (ε2 < 0). Later the analysis was
extended by Stören [1975] to permit the bifurcation prediction in the whole relevant range of
strain ratios. The perturbation technique of Molinari, e.g.[Fressengeas and Molinari, 1987;
Boudeau and Gelin, 2000], also makes use of a stability analysis.
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Figure 2.1 — Forming limit diagram.

An alternative approach to formability prediction deals with the occurrence of a strain
instability in a uniform deformation process due to imperfections initially present in the
material. This is realistic, since inhomogeneities of either geometrical or material origin
are unavoidable in practise. Most of the theoretical predictions in this field are based on
the Marciniak-Kuczynski (MK) approach [Marciniak and Kuczynski, 1967], where localised
necking is assumed to be initiated through a pre-existing groove-like thickness imperfection.
As a result, the plastic strain accumulates in the groove; thinning occurs there at a higher rate
than outside the region and eventually leads to strain localisation. In order to use this method to
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evaluate the forming limit for a single strain path, it is necessary to perform calculations using
a considerable number of different initial groove angles in order to assess the formability based
on the minimum limit strain.

The MK analysis was successfully used to predict the formability under monotonic
deformation [Marciniak and Kuczynski, 1967; Hutchinson and Neale, 1978] and deformation
with strain path changes [Mesrar et al., 1998; Wu et al., 1998; Kuroda and Tvergaard, 2000a].
Within the MK framework, the influence of various constitutive features on FLDs has been
explored using phenomenological plasticity models [Kuroda and Tvergaard, 2000b; Friedman
and Pan, 2000]. It is well known now that the FLD result is sensitive to the shape of the yield
surface and the material parameters [Zhao et al., 1996; Xu and Weinmann, 2000] used for
the material modelling. Supplementary crystal plasticity models were applied in combination
with the MK analysis for a more careful description of the microstructure and texture evolution
during deformation [Zhou and Neale, 1995; Wu et al., 1998].

Though in the last three decades the MK analysis proved to be a popular and effective tool
for the formability prediction, it was experienced that the results are very sensitive to the
choice of the shape and the size of the initial imperfection prescribed [Zhou and Neale, 1995].
Wu et al. [1997] offers an extensive analysis of the influence of the initial imperfection, as
well as other model parameters, on the predicted FLD. Nevertheless, the indeterminacy of
the initial imperfection size and shape remains a limitation to the MK approach. Thus, the
classical MK approach remains a diagnostic tool rather than a predictive one. The mentioned
paper also suggests a methodology to account for these effects and, in this way, improves
predictions. Another imperfection based method overcomes this drawback by pursuing a
limit analysis based on local fluctuations in the microstructure such as voids or particles of
a second phase material [Gänser et al., 2000]. In this case the deformation instability will
be obtained as a natural result of the strain field fluctuations caused by the microstructural
inhomogeneities initially prescribed. Data about microstructural inhomogeneities can often be
collected experimentally or predicted using a microstructure evolution model. By employing
realistic initial imperfections and by applying the appropriate material model, the actual
development of the localisation can be obtained. The purpose of the present contribution is to
develop a numerical method for predicting the formability of pure metal sheet under uniform
and nonuniform deformations. Essentially, the method based on microstructure imperfections
is applied, adapted here for pure polycrystalline materials by introducing the initially present
textural inhomogeneities to trigger the localisation process. Similar ideas were used by Inal
et al. [2002a,b] to analyse instability phenomena and localised deformation in polycrystalline
sheet under uniaxial tension.

To describe the material behaviour of FCC sheet metal a viscous crystal plasticity theory is
elaborated in this paper. The choice of the model is based on the investigation of Barlat [1987]
where, in the context of the MK approach, it has been shown that the application of crystal
plasticity to FLD prediction results in a better agreement with experimental observations than
the predictions from classical continuum plasticity. Besides, a crystal plasticity description
is able to deal successfully with texture and microstructure evolutions that have a significant
influence on the formability.

To pursue the evolution of strain inhomogeneity the rate-dependent crystal plasticity theory is
incorporated here within the framework of the finite element method. Plane stress conditions
are applied. To accommodate the polycrystalline nature of the material, each individual
integration point of the finite element mesh is supposed to be composed of a discrete number of
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single crystals which are coupled according to a Taylor interaction approach. The initial lattice
orientations of the single crystals are sampled from a given nonuniform distribution providing
inhomogeneity of the texture field of the continuum. This initial texture inhomogeneity is
considered as a natural microstructure imperfection which is physically present in any real
metal, and which is sufficient to trigger a deformation instability. It should be emphasised
that the occurrence of nonuniform deformations in the actual study is the result of the textural
inhomogeneity only; no other imperfections are required to generate instabilities.

To assess the predictive capability, the method was applied for proportional stretching of an
aluminium sheet with an initially random texture. In the following sections the details of the
applied crystal plasticity framework and its finite element implementation are outlined, and
the results and potentials of the approach are discussed.

2.2 Crystal plasticity model

Crystal plasticity theories originate from the early work of Taylor and Elam [1923] who
presented a quantitative description of plastic deformation in single crystals based on
crystallographic slip. Plastic deformation is assumed to be the result of distinct shear
contributions on well-defined slip systems given by the crystallographic planes and the
directions of the highest atomic density. The theory was further developed in the works of
Lee [1969]; Rice [1971]; Hill and Rice [1972]; Asaro and Rice [1977]. The formulation of the
rate-dependent crystal plasticity theory used in the present work is briefly summarised below.

The kinematics commonly used in crystal plasticity includes the multiplicative decomposition
of the deformation gradient tensor F into an elastic and a plastic part

F = F e ·F p (2.1)

where the elastic deformation is represented by F e , which also accounts for super-
imposed rigid body rotations, and where F p is the plastic contribution arising solely from
crystallographic slip in the undeformed configuration. The slip systems α, defined by the
normal to the slip planes�nα and the slip directions �mα in the initial configuration, contribute to
the plastic deformation gradient tensor Lp with slip rates through the following superposition:

Lp =∑
α

γ̇α�mα�nα (2.2)

where Lp determines the evolution of the plastic deformation gradient tensor F p according to:

Ḟ p = Lp ·F p (2.3)

For the elastic behaviour, the fictitious stress-free intermediate configuration defined by the
plastic deformation gradient tensor F p is considered as the reference state, implicitly assuming
that the elastic behaviour is not affected by the plastic slip. In this contribution the elasticity
tensor C relates the stress tensor τ to the elastic Green-Lagrange strain tensor E e in a
conventional manner

τ=C : E e , E e ≡ 1

2
(F T

e ·F e − I ) (2.4)
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The stress measure τ used here is the second Piola-Kirchhoff stress related to the stress-free
intermediate configuration and connected to the Cauchy stress tensor σ by:

τ≡ F−1
e · [det(F e )σ] ·F−T

e (2.5)

Further, in the present rate-dependent formulation each slip rate γ̇α is assumed to depend on
the actual resolved shear stress τα and slip resistance sα on that slip system according to the
slip law:

γ̇α = γ̇0
{ |τα|

sα
}1/msign(τα), τα ≡τ : �mα�nα (2.6)

where γ̇0 denotes a reference value of the slip rate, sα is the slip resistance and m is the strain
rate sensitivity parameter. It is worth noting that the introduction of the stress measure τ in
the intermediate stress-free configuration allows to obtain the resolved shear stress through the
slip system vectors �nα and �mα related to the initial configuration.

The description of hardening used in this paper is adopted from Asaro and Needleman [1985].
The slip resistance sα is determined by the current strain hardening state of the crystal and its
evolution, for which the following equation is used:

ṡα =∑
α

hαβ|γ̇α| (2.7)

The hardening moduli hαβ are assumed to have the form:

hαβ = hβqαβ (2.8)

where hβ is a single slip hardening rate, and qαβ represents a matrix describing the latent
hardening behaviour of the crystallite. The matrix components are taken to be equal to 1 on
coplanar slip systems and to 1.4 on non-coplanar slip systems. This choice has been motivated
by experimental observations performed by Kocks [1970]. The single slip hardening law
employed in this paper has the form of a power function in terms of the accumulated slip
[Asaro and Needleman, 1985]:

hβ = h0
(h0Γ

τ0n
+1

)n−1 (2.9)

where h0 and τ0 are the slip system initial hardening rate and initial hardness respectively, n
is the hardening exponent and

Γ=
∫t

0

∑
α

|γ̇α|d t (2.10)

is the accumulated slip. The slip system parameters h0, τ0 and n are taken identical for
all slip systems. Together, the Eqs. (2.1)–(2.10) describe the rate-dependent constitutive
behaviour of a single crystal. The response of a polycrystal comprised of a number of single
crystal contributions is obtained here by invoking the Taylor assumption. Consequently,
the deformation in each separate grain of the polycrystal is taken equal to the macroscopic
deformation of the polycrystal; the macroscopic values of quantities like stress are obtained by
averaging their respective values over the total number of grains.
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Figure 2.2 — Finite element representation of a polycrystalline specimen. Each integration point
represent a polycrystalline aggregate, combined according to the Taylor interaction approach.

2.3 Finite element approximation

A finite element implementation is next considered to model the deformation of a
representative volume element (RVE) of a metal sheet. To analyse localisation triggered
by texture inhomogeneities, the representative volume element should contain a sufficient
number of grains to provide an adequate description of the texture. However, the finite element
analysis of an assembly of a large number of single crystals would be computationally rather
expensive. To reduce the number of calculations required, single crystals are first combined
into polycrystalline aggregates with N single crystals each, according to the Taylor interaction
approach as indicated above. The finite element method was then applied to assemble
polycrystalline aggregates and to determine the response of the corresponding material points,
Fig. (2.2). In this approach, the number of grains per integration point N becomes a parameter
of the model. It determines the local anisotropy of the material behaviour. For large values
of N , the fluctuations of the texture distribution from point to point will be negligible and the
material will deform homogeneously. To capture local fluctuations of the texture, the number
of grains N in a point should be selected in correspondence with the scale of the fluctuations.
Therefore, in this model the value of N defines the length scale of the fluctuations triggering
the localisation. A method of establishing a proper value of N is not addresses in this paper.

The finite element discretisation of the RVE was realised with two-dimensional isoparametric
elements with four nodes and four integration points. Each individual integration point of the
finite element mesh is characterised by a 3D polycrystalline aggregate. Yet, since the attention
is focused on the forming of thin sheet with an in-plane external loading, the stress state of the
polycrystal in every integration point is restricted to be plane:

�e3 ·σ=�0 (2.11)
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�e3 ·F ·�e1 = 0, �e3 ·F ·�e2 = 0 (2.12)

and plane stress elements were used for the approximation of the in-plane equilibrium
conditions of the deformed metal sheet. In Eq. (2.11) �e3 denotes the normal vector on the
sheet plane, �e1 and �e2 are the in-plane base vectors. Condition (2.12) could be treated as a
restriction on the deformation whereby material line elements in the plane of the sheet are
required to remain in that plane.

Proportional stretching of a uniformly loaded sheet is simulated by applying periodic boundary
conditions to an RVE and prescribing the displacements of the corner nodes. The prescribed
displacements are imposed such as to provide deformation at a constant rate with a given ratio
α between the macroscopic principal strains εi :

ε2 =αε1, εi = ln
( li

l 0
i

)
(2.13)

where li and l 0
i are, respectively, the current and initial length of a material line segment in the

direction of the principal strain εi .

2.4 Localisation criteria

The formability of the material is limited by failure, and as a natural consequence, the
experimental FLDs display principal strains at failure of the material. Simulations of
deformation processes with continuum methods do, in the classical context, not allow
accounting for failure discontinuity. Instead, localisation criteria are commonly used to
determine forming limits in engineering practise.

Localisation of deformation refers to the occurrence of narrow regions in a structure where all
further deformation tends to concentrate, in spite of the fact that the external actions continue
to follow a monotonic loading prescribed. The remaining parts of the structure usually unload.
The phenomenon of localisation has a detrimental effect on the integrity of the structure and
often acts as a direct precursor to structural failure. Therefore, being only an omen of failure,
localisation criteria usually underestimate the formability.

For loading paths with −1/2 < α < 1, necking is the most likely mode of deformation
localisation. The onset of necking is often defined by the appearance of a much higher
strain rate inside a shear band than outside. That definition is successfully exploited within
the framework of the MK approach [Marciniak and Kuczynski, 1967; Hutchinson and Neale,
1978; Mesrar et al., 1998; Kuroda and Tvergaard, 2000a; Friedman and Pan, 2000] where the
location of a shear band is known. In the case of a material imperfection based method the
morphology of the localisation zone is unknown and therefore this straightforward approach
cannot be pursued. Quantitative criteria for the initiation of necking in this case remain a
matter of discussion [Inal et al., 2002b].

In this paper it is assumed that localisation occurs when the macroscopically uniform solution
of the equilibrium problem becomes unstable. Consequently the criterion of structural
instability is applied here to indicate strain localisation. It should be noted however, that the
loss of stability is the necessary but not sufficient condition for he occurrence of localisation.
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Therefore the results obtained with the use of the actual instability criterion should be
considered as a lower formability bound.

The maximum of the external equivalent load Q is taken here as the criterion of
structural instability. The external equivalent load Q is defined through the external power
instantaneously applied to the RVE. To determine Q the external power increment δW applied
to the RVE at a time increment δt is firstly calculated from

δW = 1

V0

∫
v0

P : δF T dV0 (2.14)

where δF = F n · F−1
n−1 is the incremental deformation gradient tensor determined by the

deformation gradient tensors at the current F n and previous F n−1 increment. In Eq. (2.14),
P is the first Piola-Kirchhoff stress tensor which is related to the Cauchy stress tensor by:

P = Jσ ·F−T , J = det(F ) (2.15)

Then, the equivalent incremental deformation δF is evaluated by an invariant of the
incremental deformation gradient tensor δF averaged over the RVE:

δF =
√
δF̂ : δF̂

T
, δF̂ = 1

V

∫
V
δF dV (2.16)

Finally, the external equivalent load applied to the RVE is obtained as the external power
increment δW divided by the equivalent deformation increment δF :

Q = δW

δF
(2.17)

The macroscopic principal strains corresponding to the maximum of the external equivalent
load Q are suggested to represent the formability limit for the given loading and these values
are used to compose the forming limit diagram. The criterion max(Q) is a generalisation of
the Hill’s definition [Hill, 1958] of a structural instability criterion for large deformations. A
similar principle was used by Gänser et al. [2000] to determine localisation in a two-phase
material.

2.5 Forming limit analysis

In this contribution proportional straining of an aluminium sheet with an initially random
texture is considered to assess the validity of the model proposed. The RVE consists of an array
of 8× 8 two-dimensional bilinear elements with four integration points and each integration
point represents 10 single crystals, accordingly the RVE covers 2560 single crystals. Fig. 2.3
shows the {001} stereographic pole figure of the initial texture distribution provided by all
grains in the RVE. The material parameters used for the calculations are given in Table 2.1.
The components C1111, C1122, C1212 fully determine the elasticity tensor C for FCC materials.
The hardening parameters for the constitutive model are taken from the paper of Wu et al.
[1998] for aluminium alloy sheet AA6111-T4-C. The parameters identified in that contribution
are valid for crystal plasticity simulations employing the same hardening law as in this paper.
Fig. 2.4 demonstrates that applying the parameters from Wu et al. [1998] to the model proposed
gives a good fit of the numerical simulations to the experimental data [Wu et al., 1998].
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Figure 2.3 — Initial texture distribution
represented by the {001} stereographic
pole figure.

�

�

Figure 2.4 — Tensile stress-strain response in uniaxial
tensions.

The random character of the grain orientations provides fluctuations of the texture distribution
in the RVE and, therefore, a slight inhomogeneity of the mechanical properties of the
continuum under deformation. The texture inhomogeneity does not disturb the uniform elastic
deformation but shows local effects in the plastic regime. According to the slip law in Eq. (2.6),
the slip intensity and the slip distribution in a single crystal will depend on the single crystal
orientation. Consequently, along with the onset of the plastic deformation, strain fluctuations
occur due to differences in grain orientations. Fig. 2.5 shows the distribution of the second
invariant 1 of the strain tensor E ≡ 1

2 (F T ·F − I ) at the moment that the plastic deformation
reached 0.2% in the calculations for α = 0. A small random fluctuation in the strain can be
observed and it is this slight initial fluctuation - in the order of 0.02% - that triggers further
local deformation instabilities.

To analyse the development of deformation localisation during proportional straining, the
calculations have been performed with strain ratio α ∈ [−0.5;1]. The values α = −0.5,0,1
represent uniaxial tension, in-plane plane strain stretching and equi-biaxial stretching,
respectively. Fig. 2.6 shows the distributions of the second invariant of the strain tensor
after 30% of deformation for different values of α. All simulations were performed with

Table 2.1 — Parameters for aluminium.

Variable Symbol Unit Value

Elastic coefficient C1111 [GPa] 206

Elastic coefficient C1122 [GPa] 118

Elastic coefficient C1212 [GPa] 54

Strain rate sensitivity m [−] 0.002

Reference slip rate value γ̇0 [1/s] 0.001

Hardening parameter τ0 [MPa] 47

Hardening parameter h0 [MPa] 1410

Hardening parameter n [−] 0.23

1I2(A) =�
A : A
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Figure 2.5 — Distribution of I2(E ) following the onset of the plastic deformation for α= 0.

the same initial random texture distribution; nevertheless, initially random fluctuations of the
strain evolve to localised strain patterns that vary with the type of loading. In plane stretching
calculations, a well-defined band develops perpendicular to the direction of the major strain
ε1. For a negative strain ratio, the slope of the localisation band with respect to the minor strain
axis ε2 increases up to 30◦. The same dependency of the localisation pattern on the loading
mode has been found by Gänser et al. [2000] using a micromechanical approach, where some
inclusions of a second material played the role of initial imperfection. The analysis of the
formability using the Marciniak-Kuczynski approach [Wu et al., 1998; Laukonis and Ghosh,
1978] also provides data on critical directions of the localisation groove that are in agreement
with the directions of the localisation bands indicated here. However, when the strain ratio α

is increased to 1, the localisation mode obtained becomes more diffuse and does not show a
band anymore.

The forming limit in the calculations was established as the deformation state where the
criterion of structural instability, defined by Eqs. (2.14)–(2.17), was reached. The forming
limit diagram for aluminium was obtained by plotting the principal strains corresponding to
the loss of the structural stability in the calculations for different values of α, see Fig. 2.7.
The result demonstrates a good agreement with experimental data [Wu et al., 1998] for small
values of |α|. However the formability prediction at proportional stretching with a higher strain
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Figure 2.6 — Distributions of I2(E ) for different proportional stretching at I2(ε) = 0.3.
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Figure 2.7 — Forming limit diagram calculated
for aluminium.
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Figure 2.8 — The various limits to a sheet
forming process (after Marciniak et al. [1992]).

ratio clearly constitutes a lower bound of the experimental results. In equi-biaxial tension, for
instance, the formability calculated is about 75% of the experimental one. In these calculations
with high values of α the deformation initially develops in a diffuse mode (Fig. 2.6) and a
pronounced localisation band appears much later. Since the instability criterion adopted here
accounts for diffuse localisation as well as for necking, this criterion indicates failure at the
early diffuse localisation phase, before the band appears. However, experimental FLDs are
commonly based on the physical appearance of a localisation band. Therefore the result of the
model should rather be compared to experimental data registering also other types of failure.

Indeed, there are other limitations of the formability [Marciniak et al., 1992] such as wrinkling
and fracture. Wrinkling is usually associated with compressive instabilities and occurs in
deformations not considered here (α < −1). But fracture can affect the stretch deformations
commonly associated with necking. Fracture is typically the result of localisation of strain in
a volume even smaller than the volume associated with a local neck or groove. Experimental
observations [Marciniak et al., 1992] report that, for deformation modes close to equi-biaxial
tension or uniaxial tension, the fracture limit can be lower than the forming limit given by
necking strains. Therefore the border of the safe formability region (Fig. 2.8) can be lower on
the right and left sides when compared to the forming limit diagram. This is also the tendency
observed in the data calculated here.

Summarising, for small values of |α| the instabilities obtained in the calculations clearly
indicate localisation in a band and therefore the predicted formability is in good agreement
with the experimental forming limits. In biaxial tension with a high strain ratio, the model
indicates failure by diffused localisation and the corresponding formability limits are related
to fracture limits. In any case the approach proposed here is capable to predict the lower bound
of the safe forming region, restricted not only by necking but also by fracture.
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2.6 Conclusions

An alternative method to predict forming limits for sheet metal forming has been presented.
Deformation instabilities occurred here as a natural result of strain field fluctuations caused
by textural inhomogeneities. The method is based on an underlying rate-dependent crystal
plasticity theory, elaborated in the context of the finite element method. Structural instability
is determining the localisation criterion.

Proportional loadings with a strain ratio α ∈ [−0.5;1] have been analysed for aluminium with a
random texture. The results demonstrate the ability of the method to describe the development
of strain localisation. The approach proposed is capable to predict the lower bound of the safe
forming region. For smaller values of |α| the computational results are in good agreement
with the experimental forming limit diagram. For the larger values of |α| the calculations are
restricted by the strain localisation developing in the diffuse mode which can be a precursor of
damage. Thus the selection of the instability criterion may have to be reconsidered in order to
be consistent with criteria used in experimental FLDs.
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3.1 Introduction

Most of the industrial metal forming processes are characterised by a non-monotonic strain
history, in which different processing steps rapidly succeed each other. The induced changes
in the strain path have a significant effect on the mechanical response of the metal involved
and therefore influence the material behaviour of a blank during subsequent forming, thereby
affecting the performance of the final product. The complexity and significance of strain path
change effects require a careful investigation of the associated physical origins to enable an
adequate modelling of the resulting deformation behaviour.

Macroscopically, the effect of a certain prestrain becomes manifest by an altered reloading
yield stress, transient hardening, hardening recovery and failure shift compared to a monotonic
deformation of the virgin material. In a quantitative sense the effect is influenced by the amount
of prestrain. Besides, the effect is strongly anisotropic and depends on the “magnitude” of the
change in the strain path. Typical features of the effect for FCC metals with a high stacking
fault energy are schematised in Fig. 3.1. The stress-strain curves represent the responses of a
material previously subjected to deformations, different from the current one, and to different
amounts of prestrain. The amount of prestrain undergone by the material corresponds to
the shift along the global strain axis. It can be seen that, depending on the prestrain, the
material exhibits a softer or a harder response compared to non-prestrained material. After the
initial yield stress is reached, the response shows some drop of the hardening with subsequent
recovery. As the deformation proceeds in the new direction, the material clears the strain path
change and its stress-strain diagram approaches the one for monotonic deformation. Besides,
the change in the deformation history also affects failure.

Strain

S
tr

es
s

Monotonic test

Cross test

Bauschinger test

Figure 3.1 — Stress-strain diagrams demonstrating strain path change effects.

The hardening behaviour of metals physically originates from a complex microstructure
evolution. Both, the texture and the dislocation structure influence the macroscopic behaviour
of polycrystals. It has been proven by many experimental observations [Barlat et al., 2003] that
the macroscopic strain path change effect at intermediate strains is related to the dislocation
structure evolution rather than textural effects. The dislocation structure formed in FCC metals
with a medium to high stacking fault energy can be subdivided into two components: a cell
structure and a cell-block structure. Both cell and cell-block structures affect the macroscopic
deformation behaviour, the cell-blocks, however, appear at larger strains. The effect of the
cell structure, therefore, can be studied solely at strains up to an intermediate level, when the
cell-block structure is not yet formed and therefore does not interfere. This paper concentrates
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on the contribution of the cell structure in this limited strain range.

3.1.1 Experimental observations of the dislocation cell structure

Experimental investigations of dislocation structures developing in metals under deformation
have been carried out for half a century. Extensive information on the morphology of the
structures, their formation and evolution under various loading conditions can be found in
the literature, e.g. Young et al. [1986]; Mughrabi et al. [1986]; Barker et al. [1989]; Bay
et al. [1992]; Hansen et al. [2001]; Huang and Hansen [1997]; Hansen and Huang [1997];
Winther et al. [2000]; Liu et al. [1998]; Zimmer et al. [1983]; Ungar et al. [1984]; Park and
Parker [1989]; Liu and Hansen [1995]; Hughes et al. [1997]. The essential features are shortly
summarised below.

Dislocation cell structures are the first evolving structures recognised as such in deforming
metals. In undeformed material, the dislocation distribution is close to statistically
homogeneous. However, at the beginning of the deformation process, dislocations interact
and cluster to form tangles, which can be seen as regions with relatively increased dislocation
densities. As the strain increases, more dislocations participate in the evolution of the structure
and the tangles link up to form dislocation boundaries which envelop regions with a low
dislocation density. The structure created in this way can be observed as a network of volume
elements within which the dislocation density is well below average, mutually connected
through boundaries in which dislocations are concentrated. This structure is known as a cell
structure (Fig. 3.2) and the dislocation boundaries constituting this structure are the so-called
cell walls.

Figure 3.2 — Dislocation cell structure in copper [McCabe et al., 2004].

Upon visualisation through TEM, the cells appear in equi-axed or elongated two-dimensional
shapes with a size in the order of a few microns. The dislocation walls, or boundaries, are
distinguishable as areas with a high concentration of dislocations occupying about 10%−20%
of the total volume. The dislocations inside the walls are irregularly jogged and tangled and
therefore do not produce high lattice curvatures (in aluminium about 1.5◦ − 2◦). The cell
structure differs from other dislocation structures, such as cell-blocks and shear bands, by
the low misorientation of the dislocation boundaries, i.e. there is a negligible variation in the
slip activity across the cell walls.
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During monotonic deformation the cell structure appears in some grains after only 5% of strain
and becomes fully developed throughout the specimen at about 10% of strain. As the strain
increases, the cells retain the same morphology; the mean size of the cells, however, decreases
rapidly up to strain levels of about 25% and then continues to decrease at a much slower rate.
The dislocation density inside the cell walls also increases as the deformation proceeds which
can be observed as sharpening of the walls. In parallel to this, a lattice curvature appears across
the cell walls, and this increases at a negligible rate up to a strain of about 25%. At a higher
strain the lattice misorientation across the cell walls rises rapidly indicating the development
of the structure into another type.

At intermediate strains, a new dislocation structure appears at a larger length scale. This
structure consists of dislocation boundaries with a high lattice misorientation that envelop
a number of cells to form cell-blocks. A cell-block structure is recognisable by a high
lattice misorientation across its boundaries and, therefore, nonuniform plastic slip over these
boundaries. The cell-blocks develop in the material together with the cells and also influence
the macroscopic response. However, the considerations in this paper are restricted to the more
uniform case and, thus, cell-block structures are left out of consideration.

The morphology and the orientation of the cell structure is related to the deformation mode
applied. The orientation of the cell walls is commonly associated with the loading axis
or the slip systems activated by the applied loading. The shapes of the cells also results
from the loading. For instance, in aluminium, as reported by Barlat et al. [2003], uniaxial
tension forms equi-axed cells while shear triggers more elongated rectangular cells. Since the
dislocation structure and applied deformation mode are closely related, a change in the strain
path affects the microstructure. Published data in the literature on the structure evolution under
complex deformations is scarce and incomplete. Below, an attempt is made to summarise and
systematise the information available in the literature on this experimental subject.

It is well established that a rapid change in a strain path causes a nearly immediate change in
the dislocation structure. The changes observed in FCC metals are rather gradual and diffuse
as opposed to microbanding of the type found in steels after a deformation change.1 The
structure observed shortly after the beginning of plastic deformation in a new direction is
often characterised as distorted, dissolved or disrupted [Fernandes et al., 1993; Bate, 1993].
However, as the deformation proceeds in a new direction, the structure recovers and evolves
in a structure typical for the corresponding monotonic deformation.

The type and magnitude of the structure changes after a strain path change depend on the
differences between the successive deformation modes. Generally, during the first loading, the
dislocation structure evolves in correspondence to the first deformation mode applied. After a
change the structure adjusts to the new loading and the features of the evolution under the
first loading disappear as the deformation proceeds in the new direction. However, there
is no clear understanding of what is happening with the structure during the adaptation nor
is there a unique terminology to describe this evolution. Here we will distinguish between
two different scenarios - dissolution of cells in the cross test and disruption under reversed
loading. There appears to be no consistency in the literature in the use of these terms,
moreover, any cell evolution in FCC metals after a strain path change is often described as “a

1Microbands have been observed in FCC metals only in orthogonal tensile-shear tests [Lewandowska, 2003;
Fernandes et al., 1993], which seems to be particular rather than general. Besides, Barlat et al. [2003] did not find
any microbands in the same test in aluminium. No microbands appear to have been found in other realisations
than the orthogonal test.
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dissolution process”. Indeed, both dissolved and disrupted structures appear as disorganised
structures with a higher degree of homogeneity compared to the state before the strain path
change. Nevertheless, it is believed that there is a morphological difference between these two
scenarios in correspondence with the difference between the driving forces and their physical
origins.

A cross test, e.g. a shear-shear test with 45◦ angle between the shearing directions, is
accompanied by a cell evolution process called dissolution [Schmitt et al., 1991; Fernandes
et al., 1993; Bate, 1993]. After the strain path change, the cell walls appear to become
considerably thicker and less dense. In this way, the dislocation distribution is more uniform
and the structure is less organised. The dissolution proceeds in the next few percent of
deformation and can cause partial or complete dissolution of the cell walls. Simultaneously,
while the deformation proceeds in the new direction, a new cell structure develops addressing
the current loading - with a morphology related to the new loading direction and a cell size
corresponding to the level of the total deformation. As the new structure develops and the
old structure dissolves, after about 10% of strain the new structure replaces the old one
completely and the structure development proceeds in a manner that is not distinguishable
from the development of the cell structure in the as-received material under the same loading.

The evolution of the cell structure after a stress reversal received more attention due to its
relation to the well-known Bauschinger effect [Christodoulou et al., 1986; Hasegawa et al.,
1975]. The evolution of the structure associated with a Bauschinger test is due to the disruption
of the cell walls. The thickness of the walls does not reduce significantly but the walls
are “breaking apart” under the reverse loading. Experimental observations mention also a
strong flux of dislocations from the walls to the cell interiors, decreasing the wall density and
increasing the density in the cell interiors. In this way the homogenisation of the dislocation
distribution is attributed to an increase of cell size and a dislocation redistribution. As
deformation proceeds, the cell walls reappear and the cell structure is rebuilt.

Evolutions of the cell structure under more complex deformation paths deal with features of
dissolution and disruption, depending of the strain path change. In the case of small changes,
the cell structure formed during the preceding deformation is almost the same as the one
accommodating the new loading and only small adjustments are required. Therefore, only a
slight dissolution of the cell structure is observed. More pronounced changes in the strain path
need more adaptation and therefore cause more dissolution. When the strain path change is
large enough to include partially reversed loading, the cell disruption mechanism appears. For
intermediate strain path changes, the two scenarios of cell evolution are expected to coexist.

3.1.2 Objectives

The goal of this paper is to propose a phenomenological relation between the cell structure
evolution and the strain path change effect. The evolution, dissolution and reappearance, of
cells after a strain path change accompanies the macroscopic effects of transient hardening and
hardening recovery. However, there is no clear understanding of the intrinsic relation between
all features of the structure evolution and the resulting macroscopic effect. Therefore, this
study aims to address two questions: (1) Is the presence and evolution of the cell structure
responsible for the strain path change hardening effects? (2) If so, which features of the
cell structure and its evolution contribute to the macroscopical effect? The result of this
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Figure 3.3 — Composite representation of the cell structure.

study is meant to indicate directions for a detailed modelling of the dislocation structure and
the strain path change effects. Furthermore, the modelling approach pursued, serves as a
phenomenological engineering tool to incorporate these effects in predictive analyses.

A composite elastoplastic approach is employed to model the mechanical behaviour of FCC
metals with a dislocation cell structure. Phenomenological laws are proposed for the evolution
of the dislocation density, cell size and thickness of cell walls. The cell development,
dissolution and disruption are considered and modelled through the corresponding evolution
of the incorporated variables.

3.2 Composite model

As have been proposed by Mughrabi [1987], a dislocation cell structure is idealised here as
a two phase composite consisting of cell walls and cell interiors. The dislocation density is
considered to be the only parameter discriminating one component from the other. The two-
dimensional morphology of the composite is shown in Fig. 3.3 and represents the cell structure
built by two sets of cell walls which are regularly spaced and oriented in the directions of the
principal strains. The cell structure is characterised by the wall thickness w , the cell size r ,
the dislocation densities in the cell walls ρw and in the cell interiors ρc . Here and further on
the subscripts w and c are used for the variables characterising the wall and the cell interior
components, respectively.

The deformation behaviour of each composite constituent is modelled by employing the
standard theory of small strain Von Mises elastoplasticity with isotropic hardening. The typical
equations of the strain rate decomposition, elastic deformation and plastic yield are as follows
(with i = w,c denoting the components):

ε̇i = ε̇e
i + ε̇

p
i (3.1)

σ̇i =C : ε̇e
i (3.2)
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the stress rate tensor, whereas C is the elastic Hookean material tensor which is defined by two
constants, the bulk modulus K and the shear modulus G , for an isotropic material.

The composite model represents a medium with a piecewise homogeneous distribution of
dislocations. The yield stress, which is locally related to the dislocation density, is therefore
also piecewise homogeneous, and inside each component the following relation between the
local dislocation density ρi and the corresponding local flow stress can be adopted:

σ
y
i =αGb

�
ρi (3.5)

with b the magnitude of the Burgers vector. The material constant α accounts for the
microscopic details of the elementary glide processes involved, which, for simplicity, are
assumed to be similar for both components. As the cell walls are defined as volume fractions
with a higher dislocation density, relation (3.5) identifies the walls as the hard component in
contrast to the soft cell interior component.

To calculate the mechanical response of the entire composite, the Taylor averaging assumption
is applied, such that the local stresses in both composite components lead to the externally
applied stress according to the rule of mixtures:

σ= f σw + (1− f )σc (3.6)

where f is the volume fraction of the cell walls. The volume fraction of the walls can be
expressed in the relevant dimensions w and r according to:

f = Vw

V
= 2

w

r
− (w

r

)2 (3.7)

where V and Vw are the volumes of the entire composite and the wall component, respectively.

In the model determined by the Eqs. (3.1)–(3.7) the wall thickness w , the cell size r and
the dislocation densities ρw and ρc are still to be quantified. Experimental observations
suggest that these parameters of the cell structure evolve with the strain applied and as such
are dependent on the deformation history; therefore in this contribution w , r , ρw and ρc are
considered as internal state variables. The corresponding evolution equations should describe
the cell structure evolution and complete the system of Eqs. (3.1)–(3.7) for the cell structure
model.

3.3 Evolution of the internal variables

The evolution of the two-phase cell structure can be summarised in terms of the following
major features, see Fig. 3.4. Under monotonic deformation a cell structure appears which
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Figure 3.4 — Scheme of the cell structure evolution under monotonic loading (middle branch), cross
test (left branch) and stress reversal (right branch).

evolves by a decreasing cell size r and wall thickness w and an increasing dislocation density
ρw in the dislocation walls. After a strain path change, depending on the relation between the
successive deformation modes, the cell structure dissolves or becomes disrupted. In the case
of dissolution, the wall thickness increases and the dislocation density in walls decreases. The
intensity of the dissolution depends on the ”magnitude” of the strain path change; the cell size
is not directly affected by the strain path change but depends on the total strain level. In the
case of disruption, the cell size increases rapidly but the wall thickness remains unchanged.
After the transient stage, the cell structure evolution continues to develop in the same manner
as under monotonic deformation but with an orientation related to the new deformation mode.

3.3.1 Monotonic deformation

Dislocation density
Experimental observations [Mughrabi et al., 1986] suggest that the dislocation density inside
the cell interiors does not change significantly during deformation. On this basis, a constant
dislocation density ρc in the cell interior component is assumed here. The evolution of the
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dislocation density ρw in the walls is based on the commonly used difference between the
multiplication of mobile dislocations and the annihilation events:

ρ̇w = 1

b
(I
�
ρw −Rρw ) ˙̄εp

w + ρc −ρw

f
ḟ (3.8)

where I and R are a material parameter and the recovery length, respectively. The second term
in the right hand side of this evolution equation accounts for the change in volume occupied
by the wall material.

Cell size
For the case of monotonic deformation, the following empirical relation between the mean cell
size and the flow stress is adopted:

σy = CGb

r m
(3.9)

which is consistent with experimental observations [Barker et al., 1989] and commonly used
in theoretical investigations [Mughrabi, 1987]. Here C is a material constant and the exponent
m is usually close to unity for cell structures. Accordingly, the evolving cell size will be
approximated by:

r = CGb

f σy
w + (1− f )σy

c

(3.10)

Wall thickness
The evolution of the wall thickness w is assumed to be governed by the average effective
plastic strain rate ˙̄εp = f ˙̄εp

w + (1− f ) ˙̄εp
c according to

ẇ = km(wi n f −w) ˙̄εp (3.11)

This evolution law reflects a decrease of the wall thickness with a saturation rate km (positive)
until the saturation value wi n f is reached.

In this paper, the initially uniform distribution of dislocations prior to the cell structure
development is modelled by an internal state of the composite where all material volume is
occupied by the wall component. This point of departure suggests the initial value w0 to be
equal to the initial cell size r0 and the initial dislocation density in walls to be equal to the
dislocation density ρ0 of the initially uniform distribution.

3.3.2 Cell dissolution

The cell dissolution is modelled here through an increase of the wall thickness. Following
this assumption, the walls thickness increases during dissolution, so that in the limit the wall
occupy whole material, i.e. w = r . The limiting case of complete dissolution is however
rarely observed. Typically, partial dissolution is followed by the formation of new cells
corresponding to the new loading. Next, the cell size and dislocation density are assumed
to evolve in the same way as under monotonic deformation. I.e. the dislocation density in
the walls keeps increasing with deformation and remains constant in the cell interiors. The
latter is assumed for reasons of convenience and does not necessarily reflect reality. The
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actual dislocation density might decrease during dissolution, however conclusive experimental
evidence on this subject is lacking.

Wall thickness
In terms of the wall thickness, the dissolution can be identified as an increase of w :

ẇ = kd (r −w) ˙̄εp (3.12)

where kd (positive) denotes the dissolution rate. In here the saturation value of the wall
thickness is equal to the cell size r corresponding to the complete dissolution of the cells,
modelled again by walls occupying the entire volume. Complete dissolution, however,
actually occurs almost never. Continuing on the transient stage, commonly associated with
the dissolution, the cell structure develops again driven by an increase of the strain in the
new loading direction. At moderate strains after the strain path change, the cell evolution is
therefore comparable to the evolution that would occur under monotonic deformation and the
evolution law (3.11) is applicable again.

To take into account both the dissolution and the redevelopment of the cell structure,
Eqs. (3.11) and (3.12) are combined as follows:

ẇ = (1−p)km(wi n f −w) ˙̄εp +pkd (r −w) ˙̄εp (3.13)

where the first part accounts for the development and the second part accounts for the
dissolution. The weight parameter p determines the relative contribution of the dissolution
process in the evolution of w . As a first estimate, p is specified by assuming that the dissolution
process depends only on the relation between the successive deformation paths and that its
effect disappears as the deformation proceeds in the new direction. In the context of this
idealisation, the following evolution of the internal variable p is suggested:

p = (1−|ϑ|)exp
[−B(ε̄p − ε̄

p
pr e )

]
(3.14)

where ϑ is a scalar measure that identifies the magnitude of the strain path change and ε̄
p
pr e

indicates the plastic deformation accumulated during prestraining (i.e. prior to the strain path
change). To characterise the magnitude of a strain path change a commonly used definition of
ϑ is adopted here:

ϑ= ε̇
p
1 : ε̇p

2

‖ε̇p
1 ‖ ‖ε̇p

2 ‖
(3.15)

where ε̇
p
1 and ε̇

p
2 are the plastic strain rate tensors prior to and after the strain path change.

Thus, ϑ= 1 defines monotonic deformation, ϑ= 0 a cross test, and ϑ=−1 reverse deformation.

As a result, Eqs. (3.13) and (3.14) describe the evolution of the wall thickness during the
whole deformation process. During monotonic deformation ϑ= 1 and Eq. (3.13) consequently
reduces to Eq. (3.11) describing cell wall thinning. After a strain path change, the dissolution
is initiated with an intensity proportional to (1− |ϑ|) and the walls start widening governed
by a competition between the new structure development (3.11) and old structure dissolution
(3.12). As the deformation proceeds in the new direction, the dissolution process vanishes
(p → 0) due to (3.14) and the wall thickness tends to decrease again according to (3.11). Note,
that the cross test with ϑ = 0 provides the highest value of p, thus, the strongest dissolution.
On the other hand, considering the wall thickness w only, the Bauschinger test with ϑ = −1
and thus |ϑ| = 1 is so far equivalent to the monotonic deformation case and will not exhibit cell
dissolution.
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3.3.3 Cell disruption

The evolution of the cell structure after stress reversal, i.e. cell disruption, is modelled by a
temporary increase of the cell size. The wall thickness and dislocation density are assumed to
evolve in the same way as under monotonic deformation.

Cell size
The disruption of cells under stress reversal is considered as a rapid process compared to the
subsequent reconstruction process. In other words, the size of the cells increases rapidly after
a stress reversal and then slowly decreases. As deformation proceeds in the new direction the
cell size recovers to the level corresponding to the total deformation (3.10). To model this
temporary increase of the cell size, an additional contribution is incorporated in the equation
for the cell size evolution (3.10):

r = CGb

f σy
w + (1− f )σy

c

+ A exp
[−kc (ε̄p − ε̄

p
pr e )

]
(3.16)

Here A defines the degree of disruption and kc represents the strain drive recovery. According
to (3.16), the cell size increases immediately after a stress reversal, then decreases with
progressing strain (with a rate depending on kc) to a level corresponding to the current yield
stress and then follows the evolution as set in the monotonic deformation case. To reflect the
fact that the cell disruption is triggered by a stress reversal, the coefficient A depends on the
strain path change measure:

A =
{

a|ϑ| if ϑ< 0

0 if ϑ> 0
(3.17)

where a is a fitting parameter. Consequently, the Bauschinger test triggers the highest
disruption. For more complex strain path changes with negative values of ϑ both Eqs. (3.13)
and (3.16) have nonzero strain path change contributions (p > 0 and A > 0), that describes a
process with coexisting dissolution and disruption of cells.

3.4 Results

The cell structure model is described by the system of equations (3.1)–(3.7) and the evolution
equations (3.8), (3.13), and (3.16), where K , G , α, b, I , R, C are material parameters and ρ0,
ρc , r0, wi n f , km , kd , B , kc , and a are parameters associated with the cell structure evolution
to be determined from experimental cell observations and/or strain path change tests. It seems
reasonable to assume ρ0 = ρc . The initial cell size r0 can be derived from (3.10) and (3.5)
for the initial state where ρw = ρ0 and f = 1. The parameters km and wi n f can be identified
from observations during monotonic deformation. The saturation rate of the wall thickness
development km can be estimated by a single measurement of the wall thickness wobs and the
corresponding ε

p
obs using relation (3.11):

km = 1

ε
p
obs

ln

(
r0 −wi n f

wobs −wi n f

)
(3.18)

Finally, kd and B are parameters to be quantified by fitting predicted stress-strain results to
experimental data for deformations with a strain path change. Likewise the parameters a and
kc should be identified by considering the Bauschinger effect in a stress reversal experiment.
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Table 3.1 — Material parameters for copper.

Paramter Symbol Unit Value

Shear modulus G [GPa] 41.7

Bulk modulus K [GPa] 88.0

Length of the Burgers vector b [nm] 0.257

Material constant α [−] 1

Material constant C [−] 20

Dislocation creation rate parameter I [−] 0.228

Dislocation annihilation rate parameter R [nm] 5.1

Table 3.2 — Fitting parameters for copper.

Parameter Symbol Unit Value

Initial dislocation density ρ0 [m−2] 1014

Wall thickness saturation value wi n f [μm] 0.18

Observed wall thickness wobs [μm] 0.27

Strain corresponding to wobs ε
p
obs [−] 0.01

Monotonic deformation
To validate the cell structure model derived, it was applied to describe the deformation
behaviour of copper. The material parameters used for the calculations are given in Table 3.1
and Table 3.2. Partly, the parameters in the Table 3.2 were determined by fitting the calculation
results to the experimental data for uniaxial tension of pure copper [Mughrabi et al., 1986].
The evolution of the wall dislocation density was used to determine the parameters I , R,
ρ0 (Fig. 3.5a). The parameters of the cell structure ε

p
obs , wobs , wi n f are taken from cell

observations presented in Mughrabi et al. [1986].

Figs. 3.5b and 3.5c display the evolutions of the wall thickness, the cell size and the volume
fraction of the walls. Here and further on, ε = �

ε : ε is the measure of the macroscopic
deformation. The graphs demonstrate a realistic level of the values of the variables and
tendencies as qualitatively described in many experimental observations, e.g. Mughrabi et al.
[1986]. Yet, the cell size calculated with the model still appears to be twice as low as the
mean size reported by Mughrabi et al. [1986]. The model assumptions adopted do not allow
the elimination of the initial drop in the curve for the cell size evolution. The reason for these
discrepancies might be found in the assumed constant dislocation density inside cells, which
is likely too stringent. The experimental data (Fig. 3.5a) also suggest a slow evolution which,
when taken into account, may correct the predicted cell size evolution.

Cell dissolution
The performance of the model in the context of a complex deformation path is here evaluated
by analysing the response of copper subjected to a sequence of two uniaxial tension tests
in different directions. The model results are compared with experimental observations
of Schmitt et al. [1991], who examined various tension sequences, with angles ξ between
the succeeding tensile directions equal to 15◦, 45◦ and 90◦ and with different amounts of
prestrain εpr e = 0.06, 0.12 and 0.18. Their paper contains data on the stress and hardening
evolution under complex deformation together with a qualitative description of the structure
development accompanying the strain path change. The cell structure dissolution was the
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Figure 3.5 — Evolutions of the internal variables during monotonic tension of copper. Experimental
data (marks) according to Mughrabi et al. [1986] and model predictions (lines).

only phenomenon reported by Schmitt et al. [1991], and no evidence of the development
of cell-blocks was found during the applied deformation. This supports the case examined
here, where the cell structure development is the only mechanism associated to the strain path
change effect.

First, the parameters B = 21.3 and kd = 5.7 were identified by fitting the theoretical and
experimental stress-strain curves for the tests with ξ = 45◦ and εpr e = 0.12. The sequence
of two uniaxial tests with 45o between the tensile axes is characterised by ϑ= 0.25. Compared
to other experiments, with ξ = 15◦ (ϑ ∼ 0.9) and 90◦ (ϑ = −0.5), this test is the closest to
a cross test and expected to exhibit the highest cell dissolution and no cell disruption. The
resulting response is depicted in Fig. 3.6a. The evolution of the model variables corresponding
to the macroscopic response are shown in Figs. 3.6b and 3.6c. The graphs demonstrate a
rapid increase in the wall thickness and a decrease in the cell size after the strain path change,
causing a sudden rise in the wall volume fraction. After a strain of about 10% in the new
direction, all variables tend to evolve in a manner similar to their characteristic evolution during
monotonic deformation at the same total strain. This behaviour agrees well with the concept
of the temporary dissolution of cells, as typically observed in experiments after a strain path
change. It is reported by Schmitt et al. [1991] that, after the strain path change, “the dislocation
wall thickness increases and the dislocation density seems to decrease in the walls”, “at low
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Figure 3.6 — Deformation behaviour predicted for monotonic tension and tension with a strain path
change (ξ= 45◦, εpr e =0.06, 0.12, 0.18, copper).

strains, after reloading (about 0.025 of strain), the dislocation structure is unrecognised”, then
"new dislocation walls appear progressively as the strain increases", and finally, after a strain
value of about 0.10 along the second strain path, “the dislocation cell structure tends to be
similar to the structure which developed during a monotonic tension”.

The simulations, however, do not predict a dissolution as strong as observed in the experiments.
In the calculations, the maximum thickness of 0.22 μm reached after the strain path change
provides a wall volume fraction equal to 0.34. Such a low volume fraction of the walls and
a high dislocation density inside the walls (12 times higher than in the cell interior) cannot
be qualified as an unrecognisable structure. This discrepancy probably originates from the
simplified dislocation density evolution used here. After a strain path change the dislocation
density is assumed to evolve in the same way as during monotonic deformation. The decrease
of the dislocation density in the walls that accompanies the cell dissolution is neglected.
A decrease of ρw would allow a stronger increase of f at the same level of macroscopic
deformation.

In Fig. 3.6, the dependency of the deformation behaviour on the amount of prestrain is shown
for the strain path change defined by ξ = 45◦ (εpr e = 0.06, 0.12, 0.18). As the amount of
prestrain increases, an increase in the deviation from the monotonic behaviour can be noticed
in the stress-strain curves and the cell size evolution; the maximum of the wall thickness
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Figure 3.7 — Experimental stress-strain curves for tension tests of copper samples prestrained by
tension in different directions (εpr e=0.06, 0.12, 0.18) [Schmitt et al., 1991].

reached during the dissolution, however, decreases. The predicted rise of the strain path
change effect with increasing prestrain is mainly provided by the decrease in the cell size
and the increase in the internal stresses accumulated in both components at the moment
of the strain change. The macroscopic effect of the prestrain is in good agreement with
the experimental data presented in Fig. 3.7, which illustrates the path dependency of the
deformation of prestrained copper. The mechanical responses for the tension-tension tests
with different magnitudes of the strain path changes are shown. Fig. 3.8 displays the simulation
results for the same tests. These results are obtained with accounting for the cell dissolution
only, i.e. the cell disruption is left out of consideration, A = 0. The model predicts an increased
reloading yield stress after a strain path change and the resulting effect increases with strain
path change angles up to ξ = 45◦ and decreases for ξ = 90◦. This is in agreement with the
experimental data.

The orientation-dependency of the strain path change enters the model via the parameter p in
the evolution of the wall thickness. The amount of dissolution, expressed by an increase of the
wall thickness, is thereby proportional to the magnitude of the strain path change (1−|ϑ|). In
the test with a small strain path change, ξ = 15◦, the dissolution is very small as well as the
macroscopic effect. The test with ξ = 45◦ (ϑ = 0.25) is close to the cross test and therefore
the dissolution is the highest here, i.e. w increases the most. Consequently, the highest rise of
the reloading yield stress is obtained. The test with ξ = 90◦ has a lower absolute magnitude
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Figure 3.8 — Predicted stress-strain curves for tension of copper prestrained by tension in different
directions (εpr e=0.06, 0.12, 0.18).
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Figure 3.9 — Bauschinger effect for compression-tension tests of copper. Stress-strain diagrams for
the tension steps, different offsets indicate different amounts of prestrain applied in compression.

of the path change (ϑ = −0.5) compared to the test for ξ = 45◦. Hence, the dissolution is
lower here and the effect is smaller. In conclusion, the strain path change effect as well as its
orientation-dependency can be adequately explained by the dissolution of the dislocation cell
structure.

Cell disruption

The cell disruption under stress reversal is taken into account through the evolution of the cell
size r . To validate this part of the model the parameters a and kc have been identified by
fitting the model data to the experimental mechanical response upon stress reversal. So far,
the experiments of Schmitt et al. [1991] were used here to identify the model parameters.
Unfortunately, their description does not include data on stress reversal. Therefore, the
experimental data on the compression-tension test of copper reported by Christodoulou et al.
[1986] will be employed to incorporate the stress reversal effect. The parameters of the model,
as presented in Tables 3.1 and 3.2, have been identified to fit the mechanical behaviour of the
material used by Schmitt et al. [1991], which is regrettably not the same as the material used by
Christodoulou et al. [1986]. Therefore, only a qualitative agreement between the experimental
results and the model predictions can be expected. This is, however, sufficient to make a
qualitative analysis on the main tendencies in the relation between the cell structure evolution
and the strain path change effect.

Fig. 3.9 shows the experimental stress-strain diagram for the compression-tension test and the
simulated results. After the stress reversal the cell size was fitted to decrease with 30% of the
current value. The model predicts a decreased reloading yield stress followed by hardening
recovery. Thus, the model captures the main features of the Bauschinger effect. The hardening
evolution, however, still deviates from the experimental one – the hardening stagnation is not
predicted by the model. To improve the model with respect to this item, further extensions are
to account for other elements of cell disruption. This subject is discussed next in section 3.5.
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Figure 3.10 — Bauschinger effect predicted by the composite model. Compression-tension test (thick
lines) and tension test (thin lines).

3.5 Discussion

The model proposed here includes two basic features of an FCC metal with a dislocation
cell structure – material inhomogeneity and evolution of the cell morphology with increasing
deformation. The effect of these features on the strain path changes is studied and discussed
below.

The material inhomogeneity is taken into account by the composite model relying on the Taylor
averaging of the response of the soft cell interior material and the hard walls. The composite
model, i.e. the averaging scheme, does not have any capability to produce an increased
reloading yield stress after a strain path change. However, the material inhomogeneity is often
claimed to be responsible for the early plastic slip in the Bauschinger test. The simulations
of a compression-tension test with the presented composite model are shown in Fig. 3.10.
The cell structure model is used here without any cell dissolution or cell disruption (A = 0),
i.e. reduced to a two-phase model with constant phase fractions. The magnification shown
in Fig. 3.10c illustrates that due to the material inhomogeneity, residual stresses remain in
the material after unloading. After compression, the residual stresses in the cell interior are
positive and therefore assist the subsequent tension. This causes the cell material to yield at a
lower applied stress compared to monotonic deformation. Thus, the material inhomogeneity
clearly contributes to the early slip in the Bauschinger test. However, the elastic response of
the walls increases the average response quickly to the level of the monotonic yield stress.
Therefore, the effect of the early slip in the cell interior remains negligible in the macroscopic
stress-strain diagram (Fig. 3.10a). Obviously, the simulations indicate that a composite model
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with constant phase fractions is not sufficient to predict the strain path change effect nor the
Bauschinger effect.

The most pronounced changes in the dislocation structure evolution after a strain path change
were classified here as cell dissolution and cell disruption. The cell dissolution is modelled
as an increase in the wall thickness and cell disruption as an increase in the cell size. The
cell dissolution is a typical feature characterising the cross test, while the cell disruption is
associated with stress reversals. These scenarios are, obviously, based on different physical
mechanisms activated by the corresponding loadings. These mechanisms are not further
studied, nor detailed in this work. The goal of this paper is to emphasise the mechanical
contribution of the cell evolution to the macroscopic response in a quantitative sense.

The model states that after a small strain path change (ϑ> 0) and up to a cross test (ϑ= 0), the
cell dissolution clearly promotes an increase of the reloading yield stress. Large strain path
changes (ϑ < 0) include a component of stress reversal that initiates the cell disruption. The
cell disruption causes a decreased reloading yield stress. For these large changes in strain path,
the effect of dissolution competes with disruption. Under complete load reversal (ϑ=−1) only
cell disruption takes place, reflecting a clearly decreased yield stress which is typical for the
Bauschinger effect. As mentioned in the introduction, experimental data on microstructure
evolution after strain path changes are difficult to obtain. The evolution assumed here does not
conflict with the data collected so far. Yet, a quantitative comparison with the available data
is not possible. In any case, the agreement between the predicted and experimentally obtained
macroscopical responses indicates that the microstructural evolution is qualitatively correctly
captured.

The contribution of the residual stress should be also mentioned here. In spite of the fact,
that the macroscopic effect of the residual stress is negligible, it plays an important role in
the Bauschinger effect. The early yield stress in the cell interior, promoted by the residual
stress, activates the cell disruption responsible for the decrease in the macroscopic yield stress.
Without the early slip in the cells, the effect of the cell disruption would be a macroscopic
softening, after the reloading stress reaches the level of the stress in monotonic tension.

The results of this study permit to conclude that changes in the cell morphology have a marked
contribution to the strain path change effect. The cell dissolution observed in cross tests
promotes an increased reloading yield stress after a strain path change, while the disruption of
cells observed under stress reversals causes a decreased reloading yield stress, known as the
Bauschinger effect.

The evolution of the cell structure after a strain path change has been modelled here by the
evolution of the cell size and wall thickness only. The complete evolution of the dislocation
structure is evidently more complex. Experimental observations also report changes in the
cell orientation and dislocation redistributions that are not taken into account in the present
analysis. Besides, an increasing amount of indications in the literature [Straub et al., 1996;
Borbely et al., 1997; Müller et al., 1996; Ungar et al., 1984] seem to confirm the presence
of internal stresses in the structure and its significant contribution to the strain path change
effects. The slip anisotropy is also believed to have an effect on the cell structure evolution
and the macroscopic effects. The contribution of these features to the strain path change effect
should be additionally studied and is the subject of future research.
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3.6 Conclusions

With the aim of describing the mechanical response that results from a strain path change,
a phenomenological model of the cell structure evolution has been developed. This model
is based on a composite aggregate, considering a material with a cell structure with two
components: a soft cell interior component and a hard cell wall component. The evolution of
the dislocation cell structure is taken into account by the evolution equations for three internal
variables: the cell size, the wall thickness and the dislocation density inside the walls. The
cell dissolution is modelled by an increase of the wall thickness, which is typically associated
with the cross test. The cell disruption is assumed to be associated with a stress reversal and is
modelled by an increase of the cell size.

Experimental data on monotonic and complex deformation of copper was used to identify the
parameters and to qualitatively assess the model. In spite of the simplifications made at the
cell structure level, the model adequately reflects the behaviour for monotonic deformation and
complex deformation, including the cross and the Bauschinger effect. The strain path change
effect, its dependency on the amount of prestrain, and the magnitude of the strain change
predicted by the model are in reasonable agreement with the available experimental data.
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Modelling of the internal stresses in
dislocation cell structures
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4.1 Introduction

It is common knowledge nowadays that the deformation of metals is accompanied by the
development of dislocation structures. During ongoing deformation, dislocations in the
material tend to pattern such that 3D structures with areas of high and low dislocation density
are formed. This nonuniform distribution of dislocations provides an additional source of
inhomogeneity and anisotropy in the material.

The anisotropy induced by dislocation structures becomes essential in deformations with
complex loading paths. Macroscopically the effect of a strain path change manifests itself in an
altered reloading yield stress, followed by transient hardening with a decreased hardening rate
and, eventually, hardening recovery [Vieira et al., 1990, 2000; Zandrahimi et al., 1989; Bate
and Wilson, 1986; Pedersen et al., 1981]. The effect depends on the amount of prestrain and
the difference between successive deformation modes. Experimental investigations dealing
with strain path changes revealed that the effect of the texture on the reloading behaviour
is weak at moderate deformations [Schmitt et al., 1991; Jensen and Hansen, 1990] and that
slip anisotropy alone does not provide a satisfactory explanation for the observed strain path
change effect [Li and Bate, 1991; Bate, 1993; Jensen and Hansen, 1990]. Therefore, it was
concluded that the effect of strain path changes originates from the anisotropy induced by the
dislocation structure. This was also experimentally confirmed by correlating the presence or
absence of dislocation structures with the macroscopic behaviour after a strain path change
[Bate, 1993].

Experimental observations of dislocation structures suggest a strong correlation between the
structure evolution and strain path change effects [Schmitt et al., 1991; Hasegawa et al., 1975;
Christodoulou et al., 1986]. Indeed, the morphology of the dislocation structure developed
after a particular loading path is clearly depending on the loading characteristics. A dislocation
structure – a non-homogeneous, yet partly regular distribution of dislocations – is formed to
accommodate the current deformation history at the microscopical level. After a strain path
change the previously formed dislocation structure becomes unstable under a new loading
since its morphology is not ‘favourable’ anymore and, moreover, it degenerates by newly
activated plastic slip. The resistance and adaptation of the dislocation structure to the loading
in a new direction is typically accompanied by an increased reloading yield stress and transient
hardening.

It is commonly accepted that changes in morphology of the dislocation structure after a strain
path change are related to macroscopic transient effects. Dissolution and disruption of the cell
structure is observed to coincide with a reduction of the hardening rate, relative to the rate in
monotonic deformation, while formation of a new structure occurs together with a recovery
of the hardening rate towards the one found for monotonic deformation. Recent investigations
[Wilson et al., 1990; Barlat et al., 2003], however, emphasise the importance of the internal
stress developed in the cell structure and its resulting effects on the deformation behaviour of
the material.

It has been confirmed by many experimental observations that deformation of a metal with a
dislocation cell structure causes the development of long-range internal stresses [Straub et al.,
1996; Borbely et al., 1997; Müller et al., 1996; Ungar et al., 1984]. In earlier experimental
and theoretical works it was believed that the long-range internal stresses are caused by pile-
ups of dislocations which were considered as a typical feature of a heterogeneous dislocation
distribution [Seeger et al., 1957]. Later, however, the presence of internal stresses was also



Modelling of the internal stresses in dislocation cell structures 41

discovered in ideal cell structures, where pile-ups are not expected. Since Mughrabi [1983],
the evolution of long-range internal stresses is considered to be a natural consequence of
the compatibility requirements during plastic deformation in the presence of a heterogeneous
dislocation distribution.

Much of the present understanding of the influence of the long-range internal stresses on
the material hardening has been acquired from observations made in fully reversed plastic
deformation [Christodoulou et al., 1986; Hasegawa et al., 1975]. After prestraining, the
long-range residual stresses within the softer cell interiors act in a direction opposite to that
of the originally applied stress. When the direction of the applied stress is reversed, these
internal stresses act in the same direction as the newly applied stress, causing reversed plastic
deformation to be initiated at an applied stress level lower than that attained at the end of the
prestrain. Thus, long-range internal stresses in the cell structure are intrinsically associated to
the decreased reloading yield stress, commonly known as the Bauschinger effect.

After the reloading yield stress has been reached, the plastic deformation in the new direction
triggers a gradual evolution of the deformation incompatibility, resulting in a reorientation
of the internal stresses. Wilson et al. [1990] studied the effect of internal stresses on the
hardening behaviour of aluminium after various strain path changes. It was concluded that the
reorientation of the long-range internal stresses acting in the soft cell interiors constitutes a
source of increasing hardening rates at the early stages of deformation following a strain path
change.

Experimental observations suggest that an adequate model of the dislocation cell structure
might enable a correct prediction of the macroscopic behaviour, especially under complex
loading conditions. A recognised contribution in the modelling of the effects of dislocation
structures was delivered by Mughrabi [1987], who suggested to consider the structure as a
composite with a hard component representing the dislocation walls and a soft component
representing areas of low dislocation densities. This approach has been further sophisticated in
the literature to describe the actual evolution of the dislocation distribution [Estrin et al., 1998;
Argon and Haasen, 1993; Goerdeler and Gottstein, 2001]. The latter models successfully
predict the influence of the microstructure on the macroscopic behaviour. However, these
models do not consider anisotropic effects associated with the cell structure and are therefore
unable to describe strain path dependency.

In the previously published paper [Viatkina et al., 2003] (Chapter 3) the composite model
was enhanced to predict the strain path change and Bauschinger effects. The model was
developed in an isotropic continuum environment, anisotropy of the reloading yield stress
was introduced via the strain path dependent evolution of the volume fraction of the cell
walls. The dependency of the cell morphology evolution on the difference between successive
deformation modes allowed a correct prediction of macroscopic tendencies. It was emphasised
thereby, that the orientation of the cell structure as well as the presence of internal stresses
should be taken into account to complete the model and to improve the quality of the
predictions.

Recently, Peeters [2002] employed a composite model in a crystal plasticity framework,
allowing an anisotropic three-dimensional approach accounting for the orientation of the
structure. The model also includes an anisotropic evolution of the dislocation distribution
depending on the deformation history. The approach was successfully applied to predict the
macroscopic behaviour of steel after various strain path changes. This BCC model, however,
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also bypasses the internal stress characterising a dislocation structure.

The approaches mentioned above concentrate on the morphological changes of the dislocation
structure after a strain path change and their effect on the macroscopic behaviour. It is
believed here that from a modelling perspective, the effect of the internal stresses developed
in the cell structure is as important as the cell morphology. A classical way to account
for an internal stress distribution in a continuum model is the incorporation of kinematic
hardening. A number of models have been developed to introduce kinematic hardening in
prestrained material [Mollica et al., 2001; Abdi and Samrout, 2000; Chun et al., 2002; Harder,
1999; Sedláček and Blum, 2002; Fernandes et al., 1998; Teodosiu and Hu, 1995; Besseling
and Giessen, 1994]. The evolution of the internal stresses, also called back stresses, is
usually modelled through the evolution of internal variables and phenomenological evolution
equations, which are fitted to the macroscopic response. In these approaches, the physical
interpretation of the internal variables and their evolution is a challenging problem [Teodosiu
and Hu, 1995].

The objective of the present paper is to develop a continuum model of the cell structure that
incorporates internal stresses in a physically-based manner. The internal stress is derived here
as a natural result of deformation incompatibility. The approach incorporates the morphology
and orientational anisotropy of the cell structure in an idealised manner. The model offers a
tool to predict strain path change effects and enables a theoretical study of the internal stress
and its influence on the macroscopic behaviour. Moreover, the implementation of the model is
relatively straightforward, resulting in a computationally efficient method that lends itself for
use in macroscopic engineering computations.

4.1.1 Experimental observations of the dislocation cell structure

Experimental investigations of dislocation structures developing in metals under deformation
have been carried out for half a century. Extensive information on the morphology of this
particular microstructure, its formation and evolution under various loading conditions can be
found in the literature, e.g. Young et al. [1986]; Mughrabi et al. [1986]; Barker et al. [1989];
Bay et al. [1992]; Hansen et al. [2001]; Huang and Hansen [1997]; Hansen and Huang [1997];
Winther et al. [2000]; Liu et al. [1998]; Zimmer et al. [1983]; Ungar et al. [1984]; Park and
Parker [1989]; Liu and Hansen [1995]; Hughes et al. [1997]. The experimentally identified
features, which are essential for the elaboration of the present model, are shortly summarised
below.

Dislocation cell structures are the first structures recognised as such in metals under
deformation. In an undeformed metal, the dislocation distribution is close to statistically
homogeneous (random). However, at the beginning of the deformation process, interacting
dislocations tend to cluster and form tangles, thereby creating regions with relatively increased
dislocation densities. As the strain increases, more dislocations participate in the evolution of
the structure and the tangles link up to form ’dislocation boundaries’, which envelop regions
that are relatively free of dislocations. The structure created in this way can be observed as
a network of volume elements within which the dislocation density is well below average,
mutually connected through boundaries in which dislocations are concentrated. This structure
is known as a cell structure (Fig. 4.1) and the dislocation boundaries forming this structure are
the so-called cell walls.
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Figure 4.1 — Dislocation cell structure [McCabe et al., 2004].

Upon visualisation with transmission electron microscopy (TEM), the cells appear in equi-
axed or elongated two-dimensional shapes with a typical size in the order of a few microns.
The dislocation walls, or boundaries, are distinguishable as fractions with a high concentration
of dislocations occupying about 10%−20% of the total volume. The dislocations inside the
walls are irregularly jogged and tangled and therefore do not produce high lattice curvatures.
The cell structure differs from other dislocation structures, such as cell blocks and shear
bands, through the low misorientation of the dislocation boundaries, i.e. there appears to be a
negligible variation in slip activity across the cell walls.

The orientation of the dislocation structure has received a lot of attention in the past decade
[McCabe et al., 2004; Huang and Hansen, 1997; Hansen and Huang, 1997; Winther et al.,
2000; Liu et al., 1998; Wert et al., 1995]. In polycrystals, the structure develops quite
uniformly inside grains, reflecting a regular array of aligned dislocation boundaries. The
morphology and orientation of the dislocation structure in each grain are clearly influenced by
the crystallographic orientation of the grain [Winther et al., 2000; Driver et al., 1994; Godfrey
et al., 1998]. In grains exhibiting single slip the dislocation cell walls are often observed
to align with the crystallographic system. In contrast, grains deforming through multislip,
form cell structures along the macroscopic planes of maximum shear stress [Bay et al., 1992;
Hansen and Huang, 1997], with negligible correlation with slip planes [Hurley et al., 2003].
The intrinsic relation between the dislocation cell orientation, grain crystallography and the
macroscopic loading direction appears to be complex and still unclear in several aspects. In a
recent review on the subject [Winther, 2003], the author concluded that in most deformations
favouring multislip, the macroscopic orientation of the cell structure can be assumed uniform
across the polycrystal and related to the macroscopic planes of maximum shear stress. This
suggestion is followed in the present paper.

The deformation of a metal developing dislocation cell structures is accompanied by the
presence of long-range internal stresses. The existence of these stresses in structures has been
demonstrated on the basis of in-situ TEM observations. The internal stress field was evaluated
by inspection of the curvature of bowed dislocation segments in and near substructural
boundaries [Mughrabi, 2001, 1983]. The analysis of asymmetric X-ray line diffraction profiles
[Straub et al., 1996; Borbely et al., 1997; Müller et al., 1996; Ungar et al., 1984] provided
another experimental technique to highlight and quantify the internal stress distribution.
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Experimental investigations indicate that the long-range stresses in the cell structure are of the
same order as the applied stress. This high level is reached in the cell walls, while in the cell
interior the internal stress is significantly lower. The internal stresses appear to amplify the
externally applied stresses in the cell walls and to reduce the applied stress in the cell interiors
[Straub et al., 1996; Mughrabi et al., 1986; Hecker et al., 2002]. The spatial distribution
of the internal stresses is periodic and accommodates the periodicity of the cell structure.
Experimental investigation of the internal stress anisotropy [Hecker et al., 2002] shows that
the orientation of the principal stress axes is insensitive to the grain orientation but is rather
defined by the macroscopic loading axes and the mesoscopic heterogeneity of the plastic strain.
Accordingly, the level of the internal stress grows with deformation as heterogeneity increases.
It should be mentioned here that the internal stress observed in deformed cell structures is a
consequence of the deformation applied to an intrinsically heterogeneous material. In this
respect, this long-range stress differs from the lower internal stress commonly associated with
the low-energy dislocation arrangement cell structures, studied by Kuhlmann-Wilsdorf [1996].

4.2 Composite cell structure model

The objective of this paper is to predict the average macroscopic behaviour of metals on
the basis of a developing dislocation structure under deformation. The attention is here
concentrated on the contribution of the dislocation cell structure. The morphology and
orientation of the cell structure might vary between grains. However, as discussed in the
introduction, these variations are small if the structure has been developed under deformation
favouring multislip. The considerations here will be restricted to such loadings, allowing the
following simplification. The material behaviour of a polycrystal with a nonuniform cell
structure is modelled by the behaviour of a material with uniformly distributed cells. The
considered geometry and orientation of the cells represent the average morphology of the real
cell structure in a polycrystal. Using a mean field approximation, the mechanical behaviour
of the model material with uniform cells is identified with the mean response of the actual
polycrystal material with a nonuniform dislocation structure.

The mean field approach, pursued here, is motivated by experimental observations reporting
that the morphology of the cells is dominantly influenced by the macroscopic loading. Under
multislip conditions, the cell structure is defined by the loading and hardly varies between the
grains. In the general case, differences in the lattice orientation cause variations in the local
deformation behaviour between grains and, consequently, in the cell structure formed. It is
believed though, that, for an FCC material, due to the high symmetry of the lattice, enough slip
systems are available to accommodate the applied macroscopic loading and therefore, the local
fluctuations of the cell geometry over the grains is expected to remain small. Consequently, it
is assumed that nonuniformity within each grain is the dominant factor , and not the variations
from grain to grain.

Consistent with the mean field approach adopted, an FCC polycrystal is represented here by a
material with corresponding averaged properties, in which the ’mean’ dislocation cell structure
is the prime source of nonuniformity. The mechanical problem, expressing the behaviour of
the material under external loading, is formulated by the following system of equations to be
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satisfied in every material point of the specimen:⎧⎪⎪⎨
⎪⎪⎩
�∇·σ(�x) =�0
F (�x) = [�∇0�x]c

σ(�x, t ) =σ
{

F (�x,τ)|τ≤ t
} (4.1)

where �x is the position vector of a material point in the current configuration, and �∇0 and
�∇ are the gradient operators in the initial and current configurations, respectively. The field
quantities σ(�x, t ) and F (�x) are the Cauchy stress tensor and the deformation gradient tensor.
The first equation in (4.1) represents the standard local equilibrium equation, the second one
is the classical definition of F , implying compatibility at the material point level. The last
equation expresses the local history dependent constitutive relation for the material. Next,
the averaging equations are applied with the assumption of a negligible volume change of the
polycrystal specimen during the whole deformation process:

F̃ = 1

V

∫
V

F (�x)dV and σ̃= 1

V

∫
V
σ(�x)dV (4.2)

where V is the volume; the averages σ̃ and F̃ are taken identical to the macroscopic stress
tensor and deformation gradient tensor applied externally to the specimen.

To solve the problem (4.1)–(4.2) for a material configuration with a cell structure, the
morphology of it should be specified and the constitutive relations for the cell components
should be specified. As it was proposed by Mughrabi et al. [1986], a material with a dislocation
cell structure is idealised here as a two-phase periodic composite consisting of cell walls and
cell interiors. The cell wall component represents the phase with a dislocation density ρw ,
which is significantly higher than the average dislocation density ρtot al of the composite.
The cell interior component typically represents the volume enclosed by the dislocation walls,
with a dislocation density ρc significantly lower than the average. The dislocation density is
assumed to be the only independent variable distinguishing the two phases considered.

�n3

�n2
�n1

D1

D2

D3

(w1,ρw1)

(w2,ρw2)

(w3,ρw3)

Figure 4.2 — Model geometry of the cell structure and its components.

The morphology of the composite, adopted in this paper, is shown in Fig. 4.2. Inspired
by experimental observations (e.g. see Fig. 4.1), the cell structure is modelled as a 3D
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periodic stacking of cubic cells with dimensions D1 ×D2 ×D3, separated by three mutually
perpendicular sets of cell walls with unit normals �n1, �n2, �n3 and with different thicknesses w1,
w2 and w3. The dislocation densities in the cell walls, ρw1, ρw2, ρw3, respectively, depend on
the orientation, as a result of prior deformation. The spatial orientation of the cell structure is
given by the normals {�n1,�n2,�n3}.

The dislocations inside the cell and wall components are assumed to be distributed uniformly,
along with the stress and deformation tensors inside each component:

{σ(�x),F (�x)} =
{

{σc ,F c }, �x ∈ cell interior

{σwi ,F wi }, �x ∈ wall i , i = 1,2,3
(4.3)

Consequently, four uniform material components have been distinguished: the cell walls with
three mutually perpendicular orientations and the cell interior. A geometrical distinction
between the differently oriented walls has been made, since a difference in the orientation will
generally lead to a different mechanical response even in the case of initially equal dislocation
densities. Here and further on, the variables referring to the cell interior are denoted by the
subscript c and the variables belonging to the cell walls by w1, w2 or w3.

Since the stresses and strains are assumed to be uniform inside each phase, the equilibrium
and compatibility equations (4.1) are here satisfied trivially. Thus, at the level of the individual
phases, the system (4.1) is reduced to the constitutive relation of the corresponding phase only.
However, at the interfaces between the components the traction continuity and the interface
kinematic compatibility have to be taken into account. The cell composite includes three
orientations of cell-wall interfaces. The wall-wall junctions are very small and will be left
out of consideration. At the planar interface between the cell interior and wall i the traction
continuity of the stresses is represented by:

(σc −σwi ) ·�nt
i =�0, i = 1,2,3 (4.4)

while the compatibility of deformation at the interface is provided by:

(F c −F wi ) · (I −�n0
i �n

0
i ) = 0, i = 1,2,3 (4.5)

where �n0
i , �nt

i are the normal vectors to the walls in the initial and the current configuration,
respectively. They are related according to:

�nt
i =

�n0
i · [F c ]−1

‖�n0
i · [F c ]−1‖ (4.6)

In summary, the solution of the original problem (4.1) is approximated by piecewise uniform
fields (4.3), which are satisfying the system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σc =σ(F c )

σwi =σ(F wi )

(σc −σwi ) ·�nt
i = 0

(F c −F wi ) · (I −�n0
i �n

0
i ) = 0, i = 1,2,3

(4.7)

Solution of this system instead of the original one (4.1) evidentally offers a significant
advantage with respect to the computational effort. Approximations of the above type are
successfully used for materials with a lamellae structure [Van Dommelen et al., 2003].
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To determine the average stress and deformation gradient of the cell composite, Eqs. (4.2) can
be rewritten as:

σ̃= fw1σw1 + fw2σw2 + fw3σw3 + (1− fw1 − fw2 − fw3)σc (4.8)

F̃ = fw1F w1 + fw2F w2 + fw3F w3 + (1− fw1 − fw2 − fw3)F c (4.9)

in which the volume change during deformation has been neglected. The volume fractions fwi

of the walls are given by:

fw1 = Vw1

V
= w1(D2 + w2

2 )(D3 + w3
2 )

(D1 +w1)(D2 +w2)(D3 +w3)
(4.10a)

fw2 = Vw2

V
= w2(D1 + w1

2 )(D3 + w3
2 )

(D1 +w1)(D2 +w2)(D3 +w3)
(4.10b)

fw3 = Vw3

V
= w3(D1 + w1

2 )(D2 + w2
2 )

(D1 +w1)(D2 +w2)(D3 +w3)
(4.10c)

The system of equations (4.7)–(4.10) determines the constitutive behaviour at the cell level
and the resulting macroscopical response of a material with a dislocation cell structure. The
next section completes the description by specifying the local relations between the stresses
and the deformations inside each component.

4.3 Constitutive equations

In this section, attention is focused on the local material behaviour of the components of
the cell structure material consisting of the cell walls and the cell interiors. As previously
emphasised, the composite model aims to represent the average behaviour of a polycrystal
using a mean field approach. Accordingly, the material behaviour attributed to the cell interior
component reflects the average behaviour of all cell interiors in the polycrystal and the material
behaviour in the cell walls is representative for the average of all walls. Microscopic details
of the material behaviour as described by dislocation dynamics, slip anisotropy, etc. are
assumed to contribute in a second-order manner only and are therefore not taken into account.
Consequently, the material behaviour of the distinct phases will be described by continuum
elastoplasticity in the context of finite deformations. The typical equations for elastoplastic
material behaviour in the presence of isotropic and kinematic hardening are outlined below
(here i refers to w1, w2, w3 or c, denoting the different components).

In the classical theory of elastoplasticity for finite deformations the deformation gradient tensor
F i of a phase i is multiplicatively decomposed into a plastic part F p

i and an elastic part F e
i

according to:

F i = F e
i ·F p

i (4.11)

The velocity gradient tensor Li in each phase is given by:

Li = Ḟ i · [F i ]−1 (4.12)
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The symmetric and skew-symmetric parts of Li are the rate of deformation tensor D i and the
spin tensor W i , respectively. By substitution of Eq. (4.11) into (4.12) these tensors can also be
decomposed in an elastic and a plastic part:

Li = Ḟ i · [F i ]−1 = Ḟ e
i · [F e

i ]−1 +F e
i · Ḟ p

i · [F p
i ]−1 · [F e

i ]−1

=Le
i +F e

i ·Lp
i · [F e

i ]−1 = (De
i +W e

i )+F e
i · (D p

i +W p
i ) · [F e

i ]−1 (4.13)

It is well-known that the decomposition in Eq. (4.11) is not unique because rotational effects
can be assigned either to F p

i or to F e
i . Uniqueness is restored by an extra condition, e.g.

that the plastic deformation occurs spin-free: W p
i = 0. As a consequence of this choice,

additional rotations superimposed to the original deformation process are fully attributed to
the elastic deformation gradient tensor F e

i , while the plastic deformation gradient tensor F p
i is

not affected.

The intermediate stress-free configuration defined by the plastic deformation gradient tensor
F p

i is considered as the reference state for the elastic behaviour, implicitly assuming that the
elastic constitutive response is not affected by the plastic slip. The second Piola-Kirchhoff
stress measure τi is defined with respect to that configuration and is related to the Cauchy
stress tensor σi by:

τi = det(F e
i )[F e

i ]−1 ·σi · [F e
i ]−T (4.14)

The stress measure τi is determined from its work-conjugated elastic Green-Lagrange strain
measure E e

i through the Hookean isotropic linear elastic relation

τi =C : E e
i with E e

i =
1

2

(
[F e

i ]T ·F e
i − I

)
(4.15)

where I is the second-order unit tensor. Since the model material is actually a mean field
approximation of a polycrystal, the anisotropy of the local elastic behaviour is assumed to be
averaged out, justifying the use of isotropic elasticity. The fourth-order isotropic elasticity
tensor C is defined by the bulk modulus K and the shear modulus G:

C= K I I +2G(I− 1

3
I I ) (4.16)

with I the fourth-order unit tensor. The plastic yield criterion is determined by a yield function
Ψi (defining the yield surface in stress space). The Von Mises yield function Ψi including
isotropic and kinematic hardening is here adopted:

Ψi = s̄i −σ
y
i with s̄i =

√
3

2
sd

i : sd
i and si =τi − β̂i

(4.17)

where the superscript d indicates the deviatoric part. This yield function is formulated with
respect to the stress-free intermediate configuration and evaluates the difference between the
equivalent stress measure s̄i (which depends on the second Piola-Kirchhoff stress tensor τi and
a back stress tensor β̂i ) and the yield stress σ

y
i . The back stress tensor is a symmetric tensor

defined in the stress-free intermediate configuration and triggers a shift of the yield surface
in stress space, inducing kinematic hardening. The dominating physical origin of the back
stress is the long-range dislocation interaction. The dislocation network present in the material
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induces an internal stress βi which, together with the applied stress, is the driving force of the
plastic slip. The back stress in Eq. (4.17) is related to the internal stress βi by:

β̂i =−βi (4.18)

The calculation of the internal stresses is discussed in the next section.

The resistance of the material to plastic deformation enters the model through the yield
stress. Here, the yield stress σ

y
i is considered as the stress value required to overcome the

resistance resulting from e.g. a dislocation forest. This yield stress, resulting from short-range
interactions of dislocations, is often postulated to be inversely proportional to the dislocation
spacing di :

σ
y
i = αi MGb

di
=αi MGb

�
ρi (4.19)

where b is the length of the Burgers vector and M is a parameter. factor which relates the
axial stress to the shear stress. The local density ρi of a network of dislocations is related to
the spacing di by ρi = d−2

i . The dimensionless coefficient αi is in the range from 0.05 to 2.6
and can be physically interpreted as an interaction constant whose magnitude is proportional
to the energy gain when pairwise dislocation interactions take place during deformation. Thus,
αi depends on the dislocation type and distribution prevailing in the material. Since the
dislocation arrangements in cells and walls differ, the coefficient might be different for every
phase αi .

The yield function Ψi properly defines the occurrence of elastoplastic behaviour of the material
if complemented by the Kuhn-Tucker conditions:

Ψi ≤ 0, λ̇i ≥ 0, λ̇iΨi = 0 (4.20)

where λ̇i is the plastic multiplier, a scalar measure quantifying the magnitude of plastic flow
rate. The plastic deformation rate is assumed to be governed by an associative flow rule:

D p
i = λ̇i

∂Ψi

∂si
(4.21)

The set (4.11)–(4.21) provides a system of equations to determine the stress response σi of
each individual composite component, given deformation history F i (t ). To solve this system,
F p

i should be calculated using (see Eq. (4.13)):

Ḟ p
i = D p

i ·F p
i (4.22)

whereby a time integration should be performed. The implicit integration of (4.22) yields
[Bronkhorst et al., 1992; Kalidindi et al., 1992; Evers et al., 2002],

F p
i (t +Δt ) = (

I +D p
i (t +Δt )

) ·F p
i (t ) (4.23)

The cell structure model will be next completed by micromechanical relations for the
calculation of the internal stresses βi present in the material as a result of the dislocation
network.



50 Chapter 4

4.4 Statistically stored dislocations

The isotropic hardening in the material depends on the density of statistically stored
dislocations ρc ,ρw1,ρw2,ρw3, see Eq. (4.19). The evolution of the statistically stored
dislocations in the cell structure is described by the following equations:

ρ̇c = M

b
(I
�
ρc −Rρc )ε̇c − ρ̇c−w (4.24a)

ρ̇wi = M

b
(I
�
ρwi −Rρwi )ε̇wi + ρ̇c−w 1− fw1 − fw2 − fw3

3 fwi
, i = 1,2,3 (4.24b)

t = 0 : ρ0
wi = ρ0

c = ρ0 (4.24c)

where ρ0 defines the initial dislocation density in the undeformed material, which is assumed
to be homogeneous. In Eq. (4.24b), ρ̇c−w is scaled to preserve the total amount of
dislocations. The quantities ε̇c and ε̇wi are the equivalent plastic strain rates in the cell
and walls, respectively, and they are related to the corresponding plastic strain rate tensors

as ε̇i =
√

D p
i : D p

i . The first two contributions in (4.24a) and (4.24b) are the same for cells and
walls and reflect the widely-used continuum evolution of the dislocation density: the first term
accounts for dislocation creation and the second – for dislocation annihilation. The material
parameters I and R associated with these processes are related to the effective slip length
and to the critical annihilation distance, respectively. The last terms in both equations are
introduced to describe the dislocation flux from the cell interior to the cell walls. This flux
triggers the creation and development of the dislocation structure and manifests itself through
an increasing difference between the dislocation densities in the cell and walls. For simplicity,
it is assumed that the dislocations leaving the cell interior are equally distributed between all
walls.

To quantify the cell-wall flux, it is assumed that a fraction of all mobile dislocations in the cell
interior leave the interior to join the cell walls. The amount of mobile dislocations present in
the cells is given by the first contribution in the evolution Eq. (4.24a). Thus, the assumption
can be formalised by:

ρ̇c−w =C
M

b
I
�
ρc ε̇c (4.25)

with C a material dependent factor.

4.5 Internal stress

4.5.1 Geometrically necessary dislocations

This section addresses the calculation of the internal stress β introduced in the constitutive
model to describe the kinematic hardening of the material. Since the back stress is the
opposite of the internal stress created by the dislocation network, attention is next focused
on the presence of geometrically necessary dislocations and their associated stress fields.
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The dislocations introduced in the model so far are uniformly distributed in the walls and in
the cell interiors of the cell structure. These are the so-called statistically stored dislocations
(SSDs) because they are due to statistical mutual trapping of gliding dislocations. The
statistically stored dislocations are randomly oriented and therefore the stress fields associated
with individual dislocations will cancel each other out. As a result, these dislocations do
not create long-range effects and they influence the deformation behaviour only by means of
short-range interactions with gliding dislocations. Therefore these dislocations are taken into
account in the yield stress parameter (4.19) only and they do not contribute to the back stress.

On the contrary, dislocations arranged in configurations with a nonzero net Burgers vector
produce long-range stresses. These dislocation arrangements are required to accommodate
the incompatibility of the plastic deformation field and therefore dislocations of this type are
called geometrically necessary dislocations (GNDs).

Geometrically necessary dislocations are naturally present in a material with heterogeneous
plastic deformation and hence also in a material with a cell structure. Under external loading,
a nonuniform field of plastic strains will be present in the cell structure. In the cell interior
phase, plastic slip is easier compared to the cell walls, where the deformation is impeded by a
high density of tangled dislocations. To ensure compatibility of the plastic deformation across
the interface between the hard and soft phases, polarised layers of geometrically necessary
dislocations will develop at this interface. The long-range stresses created by the interface
dislocations are considered to be the main source of the internal stresses in a material with
a cell structure. These interface dislocations will, therefore, be included in the cell structure
model.

The geometrically necessary dislocations are incorporated in the model by assuming that they
are concentrated in (fictitious) thin layers at the interfaces between the cell interior component
and the wall components (Fig. 4.3). In this way, these GND interface layers constitute an
additional ingredient of the cell composite. Two approaches to deal with these interfaces are
considered here.

In the first approach, the interfaces are treated as isolated areas with a negligible thickness.
Following this assumption, the GNDs will influence the mechanical behaviour of the
components only through long-range stresses. The contribution of the interface layers to the
averaged response of the composite, in Eqs. (4.8)–(4.9), can be neglected due to the negligible
volume fraction of these layers and since the stresses and strains inside the layers are expected
to be of the same order of magnitude as the stresses and strains in the other components.
Hence, in this approach, the short-range effect of the GNDs is excluded from the model and the
interface dislocations enter the model only as a source of internal stress, i.e. in the calculation
of the back stress only.

In the second approach, the interface layers are considered to be part of to the corresponding
cell walls. Then, the geometrically necessary dislocations also contribute to the yield stress
in the walls in addition to the statistically stored dislocations and (4.19) is reformulated
accordingly:

σ
y
i =αi MGb

√
ρi +ρGN D

i , i = w1, w2, w3 (4.26)

where ρGN D
i is the density of the dislocations in the interface averaged over the area of the

corresponding wall. In this way both the short-range and the long-range effects of the interface
GNDs are taken into account. From a modelling perspective, the difference between the two
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approaches results only in a somewhat different isotropic hardening: the first approach ignores
the contribution of the GNDs , the second does not.

Both approaches handling the interface layers can be supported by a physical motivation. In
the first approach, the isolated interface layers can be interpreted as pile-ups of dislocations
arrested at the interfaces by non-penetrable walls. The second approach corresponds to the
case that the plastic incompatibility is accumulated by a nonzero net geometrical effect of all
dislocations in the wall. Since the actual dislocation arrangement in the dislocation walls is
still an open question [Jackson, 1985; Jackson and Siedersleben, 1984; Prinz et al., 1982],
there is no clear reason to give preference to one of the approaches and both will be used and
compared in this paper.

�

cell walls

cell interior
interface

D1 w1

D
3

w
3

Figure 4.3 — Geometry of a cell structure cross-section with the interface layers. The edge
dislocations represent an example of the dislocation configuration in the layers.

Finally, it is worth to mention that the introduction of the interfacial geometrically necessary
dislocations does not cause a lattice misorientation between adjoining cells. Indeed, the
interface dislocations induce a lattice misorientation in the adjoining volume elements, i.e.
cell interiors and walls, however, they do not create a misorientation across the walls. In
fact, the spatial variations of the plastic deformation over the interfaces at both sides of a wall
counteract each other. Thus, the two interfaces edging a cell wall from opposite sides have
equal dislocation densities, yet with an opposite sign. GNDs on opposite sides of a cell wall
rotate the crystal lattice in opposite directions and compensate each other.

The density of the geometrically necessary dislocations can be quantified by the dislocation
density tensor. This tensor Λ was introduced by Nye [1953] to relate the net Burgers vector of
dislocations piercing a unit surface area, �B , to the unit normal �n on that surface:

�B =Λ ·�n (4.27)

Within the context of finite deformation kinematics the tensor Λ is determined as1 [Steinmann,
1996]:

Λ= F p · [�∇p × [F p ]−T ]T
(4.28)

Here, the dislocation density tensor Λ, as well as �B and �n, are defined in the intermediate
configuration defined by F p , and �∇p is the gradient operator in that configuration.

1Note that the dimension of Λ is [ 1
m ], since it is related to the Burgers vector [m] per unit surface area [m2]
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Figure 4.4 — Cartesian vector basis associated with the cell structure.

Different expressions can be found in the literature relating the dislocation density tensor to
derivatives of the plastic deformation or inverse elastic deformation gradients [Acharya and
Bassani, 2000; Evers et al., 2002; Arsenlis et al., 2004]. Steinmann [1996] has shown that all of
these tensor measures of the dislocation density are related through appropriate configurational
mappings. Expression (4.28) defined in the intermediate configuration is adopted here, since
the geometry of the cell structure and further derivations of the internal stresses are related to
that configuration. The components of the dislocation density tensor with respect to a given
vector basis can be interpreted as the density of the dislocations with a Burgers vector in
direction i and a line vector in direction j :

Λi j =
∑
ζ

ρζbζ
i tζj (4.29)

where �t is the unit vector in the direction of the dislocation line , �b is the Burgers vector
(‖�b‖ = b) and the summation is performed over all types ζ of dislocations present in a unit
volume of the material. It should be noticed that only densities of the geometrically necessary
dislocations are involved in the calculation of Λ, since the statistically stored dislocations
have a zero net contribution. Thus, the density of the geometrically necessary dislocations is
determined by the plastic deformation incompatibility through (4.28) and Λ will be used as the
associated quantifying tensor.

In the following, the distribution of the geometrically necessary dislocations Λ(�x) is derived
for the cell structure model. In the cell composite, the deformation is assumed to be uniform
inside cells and walls (4.3) and to vary only across the interfaces. Since the width of the
interfaces is assumed to be negligible, the plastic deformation distribution over the composite
can be approximated by a step function with a jump at the interfaces:

F p (�x) =
{

F p
c , �x ∈ cell interior

F p
wi , �x ∈ wall i = 1,2,3

(4.30)

Clearly, the gradient of the plastic deformation is only non-vanishing at the interfaces. In
order to ease further derivations, the geometry of the cell structure is next defined in the
intermediate configuration: the cells are assumed to be cuboid, i.e. the walls are mutually
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perpendicular in the intermediate configuration. This assumption was motivated earlier by
experimental observations (Fig. 4.1) of approximately perpendicular cell walls in metals after
elastic unloading. A Cartesian coordinate system {�e1,�e2,�e3} in the intermediate configuration
is introduced with the origin in the centre of a cell (Fig. 4.4). Then, in the cell containing
the origin, two vertical interfaces with the normal in �e1-direction are given by the following
functions:

Ĭ−1 (�x) = δ

(
x1 + D1

2

)
B

(
x2 + D2

2
, x2 − D2

2

)
B

(
x3 + D3

2
, x3 − D3

2

)
(4.31a)

Ĭ+1 (�x) = δ

(
x1 − D1

2

)
B

(
x2 + D2

2
, x2 − D2

2

)
B

(
x3 + D3

2
, x3 − D3

2

)
(4.31b)

where δ(a) denotes the Dirac function, with δ(a) = 0, if a �= 0, and B(a,b) is the Boxcar
function, defined through the Heaviside step function as B(a,b) = H(a)−H(b). Similarly for
the interfaces with the normal in the�e2-direction:

Ĭ−2 (�x) = B

(
x1 + D1

2
, x1 − D1

2

)
δ

(
x2 + D2

2

)
B

(
x3 + D3

2
, x3 − D3

2

)
(4.32a)

Ĭ+2 (�x) = B

(
x1 + D1

2
, x1 − D1

2

)
δ

(
x2 − D2

2

)
B

(
x3 + D3

2
, x3 − D3

2

)
(4.32b)

and with the normal in the �e3-direction:

Ĭ−3 (�x) = B

(
x1 + D1

2
, x1 − D1

2

)
B

(
x2 + D2

2
, x2 − D2

2

)
δ

(
x3 + D3

2

)
(4.33a)

Ĭ+3 (�x) = B

(
x1 + D1

2
, x1 − D1

2

)
B

(
x2 + D2

2
, x2 − D2

2

)
δ

(
x3 − D3

2

)
(4.33b)

Then, the interfaces in the periodic cell structure are defined by the following periodic
functions:

I±i (�x) = Ĭ±i (�x +�j (r, s, t )), i = 1,2,3 (4.34)

Here the vector �j (r, s, t ) defines a shift for the interfaces of a cell to account for the spatial
periodicity in the�e1, �e2 and �e3 directions:

�j (r, s, t ) = {(D1 +w1)r ; (D2 +w2)s; (D3 +w3)t } (4.35)

with r , s and t integer numbers indexing cells in the composite under consideration, varying
from −N1 to N1, from −N2 to N2 and from −N3 to N3, respectively, to define a composite
domain covering (2N1 +1)× (2N2 +1)× (2N3 +1) cells.

With the use of the notation introduced for the interfaces 2, the derivatives of the inverse plastic
deformation tensor (4.30) are given by their discrete approximations:

∂[F p ]−1

∂�x1
=Δ[F p ]−1

1

[
I−1 (�x)− I+1 (�x)

]
(4.36a)

2 Note that the dimension of I±i (�x) is 1
m .
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Figure 4.5 — Scheme for calculating ρGN D
w1 .

∂[F p ]−1

∂�x2
=Δ[F p ]−1

2

[
I−2 (�x)− I+2 (�x)

]
(4.36b)

∂[F p ]−1

∂�x3
=Δ[F p ]−1

3

[
I−3 (�x)− I+3 (�x)

]
(4.36c)

where

Δ[F p ]−1
1 = [F p

c ]−1 − [F p
w1]−1 (4.37)

Δ[F p ]−1
2 = [F p

c ]−1 − [F p
w2]−1 (4.38)

Δ[F p ]−1
3 = [F p

c ]−1 − [F p
w3]−1 (4.39)

By substitution of Eqs. (4.36) into (4.28), Nye’s tensor can be written as:

Λ(�x) = F p
c · [�n1 × [Δ[F p ]−1

1 ]T ]T [
I−1 (�x)− I+1 (�x)

]
+F p

c · [�n2 × [Δ[F p ]−1
2 ]T ]T [

I−2 (�x)− I+2 (�x)
]

+F p
c · [�n3 × [Δ[F p ]−1

3 ]T ]T [
I−3 (�x)− I+3 (�x)

] (4.40)

where �n1, �n2 and �n3 are the normals to the cell walls in the intermediate configuration. In here
F p

c approximates the plastic deformation gradient at the interfaces, thereby simplifying the
expression. Eq. (4.40) defines the tensor Λ to be nonzero only at the interfaces between walls
and cell interiors. Along the interfaces, the GNDs are supposed to be uniformly distributed and
their density is determined by the difference between the plastic deformations in the adjoining
material components.

The dislocation density tensor Λ will be related to the internal stress β in the next section
to quantify the long-range effect of the geometrically necessary dislocations. If the short-
range effect of the GNDs is incorporated in the hardening through the yield stress in the walls
w1, w2, w3, i.e. Eq. (4.26), the corresponding averaged dislocation densities ρGN D

w1 , ρGN D
w2 and

ρGN D
w3 should be defined as well. Therefore a scalar measure ρGN D should be associated to the

tensor Λ. To this purpose, the invariants of the tensor Λ can be used [Bassani, 2001], but they
lack a physical meaning. Another strategy is to use relation (4.29) between the dislocation
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density tensor and the scalar densities ρζ, where ζ refers to the dislocation type. Then, the
total dislocation density ρGN D can be determined by summing up over ζ. However, as pointed
out by Arsenlis and Parks [1999], the decomposition of the tensor Λ into a set of scalars
ρζ is not unique for FCC crystals and has to be solved in the context of a minimisation
problem. That problem requires information about the crystal lattice orientation which is
not available in the present model. Therefore, in this paper the total density of GNDs is
approximated by the minimum density of ‘continuum’ dislocations required to accommodate
the plastic incompatibility Λ when there are no crystallographic restrictions on the formation
of dislocations. In that case, the dislocation density can be related to a Burgers vector
averaged over the surface of the corresponding interface, containing GNDs, with the use of
the Eq. (4.27). For instance, the continuum dislocation density of geometrically necessary
dislocations ρGN D

w1 in the wall 1 can be calculated as:

ρGN D
w1 = 2

∫
S ‖�B‖d s

bSw
= 2

bSw

∫
S
‖Λ · �N (s)‖d s, (4.41)

where �B is again the net Burgers vector per unit surface area, S the complete surface area of
the interface 1 in the intermediate configuration and �N the normal to the surface d s. Here,
the amount of dislocations contained in the interface 1 is firstly calculated, i.e. the net Burgers
vector of all dislocations piercing the surface of the interface 1 is calculated by the integral over
the complete surface of the interface, which is a 2D plane with dimensions D2×D3. Then, the
result is scaled with the surface area of the corresponding wall Sw and the magnitude of the
Burgers vector. The factor 2 accounts for the fact that two interfaces, on the opposite sides of
the wall, supply GNDs to each wall 1. The kernel of the integral in (4.41) can be approximated
from (4.40), resulting in:

‖Λ · �N‖(�x) = ‖F p
c ·Δ[F p ]−1

1 · (�n1 × �N )‖I±1 (�x) (4.42)

Obviously, along the interface surface the normal vector �N (s) takes three perpendicular
directions, coinciding with the wall normals: �N1 = �n1, �N2,= �n2, �N3 = �n3, see Fig. 4.5. Thus
the integral in (4.41) can be further decomposed in the sum:∫

S
‖Λ · �N (s)‖d s = 2(‖F p

c ·Δ[F p ]−1
1 ·�n2‖D2 +‖F p

c ·Δ[F p ]−1
1 ·�n3‖)D3) (4.43)

where �N1 ×�n1 =�0 has been used and the coefficient 2 accounts for equal contributions of the
opposite sides of the interface. Finally, the GND density in the wall 1 is expressed as:

ρGN D
w1 = 2

b

(D2‖F p
c ·Δ[F p ]−1

1 ·�n2‖+D3‖F p
c ·Δ[F p ]−1

1 ·�n3‖)

D2D3 +w1D2 +w1D3
(4.44a)

In the same manner the continuum dislocation densities in walls 2 and 3 can be obtained:

ρGN D
w2 = 2

b

(D1‖F p
c ·Δ[F p ]−1

2 ·�n1‖+D3‖F p
c ·Δ[F p ]−1

2 ·�n3‖)

D1D3 +w2D1 +w2D3
(4.44b)

ρGN D
w3 = 2

b

(D1‖F p
c ·Δ[F p ]−1

3 ·�n1‖+D2‖F p
c ·Δ[F p ]−1

3 ·�n2‖)

D1D2 +w3D1 +w3D2
(4.44c)

Eqs. (4.44) will be used to calculate the yield stress in the walls with (4.26) while the back
stress in (4.17) follows from the internal stress on the basis of the distribution (4.40) of Λ. An
explicit equation for the internal stress is elaborated in the next section.
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4.5.2 Approximation of the internal stress field

This section deals with the calculation of the internal stresses resulting from the geometrically
necessary interface dislocations. The internal stress field will be determined for the dislocation
distribution described by (4.40). The most straightforward approach to calculate stresses
created by this dislocation distribution is the use of the well-known expressions for the stress
field arising from a single straight dislocation in an infinite elastic medium [Hull and Bacon,
2001]. To obtain stresses caused by finite dislocation walls the contributions of the single
dislocations should be integrated over the wall volume. The result for a finite wall of straight
edge dislocations is e.g. given by Lubarda and Kouris [1996]. Summing up the individual
contributions of all walls results in the total internal stress. Sedláček [1996] applied this
method to straight edge dislocations arranged in an infinite series of parallel finite walls. This
arrangement corresponds to the configuration with the GNDs located in one row of parallel
cell walls. Hecker and Burmeister [1996] analysed the same arrangement of dislocations by
introducing wedge disclination dipoles as an equivalence to the polarised interface layers.

The approaches mentioned above provide proper analytical expressions for the internal stress
state. However, these expressions only hold for a specific type of dislocation arrangement,
i.e. edge dislocations forming tilt boundaries. Obviously, this analysis can be repeated for
any type of dislocations but the type should be known a priori. In the present cell structure
model the interface dislocations can be of a mixed type determined by the load imposed.
Therefore, a more general approach for the internal stress calculation is desirable allowing for
any dislocation type. Furthermore, considering straight dislocations only, would imply that the
dislocation walls are infinite in the direction of the dislocation lines, whereas, the geometry
assumed for the cell structure restricts the interface layers of GNDs to be finite. Therefore, the
formulae for straight dislocations are not applied here.

Relations between an arbitrary plastic incompatibility and the associated internal stresses have
been established in the continuum theory of defects [Kröner, 1981; Mura, 1987]. This theory
deals with the calculation of self-equilibrated stress distributions created in an elastic material
due to the presence of internal kinematical incompatibilities, or defects. The approach was
recently used by Sedláček and Hecker [1998] to determine the stress fields due to tilted
dislocation walls under 2D shear. The cell walls were modelled by a row of plastically sheared
inclusions and the equilibrium problem for the material was solved by combining the stress
function approach with a discrete Fourier transform. The same approach was used in Sedláček
[1995], Sedláček and Blum [1998] and Sedláček and Forest [2000] to calculate the internal
stress related to plastic incompatibilities caused by dislocations bowing out between the cell
walls.

The theory of defects applied to an inhomogeneous material allows for the calculation of the
internal stress created by any plastic incompatibility, i.e. by any distribution of geometrically
necessary dislocations. Moreover, the analytical expressions used by Lubarda and Kouris
[1996] and Sedláček [1996] are included as particular cases. In the present contribution, the
theory of defects is used to relate the internal stress to the plastic incompatibility associated
with the interface dislocations in the cell structure.

To make use of the theory of defects, it is assumed here that the internal stress created
by the geometrically necessary dislocations in the cell material under deformation can be
approximated by the stress induced by the same distribution of dislocations in an elastic
medium that is free from external stresses.
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The density measure for the geometrically necessary dislocations was introduced before in
relation to the plastic deformation by (4.28) or (4.40). However, the plastic incompatibility
associated with the GNDs is actually defined by the incompatible part of the plastic
deformation. Roughly formulated, the compatible plastic deformation is provided by the
slip of the dislocations that glide through the lattice. The incompatible plastic deformation
is due to the slip of the dislocations that are arrested inside the material and give rise to lattice
distortions. Therefore the dislocation tensor Λ is rather related to the incompatible plastic
deformation:

Λ= F p
i nc ·

[
�∇p × [F p

i nc ]−T ]T
(4.45)

This expression is in conformity with Eq. (4.28); the plastic deformation is multiplicatively
decomposed into a compatible part F p

com and an incompatible part F p
i nc according to

F p = F p
i nc ·F p

com . Then expression (4.45) can be derived from definition (4.28), see Steinmann
[1996].

Since the incompatible deformations are small compared to the total deformation, Eq. (4.45)
can be approximated by:

Λ−[
�∇p × [d p ]T ]T

(4.46)

and the related problem of calculating the internal stress can be approximated in the context
of small deformations. Above, the symbol d p stands for the distortion tensor corresponding
to F p

i nc , d p = F p
i nc − I . Following the theory of defects, the self-equilibrated stress β created

by the presence of the dislocations Λ in the elastic material can be found as the solution of the
following problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�∇p ·β=�0
(�∇p u)T = d p +d e

β=C : 1
2

(
d e + (d e )T

)
Λ=−[

�∇p × [d p ]T
]T

(4.47)

The first equation here is the local equilibrium equation for the internal stress β. The second
equation restores the compatibility condition for the total distortion based on an additive
strain decomposition. The incompatible elastic distortion d e is related to the stress β by the
Hookean elasticity law, and as previously elaborated the plastic distortion d p is connected to
the given plastic incompatibility Λ. Note that all equations are formulated in the intermediate
configuration defined by F p since β is defined in this configuration as needed for the evaluation
of the yield condition (4.17)–(4.18). It also seems more physical to relate the incompatible
deformations d p and d e to the intermediate configuration. Actually, these considerations
imply the following decomposition of the total deformation (see Fig. 4.6a):

F = F e ·F p = (F e
com ·F e

i nc ) · (F p
i nc ·F p

com) (4.48)

The introduced approach can be considered as a decoupling of the original problem with
unknown σ and β into two sub-problems (black and grey states represented in Fig. 4.5.2b).
The first problem deals with the calculation of the applied stress σ, in which the internal stress
β is included by (4.17)–(4.18) for a fixed dislocation configuration. The second problem deals
with the calculation of the internal stress β for a given Λ. This problem is formulated for
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the incompatible parts of the deformation only and decoupled from the applied stress σ (i.e.
dependent on the current microstructural configuration only). These two separate problems are
connected in the intermediate configuration by Λ and β: the plastic incompatibility, calculated
from the σ-problem, is the input for the β-problem while the internal stress, calculated in the
β-problem, governs plastic deformation in the σ-problem. Note also that for both problems
the intermediate configuration Kp is identical and defined by F p .
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(b) Decoupled problem.

The solution of the problem defined by (4.47) has been studied by Mura [1987] for the case of
an infinite medium, i.e with the following boundary conditions:

‖β(�x)‖→ 0 for ‖�x| →∞ (4.49)

The method of Green’s functions [Myint-U and Debnath, 1987] has been applied to the
equilibrium problem (4.47) along with the boundary condition (4.49). The internal stresses
were obtained as a function of the dislocation density tensor [Mura, 1987]:

βi j (�x) =
∫

Ci j klεlnhCpqmnGkp,q (�x −�x ′)Λmh(�x ′)d�x ′ (4.50)

where Ci j kl are the components of the fourth-order elastic Hookean material tensor C, see
(4.16), and εlnh are the components of the third-order permutation tensor 3ε. All indices
here and in the following are supposed to vary from 1 to 3 and the Einstein summation
convention applies. The Green’s function G(�x −�x ′) is defined as the displacement solution
of the associated elastic equilibrium problem with the source term replaced by the Dirac
delta function δ(�x −�x ′), satisfuing the applied boundary conditions. More specifically, in
components, Green’s function Gkp (�x −�x ′) can be interpreted as the p-component of the
displacement in a point �x when a unit concentrated force is applied at a point �x ′ in the k-
direction. The plastic incompatibilities given by Λ are the source of the stresses in this
problem. Thus, the kernel of the integral (4.50) determines the stress created at the point �x
by the geometrically necessary dislocations located in the point x ′, and the integration over the
material in Kp is performed to determine the total internal stress state. For isotropic materials
the Green’s function can be determined explicitly. After lengthy elaborations, it can be derived
that [Mura, 1987]:

CpqmnGkp,q (�̄x) = −1

8π(1−ν)

{
(1−2ν)

δmk x̄n +δnk x̄m −δmn x̄k

‖�̄x‖3
+3

x̄m x̄n x̄k

‖�̄x‖5

}
(4.51)

with �̄x =�x −�x ′, with ν Poisson’s ratio and with δi j the Kronecker symbol.

The stress tensor field β is a self-equilibrated stress distribution created by the geometrically
necessary dislocations Λ in an infinite elastic medium. In a finite volume, with the dislocation
cell structure, the internal stress induced by GNDs is close to the stress β calculated with
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(4.50) in areas far enough away from the external boundary. In the vicinity of the external
boundary the internal stress should be zero to satisfy the traction boundary conditions. Thus,
to apply the expression (4.50) to finite geometries, the stress β should be corrected to be
zero at the boundary [Mura, 1987; Nabarro, 1967]. In this work, stresses will be evaluated
in material points that are always at a sufficiently large distance from the external boundary.
Therefore, it will be assumed that the internal stress β can be approximated by (4.50) and
that the deviations at the boundary can be ignored. Note also that the back stress introduced
in the continuum material model acts as an internal variable only, and is not further entering
the balance equations. The system (4.47) can be considered as a micro-scale model used to
calculate the internal variable β̂ of the mesoscale cell model description (4.7)–(4.10), (4.11)–
(4.21).

To calculate the internal stress associated with the cell structure, the distribution of the plastic
incompatibility (4.40) should be inserted into (4.50) and then the integration over the geometry
of the cell structure in the configuration Kp can be performed, resulting in:

β(�x) =C :
(
�n1

[
F p

c ·Δ[F p ]−1
1

]T : 3Π
1
(�x)−[

F p
c ·Δ[F p ]−1

1

]T · [ 3Π
1
(�x)

]T ·�n1

+�n2
[
F p

c ·Δ[F p ]−1
2

]T : 3Π
2
(�x)−[

F p
c ·Δ[F p ]−1

2

]T · [ 3Π
2
(�x)

]T ·�n2

+�n3
[
F p

c ·Δ[F p ]−1
3

]T : 3Π
3
(�x)−[

F p
c ·Δ[F p ]−1

3

]T · [ 3Π
3
(�x)

]T ·�n3

) (4.52)

with

Π1
mnk (�x) =

∫
CpqmnGkp,q (�x −�x ′)

[
I−1 (�x ′)− I+1 (�x ′)

]
d�x ′ (4.53a)

Π2
mnk (�x) =

∫
CpqmnGkp,q (�x −�x ′)

[
I−2 (�x ′)− I+2 (�x ′)

]
d�x ′ (4.53b)

Π3
mnk (�x) =

∫
CpqmnGkp,q (�x −�x ′)

[
I−3 (�x ′)− I+3 (�x ′)

]
d�x ′ (4.53c)

where the components CpqmnGkp,q (�x −�x ′) are given by (4.51). The formulae (4.53) reveal
that the integration should be performed over the areas containing the geometrically necessary
dislocations, consequently over the interface layers (4.31)–(4.34). The interface layers in the
cell structure are rectangles periodically distributed in space. Therefore the integration over
each interface can be performed fully analytically and the contributions of individual interfaces
are summed up giving

3Π
i
(�x) =

N1∑
r=−N1

N2∑
s=−N2

N3∑
t=−N3

3Π̃
i
(�x,�j (r, s, t )), i = 1,2,3 (4.54)

where 3Π̃
i
(�x,�j (r, s, t )) are analytical expressions found for the integrals (4.53) over a single

cell wall, determined by the shift vector �j (r, s, t ).

Eqs. (4.53) specify 3Π
1
(�x), 3Π

2
(�x) and 3Π

3
(�x) as spatially continuous functions, and

consequently the internal stresses found by evaluating (4.52) will also vary continuously
through the cell structure. However, for the constitutive model used, uniformity of all variables
inside each composite component has been assumed previously. Therefore, the distribution
β(�x) should be approximated by a piecewise uniform function with values βc inside the cell
interiors, and βw1, βw2 and βw3 inside the corresponding cell walls.
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Figure 4.6 — Configuration with a single cell wall.

The next section deals with some details on the calculation of the internal stresses. Firstly,
the stresses created by dislocations in simple configurations are calculated with (4.52)–(4.53)
to examine the features of the method suggested here. Then the stepwise approximation
{βc ,βw1,βw2,βw3} is considered for β(�x). For the desired accuracy, the minimum amount
of walls N1, N2, N3 contributing to (4.54) is determined such that the computational costs can
be minimised.

4.6 Computation of the internal stress

In the previous section, the internal stress tensor has been derived by solving the equilibrium
problem for an inhomogeneous material with plastic incompatibilities, resulting in the
formulation given by (4.51)–(4.53). These equations are rather complex and difficult to analyse
in their general form. Therefore, in this section, the elaboration is firstly demonstrated for
a number of relatively simple configurations. These examples will help to understand the
main features of the internal stress distribution in the cell structure. In the second part of this
section, some simplifications of Eqs. (4.52)–(4.53) are introduced, to enable further numerical
computations with the cell structure model.

4.6.1 Continuum case

All computations below are based on Eqs. (4.51)–(4.53) using the material parameters of
copper at room temperature [Mughrabi et al., 1986]. The elastic behaviour is determined by
the shear modulus G = 41 GPa and Poisson’s ratio ν= 0.35. The length of the Burgers vector
is taken as b = 0.25 nm.

First, a single wall in an infinite isotropic matrix is considered, see Fig. 4.6. The size of the
wall is given by the wall height D = 1.4 μm and the wall width w = 0.14 μm, typical values
for a dislocation structure in copper [Mughrabi et al., 1986]. Moreover, the wall is assumed to
be infinite in the third direction. Pure shear, with deformation gradient components F12 = F21

applied to that composite will result in a nonuniform deformation with jumps of the plastic
deformation ΔF p

12 =ΔF p
21 =−δγ across the matrix-wall interface and ΔF p

12 =ΔF p
21 = δγ across

the wall-matrix interface, where δγ is the magnitude of the jumps. This plastic incompatibility
corresponds to a nonzero Λ13 component and can be associated with two interface layers of
straight edge dislocations, see (4.29). The layers can actually be considered as tilt dislocation
boundaries with equal dislocation densities but opposite signs (Fig. 4.6).
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To compute the stresses created by the interface dislocations in this single wall example
(Fig. 4.6), the following geometrical configuration has been applied, consistent with (4.31):

I−1 (�x) = δ
(
x1 + w

2

)
B

(
x2 + D

2
, x2 − D

2

)
(4.55a)

I+1 (�x) = δ
(
x1 − w

2

)
B

(
x2 + D

2
, x2 − D

2

)
(4.55b)

and according to (4.39):

ΔF p
1 = δγ (�x1�x2 +�x2�x1); ΔF p

2 = 0; ΔF p
3 = 0 (4.56)

the coordinate system with the basis vectors�x1 and�x2 and the coordinates x1 and x2 is defined
in Fig. 4.6. The internal stress can then be calculated.
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Figure 4.7 — The distribution of the internal stresses in the single wall example along �x1 (x2 = 0).
Dashed lines: Stress due to the right interface; dotted lines: Stress due to the left interface; solid lines:
their superposition. Dimensionless stress β̄ defined as β̄i j = 2π(1−ν)
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Figure 4.8 — The distribution of the internal stresses in the single wall example along �x1 (x2 = 0).
Configuration with a single cell wall, ΔF p

22 = δγ, edge-dislocation arrays with the Burgers vector
parallel to the �x2-axis. Dashed lines: stress due to the right interface; dotted lines: Stress due to
the left interface; solid lines: their superposition. Dimensionless stress β̄ defined as β̄i j = 2π(1−ν)

Gδγ βi j

Fig. 4.7a shows the distribution of the nonzero internal stress component β12. It can be
observed that the individual finite dislocation boundaries, representing the interface layers, do
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produce long range stresses (dashed and dotted curves in the figure). This is due to their finite
size D, contrary to infinite dislocation boundaries which are low-energy configurations that do
not lead to long-range stresses. Note that the superposition of two neighbouring boundaries
with opposite signs of dislocations still provides a significant stress close to the cell wall
with a maximum in the middle of the wall, the total stress decays at larger distances. This
is essentially due to the finite width of the wall, i.e. the spacing between both boundaries.

Figs. 4.7b and 4.8a–4.8c show the nonzero stress components developed in the same
single wall configuration, however with a plastic incompatibility ΔF p

23 (Fig. 4.7b) and ΔF p
22

(Figs. 4.8a–4.8c). These plastic incompatibilities can be obtained by applying an external shear
F23 or a stretching F22, respectively, to the composite. The interface layers can be recognised
here as arrays of screw dislocations in the case of Fig. 4.7b and arrays of edge dislocations
with a Burgers vector parallel to the�x2-axis in the case of Figs. 4.8a–4.8c. Similar conclusions
can be drawn here as in the case of the tilt dislocation boundaries before.

Note, that since the wall considered above is infinite in the third direction, the interface
layers can be associated with arrangements of straight dislocations for this particular case.
Accordingly, Eqs. (4.51)–(4.53) can then be reduced to the well-known expressions for stress
fields for straight dislocations in an elastic medium [Hull and Bacon, 2001]. Thus, the results
shown in Figs. 4.7 and 4.8 can also be reconstructed by integrating the stress fields due to single
dislocations [Hull and Bacon, 2001] over the area of the interface layers. In the more general
case of interest here, interface layers of a wall are finite in the third direction and cannot be
assembled from straight dislocations and, therefore, their stresses can only be calculated from
the general expressions (4.51)–(4.53). The stress distribution calculated for a wall finite in the
third direction is nonuniform in the�x3-direction as well. The stress distribution in�x1-direction
for such a wall has the same profile as depicted in Figs. 4.7 and 4.8.

Fig. 4.9 shows the results of the internal stress calculations through (4.51)–(4.53) for a more
complex configuration. A 3D cell structure (as in Fig. 4.2), infinitely spread over the material,
is considered here. The geometry of the cell structure is given by the cell size D1 = D2 =
D3 = 1.4 μm and the wall thickness w1 = w2 = w3 = 0.14 μm. The interface layers in this
structure are finite and given by (4.31)–(4.35). To calculate the internal stresses with (4.52),
the plastic incompatibilities developed at the cell-wall interfaces have to be known. In this
example, plastic incompatibilities, typically developing under simple shear applied to the cell
structure in the �x1 direction are considered:

ΔF p
1 = δγ (�x1�x2 +�x2�x1), ΔF p

2 = δγ (�x1�x2 +�x2�x1), ΔF p
3 = 0 (4.57)

where the directions �x1 and �x2 coincide with the normal vectors �n1 and �n2 to the cell walls,
respectively.

The internal stress developed in this example is shown in Fig. 4.9. It can be observed that the
stress distribution is periodic and follows the periodicity of the cell structure. A remarkable
feature of this distribution is the strong nonuniformity in the areas of the wall junctions. This
is a consequence of the assumptions made in the underlying composite model. The piecewise
uniform material behaviour assumed here provides a strong nonuniformity of the stress and
strain in the areas around the corners. Consequently, the interface dislocations are distributed
uniformly along the straight interfaces as well. Thus, the dislocation density is discontinuous
in the corner areas where the walls cross. As a result, the internal stress is highly nonuniform
in those areas. In the actual cell structure the stress and strain fields are not discontinuous
and will have gradients smoothed over finite areas, especially in the corners. The interface
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Figure 4.9 — The distribution of the internal stress in the 3D cell structure as visualised in Fig. 4.2.
The cross-section x3 = 0. Dimensionless stress β̄12 = 2π(1−ν)

Gδγ β12.

dislocations are also expected to be redistributed in the corner areas to reduce these artificial
high internal stresses. Therefore the actual internal stresses are smoothed over a finite area at
the corners and will not have the sharp peaks as calculated here. Considering the small volume
fraction of the corner areas and the remark made above, it seems reasonable to assume that
the internal stresses in the cell interiors and cell walls, away from the corners, do not depend
on the computed peaks at the corners. More importantly, since the corner areas are indeed
relatively small, the mean behaviour of the material is not affected by its local state neither.
The corner areas will therefore be left out of consideration.

Away from the wall junctions, the distribution of β in Fig. 4.9 has maximum values locally in
the wall components and minimum values in the cell interior components. The stress appears
to be quite uniform inside each component. In this example, the stresses inside the vertical and
horizontal walls have the same magnitude. This is due to symmetry of β: β12 is induced by
ΔF12 in the vertical walls and by ΔF21 in the horizontal ones.

The examples above confirm that the geometrically necessary dislocations concentrated in the
interface layers produce non-negligible internal stresses with a maximum value at the cell walls
and a minimum value in the cell interior. The same tendency was observed in experimental
observations dealing with dislocation cell structures [Mughrabi, 2001, 1983; Straub et al.,
1996; Borbely et al., 1997; Müller et al., 1996; Ungar et al., 1984]. A qualitative verification
of the predicted internal stress level will be done in Section 4.7.

4.6.2 Discrete approximation

As mentioned in the previous section, the internal stress distribution calculated with (4.51)–
(4.53) is nonuniform over the cell structure and has to be approximated by a piecewise uniform
distribution inside the cell interiors and the cell walls. In Fig. 4.9 it can be observed that the
variation of the internal stresses inside each component is small compared to the differences
between the components. This holds for all types of plastic deformation discontinuities
experienced by the composite under deformation. Therefore, the approximation by means of a
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uniform stress distribution inside the individual components appears to be appropriate and the
stress distribution β(�x) is then given by a stepwise function with values {βc ,βw1,βw2,βw3}.
In this paper, the values of the piecewise uniform internal stress are chosen to be equal to the
internal stresses, calculated using (4.52) at the centre of the components:

βc = β(0,0,0) in the cell interiors

βw1 = β(
D1 +w1

2
,0,0) in the cell walls 1

βw2 = β(0,
D2 +w2

2
,0) in the cell walls 2

βw3 = β(0,0,
D3 +w3

2
) in the cell walls 3

(4.58)

Another detail to be clarified for the proper quantification of the internal stresses is the number
of cell walls N1, N2, N3 involved in the computations. Eq. (4.54) deals with the summation of
the contributions of all walls in a cell structure, which might be computationally expensive.
However, the stress due to an individual wall decreases to zero with an increasing distance
from that wall (see Fig. 4.7). Therefore it might be expected that the number of cell walls
contributing to the internal stress in a given point will be limited. To examine this issue the
internal stress has been calculated in the middle of an N1 ×N2 array of “vertical” cell walls
(with normal vector �n1) with N3 = 1. The dependency of the stress βw , in the central wall, on
the number of walls N1 and N2 in the calculation has been investigated. Fig. 4.10 shows the
results for the case of a plastic shear incompatibility across the interfaces as given by (4.56).

β̄
12

N1

0.1

0.2

0.3

0.4

41 81 121 161 201

1

1

N2 = 1

N2 = 1 N2 = 21

N2 = 41

N2 = 101

N2 = N1

Figure 4.10 — The internal stress created by an
array of N1 × N2 × 1 cell walls in the central wall
as a function of N1 and N2; dimensionless stress
defined as β̄i j = 2π(1−ν)

Gδγ βi j .

x1

x 2

0

0

20

20

40

40-20

-20

-40

-40

Figure 4.11 — Long-range stress field
β̄12 due to a single cell wall.

It can be observed that for a fixed N2 an increase of N1 leads to an asymptotic behaviour.
However, there is no unique asymptote for different values of N2. Nevertheless, in one
particular yet relevant case, i.e. a symmetrical array (N1 = N2), an asymptote exists for values
of the internal stresses (Fig. 4.10), which is rapidly reached for N1 = N2 > 5. This result is
better understood by considering the long-range stress distribution (Fig. 4.11) of a single cell
wall (Fig. 4.6). The stress level decays with the distance but still has a substantial value even
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30 wall-heights away from the wall. Besides, at large distances, the stress distribution shows
two 4-fold symmetries with opposite signs and a 45◦ rotation (Fig. 4.11). Therefore, in the
non-symmetrical case N1 �= N2 (Fig. 4.10), the total stress in the centre of the array will be
influenced by the distant walls. In spite of the fact that the individual contributions of the
distant walls are small, their superposition is not negligible. For an array of walls with equal
numbers in both directions, the specific long-range symmetry of the stress distribution of walls
avoids this problem. Roughly speaking, the stress induced by the walls added in the �x1 and �x2

directions will be compensated by the stress induced by the walls added in diagonal directions.

A comparable conclusion can be drawn for other plastic incompatibilities or other wall
orientations. Therefore, for the stress created in a particular point by all dislocations in the
cell structure, a reasonable estimate is obtained by taking into account only the contributions
of walls in a patch of 5×5 surrounding cells. Eq. (4.54) is replaced by:

3Π
i
(�x) =

N∑
r=−N

N∑
s=−N

N∑
t=−N

3Π̃
i
(�x,�j (r, s, t )), i = 1,2,3 (4.59)

where N is chosen equal to 2 (N1 = N2 = N3 = 5). As illustrated, (4.59) is a reasonable
approximation of (4.54) in the middle of the cell structure, away from the boundary. At
the external boundaries of the specimen under consideration the amount of cells in outward
direction is limited by the presence of the boundary and approximation (4.59) cannot be
applied anymore. However, the stress will always be calculated in material points that are at
non-negligible distance from the boundary and the effect of specimen boundaries will therefore
be ignored.

4.7 Numerical analysis

4.7.1 Parameter identification

To perform numerical simulations the model parameters are here identified to describe the
mechanical behaviour of copper. The values used for the elasticity parameters and the
magnitude b of the Burgers vector are given in Table 4.1. Values for the parameter M and
the coefficients αi = α are chosen following the recommendations of Mughrabi [1987] for
a continuum cell structure model. The value M = 2.5 corresponds to lattice orientations
providing symmetrical multiple slip and α= 0.4 is obtained for multiple slip involving mutual
intersection of dislocations of different slip systems [Mughrabi, 1987]. The mentioned values
are adopted for symmetric deformation modes as analysed further in this paper.

Next, the geometry of the cell structure is specified. The cells are assumed to be cubic, D ≡
D1 = D2 = D3, with equally thick cell walls, w ≡ w1 = w2 = w3. Moreover, the geometry
of the cells is assumed fixed under deformation (but not the dislocation densities). These
simplifications may deviate from experimental observations at large deformations, however
they are sufficiently accurate for the present analysis that concentrates on the internal stresses
induced by the cell structure. The values chosen for the cell size D and the wall size, defined
here by the fraction f = w/D, (see Table 4.1) are typical for a cell structure observed at small
to moderate deformations (Mughrabi et al. [1986]).

The evolution of the statistically stored dislocations is defined by (4.24)–(4.25) and the
material parameters I , R, C and ρ0. These parameters should be identified by fitting simulation
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Table 4.1 — Parameters for copper.

Parameter Symbol Unit Value

Shear modulus G [GPa] 41.7

Poisson’s ratio ν [−] 0.34

Length of the Burgers vector b [nm] 0.257

Coefficient α [−] 0.4

Mean orientation factor M [−] 2.5

Cell size D [μm] 2.5

Wall volume fraction f [−] 0.18

Table 4.2 — Parameters for copper.

Parameter Symbol Unit Value

Initial dislocation density ρ0 [m−2] 9 ·1013

Creation rate parameter I [−] 0.1

Annihilation rate parameter R [nm] 2

Dislocation flux constant C [−] 0.6

results to experimental data. Unfortunately, quantitative experimental data on the dislocation
evolution in cell structures is rare. However, the dislocation density evolution influences
the hardening evolution of the material under deformation for which experimental data is
available. The initial dislocation density ρ0 defines the initial macroscopic flow stress and
I , R, and C affect the further macroscopic behaviour via local isotropic hardening. Thus, the
parameters ρ0, I , R, and C might be estimated by fitting simulation results to experimental data
on the macroscopic behaviour under monotonic deformation, for example as given by a stress-
strain diagram. The macroscopic stress evolution under monotonic deformation, however, does
not identify C in a unique way. The parameter C is associated with the material inhomogeneity
and should be identified by, for instance, the dislocation density difference between cell and
walls or the stress inhomogeneity or the quantitative level of the internal stresses.

In the following, experimental data obtained by Schmitt et al. [1991] for polycrystalline copper
under complex deformations are used to extract the parameters and to evaluate the model’s
performance. Therefore, the material parameters I , R, C , and ρ0 are identified here to fit the
experimental data for monotonic tension given in Schmitt et al. [1991]. To simulate uniaxial
tension the macroscopic deformation F̃11 is applied with a strain rate ε̇11 equal to 5 ·10−4 [1/s].
All other directions remain stress-free. I.e. the following components of the macroscopic
stress and deformation gradient tensors are applied:

F̃11 = 1+ ε̇11t ; σ̃i j = 0, if i j �= 11 (4.60)

During the simulations, the orientation of the cell structure remains fixed, so that the tensile
axis coincides with the local cell direction [111], see Fig. 4.14. This choice for the structure
orientation corresponds to the formation of a cell structure along the macroscopic planes with
maximum shear as confirmed by experimental observations [Zhu and Sellars, 2001]. This
assumption does not provide a unique choice of the cell orientation, since it does not define the
rotation of the cells around the [111] direction. But, uniaxial tension along the [111] direction
is invariant to this rotation due to symmetry of the deformation with respect to the tensile axis.

The parameters ρ0, I and R are found by fitting the stress-strain diagram for monotonic
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Figure 4.12 — Monotonic uniaxial tension, Cu.

uniaxial tension to the experimental data from Schmitt et al. [1991], Fig. 4.12a), and are
given in Table 4.2. The macroscopic behaviour in Fig. 4.12a can, however, be realised with
different levels of material inhomogeneity, i.e. with different values of the parameter C . To
determine the value for C additional information on the material inhomogeneity should be
available. Unfortunately, the paper of Schmitt et al. [1991] does not supply quantitative data
on the microstructure. Therefore, information on the mesoscopic inhomogeneity developing in
copper under uniaxial tension was taken from another source. Mughrabi et al. [1986] provided
a detailed description of the dislocation cell structure in copper and the mechanical response
of the material under uniaxial tension. The experiments however, were performed on a [001]-
orientated copper single crystal. This symmetric orientation of the single crystal allows for
deformation by multislip and, therefore, it is expected that a cell structure is formed that is
comparable to the structure developing in polycrystals. Evidently, the deformation behaviour
of a single crystal still differs from the behaviour of polycrystal material. Therefore, the data on
the material inhomogeneity from Mughrabi et al. [1986] is only used here as an indication for
the expected level of inhomogeneity in copper polycrystals, as used by Schmitt et al. [1991].
Fig. 4.12c shows the evolution of the local yield stress in the cell and wall phases, simulated
with C = 0.6. The local yield stress as measured by Mughrabi et al. [1986] in a copper single
crystal is also shown. It can be seen that the stress in cell interiors fits the experimental data
better than the stress in the walls. The level of the stress inhomogeneity is however captured
adequately, particularly since only a single parameter has been introduced to this purpose.
Fig. 4.12b shows the corresponding evolution of the dislocation density.

Effect of GNDs on isotropic hardening

The calculations above have been performed accounting for the geometrically necessary
dislocations in the isotropic hardening term, i.e. with the use of (4.26). Simulations showed
that the density of the geometrically necessary dislocations is small compared to the density of
the statistically stored dislocations (Fig. 4.12b) and, therefore, their influence on the isotropic
hardening effect is negligible. Consequently, two approaches expressed by Eq. (4.19) and
Eq. (4.26) yield equivalent results. In the following the effect of GNDs on the isotropic
hardening will be neglected, i.e. (4.19) will be used for the yield stress.
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4.7.2 Model verification

Application to copper

To verify the model, tension-tension tests have been simulated and compared to the
experimental data reported by Schmitt et al. [1991]. The initial tension load is modelled
according to (4.60) until a certain amount of macroscopic strain defined as

εpr e =
∫√

D̃ : D̃d t , D̃ = 1

2
( ˙̃F · F̃−1 + F̃−T · ˙̃F T ) (4.61)

has been reached. Then the elastic unloading, defined as the state with a zero macroscopic
stress, was simulated, followed by a second loading step in which the uniaxial tension was
applied in another direction, see Fig. 4.13a. The material parameters used for the calculations
are given in the Tables 4.1–4.2.

A tension-tension strain path change is given by two angles {ξ,θ} that define the orientation
of the second tensile axes �T2 with respect a macroscopic basis {�T1,�e2,�e3} associated with the
first tension, see Fig. 4.14a. A dislocation cell structure develops during the first tensile step,
which is assumed to orient with the [111] cell direction3 along the tensile axis, Fig. 4.14b.
Thus, with respect to the cell structure, the strain path change is defined by the rotation ξ

of the tensile axis from the [111] direction and by the rotation θ around the [111] direction,
see Fig. 4.14b. Since the first tension step is invariant to the cell rotation around [111], the
cell direction [11̄0] was fixed in the simulations along the macroscopic direction �e3 and the
angle θ is measured from �e3 (Fig. 4.14). Clearly, both strain path change angles influence the
macroscopic reloading effects since they define different orientations of the cell structure with
respect to the new loading axis. The effect of both angles on the strain path change effects will
be discussed in the next section.

Experimental data, used here for verification, include information on the reloading yield stress
as a function of the strain path change angle ξ, which is the angle between two succeeding
tensile axes. The second angle θ was restricted by experimental settings. To determine the
magnitude of θ, however, the 3D orientation of the cell structure with respect to the loading
axis should be known. This information is rarely available and absent in Schmitt et al. [1991].
To resolve this, simulations with different values of θ were performed and θ = 0 (i.e. with
respect to the cells, the tensile axis has been rotated from the [111] direction to the [11̄0]
direction) was found to provide the best correspondence to the experimental data. This angle
θ = 0 is further used for the tension-tension simulations, if not specified otherwise.

3Here and further on [abc] denote directions with respect to the cell structure, in the coordinate system
depicted in Fig. 4.14b.
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The strain path change effect is often experimentally evaluated by comparing the macroscopic
yield stress after reloading to the stress that is reached at the same total deformation in a
monotonic test. Further on, these stresses are referred to as the reloading yield stress σy and
the monotonic stress σmon respectively, e.g. see Fig. 4.16a. In all experimental studies used
here for verification purposes, the reloading yield stress is determined by a back extrapolation
of a macroscopic stress-strain diagram, e.g. see Schmitt et al. [1991]. To reproduce comparable
data, the reloading yield stress is defined here as the macroscopic Von Mises stress at which
the macroscopic hardening rate after reloading drops to the level of the macroscopic hardening
rate in monotonic test, i.e. dσy/dε=dσmon/dε.

Fig. 4.15a shows the reloading yield stress experimentally determined from the tension-
tension experiments [Schmitt et al., 1991]. The effect depends on the angle ξ between
the tensile axes (θ = 0) and the amount of prestrain. The simulation results are shown in
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Figure 4.15 — Strain path change effect for Cu in a tension-tension test. Reloading yield stress as a
function of the strain path change ξ (θ = 0o).
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Table 4.3 — Parameters for aluminium.

Parameter Symbol Unit Value

Shear modulus G [GPa] 26

Poisson’s ratio ν [-] 0.35

Length of the Burgers vector b [nm] 0.286

Coefficient α [-] 0.4

Mean orientation factor M [-] 2.5

Cell size D [μm] 2.5

Wall volume fraction f [-] 0.15

Initial dislocation density ρ0 [m−2] 5.408 ·1012

Creation rate parameter I [-] 0.0513

Annihilation rate parameter R [nm] 4.55

Dislocation flux constant C [-] 0.15

Fig. 4.15b. The predicted values of the reloading yield stress are well in the experimental
range. The dependencies on the amount of prestrain and the angle between the successive
tensile axes are also captured. The prediction however also demonstrates some deviations
from the experiment. Considering the effect of the strain path change angle, the maximum
reloading yield stress is found in a tension-tension test at ξ ≈ 55◦, so-called cross test, while
the experiment shows the maximum effect in the tests at ξ= 45◦. Further, the predicted effect
of the amount of prestrain is qualitatively correct for small to medium strain changes only. For
angles ξ larger than 75◦ the computed reloading yield stress decreases for larger prestrains,
which is not consistent with the experimental data. It is believed that the main reason for these
deviations is a more complex actual dislocation evolution than the one taken into account
by the cell structure model. Nevertheless, the proposed simple ’continuum’ cell structure
model seems to capture the essential features of a strain path change effect on the reloading
yield stress. This indicates that the internal stresses and the cell geometry, which are the
main components of the model, indeed constitute the major elements triggering the strain path
change effects.

Application to aluminium

To demonstrate the capability of the cell structure model to predict strain path change effects
in other cases, two additional evaluations are performed next. Tension-tension and rolling-
tension tests have been simulated for aluminium and the results are compared to experimental
data, reported by Li and Bate [1991] and Jensen and Hansen [1990] respectively. The
material parameters for commercially pure aluminium have been identified in the same manner
as previously outlined for copper. Since experimental data on inhomogeneity evolution in
aluminium was not directly available, the parameter C has been defined to fit the reloading
yield stress in the tension-tension test with ξ = 90o , εpr e = 0.1. The same cell geometry was
used. The parameters used for both simulations are given in Table 4.3.

The tension-tension tests were simulated in the same manner as for copper, with the same
orientation of the cell structure. The strain path change angle θ, however, was fixed for this
calculations to be equal to 30o . As before, the angle value θ = 30o was chosen to provide the
best fit to the experimental data. Fig. 4.16 shows the reloading yield stress, as defined before,
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Figure 4.16 — Strain path change effect for aluminium in tension-tension tests.

for a tension-tension deformation process for aluminium. The prediction is in qualitative
agreement with the experimental data. Comparing the data in Fig. 4.15a and in Fig. 4.16b,
the effects found in copper by Schmitt et al. [1991] and in aluminium by Li and Bate [1991]
clearly differ. The difference in the macroscopic behaviour is likely due to the different values
used for f and θ, implying a possible difference between the geometries and orientations of
cells developed in the corresponding experiments of Li and Bate [1991] and Schmitt et al.
[1991]. This issue is discussed in more detail in the next section.

In the experiment of Jensen and Hansen [1990], the specimens were initially cold-rolled to
20% of deformation. Then the specimens were unloaded and tensile test specimens were cut
from the rolled sheet such that the angle ξ between the tensile axis and the rolling direction
(RD) was 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦, see Fig. 4.13b. The reloading yield stresses were
measured in the tension experiments.

Monotonic rolling is here simulated by applying the following evolution of the deformation
gradient:

F̃ = (1+ ε̇t )�x1�x1 +�x2�x2 + 1

1+ ε̇t
�x3�x3 (4.62)

Here the basis vectors �x1, �x2 and �x3 define the rolling, transverse and longitudinal directions
respectively. After εpr e = 0.2%, elastic unloading was applied to obtain a macroscopically
stress-free configuration. Next, the uniaxial tension (4.60) was simulated in the directions
0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ with respect to the rolling direction (RD). The reloading
yield stress was calculated in the same manner as before. In the simulations, the orientation
of the cell structure was fixed again along the planes with maximum shear, inclined ±45◦

to the rolling direction in the longitudinal plane and perpendicular to the rolling direction in
the rolling plane. This choice is also supported by experimental observations [Jensen and
Hansen, 1990], where traces of the cell walls were found at 45◦ with respect to the RD in the
longitudinal plane and perpendicular to RD in the rolling plane.
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Figure 4.17 — Strain path change effect for aluminium in rolling-tension tests. Reloading yield stress
as a function of the strain path change angle.

Fig. 4.17 shows the calculated results and the experimental data for the rolling-tension
experiments. The simulation results match the experimental data well. The model predicts
the increased reloading yield stress and its dependency on the amplitude of the strain path
change, i.e. on the orientation difference between the principal directions of the successive
deformation steps. The increase of the reloading yield stress with the amount of prestrain
is also predicted well for this case (Fig. 4.17) and agrees with the experimentally observed
tendencies [Jensen and Hansen, 1990; Zandrahimi et al., 1989].

4.8 Discussion

4.8.1 Monotonic deformation

Under monotonic deformation the evolution of the statistically stored dislocations (Fig. 4.12b)
tends to increase the material inhomogeneity. The local yield stress, related to the dislocation
density by (4.19), develops in the cell phase slower than in the wall phase. Fig. 4.18a shows
the evolution of the axial component of the local stress s under uniaxial tension of copper. The
calculations are performed with the material parameters identified for copper in the previous
section. Here, the 11-component of the stress, which is along the tensile axis, is the same
in all cell walls due to the symmetric orientation of the cell structure with respect to the
loading axis. The inhomogeneity of the yield stress triggers the depicted evolution of the
internal stresses, defined by plastic incompatibility. Fig. 4.18c demonstrates the evolution of
the axial component of the internal stresses β in the cell structure. During monotonic tension
this component of the internal stresses in the cell interior is negative while in the cell walls
it is positive. As the strain increases, the internal stress gradient grows, as a consequence of
the increasing inhomogeneity. The applied stress τ11 varies insignificantly between the cell
components, see Fig. 4.18b, as a natural consequence of the stress continuity condition (4.4).
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Figure 4.18 — Stress evolution in the monotonic uniaxial tension of copper.

The simulations for uniaxial tension demonstrate that a positive internal stress assists the
applied stress inside the cell walls, while a negative internal stress counteracts the applied stress
in the cell interior. Moreover, the internal stresses in the walls grow to a level approximately
as high as the applied stress, accommodating half of the local yield stress. The value of the
internal stress in the cell interior is significantly lower, less than 25% of the applied stress.
Note that this distribution of the internal stress is confirmed by experimental estimations of
internal stresses in materials with a cell structure [Straub et al., 1996; Borbely et al., 1993;
Ungar et al., 1984].

Fig. 4.19 shows the internal stress developed after 10% of deformation. During monotonic
tension the principal axis of the internal stress coincides with the principal direction of the
applied macroscopic stress. In the directions perpendicular to the tensile axis, the internal
stress and the applied stress are compressive in both phases, with values of ∼ 1 MPa and ∼ 60
MPa for the cell interior and walls, respectively. In the direction of the tensile axis, however,
the internal stress is tensile in the cell walls, ∼ 160 MPa, but compressive in the cell interior,
∼ 25 MPa. This result qualitatively agrees with the experimental study of Hecker et al. [2002],
who emphasised the tensor character of the internal stresses in nickel under tension.

It should be noted here that the mechanical response of material with a cell structure is
anisotropic and depends on the orientation of the cells with respect to loading axis. In
this paper uniaxial tension is always applied along the [111] cell direction. It is shown
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Figure 4.19 — The internal stresses in the cell structure after 10% of monotonic tension.
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further that, in the context of the present model, this cell orientation is energetically the most
favorable in tension and the cells are expected to preferably orient in this direction. In reality,
the dislocation cells can be forced to deviate from this orientation by textural effects and
anisotropy of the plastic slip. The present cell structure model does not account for these
effects, but focuses on essential ’continuum’ aspects of a cell structure only.

4.8.2 Strain path change: Reloading yield stress

This section discusses details of the mechanical behaviour of a cell material after a strain path
change. Particularly, the study focuses on the previously introduced example of a complex
deformation case for copper with two successive uniaxial tension modes. The tension-tension
tests are simulated in the same manner as outlined in Section 4.7.1. The first tension is applied
until the macroscopic strain (4.61) reaches 0.12. After elastic unloading, tension is applied
again in a different direction, see Fig. 4.13a. The copper material parameters used for the
calculations are given in Table 4.1 and 4.2. During prestraining, which is monotonic tension,
the cell structure is assumed to develop with the [111] direction along the tensile axis, see
Fig. 4.14. The strain path changes typically correspond to θ = 0, as defined above, if not
specified otherwise.

The reloading yield stress after a strain path change depends on the direction and magnitude
of the change and, therefore, material anisotropy is dealt with. The effect increases with the
amount of prestrain indicating that the associated anisotropy develops with deformation. This
type of anisotropy is closely related to the development of a dislocation cell structure under
deformation. The cell structure model, developed here, includes two major features associated
with the presence of the cells, anisotropy related to the geometry of the cells and anisotropy
due to the internal stresses. Their effects are considered in more detail below.

Geometrical anisotropy

Under monotonic deformation the dislocation structure constitutes a material heterogeneity
with a geometry that is expected to be (at least partially) energetically favourable with respect
to the current loading. A strain path change implies a change in the orientation of the cell
geometry with respect to the loading axis, which triggers a change in the mechanical response
of the material due to the anisotropy of the cells.

The composite model accounts for the anisotropy of the cells via Eqs. (4.3)–(4.5). The
compatibility of the deformation, Eq. (4.4), and traction continuity, Eq. (4.5), on cell-wall
interfaces, introduce a dependency of the stress and strain distributions on the orientation of the
cubic cells. Besides, the internal stresses are intrinsically dependent on the cell geometry. As a
result, the macroscopic response of the material is anisotropic and depends on the orientation
of the cells with respect to the loading axis.

Fig. 4.20a shows the stress-strain diagrams for uniaxial tension applied to a material with a
previously developed cell structure. The initial structure here corresponds to a cell structure
developed after 12% of tensile strain. The loading is applied along different directions with
respect to the cells, thereby reproducing a strain path change in tension-tension experiments.
This procedure, however, neglects the effect of any deformation history before the reloading,
except for the material heterogeneity. The analysed fictitious reloading thus starts from a
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(c) Yield stress, θ = 30◦.

Figure 4.20 — Material anisotropy introduced by anisotropy of cells. Uniaxial tensions applied to a
material with a developed cell structure (but without residual stresses).

completely unloaded state without residual stress or plastic inhomogeneity but with the cell
structure.

Fig. 4.20 shows that accounting for the cell geometry only (i.e. without an initial internal
stress contribution) introduces a significant anisotropy of the mechanical response. Fig. 4.20b
shows the yield stress as a function of the cell orientation (which can be considered as the
angle between the successive tensile axes). This result can be interpreted as the contribution
of the cell structure anisotropy to the strain path change effect σy/σmon. It is clear that this
contribution already provides a significant effect with qualitative tendencies as observed in the
experiments, see Fig. 4.17a.

Figs. 4.20a and 4.20b show the anisotropy effect obtained in tension-tension tests with θ =
0o ,i.e. with respect to cells, the orientation of the tensile axis changes with ξ from the [111]
cell direction towards the [11̄0] cell direction, see Fig. 4.14. variation of the strain path change
angle θ defines different orientations of the cells with respect to new loadings and leads to
different mechanical responses. Fig. 4.20c, for instance, shows the same effect but with θ =
30◦, i.e with respect to the cells, the tensile axis orientation changes with ξ from the [111] cell
direction towards the [111̄] cell direction, see Fig. 4.14.

Residual stress

During monotonic deformation, an internal stress appears due to the plastic deformation of
inhomogeneous material with a dislocation structure. Immediately after a strain path change
the internal stresses remain in the material, unchanged by the elastic unloading, preserving
significant residual stresses. Fig. 4.21 shows the components of the residual internal stresses
with respect to the new loading axis. The tension-tension experiments are again used. In the
figure, ξ= 0◦ corresponds to reloading in the same direction, during which the residual stress
components are equal to the components of the internal stresses developed upon prestraining.
If reloading is performed in a direction perpendicular (ξ = 90◦) to the prestrain direction, the
11 and the 22 components of the residual stress are interchanged compared to the ξ= 0◦ case.

In the general case of complex deformation, the nonuniform distribution of the applied stresses
provides another source of residual stresses that retain in the material after elastic unloading.
In tension-tension tests, however, the applied stresses develop almost uniformly during the first
loading test, Fig. 4.18c, and create negligible residual stresses after unloading. The internal
stresses, therefore, are the main source of the residual stresses in the tension-tension tests.
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Figure 4.21 — Components of the residual internal stresses at the beginning of the second tensile step
versus the strain path change angle ξ (θ = 0◦).

To study the effect of the internal stress on the reloading behaviour, uniaxial tension is
simulated first along the [111] cell direction and then succeeded by tension in the [111̄] cell
direction, i.e. {ξ ∼ 70o ,θ = 30o}. Tension along the [111] cell direction and tension along
the [111̄] cell direction are equivalent with respect to the cell structure. Consequently, the
geometrical anisotropy of the cell structure does not affect the reloading behaviour, and the
strain path change corresponds to ξ ∼ 70o in Fig. 4.20c. Thus, the effect of the strain path
change observed in this test is caused by the residual stress only.

Fig. 4.22 shows the stress evolution during the tension-tension and monotonic tension tests.
Only the components in the tensile direction are depicted here for clarity. During monotonic
tension, a high tensile internal stress assists the applied stress in the walls, while the
compressive internal stress resists the applied stress in the cells. After the strain path change,
the prestrained material reflects the presence of the previously developed residual stress: in the
direction of the new tensile axis it is compressive in the walls and tensile in the cell interiors,
see Fig. 4.21a for ξ∼ 70◦. Consequently, the applied stress in the walls is resisted by the
residual internal stress, Fig. 4.22d, and should grow much higher to create the same local
yield stress, in comparison with monotonic deformation, Fig. 4.22c. Opposite in cells, the
residual stress assists the applied stress, thus, a smaller applied stress is needed to start plastic
deformation. Both, the increase of the applied stress in the walls and the decrease of the applied
stress in the cells contribute to the macroscopic response. The effect in the cells is, however,
smaller. As a result the macroscopic stress rises well above the stress corresponding to the
same total deformation under monotonic loading (Fig. 4.22a). Thus an increased reloading
yield stress is observed after the strain path change.

The analysis above shows that the presence of residual stresses in prestrained material changes
the reloading yield stress compared to the stress reached in monotonic deformation at the same
total strain. The effect depends on the difference between the residual stresses and the internal
stresses corresponding to the current deformation4. In a tension-tension test the deviation
of the residual stress from the monotonic internal stress increases with the angle between
the successive tensile axes (see Fig. 4.21, at ξ = 0, where the residual stress is equal to the
monotonic internal stress). Moreover, the residual stress in the walls has a major effect, since
it provides the increased reloading yield stress. As the result of the residual internal stresses,

4In the general case of a strain path change, the residual stresses should be rather compared to the internal
stresses corresponding to the new loading, i.e. to the current relation between the cell orientation and loading.
Simulations showed that, for uniaxial tension, the dependency of the internal stresses on the cell orientation is
not significant and can be omitted in this qualitative discussion.
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Figure 4.22 — Stress evolution after a strain path change with {ξ ∼ 70o ,θ = 30o}, εpr e = 0.12. With
respect to the cell structure the tensile axis changes from the [111] orientation to the [111̄] orientation.
Monotonic response for uniaxial tension (along the [111]-cell direction) is also shown.

the macroscopic reloading yield stress is therefore expected to increase with the angle of the
strain path change.

Fig. 4.23 shows the reloading yield stress in different tension-tension simulations. For tension-
tension experiments in general, the effect of the residual stress is inevitably combined with the
effect of geometrical anisotropy (Fig. 4.20). The result in Fig. 4.23 is therefore a collective
effect of the anisotropy due to the cell geometry and due to the residual stresses. It seems
that both effects are superimposed on each other. In Fig. 4.23a, θ = 0o , the effect of the cell
geometry appears to define the tendency: an increase of the reloading yield stress until the
angle ξ equals approximately 55◦, representing a cross test effect, and a decrease of the effect
for higher angles. The effect of the residual internal stresses provides an additional increase
of the reloading yield stress, almost linearly growing as a function of the angle ξ (the cross
test is not specially distinguished by this mechanism). Fig. 4.23b shows the reloading yield
stress after a strain path change in another direction with θ = 30o . This result differs from
the response in Fig. 4.23a due to a different effect of the geometrical anisotropy contribution,
while the effect of the residual stress is almost the same. Remarkably, for the tension-tension
tests considered here, the residual stresses are almost invariant with respect to θ.



Modelling of the internal stresses in dislocation cell structures 79

0 20 40 60 80
0.95

1

1.05

1.1

1.15

1.2

1.25
�

y / �
m

on

�

(a) θ = 0◦.

0 20 40 60 80
0.95

1

1.05

1.1

1.15

1.2

1.25

ξ

σy  / 
σ m

on

(b) θ = 30◦.

Figure 4.23 — Reloading yield stress as a function of the strain path change. Total effect of the
residual stresses and the geometrical anisotropy (solid lines) and the contribution of the geometrical
anisotropy (dashed lines).

Effect of the wall fraction f

As emphasized above, the reloading yield stress after a strain path change is defined by
the contributions of the geometrical anisotropy and the residual stresses. As a result of the
geometrical anisotropy, the reloading yield stress rises with the angle between the subsequent
tensile axes up to the angle reflecting a cross test, after which it shows a decrease for higher
angles (Fig. 4.23a). The effect of the residual stress was found to grow approximately linear
with the angle. In the case shown in Fig. 4.23a the contributions of both effects are of
comparable magnitude and the combined effect shows a complex dependency on the angle,
with a maximum around the angle representing the cross test. For the strain path change
shown in Fig. 4.23b the contribution of the geometric anisotropy is small and the total effect
demonstrates the typical influence of the internal stress, i.e. a linear increase with the angle.

The same qualitative change of the effect occurs if the volume fraction of the walls is reduced.
In a cell structure with a small wall volume fraction the effect of the geometrical anisotropy is
small. On the other hand, deformation of cell structures with thin walls causes the appearance
of internal stresses in walls βwi that are much higher than in cell structures with thicker
walls. Thus, considering the strain path change effect, in a cell structure with thin walls the
contribution of the cell anisotropy is small and the overall response is dominated by the effect
of residual stresses. The reloading yield stress in such materials grows linearly with the angle
of the strain path change, independently of the orientation of the strain path change.

The influence of the cell geometry on the strain path change effect has already been observed in
the previous section, where the same type of tension-tension tests were simulated for copper
and for aluminium. Different values for the volume fraction of the walls f and for the cell
orientation θ were, however, used. Simulations with copper are strongly affected by the
geometrical anisotropy and therefore demonstrate a maximum reloading yield stress at an
angle corresponding to the cross test. In the simulations with aluminium the effect of the
residual stresses dominates and a linear growth of the reloading yield stress with the angle is
observed.
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Recapitulating, the analysis of the reloading yield stress based on the cell structure model
suggests that the material anisotropy due to the cell geometry and the internal stresses both
determine the reloading macroscopic yield stress. Their relative contributions, and therefore
the resulting overall effects, depend on the cell geometry and the cell orientation. This
theoretical result can be used to explain the different types of reloading behaviour found in the
experimental literature. In the experiments of Schmitt et al. [1991], the reloading yield stress
has a maximum in a test close to a cross test. Li and Bate [1991] performed two sequences of
tension-tension experiments with two different initial textures. It was found that one sequence
showed a maximum reloading yield stress close to a cross test, while in the other sequence
the reloading yield stress increased with the angle, beyond 55o corresponding to a cross test.
This result was explained in Li and Bate [1991] by the difference in the initial texture and it
was concluded that the texture is responsible for the strain path change effect, rather than a
dislocation structure. The analysis based on the present cell structure model shows that the
difference in the experimental results might also be due to a difference in the cell geometry,
enforced by the initial texture. It was shown that a difference in the wall thickness can also
lead to a change in the macroscopic strain path change effect.

4.8.3 Strain path change: Transient hardening

Another phenomenon observed after strain path changes is transient hardening. Upon
deformation beyond the reloading yield stress, the macroscopic response evolves towards the
value of the monotonic loading case. After an increased reloading yield stress, the macroscopic
hardening rate drops and the macroscopic stress slowly decreases to the level corresponding
to the nominal response under the current deformation. This type of transient hardening is
observed e.g. in Fig. 4.22. The increased reloading yield stress is caused here by negative
residual stresses in the cell walls. As soon as plastic deformation begins after a strain path
change, the plastic incompatibility is redistributed and the internal stress is adjusted to the
new loading direction (Fig. 4.22c). The internal stress in the walls grows towards the value
typical for the current deformation under monotonic loading. This evolution of the internal
stress causes the decrease of the applied stress in the walls. As a result, the macroscopic
stress approaches the monotonic stress. The predicted transient hardening lasts up to 10%
of deformation. This scenario of hardening evolution is in agreement with experimental
observations. Thus, the cell structure model predicts the transient hardening as a result of
an adjustment of the internal stresses to the new deformation mode.

In the general case of a complex deformation, the geometrical anisotropy also influences the
macroscopic hardening process. After a strain path change the internal stress recovers to the
level corresponding to the current relation between the new loading and cell orientation. Thus,
the macroscopic stress evolves towards the stress corresponding to monotonic deformation
with the current orientation of the cell structure, i.e. not the stress corresponding to monotonic
loading according to the prestrain. Fig. 4.24 shows the evolution of the macroscopic stress in a
cross test (ξ≈ 55◦). The cross test involves loading along the [111] cell direction followed by
loading along the [221̄] direction. Two stress-strain diagrams for monotonic tension along
the [111] and the [221̄] cell directions are shown as well. Since in this paper the [111]
cell orientation is assumed to correspond to monotonic tension, the first curve represents
monotonic tension, while the second curve is considered as fictitious. It can be seen that
after the strain path change the stress approaches the stress corresponding to the [221̄] cell
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Figure 4.24 — Cross test {ξ ∼ 55◦,θ = 30◦}. Responses corresponding to monotonic deformations
with the prestrain mode (along the [111]-cell direction) and the reloading mode (along the [221̄]-cell
direction) are also given.

orientation, which is higher than the stress in the monotonic case. This result deviates from
experimental observations reporting that the macroscopic stress recovers to the level of the
monotonic test. The discrepancy is due to the fixed orientation of the cell structure assumed in
the simplified model. It is also confirmed by experiments that after a strain path change the cell
structure reorients itself accommodating the new loading. To predict the transient hardening
correctly the extended model should account for the reorientation of the dislocation structure.
This is a subject for future research.

4.8.4 Reversed loading

Reversed loading is a strain path change reflecting the well-known Bauschinger effect, i.e. a
decreased reloading yield stress followed by a decreased hardening and hardening recovery
[Christodoulou et al., 1986]. To reproduce the loading reversal, compression deformation was
applied as a first loading step succeeded by tension step. Fig. 4.25 shows the macroscopic
response predicted by the cell structure model for the compression-tension test. Fig. 4.26
gives details on the internal and applied stress evolutions.

During monotonic tension a cell structure develops and internal stresses are induced in the
material. The 11 component is positive in the walls and negative in the cells, see Fig. 4.26b.
After the loading reversal, the internal stresses remain in the material as residual stresses.
Now, the tensile residual stresses in the walls counteract the compressive applied stress while
the compressive residual stresses in the cell interiors assist the compressive applied stress. The
latter contribution of the residual stress in the cell interiors is often held responsible for the
Bauschinger effect’s earlier yield. It can be seen in Fig. 4.26 that the plastic deformation in the
cells indeed starts at an applied stress lower than the corresponding stress in forward tension.
However, the residual stress in the walls resist the applied compression and cause an increase
of the applied stress level in the walls. On average, the contribution of the increased applied
stress in walls neutralises the contribution of the decreased applied stress in cells. Fig. 4.25b
shows a resulting macroscopic stress that is initially decreased by the effect of the residual
stress in the cells but grows quickly again thereafter due to the effect of the residual stress
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Figure 4.25 — Compression-tension test.

in the walls. As a result, the more prominent contribution of the tensile residual stress in
the walls macroscopically causes an effect opposite to the Bauschinger effect. Summarising,
internal stresses developed in the cell structure under forward deformation do not produce
a macroscopic Bauschinger effect. However, they do cause earlier plastic deformation in
the cell interiors which may trigger other mechanisms reducing the macroscopic stress. For
example, it has been shown in Viatkina et al. [2003] (Chapter 3) that cell disruption reduces the
macroscopic stress. The residual stresses after loading reversal provide an early start of plastic
deformation in the cells, initiating cell disruption and leading to a macroscopic Bauschinger
effect. Redistribution of dislocations in the structure initiated by cell slip has a similar effect.
This mechanism is dealt with in Viatkina et al. [2005c] (Chapter 5).
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Figure 4.26 — Stress evolution during compression-tension test and monotonic tension test.
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Figure 4.27 — Results of the simulations with the composite model, omitting internal stresses.

4.8.5 Composite model

This paragraph of the discussion deals with the performance of the composite model in which
the heterogeneous nature is the only contribution, i.e. the cell structure model is considered
without the internal stress field due to incompatibility. The implementation of the cell structure
model is adapted here by removing kinematic hardening from the yield function evolution
(4.17). In this version of the model the inhomogeneous yield stress is accommodated by the
applied stress only (s = τ). This leads to a higher inhomogeneity of the locally applied stress
than in the model including the back stresses, viz. Figs. 4.18 and 4.27a, provided by high
elastic rotations.

The model accounts for the geometrical anisotropy in the same manner as discussed above
and also predicts residual stresses after elastic unloading. The residual stresses here are a
consequence of the inhomogeneity of the applied stress in the material (there are no internal
stresses in these calculations). These residual stresses are, however, small and do not have a
significant influence on further reloading. Simulations proved that the strain path change effect
on the reloading yield stress predicted by the composite model is reduced to the influence of
geometrical anisotropy, see Fig. 4.20. Upon stress reversal, the composite model also predicts
early plastic deformation in the cells due to the residual stresses, Fig. 4.27, but the effect is
also small and the predicted backward stress quickly approaches the forward stress.

4.8.6 Internally stored energy as a function of cell geometry

In the literature, it is often stated that a microstructure in a material is essentially formed
in order to relax the free energy, even though the kinetic path towards such a low energy
microstructure may be more important than the minimum itself. It is often claimed that
dislocation cell structures represent such a minimum in the free energy [Kuhlmann-Wilsdorf,
1996]. Although the kinetics of the underlying deformation processes may result in serious
deviations from this assumption, it is accepted that the thermodynamics tries to push a
microstructure towards accessible minima.

This tendency is evidently present in the composite model formulated for a heterogeneous
material, even if the internal stresses are not taken into account. In this case, the solution
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of the equilibrium problem for a uniform material demonstrates a higher stored energy than
the solution for a heterogeneous material, consisting of soft and hard phases. Thus, the
formation of the cell structure is energetically favourable and might be, indeed, pursued by
the material under deformation. However, this consideration fails to predict the morphology
of the energetically favourable microstructure, i.e. the finite morphology for which such a
minimum of the stored energy exists, at a given level of applied strain and keeping other
material parameters fixed.

Fig. 4.28 shows the elastic energy as a function of the volume fraction of the walls and the
ratio of the dislocation densities in walls and cells after 10% tension. The elastic energy is
defined as follows:

E = 1

2

∫
V

(E e : C : E e ) dV , E e = 1

2

(
[F e ]T ·F e − I

)
(4.63)

The material parameters for copper were used here according to Table 4.1 and 4.2. Here,
only two parameters of the cell morphology are investigated, the wall thickness ratio f = w

D
and the dislocation inhomogeneity Kρ = ρw

ρc
. The rest of the parameters, i.e. I , R, D and cell

orientation, are fixed as in the previous sections. The use of the evolution equations (4.24) for
the dislocation density guarantees the same evolution of the total density for any set of { f ,Kρ}
variables. The results in Fig. 4.28a show that minimum values of the true energy are provided
by a microstructure with infinitely thin and infinitely dense walls. Experimental observations,
however, report a finite sized microstructure, developed in materials under deformation.

Recent discussions [Geers et al., 2005] in the mechanics community on the prediction of
the microstructure evolution in metals, emphasise the role of the energy associated with
interfaces, which are expected to bring a length scale into the picture. In the cell structure
model proposed here, interfaces are introduced to define the internal stresses. The internal
stresses are determined as a function of the cell geometry and have a significant influence on
the macroscopic behaviour of the material, as shown in the previous sections.
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(a) Composite model without internal stresses.
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(b) Cell structure model with internal stresses.

Figure 4.28 — Effect of the cell geometry on the stored elastic energy (E) after 10% of tension. The
energy is scaled with the energy obtained for the uniform material.

Fig. 4.28b shows the elastic energy obtained with the cell structure model including the internal
stresses. It can be seen that the lowest energy location is shifted towards finite values of the
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(a) Uniaxial tension.
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Figure 4.29 — Orientation of the cell structure minimising the elastic energy. The figure shows the
traces of the cell walls on the prestrained specimens.

wall thickness ratio f and the dislocation density ratio Kρ. Though a clear unique minimum of
the energy does not exist, the results demonstrate the tendency of the material to develop
a finite sized microstructure. The calculations illustrate that a finite sized microstructure
is energetically favourable and that a proper incorporation of the internal stresses in the
microstructure is a key factor in modelling the microstructural evolution.

Considerations based on the stored elastic energy might also help to reveal the role of
thermodynamics indicating the orientation of the cell structure developing under deformation.
To this purpose, the elastic energy has been calculated for uniaxial tension tests with different
orientations of the cell structure with respect to the loading axis. The same geometry of cells
and the material parameters were used as in the previous sections. The orientation of the cells
was defined with respect to the loading axis by three Euler angles. The orientation {20;50;60}
was found to provide a minimum energy. The cells with this orientation with respect to the
macroscopic axis are shown in Fig. 4.29a. The found orientation {20;50;60} represents cells
with the wall planes close to the macroscopic planes of maximum shear, that are planes with a
normal inclined 45◦ to the tensile axis.

Similar calculations were performed for a rolling test and the orientation {70;40;70} was found
to provide deformation with a minimum elastic energy (Fig. 4.29b). In the case of rolling the
planes of maximum shear are inclined ±45◦ to the rolling direction in the longitudinal plane
and are perpendicular to the rolling direction in the rolling plane. The found cell orientation
of minimum elastic energy aligns with these macroscopic planes. These results support the
statement that the cell orientation develops in relation to the loading axis, along planes of
maximum shear.

Considering the above, the assumption in this paper that the cell structure is oriented aligned
with the planes of maximum shear is justified.

4.9 Conclusions

A continuum model of an FCC metal with a dislocation cell structure has been developed
to deal with strain path dependency effects. The approach incorporates the morphology and
orientational anisotropy of the cell structure, along with the internal stresses developed within
the cell structure under deformation. Essential features of the cell structure model can be
summarised as follows:

• Mean field approximation:
The mean response of a polycrystal material with a nonuniform dislocation structure
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is described by means of the mechanical behaviour of a model material containing
uniform dislocation cells. The geometry and orientation of the cells represent the
average morphology of the real cell structure in a polycrystal.

• Composite model:
A material with a dislocation cell structure is idealised as a two-phase periodic composite
consisting of cell walls and cell interiors, differing by their local dislocation densities.
Traction continuity and deformation compatibility are enforced at the interfaces.

• Continuum elastoplasticity:
Consistent with the mean field approximation, the local material behaviour in the
cell and wall components is assumed to be piecewise uniform and is modelled
by J2 elastoplasticity, including combined isotropic and kinematic hardening. The
isotropic hardening is related to the local dislocation density of the statistically stored
dislocations, evolving according to the adopted phenomenological equations. The
kinematic hardening is associated with the development of internal stresses.

• Internal stresses:
The internal stresses are derived as a natural result from the plastic deformation
incompatibility between the cell interiors and the cell walls. They represent the long-
range effect emerging from the geometrically necessary dislocations that appear at the
interfaces to accommodate the jumps in the plastic deformation. The internal stresses
have been shown to be a function of the plastic deformation incompatibility and the cell
geometry.

The model has been verified by comparing predicted and experimentally determined reloading
yield stresses after various strain path changes. The model correctly captures the essential
features of the strain path change effects for moderate strain path changes, i.e. the anisotropy
of the effect and the dependency on the amount of prestrain. Since cell dissolution is not
yet incorporated, the model is not able to predict a reduced reloading yield stress after a load
reversal.

The deformation behaviour of copper with a developing dislocation cell structure has been
analysed using the cell structure model. The following conclusions can be drawn:

• During monotonic loading the internal stresses are developing up to the level of the
applied stresses.

• After a strain path change, the value of the reloading yield stress is determined by the
geometrical anisotropy due to the cell structure morphology and by the internal stresses
developed during prestraining.

• The transient hardening behaviour after a strain path change is related to the adaptation
of the internal stresses to the new loading. Reorientation of the cells after a strain path
change was found to have a substantial contribution and should be introduced in the
model to improve the predictions.

• The exclusive contribution of the internal stresses, which develop in a metal with a cell
structure, does not explain the experimentally found reduced reloading yield stress after
load reversal associated with the Bauschinger effect.
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The developed cell structure model has been proven to be a powerful tool for the theoretical
study of the internal stresses and their influence on the macroscopic behaviour. The model
predicts strain path change effects and offers a computationally efficient method which lends
itself for use in macroscopic engineering computations.
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Modelling the dislocation structure
evolution upon stress reversal

Reproduced from: Viatkina, E.M., Brekelmans, W.A.M., and Geers, M.G.D., (submitted). Modelling the

dislocation structure evolution upon stress reversal.
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5.1 Introduction

The effect of a strain path change during the loading of a material manifests itself through
an altered reloading yield stress and transient hardening compared to the response during a
monotonic deformation path of the same material [Vieira et al., 1990, 2000; Zandrahimi et al.,
1989; Bate and Wilson, 1986; Pedersen et al., 1981]. In particular, moderate changes of the
deformation mode give rise to an increased reloading yield stress followed by relatively low
hardening. On the contrary, deformation histories that include a stress reversal demonstrate
a pronounced so-called Bauschinger effect. In comparison with continuous forward loading,
reversed reloading exhibits a decreased reloading yield stress followed by a short stage of
increased hardening behaviour, after which the hardening rate drops, to finally show recovery
to the same level as observed for the monotonic loading case.

The macroscopic effect of a strain path change is commonly associated with the occurrence of
a dislocation structure in the material and its adaptation to the new loading. The morphology
of the dislocation structure developed during a particular loading path is clearly depending
on the loading characteristics. The dislocation structure is formed to accommodate the
current deformation in a preferable way. After a strain path change, the previously formed
dislocation structure becomes ’unstable’ under the new loading since its morphology is not
favourable anymore and, moreover, it degenerates by newly activated plastic slip. The
resistance and adaptation of the dislocation structure to the loading in a new direction is
typically accompanied by an increased reloading yield stress and a relatively low transient
hardening. The Bauschinger effect is usually related to the degradation and reappearance of
the dislocation structure under stress reversal.

In a previous paper [Viatkina et al., 2005b] a cell structure model was developed to predict
the effect of a dislocation cell structure on the macroscopic response of a material under
complex loading. The model takes into account the intrinsic material heterogeneity due
to the dislocation structure, the effects of the cell geometry and the presence of internal
stresses. The simulations based on the developed model demonstrated its capability to
predict the experimentally observed material response after moderate strain path changes.
The Bauschinger effect, however, was not predicted correctly. After load reversal, the stress
applied to the material retained the same orientation with respect to the cell structure, although
opposite in sign. Hence, the material anisotropy will not trigger a Bauschinger-like effect
on the mechanical behaviour. The orientation of the internal stresses developed in the cell
interiors, on the contrary, indicated an expected significant contribution to the Bauschinger
effect. In spite of this expectation, it was shown that the internal stresses in the cell interior,
which assist the applied reloading, do not decrease the macroscopical yield stress during
reversed loading. Initially, these internal stresses cause some plastic deformation in the cell
interior during the early reloading stage. However, this effect is rapidly compensated by the
high internal stresses in the wall component, which resist the reloading, triggering an opposite
influence. Based on this analysis, it was concluded that the internal stresses originating
from the dislocation cell structure in a metal cannot provide the experimentally observed
macroscopical Bauschinger effect. Yet, the occurrence of early plastic slip in the cell interior
might trigger other mechanisms reducing the macroscopic stress, which are the subject of the
present paper.

Experimental observations of the microstructure under reversed loading reveal a dissolution
of the cells. The change of the cell morphology and the associated dislocation redistribution
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towards a more homogeneous configuration, denoted as ’cell dissolution’, are promoted by
the plastic deformation and reduce the macroscopic stress. It has been shown in Viatkina
et al. [2003] that under stress reversal the increase of the cell size, which is a characteristic
feature of cell dissolution, in combination with the influence of the residual stresses, provides
a decreased macroscopic reloading yield stress. In the present paper, attention is focused on
another mechanism affecting cell dissolution; dislocation redistribution. Under continuous
forward loading the dislocations tend to form a cell structure. After stress reversal, the driving
force behind the cell formation is reversed and dislocations start to redistribute towards a more
homogeneous structure. Redistribution of dislocations is accompanied by a redistribution
of the local yield stresses and, consequently, the macroscopic response of the material is
influenced accordingly.

The objective of this paper is to enhance the cell structure model, developed in Viatkina
et al. [2005b], with an improved description of the dislocation density evolution. The main
purpose of this enhancement is to enable a correct prediction of strain path change effects
under complete or partial stress reversal. Therefore, the attention is particularly concentrated
on the dislocation mechanisms accompanying a stress reversal.

A dislocation dynamics approach concentrates on the analysis of the dislocation movement and
interactions in a deforming material. There have been several attempts in this area to describe
the dislocation redistribution during deformation towards the formation of cells [Argaman
et al., 2001; Neumann, 1985; Groma and Balogh, 1999]. The associated models, however, are
still unsuccessful in describing the complex evolution of a cell structure. Furthermore, discrete
dislocation dynamics is not applicable within a continuum model as the presently developed
cell structure model. In the context of a continuum model, the dislocation redistribution is
typically represented by the evolution of dislocation densities [Bergstrom, 1983]. The classical
cell structure model [Mughrabi, 1987] has been enhanced by evolution equations for the
dislocation density by a number of authors [Estrin et al., 1998; Argon and Haasen, 1993;
Goerdeler and Gottstein, 2001]. Dislocation densities in the cell interiors and in the walls are
introduced in these models and corresponding evolution equations are suggested to describe
the development of the cell structure. However, these formulations do not account for a change
in the dislocation evolution after a strain path change.

Recently, Peeters [2002] proposed a composite model with a dislocation density evolution
that accounts for the deformation history. The model is developed to predict the mechanical
response of BCC metals with a cell-block structure. Two mechanisms activated by a strain path
change are introduced in the model: 1) reverse flux of interface dislocations causing additional
annihilation and 2) activation of new slip systems causing destruction of a previously formed
structure.

In this paper, the dislocation evolution under complex deformation is considered for FCC
metals containing a cell structure. Dislocation mechanisms for cell formation and dissolution
are introduced and the corresponding evolution equations are proposed.

5.1.1 Experimental observations of the dislocation structure

Extensive information on the morphology of cell structures, their formation and evolution
under various loading conditions can be found in the literature, e.g. Young et al. [1986];
Mughrabi et al. [1986]; Barker et al. [1989]; Bay et al. [1992]; Hansen et al. [2001]; Huang and
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Hansen [1997]; Hansen and Huang [1997]; Winther et al. [2000]; Liu et al. [1998]; Zimmer
et al. [1983]; Ungar et al. [1984]; Park and Parker [1989]; Liu and Hansen [1995]; Hughes et al.
[1997]. Much of the present understanding of dislocation processes resulting from a strain
path change has been achieved from observations made in fully reversed plastic deformation
[Christodoulou et al., 1986; Hasegawa et al., 1975; Rauch et al., 2002; Hasegawa et al., 1986;
Marukawa and Sanpei, 1971; Pedersen et al., 1981]. The evolution of the cell structure after a
stress reversal received most attention due to its direct relation to the Bauschinger effect. The
essential features to be incorporated in the present model are shortly summarised below.

In an undeformed material, the dislocation distribution is close to statistically homogeneous.
However, at the beginning of a deformation process, dislocations cluster together to form
tangles, which constitute regions with relatively increased dislocation densities. As the strain
increases, more dislocations participate in the evolution of the structure and the tangles link
up to form dislocation boundaries, which envelop regions relatively free of dislocations. The
structure created in this manner can be observed as a network of volume elements within which
the dislocation density is well below average, mutually separated through boundaries in which
dislocations are concentrated. This structure is known as a cell structure and the dislocation
boundaries forming this structure are the so-called cell walls. As the deformation proceeds,
the dislocation density inside the cell walls increases which can be observed as sharpening of
the walls. The dislocation density in the walls can rise more than a factor 20 above the density
found in the cell interiors. The dislocation density in cell interiors also increases but much
slower.

The morphology of the dislocation structure developed during a particular loading path is
clearly depending on the loading characteristics. The dislocation structure is formed to
accommodate the current deformation in a preferable way. After a strain path change, the
previously formed dislocation structure becomes ’unstable’. The applied stress, which forced
the dislocations to form the present cell structure, changes. If the change has a reverse
component, i.e. such that the stress is fully or partially reversed, a reverse dislocation glide
initiates, accompanied by a remobilisation of dislocations that were previously immobilised
in locks, dipoles, pile-ups and on cell-wall interfaces [Hasegawa et al., 1975; Rauch et al.,
2002]. A strain change might also trigger dislocation glide in new crystallographic planes
[Schmitt et al., 1991]. The interaction of newly activated dislocations with the already present
dislocation structure (formed by prestrain) leads to the destruction of the last one. Some
secondary dislocation mechanisms, like dislocations cutting through the cell structure will
be not considered here.

After a load reversal, experimental observations reveal a dissolution of the cell structure, either
partial or complete. The dissolution appears as a redistribution of dislocations towards a more
homogeneous structure. The dislocation density drops in the walls and rises in the cells,
resulting in smaller gradients. The total dislocation density is often observed to decrease as
well. As the deformation in the new direction proceeds, the cell structure gradually reappears.
The dislocation density evolves to accommodate the variations that are typical for the current
plastic deformation. The degree of the dissolution is found to be related to the amount of
prestrain applied before the change. A higher prestrain is associated with a higher degree of
dissolution and consequently a postponed recovery. The dissolution and reappearance of a cell
structure are typically related to a drop in the macroscopic hardening and a hardening recovery,
respectively.

The morphology of the cell structure also changes after a load reversal. A smaller number
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of walls are found, which can be considered as an increase of the mean cell size. The
morphological evolution after a strain path change has been studied in Viatkina et al. [2003]
and will be not investigated further. Here, the cell structure is assumed to have a constant
geometry.

5.2 Cell structure model

The deformation behaviour of FCC metals with a dislocation cell structure is modelled here on
the basis of the cell structure model introduced in Viatkina et al. [2005b]. The main features
of the model are shortly summarised in this section.

The material with the cell structure is idealised by a composite consisting of four uniform
components: the cell interiors and three mutually perpendicular cell walls. The cell
wall components represent the phases with a high dislocation density and the cell interior
component represents the areas enveloped by the dislocation walls with a low dislocation
density. The cell structure is modelled as a 3D periodic configuration of cuboid cells formed
by three mutually perpendicular sets of planar cell walls.

The local mechanical response of the composite is characterised by the Cauchy stress tensor
σ and the deformation gradient tensor F . The average mechanical response {F̃ ,σ̃} of the
composite is calculated from the relative contributions of these local responses of the walls,
{F wi ,σwi }, i = 1,2,3, and the cell interiors, {F c ,σc }:

σ̃= fw1σw1 + fw2σw2 + fw3σw3 + (1− fw1 − fw2 − fw3)σc (5.1)

F̃ = fw1F w1 + fw2F w2 + fw3F w3 + (1− fw1 − fw2 − fw3)F c (5.2)

where fw1, fw2 and fw3 are the volume fractions of the corresponding wall components.
Additionally, traction continuity and compatibility of deformations are enforced on the
interfaces between the cell interiors and the walls:

(σc −σwi ) ·�nt
i =�0 (5.3)

(F c −F wi ) · (I −�n0
i �n

0
i ) = 0 with i = 1,2,3 (5.4)

where �n1, �n2 and �n3 are the normal vectors to the cell-wall interfaces, and the superscripts t
and 0 indicate the vectors in their initial and current configuration, respectively.

The local material behaviour in the cell and wall components is assumed to be homogeneous
and modelled by J2 elastoplasticity with the following yield function:

Ψi = s̄i −αMGb
�
ρi with s̄i =

√
3

2
sd

i : sd
i and si =τi +βi (5.5)

where the subscript i stands for c, w1, w2 and w3. G is the shear modulus, b is the magnitude
of the Burgers vector, α is a material parameter and M is the parameter related to mean
orientation of crystal lattice in the polycrystal. The isotropic hardening is defined above by
the local dislocation density ρi and the kinematic hardening is due to the internal stress βi .
The yield function is formulated in the stress-free intermediate configuration, so that τi is the
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second Piola-Kirchhoff stress measure defined with respect to this configuration and related to
the applied stress σi in the current configuration.

The heterogeneity of a material with a cell structure causes, during external loading, a
nonuniform field of plastic deformation. To accommodate the plastic deformation jumps
across the interface between the hard and soft phases, polarised layers of geometrically
necessary dislocations (GND) will develop at the interface between cell walls and cell interiors.
It is known that the resulting dislocation network may substantially affect the mechanical
behaviour by inducing internal stresses. In the cell structure model, the statistically stored
dislocations in the wall and cell interior phases are randomly distributed and therefore the
resulting stress fields will compensate each other, excluding their contribution to long-range
effects. On the contrary, the geometrically necessary dislocations are polarised in the interface
layers and, therefore, constitute a source of non-vanishing internal stresses in the material.
The internal stresses created by geometrically necessary dislocations on the interfaces were
determined in Viatkina et al. [2005b] as a function of the plastic incompatibility and the
composite geometry.

5.3 Dislocation density evolution

Local isotropic hardening was previously introduced in the cell structure model by the local
dislocation density ρ. The relation (5.5) has been motivated through several experimental
studies, e.g. Ungar et al. [1984]. It is widely used in continuum theories of plasticity and
has been proven to yield a good agreement with experimental data. The main challenge
in the present context is to derive a relationship between the evolution of ρ and the plastic
strain. This is not a trivial task since upon deformation the dislocation density evolves
rapidly and inhomogeneously. Furthermore, the constitutive laws of dislocation mechanics
are complicated and defined on a scale that is far below the conventional continuum
scale. To be used in continuum theories, the main features of dislocation evolution are
commonly generalised in a density context [Bergstrom, 1983]. This implies that the equations
are formulated to describe the average behaviour of a large number of dislocations in a
’continuum’ material point.

In this section, evolution equations are proposed for the dislocation density in FCC metals with
a cell structure. The equations are formulated to describe the formation of the cell structure
under monotonic loading as well as dissolution of the structure after a strain path change. First,
the general relations for the dislocation density evolution are summarised. Next, the evolution
equations are adapted for the specific case of an inhomogeneous material with a cell structure.

5.3.1 Dislocation density fundamentals

This subsection summarises the general evolution equations for the dislocation density in
metals under deformation. The relations below are widely used in mesoscopic continuum
models for metals. Different kinds of adaptations can be found e.g. for continuum models
[Bergstrom, 1983], cell structure models [Goerdeler and Gottstein, 2001], crystal plasticity
models [Teodosiu et al., 1993].

The total dislocation density ρ is commonly assumed to consist of two parts: the density of
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mobile dislocations ρm and the density of immobile dislocations ρi m ,

ρ = ρm +ρi m (5.6)

Under plastic straining dislocation sources in the material produce mobile dislocations that
accommodate the imposed plastic strain rate through their motion. The mobile dislocations
interact with immobile dislocations or other obstacles during glide and will eventually be
trapped as immobile dislocations or annihilated by reacting with dislocations of an opposite
sign. Mobile dislocations are considered to carry the plastic strain evolution through their
motion. In contrast, immobile dislocations are pinned in the material and obstruct plastic slip.
Kinetic equations of the type ρ̇ = ρ̇+ − ρ̇−, with a dislocation source and dislocation drain
contributions, will be set up for the net evolution of the mobile and the immobile dislocation
densities, constituting a convenient representation of the underlying dislocation processes.

Mobile dislocations are created in the material by e.g. operating Frank-Read sources, with a
rate ρ̇cr , and by remobilisation of immobile dislocations at a rate ρ̇i m→m . The decrease of the
number of mobile dislocations is caused by dislocation interactions and takes place through
immobilisation ρ̇m→i m or annihilation ρ̇ann

m . Thus, the net evolution of mobile dislocations
can be written as:

ρ̇m = ρ̇cr + ρ̇i m→m + ρ̇ f lux+− ρ̇ f lux−− ρ̇m→i m − ρ̇ann
m (5.7)

where ρ̇ f lux+ and ρ̇ f lux− are respectively the accumulation and loss associated with the
dislocation flux that provides redistribution of dislocations in a nonuniform configuration.
Obviously, mobile dislocations that become immobilised trigger an increase of the density
of immobile dislocations. Vice versa, the remobilisation of immobile dislocations leads to a
loss of immobile dislocations and an increase of mobile dislocations. Immobile dislocations
can also annihilate by interaction with mobile dislocations. This leads to:

ρ̇i m = ρ̇m→i m − ρ̇i m→m − ρ̇ann
i m (5.8)

where ρ̇ann
i m is the total rate of loss of immobile dislocations due to annihilation. The system

of equations (5.6)–(5.8) represents the evolution of the local dislocation density. The relation
between the dislocation density evolution and the deformation process is adopted from the
Orowan equation. The total amount of mobile dislocations is related to the imposed effective
plastic strain rate ε̇ by:

γ̇= ε̇M = bvρm (5.9)

The effective plastic strain rate ε̇ above and further on is a scalar quantity related to the
magnitude of the rate of deformation tensor D p by ε̇ = �

D p : D p . In Eq. (5.9) γ̇ is the
plastic shear rate, M is again a mean orientation factor which relates the axial stress to the
shear stress and v is the mean dislocation glide velocity. Now, Eqs. (5.6)–(5.8) and (5.9)
define the dislocation evolution under deformation. The separate contributions in the evolution
equations will be specified in the following sections. First, some justifiable simplifications are
introduced here. The Orowan equation (5.9) can be reformatted in a more convenient form by
applying it to small time intervals. In Eq. (5.9) v is the average value of the expansion velocity
of dislocation loops taken over the total length of mobile dislocations and over their whole
average life time Δt before being immobilised or annihilated. When Δt is small with respect
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to the characteristic time of variation of ε̇, the dislocation motion is almost stationary and the
density of mobile dislocations is practically constant [Teodosiu et al., 1993]:

ρ̇m = 0 (5.10)

This assumption is confirmed by experimental observations [Michalak, 1965; Bergstrom,
1983] and commonly used in continuum descriptions. Taking assumption (5.10) into account,
the Orowan equation can be approximated as follows [Teodosiu et al., 1993]. According to the
evolution equation (5.7), in a time increment Δt a mobile dislocation density (ρ̇cr + ρ̇i m→m +
ρ̇ f lux+)Δt is produced. All these dislocations travel a distance Le f f and either annihilate
or immobilise, in agreement with (5.10). Thus, the amount of mobile dislocations in the
material is (ρ̇cr + ρ̇i m→m + ρ̇ f lux+)Δt and the produced plastic strain rate is given [Goerdeler
and Gottstein, 2001] by:

ε̇ Δε

Δt
=

(
ρ̇cr + ρ̇i m→m + ρ̇ f lux+

) bLe f f

M
(5.11)

The effective slip length Le f f is related to the average spacing of obstacles that obstruct the
dislocation glide [Goerdeler and Gottstein, 2001]. The dislocation slip is here considered to be
obstructed by forest dislocations only and, therefore, Le f f is related to the average dislocation
spacing [Teodosiu et al., 1993]:

Le f f =
1

I
�
ρ

(5.12)

where I is a material parameter. Now, with the use of (5.11) and (5.12), Eqs. (5.6)–(5.8) can
be simplified and the evolution of the total dislocation density is expressed by the following
system of equations:

ρ̇ = ρ̇cr + ρ̇ f lux+− ρ̇ f lux−− ρ̇ann

ε̇= (ρ̇cr + ρ̇i m→m + ρ̇ f lux+) b
M I

�
ρ

(5.13)

where ρ̇ann = ρ̇ann
m + ρ̇ann

i m is the total loss of dislocations due to annihilation. In the next
section these equations are elaborated for the case of a nonuniform dislocation distribution in
the form of a cell structure.

5.3.2 Dislocation evolution in the cell structure

The dislocation cell structure is idealised here as a periodic composite of individually uniform
components, i.e. cell walls and cell interiors. Since the mechanical behaviour inside each
component is assumed to be uniform, the dislocation distributions inside cells and walls
remain uniform. Though less obvious, this is consistent with the proposed evolution equations
(5.13) as the fluctuations of the dislocation densities follow the strain gradient distribution,
and the cell structure model only considers strain gradients at the wall-cell interfaces. Besides,
the uniform distribution of dislocations in the cells and the walls has an obvious qualitative
agreement with experimental observations. Thus, the dislocation distribution in the cell
structure is represented by the dislocation densities in the cell interior ρc and the densities in
the cell walls ρwi , i = 1,2,3. The equations (5.13) can be applied to each component yielding:
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ρ̇c = ρ̇cr
c + ρ̇

f lux+
c − ρ̇

f lux−
c − ρ̇ann

c (5.14a)

ε̇c = (ρ̇cr
c + ρ̇i m→m

c + ρ̇
f lux+
c )

b

M I
�
ρc

(5.14b)

ρ̇wi = ρ̇cr
wi + ρ̇

f lux+
wi − ρ̇

f lux−
wi − ρ̇ann

wi (5.14c)

ε̇wi = (ρ̇cr
wi + ρ̇i m→m

wi + ρ̇
f lux+
wi )

b

M I
�
ρwi

(5.14d)

The dislocation fluxes here are the fluxes from cell to wall and from wall to cell: the cells
are ’loosing’ dislocations to the walls or vice versa. The interactions between the walls are
neglected here as before. It seems consistent to assume that the dislocations travelling from
cells to walls pile up or get immobilised immediately at the interface. Thus, these dislocations
do not glide inside the walls and do not accommodate the plastic deformation of the walls.
Consequently, in the last equation in (5.14) this flux contribution can be omitted. The evolution
of the dislocation densities (5.14) is then given by:

ρ̇c = ρ̇cr
c + ρ̇w→c

c − ρ̇c→w
c − ρ̇ann

c (5.15a)

ε̇c = (ρ̇cr
c + ρ̇i m→m

c + ρ̇w→c
c )

b

M I
�
ρc

(5.15b)

ρ̇wi = ρ̇cr
wi + ρ̇c→w

wi − ρ̇w→c
wi − ρ̇ann

wi (5.15c)

ε̇wi = (ρ̇cr
wi + ρ̇i m→m

wi )
b

M I
�
ρwi

(5.15d)

where ρ̇c→w
wi and ρ̇c→w

c are the contributions of the cell-to-wall fluxes to the walls and cell
densities, respectively, while ρ̇w→c

wi and ρ̇w→c
c are the contributions of the wall-to-cell fluxes.

The system (5.15) can be rearranged in the following more convenient format:

ρ̇c = M I

b

�
ρc ε̇c − ρ̇i m→m

c − ρ̇c→w
c − ρ̇ann

c (5.16a)

ε̇c = (ρ̇cr
c + ρ̇i m→m

c + ρ̇w→c
c )

b

M I
�
ρc

(5.16b)

ρ̇wi = M I

b

�
ρwi ε̇wi − ρ̇i m→m

wi + ρ̇c→w
wi − ρ̇w→c

wi − ρ̇ann
wi (5.16c)

ε̇wi = (ρ̇cr
wi + ρ̇i m→m

wi )
b

M I
�
ρwi

(5.16d)

The contributions ρ̇cr
c , ρ̇cr

wi and ρ̇ann
c , ρ̇ann

wi here are statistical and depend only on the local
state of the material, i.e. the local dislocation density and the effective plastic strain rate. The
dislocation processes associated with these rates are not influenced by strain gradients or the
loading direction, and appear in the same way inside cells and inside walls.

The dislocation fluxes ρ̇c→w
wi , ρ̇c→w

c and ρ̇w→c
wi are non-local contributions related to the

inhomogeneity of the material and reflect the evolution of the cell structure. The cell-wall flux
consists of dislocations driven towards cell walls by the applied stress. This flux is responsible
for the creation and development of the cell structure. Here, it is assumed that this flux is
independent from the strain path in the sense that it depends on the accommodated equivalent
plastic strain

∫
ε̇d t only.
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On the contrary, the dislocation flux from the walls to the cell interiors comes into play only
after a change in the loading direction. Under monotonic loading, the cell-wall flux is initially
larger than the wall-cell flux since the dislocation density in the cell interiors is lower and,
therefore, slip is promoted easier. During continuous deformation the cell-wall flux piles up
dislocations at the cell-wall interfaces. The interface layers are impenetrable for the wall
dislocations and therefore the wall-cell flux stagnates as soon as the layers are created. The
dislocations in the layers are pushed towards the walls under the influence of the applied stress
and do not leave the walls, unless the loading is changed. If the loading is reversed, however,
the interface dislocations tend to leave the walls and are assisted in doing so by the new loading
direction. This causes the wall-cell flux. Recapitulating, the wall-cell flux appears only after a
strain path change, whereas there is no wall-cell flux under monotonic loading.

Finally, remobilisation represented by ρi m→m is commonly considered to be a statistical
process. However, a change in the loading direction initiates a substantial directional
remobilisation. It is expected that this plays a significant role under reversed loading, when
immobile dislocations, tangled during initial loading, untangle, get mobile, and contribute to
the plastic deformation. In the following, the remobilisation is decomposed into a statistical
and a directional component, which are considered separately.

The following subsections deal with each contribution to the dislocation density evolution in
detail. First, the statistical processes of annihilation and immobilisation are specified. Then,
the formation of the cell structure is described as a result of the dislocation flux from the cell
interiors to the walls. Finally, the dislocation mechanisms activated by a stress reversal are
formalised through the dislocation flux from the walls to the cell interiors and remobilisation.

5.3.3 Annihilation and statistical remobilisation

The dislocation annihilation and remobilisation considered in this section are statistical local
processes. Therefore, they depend only on local material parameters and are the same in cells
and walls. The expressions in this section are derived for local densities and are applicable to
both phases of the material, thus the subscripts c and wi are skipped.

Only spontaneous annihilation is considered here. The annihilation by climb is assumed
insignificant at moderate deformations and room temperature, as is the case for the
present analysis. Spontaneous annihilation occurs when a mobile dislocation comes in the
neighbourhood of another dislocation that has an opposite Burgers vector (Fig. 5.1). If the
critical distance aann associated with this dislocation reaction is known, the probability for the
event can be computed. During a time increment d t a mobile dislocation travels a distance vd t .
Thus, annihilation will take place if there is a suitable dislocation within the area 2aannd t .
The number of mobile dislocations that serve as a possible annihilation partner within this
area equals:

d p = P (2aannvd t )ρ (5.17)

where P is the fraction of opposite dislocations in the area. If the number of active slip systems
in the material is denoted as n, and if the dislocation densities on all slip systems are assumed
to be equal, the fraction of dislocations on the same slip system is 1

n . Assuming that on each
slip system positive and negative dislocations are equally present, the fraction of dislocations
opposite to a given one satisfies P = 1

2n .
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v

v dt

2a
ann

Figure 5.1 — Geometrical setup for calculating the annihilation probability (after Roters et al. [2000]).

Taking into account that, with each annihilation event, two dislocations are eliminated, the
reduction of the total dislocation density due to spontaneous annihilation can be calculated as
[Roters et al., 2000]:

ρ̇ann = 2ṗρm = 2P (2aannv)ρρm (5.18)

Or, with the use of the Orowan equation (5.9) and P = 1
2n , the well-known expression for the

dislocation annihilation rate can be derived:

ρ̇ann = M

b

2aann

n
ρε̇ (5.19)

Next, the attention is focused on remobilisation, a mechanism by which the immobile
dislocations become mobile again. Remobilisation is commonly considered to be a statistical
process and it can be related to the density of immobile dislocations ρi m and the strain rate,
according to [Bergstrom, 1983]:

ρ̇i m→m,s = θρε̇ (5.20)

where ρ̇i m→m,s defines the statistical part of the remobilisation ρ̇i m→m and θ is a material
parameter. The contributions of the annihilation and statistical remobilisation can be
combined, leading to:

ρ̇ann + ρ̇i m→m,s = M

b
Rρε̇ with R = 2aann

n
+θ

b

M
(5.21)

With the use of (5.21), the dislocation density evolution (5.16) can be reduced to the widely-
used equation for homogeneous configurations under monotonic deformations (ρ̇ f lux

i = 0,

ρ̇i m→m
i = ρ̇i m→m,s

i ):

ρ̇ = M

b
(I
�
ρ−Rρ)ε̇ (5.22)

5.3.4 Dislocation flux ρc→w

The cell-wall flux is responsible for the creation and the development of the cell structure.
In the present research, attention is restricted to cells with a fixed geometry during the entire
deformation process. Thus, the contribution ρ̇c→w essentially describes the evolution of the
difference between the dislocation density in cells and walls.
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The cell-wall flux consists of dislocations that glide towards cell walls through the applied
stress. The sign and crystallographic nature of these dislocations is defined by the relation
between the loading and cell orientation. In the present approach the signs of the dislocations
have been disregarded 1 and the cell-wall flux is assumed to be equally distributed between
walls, i.e. ρ̇c→w

w1 = ρ̇c→w
w2 = ρ̇c→w

w3 . As a result, the amount of dislocations encountering a cell
wall does not depend on the loading direction. The cell-wall flux can be related to the effective
slip length and the dislocation density in the cell interior (see Goerdeler and Gottstein [2001]),
independent of the current loading or deformation history.

To quantify the cell-wall flux, it is assumed that a fraction C of mobile dislocations in the cell
interior leave the interior to join the cell walls. With the use of (5.11), this assumption can be
formulated as follows:

ρ̇c→w
c =C

M

b
I
�
ρc ε̇c (5.23)

Assuming that the dislocations leaving the cell interior are equally distributed between all
walls, provides all walls with equal flux contributions:

ρ̇c→w
wi = fc

fwi
ρ̇c→w

c (5.24)

where fc and fwi are volume fractions of the cell interior and the walls respectively. This
relation ensures that the total amount of dislocations remains preserved.

Under monotonic deformation, the directional remobilisation and the wall-cell flux are absent.
Thus, the dislocation density evolution equations for the material with a cell structure (5.16)
reduce to:

ρ̇c = M

b
(I
�
ρc −Rρc )ε̇c −C

M

b
I
�
ρc ε̇c

ρ̇wi = M

b
(I
�
ρwi −Rρwi )ε̇wi + fc

fw
C

M

b
I
�
ρc ε̇c

(5.25)

This evolution is defined by statistical dislocation processes and reflects the increase of the
total dislocation density and the formation of the cell structure with increasing effective plastic
strain. In the case of nonuniform loading, the dislocation evolution has a nonzero contribution
of the remobilisation and the wall-cell dislocation flux. These processes are discussed next.

5.3.5 Dislocation structure evolution after a strain path change

The dislocation flux and the directional remobilisation in (5.16) are processes that are governed
by the deformation history applied to the material. Under monotonic loading, dislocations
gliding through the material are obstructed by the dense cell walls. The obstructed dislocations
pile up at the interfaces, preventing any wall-cell flux. However, after a strain path change, the
loading in a different direction may constitute a driving force on the dislocations towards the
cell interiors and the interface dislocations may tend to move towards the sparse cells. It is
assumed here that the motion of the interface dislocations from the walls to the cells is the
main mechanism for the wall-cell flux.

1Signs are disregarded for the statistical dislocations that are being considered here. The polarity of the
dislocations enters the model on the larger scale level through the polarity of the GNDs.
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Similarly, monotonic deformation stagnates the evolution of mobile dislocations, either by
immobilising or annihilating them. As long as the loading direction remains unchanged, the
directionally immobilised dislocations do not contribute to slip processes. After a strain path
change, the new loading might alter the immobilising forces acting on these dislocations. The
dislocation locks and dipoles, formed during the previous loading, may partially untangle
through the subsequent loading and, eventually, those dislocations become mobile again. This
mechanism is called directional remobilisation, in contrast to statistical remobilisation which
is independent on deformation history.

The rates in both processes, the wall-cell flux and the directional remobilisation, depend
on the directional changes in the strain path. A small variation does not sufficiently alter
the local forces on the dislocations to initiate these processes. On the other hand, reversed
loading is expected to activate a maximum of the wall-cell dislocation flux and remobilisation.
The plastic deformation caused by reversed loading is mostly accommodated by the same
dislocations as those acting during the previous loading, meaning that all dislocations created
by the initial loading may contribute during the reversed loading as well. The interface
dislocations can slip backwards from the walls with a maximum rate and pile-ups of immobile
dislocations are subjected to a separation force. The resulting high values of ρ̇w→c

i and ρ̇i m→m

under reversed loading decrease the dislocation density in the material and, consequently, a
reduction of the yield stress σy will result, see Eq. (5.5). Clearly, the wall-cell dislocation flux
and the dislocation remobilisation typically lead to a Bauschinger effect.

The wall-cell flux and the dislocation remobilisation processes will be quantified here by
considering the total dislocation balance within the cell structure, which is expressed by (5.16).
Incorporating the results of the previous sections gives:

ρ̇c = M

b
(I
�
ρc −Rρc −C I

�
ρc )ε̇c − ρ̇i m→m

c

ε̇c = (ρ̇cr
c + ρ̇i m→m

c + ρ̇w→c
c )

b

M I
�
ρc

ρ̇wi = M

b
(I
�
ρwi −Rρwi + fc

fwi
C I

�
ρc )ε̇wi − ρ̇w→c

wi − ρ̇i m→m
wi

ε̇wi = (ρ̇cr
wi + ρ̇i m→m

wi )
b

M I
�
ρwi

(5.26)

System (5.26) consists of 8 (2+2×3) equations and the unknowns are ρ̇c , ρ̇wi , ρ̇i m→m
c , ρ̇i m→m

wi ,
ρ̇w→c

wi , ρ̇cr
c and ρ̇cr

wi , where i = 1,2,3. The system is yet underdetermined and additional
assumptions are required to complete the description of the dislocation density evolution. To
this purpose, the plastic slip in the cell interior is first considered. The amount of plastic
slip rate is given by ε̇c , resulting from the solution of the cell structure model. The second
equation in (5.26) implies that the plastic slip rate in the cell interiors is accommodated by the
dislocations which are either created, remobilised or supplied from the walls:

ε̇c = ε̇c (ρ̇cr
c , ρ̇i m→m

c , ρ̇w→c
c ) (5.27)

Even though the plastic deformation is considered to be uniform inside the cell interiors,
the sources of mobile dislocations can be different at different locations. This apparent
inconsistency is only used to qualitatively assess the contribution of the terms present in (5.26).
It seems reasonable to assume that in the vicinity of the walls a lot of wall dislocations enter the
cell, as a part of the wall-cell flux. These dislocations are the first candidates to accommodate
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the plastic slip and no additional contribution is needed by creation or remobilisation. On the
other hand, at a distance from the cell-wall boundaries, the wall-cell flux will be less active and
dislocations should be nucleated or remobilised to provide the slip. Therefore, equation (5.27)
will be split into two parts: one representative for the areas close to the cell-wall boundaries
and one representative for the core of the cells:

ε̇c = ε̇c (ρ̇cr
c , ρ̇w→c

wi ) in the vicinities of the walls i (5.28a)

ε̇c = ε̇c (ρ̇cr
c , ρ̇i m→m

c ) in cell cores (5.28b)

Furthermore, when a wall-cell flux is present, many mobile dislocations enter the cell interiors
and they are readily available to accommodate plastic deformation. Therefore, it is assumed
that, if there are enough dislocations in the wall-cell flux to produce the slip associated with
ε̇c , no new dislocations will be created. If there is no wall-cell flux, new dislocations have to
be created to carry the ongoing plastic deformation. This assumption allows a reduction of
equation (5.28a) to the following form:

ε̇c =
⎧⎨
⎩
ε̇c (ρ̇w→c

i ) = b
M I

�
ρc
ρ̇w→c

wi if ρ̇w→c
wi > 0

ε̇c (ρ̇cr ) = b
M I

�
ρc
ρ̇cr if ρ̇w→c

i = 0
(5.29)

The same reasoning can be applied to the remobilisation of dislocations, affecting equation
(5.28b). It is assumed that, if remobilisation is possible, this prevails over creation, leading to:

ε̇c =
⎧⎨
⎩
ε̇c (ρ̇i m→m

c ) = b
M I

�
ρc
ρ̇i m→m

c if ρ̇i m→m
c > 0

ε̇c (ρ̇cr
c ) = b

M I
�
ρc
ρ̇cr

c if ρ̇i m→m
c = 0

(5.30)

Repeating this for the walls, the last equation in (5.26) can be rewritten as:

ε̇wi =
⎧⎨
⎩
ε̇wi (ρ̇i m→m

wi ) = b
M I

�
ρwi

ρ̇i m→m
wi if ρ̇i m→m

wi > 0

ε̇wi (ρ̇cr
wi ) = b

M I
�
ρwi

ρ̇cr
wi if ρ̇i m→m

wi = 0
(5.31)

for i = 1,2,3. The assumptions resulting in the Eqs. (5.29)–(5.31) allow the calculation of
ρ̇w→c

wi , ρ̇i m→m
c , and ρ̇i m→m

wi as functions of the corresponding local strain rates and dislocation
densities. Now the dislocation evolution equations (5.26) and the local Orowan equations in the
form of (5.29)–(5.31) constitute a complete system defining the evolution of the dislocation
densities in the cell structure. To enable the calculations, the criteria used in (5.29)–(5.31)
should be further specified to determine when the wall-cell flux and the remobilisation rates
really contribute.

Wall-cell flux ρw→c

The wall-cell flux was defined above as the flux created by the reverse motion of dislocations
that were collected at the interfaces during the initial loading. After a strain path change, the
interface dislocations will tend to move if their crystallographic configuration allows them to
move under the current loading. Additionally, the dislocation motion should be in the direction
of the cells. Thus, the wall-cell flux is governed by the type of dislocations collected at the
interfaces by the deformation history and their ability to move to the cell interior under the
current loading.



Modelling the dislocation structure evolution upon stress reversal 103

A straightforward way to reveal what type of dislocations have been stored at the cell-wall
interfaces is to keep track of the dislocations appearing there during monotonic loading. That
strategy would involve the introduction of additional history parameters and phenomenological
evolution equations (e.g. see Peeters [2002]). In the present approach, the history information
available in the cell structure model will be used instead. The dislocation density tensor
has been introduced in the cell structure model by Viatkina et al. [2005b] and is related to
the amount of dislocations in the cell-wall interfaces. This tensor also provides information
on the type of dislocations that might help to extract information on the mobility of the
dislocations under the current loading. However, it should be noted that the dislocation density
tensor indicates an average quantity of GNDs only since it reflects the surplus of one type of
dislocations over another, not the absolute densities of the dislocations. Thus, the dislocation
density tensor can be used only as an indicator of the dislocations present in the interface. It
is assumed here that dislocations of a specific type are present in the cell-wall interface if the
associated GND density is non-vanishing. The dislocation density tensor is used to retrieve
the information on the interface GNDs.

The wall-cell flux is next quantified by considering the local dislocation density tensor and its
relation to the corresponding cell wall. This approach is applied to all cell walls and therefore
the subscript wi is skipped for the clarity of the formulas. The dislocation density tensor can
be determined by summation of the contributions of all dislocations present in a unit volume
of the material:

Λ=∑
ζ

ρζ�bζ�tζ (5.32)

with �b the Burgers vectors and �t the dislocation tangent vectors. The summation is
performed over all types ζ of dislocations. The crystallographic decomposition (5.32) of
Nye’s tensor in contributions of physically possible dislocations is not unique, calling for
additional crystallographic information that is not available in the cell structure continuum
model. To solve this problem, a continuum crystallographic approach is adopted, in which
dislocations can form on any geometrical plane (as a fictitious slip plane). For the purpose
of establishing the wall-cell flux, this assumption appears to be reasonable for materials
with a high crystallographic symmetry, such as FCC metals. Exploiting this assumption, the
decomposition is rewritten as:

Λ= ρ1
�b1�T +ρ2

�b2�Q +ρ3
�b3�N (5.33)

where �N is the unit normal to the dislocation wall of interest, while the unit vectors �T and �Q
form an orthogonal basis in combination with �N . In the average continuum sense, all interface
GNDs incorporated in Λ can be represented by ’continuum’ dislocations with densities ρ1, ρ2

and ρ3, Burgers vectors�b1,�b2 and�b3 and the corresponding dislocations tangents along �T , �Q
and �N . Since dislocations always glide perpendicular to their tangents, the dislocations with
tangents along the normal �N glide in the plane of the wall. Therefore, these dislocations do
not contribute to the wall-cell flux, which represents dislocation slip away from the wall. Only
dislocations with a dislocation tangent�t1 = �T and a Burgers vector �b1 in the direction of Λ ·�T ,
and dislocations with a tangent �t2 = �Q and a Burgers vector �b2 in the direction of Λ · �Q can
glide away from the wall and contribute to the wall-cell flux.

If a dislocation is defined by a dislocation tangent�t and a Burgers vector�b, it can glide only in
a plane containing�t and �b, i.e. in a plane with normal �n =�b ×�t . Furthermore, the dislocation
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glide is always perpendicular to the dislocation tangent �t , i.e. the slip direction is given by
�m =�t×�n. According to (5.33), the wall-cell flux is created by two types of dislocations defined
by {�T ,�b1} and {�Q,�b2}. Consequently, the ’continuum’ flux stems from the dislocation slip on
two fictitious slip systems {�n1, �m1} and {�n2, �m2}. It is emphasized that this approximation
assumes that plastic slip can be realised on any geometrical plane and in any direction. The
resulting directional characteristics of the wall-cell flux are determined through the dislocation
tensor Λ as:{

�b1 = Λ ·�T
‖Λ ·�T ‖b, �n1 =�b1 ×�T , �m1 = �T ×�n1

}
{
�b2 = Λ · �Q

‖Λ · �Q‖b, �n2 =�b2 × �Q, �m2 = �Q ×�n2

} (5.34)

Summarising, if the density of the interface dislocations is given by Λ and the orientation of
the interface is known through the normal �N , then the interface dislocations are capable of
creating a wall-cell flux by glide on the fictitious slip systems {�n1, �m1} and {�n2, �m2}, defined
above. Now the amount of dislocations that would actually glide on these slip systems has to
be determined. Not all dislocations collected at the interface tend to slip from the wall to the
cell interior under reversed loading. If all of these dislocations would move to the cell interior
an excessively high plastic slip would occur. This is impossible since the plastic deformation
rate is limited and given by the solution of the cell structure model. As already emphasized, a
non-vanishing wall-cell flux is associated with a plastic strain rate given by the first equation in
(5.29). Since the ’continuum’ flux consist of slip contributions from the slip systems {�n1, �m1}
and {�n2, �m2}, the first equation in (5.29) can be specified as:

|γ̇1| = |Dp
c :�n1�m1| = b

I
�
ρc

ρ̇w→c
1

|γ̇2| = |Dp
c :�n2�m2| = b

I
�
ρc

ρ̇w→c
2

(5.35)

where Dp
c is the plastic deformation rate tensor in the cell interior. The rates ρ̇w→c

1 and ρ̇w→c
2

are the contributions to the wall-cell flux by the corresponding fictitious slip systems and the
total wall-cell flux is the sum of them:

ρ̇w→c = ρ̇w→c
1 + ρ̇w→c

2 (5.36)

Equation (5.35) indicates that the wall-cell flux takes place only if the corresponding slip
systems are active, i.e. if γ̇1 �= 0 and/or if γ̇2 �= 0. However, the glide on these slip systems
may occur in two opposite directions: from cell to wall and from wall to cell. Obviously,
only the second case contributes to the wall-cell flux. The direction of the dislocation glide is
defined by the Orowan relation γ̇∝�v ·�b, dependent on the orientations of the Burgers vector
�b and the dislocation velocity �v . The dislocation velocity is defined here through the slip
direction γ̇�m. If the orientation of �m is fixed with respect to the cell wall, as shown in Fig. 5.2,
then the direction of the dislocation glide is defined by the Burgers vector and the sign of γ̇.
Fig. 5.2 indicates the directional character of the flux for the example with edge dislocations.
Here, for γ̇> 0, the wall-cell flux is realised by negative dislocations, �m ·�b < 0, gliding in the
−�m direction. Thus, the dislocation flux from the wall to the cell interior is activated if the
following relation between the current deformation and the interface dislocations is satisfied:

γ̇�m ·�b < 0 (5.37)
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Figure 5.2 — Direction of the wall-to-cell flux of dislocations: Dislocations with�b · �m < 0 move from
the wall to the cell interior, while dislocations with�b · �m > 0 move towards the wall.

Combining (5.35) and (5.37), the rate of the wall-cell flux is defined by the current loading,
via Dp

c . Repeating this reasoning for each of the cell walls results in the following expressions
for ρ̇w→c

wi :

ρ̇w→c
wi ,1 = |Dp

c :�ni
1�m

i
1|

I
�
ρc

b
if Dp

c :�ni
1
�bi

1 < 0

ρ̇w→c
wi ,2 = |Dp

c :�ni
2�m

i
2|

I
�
ρc

b
if Dp

c :�ni
2
�bi

2 < 0

ρ̇w→c
wi = ρ̇w→c

wi ,1 + ρ̇w→c
wi ,2

(5.38)

The direction properties of each wall-cell flux are defined through (5.34) by the local
dislocation tensor Λwi determined on the corresponding interface. The equations (5.38) relate
the dislocation rates ρ̇w→c

wi to the deformation rate in the cell interior, in conformity with the
first equation in (5.29).

Remobilisation

Under monotonic loading, dislocations may get trapped creating an immobile dislocation
structures, such as dipoles and locks. Since the immobile dislocations cannot participate
in the plastic slip process, new dislocations have to be nucleated. In this way, the total
dislocation density keeps increasing under deformation. However, if the loading is reversed,
a decrease of the dislocation density is observed in experiments (Pedersen et al. [1981])
during initial reversed plastic deformation. It is believed that remobilisation of immobile
dislocations contributes to this phenomenon. The immobile dislocation strcutures tend to
become ’unstable’ under reversed loading and the contributing dislocations become mobile
again. The remobilised dislocations promote plastic slip and will annihilate or immobilise
again. Thus, the initial plastic slip under reversed loading can be realised by remobilised
dislocations and no substantial supplementary dislocation creation is needed. Consequently,
the creation of new dislocations will be ignored, whereas the loss due to annihilation leads to
a drop in the total dislocation density.

Since the dislocation remobilisation is associated with reversed loading, the rate of the
remobilisation will be related to the amount of deformation that is reversed after a strain path
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change:

ε̇i m→m
i = Dp

i :
Dp

i ,old

‖Dp
i ,old‖

(5.39)

where Dp
i ,old and Dp

i are the plastic deformation rate tensors before and after the strain path
change, respectively. Here the subscript i stands for c or wi . Remobilisation is assumed to
take place if the deformation is reversed, i.e. if ε̇i m→m

i < 0 and, following (5.30) and (5.31), all
reversed plastic deformation is carried by the remobilised dislocations:

ρ̇i m→m
i =

{M I
�
ρi

b f (ε)|ε̇i m→m
i | if ε̇i m→m

i < 0

0 if ε̇i m→m
i ≥ 0

(5.40)

The function f (ε) is added here to restrict the duration of the remobilisation process.
Experimental observations, e.g. by Pedersen et al. [1981], reveal that the total dislocation
density starts growing again shortly after the loading change. Apparently, remobilisation, that
decreases the total density, does not last long after a strain path change. To incorporate this,
the function f (ε) should be equal to 1 at the strain change instant and decrease to zero as
the deformation proceeds in the new direction. The exhaustion of the remobilisation process
evidently requires more research in order to define an adequate form of f (ε). For now, the
following function is proposed based on phenomenological considerations:

f (ε) =
(
ρold

i

ρi

)K ε′

ρ̇old
i =−ρ̇i m→m

i ρold
i |ε′=0 = ρi

(5.41)

where ε′ is the plastic strain accommodated after a strain path change, K is a fitting parameter
and ρold

i is the density of the dislocations collected in the material during prestrain. The
function, thus the remobilisation rate, decreases as the deformation progresses in the new
direction due to an increase of ε′ and a decrease of ρold

i . The dislocations corresponding to
ρold

i were immobilised during prestraining and are remobilised after the strain path change.
It is assumed here that ρold

i is the source of the remobilisation and, thus, remobilisation rate
decreases if the fraction of these dislocations decreases.

Recapitulating the model description, the total dislocation density evolution in the material
with a cell structure under complex deformation is described by:

ρ̇c = M

b

(
I
�
ρc −Rρc −C I

�
ρc

)
ε̇c − ρ̇i m→m

c

ρ̇wi = M

b

(
I
�
ρwi −Rρwi + fc

fwi
C I

�
ρc

)
ε̇wi − ρ̇w→c

wi − ρ̇i m→m
wi

(5.42a)
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(5.42b)
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(5.42c)

where I , R and C are the relevant material parameters; Dp
i and Dp

i ,old are the local plastic

deformation rate tensors – current and before a strain path change respectively; �ni ,�bi and �mi

are defined by the current dislocation density tensor Λ. Besides, since undeformed material
typically has a homogeneous distribution of dislocations, the dislocation densities are initially
the same (in the average sense) throughout the material: ρc |ε=0 = ρwi |ε=0 = ρ0.

5.4 Numerical analysis

5.4.1 Parameter identification

In order to perform numerical simulations describing the deformation behaviour of polycrystal
copper, the model parameters have been identified. The values used for the elasticity
parameters, the shear modulus G and Poisson’s ratio ν, and the magnitude of the Burgers
vector b, all known for copper, are listed in Table 5.1. The values for the mean orientation
factor M and the coefficient α are chosen following the recommendations of Mughrabi
[1987] for a continuum cell structure model. A value M = 2.5 corresponds to orientations
providing symmetrical multiple slip, whereas a value of 0.4 for α typically reflects multiple
slip, involving the mutual intersection of dislocations of different slip systems [Mughrabi,
1987]. The mentioned values are adopted for symmetric deformation modes as analysed in
this paper.

Next, the geometry of the cell structure is further specified. The cells are assumed to be
cubic, D ≡ D1 = D2 = D3, with equally thick cell walls, i.e. w ≡ w1 = w2 = w3. Furthermore
the geometry of the cells is fixed during deformation, whereas the dislocation densities will
evolve of course. The values adopted for the cell size D and the wall volume fraction f =
w
D (see Table 5.1) are typical for cell structures observed at small to moderate deformations
([Christodoulou et al., 1986]).

Next, the evolution of the statistically stored dislocations under monotonic deformation is
defined by (5.25), which is a reduced version of (5.42). Thus, the material parameters
necessary to describe the evolution of the dislocation densities are I , R, C and ρ0. Since
only very few quantitative experimental data on the dislocation evolution in cell structures
is available, these parameters are identified by fitting the macroscopic behaviour under
monotonic deformation. This is justified, since the parameters ρ0, I and R define the evolution
of the average dislocation density, and can therefore be derived from the average macroscopic
behaviour. The initial macroscopic yield stress is related to ρ0, the hardening at small
deformations is predominately influenced by I , and the hardening at large deformations by
R. The parameter C is associated with the material inhomogeneity and should be identified
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Table 5.1 — Parameters for copper.

Parameter Symbol Unit Value

Shear modulus G [GPa] 41.7

Poisson’s ratio ν [−] 0.34

Length of the Burgers vector b [nm] 0.257

Coefficient α [−] 0.4

Mean orientation factor M [−] 2.5

Cell size D [μm] 2.5

Wall volume fraction f [−] 0.2

Table 5.2 — Dislocation evolution parameters identified for copper.

Parameter Symbol Unit Value

Initial dislocation density ρ0 [m−2] 15 ·1013

Creation rate parameter I [−] 0.105

Annihilation rate parameter R [nm] 1.6

Dislocation flux constant C [−] 0.8

Coefficient K [-] 200

using data on, for instance, the dislocation density difference between cell and walls, the stress
inhomogeneity, or the level of the internal stress. The inhomogeneity parameter C also affects
the macroscopic hardening behaviour, i.e. the stress will be lower in material with a higher
inhomogeneity.

The dislocation density evolution after a stress reversal, partial or complete, is defined by the
wall-cell flux and remobilisation in cells and walls. The wall-cell flux is completely defined by
the current state of the material (Λ, ρc , I ), see Eq. (5.38), and it is therefore not necessary to
introduce additional parameters. The remobilisation rate is controlled by the function f (εp ),
which determines its duration after it has been activated. The adopted functions fc (εp ) and
fw (εp ) provide the best fit to results on the experimentally observed Bauschinger effect after a
complete stress reversal.

The experimental results reported by Christodoulou et al. [1986] for tension-compression
tests on polycrystalline copper have been used here for parameter identification and
model verification. To do so, the uniaxial tension test was simulated with a strain rate
ε̇11 = 5 ·10−4 s−1. Similarly, compression is simulated by applying a negative strain rate. No
stresses are assumed to occur in other directions:

F̃11 = 1+ ε̇11t ; σ̃i j = 0, if i j �= 11 (5.43)

The orientation of the cell structure was fixed, with the [111] direction of cells coinciding with
the initial tensile axis. This orientation corresponds to the formation of a cell structure with
the walls directed along the macroscopic planes of maximum shear. This tendency has been
confirmed by experimental observations (Zhu and Sellars [2001]).

Fig. 5.3 shows the fit obtained for the monotonic tension experiment, with the parameter values
given in Tables 5.1 and 5.2. The parameter C is chosen such that at large deformations
the internal stress in the walls reaches the same level as the applied stress. This is in
correspondence with measurements of the internal stresses in cell structures [Straub et al.,
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1996; Borbely et al., 1993; Ungar et al., 1984]. Fig. 5.3 also shows the calculated evolution of
the inhomogeneity in the dislocation density. The dislocation density in the walls reaches
values that are 20 times higher than the dislocation density in the cells. This obtained
inhomogeneity is of the same order of magnitude as observed experimentally, e.g. by Ungar
et al. [1984]. The total dislocation density shown in Fig. 5.3 is obtained by the averaging:
ρtot = fw1ρw1 + fw2ρw2 + fw3ρw3 + (1− fw1 − fw2 − fw3)ρc .
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Figure 5.3 — Monotonic uniaxial tension for copper.

Fig. 5.4 shows the curves for tension-compression experiments. Function (5.41), describing
the remobilisation of dislocations, controls this mechanism in the walls and coefficient K
is identified as to provide the best fit with the macroscopic behaviour (see Table 5.2). For
remobilisation in cells a different function f (ε), than proposed in (5.41), was fitted. The most
straightforward and best fit was found with the cell remobilisation controlled by the plastic
flow in the walls according to:

fc (ε) =
{

1 if |ε̇p
wi | = 0

0 if |ε̇p
wi | �= 0

(5.44)

If the remobilisation of dislocations in the cell interiors would continue longer than described
by Eq. (5.44), this would lead to macroscopic softening which is not observed in the
experiments.

5.4.2 Model verification

The performance of the cell structure model has been discussed in Viatkina et al. [2005b],
including monotonic deformations and deformations containing strain path changes. The
ability to predict strain path change effects was the principal objective. The model, however,
failed to predict material behaviour under complex deformations that include reversed loading.
In the present paper the model has been enhanced with evolution equations for the dislocation
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Figure 5.4 — The Bauschinger effect in tension-compression tests for copper. Von Mises stress against
accumulated plastic deformation (the horizontal shift indicates the amount of prestrain undergone by
material before load reversal).

densities with the purpose of adequately describing load reversals. The dislocation dissolution
after a strain path change is assumed to be triggered by a load reversal. Consequently, the effect
of the dislocation density evolution on the deformation behaviour is expected only after large
strain path changes, that involve partial or complete reversal of the loading. The deformation
behaviour after moderate strain path changes is unaffected by the modifications introduced
here and consistent with the results discussed in Viatkina et al. [2005b]. The performance
of the enhanced cell structure model is verified here for a load reversal where the dislocation
dissolution is most substantial.

Fig. 5.4 shows the simulation results for a tension-compression test obtained with the
parameters specified in the Tables 5.1 and 5.2. It can be seen that the model captures all the
essential features associated with the Bauschinger effect. The simulation results demonstrate
an early reloading yield followed by transient hardening. After the deformation is reversed,
initially, the hardening rate is high, after which it drops rapidly below the rate of hardening
exhibited during monotonic loading, see Fig. 5.5. The deformation continues with a slow
hardening recovery to the same level as for monotonic loading. The duration of the hardening
recovery increases with the amount of prestrain applied before the stress reversal. In the stress-
strain diagram, Fig. 5.4a, the corresponding hardening features are observed as early yield
followed by a quick increase of stress which almost reaches the monotonic loading curve,
followed by a “plateau” of low hardening. The macroscopic stress under reversed loading is
always lower than the monotonic stress obtained at the same total strain. All these features are
confirmed by many experimental data on the Bauschinger effect [Christodoulou et al., 1986;
Hasegawa et al., 1975; Rauch et al., 2002; Hasegawa et al., 1986; Marukawa and Sanpei, 1971;
Pedersen et al., 1981].

A discrepancy between the experiments and the predictions may be observed in the duration
of the transient hardening. This indicates that the description of the dislocation mechanisms
proposed here can be improved. A better agreement may be expected through the use of more
sophisticated (yet, also complex) dislocation evolution equations. The present model appears
to be a reasonable compromise between complexity and accuracy. The strength of the current
approach lies in its simplicity as only four parameters, I , R, C and K , are required to fit both
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Figure 5.5 — Bauschinger effect in tension-compression tests for copper. Simulated macroscopic
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undergone by material before load reversal).

the monotonic response and the behaviour after a strain path change. The combination of
the simplicity of the model and its adequate prediction of the macroscopic material response
makes the model attractive for theoretical research and practical applications.

5.5 Discussion

The ability of the model to capture macroscopic effects associated with stress reversal
suggests that the microscopic mechanisms incorporated in the model induce the macroscopic
Bauschinger effect. The material inhomogeneity, the internal stresses, and the evolution of
dislocation densities are the main microscopic features of the model that define its macroscopic
behaviour. The contributions of each of these features with respect to the resulting Bauschinger
effect will be highlighted in this section.

5.5.1 Stress reversal: effect of the internal stress

The internal stress developed during prestraining of a material with a cell structure is often
associated with a decreased reloading yield stress after a load reversal. For instance, monotonic
tension applied to a material with a dislocation cell structure causes the development of
positive internal stresses in the cell walls and negative internal stresses in the cell interiors.
Thus, the internal stress in the cell interiors is opposite to the applied stress during monotonic
deformation and will assist reversed deformation after a load reversal is applied. This is
often suggested to be the origin of the decreased reloading yield stress [Christodoulou et al.,
1986], i.e. the beginning of plastic yield at a lower macroscopic stress than the yield stress for
monotonic loading at the same total strain.

Fig. 5.6 shows the evolution of the stress obtained from simulations for copper under
monotonic tension and tension-compression tests. To investigate the contribution of the
internal stress to the Bauschinger effect the dislocation dissolution was suppressed for this
calculations, i.e. the dislocation densities evolve according to Eqs. (5.25). During monotonic



112 Chapter 5

0 0.1 0.2 0.3 0.4
-600

-400

-200

0

200

400

600

�

� 11

cells

walls

total

(M
P

a)

(a) Applied stress.

0 0.1 0.2 0.3 0.4
�

�
11

cells

walls

-600

-400

-200

0

200

400

600

(M
P

a)

(b) Internal stress.

0 0.1 0.2 0.3 0.4
�

s
11

cells

walls

-600

-400

-200

0

200

400

600

(M
P

a)

(c) Local stress.

Figure 5.6 — Evolution of stresses under stress reversal, no cell dissolution. Thick lines correspond
to the tension-compression test, thin lines to the compression test, for reference purposes.

deformation, either tension or compression, the internal stress in the walls reaches a level of
the same order as the applied stress, while the internal stress in the cell interiors develops
in a direction opposite to the applied stress. According to the cell structure model, the local
plastic deformation is governed by the superposition of the applied and the internal stress.
Consequently, in the walls, the internal stress assists the applied stress providing nearly half of
the stress needed for plastic deformation. In the cells, the applied stress has to be higher than
the local yield stress to compensate for the opposite internal stress.

When the loading direction is reversed, the applied stress is also reversed but the internal stress,
as well as the yield stress, are unaffected by the elastic unloading. Immediately after the strain
path change, the residual internal stress in the cell interior acts in the same direction as the new
loading. Thus, the applied stress in the cells is assisted by the internal stress and the initiation
of plastic deformation needs less external effort, i.e. the plastic deformation starts at a lower
applied stress (Fig. 5.6a) compared to monotonic tension where the internal stress resists the
deformation.

However, Fig. 5.6a also shows that the early yield in the cell interior does not lead to a
noticeable early macroscopic yield (solid line in the figure). After the stress reversal, the high
residual internal stress in the walls resists the applied stress, postponing the local yield. To
initiate plastic slip in the walls after the strain path change, the applied stress has to compensate
for the opposite internal stress, i.e. it has to be three times higher than in the forward loading
where the same internal stress assisted the deformation. The value of the applied stress,
however, is limited through the traction equilibrium at the interfaces. Nevertheless, it becomes
significantly higher than the stress in monotonic tension. As a result of the decrease of the
required applied stress in the cells and the increase of the required stress in the walls, the
net macroscopic reloading yield stress is higher than the corresponding stress in monotonic
loading. Clearly, without dislocation redistribution, the effect of the internal stress in the cell
interior is neutralised by the much larger opposite effect of the internal stress in the walls.

The calculations show that the internal stress cannot be responsible for the reduced reloading
yield stress associated with the Bauschinger effect. Yet, the internal stress substantially
contributes to the effect by providing early yield in the cell interior. As soon as the plastic
deformation starts, dislocation slip is activated in the new direction and cell dissolution
starts, lowering the macroscopic hardening rate. If the dislocation dissolution is initiated at
a low applied stress, due to the presence of the internal stress, the resulting low macroscopic
hardening rate would lead to a reduced macroscopic yield stress, according to in the
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Figure 5.7 — Dislocation density evolution in the tension-compression test.

Bauschinger effect. Without the presence of the residual internal stress, the dissolution would
start at an applied stress equal to the forward yield stress and would cause macroscopic
softening, which is not observed experimentally. Thus, the effect of the internal stress does not
directly cause early macroscopic yield but activates other mechanisms to do so.

5.5.2 Stress reversal: Effect of the dislocation evolution

The dissolution and reappearance of dislocation cells are the essential mechanisms
contributing to the Bauschinger effect. Dissolution triggers by a decrease of the total
dislocation density, a decrease of the dislocation density in the walls, and an increase of the
dislocation density in the cells. Correspondingly, the reappearance of the cell structure after
a load reversal is associated with the recovery of these parameters to values representative for
monotonic deformation at the same total strain.

The model proposed here includes the evolution of the local dislocation densities as a
function of the deformation history. A stress reversal activates a wall-cell dislocation flux,
remobilisation in cells, and remobilisation in walls. All three dislocations mechanisms tend
to reduce the local dislocation density and can be considered as mechanisms promoting cell
dissolution. They have a finite duration and the local dislocation density recovers thereafter.
The latter can be interpreted as the reappearance of the earlier dissolved cells.

The wall-cell flux is a flux of dislocations that were piled up against walls during the previous
loading step and driven towards the cell interior by the applied reversal of the stress. The flux
is activated by the plastic slip in the cell interior and continues until the source of interface
dislocations is exhausted. This dislocation mechanism decreases the dislocation density in the
walls and increases the dislocation density in the cells. It is assumed in the model, that this flux
provides the dislocations necessary to accommodate further plastic slip in the cells, rendering
the need for nucleation of dislocations superfluous. Compared to monotonic deformation, the
dislocation density in the walls is decreased by this flux, whereas the dislocation density in the
cell interiors follows the same evolution.
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Figure 5.8 — Evolution of the applied stresses after a stress reversal (εp = 0.18). The stresses in
monotonic tension are also given for reference.

To emphasize the effect of the wall-cell dislocation flux, a tension-compression test was
simulated including the wall-cell dislocation flux –but excluding dislocation remobilisation–
and compared to the case without this flux. The rate of the dislocation flux is shown in
Fig. 5.7a. The flux is activated as soon as plastic slip in the cell interior occurs and lasts
for about 2% of deformation. While active, the flux reduces the dislocation density in the
walls for 24%.

Fig. 5.8b shows the results of the simulation with the wall-cell dislocation flux activated.
Compared to the results obtained without this flux (Fig. 5.8a) a change in the hardening
behaviour of the wall-phase can be observed. Reduction of the wall dislocation density causes
a reduction in the local applied stress. As a result, the macroscopic stress lowers. The main
effect of the flux is the reduction of the macroscopic hardening rate during the initial stage
of reloading (the maximum of the macroscopic stress is significantly decreased in Fig. 5.8b).
Yet, the exclusive effect of the wall-cell dislocation flux on the macroscopic reloading yield
stress is not sufficient to correctly achieve the Bauschinger effect. The effect of the internal
stress, discussed above, increases the reloading yield stress in the walls and consequently the
macroscopic reloading yield stress. To neutralise this effect, the dislocation density in the
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walls should drop severely, but such a rapid decrease of the density has never been observed
in experiments. A realistic reduction of the local density only produces a small macroscopic
effect, which is additionally reduced through the low volume fraction of the walls.

The remobilisation of immobile dislocations is another mechanism activated upon stress
reversal. Immobile dislocations, such as those trapped in locks and dipoles, are partially
released by reversed loading. The plastic slip is accommodated by the dislocations that
are already present in the material and no additional dislocations are created, contrary to
the monotonic loading case. The dislocation density thus only changes due to annihilation,
lowering the total dislocation density.

The remobilisation in the cell interior is activated at the start of plastic slip in the cells
and causes a reduction of the dislocation density in the cells, resulting in a decrease of the
local yield stress and the average macroscopic stress. The remobilisation in the cell interior
has a significant effect on the macroscopic behaviour due to the dominating volume fraction
of the cells. The contribution of the cell remobilisation is shown in Fig. 5.8c. In this
simulation, remobilisation is taken into account together with the internal stress and the cell-
wall dislocation flux, whereas the remobilisation in the cell walls is excluded. Remobilisation
in the cell interior decreases the dislocation density in the cells. Obviously, the reduction of
the cell dislocation density prior to macroscopic yield, lowers the macroscopic yield stress,
whereas a reduction after macroscopic yield would trigger softening. The macroscopic yield
stress also corresponds to the beginning of plastic yield in walls. Since softening is not
observed in the experiments, the remobilisation in cells in the simulation stagnates as soon as
the walls yield, see Eq. (5.44). Fig. 5.7a shows that the remobilisation lasts for approximately
0.5% of deformation.

Clearly, by reducing the macroscopic yield stress, the reduction of the cell dislocation density
due to remobilisation appears to play an important role in the Bauschinger effect.

The remobilisation in walls is activated at the start of plastic slip in the walls, i.e. after
macroscopic yield. Therefore, this dislocation mechanism only influences the hardening
behaviour. Fig. 5.8c shows the collective effect of the internal stress, the wall-cell flux, and
the cell dislocations remobilisation, providing a macroscopic behaviour that is representative
for the Bauschinger effect. The remobilisation of the dislocations in the walls causes a
reduction of the dislocation density in the wall phase since no new dislocations are created and
dislocation annihilation prevails. The applied stress in the walls is reduced further lowering
the macroscopic stress more. Fig. 5.8d shows the results of a simulation with the dislocation
remobilisation in the walls activated. The remobilisation lowers the macroscopic stress and
the macroscopic hardening, although the effect is not that pronounced due to the low volume
fraction of the walls.

5.5.3 Stress reversal: transient hardening

Fig. 5.9 shows the results of the simulation with the complete model, including the internal
stress, the wall-cell flux, and the dislocation remobilisation in the cells and the walls. The
graph of the average macroscopic stress demonstrates the Bauschinger effect with a low
reloading yield stress and a transient hardening. Fig. 5.9b depicts the evolution of the internal
stress and Fig. 5.7b shows the dislocation density evolution that accompanies the Bauschinger
effect.
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Figure 5.9 — Evolution of stresses simulated for tension-compression test using the complete cell
structure model. Monotonic compression is given in thin lines for reference.

When the plastic deformation starts in the reversed direction, the internal stress adjusts to the
new loading, Fig. 5.9b, i.e. evolves towards the distribution corresponding to the monotonic
loading in the new direction. It is a gradual process continuing during 10% of the deformation.
The evolution of the internal stress was found to correspond to the macroscopic hardening.
Comparing the macroscopic stress evolution and the evolution of the internal stress, Figs. 5.9a
and 5.9b, the high initial macroscopic hardening rate is related to the fast adjustment of the
internal stress in the cell interior, while the subsequent “plateau” of low macroscopic hardening
corresponds to the slow adjustment of the internal stress in the walls. Note that the dislocation
mechanisms of cell dissolution do not alter the internal stress evolution significantly, see
Fig. 5.6b.

The dislocation evolution in Fig. 5.7b, that accompanies the Bauschinger effect, includes a
small drop in the dislocation density of the cells and a significant reduction in the dislocation
density of the walls upon the load reversal. On the average, after stress reversal, the total
dislocation density dropped with about 25% and the dislocation distribution becomes more
uniform. The decrease of the dislocation density in the material lowers the macroscopic
hardening. After stagnation of the cell dissolution mechanisms, the dislocation density regains
a positive rate.

The results suggest that both the internal stress as well as the dislocation structure evolution
play an important role in the Bauschinger effect. The internal stress, previously developed
in the material during prestraining, triggers a plastic yield in the cell interior at a lowered
applied stress. The early slip in the cells activates dissolution in the form of a wall-cell flux and
dislocation remobilisation within the cells. The dislocation remobilisation in the cells provides
a low macroscopic reloading yield stress. The simulation suggests that both, the internal stress
and the dislocation remobilisation, are needed to explain the lowered macroscopic yield stress,
consistent with the Bauschinger effect.

The transient hardening in the early stage after the stress reversal, i.e. before the hardening
drop, is a collective effect of the internal stress adjustment in the cell interior and the decrease
of the dislocation density in the walls. Further hardening evolution, associated with the
“plateau”, is mainly governed by the adjustment of the internal stress in the walls.
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Figure 5.10 — Strain path change effect in shear-shear tests.

5.5.4 Strain path change effect

A simulation of a sequence of two successive shear deformations has been used as an example
to study the effect of other strain path changes. The applied loading is depicted schematically
in Fig. 5.10a. A shear-shear test is chosen, since it allows a wide range of strain path changes
to be realised, including a cross test for ξ= 45o and a complete load reversal for ξ= 90◦.

The cell structure model introduced in Viatkina et al. [2005b] has been shown to predict the
reloading yield stress correctly for moderate strain path changes. The effect results mainly
from the geometrical anisotropy and the developing internal stress. The geometrical anisotropy
is a consequence of the cubic cell structure in the material. The internal stress effect is induced
by the cell geometry and plastic incompatibility. Fig. 5.10b shows the reloading yield stress as
a function of the shear change angle ξ. The dotted line represents the result obtained with the
cell structure model without cell dissolution, in which the dislocation evolution equation (5.25)
has been used. The result shows an increase of the effect with the shear angle up to ξ = 45◦,
i.e. the cross test. This tendency is in agreement with experimental observations, however,
deviations are found for shear changes larger than ξ = 45◦. The simulations overpredict the
reloading yield stress after large strain path changes, and a decreased reloading yield stress was
never obtained for a load reversal with ξ = 90◦. This discrepancy was one of the motivations
to include the dislocation evolution resulting from a strain path change in the cell structure
model.

Fig. 5.10b also shows the result obtained with the cell structure model enhanced with the
history dependent dislocation evolution. This enhanced model accounts for dislocation
mechanisms activated by stress reversals, the wall-cell flux and the directional remobilisation.
This allows an additional reduction of the reloading yield stress after strain path changes
dealing with a reversal of the applied stress. Changes in the shear direction less than ξ= 45◦ do
not have a reversed component, thus the reloading yield stress is hardly affected by the model
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modification. Shear changes larger than ξ= 45◦ introduce a stress reversal component, with a
complete reversal at ξ= 90◦. The dislocation dissolution, therefore, lowers the reloading yield
stress at large strain path changes.

Quantitative verification of this result was not possible due to absence of experimental data on
shear-shear tests for the material used. However, the results obtained with the enhanced model
have a qualitative trend observed in the experiments for aluminium [Barlat et al., 2003] and
steel [Peeters, 2002; Raphanel et al., 1987].

The discussion in the previous section highlighted that the transient hardening after a strain
path change is mostly determined by the evolution of the internal stress, see Viatkina et al.
[2005b]. The effect of the dislocation dissolution on the hardening behaviour in the simulations
is only significant for high strain path change angles.

5.6 Conclusions

The cell structure model developed in Viatkina et al. [2005b] has been enhanced by
the inclusion of a physically-based description of the evolution of the statistically stored
dislocation distribution. The evolution equations for the local dislocation densities have been
formulated to describe the evolution of a dislocation structure under deformation and its
dissolution upon load reversal. The following dislocation processes are incorporated in the
model:

• Local statistical dislocation mechanisms as creation, annihilation, mobilisation and
remobilisation.

• Cell formation dislocation mechanism as dislocation flux from the cell interiors to the
cell walls.

• Cell dissolution dislocation mechanisms as dislocation flux from the cell walls to the
cell interiors and directional remobilisation, initiated by a load reversal.

To verify the model, a tension-compression and various shear-shear tests on copper have been
simulated. The predicted strain path change effects and Bauschinger effect are in agreement
with experimental data. The following conclusions were drawn from the analysis of the
simulations:

• The increased reloading yield stress after a moderate strain path change results from
the geometrical anisotropy due to the cell structure morphology and the internal stresses
developed during prestraining.

• The decreased reloading yield stress after a large strain path change, which includes
partial load reversal, is due to the internal stresses and the cell structure dissolution. The
internal stresses, previously developed in the material during prestraining, trigger plastic
yield in the cell interiors at a decreased value of the applied stress. The early slip in the
cells activates structure dissolution mechanisms. The dislocation remobilisation in the
cells and the wall-cell flux of dislocations decreases the macroscopic reloading yield
stress.
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• The transient hardening after a strain path change is mainly caused by the adaptation of
the internal stresses to the new loading. The evolution of the internal stresses in the cell
interiors affects the mechanical response in the early stages after reloading, whereas the
adjustment of the internal stresses in the walls governs the further hardening behaviour.
After a load reversal, the hardening rate is, moreover, lowered by a decrease of the
dislocation density in the walls, caused by dissolution.

The enhancement of the cell structure model, introduced here, improved the prediction of the
strain path change effects after large strain path changes, including the Bauschinger effect.
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Chapter 6

The role of plastic slip anisotropy
in the modelling of

strain path change effects

6.1 Introduction

In the engineering practice, most deformation processes are characterised by a non-monotonic
strain history, in which different processing steps rapidly succeed each other. The effect of a
strain path change manifests itself through an altered reloading yield stress and altered transient
hardening compared to the response during the corresponding monotonic deformation of the
same material [Vieira et al., 1990, 2000; Zandrahimi et al., 1989; Bate and Wilson, 1986;
Pedersen et al., 1981]. The macroscopic effect of a strain path change is commonly associated
with the presence and evolution of a dislocation structure in the material. The morphology
of the dislocation structure developed during a particular loading path depends on the loading
characteristics. A dislocation structure is formed to accommodate the current deformation in
a more efficient way (in the sense of the underlying thermodynamics and kinetics). After a
strain path change, the previously formed dislocation structure might have an ’unfavourable’
morphology with respect to the new loading. The resistance and adaptation of the dislocation
structure to the loading in the new direction is typically associated with an altered reloading
yield stress and altered transient hardening.

The effect of the dislocation structure on the macroscopic material response has been actively
investigated over the last half century, both experimentally [Barlat et al., 2003; Young et al.,
1986; Mughrabi et al., 1986; Barker et al., 1989; Bay et al., 1992; Hansen et al., 2001;
Huang and Hansen, 1997; Hansen and Huang, 1997; Winther et al., 2000; Liu et al., 1998;
Zimmer et al., 1983; Ungar et al., 1984; Park and Parker, 1989; Liu and Hansen, 1995; Hughes
et al., 1997] and theoretically [Mughrabi, 1987; Estrin et al., 1998; Argon and Haasen, 1993;
Goerdeler and Gottstein, 2001; Peeters, 2002; Teodosiu and Hu, 1995]. The analysis of the
microscopic deformation mechanisms is essential in order to develop an adequate model for
describing the resulting deformation behaviour.

121
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The material inhomogeneity caused by the formation of the dislocation cell structure has an
obvious influence on the macroscopic deformation behaviour and has been described by means
of a composite model [Mughrabi, 1987]. On this basis, the evolution of the cell morphology
after a strain path change has been studied in Viatkina et al. [2003] (Chapter 3). This evolution
was found to alter the reloading yield stress as well as the hardening rate during the initial stage
following the onset of plastic deformation. The geometry of the cubic cell structure is one of
the sources for the anisotropic behaviour of the material after a strain path change, which
gives rise to a directional dependency of the reloading yield stress [Viatkina et al., 2005b].
Furthermore, internal stresses appear during the deformation of inhomogeneous materials.
They develop during prestraining and are retained in the material as residual stresses, thereby
affecting the reloading yield stress [Viatkina et al., 2005b]. The adjustment of the internal
stresses to the new loading governs the transient hardening behaviour. Besides, a change in
the applied loading causes a redistribution of the dislocations in the material. Dislocation
redistribution in the cell structure triggered by a loading reversal has been analysed in Viatkina
et al. [2005c] (Chapter 5) and was found to reduce the macroscopic reloading yield stress and
the hardening rate.

Plastic slip anisotropy is another micromechanical aspect of the mechanical behaviour which is
often related to the strain path change effect [Schmitt et al., 1991; Raphanel et al., 1987; Bate,
1993]. Plastic deformation in metals is promoted by crystallographic slip, which is restricted
to closely-packed crystallographic planes. Even in the highly symmetric FCC-lattice, the
12 available slip systems do not trigger an isotropic plastic deformation. A change in the
deformation mode causes a change of the active slip system set. For example, suppose a
certain prestrain is realised by a multislip deformation process, subsequently followed by a
new loading that promotes a condition favouring a single slip system; since multislip and
single slip manifest themselves by different stress responses, the change of the deformation
mode will lead to a change in the macroscopic response, even if other strain path change
mechanisms are not considered.

Another source of material anisotropy, related to the crystallographic slip, is latent hardening.
Latent hardening introduces a deformation history dependency into the plastic behaviour of
metals. Plastic deformation promoted by a certain slip system increases the resistance to plastic
slip on other slip systems, i.e. non-active slip systems may harden. Consequently, after a
strain path change, the activation of previously non-active systems may require a different
effort in comparison to the ‘virgin’ slip resistance upon activation of the previously active
slip systems. Experimental studies often correlate the activation of new slip systems after a
strain path change to an increased reloading yield stress [Schmitt et al., 1991]. Theoretical
simulations including latent hardening, on the contrary, have proven the insignificance of this
effect [Jensen and Hansen, 1990; Peeters, 2002] in materials with homogeneous grains, i.e.
without dislocation structures.

This chapter concentrates on the role of the plastic slip anisotropy in the strain path dependency
of materials containing a dislocation cell structure. The cell structure model, developed in
Viatkina et al. [2005b], is extended here by employing a crystal plasticity model for describing
the local material behaviour. This, more physically based description of the plastic behaviour
allows plastic anisotropy resulting from the crystal lattice of a metal to be accounted for.
Simulation results of the original and the extended model are compared to reveal the effect
of slip anisotropy on the strain path change effect.
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6.2 Cell structure model

The deformation behaviour of FCC metals with a dislocation cell structure is modelled here
on the basis of the cell structure model introduced in Viatkina et al. [2005b] (Chapter 4). The
main features of the model are shortly summarised in this section.

Material with a cell structure is idealised by a composite consisting of four uniform
components: the cell interiors and three sets of cell walls. The cell wall component represents
the phase with a high dislocation density and the cell interior component represents the low
dislocation density areas enveloped by the dislocation walls. The cell structure is modelled as a
3D periodic configuration of cuboid cells formed by three sets of mutually perpendicular planar
cell walls. The morphology of the composite, adopted in this chapter, is shown in Fig. 6.1.
Inspired by experimental observations, the cell structure is modelled as a 3D periodic stacking
of cubic cells with dimensions D1 ×D2 ×D3, separated by three mutually perpendicular sets
of cell walls with unit normals �n1, �n2, �n3 and with different thicknesses w1, w2 and w3. The
dislocation densities in the cell walls, ρw1, ρw2, ρw3, respectively, depend on the orientation,
as a result of prior deformation. The spatial orientation of the cell structure is given by the
normals {�n1,�n2,�n3}.

�n3

�n2
�n1

D1

D2

D3

(w1,ρw1)

(w2,ρw2)

(w3,ρw3)

Figure 6.1 — Model geometry of the cell structure and its components.

The average mechanical response of the composite is calculated from the individual
contributions of the local responses of the walls and the cell interiors:

σ̃= fw1σw1 + fw2σw2 + fw3σw3 + (1− fw1 − fw2 − fw3)σc (6.1)

F̃ = fw1F w1 + fw2F w2 + fw3F w3 + (1− fw1 − fw2 − fw3)F c (6.2)

where σ is the Cauchy stress tensor, F = (�∇0�x)T the deformation gradient tensor, and f the
volume fractions of the components. The tilde symbol denotes an averaged quantity, while
the subscripts indicate whether the quantity is associated with the cell interior c or one of the
walls w1, w2, and w3. Additionally, traction continuity and compatibility of deformations are
enforced on the interfaces between the cell interiors and the walls:

(σc −σwi ) ·�nt
i =�0 for i = 1,2,3 (6.3)

(F c −F wi ) · (I −�n0
i �n

0
i ) = 0 for i = 1,2,3 (6.4)
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where �n1, �n2 and �n3 are the normal vectors to the cell-wall interfaces, and the superscripts 0
and t indicate if these vectors are defined in their initial or current configuration, respectively.

6.2.1 Crystal plasticity

According to the cell structure model, the local material behaviour in the cell and wall phases
is assumed to be uniform. A conventional crystal plasticity theory is employed in this chapter
to describe the local material response. The equations listed in this section are equally applied
to the cell and wall components, each with their own deformation history; the subscripts
w1, w2, w3 and c are omitted in the following.

Crystal plasticity theories originate from the early work of Taylor and Elam [1923] who
presented a quantitative description of the plastic deformation in single crystals based on
crystallographic slip. Plastic deformation is assumed to be the collective result of distinct
shear contributions on well-defined slip systems given by the crystallographic planes and the
directions of the highest atomic density. The theory was further developed in the works of Lee
[1969]; Rice [1971]; Hill and Rice [1972]; Asaro and Rice [1977].

The kinematics commonly used in crystal plasticity depart from the multiplicative
decomposition of the deformation gradient tensor F into an elastic and a plastic part,

F = F e ·F p (6.5)

where the elastic deformation is represented by F e , which also accounts for superimposed rigid
body rotations, and where F p is the plastic contribution arising solely from crystallographic
slip in the undeformed configuration. The plastic slip rate γ̇q on a slip system q , defined by the
normal to the slip plane �nq and the slip direction �mq in the initial configuration, contributes to
the plastic velocity gradient tensor Lp through the following crystallographic split:

Lp =∑
q
γ̇q �mq�nq (6.6)

where Lp determines the evolution of the plastic deformation gradient tensor F p according to:

Ḟ p = Lp ·F p (6.7)

For the elastic part of the deformation, the fictitious stress-free intermediate configuration
defined by the plastic deformation gradient tensor F p is considered as the reference state,
implicitly assuming that the elastic behaviour is not affected by the plastic slip. In this
contribution the isotropic elasticity tensor C (expressed in the shear modulus G and Poisson’s
ratio ν) relates the stress tensor τ to the elastic Green-Lagrange strain tensor E e in a classical
manner

τ=C : E e , E e ≡ 1

2
(F T

e ·F e − I ) (6.8)

The stress measure τ used here is the second Piola-Kirchhoff stress related to the stress-free
intermediate configuration and coupled to the Cauchy stress tensor σ by:

τ≡ F−1
e · [det(F e )σ] ·F−T

e (6.9)
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Further, in the present rate-dependent formulation each slip rate γ̇q depends on the actual
resolved shear stress sq and the slip resistance σ

q
y on that slip system according to the slip law:

γ̇q = γ̇0

{
|sq |
σ

q
y

}1/m

sign(sq ), sq ≡ s : �mq�nq , s =τ+β, (6.10)

where γ̇0 denotes a reference value of the slip rate, σq
y is the evolving slip resistance, m is the

strain rate sensitivity parameter and β is the internal stress (opposite of the back stress). This
slip law incorporates isotropic hardening through σ

q
y and kinematic hardening through β.

The internal stresses developed under deformation in a material with a cell structure were
determined in Viatkina et al. [2005b], accounting for a continuous approximation of the
crystallographic cell-wall incompatibility. The heterogeneity of the material, introduced by
the cell structure causes a nonuniform field of plastic deformation during external loading. As
a result, the plastic deformation presents jumps across the interfaces between the hard (cell
walls) and soft phases (cell interiors), which have to be accommodated by polarised layers of
geometrically necessary dislocations (GNDs) at these interfaces. It is known that the resulting
dislocation network may substantially affect the mechanical behaviour by inducing internal
stresses. On the contrary, in the cell structure model, the statistically stored dislocations (SSDs)
in the wall and cell interior phases are randomly distributed and therefore the resulting stress
fields will compensate each other, cancelling out their contribution to long-range effects. The
internal stresses created by the GNDs at the interfaces were determined in Viatkina et al.
[2005b] (Chapter 4) as a function of the plastic incompatibility and the cell geometry within
a continuum framework, i.e. without accounting for the crystallographical character of slip.
These internal stresses will be used here as well, constituting an adequate approximation for
the real stresses induced by the crystallographic plastic incompatibilities.

The slip resistance σ
q
y on a slip system q is related to the dislocation densities by the hardening

relation [Evers et al., 2002]

σ
q
y =Gb

√∑
u

Aqu |ρu |, (6.11)

where G is the shear modulus, b the magnitude of the Burgers vector, Aqu are interaction
coefficients between slip systems q and u, and ρu the local densities of the SSDs on the slip
system u. The dislocation interaction coefficients of the matrix Aqu depend on the interaction
types between dislocations on different slip systems, as documented by Franciosi and Zaoui
[1982]. In this chapter, the interactions between the dislocations belonging to the same slip
system, i.e. u = q , and different slip systems, i.e. u �= q , are distinguished.

6.2.2 Statistically stored dislocations

The slip resistance σ
q
y is related to the local density of statistically stored dislocations (SSDs)

ρu by Eq. (6.11). This relation is applied to the cell interiors as well as to the cell walls,
each with their own SSD density. The dislocation densities in the corresponding phases are
defined next. To describe the evolution of the SSDs in the cell structure under deformation the
following equations are adopted:

ρ̇
q
c = 1

b

(
1

Lq
c

−Rρ
q
c

)
|γ̇q

c |−Qq
c with ρ

q
c

∣∣
t=0 = ρ0 (6.12a)
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ρ̇
q
wi =

1

b

(
1

Lq
wi

−Rρ
q
wi

)
|γ̇q

wi |+Qq
wi with ρ

q
wi

∣∣
t=0

= ρ0 for i = 1,2,3 (6.12b)

The two first terms on the right-hand sides of the evolution equations account for dislocation
creation (|γ̇q |/[bLq ]) and dislocation annihilation (Rρq |γ̇q |/b), respectively. The last terms on
the right-hand sides of both equations are introduced to describe the dislocation flux from the
cell interiors to the cell walls, analogous to the ’continuum’ flux introduced in Viatkina et al.
[2005b] (Chapter 4). The initial dislocation density in the undeformed material is defined
by ρ0, which is assumed to be homogeneous. The material parameter R associated with
annihilation is related to the critical annihilation distance, which is here taken constant. The
parameters Lq

c and Lq
wi represent the mean free paths of the mobile dislocations in system q of

cells and walls respectively. The following relations, adopted from Teodosiu et al. [1993], are
used to quantify them:

Lq
c = 1

I

( ∑
u �=q

ρu
c

)−1/2

(6.13)

Lq
wi =

1

I

( ∑
u �=q

ρu
wi

)−1/2

i = 1,2,3 (6.14)

where I is a material parameter.

The dislocation fluxes Qq
c and Qq

wi govern the redistribution of dislocations. These fluxes
trigger the creation and evolution of the dislocation structure and manifest themselves through
an increasing difference between the dislocation densities in the cell and walls. To quantify the
flux Qq

c from the cell interiors to the cell walls, it is assumed that, on each slip system, a fixed
fraction of all created mobile dislocations in the cell interior leave the cell interior to join the
cell walls. The amount of created mobile dislocations present in the cells is given by the first
contribution in the evolution equation (6.12a). Thus, this assumption can be formalised by:

Qq
c =C

1

bLq
c

|γ̇q
c | (6.15)

where the fixed fraction C represents a material dependent constant. Thus, the total density
flux from cells to walls can be found by summation over all the slip systems:

Q =∑
q

Qq
c (6.16)

The dislocation flux Qq
wi that arrives in the walls can be written as,

Qq
wi =

|γ̇q
wi |∑

u
|γ̇u

wi |
Qwi with Qwi = 1− fw1 − fw2 − fw3

fw1 + fw2 + fw3
Q (6.17)

Here, it is assumed that the dislocations leaving the cell interior are equally distributed between
all walls. First Qwi is calculated such that the total amount of dislocations in the material is
preserved, after which the dislocation flux on each system Qq

wi is obtained by redistributing
Qwi over all walls proportionally to the slip activity in each wall.
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Table 6.1 — Parameters for copper.

Paramter Symbol Unit Value

Shear modulus G [GPa] 41.7

Poisson’s ratio ν [−] 0.34

Length of the Burgers vector b [nm] 0.257

Cell size D1 = D2 = D3 [μm] 2.5

Wall volume fractions f1 = f2 = f3 [−] 0.18

Strain rate sensitivity m [−] 0.012

Reference slip rate value γ̇0 [1/s] 0.001

Table 6.2 — Dislocation density parameters for copper.

Parameter Symbol Unit Value

Initial dislocation density ρ0 [m−2] 9.0·1013

Creation rate parameter I [−] 0.1

Annihilation rate parameter R [nm] 2.0

Dislocation flux constant C [−] 0.6

Interaction coefficient Aqq [−] 0.06

Interaction coefficient Auq , q �= u [−] 0.6

6.2.3 Polycrystal model

Together, the Eqs. (6.1)–(6.17) describe the deformation behaviour of a single crystal with
a cell structure. The response of a polycrystal consisting of a number of single crystal
contributions is obtained here by invoking the Taylor assumption. Hence the deformation
in each separate grain of the polycrystal is taken equal to the macroscopic deformation of the
polycrystal. The macroscopic value of the stress tensor is then obtained by averaging the stress
tensors over the total number of grains.

6.3 Results

The material parameters used for the simulations in this section were identified in Viatkina
et al. [2005b] for the deformation behaviour of copper. The additional parameters needed for
describing the crystallographic slip, m, γ̇0 and Aqu , were chosen according to typical values
for copper [Evers et al., 2002]. The parameters are summarised in Tables 6.1 and 6.2.

To verify the model performance, two-step sequential shear tests were simulated for
polycrystalline copper with a cell structure. The scheme of the test is depicted in Fig. 6.2.
To simulate the response of a material with a cell structure and crystal lattice anisotropy, the
orientation of the structure as well as the orientation of the lattice should be defined with
respect to a macroscopic basis. First, a polycrystal was assembled from 500 grains with lattice
orientations defined with respect to a macroscopic basis {�R1,�R2,�R3}, introduced in Fig. 6.2.
Next, a number of simple shear tests were calculated employing different shearing directions,
defined in Fig. 6.2 with angle ξ between the shearing direction �x1 and the basis vector �R1.
Then, elastic unloading, defined as the state with zero macroscopic stress, was simulated
and simple shear in the direction �R1 was applied. This procedure corresponds to a typical
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ξ

�x1

�x2

γ1

γ2

�R1

�R2

Figure 6.2 — Scheme for two-step sequential shear tests.

experimental setting to study strain path change effects, e.g. Schmitt et al. [1991]. In the
experiments, the specimens for the first loading step are cut from the original metal in different
directions with respect to a reference direction. I.e., the initial texture is inherited from the
original material and defined with respect to the original metal sheet. Then the second loading
steps are applied in the reference direction.

It is further assumed that during the first loading step, a cell structure develops along the
macroscopic shear plane, i.e. one cell wall is parallel to the shear plane and one cell wall is
perpendicular to the shear direction. This choice for the structure orientation corresponds to the
formation of a cell structure along the macroscopic plane with maximum shear as confirmed
by experimental observations [Zhu and Sellars, 2001]. Thus, with respect to the cell structure,
the loading during the first step is equivalent for all test cases, while the loading in the second
step, with respect to the cell structure, depends on the strain path change defined by ξ.

Simple shear is a deformation driven process, therefore the macroscopic deformation was
applied to each grain of the polycrystal. In the shear-shear tests, the first shear step was
simulated by applying the following deformation gradient tensor:

F̃ = I + ε̇t�x1�x2 (6.18)

where �x1 and �x2 are local unit base vectors defined for each test case as shown in Fig. 6.2.
The applied strain rate ε̇ is set equal to 5 ·10−4 [s−1]. The orientation of the shearing direction
�x1 with respect to the reference direction �R1 is defined by the angle ξ. The calculations were
performed for ξ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, until a macroscopic strain of 10% was
reached.

For the second step of the shear-shear tests, the loading was always applied in the reference
direction:

F̃ = I + ε̇t�R1
�R2 (6.19)

To evaluate the strain path change effect in the shear-shear tests, the reloading yield stress σy

is found further as a function of the strain path change angle ξ. The reloading yield stress
was defined as the macroscopic shear stress σ at which the macroscopic hardening rate after
reloading drops to the level of the macroscopic hardening rate in the monotonic test at the
prestrain value εpr e , i.e.

dσ

dε
= dσmon

dε

∣∣∣ε=εpr e (6.20)
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Figure 6.3 — Random distribution of initial
grain orientation represented by a {111}
stereographic pole figure.
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Figure 6.4 — Stress-strain diagrams for monotonic
shear tests, to be considered as prestrain loadings, in
different orientations with respect to the reference basis.

6.3.1 Polycrystal with random grain orientation

The cell structure model extended with a crystal plasticity framework, introduced in this
chapter, accounts for four sources of anisotropy: 1) geometrical anisotropy due to the
configuration of the cell structure; 2) anisotropy due to the internal stresses associated with
the cell structure 3) slip anisotropy and 4) textural anisotropy. The qualitative and quantitative
effects of the first two sources of strain path dependency were discussed in Viatkina et al.
[2005b] (Chapter 4). In the following simulation results, textural anisotropy is inhibited by
considering a random distribution of grain orientations in the polycrystal, as shown in Fig. 6.3.
Fig. 6.4 shows the stress-strain diagrams simulated for the initial shear steps, i.e. for monotonic
shearing in various directions defined by ξ. It can be seen that the random orientation of
the grains in the polycrystal provides an almost isotropic macroscopical response. However,
the reloading yield stresses, depicted in Fig. 6.5a, calculated for the shear-shear tests for the
polycrystal depend on the prestrain direction, manifesting material anisotropy provided by the
first three sources.

Alternatively, the mechanical response of the polycrystal with a random distribution of grain
orientations can be predicted by applying the mean field approach adopted for the cell structure
model in Viatkina et al. [2005b] (Chapter 4). The original cell structure model [Viatkina
et al., 2005b] employs continuum Von Mises elastoplasticity for the local material behaviour.
Besides the adopted Taylor assumption, the main difference between the present model and
the model of Viatkina et al. [2005b] is the local material behaviour – the first accounts for
slip anisotropy, while the latter assumes isotropic plastic deformation. Therefore, to estimate
the contribution of the slip anisotropy to the strain path change effect, the present calculation
results for the reloading yield stress will be compared with the results obtained employing the
cell structure model of Viatkina et al. [2005b] (Chapter 4).

For the calculations with the cell structure model [Viatkina et al., 2005b] the same set of
material parameters and the same cell geometry (Tables. 6.1 and 6.2) were used, leading to a
comparable macroscopic response under monotonic shear as shown in Fig. 6.4. The reloading
yield stresses were calculated with the use of this model for the shear-shear experiments and
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elastoplasticity [Viatkina et al., 2005b].

Figure 6.5 — Reloading yield stresses in shear-shear tests as a function of the strain path change angle
ξ, εpr e = 0.1.

the results are shown in Fig. 6.5b.

The results of the two cell structure models can be compared by examining Figs. 6.5a and
6.5b. Note that only a qualitative comparison is possible, since the actual model accounts for
the polycrystalline nature of the material, although with randomly distributed grains, while the
original model [Viatkina et al., 2005b] operates under the mean field assumption. Besides,
the models employ different evolution laws for the dislocation densities, which results in
different evolutions of the material inhomogeneity. In spite of the differences, it can be
seen that for small to moderate strain path changes the results of the two models are in
qualitative agreement, which indicates that the effect of the cell structure is dominant and the
slip anisotropy effect is less significant. The similarity between the results predicted with the
two models also indicates that a “continuum” approach as presented in Viatkina et al. [2005b]
is adequate for the modelling of the strain path dependency of polycrystals with random initial
grain orientation.

6.3.2 Polycrystal with cube texture

To demonstrate the contribution of the textural anisotropy to the strain path dependency, a
polycrystal with a cube texture is considered in subsequent simulations. The shear-shear
simulations are performed in the same way as described above, using the parameters for
copper, see Tables 6.1 and 6.2. The initial orientation of the grains in the simulated polycrystal
is shown in Fig. 6.6a.

Fig. 6.6b shows the reloading yield stresses in shear-shear tests as a function of the strain
path change angle ξ, after 10% of prestrain in shear. The simulation is performed using the
cell structure model proposed in this chapter, i.e. the local material behaviour is described
with crystal plasticity. The figure shows two results, one for a polycrystal with random grain
orientation and another for a polycrystal with a cube texture. It can be seen that the textural
anisotropy, present in the second case, has a significant effect on the reloading yield stress.
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(a) Distribution of the initial grain orientation
represented by a {111} stereographic pole figure.
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(b) Reloading yield stresses in shear-shear tests as a
function of the strain path change angle ξ, εpr e = 0.1.

Figure 6.6 — Simulation for a copper polycrystal with cube texture.

It was shown in many theoretical investigations [Jensen and Hansen, 1990; Peeters, 2002] that
in polycrystals with homogeneous grains, i.e. without a dislocation cell structure, slip and
textural anisotropy alone produce a negligible strain path change effect. The effect found here
is mainly due to the effect of the slip anisotropy on the distribution of the internal stresses in
each grain. Fig. 6.7 shows the evolution of the internal stresses in the cell structure during
monotonic shear simulated for grains with different lattice orientations, defined by the Euler
angles. Due to the slip anisotropy, the internal stresses exhibit a strong dependency on the
lattice orientation. Via the internal stresses, the grain orientation influences the reloading
deformation behaviour of grains after strain path changes. In the case of a polycrystal with
randomly oriented grains, the effects of the slip anisotropy on the deformation behaviour of
individual grains cancel out each other and do not provide a contribution to the macroscopic
behaviour. In the case of a textured polycrystal, due to textural anisotropy, the effects of
the slip anisotropy on the internal stresses contribute to the macroscopic response. Thus, the
slip anisotropy may have an essential quantitative influence on the strain path dependency in
textured polycrystals.

6.4 Conclusions

The cell structure model proposed by Viatkina et al. [2005b], has been extended with a crystal
plasticity framework for the description of the local deformation behaviour in the structure.
The modification allows accounting for crystallographic slip anisotropy.

Two-step sequential shear tests were simulated for a random polycrystal with a cell structure.
The influence of slip anisotropy on the strain path change effects has been investigated by
comparing reloading stresses predicted with the use of crystal plasticity and when applying
isotropic elastoplasticity [Viatkina et al., 2005b] to model the local material behaviour. The
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(a) Predicted with the model in Viatkina et al.
[2005b].
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(b) Grain orientation {44◦,113◦,156◦}.
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(c) Grain orientation {67◦,93◦,95◦}.
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(d) Grain orientation {0◦,−135◦,−98◦}.

Figure 6.7 — Effect of the slip anisotropy on the distribution of the internal stresses. Evolution of the
internal stresses β12 during monotonic shearing in the reference direction (ξ= 0◦). b)-d) Predicted with
the present model for different grains, the grain orientations are given by the Euler angles.

prediction of the reloading yield stress employing the enhanced model demonstrates the same
trend as predicted by the former model, without slip anisotropy. It was concluded that
the continuum micromechanical version of the model, developed in Viatkina et al. [2005b],
provides an adequate estimate of the average polycrystal behaviour in case of a random texture.

The slip anisotropy effect on the strain path dependency has been demonstrated with
simulation results for a polycrystal with a cube texture. The effect of the slip anisotropy
was explained by the sensitivity of the internal stress distribution to the plastic slip details.
Thus, for an accurate prediction of strain path change effects in textured polycrystals plastic
anisotropy should be taken into account.
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Conclusions

The research presented in this thesis has been dedicated to the investigation of the
microstructural mechanisms responsible for the strain path dependent response observed in
FCC metals. The approach introduced is based on the assumption that strain path change
effects originate from the inhomogeneity introduced in the material by an evolving dislocation
cell structure. Different aspects of the deformation behaviour of metals with a cell structure
have been considered. In Chapter 3 the morphology evolution of a cell structure under complex
deformation and its effect on the macroscopic behaviour was studied. Next, in Chapter 4,
attention was focused on the influence of the geometrical anisotropy of the cell structure and
the effect of the internal stresses developing in the material under deformation. In Chapter 5
the dislocation redistribution in a cell structure upon load reversal and the corresponding
macroscopic effects were considered. This was followed by an analysis of the contribution
of plastic slip anisotropy to the strain path change effects in Chapter 6. Moreover, in Chapter 2
the formability effects have been discussed.

A continuum model of a metal with a dislocation cell structure has been proposed in order to
describe strain path dependency effects. The model was developed throughout the chapters to
incorporate the corresponding deformation mechanisms. The main components introduced in
the cell structure model can be summarised as follows:

• Mean field approximation:
The mean response of a polycrystal material with a nonuniform dislocation structure is
described by means of the mechanical behaviour of a model material containing uniform
dislocation cells. The geometry and the orientation of the modelled cells represent the
average morphology of a real cell structure in a polycrystal.

• Composite model:
A material with a dislocation cell structure is idealised as a two-phase periodic
composite, consisting of cell walls and cell interiors, differing through their local
dislocation densities. Traction continuity and compatibility of the deformation are
enforced at the interfaces.

• Local material behaviour:
Consistent with the mean field approximation, the local material behaviour of the cell
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and wall components is assumed to be uniform and is modelled by elastoplasticity,
including isotropic and kinematic hardening. Two different approaches have been
pursued: J2 elastoplasticity and crystal plasticity. In both cases, the isotropic hardening
is related to the local densities of the statistically stored dislocations, while the kinematic
hardening is associated with the development of internal stresses.

• Internal stresses:
The internal stresses are derived as a natural result of the plastic deformation
incompatibility between the cell interiors and the cell walls. These stresses are
interpreted as the long-range effect of the geometrically necessary dislocations
that appear at the interfaces to accommodate the discontinuities in the plastic
deformation. The internal stresses are shown to be a function of the plastic deformation
incompatibility and the cell geometry.

• Dislocation density evolution:
Physically-based evolution equations for the local density of the statistically stored
dislocations are formulated to describe the formation of a dislocation structure under
deformation and its dissolution upon load reversal.

• Morphology evolution:
Phenomenological evolution equations are proposed for the cell size and the wall
thickness. The equations describe dislocation cell development under deformation and
cell dissolution and disruption after a strain path change.

The model has been verified by simulating two-step tests with various strain path changes and
comparing the results with experimental data for FCC metals. The model captures the essential
features of the strain path change effects:

• An increased reloading yield stress after small to moderate strain path changes.

• A decreased reloading yield stress after large strain path changes, including load
reversal.

• An increase of the effects with the amount of prestrain.

• A dependency of the effect on the amplitude of the strain path change.

• Transient hardening and hardening recovery after a strain path change.

The deformation behaviour of metals with a developing dislocation cell structure has been
analysed using the cell structure model, leading to the following conclusions:

• The increased reloading yield stress after a moderate strain path change results from (1)
the geometrical anisotropy due to the cell structure geometry, (2) the internal stresses
developed during prestraining, (3) the transient structural dissolution expressed as an
increase of the thicknesses of the cell walls.

• The decreased reloading yield stress after a large strain path change, which includes
(partial) load reversal, is due to the internal stresses and the dissolution of the cell
structure. The internal stresses, previously developed in the material during prestraining,
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trigger local plastic yield in the cell interior at lowered applied stress values. The
early slip in the cells then activates the dissolution of the structure, which includes
dislocation remobilisation in the cells, a dislocation flux from the walls to the cells,
and cell disruption expressed as an increase of the cell size. These mechanisms lower
the macroscopic reloading yield stress.

• The transient hardening after a strain path change is mainly influenced by the adjustment
of the internal stresses to the new loading. The evolution of the internal stresses in
the cell interiors affects the deformation behaviour in the early stages after reloading,
whereas the adjustment of the internal stresses in the walls governs the subsequent
hardening behaviour. After a load reversal, the hardening rate is also lowered by a
decrease of the dislocation density in the walls, caused by dissolution.

• The increase of the strain path change effect along with the amount of prestrain is related
to an increase of the inhomogeneity caused by the development of a cell structure.

• Slip anisotropy influences the reloading deformation behaviour mostly due to its effect
on the internal stress distribution.

The developed cell structure model has been shown to be a powerful tool for the theoretical
study of the deformation behaviour of metals with a dislocation cell structure. The model
predicts strain path change effects and offers a computationally efficient method which lends
itself for application in macroscopic engineering computations.

This research dealt with a detailed study of the micromechanical mechanisms causing the
strain path change dependency in metals with a dislocation cell structure. Each of the studied
mechanisms has been incorporated in the proposed cell structure model and their contributions
to the strain path change effects have been investigated. Obviously, the unique identification
of all material parameters remains a challenge. To this purpose, the relative contributions
of the deformation mechanisms to the macroscopic effects should be investigated further.
The experimental data available in the literature was, unfortunately, rather incomplete to
resolve this problem in this thesis. Further theoretical research, therefore, should be inevitably
combined with a thorough experimental study.

Based on the analyses performed and the results obtained, the following issues are
recommended for further investigation:

• The cell structure geometry evolution has been proven to have a significant contribution
to the deformation behaviour after a strain path change. A phenomenological model
for the development of the structure has been proposed in Chapter 3, describing both
the dissolution and the disruption. The model can be improved by a more physically-
based approach. Additionally, as was emphasized in Chapter 4, the prediction of
the transient hardening behaviour should be improved by taking into account the cell
structure reorientation after a strain path change.

• The development of the cell structure under deformation causes an increase of the strain
path change effect with an increase of the amount of prestrain. The development of the
cell structure has been modelled with a phenomenological evolution equation for the
dislocation flux from the cell interior to the walls. An improvement of this equation is
required if a better prediction of the related macroscopic effect is desired.
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• The cell structure model can be used for further research of strain path change effects.
For instance, this thesis includes results obtained using cubic cells with equally thick
cell walls. The model, however, is not restricted to this simplification and less regular
geometries can be considered as well.

• The cell structure model can be used to investigate the thermodynamical concept of the
cell structure evolution. The approach used in the subsection “Internally stored energy
as a function of the cell geometry” in Chapter 4 can be further developed to investigate
the evolution of the structure, if this evolution driven by an energy minimisation during
each deformation increment (power minimisation).

• To investigate formability properties on the basis of a cell structure model and the
crystallographic texture, this model can be incorporated in a predictive tool for the
assessment of forming limits as developed in Chapter 2.
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