
 

A functional Hilbert space approach to the theory of wavelets

Citation for published version (APA):
Duits, M., & Duits, R. (2004). A functional Hilbert space approach to the theory of wavelets. (RANA : reports on
applied and numerical analysis; Vol. 0407). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/4b09ca82-6ef5-4a37-9b13-786888bb8a61


A Functional Hilbert Space Approach to the Theory of
Wavelets

Maurice Duits Remco Duits

29th February 2004

Abstract

We approach the theory of wavelets from the theory of functional Hilbert spaces.
Starting with a Hilbert space H, we consider a subset V of H, for which the span is
dense in H. We define a function of positive type on the index set I which labels the
elements of V . This function of positive type induces uniquely a functional Hilbert
space, which is a subspace of CI and there exists a unitary mapping from H onto
this functional Hilbert space. Such functional Hilbert spaces, however, are not easily
characterized.
Next we consider a group G for the index set I and create the set V using a repre-
sentation R of the group on H. The unitary mapping between H and the functional
Hilbert space is easily recognized as the wavelet transform. We do not insist the
representation to be irreducible and derive a generalization of the wavelet theorem
as formulated by Grossmann, Morlet and Paul. The functional Hilbert space can in
general not be identified with a closed subspace of L2(G), in contrast to the case of
unitary, irreducible and square integrable representations.
Secondly, we take for G a semi-direct product of two locally compact groups S o T ,
where S is abelian. In this case we give a more tangible description for the functional
Hilbert space, which is easier to grasp.
Finally, we provide an example where we take H = L2(R2) and the Euclidean mo-
tion group for G. This example is inspired by an application of biomedical imaging,
namely orientation bundle theory, which was the motivation for this report.
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1 Introduction

In the last twenty years a lot has been written about the theory of wavelets. In 1985 Gross-
mann, Morlet and Paul published an article [GMP] which can be seen as the fundament of
the theory of wavelet transformations based on group representations. Their main result
was that the wavelet transformation(

Wψf
)
(g) = (Ugψ, f)H (1.1)

defines a unitary mapping from a Hilbert space H onto L2(G) for a suitable vector ψ ∈ H,
where G is a locally compact group with a unitary, irreducible and square integrable
representation U of G in H. A square integrable representation is a representation for
which a ψ exist such that

Cψ =
1

‖ψ‖2
H

∫
G

(Ugψ, ψ)H dµG(g) <∞, (1.2)

where µG is a left invariant Haar measure.

The irreducibility condition is very strong. A lot of interesting representations are not
irreducible at all.Therefore it is often suggested, to replace the condition of irreducibility
by the condition that the representation is cyclic, i.e. it has a cyclic vector, i.e. a vector for
which the span of the orbit under U is dense in the Hilbert space. But no really successful
unitarity results were obtained. For a nice overview of some posed suggestions, see [FM].

This report is mainly focused on the questions when and in what way the above wavelet
transform defines a unitary mapping. In our opinion we succeeded answering these ques-
tions in the most general way by using the theory of functional Hilbert spaces (often also
named the theory of reproducing kernels). The idea of working with these kind of spaces
is inspired by the identity∣∣(Wψf

)
(g)
∣∣ ≤ ‖Ugψ‖H‖f‖H. (1.3)

This identity states that if the wavelet transformation defines a unitary mapping from (a
subspace of) H onto another space CG

K , then point evaluation on elements of this space is
a continuous continuous linear functional. So the latter space is a functional Hilbert space
and it admits a reproducing kernel K. Furthermore, this space will consist of complex-
valued functions on G. This explains the notation CG

K .

First we derive a unitarity result using functional Hilbert spaces where no group representa-
tions are involved at all. Starting from a Hilbert space H and a subset V ⊂ H labelled with
index set I, we construct a functional Hilbert space CI

K and a unitary mapping between H
and CI

K . This construction is the most fundamental result of this report.

4



Figure 1: Overview of the contents

Later, we take a group G for I and construct V by means of a representation R of G on
H and use this unitarity result, which leads straightforwardly to the wavelet transforma-
tion. The conditions we impose on the representation are quite simple: none! For every
representation and ψ ∈ H we define a unitary mapping from a closed subspace of H to a
functional Hilbert space CG

K . This closed subspace is equal to H if and only if ψ is a cyclic
vector.

Although the above solves the unitarity questions, the functional Hilbert space is not
easily characterized. Therefore we are challenged to find an alternative description of it.
As mentioned before, this has already be done for irreducible representations but we also
managed to give an easy to grasp description of the functional Hilbert space in the case
H = L2(S) and G = S o T for an abelian group S and an arbitrary group T . As an
example we work out the case S = R2 and T = T so G is the Euclidean motion group.
The idea to consider semi-direct products is not new, several articles have been written on
this subject. See for example [FK], [FM].
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2 Constructing unitary maps from a Hilbert space to

a functional Hilbert space

2.1 Introduction

In this section our aim is to construct unitary maps from a Hilbert space H into a Hilbert
space CI

K which is a vector subspace of CI, where I is a set. Here CI stands for the space
of all complex-valued functions on I.

We say that a Hilbert space H consisting of functions on a set I is a functional Hilbert
space, if the point evaluation is continuous. Then, by the Riesz-representation theorem,
there exists a set {Km | m ∈ I} with

(Km, f)H = f(m), (2.4)

for all m ∈ I and f ∈ H. It follows that the span of the set {Km | m ∈ I} is dense in CI
K .

Indeed, if f ∈ H is orthogonal to all Km then f = 0 on I.

Then define K(m,m′) = Km′(m) = (Km, Km′)H, for m,m′ ∈ I. K is called the reproduc-
ing kernel. It is obvious that K is a function of positive type on I, i.e.,

n∑
i=1

n∑
j=1

K(mi,mj)cicj ≥ 0, (2.5)

for all n ∈ N, c1, ..., cn ∈ C, m1, ...,mn ∈ I.

So to every functional Hilbert space there belongs a reproducing kernel, which is a function
of positive type. Conversely, as Aronszajn pointed out in his paper [A], a function K of
positive type on a set I, induces uniquely a functional Hilbert space consisting of functions
on I with reproducing kernel K. We will denote this space with CI

K . Without giving a
detailed proof we mention that CI

K can be constructed as follows; start with K : I×I → C,
a function of positive type and define Km = K(·,m). Now take the span 〈{Km | m ∈ I}〉
and define the inner product on this span as(

l∑
i=1

αiKmi ,
n∑
j=1

βjKmj

)
CI
K

=
l∑

i=1

n∑
j=1

αiβjK(mi,mj). (2.6)

This is a pre-Hilbert space. After taking the completion we arrive at the functional Hilbert
space CI

K .

There exists a useful characterization of the elements of CI
K .
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Lemma 2.1 Let K be a function of positive type on I and F a complex-valued function
on I. Then the function F belongs to CI

K if and only if there exists a constant γ > 0 such
that ∣∣∣∣∣

l∑
j=1

αjF (mj)

∣∣∣∣∣
2

≤ γ
l∑

k,j=1

αkαjK(mk,mj), (2.7)

for all l ∈ N and αj ∈ C, mj ∈ I, 1 ≤ j ≤ l.

Proof: See [Ma, Lemma 1.7, pp.31] or [An, Th. II.1.1].

This lemma enables us to give an expression for the norm of an arbitrary element in
CI
K .

Lemma 2.2 Let F ∈ CI
K. Then

‖F‖2
CI
K

= sup


∣∣∣∣∣

l∑
j=1

αjF (mj)

∣∣∣∣∣
2( l∑

k,j=1

αkαjK(mk,mj)

)−1

∣∣∣∣∣∣ l ∈ N, αj ∈ C, mj ∈ I,

∥∥∥∥∥
l∑

k=1

αkKmk

∥∥∥∥∥
CI
K

6= 0

 . (2.8)

Proof: The statement is equivalent to

‖F‖2
CI
K

= sup

{∣∣(F,G)CI
K

∣∣2
‖G‖2

CI
K

∣∣ G ∈ 〈{Km | m ∈ I}〉

}
.

Since 〈{Km | m ∈ I}〉 is dense in CI
K , the statement follows. �

For a detailed discussion of functional Hilbert spaces see [A], [An] or [Ma].

2.2 Construction of a unitary map

Starting with some labelled subset V of H, we will construct a functional Hilbert space by
means of a function of positive type on the index set, using the construction as described
in the introduction. Moreover, there exists a natural unitary mapping from 〈V 〉 to this
functional Hilbert space.
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Let H be a Hilbert space. Let I be an index set and

V := {φm | m ∈ I}, (2.9)

be a subset of H. We can easily build a function K : I× I → C of positive type on I by

K(m,m′) = (φm, φm′)H. (2.10)

From this function of positive type the space CI
K can be constructed.

The following theorem is the starting point of this report.

Theorem 2.3 (Abstract Wavelet Theorem) Define W : 〈V 〉 → CI
K by(

Wf
)
(m) = (φm, f)H. (2.11)

Then W is a unitary mapping.

Proof:
Here 〈V 〉 inherits the inner product from H. First we show that Wf ∈ CI

K for
any element f ∈ 〈V 〉 and that W is bounded (and therefore continuous). If
f ∈ 〈V 〉 then∣∣∣∣∣

l∑
j=1

αj
(
Wf

)
(mj)

∣∣∣∣∣
2

=

∣∣∣∣∣
l∑

j=1

αj(φmj , f)H

∣∣∣∣∣
2

=

∣∣∣∣∣∣
(

l∑
j=1

αjφmj , f

)
H

∣∣∣∣∣∣
2

≤

∥∥∥∥∥
l∑

j=1

αjφmj

∥∥∥∥∥
2

H

‖f‖2
H =

(
l∑

k,j=1

αkαjK(mk,mj)

)
‖f‖2

H,

for all l ∈ N, α1, ..., αl ∈ C, and m1, ...,mn ∈ I. So Wf ∈ CI
K by Lemma

2.1 and ‖Wf‖2
CI
K
≤ ‖f‖2

H, by Lemma 2.2. Next we prove that W is an isom-

etry. Because
(
φm′
)
(m) = K(m,m′), W maps a linear combination

∑
i αiφmi

onto the linear combination
∑

i αiK(·,mi). So W (〈V 〉) = 〈{K(·,m)|m ∈M}〉.
Moreover, it maps 〈V 〉 isometrically onto 〈{K(·,m)|m ∈ I}〉, because(

W
(∑

i

αiφmi
)
,W
(∑

j

βjφm′j
))

CI
K

=

(∑
i

αiK(·,mi),
∑
j

βjK(·,m′
j)

)
CI
K

=
∑
i,j

αiβjK(mi,m
′
j) =

∑
i,j

αiβj(φmi , φm′j)H.

Since 〈V 〉 is dense in 〈V 〉 and W is bounded on 〈V 〉 it follows that W is an
isometry, . Furthermore, W [〈V 〉] is dense in CI

K . So W is also surjective and
therefore unitary. �

In most cases we are mainly interested in the case 〈V 〉 = H, i.e. V is total in H. To get a
feeling for what is happening we now deal with two illustrating examples.
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2.2.1 The special case I = N

Let H be a separable Hilbert space consisting of functions on the set I = N. Now let
V = {φm | m ∈ N} consist of an orthonormal basis, so 〈V 〉 = H. Then,

K(m,m′) = (φm, φm′)H = δmm′ , (2.12)

for all m,m′ ∈ N. This means that we just get CN
K = l2(N). The unitary map W gives us

the sequence of expansion coefficients cm of a vector f ∈ H with respect to the orthonormal
basis. This is the most trivial example of a frame.

2.2.2 The special case I = H

Now let I = H and V = {m|m ∈ H} = H. The function of positive type is just the inner
product

K(m,m′) = (m,m′)H. (2.13)

This means that CI
K = CH

(·,·)H . This is the functional Hilbert representation of an arbitrary
Hilbert space. It is equal to the topological dual space H′, the space of all continuous
linear functions on H.

2.2.3 The functional Hilbert space

The functional Hilbert space CI
K is an abstract construction. We are challenged to find

alternative characterizations of these functional Hilbert spaces.

In the literature two major classes of functional Hilbert spaces appear; Hilbert spaces of
Bargmann-type and of Sobolev-type. The first type consists of a nullspace of unbounded
operators on L2(I, µ) and the second of the domain of unbounded operators on L2(I, µ).
For Bargmann-type spaces see [B]. For Sobolev-type, see [EG1] and [EG2].
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3 Functional Hilbert spaces on groups

3.1 Construction of V using group representations

From now on we will assume I to be a group G. Furthermore, we assume the group to
have a representation on H, i.e. a map R from G onto B(H), the space of all bounded
operators on H, which satisfies

RgRh = Rgh ∀g,h∈G, (3.1)

Re = I (3.2)

where e is the identity element of G. Here and in the sequel we denote the representation
with R : g 7→ Rg. Given a vector ψ ∈ H we can construct the set V in (2.9) as follows

Vψ = {Rgψ | g ∈ G}. (3.3)

We will call ψ a generating wavelet or just a wavelet. Starting with such a set Vψ we

can construct a functional Hilbert subspace CG
K and a unitary mapping Wψ between 〈Vψ〉

and this functional Hilbert space, as described in section 2. The unitary map Wψ will be
called the wavelet transformation.

We state the following consequence of Theorem 2.3.

Theorem 3.1 (Wavelet Theorem for group representations) Let R be a represen-
tation of a group G in a Hilbert space H. Let ψ ∈ H. Define the function K : G×G→ C
of positive type by

K(g, g′) = (Rgψ,Rg′ψ)H. (3.4)

Define the set Vψ by

Vψ = {Rgψ | g ∈ G}. (3.5)

Then the wavelet transformation Wψ : 〈Vψ〉 → CG
K defined by(

Wψf
)
(g) = (Rgψ, f)H, (3.6)

is a unitary mapping.

Of course, the wavelet transformation Wψ could be defined on the entire space H, but then

the unitarity is lost in the case 〈Vψ〉 6= H. For a vector f ⊥ Vψ we then get Wψf = 0.
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Usually we are interested in the case 〈V 〉 = H. If 〈Vψ〉 = H for some ψ ∈ H, we call ψ a
cyclic vector or acyclic wavelet and the representation is called a cyclic representa-
tion if a cyclic wavelet exists.

Theorem 3.2 (Wavelet Theorem for Cyclic Representations) LetR be a represen-
tation of a group G in a Hilbert space H. Let ψ be a cyclic wavelet. Define a function
K : G×G→ C of positive type by

K(g, g′) = (Rgψ,Rg′ψ)H. (3.7)

The wavelet transformation Wψ : H → CG
K defined by(

Wψf
)
(g) = (Rgψ, f)H, (3.8)

is a unitary mapping.

It is obvious that Wψ can be defined as a unitary mapping on the entire space H if and
only if R is cyclic and ψ is a cyclic wavelet.

Note that up till now there are no restrictions have been imposed on the Hilbert space H,
the group G or the representation R. In particular, there are no topological conditions on
G and R.

3.2 Unitary representations

The kind of representations, which have our special interest, are unitary representa-
tions, i.e. representations U for which the Ug are unitary for all g ∈ G. These kind of
representations have some nice properties. We will use the symbol U instead ofR to denote
a representation that is unitary.

The function of positive type, from which the functional Hilbert space can be constructed,
is given by K(g, h) = (Ugψ,Uhψ)H. Because the representation is unitary this simplifies to

K(g, h) = (Ugψ,Uhψ)H = (Uh−1gψ, ψ)H =: F (h−1g). (3.9)

In abstract harmonic analysis, the function F : G→ C is said to be of positive type if

n∑
i=1

n∑
j=1

F (g−1
i gj)cjci ≥ 0, (3.10)

for all n ∈ N, c1, ...., cn ∈ C and g1, ..., gn ∈ G. Remark that this definition is stronger then
the definition as formulated in (2.5), since K(hg1, hg2) = K(g1, g2) for all h, g1, g2 ∈ G.
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Define UL : G→ B(CG
K) by(

ULgf
)
(h) = f(g−1h), (3.11)

for all f ∈ CG
K and g, h ∈ G.

Theorem 3.3 Let G be a group and F : G → C be a function of positive type. Define
K(g, h) = F (h−1g) for all g, h ∈ G. Then UL is a unitary representation of G in CG

K.

Proof:
Now,(
ULhKg1

)
(g2) = Kg1(h

−1g2) = (Kh−1g2 , Kg1) = K(h−1g2, g1) = F (g−1
1 h−1g2)

= F ((hg1)
−1g2) = K(g2, hg1) = (Kg2 , Khg1) = Khg1(g2),

for all h, g1, g2 ∈ G. So ULhKg = Khg for all g, h ∈ G. Furthermore,

(ULhKg1 ,ULhKg2)CGK = (Khg1 , Khg2)CGK

= K(hg1, hg2) = F (g−1
2 g1) = K(g1, g2) = (Kg1 , Kg2)CGK ,

for all h, g1, g2 ∈ G. Hence, ULh is unitary on 〈{Kg | g ∈ G}〉 for all h ∈ G.
Therefore it follows by denseness of 〈{Kg | g ∈ G}〉, that UL is a unitary
representation. �

The representation UL is called the left regular representation. Remark the intertwining
relation ULgWψ = WψUg.

The following theorems give us a guarantee that all functional Hilbert spaces, which are
subspaces of CG and induced by a function of positive type in the sense of (3.10), can also
be constructed by some unitary (not necessarily cyclic) representation of G in H and a
wavelet ψ ∈ H, where H is unitarily equivalent to CG

K .

Theorem 3.4 Let G be a group and F : G → C be a function of positive type. Define
K(g, h) = F (h−1g) for all g, h ∈ G. Then there exist a ψ ∈ CG

K and a unitary representa-
tion U of G in CG

K such that

F (g) = (Ugψ, ψ)CGK , (3.12)

for all g ∈ G.

12



Proof:
The representation UR is unitary. Moreover

(ULgF, F )CGK = (ULgKe, Ke)CGK = (Kg, Ke)CGK = K(g, e) = F (g),

for all g ∈ G. �

Corollary 3.5 Let G be a group and F : G → C a function of positive type. Define
K(g, h) = F (h−1g) for all g, h ∈ G. Let H be a Hilbert space, which is unitarily equivalent
to CG

K. Then there exist a ψ ∈ H and a unitary representation U of G in H such that

F (g) = (Ugψ, ψ)H, (3.13)

for all g ∈ G.

Proof:
By assumption, there exist a unitary mapping T from H to CG

K . Now, the
element ψ = T −1F and the unitary representation defined by Ug = T −1ULgT
for all g ∈ G do the trick. �

We recall that all separable Hilbert spaces of infinite dimension are unitarily equivalent.
So are all finite dimensional Hilbert spaces of equal dimension.

3.3 Topological conditions

Some elementary topological conditions which can be posed on the representation R, are
straightforwardly transferred to the wavelet transformation.

Let R be a bounded representation, i.e. a representation for which the mapping g 7→
‖Rg‖ is bounded. Define ‖R‖ = supg∈G ‖Rg‖. Let f ∈ 〈Vψ〉. Then,∣∣(Wψf

)
(g)
∣∣ = |(Rgψ, f)H| = ‖Rgψ‖H‖f‖H ≤ ‖R‖‖ψ‖H‖f‖H, (3.14)

for all g ∈ G. Hence, the wavelet transform Wψf for an arbitrary f ∈ H is bounded on G.
Also the reproducing kernel is bounded on G×G. A unitary representation is an example
of a bounded representation.

Assume G is a topological group, i.e. a group on which a topology is defined, such that
the group operations, multiplication and inversion, are continuous. LetR be a continuous
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representation, i.e. a representation for whichRgf → Rhf whenever g → h, for all h ∈ G
and f ∈ H. Let f ∈ H. Then Wψ[f ] is a continuous function on G. Indeed, if g → h then

|
(
Wψf

)
(g)−

(
Wψf

)
(h)| = |((Rg −Rh)ψ, f)H| ≤ ‖(Rg −Rh)ψ‖H‖f‖H → 0. (3.15)

Also the reproducing kernel is a continuous function on G×G.

4 Cyclic representations

Because of Theorem 3.2 the cyclic representations have our special attention. But it is not
often straightforward to see whether a representation is cyclic or not. And even if so, one
still has to find a cyclic vector. In this section we pose an idea to find candidates for cyclic
vectors. Moreover, we work out an example which deals with diffusion on a sphere. For
this case we managed, to find an interesting cyclic vector, with the aid of Theorem 4.1.

4.1 A fundamental theorem

Let {Hn}n∈N be a sequence of Hilbert spaces. Then define the orthogonal direct sum
of the sequence as the Hilbert space

∞⊕
n=1

Hn =

{
a ∈

∞∏
n=1

Hn |
∞∑
n=1

‖an‖2
Hn <∞

}
, (4.1)

with the inner product

(a, b)⊕ =
∞∑
n=1

(an, bn)Hn . (4.2)

The following Theorem is inspired by Theorem B.3 in Appendix B.

Theorem 4.1 Let I be a set. Let {Kn}n∈N be a sequence of functions of positive type on
I such that a sequence {λn}n∈N exists satisfying the following conditions

1. ∀ n ∈ N : λn > 0

2. supn λn <∞.

Then
⊕∞

n=1 CI
λnKn

is dense in
⊕∞

n=1 CI
Kn

. If in addition the sequences satisfy the conditions
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3. ∀ x ∈ I :
∑∞

n=1 λnKn(x, x) <∞

4. ∀ n ∈ N : CI
λnKn

∩ CI∑∞
m=1,m6=n λmKm

= {0}.

Then

ψx = (λ1K1;x, λ2K2;x, . . .) ∈
∞⊕
n=1

CI
Kn (4.3)

for all x ∈ I. Furthermore

〈{ψx | x ∈ I}〉 =
∞⊕
n=1

CI
Kn . (4.4)

Proof:
Assume the first two conditions are satisfied.

First, we remark that from the definition it straightforwardly follows that
CI
Kn

= CI
λnKn

as a set and (f, g)CI
Kn

= λn(f, g)CI
λnKn

for all n ∈ N and

f, g ∈ CI
Kn

.

Secondly, write ‖ · ‖λ⊕ for the norm of
⊕∞

n=1 CG
λnKn

. Let f = (f1, f2, . . .) ∈⊕∞
n=1 CI

λnKn
. Then, it follows by

‖f‖⊕ =
∞∑
n=1

(fn, fn)CI
Kn

=
∞∑
n=1

λn(fn, fn)CI
λnKn

≤ sup
n
λn

∞∑
n=1

‖fn‖2
CI
λKn

= sup
n
λn‖f‖λ⊕,

that
⊕∞

n=1 CI
λnKn

⊂
⊕∞

n=1 CI
Kn

.

Finally, the set

{f ∈
∞⊕
n=1

CI
Kn | ∃N ∈ N ∀n > N [fn = 0]}

is dense in
⊕∞

n=1 CI
Kn

and contained in
⊕∞

n=1 CI
λnKn

. Hence
⊕∞

n=1 CI
λnKn

is
dense in

⊕∞
n=1 CI

Kn
.

Now, assume in addition that the last two condition are satisfied.

Because ψx ∈
⊕∞

n=1 CI
λnKn

we have in particular ψx ∈
⊕∞

n=1 CI
Kn

for all x ∈ I.
Then by Theorem B.3, Theorem B.4 and Theorem B.5, the set 〈{ψx | x ∈ I} is
dense in

⊕∞
n=1 CI

λnKn
. Moreover, because ‖·‖⊕ ≤ supn λn‖·‖λ⊕ and

⊕∞
n=1 CI

λnKn

is dense in
⊕∞

n=1 CI
Kn

, it follows that 〈{ψx | x ∈ I}〉 is dense in
⊕∞

n=1 CI
Kn

�
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It is easy to see that

(f, ψx)H =
∞∑
n=1

λnfn(x), (4.5)

for all x ∈ I, which will turn out to be a useful identity.

4.2 An example: diffusion on a sphere

We now deal with an example concerning the problem of diffusion on a sphere. For a
detailed discussion about some statements which we do not prove, see for example [Mu,
Ch. 3].

Let Sq−1 for q ≥ 3 be the unit sphere in Rq and G = SO(q) the special orthogonal matrix
group. Let the group SO(q) act on Sq−1 in the usual way, (A, x) = Ax. The group acts
transitively on Sq−1, i.e. for all x, y ∈ Sq−1 there exists an A ∈ SO(q) such that x = Ay.

Let H be the Hilbert space L2(S
q−1). Define the representation R : G→ B(L2(S

q−1)) by(
UAf

)
(x) = f(A−1x), (4.6)

for all A ∈ SO(q), f ∈ L2(S
q−1) and almost all x ∈ Sq−1.

First, it is well-known that the space L2(S
q−1) decomposes in L2(S

q−1) ∼= ⊕∞
n=1CSq−1

Kn
where

CSq−1

Kn
is the space of all spherical harmonic polynomials of order n. For all n ∈ N the space

CSq−1

Kn
is finite dimensional, therefore a functional Hilbert space. The reproducing kernel is

given by

Kn;x =
q + 2n− 2

q − 2
C
q/2−1
N ((·, x)2), (4.7)

for all x ∈ Sq−1, where C
q/2−1
N are the Gegenbauer polynomials. Since

‖Kn;x‖2
L2(Sq) =

q + 2n− 2

q − 2
C
q/2−1
N ((x, x)2) =

q + 2n− 2

q − 2
C
q/2−1
N (1) =

q + 2n− 2

q − 2
, (4.8)

for all x ∈ Sq−1, it is straightforward to see that this orthogonal sum satisfies the condition
of Theorem 4.1 for some sequence {λn}n∈N.

Secondly, we have to choose a sequence {λn} n∈N. Let t > 0. Then it is obvious that
λn = e−tn(n+q−2) defines a sequence that satisfies the conditions in Theorem 4.1. Now
define for all x ∈ Sq−1

ψx =
∞∑
n=1

e−tn(n+q−2)Kn;x. (4.9)
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Then ψx ∈ L2(S
q−1) by Theorem 4.1. Fix y ∈ Sq−1. Then,

UAψy = ψAy, (4.10)

for all A ∈ SO(q) by (4.7). Finally, by the transitivity of the action of the group we get
by Theorem 4.1

〈{UAψy | A ∈ SO(q)}〉 = 〈{ψx | x ∈ Sq−1}〉 = L2(S
q−1). (4.11)

Hence ψy is a cyclic vector for all y ∈ Sq−1 and U is a cyclic representation.

We summarize.

Theorem 4.2 Let q ≥ 3, H = L2(S
q−1) and G = SO(q). Let y ∈ Sq−1 and t > 0. Define

ψy ∈ L2(S
q−1) by

ψy =
∞∑
n=1

e−tn(n+q−2) q + 2n− 2

q − 2
C
q/2−1
N ((·, x)2). (4.12)

Define a function K : SO(q)× SO(q) → C of positive type by

K(A,A′) = (UAψy,UA′ψy)H. (4.13)

Then the wavelet transformation Wψy : L2(S
q−1) → CSO(q)

K defined by(
Wψf

)
(A) = (UAψy, f)L2(Sq−1) = (ψAy, f)L2(Sq−1), (4.14)

is a unitary mapping.

The choice λn = e−tn(n+q−2) was not without reason. The spherical harmonic polynomials
of order n are the eigenvectors of the Laplace-Beltrami operator 4S with eigenvalue n(n+
q − 2). Therefore the functions of the form (t, x) 7→ e−tn(n+q−2)pn(x) with pn a spherical
harmonic polynomial of order n are solutions of the evolution equation

ut = −4Su. (4.15)

Let f ∈ L2(S). With (4.5) it is easy to see that(
Wψyf

)
(A) = (ψAy, f)L2(Sq−1) =

∞∑
n=1

e−tn(n+q−2)
(
Pnf

)
(Ay), (4.16)

where Pn stands for the projection operator corresponding to the space of all spherical
harmonic polynomials of order n. So we could interpret the above wavelet transformation
as the solution at time t and point Ay of the evolution equation (4.15) with initial condition
u(0, ·) = f(·). Therefore the cyclic vector ψy is the fundamental solution for the evolution
equation.

The choice λn = e−tn would correspond with scaling of the harmonics.
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5 Examples of wavelet transformations based on cyclic

representations

We now work out two examples based on cyclic representations. In the first, the repre-
sentation is irreducible and therefore cyclic in a trivial way. The second example concerns
H = L2(S) with S a locally compact abelian group and G = SoT the semi-direct product
of S with some other (not necessarily abelian) group T .

From now on we do pose a topological condition on G. Recall that a topological group
is a group on which a topology is defined, such that the group operations, multiplication
and inversion, are continuous. We always assume the topology to be Hausdorff. Moreover,
we always assume the group G to be a locally compact group, i.e. a topological group,
in which every group element has a compact neighbourhood.

It is well-known that every locally compact group G has a left invariant Haar measure,
which we denote by µG. A left invariant Haar measure on G is a Radon measure on G
such that µG(gE) = µG(E) for all g ∈ G and Borel sets E.

5.1 Irreducible unitary representations

We call a representation R of a group G in a Hilbert space H irreducible if the only
closed subspaces of H which are invariant under all Rg for all g ∈ G are H and {0}. An
irreducible representation is in particular cyclic and every nonzero vector is cyclic. Indeed,
for every nonzero ψ ∈ H the set 〈Vψ〉 is a subspace which is invariant under all Rg with

g ∈ G and it is not empty, so 〈Vψ〉 = H.

The representation R is called square integrable if there exist a ψ ∈ H with ψ 6= 0 and

Cψ :=
1

(ψ, ψ)H

∫
G

∣∣(Rgψ, ψ)H
∣∣2dµG(g) <∞. (5.1)

If the group representation is unitary, irreducible and square integrable, then the functional
Hilbert space will always be a closed subspace of L2(G), whenever the wavelet ψ ∈ H
satisfies (5.1). This was first shown by Grossman, Morlet and Paul [GMP] in 1985. In this
report we will give a new proof of this theorem. For our proof we need an extension of
the Schur’s lemma, which is presented in Appendix A. Moreover, we need a lemma which
is valid for all bounded representations. Hence, let R be a bounded representation of a
group G in a Hilbert space H. Let ψ ∈ H. First define the linear mapping Wψ as

Wψ = Wψ|D , (5.2)

18



where D = {f ∈ H | Wψf ∈ L2(G)}.

Lemma 5.1 Let ψ ∈ H. The wavelet transform Wψ : D → L2(G) is a closed operator.

Proof:
Let fn → f in H and Wψfn → Φ, for some Φ ∈ L2(G). Then we have to show
that f ∈ D and Wψf = Φ. The group G is locally compact, therefore it is
sufficient to show that for any compact Ω ⊂ G∫

Ω

|Wψf − Φ|2 dµG = 0 ,

to conclude that Wψf = Φ.
Note that by boundedness of the representation∣∣(Wψf

)
(g)−

(
Wψfn

)
(g)
∣∣ = |(Rgψ, f − fn)H| ≤ ‖R‖‖ψ‖H‖f − fn‖H,

for all g ∈ G and n ∈ N.
Now the statement follows from∫

Ω

|Wψf − Φ|2 dµG(g)

≤ 2

∫
Ω

|Wψf −Wψfn|2 dµG + 2

∫
Ω

|Φ−Wψfn|2 dµG

≤ 2µ(Ω) sup
g∈G

∣∣(Wψf
)
(g)−

(
Wψfn

)
(g)
∣∣2 + 2

∫
Ω

|Φ−Wψfn|2 dµG

≤ 2µ(Ω)‖R‖2‖ψ‖2
H‖fn − f‖2

H + 2

∫
Ω

|Φ−Wψfn|2 dµG

for all n ∈ N. As fn → f we find Wψf = Φ on Ω. Therefore f ∈ D and
Wψf = Φ. �

The left regular representation L of G on L2(G) is defined by

Lhf(g) = f(h−1g), (5.3)

for all h ∈ G, f ∈ L2(G) and almost every g ∈ G.

We now prove a Theorem by Morlet, Grossmann and Paul.
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Theorem 5.2 (The Wavelet Reconstruction Theorem) Let U be an irreducible, uni-
tary and square integrable representation of a locally compact group G on a Hilbert space
H. Let ψ ∈ H such that (5.1) holds. Then the wavelet transform is a linear isometry (up
to a constant) from the Hilbert space H onto a closed subspace CG

K of L2(G, dµ):

‖Wψf‖2
L2(G) = Cψ‖f‖2

H. (5.4)

Here, the space CG
K is the functional Hilbert space with reproducing kernel

Kψ(g, g′) =
1

Cψ
(Ugψ,Ug′ψ). (5.5)

Proof:
The domain D of operator Wψ : D → L2(G) is by definition the set of all f ∈ H
for which Wψf ∈ L2(G). By assumption ψ ∈ D. Moreover, it follows by the
left-invariance of dµG that the span Sψ = 〈{Ugψ | g ∈ G}〉 of the orbit of ψ, is
a subspace of D, since for any η = Uhψ, we have

∫
G

∣∣(Wψη
)
(g)
∣∣2 dµG(g) =

∫
G

|(Ugψ,Uhψ)|2 dµG(g)

=

∫
G

|(Uh−1gψ, ψ)|2 dµG(g)

=

∫
G

|(Ugψ, ψ)|2 dµG(g)

= Cψ|(ψ, ψ)|2 = Cψ|(Uhψ,Uhψ)|2 <∞.

Obviously Sψ is invariant under U and since U was assumed to be irreducible,
this space is dense in H. By Lemma 5.1 operator Wψ is closed, since a unitary
representation is bounded. So, Wψ is a closed densely defined operator and
therefore operator W∗

ψWψ is self-adjoint, by a theorem of J. von Neumann (see
[Y, Theorem VII.3.2]).

It is easy to see that(
WψUhf

)
(g) = (Ugψ,Uhf)H = (Uh−1Ugψ, f)H = (Uh−1gψ, f)H,

for all g, h ∈ G and f ∈ H. Therefore, if f ∈ D then Uhf ∈ D and WψUhf =
LhWψf . Hence WψUh = LhWψ. For the adjoint operator the same is true. If
Φ ∈ D(W∗

ψ), f ∈ D(Wψ) and h ∈ G

(LhΦ,Wψf)L2(G) = (Φ,Lh−1Wψf)L2(G) = (Φ,WψUh−1f)L2(G)

= (W∗
ψΦ,Uh−1f)H = (UhW∗

ψΦ, f)H.
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So for all Φ ∈ D(W∗
ψ) we have LhΦ ∈ D(W∗

ψ) and furthermore W∗
ψLh = UhW∗

ψ.
In particular W∗

ψWψUg = UgW∗
ψWψ for all g ∈ G and D(W∗

ψWψ) is invariant
under U .
By the topological version of Schur’s lemma, Theorem A.1, it now follows that
there is a c ∈ C such that W∗

ψWψ = cI on D(W∗
ψWψ). But because W∗

ψWψ

is closed and bounded on D(W∗
ψWψ) we can conclude from the closed graph

theorem that W∗
ψWψ = c I on the entire Hilbert space H. From ‖Wψψ‖2 =

Cψ‖ψ‖2 it follows that c = Cψ. �

5.2 Semi-direct products

In this section we will work out the wavelet construction for the special case H = L2(S, µS)
with S some locally compact abelian group. Here µS is a left invariant Haar measure. Given
a locally compact group T we will define a natural unitary representation (not necessarily
irreducible) of the semi-direct product S o T on L2(S). From this unitary representation
a wavelet transformation and a corresponding functional Hilbert space can be constructed
for a suitable choice of ψ ∈ L2(S).

5.2.1 Introduction

We first recall the notion of the semi-direct product of two groups. We also mention some
elementary topics from harmonic analysis.

Definition 5.3 Let S and T be groups and let τ : T → Aut(S) be a group homomorphism.
The semi-direct product S oτ T is defined to be the group with underlying set S × T
and group operation

(s, t)(s′, t′) = (sτ(t)s′, tt′), (5.6)

for all (s, t), (s′, t′) ∈ S × T

From now on we only consider a group G which is a semidirect product G = (S,+)o (T, ·)
for some locally compact group T and a group homomorphism τ : T → Aut(S) such that

(s, t) 7→ τ(t)s (5.7)

is a continuous mapping from S o T onto S. Since S and T are locally compact, G is also
locally compact. Note that S̃ = {(s, e2) ∈ G | s ∈ S} and T̃ = {(e1, t) ∈ G | t ∈ T} are
closed subgroups of G.
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A locally compact group has a (left invariant) Haar measure. If we talk about a measure
on the group or integration over the group, this is always with respect to a (left invariant)
Haar measure. Let µT , µS, µG be Haar measures of resp. T, S,G. There exists a relation
which relates these Haar measures. To this end, we need the notion of modular function.

Definition 5.4 Let H be a locally compact group and µ a Haar measure on H. Then for
each h ∈ H

µh(E) = µ(Eh), E ∈ Bor (H), (5.8)

defines a Haar measure, where Bor (H) is the set of Borel sets. Because all Haar measures
are equal up to a constant, there exists for all h ∈ H a ∆H(h) > 0 such that

µh = ∆H(h)µ. (5.9)

The function ∆H : h 7→ ∆H(h) on H is called the modular function. The modular
function is a continuous homomorphism from H into (R+, ·).

Now T̃ = {(e, t) ∈ G | t ∈ T} is subgroup of G and it has a Haar measure µT̃ corresponding
to µT . Starting from µS, µT , the Haar measure µG can be chosen such that∫

G

f(g) dµG(g) =

∫
S

{∫
T

f(s, t)ρ−1(t) dµT (t)

}
dµS(s), (5.10)

for all f ∈ L1(G). Furthermore,∫
S

f(τ(t)−1s) dµS(s) = ρ(t)

∫
S

f(s) dµS(s), (5.11)

for all t ∈ T and f ∈ L1(S). Here ρ(t) =
∆T̃ (e,t)

∆G(e,t)
. It follows that ρ is continuous and strictly

positive. For further details, we refer to [R, (8.1.12) and (8.1.10)] .

In the case S = Rn we simply get ρ(t) = | det τ(t)|, which can easily be proved by the
transformation of variables formula.

We define in a natural way a representation of the semi-direct product S o T in L2(S).
Define U : G→ B(L2(S)) as follows

U(s,t)f = TsPtf, (5.12)

where(
Ts1f

)
(s2) = f(s2 − s1), (5.13)(

Ptf
)
(s) = ρ−

1
2 (t)f(τ(t)−1s), (5.14)

for all s1 ∈ S and t ∈ T and almost all s2 ∈ S. Note that Ptf ∈ L1(S)∩L2(S) for all t ∈ T ,
if f ∈ L1(S) ∩ L2(S). It is easily verified that U is a unitary representation. Moreover, we
will prove that it is cyclic.
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5.2.2 The wavelet transformation

We recall that, with the use of the unitary representation U , for any ψ ∈ H we now
can define the unitary map Wψ : 〈Vψ〉 → CG

K as formulated in Theorem 3.1. In this
section we set the wavelet transformation in a useful different form, making use of Fourier
transformation for abelian groups. Let f ∈ L2(S) and Ŝ be the dual group. Then Ŝ exists
of all continuous homomorphisms of S onto the circle group. Then define the Fourier
transform as(

Ff
)
(γ) =

∫
S

f(s)〈s, γ〉dµS(s), (5.15)

for all γ ∈ Ŝ and f ∈ L1(S) ∩ L2(S), where 〈·, ·〉 stands for the dual pairing, 〈s, γ〉 = γ(s)
for all s ∈ S and γ ∈ Ŝ. This defines, after extension, a unitary mapping from L2(S) onto
L2(Ŝ, dµŜ(γ)) where the left Haar measure µŜ(γ) related to µS. The inversion is given by(

F−1F
)
(s) =

∫
Ŝ

F (γ)〈s, γ〉dµŜ(γ), (5.16)

for all F ∈ L1(Ŝ)∩L2(Ŝ). For a detailed discussion of the Fourier transformation on locally
compact abelian groups, see for example [Fo].

Lemma 5.5 Let ψ ∈ L1(S) ∩ L2(S). Then,
(
Wψf

)
(·, t) ∈ L2(S) for all f ∈ L2(S) and

t ∈ T .

Proof:
Let f ∈ L2(S) and t ∈ T . Then

(TsPtψ, f)L2(S) =

∫
S

(Ptψ)(s′ − s)f(s′)dµS(s
′),

for all s. So we arrive at a convolution. A convolution of a L1 function with a
L2 function is again a L2 function. See [Fo, Proposition 2.39]). �

This means that for all elements Φ of our functional Hilbert space CG
K , the function Φ(·, t)

will be in L2(S) for fixed t ∈ T . Hence, the Fourier transform of Φ(·, t) is well-defined.

Now use Fourier transformation and Plancherel to get a different presentation of the wavelet
transform of an arbitrary function f ∈ L2(S)

(
Wψf

)
(s, t) = (TsPtψ, f)L2(S) = (FTsPtψ,Ff)L2(Ŝ)

= (〈s, ·〉FPtψ,Ff)L2(Ŝ) =
(
F−1

[
FPtψFf

] )
(s), (5.17)
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for all s ∈ S and t ∈ T . We notice that Ff ∈ L2(Ŝ) and FPtψ ∈ L∞(Ŝ) for all t ∈ T . Hence
FPtψFf ∈ L2(Ŝ) and

(
Wψf

)
(·, t) ∈ L2(S) for all t ∈ T . Moreover, since FPtψFf ∈ L1(Ŝ)

we get
(
Wψf

)
(·, t) ∈ C0(S) for all t ∈ T and f ∈ L2(S). With C0(S) we denote the space

of continuous functions on S which vanish at infinity.

Lemma 5.6 Let ψ ∈ L2(S). Suppose

µŜ

(
{γ ∈ Ŝ | ∀t ∈ T

[(
FPtψ

)
(γ) = 0

]
}
)

= 0.

Then ψ is a cyclic vector.

Proof:
Remark that the measure does not depend on the representant. Let f ∈ V ⊥

ψ .

Then Wψf = 0 by the remark after Theorem 3.1. Hence, FPtψFf = 0 for all
t ∈ T , by (5.17). Therefore, Ff = 0 by the assumption. �

Corollary 5.7 Let ψ ∈ L2(S). If Fψ 6= 0 a.e., then ψ is a cyclic vector. Moreover, if S
is metrizable then the representation U is cyclic.

Proof:
The first statement follows immediately from Lemma 5.6.
If the group S is metrizable, then Ŝ is σ-compact by [R, Thm. 4.2.7]. Therefore,
there exists a ψ ∈ L2(S) such that Fψ > 0, by the σ-compactness of Ŝ. The
conclusion now follows from the first statement. �

5.2.3 Alternative description of CSoT
K for non-vanishing wavelets

In this subsection we will derive an alternative description of the functional Hilbert space
for some special wavelets.

Since Wψ is unitary,

(Φ,Ψ)CSoT
K

= (W−1
ψ Φ,W−1

ψ Ψ)L2(S), (5.18)

for all Φ,Ψ ∈ CR2oT
K . Hence, if we are able to find an explicit expression for W−1

ψ we can
derive an alternative description of the inner product on the functional Hilbert space. To
this end, equation (5.17) appears to be very useful.

In this subsection we will assume that the wavelet ψ ∈ L2(S) satisfies the condition

µŜ
(
{γ ∈ Ŝ |

(
FPtψ

)
(γ) = 0}

)
= 0, (5.19)
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for all t ∈ T . Remark that the measure of the set does not depend on the choice of the
representant. Such wavelets will be called non-vanishing wavelets. By Theorem 3.2
and Lemma 5.6, the wavelet is cyclic and the wavelet transformation Wψ defines a unitary
mapping from L2(S) onto CSoT

K .

For non-vanishing wavelets there exists a simple inversion formula.

Lemma 5.8 Let f ∈ L2(S) and Φ = Wψf . Then,

f = F−1
[(
FPtψ

)−1F [Φ(·, t)]
]

(5.20)

for all t ∈ T .

Proof:
From (5.19) it follows that

(
FPtψ

)−1
exists almost everywhere on S o T . The

lemma now straightforwardly follows from (5.17). �

Although (5.20) leads to an expression for W−1
ψ , it appears to be desirable to write W−1

ψ

as

W−1
ψ Φ =

∫
T

F−1
[(
FPtψ

)−1F [Φ(·, t)]
]
A(t)ρ−1(t) dµT (t), (5.21)

for all Φ ∈ CSoT
K , where A : T → R+ ∪ {0} is a function such that∫

T

A(t)ρ−1(t) dµT (t) = 1. (5.22)

The main advantage is that (5.21) takes in account all t ∈ T , whilst (5.20) forces us to
choose a t ∈ T . Especially when we imbed CSoT

K as a closed subspace of a larger space,
expression (5.21) turns out to be more useful.

Theorem 5.9 Let Φ,Ψ ∈ CSoT
K . Then,

(Φ,Ψ)CSoT
K

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Ψ(·, t)](γ) A(t)∣∣(FPtψ)(γ)∣∣2ρ(t) dµT (t)dµŜ(γ). (5.23)

Proof:

(Φ,Ψ)CSoT
K

= (W−1
ψ Φ,W−1

ψ Ψ)L2(S) = (f,W−1
ψ Ψ)L2(S) = (Ff,FW−1

ψ Ψ)L2(Ŝ)

=

∫
Ŝ

∫
T

(
Ff
)
(γ)F [Ψ(·, t)](γ) A(t)(

FPtψ
)
(γ)ρ(t)

dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

(
FPtψ

)
(γ)
(
Ff
)
(γ)F [Ψ(·, t)](γ) A(t)

|
(
FPtψ

)
(γ)|2ρ(t)

dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Ψ(·, t)](γ) A(t)∣∣(FPtψ)(γ)∣∣2ρ(t) dµT (t)dµŜ(γ).
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We summarize the previous in the following theorem.

Theorem 5.10 Let ψ ∈ L2(S) be a wavelet which satisfies condition (5.19) Then the
wavelet transformation Wψ defined by(

Wψf
)
(s, t) = (TsPtψ, f)L2(S), f ∈ L2(S), (s, t) ∈ S o T, (5.24)

is a unitary mapping from L2(S) to CSoT
K . Here, CSoT

K is the functional Hilbert space with
reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(S) = (Uh−1gψ, ψ)L2(S), (5.25)

for all g, h ∈ S o T . Let A : T → R+ ∪ {0} be a function such that∫
T

A(t)ρ−1(t) dµT (t) = 1. (5.26)

The inner product on CSoT
K can be written as

(Φ,Ψ)CSoT
K

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Ψ(·, t)](γ) A(t)∣∣(FPtψ)(γ)∣∣2ρ(t) dµTd(t)µŜ(γ), (5.27)

for all Φ,Ψ ∈ CSoT
K .

Remark that A is not unique.

We can imbed CSoT
K in a larger space Hψ,A, such that CSoT

K is a closed subspace of Hψ,A.
Define the space Hψ,A as

Hψ,A =
{

Φ ∈ CSoT
∣∣∣ Φ(·, t) ∈ L2(S) for almost all t ∈ T,∫

Ŝ

∫
T

∣∣F [Φ(·, t)](γ)
∣∣2 A(t)∣∣(FPtψ)(γ)∣∣2ρ(t) dµT (t)dµŜ(γ) <∞

}
, (5.28)

with the inner product

(Φ,Ψ)Hψ,A =

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Ψ(·, t)](γ) A(t)∣∣(FPtψ)(γ)∣∣2ρ(t) dµT (t)dµŜ(γ), (5.29)

for all Φ,Ψ ∈ Hψ,A.
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Theorem 5.11 CSoT
K is a closed subspace of Hψ,A. The operator Φ 7→ [g 7→ (K(·, g),Φ)Hψ,A ]

is the projection operator from Hψ,A onto CSoT
K .

Proof:
It is obvious that CSoT

K is a closed subspace of Hψ,A. Let Φ ∈ Hψ,A. Then it
can be written as

Φ = Φ1 + Φ2,

with Φ1 ∈ CSoT
K and Φ2 ∈ (CSoT

K )⊥. Then for all g ∈ S o T

(K(·, g),Φ)Hψ,A = (K(·, g),Φ1)Hψ,A + (K(·, g),Φ2)Hψ,A = Φ1(g).

Therefore Φ is mapped to Φ1. �

5.2.4 Alternative description of CSoT
K for admissible wavelets

In this subsection we will replace condition (5.19) by another condition. Also in this case
an alternative description can be given, using (5.17) and (5.18).

Definition 5.12 Let ψ ∈ L1(S) ∩ L2(S). Define Mψ : Ŝ → [0,∞) ∪ {∞} as

Mψ(γ) =

∫
T

∣∣(FPtψ)(γ)∣∣2
ρ(t)

dµT (t). (5.30)

The function Mψ is a substitute for the constant Cψ given by (5.1) in the irreducible case.

We note that FPtψ ∈ C0(Ŝ) for all t ∈ T , so Mψ can be defined pointwise.

Definition 5.13 We call ψ ∈ L1(S) ∩ L2(S) an admissible wavelet iff

0 < Mψ <∞ a.e.

In this section we will assume that ψ ∈ L1(S) ∩ L2(S) an admissible wavelet. All the
admissible wavelets are cyclic, so lead to a unitary mapping from the entire space L2(S)
onto CSoT

K by Theorem 3.2. This is shown in the following lemma.

Lemma 5.14 Every admissible wavelet is a cyclic wavelet, i.e. 〈Vψ〉 = L2(S).
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Proof:
If f ∈ L2(S), then with (5.17) we get

f ∈ 〈Vψ〉⊥ ⇔
(
∀t ∈ T

[
|FPtψFf |2 = 0 a.e. on S

])
. (5.31)

Let f ∈ 〈Vψ〉⊥. Then

Mψ|Ff |2 =

∫
T

∣∣FPtψFf ∣∣2
ρ(t)

dµT (t) = 0 a.e. on Ŝ.

Because ψ is an admissible wavelet, the function Mψ > 0 a.e.. Hence |Ff |2 = 0
a.e. and therefore f = 0. �

Using the function Mψ we can also give an expression for W−1
ψ .

Lemma 5.15 Let ψ ∈ L1(S) ∩ L2(S) be an admissible wavelet. Let f ∈ L2(S). Then

f = W−1
ψ Φ = F−1

(∫
T

F [Φ(·, t)]FPtψ M−1
ψ ρ−1(t) dµT (t)

)
, (5.32)

where Φ = Wψf ∈ CSoT
K

Proof:
We recall that 0 < Mψ < ∞ a.e. on Ŝ, hence also 0 < M

− 1
2

ψ < ∞ a.e. on Ŝ.
The lemma now easily follows from (5.17) since

F−1
(∫

T

F [Φ(·, t)]FPtψ M−1
ψ ρ−1(t) dµT (t)

)
= F−1

(
M−1

ψ

∫
T

Ff |FPtψ|2ρ−1(t) dµT (t)
)

= F−1
(
M−1

ψ MψFf
)

= f. �

We are now able to give an alternative description of the norm of CSoT
K using (5.17) and

(5.18) and the previous lemma.

Theorem 5.16 If Φ ∈ CSoT
K then M

− 1
2

ψ F [Φ(·, t)] ∈ L2(Ŝ) for almost every t ∈ T . More-
over,

‖Φ‖2
CSoT
K

=

∫
Ŝ

∫
T

∣∣F [Φ(·, t)](γ)
∣∣2 M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ). (5.33)
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Proof:
Let Φ ∈ CSoT

K . Then there exists a function f ∈ L2(S) such that Wψf = Φ.

(Φ,Φ)2
CSoT
K

= (f,W−1
ψ Φ)L2(S) = (Ff,FW−1

ψ Φ)L2(S)

=

∫
Ŝ

Ff(γ)

∫
T

F [Φ(·, t)](γ)
(
FPtψ

)
(γ) M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)Ff(γ)
(
FPtψ

)
(γ) M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Φ(·, t)](γ) M−1
ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

Therefore,∫
Ŝ

∫
T

∣∣F [Φ(·, t)](γ)
∣∣2 M−1

ψ ρ−1(t) dµT (t)dµŜ(γ) = ‖Φ‖2
CSoT
K

.

The integrand is positive, so by a theorem of Fubini we are allowed to change
integrals and in particular∫

Ŝ

|MψF [Φ(·, t)]|2 dµŜ(γ) <∞,

for almost all t ∈ T . Therefore M
− 1

2
ψ F [Φ(·, t)] ∈ L2(Ŝ) for almost all t ∈ T . �

Because of Lemma 5.16 and (5.10) we can define the linear operator TMψ
: CSoT

K →
L2(S o T ) by(

TMψ
Φ
)
(s, t) =

(
F−1[M

− 1
2

ψ F [Φ(·, t)]]
)

(s), (5.34)

for almost all (s, t) ∈ S o T .

We summarize the previous in the following theorem.

Theorem 5.17 Let ψ ∈ L1(S) ∩ L2(S) be an admissible wavelet. Then the wavelet trans-
formation Wψ defined by(

Wψf
)
(s, t) = (TsPtψ, f)L2(S), f ∈ L2(S), (s, t) ∈ S o T, (5.35)

is a unitary mapping from L2(S) onto CSoT
K . Here, CSoT

K is the functional Hilbert space
with reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(S) = (Uh−1gψ, ψ)L2(S), (5.36)
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for all g, h ∈ S o T . The inner product on CSoT
K can be written as

(Φ,Ψ)CSoT
K

= (TMψ
Φ, TMψ

Ψ)L2(SoT ), (5.37)

for all Φ,Ψ ∈ CSoT
K .

Corollary 5.18 If Mψ = 1 on Ŝ, then CSoT
K is a closed subspace of L2(S o T ).

By Lemma 5.16, our functional Hilbert space is a closed subspace of

H(S, µS)⊗ L2(T, ρ
−1µT ), (5.38)

where

H(S, µS) = {f ∈ L2(S, µS) | M
− 1

2
ψ Ff ∈ L2(Ŝ)}. (5.39)

The inner product on H(S, µS) is defined by

(f, g)H(S,µs) = (M
− 1

2
ψ Ff,M− 1

2
ψ Fg)L2(Ŝ) (5.40)

We recall that H(S, µS) is a vector subspace of L2(S), because of Lemma 5.5. Hence
we always arrive at a kind of Sobolev space on S. Now denote the inner product on
H(S, µS)⊗L2(T, ρ

−1µT ) by (·, ·)⊗. It follows from Lemma 5.16 that (·, ·)⊗|CSoT
K

= (·, ·)CSoT
K

.

Theorem 5.19 CSoT
K is a closed subspace of H(S, µS)⊗L2(T, ρ

−1µT ). The operator Φ 7→
[g 7→ (K(·, g),Φ)⊗] is the projection operator from H(S, µS)⊗ L2(T, ρ

−1µT ) onto CSoT
K .

Proof:
It is obvious that CSoT

K is a closed subspace of H(S, µS) ⊗ L2(T, ρ
−1µT ). Let

Φ ∈ H(S, µS)⊗ L2(T, ρ
−1µT ). Then it can be written as

Φ = Φ1 + Φ2,

with Φ1 ∈ CSoT
K and Φ2 ∈ (CSoT

K )⊥. Then for all g ∈ S o T

(K(·, g),Φ)⊗ = (K(·, g),Φ1)⊗ + (K(·, g),Φ2)⊗ = Φ1(g)

Therefore Φ is mapped to Φ1. �
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5.2.5 Compact groups

If the group T is compact, which we assume throughout this section, then we can simplify
some expressions of the previous two sections.

Lemma 5.20 ρ(t) = 1 for all t ∈ T .

Proof:
Since T is compact the groups {4T̃ (e, t) | t ∈ T} and {4SoT (e, t) | t ∈ T} are
compact subgroups of (R+, ·). The only compact subgroup of (R+, ·) is {1}. So
4T̃ (e, t) = 1 and 4SoT (e, t) = 1 for all t ∈ T . Hence ρ(t) = 1 for all t ∈ T . �

For non-vanishing wavelets, a function A : T → R+ ∪ {0} is to be chosen. In case com-
pactness we can simply take A(t) = |T |−1 for all t ∈ T . Then obviously∫

T

A(t)ρ−1(t) dµT(t) = 1. (5.41)

Theorem 5.21 Let ψ ∈ L1(S) ∩ L2(S). Then Mψ ∈ L1(Ŝ).

Proof:
For all t ∈ T the operator FPt is unitary from L2(S) onto L2(Ŝ) we get∫

Ŝ

|FPtψ|2

ρ(t)
(γ)dµŜ(γ) =

∫
Ŝ

|FPtψ|2 (γ)dµŜ(γ) = ‖ψ‖2
L2(S),

for all t ∈ T . Hence,

∫
Ŝ

∫
T

|FPtψ|2

ρ(t)
(γ) dµT (t)dµŜ(γ) =

∫
T

‖ψ‖2
L2(S)dµT (t) = |T |‖ψ‖2

L2(S),

by Fubini’s theorem. �

Corollary 5.22 Let ψ ∈ L1(S)∩L2(S) be a non-vanishing wavelet. Then ψ is admissible.
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6 L2(R2) and the Euclidean motion group

6.1 The wavelet transformation

We now will work the previous section out in detail for a more explicit example. The circle
group T is defined by the set

T = {z | z ∈ C |z| = 1}, (6.1)

with complex multiplication. The group T has the following group homomorphism τ : T →
Aut(R2)

τ : z 7→ Rz, (6.2)

with

Rz =

(
cos θ − sin θ
sin θ cos θ

)
, θ = arg z. (6.3)

Using this automorphism we can define the semi-direct product R2oT. The group product
of R2 o T is given by

(x, z1)(y, z2) = (x+Rz1y, z1z2). (6.4)

for all (x, z1), (y, z2) ∈ R2 oT. The group R2 o T is called the Euclidean motion group.
It has the following unitary representation on L2(R2)(

U(b,z)f
)
(x) =

(
TbPzf

)
(x) = f(R−1

z (x− b))), (6.5)

with (
Tbf
)
(x) = f(x− b),

(
Pzf

)
(x) = f(R−1

z x), (6.6)

for all b ∈ R2, z ∈ T, f ∈ L2(R2) and almost every x ∈ R2.

We consider the wavelet transformation using the representation U , as above, of the group
G = R2 o T in the Hilbert space L2(R2). The wavelet transform Wψ : L2(R2) → CR2oT

K for
cyclic wavelets is defined by(

Wψf
)
(b, z) =

(
TbPzψ, f

)
L2(R2)

, (6.7)

for all f ∈ L2(R2).

Since T is compact, ρ(z) = 1 for all z ∈ T. We normalize the Haar measure on T such that
T has total measure one. Then we choose the Haar measure of R2 o T as µR2oT.

We end this introduction with the remark that every non-vanishing wavelet ψ ∈ L1(R2) ∩
L2(R2) is also admissible, by Corollary 5.22.
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6.2 Admissible wavelets

First we mention the method involving admissible wavelets. We recall that ψ ∈ L1(R2) ∩
L2(R2) is called admissible if

0 < Mψ <∞ a.e.

where

Mψ(ω) =

∫
T

∣∣(FPzψ)(ω)
∣∣2 dµT(z). (6.8)

We can reformulate Theorem 5.17 as follows.

Theorem 6.1 Let ψ ∈ L1(R2) ∩ L2(R2) be an admissible wavelet. Then Wψ defined by(
Wψf

)
(x, z) = (TxPzψ, f)L2(R2), f ∈ L2(R2), (x, z) ∈ R2 o T, (6.9)

is a unitary mapping from L2(R2) onto CR2oT
K . Here, CR2oT

K is the functional Hilbert space
with reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(R2), (6.10)

for all g, h ∈ R2 o T. The inner product on CR2oT
K can be written as

(Φ,Ψ)CR2oT
K

= (TMψ
Φ, TMψ

Ψ)L2(R2oT), (6.11)

for all Φ,Ψ ∈ CR2oT
K .

We now analyse the function Mψ, defined in (6.8) a little further. First we mention that
T is a compact group, so Mψ ∈ L1(R2) by Theorem 5.21. Define for m ∈ Z the function
ηm : [0, 2π) → C by ηm(φ) = eimφ. Because L2(R2) = L2(S

1) ⊗ L2((0,∞), r dr), we can
write all ψ ∈ L2(R2) in the following way

ψ =
∞∑

m=−∞

ηm ⊗ χm, (6.12)

where χm ∈ L2((0,∞), r dr) for all m ∈ Z. For the Fourier transform we can write in polar
coordinates(

F [ηm ⊗ χm]
)
(ρ, φω) = im

√
2πeimφω

∫ ∞

0

rχm(r)Jm(ρr) dr (6.13)

for all ρ ∈ [0,∞) and φω ∈ [0, 2π), where Jm is the m-th order Bessel function of the first
kind. See for example [FH, pp. 24-25].
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Now Mψ is easily calculated.

(
Pzψ

)
(r, φ) =

∞∑
m=−∞

eim(φ−arg z)χm(r), (6.14)

for all r ∈ (0,∞) and φ ∈ [0, 2π). Hence,

(
FPzψ

)
(ρ, ϕ) =

√
2π

∞∑
m=−∞

eim(ϕ−arg z)im
∫ ∞

0

rχm(r)Jm(ρr)dr, (6.15)

for all ρ ∈ [0,∞) and ϕ ∈ [0, 2π). Hence Mψ is given by,

Mψ(ω) = 2π
∞∑

m=−∞

|χ̃m(‖ω‖2)|2, (6.16)

for all ω ∈ R2, where χ̃m defined by χ̃m(ρ) =
∫∞

0
rχm(r)Jm(ρr)dr for all ρ ∈ (0,∞) and

m ∈ Z. Thus, the above sum completely determines the inner product. Furthermore, Mψ

only depends on the radius. By Lemma 5.21 we get the following relation between a chosen
wavelet ψ and Mψ∫

R2

Mψ(ω) dω = ‖ψ‖2
L2
. (6.17)

This implies that M−1
ψ is at least unbounded. Because Mψ only depends on the radius,

there exists a function M̃ψ : (0,∞) → (0,∞) such that

Mψ(ω) = M̃ψ(‖ω‖2), (6.18)

for almost all ω ∈ R2. Then M̃ψ ∈ L1((0,∞), r dr).

We end this subsection with the remark, that ψ 7→ Mψ is not injective; several different
wavelets ψ can lead to the same Mψ. If ψ1 and ψ2 are different admissible wavelets with
the property Mψ1 = Mψ2 , then their corresponding functional Hilbert space are different
closed subspaces of the same Hilbert space H(R2)⊗ L2(T) as defined in (5.38).

6.3 Wavelet ψd : x 7→ 1
d2K0(d‖x‖2)

Take for d > 0 the vector ψd ∈ L2(R2) defined by

ψd(x) =
1

d2
K0(d‖x‖2), (6.19)
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for all x ∈ R2, where K0 stands for the zeroth order modified Bessel function of the second
kind. The Fourier transformation of this wavelet is given by(

Fψd
)
(ω) = (1 + d2‖ω‖2

2)
−1, (6.20)

for all ω ∈ R2. See [AS, Expr. 11.4.44, pp 488].

The set Vψd equals

Vψd = {TbPzψd | b ∈ R2, z ∈ T} = {Tbψd | b ∈ R2}. (6.21)

Moreover,

Mψd(ω) = |Fψd|2(ω) = (1 + d2‖ω‖2
2)
−2, (6.22)

by a straightforward calculation. It is easily seen that ψ is an admissible wavelet. So by
Theorem 6.1 the mapping Wψd defined by

(
Wψdf

)
(b, z) =

∫
R2

TbPzψdf(x) dx =

∫
R2

Tbψdf(x) dx, (6.23)

is a unitary mapping from L2(R2) to the space CR2oT
K . But becauseM−1

ψd
(ω) = (1+d2‖ω‖2

2)
2

we get a subspace of a kind of a Sobolev-space

(Φ,Ψ)CR2oT
K

= (M
− 1

2
ψd
F [Φ],M

− 1
2

ψd
F [Ψ])L2(R2oT)

= ((1 + d242)Φ, (1 + d242)Ψ)L2(R2oT), (6.24)

for all Φ,Ψ ∈ CR2oT
K .

6.4 Wavelet ψα : x 7→ α
4 e−|x1|−α|x2|

We illustrate the method for non-vanishing wavelets by means of the example ψα : x 7→
α
4
e−|x1|−α|x2|. Then,

(
FPzψα

)
(ω) =

α2

2π(1 + (ω1 cos θ + ω2 sin θ)2)(α2 + (ω2 cos θ − ω1 sin θ)2)
, (6.25)

for all ω ∈ R2 and with θ = arg z. Obviously, ψα is a non-vanishing wavelet. Hence, it
is cyclic. As T is compact, ρ(t) = 1 for all t ∈ T . Moreover, define the function A by
A(t) = 1 for all t ∈ T .
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By (5.26), the inner product on CG
K is given by

(Φ,Ψ)CGK =
1

2π

∫
R2×[0,2π)

F [Φ(·, eiθ)](ω)F [Ψ(·, eiθ)](ω)[F [Peiθψα]]
−2(ω) dωdθ.

=
2π

α4

∫
R2×[0,2π)

F [Φ(·, eiθ)](ω)F [Ψ(·, eiθ)](ω)(1 + ξ2)2(α2 + η2)2 dωdθ, (6.26)

where (
η
ξ

)
=

(
ω1 cos θ − ω2 sin θ
ω2 cos θ + ω1 sin θ

)
. (6.27)

Using Plancherel we find

(Φ,Ψ)CR2oT
K

= 2π

∫
[0,2π)

∫
R2

(
D(θ)Φ

)
(x, eiθ)

(
D(θ)Ψ

)
(x, eiθ)dxdθ, (6.28)

where

D(θ) =

(
1− d2

dξ2

)(
1− 1

α2

d2

dη2

)
and

( d
dη
d
dξ

)
=

(
cos θ d

dx
− sin θ d

dy

cos θ d
dy

+ sin θ d
dx

)
, (6.29)

for all θ ∈ [0, 2π). So we arrive at some variant of a second order Sobolev space. For fixed
θ it looks like a second order Sobolev space, but the derivatives rotate with θ.

By (5.21), the adjoint/inverse operator is given by

W ∗
ψα [Φ] = 2πF−1

[∫ 2π

0

F(Φ(·, eiθ
(
FPeiθψα

)−1
dθ

]
, (6.30)

for all Φ ∈ CR2oT
K .

7 A topic from image analysis

7.1 Introduction

In many applications in medical images it is common use to construct a orientation-score
of a grey-value image, a so-called orientation bundle function. Mostly, such an orientation
bundle function is obtained by means of a convolution with some anisotropic rotated vector
ψ. So, by the orientation bundle function of an image we mean the Wavelet transform of
the image using the Euclidean motion group, with the representation as defined by (6.5).
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In image analysis, the wavelet transformation is often regarded as an operator W̃ψ :
L2(R2) → L2(R2 o T). In this section we pay some attention to this point of view. Since
every non-vanishing wavelet ψ ∈ L1(R2) ∩ L2(R2) is also straightforwardly admissible by
Corollary 5.22, we only pay attention to the method of admissible wavelets. First, we state
a theorem about the definition of W̃ψ.

Theorem 7.1 Let ψ ∈ L1(R2) ∩ L2(R2) be an admissible kernel. Define W̃ψ : L2(R2) →
L2(R2 o T) by W̃ψf = Wψf for all f ∈ L2(R

2). The adjoint operator W̃ ∗
ψ is then given by

W̃ ∗
ψΦ =

1

2π
F−1

{∫ 2π

0

F [Φ(·, eiθ)]FPeiθψdθ

}
, (7.1)

for all Φ ∈ L2(R2 o T). Moreover, W̃ψ is closed.

Proof:
Then the operator is well-defined from L2(R2) onto L2(R2 o T) with domain

CR2oT
K , because CR2oT

K is a subset of L2(R2 o T) by the remark above Theorem
5.19. The adjoint is easily calculated by changing the order of integration and
equation (5.17). Moreover, W̃ψ is closed by Lemma 5.1. �

Remark that in contrast to W ∗
ψ, see (5.32) , the function Mψ does not occur in W̃ ∗

ψ.

7.2 Sequences of wavelets

Let ψ be an admissible wavelet. Because of the identity

‖f‖L2(R2) = ‖W̃ψf‖CGK = ‖M− 1
2

ψ FW̃ψf‖L2(R2oT), (7.2)

for all f ∈ L2(R2) and the fact that Mψ ∈ L1(R2), the operator W̃−1
ψ is unbounded.

Although for every admissible wavelet the operator W̃−1
ψ is unbounded, there exists se-

quences of admissible wavelet such that limn→∞ W̃ ∗
ψn
W̃ψnf = f for all f ∈ L2(R2) in

L2-sense. The main idea is that there exists sequences for which Mψn → 1 uniformly on
compact sets.

Lemma 7.2 Let {en | n ∈ N} be a sequence in L2(R2) which satisfies the following condi-
tions
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1. limn→∞
(
Fen

)
(ω) = 1, uniformly on compact sets,

2. supn∈N ‖Fen‖L∞(R2) <∞.

Then for all f ∈ L2(R2)

en ∗ f → f, (7.3)

for n→∞ in L2(R2)-sense.

Proof:

‖en ∗ f − f‖L2(R2) = ‖(I −Fen)Ff‖L2(R2)

= ‖(I −Fen)Ff‖L2(B0,R) + ‖(I −Fen)Ff‖L2(R2/B0,R)

≤ ‖(I −Fen)‖L∞(B0,R)‖Ff‖L2(B0,R)

+(1 + sup
n∈N

‖Fen‖L∞(R2))‖Ff‖L2(R2/B0,R),

Now let first n→∞ and then R→∞. �

Theorem 7.3 Let ψn ∈ L2(R2) be an admissible wavelet for all n ∈ N. Assume that
Mψn ∈ L2(R2) for all n ∈ N and {F−1Mψn | n ∈ N} satisfies the condition of Lemma 7.2.
Then for all f ∈ L2(R2)

F−1Mψn ∗
(
W ∗
ψnWψnf

)
→ f, (7.4)

for n→∞ in L2(R2) sense.

Proof:
W ∗
ψn
Wψnf = f and F−1Mψn satisfies the conditions of Lemma 7.2 by assump-

tion. �

Remark that we can rewrite (7.4) as

W̃ ∗
ψnWψnf → f, (7.5)

for n→∞ in L2(R2) sense, for all f ∈ L2(R2).

So the corollary states that under the given assumptions we can reconstruct, in the limit,
the image using the L2-adjoint.

An interesting idea, is not to model the image-space by L2(R2), but by a subspace of
L2(R2). For example, closed subspace HR of functions for which the support in Fourier
domain is within a ball with radius R. Now we can choose an admissible wavelet such that
Mψ equals 1 on this set. Hence, in this case W̃ψ|HR is an isometry from HR onto L2(SoT ).
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7.3 Example

In an article by Kalitzin, ter Haar Romeny and Viergever see [KHV], it is suggested to
take the sequence of wavelets defined by

ψn(r, φ) =
1

2
+

1

2

n∑
m=−n

eimφ r|m|√
|m|!

e−r
2

, (7.6)

for all r ∈ (0,∞), φ ∈ [0, 2π) and n ∈ N. The related function Mψn is now easily calculated

Mψn(ω) =
n∑

m=0

ρ2m

m!
e−ρ

2

, (7.7)

where ρ = ‖ω‖2. It is obvious that the sequence {Mψn | n ∈ N} satisfies the conditions of
Lemma 7.2. Hence, by Theorem 7.3, for all f ∈ L2(R2)

W̃ ∗
ψnWψnf → f, (7.8)

for n → ∞ in L2(R2) sense. For this sequence the limit limn→∞ ψn does exist pointwise,
but not of course in L2(R2) sense.

A Schur’s lemma

Schur’s lemma is mostly known for the special case of irreducible representations U on
a Hilbert space H of or compact group G. In these cases the proof is straightforward.
The main idea is that if A has an eigen-value, then the eigen space is invariant under Ug,
which follows by the assumption UgA = AUg, and by irreducibility of U it then follows
that Eλ = Eλ = H. Nevertheless, Schur’s lemma has serious consequences such as the
orthogonality relations by Weyl for compact groups. We will give a generalization of this
theorem which is applied in the general wavelet theorem 5.2 and which is formulated as an
exercise in [D, vol.V, pp.21]. This general Schur’s lemma is very often used in literature
with bad and incomplete references, therefore we include a proof.

Theorem A.1 (Schur’s Lemma) Let G be a locally compact group and let g 7→ Ug be
a unitary irreducible representation of G in a Hilbert space H. If A is a (not necessarily
bounded) closed densely defined operator on H such that the domain D(A) is invariant
under the representation U such that

UgAf = AUgf for all g ∈ G , f ∈ D(A) ,

then A = cI for some c ∈ C .
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Proof:
First we will show the theorem for a self-adjoint bounded operator A with
D(A) = H. It follows from the spectral theorem for self adjoint operators that
A is in the norm closure of the linear span V of all orthogonal projections P
commuting with all the bounded operators commuting with A. In particular Ug
is a bounded operator commuting with A and therefore every P ∈ V commutes
with Ug. Therefore the space on which P projects (which is closed since it equals
the N (I−P )) is invariant under Ug. But U was supposed to be irreducible and
therefore this space equals H or {0}, i.e. P = 0 or P = I. Since A is within
the span of such P , we have that A = cI, for some constant c ∈ R.

Every bounded operator can be decomposed A = (1/2)(A + iA∗) + (1/2)(A−
iA∗). Furthermore, by the unitarity of Ug

A∗Ug = A∗U∗g−1 = (Ug−1A)∗ = (AUg−1)∗ = UgA∗,

for all g ∈ G. Hence the result now also follows for any bounded operator A
on a Hilbert space A.

Now we deal with the unbounded case: The domain D(A) is invariant under H,
therefore by the irreducibility of U it follows that D(A) is dense in H. Next we
show that the domain D(A) is a Hilbert space (say DA ) equipped with inner
product (f, g)A = (g, h) + (Ag,Ah):
If {fn}n∈N is a Cauchy sequence in D(A) with respect to (·, ·)A then ({hn,Ahn})
is a Cauchy sequence in H×H. Because A is closed the limit equals ({h,Ah})
with h ∈ D(A). This implies that ‖hn − h‖A converges to 0.
Obviously, the operator Ã : DA → H given by Ãf = Af is a bounded operator
on a Hilbert space commuting with Ug for all g ∈ G and as a result the operator
Ã∗Ã : DA → DA is a bounded operator on the Hilbert space DA. As a result we
have by the preceding that Ã∗Ã = dI, but then we have (Ãf, Ãf) = d(f, f)A
and therefore

d(Af,Af) = (f, f) + (Af,Af) ⇔ (Af,Af) = |c|2(f, f) , for all f ∈ DA ,

with |c|2 = 1/(d − 1). Now A is a closed operator and D(A) is dense and
therefore

(Af,Af) = |c|2(f, f) for all f ∈ H ,

i.e. B = (1/|c|)A is unitary. In particular A is bounded and therefore equal to
cI by the previous part of the proof. �

See [T, Prop. 2.4.5] for a more general version of the Schur’s Lemma.
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B Orthogonal sums of functional Hilbert spaces

In this section we analyze the orthogonal direct sum of functional Hilbert spaces as defined
in section 4. The sequel is based on a part of the article by Aronszajn [A, part I, 6].
Theorem B.1 and Corollary B.2 are proven by Aronszajn.

Theorem B.1 Let K and L be two functions of positive type on a set I. Then

CI
K+L = {f1 + f2 | f1 ∈ CI

K , f2 ∈ CI
L} = CI

K + CI
L. (B.1)

Furthermore, if CI
K ∩ CI

L = {0} then

‖f1 + f2‖2
CI
K+L

= ‖f1‖2
CI
K

+ ‖f2‖2
CI
L
. (B.2)

Hence it follows that CI
K ⊥ CI

L in CI
K+L.

Define the Hilbert space CI
K ⊕ CI

L as the Cartesian product CI
K × CI

L. with the inner
product defined by

((f1, g1), (f2, g2))⊕ = (f1, f2)CI
K

+ (g1, g2)CI
L
, (B.3)

for all pairs (f1, g1), (f2, g2) ∈ CI
K ⊕ CI

L. It is obvious that CI
K ⊕ CI

L with the above inner
product is a Hilbert space.

The following theorem is a direct consequence of Theorem B.1.

Corollary B.2 Assume CI
K ∩ CI

L = {0}. Then the mapping defined by

(f1, f2) 7→ f1 + f2, (B.4)

is a unitary mapping from CI
K ⊕ CI

L onto CI
K+L.

This idea is easily generalized to an infinite sum of functions of positive type. Define the
Hilbert space

⊕∞
n=1 CI

Kn
as in (4.1) and (4.2).

Let {Kn}n∈N be a sequence of functions of positive type on a set I such that

∞∑
n=1

Kn(x, x) <∞, (B.5)
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for all x ∈ I. Then by the estimate

|Kn(x, y)| = |(Kn;x, Kn;y)CI
Kn
| ≤ ‖Kn;x‖CI

Kn
‖Kn;y‖CI

Kn

≤ 1

2
‖Kn;x‖2

CI
Kn

+
1

2
‖Kn;y‖2

CI
Kn

=
1

2
Kn(x, x) +

1

2
Kn(y, y) (B.6)

for all x, y ∈ I and n ∈ N , the sum

K⊕(x, y) :=
∞∑
n=1

Kn(x, y), (B.7)

converges absolutely on I× I. As a result K⊕ is a function of positive type, since we may
change the order of summation in the definition and use the property that Kn is a function
of positive type for all n ∈ N.

Furthermore, the sequence
∑∞

n=1 fn(x) converges absolutely for all (f1, f2, . . .) ∈
⊕∞

n=1 CI
Kn

and x ∈ I. Indeed, let f = (f1, f2, . . .) ∈
⊕∞

n=1 CI
Kn

and x ∈ I, then

lim
N→∞

N∑
n=1

|fn(x)| = lim
N→∞

N∑
n=1

|(Kn;x, fn)CI
K
| ≤ lim

N→∞

1

2

N∑
n=1

{
‖Kn;x‖2

CI
K

+ ‖fn‖2
CI
K

}
= lim

N→∞

1

2

N∑
n=1

{
Kn(x, x)CI

K
+ ‖fn‖2

CI
K

}
<∞. (B.8)

Hence
∑∞

n=1 |fn(x)| <∞.

Now we are ready for the following theorem.

Theorem B.3 Let {Kn}n∈N be a sequence of functions of positive type on a set I such that

∞∑
n=0

Kn(x, x) <∞, (B.9)

for all x ∈ I. Define K⊕ by

K⊕(x, y) =
∞∑
n=1

Kn(x, y), (B.10)

for all x, y ∈ I. Then K⊕ is a function of positive type on I. Moreover, define for x ∈ I
the vector ψx ∈

⊕∞
n=1 CI

Kn
as

ψx = (K1;x, K2;x, . . .). (B.11)
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Then the mapping Φ : 〈{ψx | x ∈ I〉 → CI∑∞
n=1Kn

defined by

Φ : (f1, f2, . . .) 7→

(
x 7→

∞∑
n=1

fn(x)

)
, (B.12)

is unitary.

Proof:
The last statement easily follows by Φ : ψx 7→ K⊕;x for all x ∈ I and

(ψx, ψy)⊕∞
n=1 CI

Kn
=

∞∑
n=1

Kn(x, y) = (K⊕;x, K⊕;y)CI∑∞
n=1Kn

= (Φψx,Φψy)CI∑∞
n=1Kn

,

for all x, y ∈ I. Hence the mapping is unitary. �

As in the case of the sum of two functional Hilbert spaces we search for a condition such
that 〈{ψx | x ∈ I〉 =

⊕∞
n=1 CI

Kn
. In that case Φ is a unitary mapping from

⊕∞
n=1 CI

Kn
onto

CI∑∞
n=1Kn

.

Theorem B.4 〈{ψx | x ∈ I〉 =
⊕∞

n=1 CI
Kn

if and only if for all f ∈
⊕∞

n=1 CI
Kn

the follow-
ing condition is satisfied

∀x ∈ I

[
∞∑
m=1

fm(x) = 0

]
=⇒ f = 0. (B.13)

Proof:
The theorem easily follows by (f, ψx)⊕ = 0 ⇔

∑∞
n=1 fn(x) = 0, for all f =

(f1, f2, . . .) ∈
⊕∞

n=1 CI
Kn

. �

Remind that in the case of the sum of two Hilbert spaces the condition CI
K ∩ CI

L = {0}
was needed. The above condition is equivalent to a condition similar to CI

K ∩ CI
L = {0}.

Lemma B.5 The condition: If f = {f1, f2, ...} ∈
⊕∞

n=1 CI
Kn

, then

∀x ∈ I

[
∞∑
m=1

fm(x) = 0

]
=⇒ f = 0. (B.14)

is equivalent to the condition:

CI
Kn ∩ CI∑∞

m=1,m6=nKn
= {0}, (B.15)

for all n ∈ N.
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Proof:
⇒.

Let n ∈ N and f ∈ CI
Kn
∩ CI∑∞

m=1,m6=nKm
. Then write f = fn =

∑∞
m=1,m6=n fm,

where fm ∈ CI
Km

for all m ∈ N. Define the element g ∈
⊕∞

m=1 CI
Km

by

g = (f1, f2, . . . , fn−1,−fn, fn+1, . . . )

Then obviously

∀x ∈ I

[
lim
N→∞

N∑
m=1

(gm, Km;x) = 0

]
,

hence gm = 0 for all m ∈ N. So f = 0.

⇐.
First we mention that CI

Kn
⊥ CI

Km
for m 6= n in CI∑∞

n=1Kn
. Indeed, let f1 ∈ CI

Kn

and f2 ∈ CI
Km

for m 6= n, then by Theorem B.1

‖f1 + f2‖2
CI
Kn+

∑
l=1,l6=n Kl

= ‖f1‖2
CI
Kn

+ ‖f2‖2
CI∑

l=1,l6=n Kl

= ‖f1‖2
CI
Kn

+ ‖f2‖2
CI
Km+

∑
l=1,l6=m,l6=n Kl

= ‖f1‖2
CI
Kn

+ ‖f2‖2
CI
Km

.

Now apply the polarization identity to get (f1, f2)CI∑∞
l=1

Kl

= 0. Since f1, f2 were

arbitrary, we get CI
Kn
⊥ CI

Km
for m 6= n.

Secondly, let (f1, f2, . . .) ∈
⊕∞

n=1 CI
Kn

satisfy

∞∑
n=1

fn(x) = 0,

for all x ∈ I. Hence for all k ∈ N

0 =

(
∞∑
n=1

fn, fk

)
CI∑∞

m=1Km

= ‖fk‖2
CI
Kk

So fk = 0 for all k ∈ N. �
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