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Convergence properties of the local
defect correction method for parabolic

problems

R. Minero∗, H.G. ter Morsche, M.J.H. Anthonissen

Eindhoven University of Technology
Department of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

e-mail r.minero@tue.nl

This paper is devoted to the study of the convergence properties of the
Local Defect Correction (LDC) technique for parabolic problems presented
in [14]. We derive a general expression for the iteration matrix of the
method and, for a one-dimensional heat equation, we study its properties
analytically. Numerical experiment are in agreement with the theoretical
results.

1 Introduction

Solutions of Partial Differential Equations (PDEs) are often characterized, at each
time, by regions where spatial gradients are large compared to those in the rest of the
domain, where the solution presents a relatively smooth behavior. Examples are fre-
quently encountered in the area of shock hydrodynamics, transport of passive tracers
in turbulent flow fields, combustion processes, etc. An efficient numerical solution of
this kind of problems requires the usage of adaptive grid techniques. In adaptive grid
methods, a fine grid spacing and a relatively small time step are adopted only where
the relatively large variations occur, so that the computational effort and the memory
requirements are minimized.

An adaptive grid technique of particular interest is the Local Defect Correction
(LDC) method. LDC was first introduced in [12] for solving elliptic partial differen-
tial equations. LDC has then been studied in combination with different discretiza-
tion techniques: finite differences in [9, 10], finite volumes in [1, 5] and finite elements
in [23]. In [11, 16] the method is applied with different grid types, while in [2] it is ex-
tended to include multiple levels of refinement, domain decomposition and regridding.

In [14] LDC is generalized to solve parabolic partial differential equations. In a
time-dependent setting the method works as follows: first a time step is performed
on a global coarse grid. The global solution at the new time level provides artificial
boundary conditions on a local fine grid, which is adaptively placed where the high
activity occurs. A solution is then computed locally, possibly with a smaller time step
∗R. Minero was sponsored by the Netherlands Organisation for Scientific Research (NWO) under Compu-

tational Science research grant 635.000.002.
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Figure 1: Scheme of the LDC iteration at a generic time step.

than the one adopted on the global grid. At this point the local approximation provides
an estimate of the coarse grid discretization error or defect. The defect, added to
the right hand side of the coarse grid problem, leads to determining a more accurate
(both in space and time) global approximation of the solution. This can now be used
to update the boundary conditions locally and the entire procedure can be repeated
again until convergence. At each time step LDC is thus an iterative process in which
a global and a local approximation of the solution progressively improve each other.
The scheme of the LDC iteration is represented in Figure 1. In [15] the defect term is
adapted to a finite volume discretization in order to have discrete conservation on the
composite grid.

One of the main advantages of the method is that the global and the local grid can
always be uniform structured grids. With this respect LDC is similar to the Local
Uniform Grid Refinement (LUGR) method presented and analyzed in [20–22]. An
LUGR based strategy for electrochemical applications is proposed in [6]. LDC, though,
differs from LUGR because in LUGR the local solution does not improve the solution
globally through the defect correction. For this reason, as illustrated in [14], LDC
turns out to be a more robust method than LUGR. However, apart from making LDC
more robust, the extra corrections involve more computational work. For LDC to be
competitive with other techniques, it is thus desirable that only a small number of
iterations are necessary at every time step. This paper is therefore focused on the
convergence properties of the LDC method for time-dependent problems. In particular,
we are interested in investigating the dependency of the LDC convergence rate on the
time step for the coarse grid problem.

The convergence properties of LDC have been previously studied for stationary prob-
lems. With reference to a two-dimensional Poisson equation, in [3] it is proved that
iteration errors reduce proportionally to H2, where H is the coarse grid size. In [18] a
convergence analysis is carried out for a case where the local domain has an annular
shape. In general, even for rather complicated applications, it is observed by many
authors (see again [1, 2, 9, 11, 16]) that one or two iterations are usually sufficient for
convergence.

This paper is structured as follows: in Section 2 the LDC method for parabolic par-
tial differential equations is presented. In Section 3 we give an expression for the LDC
iteration matrix. In Section 4 we introduce a one-dimensional model problem and,
for this model problem, in Section 5 we analyze the iteration matrix properties and
asymptotics. At the end, the theoretical results are verified by means of numerical
experiments (Section 6), while Section 7 is devoted to conclusions.
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2 The LDC method for parabolic problems

In this section we present the LDC method for solving parabolic problems. Our focus
is to describe the LDC iteration that takes place at a generic time step. At this generic
time step, we assume the local fine grid to be given and placed in the region of the
global domain where the big variations in the solution occur. For this reason the no-
tation used in this paper is simplified with respect to [14], where also regridding (i.e.
fine grid adaptation to follow the high activity movements) is taken into account.

We consider the following two-dimensional problem





∂u(x, t)
∂t

= Lu(x, t) + f(x, t), in Ω×Θ,

u(x, t) = ψ(x, t), on ∂Ω×Θ,

u(x, 0) = ϕ0(x), in Ω ∪ ∂Ω,

(2.1)

where Ω is a spatial domain, ∂Ω its boundary and Θ the time interval (0, tend]. More-
over, L is a linear elliptic operator, f a source term, ψ a Dirichlet boundary condition
and ϕ0 a given initial condition.

Problem (2.1) has to be discretized in space and time in order to be solved numeri-
cally. For that we introduce the global uniform coarse grid (grid size H) ΩH and the
time step ∆t. We assume that u has, at each time level, a region of high activity that
covers a small part of Ω. Therefore, at time tn := n∆t, a coarse grid approximation
computed with a time step ∆t might be not adequate enough to represent u(x, tn). In
order to better capture the local high activity, we also solve the problem on local uni-
form fine grid (grid size h < H), which we denote by Ωh

l . On Ωh
l the time integration

is performed using a time step δt = ∆t/τ, with τ an integer ≥ 1. As already mentioned
before, the local solution will be used to improve the global approximation through a
defect correction.

In the remainder of this section we will assume that a solution uH,h,n−1 is known at
a generic time tn−1 on the composite grid ΩH,h := ΩH ∪Ωh

l , see Figure 2. For n > 1,
its expression is given by

uH,h,n−1 :=

{
uh,n−1

l , in Ωh
l ,

uH,n−1, in ΩH \Ωh
l ,

(2.2)

where uh,n−1
l and uH,n−1 are a local and a global approximation of u(x, tn−1) respec-

tively. If n = 1, uH,h,n−1 is expressed through the initial condition ϕ0. Our goal is to
compute an approximation of the solution at the new time level tn on the composite
grid ΩH,h by means of LDC.

A coarse grid approximation at tn, we call it uH,n
0 , can be computed applying the

backward Euler method to the PDE in (2.1). While other implicit time integration
schemes could also be adopted, the usage of explicit time integrators on the global grid
is not of interest in LDC; this is discussed in [14]. We obtain

(I− ∆t LH)uH,n
0 = uH,h,n−1|ΩH + fH,n ∆t, (2.3)

where LH is some spatial discretization of the elliptic operator L. In (2.3), fH,n also
includes the Dirichlet boundary conditions. With G(ΩH) we indicate the space of grid
functions that operate on ΩH; similar notation is used for the other sets. With w = 0

and
MH := I− ∆t LH, (2.4)
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Figure 2: Example of composite grid ΩH,h

we rewrite (2.3) as
MHuH,n

w = uH,h,n−1|ΩH + fH,n ∆t. (2.5)

We assume MH : G(ΩH) → G(ΩH) to be invertible. We denote by Γ the interface
betweenΩl and Ω \Ωl. For convenience we partition the coarse grid points as follows

ΩH = ΩH
l ∪ ΓH ∪ΩH

c , (2.6)

where
ΩH

l := ΩH ∩Ωl, ΓH := ΩH ∩ Γ, ΩH
c := ΩH \ (ΩH

l ∪ ΓH). (2.7)

In Figure 2 the coarse grid points ΩH
l are marked with circles, while the points ΓH

and ΩH
c are denoted by triangles and squares respectively. Using the partitioning

above, we set

uH,n
w =:

��
� u

H,n
l,w

uH,n
Γ,w

uH,n
c,w

���
� . (2.8)

Assuming that the spatial discretization on the coarse grid is such that the stencil at
grid point (x, y) involves at most function values at (x+ iH, y+ jH), with i, j ∈ {−1, 0, 1},
we can rewrite (2.5) as��

� M
H
l BH

l,Γ 0

BH
Γ,l MH

Γ BH
Γ,c

0 BH
c,Γ MH

c

� �
�

��
� u

H,n
l,w

uH,n
Γ,w

uH,n
c,w

� �
� =

��
� u

H,h,n−1|ΩH

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

� �
� +

��
� f

H,n
l ∆t

fH,n
Γ ∆t

fH,n
c ∆t

� �
� . (2.9)

The coarse grid solution uH,n
w is used to prescribe artificial boundary conditions on

the interface Γ . Boundary conditions on Γ are needed to define a discrete fine grid
problem that leads to determining uh,n

l,w , a local more accurate (both in space and time)
approximation of u(tn). We can prescribe artificial Dirichlet boundary conditions at
time tn by applying an interpolation operator in space Ph,H : G(ΓH) → G(Γh) to uH,n

w ;
by Γh we denoted the set of fine grid points that lie on the interface Γ . In Figure 2 the
points Γh are marked with small diamonds. If we want to perform time integration
with a time step δt = ∆t/τ, we also need to provide boundary conditions on Γh at all
the intermediate time levels tn−1+k/τ, with k = 1, 2, . . . , τ − 1. Therefore we perform
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linear time interpolation between uH,h,n−1|Γh and Ph,HuH,n
w . We let Lh

l be a local fine
grid discretization of the operator L and we introduce

Mh
l := I− δt Lh

l . (2.10)

A first fine grid approximation (w = 0) at time tn can thus be computed solving

Mh
l u

h,n−1+k/τ

l,w = u
h,n−1+(k−1)/τ

l,w + f
h,n−1+k/τ

l δt

− Bh
l,Γ � kτPh,HuH,n

Γ,w +
τ− k

τ
uH,h,n−1|Γh � , for k = 1, 2, . . . , τ. (2.11)

The procedure (2.11) is initialized using

uh,n−1
l,w = uH,h,n−1|Ωh

l

. (2.12)

We combine all the equations in (2.11) to express uh,n
l,w directly in terms of uH,h,n−1|Ωh

l

.
We obtain

�
Mh

l � τ
uh,n

l,w = uH,h,n−1|Ωh

l

+

τ∑

k=1

�
Mh

l � k−1
f
h,n−1+k/τ

l δt

−

τ∑

k=1

�
Mh

l � k−1
Bh

l,Γ � kτPh,HuH,n
Γ,w +

τ− k

τ
uH,h,n−1|Γh � , (2.13)

or �
Mh

l � τ
uh,n

l,w = uH,h,n−1|Ωh

l

+ Fh,n
l δt−Wn

l,ΓP
h,HuH,n

Γ,w + Zn
l,Γu

H,h,n−1|Γh . (2.14)

In (2.14) Fh,n
l depends only on the source term and on the fine grid operator Mh

l ,
while Wn

l,Γ and Zn
l,Γ only depend on Mh

l and Bh
l,Γ .

The fine grid approximation is now used to overall improve the coarse grid solution
at time tn. The fine grid solution is regarded to be more accurate than the coarse grid
approximation because it is computed with a grid size h < H and a time step δt ≤ ∆t.
The fine grid solution can therefore be used to approximate the local discretization
error or defect in ΩH

l . The defect d̃H,n
l,w−1 is estimated plugging the fine grid solution

into the coarse grid discretization scheme (cf. the first equation in (2.9))

d̃H,n
l,w−1 := MH

l R
H,huh,n

l,w−1 + BH
l,Γu

H,n
Γ,w−1 − uH,h,n−1|ΩH

l

− fH,n
l ∆t, (2.15)

where RH,h : G(Ωh
l ) → G(ΩH

l ) is a restriction operator from the fine to the coarse grid,
such that

(RH,huh,n
l,w−1)(x, y) = uh,n

l,w−1(x, y), ∀(x, y) ∈ ΩH
l . (2.16)

The defect d̃H,n
l,w−1 is now added to the right hand side of (2.9). A more accurate coarse

grid approximation can thus be computed solving

MHuH,n
w =

��
� u

H,h,n−1|ΩH

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

� �
� +

��
� f

H,n
l ∆t + d̃H,n

l,w−1

fH,n
Γ ∆t

fH,n
c ∆t

� �
�

=

��
� 0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

� �
� +

��
� M

H
l R

H,huh,n
l,w−1 + BH

l,Γu
H,n
Γ,w−1

fH,n
Γ ∆t

fH,n
c ∆t

� �
� .

(2.17)
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(a) (b)

Figure 3: Composite grid without (a) and with (b) safety region.

The new coarse grid solution can be used to update the boundary conditions for a new
local problem on Ωh

l , which in turn will correct the coarse grid approximation. This
defines the LDC iteration process, cf. Figure 1. In [13] it is proved that, if the LDC
iteration converges, then the limit solution is such that the coarse and fine solution
at tn coincide in ΩH

l , the common points between coarse and fine grid.
We note that previous results [3, 7, 12, 23] for the stationary case show that it may

be beneficial to compute d̃H,n
l,w−1 not at all points of ΩH

l , but in a subset ΩH
def only. In

particular, points lying close to the interface Γ should be excluded. In this way points
of Γ and points of ΩH

def are separated by a so called safety region. Figure 3 shows an
example of a composite grid without a safety region (a) and with a safety region (b). In
the figure, points ΩH

def are marked with a square. With the introduction of the safety
region, we can rewrite (2.17) as

MHuH,n
w =

��
� 0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

� �
� +

��
� (I− XH

l )fH,n
l + XH

l (MH
l R

H,huh,n
l,w−1 + BH

l,Γu
H,n
Γ,w−1)

fH,n
Γ ∆t

fH,n
c ∆t,

� �
� ,

(2.18)
where the operator XH

l : G(ΩH
l ) → G(ΩH

l ) is defined by

�
XH

l u
H,n
l � (x, y) :=

{
uH,n

l (x, y), (x, y) ∈ ΩH
def,

0, (x, y) ∈ ΩH
l \ΩH

def.
(2.19)

In the next section we find an expression for the LDC iteration matrix that describes
the LDC iteration at time tn.

3 The iteration matrix

In order to find an expression for the matrix that describes the LDC iteration at
time tn, we follow a similar approach as done in [3] for stationary problems. In [3]
the LDC iteration is expressed in terms of the iteration that takes place on ΓH only
and it is shown that, if the iteration on ΓH converges, then the entire LDC iteration
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converges; the set ΓH, see its definition in (2.7), includes the coarse grid points that
lie on the interface between coarse and fine grid. Previously, other approaches were
proposed. In [12] the LDC iteration for elliptic problems is expressed in terms of grid
functions that operate on Γh, i.e. the set of fine grid points on the interface. In [8],
with reference to boundary value problems, the LDC iteration that takes place on the
whole set of composite grid points is considered.

Combination of (2.15) and (2.18) yields�����
�

�
Mh

l � τ
0 Wn

l,ΓP
h,H 0

0 MH
l BH

l,Γ 0

0 BH
Γ,l MH

Γ BH
Γ,c

0 0 BH
c,Γ MH

c

������
�

�����
�
uh,n

l,w

uH,n
l,w

uH,n
Γ,w

uH,n
c,w

������
�

=

�����
�

0 0 0 0

XH
l M

H
l R

H,h 0 XH
l B

H
l,Γ 0

0 0 0 0

0 0 0 0

� ����
�

�����
�
uh,n

l,w−1

uH,n
l,w−1

uH,n
Γ,w−1

uH,n
c,w−1

� ����
� +

�����
�

uH,h,n−1|Ωh

l

(I− XH
l )uH,h,n−1|ΩH

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

� ����
�

+

�����
�

Fh,n
l ∆t

(I− XH
l )fH,n

l

fH,n
Γ δt

fH,n
c δt

� ����
� +

�����
�
Zn

l,Γu
H,h,n−1|Γh

0

0

0

� ����
� , (3.1)

which can also be expressed using the short notation

MH,huH,h,n
w = SH,huH,h,n

w−1 + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (3.2)

The limit of the LDC iteration at time tn is indicated by

uH,h,n :=

�����
�
uh,n

l

uH,n
l

uH,n
Γ

uH,n
c

������
� . (3.3)

In (3.3) we removed the subscript w that numbers the LDC iterations. Since uH,h,n is
the fixed point, one has

MH,huH,h,n = SH,huH,h,n + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (3.4)

If we introduce the iteration error of the LDC method by

eH,h,n
w := uH,h,n

w − uH,h,n, (3.5)

and we subtract (3.2) and (3.4), we can write the expression for successive iteration
errors

MH,heH,h,n
w = SH,heH,h,n

w−1 . (3.6)

Note that the convergence of the LDC method does not depend on the source term,
on the Dirichlet boundary conditions and on the solution at the previous time step.
Definitions of MH,h and SH,h enables us to rewrite (3.6) as�����

�
�
Mh

l � τ
0 Wn

l,Γ 0

0 MH
l BH

l,Γ 0

0 BH
Γ,l MH

Γ BH
Γ,c

0 0 BH
c,Γ MH

c

� ����
�

�����
�
eh,n

l,w

eH,n
l,w

eH,n
Γ,w

eH,n
c,w

� ����
� =

�����
�

0

XH
l M

H
l R

H,heh,n
l,w−1 + XH

l B
H
l,Γe

H,n
Γ,w−1

0

0

� ����
� . (3.7)
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The first equation of this system yields

eh,n
l,w = − � (Mh

l )τ � −1

Wn
l,Γe

H,n
Γ,w . (3.8)

Replacing w with w − 1 in (3.8), we can reformulate system (3.7) as��
� M

H
l BH

l,Γ 0

BH
Γ,l MH

Γ BH
Γ,c

0 BH
c,Γ MH

c

� �
�

��
� e

H,n
l,w

eH,n
Γ,w

eH,n
c,w

� �
�

=

���
� −XH

l M
H
l R

H,h � (Mh
l )τ � −1

Wn
l,Γe

H,n
Γ,w−1 + XH

l B
H
l,Γe

H,n
Γ,w−1

0

0

����
� , (3.9)

or, equivalently,

MHeH,n
w =

���
�
I

0

0

� ��
� XH

l � BH
l,Γ −MH

l R
H,h � (Mh

l )τ � −1

Wn
l,Γ � eH,n

Γ,w−1. (3.10)

This leads to the following theorem.

Theorem 3.1
Consider the following iteration that takes place on the interface only:

eH,n
Γ,w = Miter e

H,n
Γ,w−1, w = 1, 2, . . . (3.11)

in which the iteration matrix Miter : G(ΓH) → G(ΓH) is defined by

Miter :=
�
0 I 0 � (MH)−1

���
�
I

0

0

� ��
� XH

l � BH
l,Γ −MH

l R
H,h � (Mh

l )τ � −1

Wn
l,Γ � . (3.12)

If iteration (3.11) converges, then the LDC iteration converges.

Proof. It is easy to verify that (3.10) gives (3.11). Equation (3.11) describes the behav-
ior of the component eH

Γ,w of the iteration error; the other components can be expressed
in terms of eH

Γ,w by (3.8) and (3.10). Equations (3.8) and (3.10) show that if eH
Γ,w → 0

(w → ∞), also eH
w → 0 (w → ∞). �

Theorem 3.1 is the time-dependent equivalent of [3, Theorem 2]. Theorem 3.1 states
that, if the iteration that takes place on the interface ΓH at time tn converges, then the
entire LDC iteration at time tn converges to a fixed point. This means that for proving
convergence of the LDC method for parabolic problems, it is sufficient to show that
the spectral radius of the matrix Miter is less than one. This is true if ‖Miter‖ � < 1.
Following the same approach as in [3], we split the iteration matrix Miter according to

Miter =M1M2, (3.13)

whereM1 : G(ΩH
l ) → G(ΓH) is expressed by

M1 =
�
0 I 0 � (MH)−1

���
�
I

0

0

� ��
� , (3.14)
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and M2 : G(ΓH) → G(ΩH
l ) by

M2 = XH
l � BH

l,Γ −MH
l R

H,h � (Mh
l )τ � −1

Wn
l,Γ � . (3.15)

In the next section we introduce a one-dimensional model problem. For such a problem
and for a particular choice of the grids and the discretization schemes, the properties
of Miter can be studied analytically.

4 A one-dimensional model problem

We consider the application of the LDC method to the solution of the one-dimensional
heat equation






∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t), in Ω = (0, 1), for t > 0,

u(0, t) = ψleft(t), for t > 0,

u(1, t) = ψright(t), for t > 0,

u(x, 0) = ϕ0(x), in Ω̄ = [0, 1],

(4.1)

where f(x, t), ψleft(t), ψright(t) and ϕ0(x) are given functions. With reference to prob-
lem (4.1), we study the convergence behavior of the LDC method at a generic time
step tn. The LDC method is applied with the following settings: the global uniform
grid has grid size H = 1/N (N integer and N > 1) and grid points

ΩH = {iH | i = 1, 2, . . . , N− 1}. (4.2)

On ΩH we perform spatial discretization by finite differences; in particular, we adopt
the standard three-point centered differences scheme to approximate ∂2/∂x2. The tem-
poral discretization is performed by the Euler backward scheme with a time step ∆t.
In this way the coarse grid operator MH is expressed by

MH = I − ∆t LH = I−
∆t

H2

�������
�

. . . . . . . . .
1 −2 1

. . . . . . . . .

��������
� . (4.3)

We let the local region be Ωl = (0, γ), with γ a multiple of H such that 0 < γ < 1. In
our analysis we will replace the discrete operatorMh

l by the continuous operator

M :=
∂

∂t
−
∂2

∂x2
. (4.4)

This corresponds to letting h → 0 and δt → 0. This is done for analysis purposes only;
in practice one will always have h > 0 and δt > 0. However, the results presented
in [1] for stationary diffusion problems and the numerical experiments in Section 6 of
this paper support this approach. In [1] the LDC iteration matrix is studied both for a
continuous (h = 0) and for a discrete local problem (h > 0): the two approaches lead to
the same conclusions. Note that in our one-dimensional setting the space interpolation
operator PH,h reduces to the identity function. Also note that, in 1D and with Ωl =

(0, γ), the set ΓH reduces to one point. As a consequence, the two operatorsM1 andM2
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turn out to be a row and a column vector respectively, whileMiter is their inner product,
so a real number. In this context, when writing ‖M1‖ � or ‖M2‖ � we will therefore
mean the standard vector infinity norm, while ‖Miter‖ � is the absolute value of the
real number Miter. For the model problem illustrated here, we will determine bounds
for ‖M1‖ � in Section 4.1 and an expression for M2 in Section 4.2. Before that we
emphasize the fact that, in our analysis, we will always assume γ to be a given multiple
of H such that 0 < γ < 1. The special cases γ = 0 and γ = 1 are of minor interest: if
γ = 0, the local region Ωl reduces to the left boundary point and we have no defect,
while the case γ = 1 is not interesting because Ωl coincides with the global domain.

4.1 Bounds for the M � infinity norm

In this section we consider the operatorM1 as defined in (3.14), withMH given by (4.3).
It is easy to verify that

‖M1‖ � ≤ ‖(MH)−1‖ � . (4.5)

Lemma 4.1 provides a first bound for the infinity norm of (MH)−1.

Lemma 4.1
With MH given by (4.3), the following bound for ‖(MH)−1‖ � holds

‖(MH)−1‖ � ≤ 1. (4.6)

Proof. We express MH as

MH = I− ∆t LH = (1 + 2d)(I + B), (4.7)

where the scalar d ≥ 0 and the matrix B are given by

d =
∆t

H2
, B =

�������
�

. . . . . . . . .
−d

1+2d
0 −d

1+2d

. . . . . . . . .

��������
� . (4.8)

It is easy to verify that

‖B‖ � =
2d

1 + 2d
< 1. (4.9)

We write
(I + B)−1 = I− B + B2 − B3 + · · · (4.10)

and

‖(I+ B)−1‖ � ≤ ‖I‖ � + ‖B‖ � + ‖B‖2� + ‖B‖3� + · · · ≤ 1

1 − ‖B‖ � = 1 + 2d. (4.11)

Since
‖(MH)−1‖ � = ‖(I− ∆tLH)−1‖ � =

1

1 + 2d
‖(I+ B)−1‖ � , (4.12)

we deduce
‖(MH)−1‖ � ≤ 1. (4.13)

�
A second bound for the infinity norm of (MH)−1 is the result of Lemma 4.2.
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Lemma 4.2
With MH given by (4.3), the following bound for ‖(MH)−1‖ � holds

‖(MH)−1‖ � ≤ 1

∆t
. (4.14)

Proof. Since matrixMH ∈ R
N−1,N−1 is symmetric, for the Symmetric Diagonalization

Theorem, see for example [17, Theorem 4 at page 458], it can be written as

MH = QDQT , (4.15)

where Q ∈ R
N−1,N−1 is orthogonal and D ∈ R

N−1,N−1 is diagonal. The diagonal
entries of D are

dj = 1 + 4
∆t

H2
sin2

(jπH/2), j = 1, 2, . . . , N− 1, (4.16)

and they coincide with the eigenvalues ofMH. Note that the smallest eigenvalue is d1.
The orthogonal matrix Q has entries qij given by

qij =
√
2H sin(i j πH), i, j = 1, 2, . . . , N − 1. (4.17)

From (4.17) we note that Q is also symmetric. We can thus write

(MH)−1 = QD−1Q. (4.18)

It can easily be shown that

‖Q‖ � = max
i






N−1∑

j=1

|qij|




 ≤ (N− 1)
√
2H, (4.19)

‖D−1Q‖ � = max
i





1

di

N−1∑

j=1

|qij|




 ≤ (N − 1)
√
2H

1

d1

. (4.20)

We note that, since we chose the integerN > 1, then H = 1/N is such that 0 ≤ H ≤ 1/2.
Using the following inequality

sin2 � πH2 � ≤ H, for 0 ≤ H ≤ 1/2, (4.21)

we can show that
1

d1

=
1

1 + 4∆t/H2 sin2
(πH/2)

≤ 1

1 + 4∆t/H
≤ H

4∆t
. (4.22)

Combination of (4.18), (4.19), (4.20) and (4.22) finally yields

‖(MH)−1‖ � ≤ ‖Q‖ � ‖D−1Q‖ � ≤ (N − 1)22H2 1

4∆t
≤ 1

∆t
. (4.23)

�
Results of Lemma 4.1 and Lemma 4.2 are illustrated in Figure 4, where ‖(MH)−1‖ �

is plotted as a function of ∆t for two different values of the grid size H. Formula (4.5)
and the results of Lemma 4.1 and Lemma 4.2 are combined in Theorem 4.3.

Theorem 4.3
The following bound for ‖M1‖ � holds

‖M1‖ � ≤ min(1,
1

∆t
). (4.24)

Note that the bound provided by Theorem 4.3 is independent of H and thus it holds
for any choice of the coarse grid size.
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Figure 4: Plot of ‖(MH)−1‖ � , with MH defined by (4.3), as a function of ∆t for two
values of the grid size H and plot of the bounds provided by Lemma 4.1 and
Lemma 4.2.

4.2 The expression of the M � infinity norm

In this section we find an expression for the infinity norm of M2. We let gH,n
Γ ∈ R be

the solution found at point x = γ by performing one time step ∆t on the coarse grid.
From the definition of M2, see (3.15), we have that

M2g
H,n
Γ = XH

l

�
BH

l,Γg
H,n
Γ +MH

l R
H,hun � , (4.25)

where
un = −

�
(Mh

l )τ � −1
Wn

l,Γg
H,n
Γ . (4.26)

In view of (2.14) and the assumptions we made on (Mh
l )τ, it follows that un is the

solution of the one-dimensional heat equation





∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, for x ∈ (0, γ), t ∈ (0, ∆t],

u(0, t) = 0, for t ∈ (0, ∆t],

u(γ, t) = gH,n
Γ

t

∆t
, for t ∈ (0, ∆t],

u(x, 0) = 0, for x ∈ [0, γ].

(4.27)

In order to find an expression for M2, we want to find the exact analytical solution of
problem (4.27). For that purpose we introduce the auxiliary function

v(x, t) := u(x, t) − gH,n
Γ � 1

6γ∆t
x3 −

γ

6∆t
x+

xt

γ∆t
� . (4.28)

Combination of (4.27) and (4.28) shows that v satisfies





∂v(x, t)

∂t
=
∂2v(x, t)

∂x2
, for x ∈ (0, γ), t ∈ (0, ∆t],

v(0, t) = v(γ, t) = 0, for t ∈ (0, ∆t],

v(x, 0) = −
gH,n

Γ

6γ∆t
x3 +

gH,n
Γ γ

6∆t
x, for x ∈ [0, γ].

(4.29)

12



Problem (4.29) can be solved using the technique of separation of variables. We express
its solution in the form

v(x, t) =
gH,n

Γ

∆t

�∑
m=1

vme
−m2π2t/γ2

sin � mπxγ � , (4.30)

where the coefficients vm are to be computed from the initial condition

v(x, 0) =
gH,n

Γ

∆t

�∑
m=1

vm sin � mπxγ � = −
gH,n

Γ

6γ∆t
x3 +

gH,n
Γ γ

6∆t
x. (4.31)

We find

vm =
2

γ

∆t

gH,n
Γ

∫γ

0

v(x, 0) dx = −
2(−1)mγ2

m3π3
. (4.32)

Using (4.30), the solution of the original problem (4.27) turns out to be

u(x, t) =
gH,n

Γ

∆t

� �∑
m=1

vme
−m2π2t/γ2

sin � mπxγ � +
1

6γ
x3 −

γ

6
x+

xt

γ � . (4.33)

The solution u(x, t) is now used to express the product M2g
H,n
Γ . Equation (4.25)

states that M2g
H,n
Γ equals the residual of the coarse grid discretization scheme (cen-

tered differences and implicit Euler) applied to the function u(x, t) for all grid points
x ∈ ΩH

def. Taking already in account that u(x, 0) = 0, we have

M2g
H,n
Γ (x) = u(x, ∆t) −

∆t

H2
(u(x +H,∆t) − 2u(x, ∆t) + u(x −H,∆t)) . (4.34)

We use the identity

sin � mπ(x+H)

γ
� − 2 sin � mπxγ � + sin � mπ(x−H)

γ
�

= −4 sin � mπH2γ � sin � mπxγ � (4.35)

to combine (4.33) and (4.34) into

M2g
H,n
Γ (x) =

gH,n
Γ

∆t

� �∑
m=1

vme
−m2π2∆t/γ2

sin � mπxγ � +
1

6γ
x3 −

γ

6
x �

+
4gH,n

Γ

H2

�∑
m=1

vme
−m2π2∆t/γ2

sin � mπH2γ � sin � mπxγ � . (4.36)

Assuming that the function u is sufficiently smooth, another expression forM2g
H,n
Γ (x)

can be derived using Taylor expansions on the right hand side of (4.34) and the fact
that u satisfies the partial differential equation in (4.27). We obtain

M2g
H,n
Γ (x) =

1

2

∂2u

∂t2 ��� (x,ϑ)
∆t2 +

1

12

∂4u

∂x4 ��� (ξ,∆t)
∆tH2, (4.37)

with x − H < ξ < x + H and 0 < ϑ < ∆t. The time and spatial derivatives of u can be
computed differentiating term by term the series in (4.33). A sufficient condition for
this is that the resulting series are absolute convergent. We obtain

∂2u

∂t2 ��� (x,ϑ)
=
gH,n

Γ

∆t

2π

γ2

�∑
m=1

(−1)mme−m2π2ϑ/γ2

sin � mπxγ � , (4.38)

∂4u

∂x4 ��� (ξ,∆t)
=
gH,n

Γ

∆t

2π

γ2

�∑
m=1

(−1)mme−m2π2∆t/γ2

sin � mπξγ � . (4.39)
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Clearly the series on the right hand side of (4.38) and (4.39) are absolute convergent
for any positive ∆t and ϑ.

5 Iteration matrix norm asymptotics

With reference to the one-dimensional heat equation (4.1) and the settings illustrated
in Section 4, in Section 5.1 we study the asymptotic expression of ‖Miter‖ � for ∆t ↓ 0,
while in Section 5.2 we deal with Miter when ∆t → +∞. The limit case ∆t → +∞
corresponds to the stationary case limit; this is of interest in practical applications
when a time-dependent problem is solved to compute a stationary solution.

5.1 The asymptotic behavior of ‖Miter‖ � for ∆t ↓ 0
Combination of (3.13) with the result of Theorem 4.3 yields

‖Miter‖ � ≤ ‖M1‖ � ‖M2‖ � ≤ ‖M2‖ � , for ∆t < 1. (5.1)

As a consequence, in our analysis for ∆t ↓ 0 we will only consider the infinity norm
of M2. In particular, we will focus on the expression for M2 as given by (4.37).

In the perspective of studying ‖M2‖ � for ∆t � 1, we first solve a preliminary prob-
lem. We introduce the following series (cf. (4.38) and (4.39))

Sx(ϑ) :=

�∑
m=1

(−1)m sm sin � mπx
γ

� , (5.2)

where
sm := me−m2ϑ, (5.3)

and we study the asymptotic behavior of Sx(ϑ) for ϑ ↓ 0 and fixed 0 < x < γ. Using the
fact that s−m = sm for all integers m, we rewrite (5.2) as

Sx(ϑ) = −
1

2i

+ �∑

m=− � me−m2ϑ e−imπ(x/γ−1). (5.4)

If a function f(y) is sufficiently smooth, the following relation, which is known in the
literature (cf. for instance [19]) as Poisson summation formula, holds:

+ �∑

m=− � f(m)e−imω =

+ �∑

k=− � f̂(ω+ 2πk). (5.5)

The term f̂ which appears in (5.5) is the Fourier transform of f(y), defined by

f̂(ω) :=

∫+ �
− � f(y) e−iyω dy. (5.6)

For
f(y) = y e−y2ϑ, (5.7)

we have

f̂(ω) = − i
π1/2

2 ϑ3/2
ωe−ω2/(4ϑ). (5.8)

Using Poisson summation formula, we can thus rewrite (5.4) as

Sx(ϑ) =
π3/2

4 ϑ3/2

+ �∑

k=− � � xγ − 1 + 2k � exp � −
π2(x/γ− 1 + 2k)2

4ϑ
� . (5.9)
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If we introduce the new variables

y :=
1

2 � 1−
x

γ
� , α :=

π2

ϑ
, (5.10)

the original problem for Sx(ϑ) can be reformulated as follows: study the asymptotics of

Ty(α) := −
α3/2

2 π3/2

+ �∑

k=− � (k − y) e−α(k−y)2

(5.11)

for α→ +∞ and 0 < y < 1/2. For that, we need the results of the following lemma.

Lemma 5.1
The following identity holds:

lim
α � + � α

+ �∑

k=1

k2 e−kαβ = 0, β > 0. (5.12)

Proof. Note that by assumption β is positive. Starting from the identity

+ �∑

k=1

e−kαβ =
e−αβ

1 − e−αβ
, α > 0, (5.13)

it can be easily shown that

α

+ �∑

k=1

k2 e−kαβ = α
e−αβ(1 + e−αβ)

(1 − e−αβ)3
, α > 0. (5.14)

Claim (5.12) follows immediately since the limit for α→ +∞ of the right hand side
of (5.14) is 0. �

The result of Lemma 5.1 is used in the proof of Theorem 5.2, which provides the
asymptotic expression of Ty(α) for α → +∞. First we introduce the following notation:
we say that f(α) is asymptotically equivalent to g(α) for α → α0 and we write

f(α) ≈ g(α), (α → α0), (5.15)

if
lim

α � α0

f(α)

g(α)
= 1. (5.16)

Theorem 5.2
The following equivalence holds:

Ty(α) ≈ 1

2 π3/2
α3/2 y e−αy2

, (α → +∞), (5.17)

with 0 < y < 1/2.

Proof. For proving (5.17) it is sufficient to show (cf. (5.11)) that

lim
α � + � 1

ye−αy2

+ �∑

k=− � (k − y)e−α(k−y)2

= −1, with 0 < y < 1/2. (5.18)
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The series in (5.18) can be written in a more convenient way as follows:

+ �∑

k=− � (k − y)e−α(k−y)2

= −ye−αy2

+

+ �∑

k=1

� (k − y)e−α(k−y)2

− (k + y)e−α(k+y)2 �

= −ye−αy2

− y

+ �∑

k=1

� e−α(k−y)2

+ e−α(k+y)2 � +

+ �∑

k=1

k � e−α(k−y)2

− e−α(k+y)2 �

= −ye−αy2

�
1 +

+ �∑

k=1

e−αk2 �
e2αky + e−2αky � −

1

y

+ �∑

k=1

k e−αk2 �
e2αky − e−2αky � � .

(5.19)

We proceed showing that

lim
α � �

+ �∑

k=1

e−αk2 �
e2αky + e−2αky � = 0, 0 < y < 1/2, (5.20)

and

lim
α � � 1

y

+ �∑

k=1

k e−αk2 �
e2αky − e−2αky � = 0, 0 < y < 1/2. (5.21)

We start from (5.20). We notice that all the terms of the series in (5.20) are positive.
The idea is thus to find an upper bound for the sum of the series which goes to 0
as α → +∞. We write

0 ≤
+ �∑

k=1

e−αk2 � e2αky + e−2αky � ≤ 2
+ �∑

k=1

e−αk2

e2αky ≤ 2
+ �∑

k=1

e−αke2αky

= 2

+ �∑

k=1

�
e−α(1−2y) � k ≤ 2 e−α(1−2y)

1 − e−α(1−2y)
.

(5.22)

Clearly, if 0 < y < 1/2, the last term in (5.22) goes to 0 for α→ +∞. This proves (5.20).
We adopt a similar strategy for (5.21). Also in this case we deal with a series with

positive terms. First we consider the following inequality

e2αky − e−2αky =

∫+2αky

−2αky

eζ dζ ≤ 4αky e2αky, (5.23)

and then we use it to find an upper bound for the sum of the series in (5.21). We write

0 ≤ 1

y

+ �∑

k=1

k e−αk2 � e2αky − e−2αky � ≤ 4α
+ �∑

k=1

k2 e−αk2

e2αky

≤ 4α
+ �∑

k=1

k2 e−αke2αky = 4α

+ �∑

k=1

k2 e−kα(1−2y),

(5.24)

with 0 < y < 1/2. We know from Lemma 5.1 that the last term goes to 0 for α → +∞.
This proves (5.21). Combination of (5.19), (5.20) and (5.21) proves (5.18) and hence
claim (5.17). �

If we adopt again the old variables x and ϑ, see (5.10), the result of Theorem 5.2 can
be rewritten as

Sx(ϑ) ≈ g(x, ϑ), (ϑ ↓ 0), (5.25)
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Figure 5: Plot of g(x, ϑ) as a function of x for different values of ϑ. The graph is drawn
for γ = 0.5.

with

g(x, ϑ) :=
π3/2

4 ϑ3/2 � 1 −
x

γ
� e−π2(1−x/γ)2/ϑ (5.26)

and 0 < x < γ. In Figure 5, g(x, ϑ) is plotted as a function of x for different values of ϑ.
Equivalence (5.25) is used in the proof of the following theorem.

Theorem 5.3
Sx(ϑ) has the following properties:

1) Sx(ϑ) goes exponentially to zero as ϑ ↓ 0;

2) Sx(ϑ) goes exponentially to zero as ϑ ↓ 0 non uniformly on the interval 0 < x < γ;

3) given a constant ε independent of x and ϑ and such that 0 < ε < γ, Sx(ϑ) goes
exponentially to zero as ϑ ↓ 0 uniformly on the interval 0 < x < γ− ε.

Proof. Claim 1) can be proved using equivalence (5.25) and the fact that g goes expo-
nentially to zero as ϑ ↓ 0.

For proving Claim 2), it is sufficient to show that

sup
0<x<γ

|Sx(ϑ)|

is not limited for ϑ ↓ 0. For 0 < x < γ and any fixed ϑ > 0, g is only a function of x, it is
always positive and it has exactly one maximum (see Figure 5), i.e.

gmax := g(xmax) =

�
π

2 e

1

4 ϑ
, (5.27)

with

xmax := γ

�
1 −

√
ϑ√
2 π � . (5.28)

Clearly gmax is not limited for ϑ ↓ 0. As a consequence, because of equivalence (5.25),
also the supremum of Sx(ϑ) is not limited for ϑ ↓ 0 and 0 < x < γ. This proves Claim 2).

17



For proving Claim 3), we have to show that, for 0 < ε < γ and in the limit for ϑ ↓ 0,

sup
0<x<γ−ε

|Sx(ϑ)|

remains limited. On the left of xmax, the function g is positive and monotonically
increasing (see again Figure 5). Moreover we note that

lim
ϑ � 0

xmax = γ. (5.29)

Hence, for 0 < ε < γ, the following identity holds in the limit for ϑ ↓ 0

sup
0<x<γ−ε

g(x, ϑ) = g(γ − ε, ϑ). (5.30)

The right hand side of (5.30) is limited for any positive value of ϑ and it goes to zero as
ϑ ↓ 0. Because of that and of equivalence (5.25), we deduce Claim 3). �

At this point we have studied the properties of Sx(ϑ) for ϑ ↓ 0. The results found
for Sx(ϑ) are used to state the properties of ‖Miter‖ � for ϑ ↓ 0.

Theorem 5.4
Consider the LDC method for the one-dimensional heat problem (4.1). Consider the
settings described in Section 4. In particular, let ΩH be a uniform coarse grid with
grid size H and, in ΩH, approximate the second space derivative by the standard
three-point finite differences scheme. Perform the temporal discretization with the
backward Euler scheme and time step ∆t. Let the local region be Ωl = (0, γ), with γ a
multiple ofH such that 0 < γ < 1. Locally replace the discretized operatorMh

l with the
continuous operator (4.4). Moreover, let ε be a constant independent of x and ϑ, and
such that H < ε < γ. Finally, let ΩH

def , the subset of ΩH
l in which an approximation of

the local discretization error is computed, be given by

ΩH
def = (0, γ − ε) ∩ΩH

l . (5.31)

Then, the following results hold for ‖Miter‖ � :

1) for any H ≥ 0, ‖Miter‖ � goes exponentially to zero as ∆t ↓ 0;

2) for any H ≥ 0, ‖Miter‖ � goes exponentially to zero as ∆t ↓ 0 uniformly on ΩH
def .

Proof. For ∆t small enough, combination of (5.1) with (4.37), (4.38) and (4.39) yields

‖Miter‖ � ≤ ‖M2‖ � ≤ π∆t

γ
���� Sx � π2 ϑ

γ2
� ���� + π

6γ2

H2

∆t
���� Sξ � π2 ∆t

γ2
� ���� , (5.32)

with x ∈ ΩH
def, x−H < ξ < x+H and 0 < ϑ < ∆t. Claims 1) and 2) follow immediately

using the results of Theorem 5.3. �
The fact that the norm of the iteration matrix goes to zero as ∆t ↓ 0 is very natural.

We expect this to happen in general and not only for the model problem considered
here. We explain this as follows: if the time step ∆t becomes extremely small, the
solution at the new time step becomes very close to the solution at the previous time
level. In such a situation, there is little to be corrected in the approximation at the
new time step and, as a consequence, the LDC convergence rate is extremely fast.

As a final remark, we note that one basic assumption in the proof of Theorem 5.4 is
the use of a safety region. As discussed later in Sections 5.3 and 6, this assumption
is essential to have an exponential rate of convergence for ∆t → 0. Nevertheless, the
LDC method turns out to be convergent also if the extent of the safety region is zero.
This is similar to what happens in stationary cases. In [1, 3] the LDC iteration error
for a 2D Poisson problem is proved to reduce proportionally to H2 if ε > 0. However,
LDC is shown to be convergent (at a lower rate) also if ε = 0.
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5.2 The stationary case limit

In the limit case ∆t → +∞, we expect the LDC convergence rate for the 1D heat
equation to be the same as the LDC convergence rate for the one-dimensional Poisson
equation. When LDC is applied to a 1D Poisson problem in combination with centered
differences or any other method that integrates linear functions exactly, the method
reaches a fixed point in one iteration for any grid size H > 0. (If H = 0, the stationary
problem is solved exactly and there is no need to use LDC). This is proved in [4] and
means that, in such a case, the iteration matrix is zero.

In the following theorem we provide a bound for ‖Miter‖ � that holds in the limit for
∆t → +∞ and any grid size H > 0. Clearly our results for the one-dimensional heat
equation fit into the theory of LDC for 1D stationary problems.

Theorem 5.5
Consider the LDC method for the one-dimensional heat problem (4.1). Consider the
settings described in Section 4 and a grid size H > 0. Then, for any γ such that
0 < γ < 1, there exists a constant C such that

‖Miter‖ � ≤ C

∆t2
, (∆t → +∞). (5.33)

Proof. For ∆t > 1, combination of definition (3.13) with the result of Theorem 4.3
yields

‖Miter‖ � ≤ 1

∆t
‖M2‖ � . (5.34)

Hence, for proving Theorem 5.5 it is sufficient to show that, for any γ ∈ (0, 1), there
exists a constant C such that

‖M2‖ � ≤ C

∆t
, (∆t → +∞). (5.35)

We considerM2 as expressed by (4.36) and we write

‖M2(x)‖ � ≤ ‖S1‖ � + ‖S2‖ � +
�
� Spoly

�
� � , (5.36)

with

S1 :=
1

∆t

�∑
m=1

vme
−m2π2∆t/γ2

sin � mπxγ � , (5.37)

S2 :=
4

H2

�∑
m=1

vme
−m2π2∆t/γ2

sin � mπH2γ � sin � mπxγ � , (5.38)

Spoly :=
1

∆t � 16γx3 −
γ

6
x � . (5.39)

With vm given by (4.32), we prove that ‖S1‖ � and ‖S2‖ � are o(1/∆t), (∆t → +∞). We
start from S2. We write

‖S2‖ � ≤ 4

H2

�∑
m=1

|vm| ��� e−m2π2∆t/γ2 ��� ���� sin � mπH2γ � ����
�
�
�
� sin � mπxγ � �

�
�
� �

≤ 8γ2

π3H2

�∑
m=1

��� e−mπ2∆t/γ2 ��� =
8γ2

π3H2

e−π2∆t/γ2

1 − e−π2∆t/γ2
.

(5.40)

For any H > 0 and any γ ∈ (0, 1), the last term in (5.40) is o(1/∆t), (∆t → +∞). A
similar procedure can be used to show that ‖S1‖ � is o(1/∆t), (∆t → +∞). Having
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proved that two of the terms on the right hand side of (5.36) are o(1/∆t), (∆t → +∞),
we deal now with the third one. Clearly, with the assumptions made,

�
� Spoly

�
� � is

O(1/∆t), (∆t → +∞). Therefore, there exists a constant C such that

�
� Spoly

�
� � ≤ C

∆t
, (∆t → +∞). (5.41)

This completes our proof. �
5.3 Plots of the iteration matrix norm

In Sections 5.1 and 5.2 we studied the asymptotic behavior of ‖Miter‖ � for ∆t ↓ 0 and
∆t→ +∞ and we found that, in both cases, the limit of ‖Miter‖ � is zero. In other
words, we know two limit situations in which the rate of convergence of LDC becomes
extremely fast. This does not mean, however, that the LDC method always converges.
In this section we provide arguments in favor of the conjecture that, for our model
problem and settings, Miter is less than one for any choice of H and ∆t, and thus the
LDC method is unconditionally convergent.

For the one-dimensional heat equation and the LDC settings discussed in Section 4,
we can compute Miter ∈ R explicitly. For that we use the original definition (3.13) and
we express M1 by (3.14), with MH as in (4.3), and M2 by (4.36). In Figure 6 we plot
Miter as a function of ∆t for different values of H and for γ = 0.5. In Figure 6-(a) Miter

is computed with a safety region ε = 0.15, while in Figure 6-(b) no safety region is
adopted. We immediately note that in both cases the maximum of Miter is always less
than 1, which means that the LDC method is always convergent. Moreover, for small
and big values of ∆t, we observe that the asymptotic behavior is in agreement with
the bounds stated in Theorems 5.4 and 5.5. For ∆t � 1 indeed LDC iteration errors
reduce proportionally to ∆t−2. When ∆t tends to zero, Miter goes very rapidly to zero
if we use a safety zone, see Figure 6-(a). Figure 6-(b) indicates that we should expect
LDC to be convergent also when no safety region is employed; in this case the iteration
error reduces proportionally to ∆t2 when ∆t ↓ 0.

Figure 7 illustrates the dependency ofMiter with respect toHwhen ε = 0 and ∆t� 1.
For fixed time step, Miter is proportional to H−4.

6 Numerical experiments

In this section we further verify the results of Theorems 5.4 and 5.5 by means of some
numerical experiments. One of the assumptions in the analysis carried out in Sec-
tions 4 and 5 is that both the local grid size h and the local time step δt are zero.
This assumption is introduced for analysis purposes only, namely for being able to find
the analytical solution of the local problem (4.27). The numerical experiments in this
section, performed with positive values of h and δt, will show that the results of Theo-
rems 5.4 and 5.5 still hold for a discrete local problem. In this section we also test the
influence of the safety region ε on the rate of convergence of the LDC method and we
try to observe the convergence behavior of Figures 6 and 7 for a concrete example.

We consider the application of the LDC method to the one-dimensional heat problem





∂u(x, t)

∂t
= λ

∂2u(x, t)

∂x2
+ f(x, t), in Ω = (0, 1), for t > 0,

u(0, t) = u(1, t) = 0, for t > 0,

u(x, 0) = exp
�
−50 (x − 0.25)2 � , in [0, 1],

(6.1)
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Figure 6: With reference to the model problem and settings of Section 4, plot of Miter
versus ∆t for different values ofH and for γ = 0.5;Miter is computed explicitly
from its definition.
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with λ = 0.01 and

f(x, t) = 5 exp � −50 �
x− 0.05 + 0.15 e−t � 2 � . (6.2)

In (6.1) the choice of initial condition, boundary conditions, diffusion coefficient and
source term is such that the solution u has a region of high activity on the left half
of the spatial domain. For this reason, we take the area of refinement as Ωl = (0, γ),
with γ = 0.5. In this way, as already noted before, the set ΓH reduces to one point
(x = γ) and Miter to a real number. For the solution on the global coarse grid we adopt
the same settings as in Section 4: the spatial discretization is performed by second-
order centered differences, while the Euler backward scheme is used for the temporal
discretization. For the solution on the local fine grid we employ the same numerical
schemes as on the global coarse grid.

We run tests aimed at measuring the convergence rate of the LDC method during
one time step. We adopt the following strategy: starting from the initial condition, we
perform one LDC time step with a chosen grid size H and a chosen time step ∆t. The
local grid size and time step are taken as h = H/5 and δt = ∆t/5. For measuringMiter,
we act as follows: at every LDC iteration, we store the coarse grid solution on the
interface ΓH. We say that the LDC iteration has converged when

|uH,1
Γ,w − uH,1

Γ,w−1| < tolerance, (6.3)

for a certain w ≥ 1. In (6.3), uH,1
Γ,w denotes the solution on ΓH after one time step

andw LDC iterations. In our numerical experiments, we set the value of the tolerance
to 10−12. Once the converged value on the interface is known, the error eH

Γ,w can be
computed for every iteration w that has been performed. Finally, see (3.11), Miter is
given by

Miter =
eH

Γ,w

eH
Γ,w−1

, (6.4)

for a certain w ≥ 1. In practice we take w = 1 in (6.4). Note that, if the LDC method
converges in exactly one iteration, Miter = 0.

We run two series of experiments on problem (6.1), the first one with a safety re-
gion, the second one with no safety region. The results are displayed in Figure 8. In
Figure 8-(a) Miter is plotted as a function of ∆t for different values of the coarse grid
size H. Except for the fact that the local problem is not solved analytically but nu-
merically, in this numerical experiment all the assumptions of Theorems 5.4 and 5.5
are satisfied. Note that the extent of the safety region (ε = 0.1) is greater than H, for
every H considered. As expected, Miter goes very rapidly to zero for small values of ∆t
while, for big values of the time step, iteration errors reduce proportionally to ∆t−2.
For each value of H considered in the experiment, the maximum of Miter is always
below 10−1; this means that, even in the worst case, the error eH

Γ,w is reduced by a
factor bigger than 10 at every LDC iteration. Figure 8-(b) refers to the experiment
with no safety region. The behavior for ∆t � 1 is the same as before; in Theorem 5.5,
in fact, no assumption is made on the extent of ε. For ∆t � 1 iteration errors reduce
proportionally to ∆t2. Note that, also in this case, the maximum of Miter is always
below 10−1. Overall the graphs in Figure 8 are qualitatively very similar to the ones
in Figure 6, where Miter was computed directly from the definition (3.13). In Figure 9
we finally plot, as a function of H, the values of Miter as they are computed by solving
problem (6.1) with ∆t = 10−4 and ε = 0. As already illustrated in Figure 7, with fixed
(and small) ∆t and no safety region,Miter is O(H−4).

So far we have only considered pure diffusion problems. Here we would also like to
investigate, by means of a numerical experiment, the LDC rate of convergence when
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Figure 8: Plot of Miter(∆t) for different values of H as computed by solving the heat
problem (6.1).
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Figure 10: Plot of Miter(∆t) for different values of H as computed by solving the
convection-diffusion equation (6.5).

the method is applied to a one-dimensional convection-diffusion problem. We consider
the following partial differential equation

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= λ

∂2u(x, t)

∂x2
+ f(x, t), in Ω = (0, 1), for t > 0, (6.5)

with v = −0.1. Equation (6.5) is solved with the same initial condition, boundary
conditions, diffusion coefficient and source term as problem (6.1). Moreover the same
numerical schemes and local region are adopted as before, and the same strategy to
compute Miter is employed. Note that in (6.5) convection is the main way of heat
transport since the relative weight of convection with respect to diffusion is

|v|

λ
=
0.1

0.01
= 10. (6.6)

Like before, we run two sets of numerical experiments, one with a safety region
ε = 0.1 and another one with no safety region. The results are displayed in Figure 10.
For small values of the time step ∆t the rate of convergence Miter has the same be-
havior as for pure diffusion problems. Also the maximum value of Miter(∆t) is, for
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Figure 11: Plot of Miter(∆t = 106) as in Figure 10 in terms of the grid size H.

every H, about the same (less than 10−1) as observed before. For big values of ∆t,
however, we note that Miter first decreases as O(∆t−2), but then an asymptotic value
(greater than 0) is reached. To illustrate the dependency of the asymptotic value on
the grid size, in Figure 11 we plot, as a function of H, Miter(∆t = 106) as computed in
the two sets of experiments on problem (6.5). From the graph we can see that, in both
cases, the asymptotic value is proportional to the square of the coarse grid size.

7 Conclusions

In this paper we studied the convergence properties of the Local Defect Correction
method for parabolic problems. For a general two-dimensional case, we found an ex-
pression for the LDC iteration matrix: at a generic time step, the LDC iteration can be
expressed in terms of an iteration that takes place on ΓH only, with ΓH the set of coarse
grid points that lie on the interface between coarse and fine grid. If the iteration on ΓH

converges, then the entire LDC iteration reaches a fixed point.
For a one-dimensional heat equation and a particular choice for the grids and the

discretization schemes, the properties of the iteration matrix can be studied in detail.
The norm of the iteration matrix is proved to go exponentially to zero when the time
step ∆t goes to zero if we use a safety region. If no safety region is used, the norm of the
iteration matrix reduces proportionally to ∆t2 for ∆t ↓ 0. The results of our analysis
for time-dependent problems fit into the theory of LDC for stationary cases: in fact
the norm of the iteration matrix goes to zero when ∆t → +∞. The asymptotic analysis
says that this happens proportionally to ∆t−2. Since the maximum of the iteration
matrix norm turns out to be less than one for any choice of the grid size H, we claim
that LDC applied to the solution of a one-dimensional heat equation is unconditionally
convergent.

All the results of the theoretical analysis are verified by means of numerical exper-
iments. Moreover, LDC applied to a one-dimensional convection-diffusion equation
shows the same convergence behavior as for a pure diffusion problem. Only in the
stationary case limit we observe differences: in the problem with a convection term
the iteration matrix norm does not go to zero, but it reaches an asymptotic value pro-
portional to the square of the coarse grid size.

25



References
[1] M. J. H. Anthonissen. Local defect correction techniques: analysis and application to com-

bustion. PhD thesis, Eindhoven University of Technology, Eindhoven, 2001.

[2] M. J. H. Anthonissen. Local defect correction techniques applied to a combustion problem.
In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors, Do-
main Decomposition Methods in Science and Engineering, Lecture Notes in Computational
Science and Engineering, pages 185–192, Berlin, Heidelberg, New York, 2005. Springer.

[3] M. J. H. Anthonissen, R. M. M. Mattheij, and J. H. M. ten Thije Boonkkamp. Conver-
gence analysis of the local defect correction method for diffusion equations. Numerische
Mathematik, 95:401–425, 2003.

[4] M. J. H. Anthonissen and R. Minero. Conditions for one-step convergence of the local
defect correction method for elliptic problems. Technical Report CASA 05-39, Eindhoven
University of Technology, Eindhoven, November 2005.

[5] M. J. H. Anthonissen, B. van ’t Hof, and A. A. Reusken. A finite volume scheme for solving
elliptic boundary value problems on composite grids. Computing, 61:285–305, 1998.

[6] L. K. Bieniasz. Use of dynamically adaptive grid techniques for the solution of electrochem-
ical kinetic equations: Part 5. A finite-difference, adaptive space/time grid strategy based
on a patch-type local uniform spatial grid refinement, for kinetic models in one-dimensional
space geometry. Journal of Electroanalytical Chemistry, 481:115–133, 2000.

[7] P. J. J. Ferket. Coupling of a global coarse discretization and local fine discretizations. In
W. Hackbusch and G. Wittum, editors, Numerical Treatment of Coupled Systems, volume 51
of Notes on Numerical Fluid Mechanics, pages 47–58, Braunschweig, 1995. Vieweg.

[8] P. J. J. Ferket. Solving boundary value problems on composite grids with an application to
combustion. PhD thesis, Eindhoven University of Technology, Eindhoven, 1996.

[9] P. J. J. Ferket and A. A. Reusken. Further analysis of the local defect correction method.
Computing, 56:117–139, 1996.

[10] P. J. J. Ferket and A. A. Reusken. A finite difference discretization method on composite
grids. Computing, 56:343–369, 1996.

[11] M. Graziadei, R. M. M. Mattheij, and J. H. M. ten Thije Boonkkamp. Local defect correction
with slanting grids. Numerical Methods for Partial Differential Equations, 20:1–17, 2003.

[12] W. Hackbusch. Local defect correction and domain decomposition techniques. In K. Böhmer
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