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An asymptotic treatment of the Elenbaas-Heller equation for a radiating 
wall-stabilized high-pressure gas-discharge arc 

H. K. Kuiken 
Philips Research Laboratories, P. 0. Box 80 000, 5600 JA Eindhoven, The Netherlands 

(Received 28 June 1991; accepted for publication 14 August 1991) 

An asymptotic analysis of the Elenbaas-Heller equation for a radiating wall-stabilized high- 
pressure gas-discharge arc is given. This analysis applies when the operating 
temperatures within the arc are lower than the ionization temperature by an order of 
magnitude. It is shown that for arcs that are radiating highly efficiently a further asymptotic 
treatment can be given. It is shown under what conditions, governed by a dimensionless 
parameter M, this limiting case prevails. Comparison with earlier results put forward by 
Zollweg [J. Appl. Phys. 49, 1077 ( 1978)] shows satisfactory agreement. 

1. INTRODUCTION 

In a recent paper’ we have shown that asymptotic 
methods can be brought to bear in a study of the classical 
Elenbaas-Heller (EH) equation for a high-pressure gas 
discharge. In that preliminary study the arc was assumed 
to be nonradiating. The present paper will be devoted to 
the radiating arc. It will be shown that the success of the 
method extends to this more complicated situation. In- 
deed, a fully analytical procedure can be set up for arcs 
that are radiating efficiently, i.e., arcs that convert the 
larger part of their input power into optically thin radia- 
tion. Even when the thermal conductivity is allowed to be 
a most general function of the temperature, the analytical 
approach remains effective. 

Again, the method is based on the observation that the 
energy levels related to ionization and radiation are far 
higher than those within the arc. This results in tempera- 
ture profiles that are highly concentrated around the axis 
of the arc. Of course, Elenbaas” had already made similar 
remarks. See, for instance, Fig. 8 of his book on high- 
pressure mercury discharges. However, Elenbaas assumed 
a greatly simplified temperature profile. Later authors,3-7 
in attempting to improve upon Elenbaas’s work, but still 
following an analytical course of action, devised all manner 
of approximations of the highly nonlinear terms that ap- 
pear in the EH equation. One of these approaches concerns 
the so-called two-channel model, in which all radiation and 
heat dissipation are assumed to occur within a narrow 
channel around the axis. The corresponding nonlinear 
terms are replaced by linear ones. Outside this narrow 
channel the EH equation reduces to a simple heat-conduc- 
tion equation. The trouble with this approach is, of course, 
that there is no reasonable way of determining where the 
‘Ynterface” between the two regions is located. 

With the advent of large-scale computing, interest in 
the analytical approach, limited in its scope as it had 
proved itself to be, faded rapidly and, subsequently, the EH 
equation was solved numerically. Now, even an equation as 
apparently simple as the EH equation represents a series of 
physical phenomena, and each of these is characterized by 
one or more physical parameters. It is inherent to the nu- 
merical approach that each of these physical parameters 

must be assigned definite values before the program can be 
run. When the parameter set is large, it will be difficult to 
interpret results in terms of the input parameter values. 
But then, for design purposes, a clear understanding of 
how the input values affect the end result is of great im- 
portance. If a problem can be solved analytically, there will 
be a much greater understanding on this score. Therefore, 
one should always try to carry the analytical approach as 
far as one is capable of doing. Even if the end result is not 
as accurate as one would wish, if it is in analytical form, 
one can use it as a means of spotting trends and may 
succeed in delimiting the parameter-value set that is most 
likely to yield results that are feasible from an applications 
point of view. The numerical software may then be invoked 
in order to take the final steps towards an accurate end 
result. 

We intend to show in this paper that the analytical aim 
set out in the previous paragraph can indeed be achieved, 
giving full credit to all salient nonlinear features of the EH 
equation. It has frequently been shown before, and will be 
confirmed again here, that parameter settings that are log- 
ical from a technological point of view are often such that 
asymptotic approaches can be invoked. The rewards are 
given in the form of explicit expressions linking input and 
output variables. 

II. MODEL 

The Elenbaas-Heller equation is defined as follows: 

5 f rA.(r)$ + a(t)E2 - u(t) =O. 

The three terms of this equation represent heat conduction, 
Joule heating, and radiation losses, respectively. The tem- 
perature is denoted by t and the temperature-dependent 
thermal conductivity by 1(t). Furthermore, o(t) is the 
(temperature dependent) electrical conductivity and E is 
the electric-field strength, which is assumed uniform. Fi- 
nally, u(t) represents the sum of all optically thin radia- 
tion-loss effects. We shall consider a rotationally symmet- 
ric situation with r denoting the radial coordinate. The arc 
is enclosed by a tube with an inner radius given by a. In Eq. 

5282 J. Appl. Phys. 70 (IO), 15 November 1991 0021-8979/91/105282-10$03.00 0 1991 American Institute of Physics 5282 

Downloaded 29 Aug 2011 to 131.155.151.114. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



( 1) we use a single temperature t, since we assume local 
thermodynamic equilibrium (LTE) conditions to prevail. 

The field E is related to the total current I flowing 
through the arc: 

E=I a 
(I 

2rr ra(t)dr 
0 ) 

-1 

. (2) 

The electrical conductivity, which appears in Eqs. ( 1) and 
(2), is a function of the temperature and related to Saha’s 
equation 

a(t) =y$‘eXxp( - Q/t), (3) 

where 

ti=eVi/2k, (4) 

which is equal to half the ionization temperature which, in 
turn, is related to the ionization energy eV, where Vi is the 
ionization potential and e is the elementary charge. In ad- 
dition, k is Boltzmann’s constant and y is another con- 
stant. 

In principle, the radiation processes are very compli- 
cated. A full description of these would lead to a very 
intricate model. In Eq. ( 1) it is assumed that the radiation 
process is composed of two extreme types: (i) optically 
thin radiation as expressed by the energy-loss term - u(t); 
(ii) optically thick radiation, which is represented by an 
enhanced thermal conductivity /z(t) . The analysis that fol- 
lows is independent of the precise functional description of 
1(t). The thermal conductivity can be given as an explicit 
analytical function, which may be quite general, or, alter- 
natively, as a tabulated function in the required tempera- 
ture range. We write, generally, 

n=n’.A(t/t,), 

where A is a dimensionless function with 

(3 

A(l)=l. (6) 

Aiso, tr is the temperature on the axis of the tube and il, the 
corresponding thermal conductivity. Clearly, when tr 
changes, the definition of A changes as well. 

Thin radiation constitutes the actual performance of 
the lamp. In principle, it concerns all lines which radiate 
visible and invisible light. Referring to Ref. 2, we write 

u(t) = C bjed - t/t>, 
/ 

where 

(7) 

tj= e V/k, (8) 

eVj being the excitation energy of the jth line. The coeffi- 
cients bj are factors that determine the weight of the line. 
These factors can be functions of the temperature. 
Elenbaas2 suggests that for many practical purposes the 
series (7) can be replaced by a single term 

u(t) =b, exp( - t.&), (9) 

where t* is a representative radiation temperature and b, 
the corresponding weight factor. In this paper we shall 
assume that 
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b,=uP, 

so that 

(10) 

u(t) =oP exp( - t,/t), (,ll) 

where o is a constant. For monoatomic gases we have 
p = - 1. Clearly, an equation such as Eq. ( 11) is strongly 
empirical, so that it will be difficult to assign values to both 
o and t* on the basis of pure physical reasoning. Later in 
this paper we shall resort to curve fitting by demanding 
that Eq. ( 11) represent known values reported in the lit- 
erature. The same will be done for the parameters y and ti 
defined by Eq. (3). It will be shown that this curve fitting 
can be done quite accurately. 

It would, seem that Eq. ( 1 ), together with Eqs. (2), 
(3), (5>, and ( 1 1 ), is too complicated for analytical treat- 
ment and that a numerical approach should be opted for. 
However, in an earlier paper dealing with a somewhat sim- 
pler problem, we showed that an asymptotic approach 
based on a suitable dimensional analysis may lead to ana- 
lytical results. The key to the success of that approach is 
the nondimensionalization of the temperature by means of 
the axis temperature t,.. Thus, we write 

t=t,T and r=aR, (12) 

where T and R are dimensionless variables. Substituting 
these expressions in Eq. ( 1) and using Eqs. (2), (3), (5)) 
and (ll), we find 

A&A(T)$+HT3’4exp[ Ti( 1 --+)I 

-KTpexp[ T*( 1 -i)]=O. 

In Eq. (13) we have 

H=af (T,), 

where 

a = 12/4&z”y/z,.t~‘4 

and 

with 

Ti= t/t, and Tqc=t.g/tr 

In Eq. ( 13) we also have 

K=wP- ‘a2;1.- *em T*. r T 

In addition, there are the boundary conditions 

R=O: T=l, dT/dR=O, 

R=l: T=T,, 

where 

T,=t Jt,, 

(13) 

(14) 

(15) 

dRj-2, 

’ (16) 

(17) 

(18) 

(19) 
(20) 

(21) 
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in which tw is the temperature on the inner tube wall. As in 
Ref. 1, we seem to have one boundary condition too many 
(three instead of two) for a differential equation of the 
second order. However, this has to do with the fact that we 
took the axis temperature t, for a known parameter. There- 
fore, we are no longef allowed to prescribe the arc current 
I. As a result, the parameter a [Eq. (15)], and, therefore, 
H [Eq. (14>], are unknown. This is why we need an addi- 
tional boundary condition in order to be able to determine 
Hin Eq. (13). 

Ill. ASYMPTOTICS FOR LARGE VALUES OF T, 

Equation ( 13)) with four dimensionless parameters, 
viz. H, K, Tis and T,, together with the boundary condi- 
tions ( 19) and (20) which.contain a fifth parameter T,, 
reduces the problem to its barest essentials. If no further 
analytical advance were possible, this would be the stage to 
bring to bear the numerics, not earlier. The reason is that 
the dimensionless model is well balanced. The results &n 
be plotted against the smallest parameter set. However, 
further analytical progress is possible, since some impor- 
tant parameters are always extreme, that is to say, for those 
cases that have practical relevance. Of course, one is free to 
enter any parameter values into the dimensionless model, 
but the only reason why we study this model is that it has 
some bearing on a practical issue, and this practical situa- 
tion leads invariably to extreme values of some of the per- 
tinent parameters. 

We have seen before’ that Ti has a large value for 
high-pressure gas discharges. Referring to Eqs. (4) and 
( 17), we conclude that Ti is the ratio of half the ionization 
temperature and the maximum temperature within the arc. 
With an ionization potential Vi- 10.7 V, a value typical for 
a mercury discharge, we find ti-60 000 K. Temperatures 
within mercury discharges are usually not higher than 
6000 K, showing that Tj has a value of around 10. The 
same is true for T,, since t* and ti are in the same temper- 
ature range. For some gases t* is slightly lower than ti, for 
most gases it is somewhat larger. Note that t* = eV,/k, 
and compare with Eq. (4). 

We shall now proceed in the manner explained in Ref. 
1. First we write 

Q=T, j; A(p)+, (22) 

defining a function Q which henceforth replaces the tem- 
perature T. The transformation (22) dates back to the last 
century and, apart from the multiplicative factor Ti, is 
called the Kirchhoff transformation. Alternatively, e/Ti is 
sometimes called the heat-flux potential. It can be seen 
from Eq. (22) that Q = 0 when T = 1 on the axis of sym- 
metry. When T drops below unity, the value of the integral 
increases, and that of Q rises rapidly. At the other end of 
the interval (R = l), the integral attains a value which is 
of order unity, showing that Q is large there. This is the 
basis of the asymptotic approach. 

Expanding the integral of E!q. (22) for values of T not 
too different from unity, we find [since A( 1) = l] 

Q-Ti[(l ~ T) +O(l - T)2]. (23) 

Inverting Eq. (23), we obtain 

T-l -Q/T,+0(1/7$). (24) 

Substituting Eq. (22) in Eq. ( 13), and using the expanded 
version of Eq. (23) in the exponential terms, we arrive at 
the asymptotic form of the EH equation: 

(25) 

where we have introduced the transformed independent 
variable 

Z= R (HTi) 1’2. (261 

Terms which tend to zero when Ti* co have been disre- 
garded in Eq. (25). On the basis of what we found in Ref. 
1, we can expect Z to assume a very large value at R = 1, 
which is equal to (HT,) In. 

There are only two parameters left in Eq. (25 ) , viz. 

Ij=K/H (27) 

and 

~=T*/Ti=2V*/‘V~ 

The boundary conditions on Z = 0 read 

(28 1 

dQ 
Q=O and ~‘0. 

We also have 

) 

Q=Q,=Ti JL A(p)dp, at z~(HTi)l’~. (30) 
w 

Let us now recapitulate what the asymptotics have 
been able to do for us so far. The heart of the problem is 
given by the differential equation (25 ), together with three 
boundary conditions defined by Eqs. (29) and (30). This 
system contains only four parameters, viz. c and q and the 
two parameter groups of Eq. (30). However, for each 
given parameter set (g,~) the two initial conditions of Eq. 
(29) suffice for the definition of all possible solutions Q. 
Since g is not known a priori, as it contains the unknown 
parameter H, condition (30) is needed to fix its value. 
Clearly, having been able to reduce the parameter set this 
far, we are in a much better position to present a clear 
picture of the solution set. 

The physical meaning of the parameters g and q de- 
serves some discussion. From Eq. (25) it should be clear 
that g somehow determines the relative importance of ra- 
diation losses versus power input. It can be deduced that 
the value of 6 must lie in the interval 

O<S<l. (31) 

Indeed, if 5 were larger than unity, an area around the axis 
would experience a heat sink, which is unphysical. It is 
obvious from Eq. (28) that q fixes the relative position of 
the effective radiation level with respect to the ionization 
level. In Eq. (28) the occurrence of the factor 2 should be 
noted. The value of 7 is always smaller than 2. Should the 
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value of q be much less than unity, the asymptotics will 
fail, since it is based on the rapid decay of exponential 
functions. However, this situation will rarely occur in prac- 
tice. 

Equation (25) and its solutions that satisfy the two 
boundary conditions of Eq. (29) make up the basic struc- 
ture of our title problem. In an asymptotic sense ( Tj large) 
all possible temperature profiles can be deduced from this 
basic two-parameter set of solutions. For a given gas mix- 
ture the parameter 7 is fixed and all we have to do is 
evaluate the solution for various values of 5. The precise 
value of g is then obtained from an iterative process that 
will be discussed presently. 

IV. SOLUTION 

To fix the value of 6 we must first determine the be- 
havior of Q for 2-t CO, so as to be able to apply condition 
(30). Integrating Eq. (25) twice and applying the two 
boundary conditions of Eq. (29), we arrive at 

Q-g1Gv>ln Z- g2Grl)t 

with 

(32) 

- ce-qQ(P))dp 

and 

g2({,,rl)- 
I 

m pInp(e-Q(p)--e-qQ(p))dp, (34) 
0 

assuming a parameter set ({,;17) for which both Eq. (33) 
and (34) exist. It has been shown in Ref. 1 that Eqs. 
(32)-(34) exist for 77 = 1. For other values of 7 the inte- 
grals have to be evaluated numerically. The numerics show 
that Eqs. (33) and (34) always exist when 7) 1 and g<l. 
When 77 < 1, the behavior of Q for large Z may differ from 
that given by Eq. (32). Indeed, the second exponential 
decays more slowly than the first, so that when Q- 03 the 
right-hand side of Eq. (25) always becomes negative be- 
yond a given value of Q defined by 

Q>Q,,,,=[l/(l -rl)lldW (O<i3<rl<l). 
(35) 

We shall not consider this case in the present paper and 
assume henceforth 

1<7#<2. (36) 

Substituting Eq. (30) in Eq. (32) we find 

Qw=Ti J; A(p)dp-$gr ln(HTJ -g.. (37) 
w 

Since [see Eqs. (16), (24), and (26)] 

f(Ti1-ee ‘( HTi) “/& 

we find from Eq. ( 14) 

H-aPf(HTi)2/& 

where 

(38) 

(39) 

g3Grl) = 
s 

om P - Q(P)+. (40) 

Eliminating H between Eqs. (37) and (39) we obtain 

a- (&T&d - Ti - 2(Q, + gMd, (41) 

giving the current parameter a [see Eq. ( 15)] as a function 
of 5 and 7 and, of course, Ti and T,. Similarly, we derive 
from Eqs. (18), (27), and (37), 

6-0 expI: - VTi- 2(Qw + gz>/gll, 
where 

(42) 

fi=&- 2$;1- ‘t. r r t (43) 

The solution procedure is now as follows. Since the 
temperature on the axis is given, the parameters T, T,, 
and A?, have known values. Furthermore, 7 has a value 
fixed by the gas mixture under consideration. Of course, c 
is unknown beforehand, and we intend to determine its 
value by iteration. In the first step we assume 5 = 0. We 
can now integrate Eq. (25) numerically, using the condi- 
tions (29), although for c = 0 an analytical solution exists 
(see Ref. 1) . The integration process yields values for the 
parameter functions g,, g2, and g3. The values of gl and g2 
are substituted in Eq. (42), yielding a new value of 5. This 
new value is used to integrate Eq. (25) anew. This process 
is continued until convergence is achieved. 

When 9 is too large, the new value of 4 may be larger 
than unity, which we cannot allow. When this occurs, a 
numerical device called under-relaxation has to be in- 
voked. Choosing a relaxation factor Y between zero and 
unity, we write 

Lxt=%lew + ( 1 - aAd. (44) 

The larger the value of a, the smaller we must choose the 
value of Y. It is found that this invariably forces conver- 
gence. 

Once a final value of c has been reached, we can eval- 
uate Eq. (41) and find the current parameter a which, 
upon the application of Eq. ( 15), yields the arc current, 

1=2rry’%$J - 
t* - tj 

1’2tf9’8 -P’2ti- ‘g”“g3 (6) exp 2t 
( ) 

. 
r 

(45) 

Similarly, we can find an expression for the field 

E=y- 1’2c01’2t$‘2-3’8~- ‘I2 exp[ ( ti - t,)/2t,)]. (46) 

The total power dissipated within the tube is therefore 

P= 277a~ti- ‘g3 (g) I, 

where I is the effective length of the tube. 

(47) 

To conclude this section we give graphical representa- 
tions of the functions gl, g2, and g3 in Figs. 1, 2, and 3. 
These may be used to carry out a quick iteration by hand. 
In a software implementation one might store the values of 
gl, g,, and g3 in tabular form in a computer memory, de- 
fining particular values by interpolation. This will result in 
an extremely fast computerized iteration process. 
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FIG. 1. (a) The function gl(.$) which is defined by E!q. (32) and which 
is used in Ekp. (41) and (42) (qc1.4). (b) The function g,(g) which is 
defined by Eq. (32) and which is’used in Eqs. (41) and (42) (71~1.4). 
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FIG. 2. The function 2g2(g)/gl(g) which is defined by Eq. (32) and 
which is used in Eqs. (41) and (42). 

V. RADIATION EFFICIENCY 

An important quantity resulting from a realistic lamp 
model is the radiation efficiency, which is defined by 

W= J; m(t)dr( j-f rrr(tjE’dr) - ‘. (48) 

Equation (48) is the ratio of the power leaving the lamp 
through radiation and the electric power pumped into it. 
Going through the various definitions and nondimension- 
alizations, we may write this asymptotically as 

W=E 
“I 

im pe - qQ(p)dp 

In general, this quantity will have to be evaluated numer- 
ically. In Fig. 4, W is given as a function of c for various 
values of q. Obviously, W has a value between zero and 
unity. It is interesting to note that, for most values of 7, the 
parameter W reaches values that come near to unity only if 
l comes very close to unity. Since a high radiation effi- 
ciency is desirable, this is a first indication that values of g 
close to unity are needed. 

VI. COMPARISON WITH RESULTS OBTAINED BY 
ZOLLWEG 

Zollweg’ calculated and discussed temperature distri- 
butions in vertical high-pressure mercury arcs by means of 
a software package developed by Lowke.’ This software 
package includes convection effects. In some of Zollweg’s 
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FIG. 3. The function gs(g) which is defined by Eq. (40) and which is 
used in Eiq. (41). 

0.8 - 

_._ 
0.0 0.2 0.4 0.6 0.8 1.0 

5- 

FIG. 4. Radiation efficiency Was defined by Bq. (48). 

r Zollweg This work 

0 5841 5621 
1 5802 5605 
2 5669 5541 
3 5381 5381 
4 4883 5053 
5 4259 4546 
6 3596 3846 
7 2899 3063 
8 2113 2161 
9 1001 1000 

“See Ref. 8. 
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TABLE I. Comparison of u(t) as given by Zollweg’s Table II, last 
column,a and present equation (51). Values reduced to units (W/cm* sr) 
used by Zollweg. 

Temperature (K) Zdweg u(t)10-6/47r 

7000 112.3 112.3 
6500 46.72 47.01 
6000 15.76 16.91 
5500 5.093 5.013 
5cuO 1.353 1.154 
4500 0.1979 0.1897 
4000 - 0.1605 0.0196 
3500 - 0.1605 O.GQlO 

‘See Ref. 8. 

numerical experiments, particularly the ones with large 
mercury charges, convection was seen to influence the tem- 
perature fields to some extent. Therefore, a full comparison 
with Zollweg’s results is not possible. Another difference 
between Zollweg’s model and ours is that Zollweg models 
the energy absorption by means of a negative net emission 
coefficient, which we do not. 

We refer to one of the cases discussed by Zollweg that 
was least affected by convection. His results were tabulated 
in his Tables II and V. Zollweg considers a tube with an 
inner radius of 9 mm and electrode distance of 8 cm. His 
case I refers to a mercury charge of 5 1.5 mg, a pressure of 
2.89~ lo5 N/m2, a power of 380 W, and a current of 3.0 A. 
Zollweg lists the gas properties of this case in his Table II. 
We have found that the electrical conductivity can be mod- 
eled by 

a(t) = 1.2x lOY’4 exp ( - 54 600/t) (mho/m) , (50) 

and the radiative emission function by 

u(t) =2.14x 1018t-” exp( - 86 000/f) (W/m3), (51) 

which shows that ti = 54 600 K and f* = 86 000 K, SO that 
7 = 1.575. Equation (50) approximates Zollweg’s values 
extremely well. A similar agreement was found in Ref. 10, 
where we compared an equation such as Rq. (50) with 
another of Zollweg’s cases. The agreement of (51) with 
Zollweg’s results is also quite remarkable (see Table I), 

TABLE II. Comparison of radial temperature profiles. Zollweg’s values” 
reported in his Table V at axial position z = 4 cm are shown in the second 
column. Our results are in column three. The 8rst column gives the radial 
distance in millimeters. 
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except in the lower temperature range (t < 4000 K), where 
Zollweg invokes his negative radiative emission model. We 
also used the thermal conductivity as tabulated by Zoll- 
weg. No attempt was made to model these values by an 
analytical function. As we said before, this is not necessary. 
All we have to do is rescale the values of Zollweg’s table in 
accordance with E!q. (5), delining the function A(T), and 
evaluate Q, as defined by Eq. (30). 

In our model we assume the axis temperature to be 
known, and then we derive the main lamp functions such 
as the current and the power. In order to be able to com- 
pare our results with Zollweg’s, we have chosen a value of 
tr that results in a lamp power of 380 W, which is the value 
quoted by Zollweg. We then find a current of 3.43 A, 
which is only slightly higher than Zollweg’s value of 3.0 A. 
For the radiation efficiency, defined by E?qs. (48) and (49), 
we obtain W = 0.656, and the parameter 6 has the value 
0.956 which is fairly close to unity. The temperature pro- 
files are compared in Table II. Of course, our temperature 
is independent of the axial coordinate, but Zollweg’s varies 
somewhat along the axis. Therefore, we have chosen a po- 
sition halfway along the electrodes of Zollweg’s lamp, 
where we compare our results with his. It can be seen that 
our EH model predicts temperatures that are 3%-4% 
lower in the center of the tube and somewhat higher ones 
closer to the tube wall. On the whole, our temperature 
profile would seem to be somewhat flatter in the central 
portion of the tube. Outside this central region its gradient 
is slightly steeper than Zollweg’s. 

Clearly, a complete agreement between Zollweg’s re- 
sults and ours cannot be expected, since our radiation 
model differs to some extent from Zollweg’s. Even so, the 
agreement seems to be quite reasonable. This is all the 
more surprising, since the convection model shows axial 
variation, whereas ours does not. For reference purposes 
we have collected some values pertaining to this case in 
Table III. The values of the variables are those calculated 
by our method. 

VII. HIGH RADIATION EFFICIENCY 

The example of the previous section led to a value of 
the radiation parameter ,$- close to unity. Inspection of Fig. 
4 reveals that, for most values of the parameter 7, g must 
be very close to unity for the radiation efficiency to be 
above 0.5, say. Therefore, a special analysis devoted to this 
limiting case seems justified. As the asymptotic analysis for 
6~ 1 is rather technical from a mathematical point of view, 
we present the details elsewhere. 11*12 However, we shall use 
and discuss the results here. For c?l the important Eq. 
(42) can be written 

BG,;rl) =M exp[ - N/AC&q) I, (52) 

M=(7j - 1)1’20*n exp( - ~lri), (53) 

N=Ti 3 
l/2 1 

0 J A(TX7-l 
=W 

(54) 

TABLE III. Values pertaining to a case studied by Zollweg.a Calculated 
values are ours. 

Physical constants 

a 
E 
*i 
tr 
*w 
t* 
I 
P 
V 

b 
w 

0.009 m  
1382 V/m 
54600 K 
5621 K 
lOOOK 

86000K 
3.43 A 

379.4 w 
110.6 V 

1.2~ 10’ mho/m/K3’4 
0.0661 w/m/K 

2.14~ 10’s W  K/m3 

Dimensionless constants 

f(T,) 
81 
g2 

TUI 
Tt+z 
w 
cc 

’ ?I 
E 
n 

J&,,,W-MT 

1.55x 10” 
6.787 
12.91 
19.74 
19.7 
18.8 
-1 

4.92 
9.714 
0.178 
15.3 

0.656 
1.27~10-~ 

1.575 
0.956 

0.806X109 
0.506 

*See Ref. 8. 

(55) 

1 ML) c4(rl) 
A(~,?1)-L+~ln(L)+c3(rl)+4 -r--+,+*--, 

(56) 

where L is defined by 

L=hl[l/(l -&J]. (57) 

The coefficients cl, 4, c3, and c4 appearing in Eqs. (55) and 
(56) are listed in Table IV. The dimensionless physical 
parameters M and N are functions of the gas properties 
and are fixed for each individual case. The parameter 
q = t*/ti is also given. Therefore, IQ. (52) is a seemingly 
complicated equation for the unknown c. It should be 
noted that the expressions for 4 and B are asymptotic 
expansions which apply for {t 1. The closer c is to unity, 
the better these truncated asymptotic series are. 

It is a fairly simple matter to obtain the solution to IQ. 
(52). This is best achieved iteratively. In the iirst iteration 
step we choose B = M. Clearly, since the exponential func- 
tion in IQ. (52) is always less than unity, B can at most be 
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TABLE IV. Constants used in E!qs.(55), (56), and (62). TABLE V. Iteration procedure involving EC&s. (52), (56), and (60). 

?I Cl c2 c3 c4 q % B s A 

1.05 - 1.8394 1.8789 - 0.8888 1.4270 - 2.2689 6.0971 
1.10 - 1.1683 2.2207 - 0.2170 1.7682 - 1.5654 4.1687 
1.15 - 0.7833 2.4231 0.1691 1.9696 - I.1497 3.5217 
1.20 - 0.5145 2.5705 0.4393 2.1156 - 0.8517 3.2899 
1.25 - 0.3088 2.6890 0.6466 2.2325~ - 0.6183. 3.2473 
1.30 - 0.1428 2.7901 0.8146 2.3318 - 0.4257 3.3064 
1.35 - 0.0038 2.8799 0.9558 2.4195 - 0.2614 3.4258 
1.40 0.1156 2.9618 1.0776 2.4991 - 0.1177 3.5836 
1.45 0.2202 3.0381 1.1847 2.5730 0.0103 3.7667 
1.50 0.3133 3.1102 1.2805 2.6424 0.1258 3.9673 
1.55 0.3971 3.1790 1.3671 2.7085 0.2312 4.1801 
1.60 0.4733 3.2454 1.4463 2.7719 0.3283 4.4017 
1.65 0.5433 3.3098 1.5194 2.8333 0.4184 4.6296 
1.70 0.6079 3.3726 1.5872 2.8930 0.5026 4.8622 
1.75 0.6680 3.4341 1.6506 2.9514 0.5816 5.0981 
1.80 0.7243 3.4946 1.7102 3.0086 0.6561 5.3366 
1.85 0.7771 3.5543 1.7664 3.0649 0.7267 5.5767 
1.90 0.8269 3.6132 1.8198 3.1203 0.7938 5.8182 
1.95 0.8741 3.6716 1.8705 3.1752 0.8578 6.0604 
2.00 0.9189 3.7294 1.9189 3.2294 0.9189 6.3033 

equal to M. However, B must also be much larger than 
unity. This can be seen from Eqs. (55) and (57), since 
L, 1. Therefore, 

1 (B(M (58) 

This shows that the analysis of this section will only work 
if 

M%l, (59) 

or, in other words, if Eq. (59) is not satisfied, we must 
conclude that 6 cannot be close to unity, and high radia- 
tion e.fficiency is not achieved for the particular parameter 
setting used. 

Proceeding now with our iteration procedure, we in- 
vert Eq. (55)) which yields 

c-l-exp[ - B+$ln(B) +q+ (Q-&)/B 

+ --*I. (60) 

Substituting our initial choice B = M in Eq. (60)) we ob- 
tain an initial estimate of 6. Substituting this initial value in 
Eq. (56), we obtain A, and this in turn yields a new value 
of B, upon application of Eq. (52). If the values of M and 
N are such that a solution for { close to unity exists, this 
procedure will converge to that solution. It may be neces- 
sary to apply under-relaxation. 

We shall illustrate the above procedure by means of 
the example of the previous section. Referring to the values 
listed in Table III, we find M = 10.25 and N = 4.362. Us- 
ing Table IV, we may find interpolated values for q 
= 1.575: cl = 0.4362, c2 = 3.2126, c3 = 1.4077, and 

c4 = 2.7406. This provides all the information we need to 
carry out the iteration procedure described above. In fact, 
it can be carried out on a simple pocket calculator. For 
illustrative purposes we list the iterated values in Table V. 
The tinal value of c = 0.959 is very close to the value of 
5 = 0.956 found before. 

10.25 
6.948 
5.922 
5.476 
5.260 
5.150 
5.093 
5.064 
5.048 
5.040 
5.036 
5.034 
5.033 
5.032 
5.031 
5.031 

0.9998 

0.9833 
0.9738 
0.9674 
0.9636 
0.9614 
0.9603 
0.9596 
0.9593 
0.9591 
0.9590 
0.9590 
0.9589 
0.9589 
0.9589 

11.22 
7.951 
6.959 
6.538 
6.338 
6.237 
6.185 
6.159 
6.145 
6.137 
6.134 
6.132 
6.131 
6.130 
6.130 
6.130 

It is shown in Ref. 11 that an asymptotic representa- 
tion of W can be found that is accurate in the range 0.9 
<5< 1, 

W-l -2(r1-- l)(2/~)*‘2{1/[L+~ln(L)]). (61) 

Applying this formula for g = 0.959, we find W = 0.657, 
which is remarkably close to the earlier value of W 
= 0.656. This is probably a fortuitous coincidence. Indeed, 

in Ref. 11 we found a more complete asymptotic represen- 
tation of W which gives a less accurate result. Although 
the extended formula of Ref. 12 is more accurate when 6 is 
extremely close to unity, the truncated formula Fq. (6 1) 
happens to be more accurate when c is not so close to 
unity, let us say 0.9 < 6 < 0.99. 

Next, we shall calculate the current I. It is clear from 
Eqs. ( 15) and (41) that we need the value of g3 first. In 
Ref. 12 we derived an asymptotic representation of gs valid 
for Etl: 

g3=f(q - l)- '{L2+L In(L)+ 2c5(q)L+$ln2(L) 

+ [$(T) + f&(L) + ‘33(7) + -‘*h (62) 

where values of c5 and cg are listed in Table IV. Interpo- 
lated values for v= 1.575 are: c5 = 0.2809 and 
c6 = 4.2904. It is also shown in Ref. 12 that the parameter 
functions gl and g2 can be expressed in terms of the func- 
tions defined by Eqs. (55) and (56). 

g1=Wr1Y2NhA (63) 

g2=glMB(h>/(v - 1 )“211. (64) 

Using (57) and the values of Table IV, we can easily find 
the values of these parameter functions for 6 = 0.959: 
gi = 6.908, g2 = 13.07, and g3 = 18.47. These values com- 
pare well with the ones presented in Table III, which were 
obtained by a more involved numerical procedure. From 
Eq. (41) we now obtain a = 1.16X 10M5. Substituting this 
value in Eq. (15), we arrive at I = 3.28 A. Again, this 
value is very close to that obtained before (see Table III). 
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It would seem that we have demonstrated that the 
asymptotic analysis of this section is very effective when 6 
values close to unity can be expected. Satisfaction of con- 
dition (59) would seem to be all important. 

VIII. THE CASE q=l 

The analysis of the previous sections is less effective 
when r] approaches unity. Fortunately, for q = 1 the basic 
equation (25), subject to the boundary conditions for Fq. 
(29), can be solved analytically: 

Q=2 In[ 1 + (1 - 5)Z2/8], (65) 

so that it is possible for us to present fully analytical results 
for this case. Substituting the outer-wall boundary condi- 
tion (30) in Eq. (65), we have 

exp(Qd2) -8 1 - g>HTi, (66) 

where the factor 1 appearing in Fq. (65) has been disre- 
garded, since its value is insignificant in comparison with 
that of the terms retained. Eliminating H from Eqs. (27) 
and (66), we find 

g=l/(l +8Tr1K-‘exp(Qd2)). (67) 

Substituting Eq. (65) in Eq. (40) we can derive 

g3=4/( 1 - $9, (68) 

so that Eqs. (39) and (66) yield 

a=[2/(1 -c>]Ti-.‘exp( - Ti-QJ2). (69) 

Equations ( 15) and (69) produce the following result: 
1=23/2~~~‘/2~~2f/2~f.1/8~~- l/2( 1 _ g) - l/2 

Xexp( -fTi-iQw), (70) 

which shows how the total arc current depends upon the 
system parameters. With 77 = 1, Eq. (49) shows that the 
radiation etEciency is given by Eq. (67). 

IX. CONCLUDING REMARKS 

In this paper we have shown that the classical 
Elenbaas-Heller equation for a radiating wall-stabilized 
high-pressure gas-discharge arc can be treated almost to- 
tally by analytical means, notwithstanding its severe non- 
linearities. Those cases that are of practical importance, 
viz. those that involve a high radiation efficiency, admit a 
full analytical treatment up to a simple numerical iteration 
procedure, which can be carried out on a regular program- 
mable pocket calculator. 

To make sure that the high-efficiency regime applies, 
the value of the dimensionless parameter M [Eq. (53)] 
must be determined tirst. If M is large, the lamp operates in 
this particular regime. In the example discussed in this 
paper a value of &f around 10 proved to be sufficiently 
large. The next step is the determination of the parameter 
6, which is done iteratively. Choosing B = M initially, we 
calculate g by means of Eq. (60). Next we calculate the 
parameter A using Eq. (56), and this in turn enables us to 
find a new value of B through Eq. (52). This brings us 

back to Eq. (60) for a new value of 6, and so on, until 
convergence is achieved. This process can be carried out on 
the above-mentioned pocket calculator. 

If M is not large, high efficiency is not achieved. We 
are then forced to use Eq. (42) in an iterative process for 
the calculation of g. In principle, this could also be done by 
hand, using the graphical representations of the functions 
gl and g> Alternatively, the iteration process could be ex- 
ecuted by carrying out repeated numerical integrations of 
Eq. (25) for the various iteration values of 6. Each sepa- 
rate integration produces values of gl, g2, and g3. This 
requires a low-powered table-top computer. 

Once g is known, all pertinent lamp parameters, such 
as the current [Eq. (45)], the electric field [Eq. (46)], the 
power [Eq. (47)], and the radiation elliciency [Eqs. (48) 
and (6 1 )] can be determined through direct computation. 
Clearly, the whole analysis revolves around the parameter 
g. Yet, this is the most elusive parameter of all. It is diffi- 
cult to attach a direct physical meaning to it. In any case, 
it is impossible to express it explicitly in terms of known 
physical quantities. It is defined implicitly in terms of these 
through Eq. (42), or, in the case of high efficiency, in 
terms of the iterative process dellned above. The closest we 
can come to a physical definition of c is through Eq. (27). 
Referring to Eq. (13), we see that g is related to the ratio 
of radiated energy and energy dissipated internally. Even 
so, it is not equal to this ratio, which is precisely the effi- 
ciency W [Eq. (49)]. 

The principles underlying the asymptotic techniques 
will also apply to more complicated problems. This means 
that the intricate nonlinearities can be dealt with effi- 
ciently, even in the case of more complex geometries. What 
will be needed, when dealing with these more advanced 
cases, is to find a balance between the analytical and the 
numerical effort. 

Problems that may be suitable candidates for the as- 
ymptotic treatment are one-dimensional time-dependent 
ones. Examples of such problems are given in papers deal- 
ing with pulsed arcs.13-15 Such problems are now usually 
solved by means of software packages. The asymptotic ap- 
proach can be expected to lead to a better understanding of 
the structure of pulsed arcs. 

Convective flows may also be treated asymptotically. 
In a recent study” on a free-burning arc, we formulated 
the boundary-layer equations, which in themselves are as- 
ymptotic representations of the full energy and momentum 
equations. Within this boundary-layer model a further as- 
ymptotic characterization of the kind discussed in this pa- 
per can be given. 
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