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GENERAL INTRODUCTION. 

This thesis deals with symmetries of dynamical systems and in particular 

Hamiltonian systems. Suppose X is a vector field on a manifold M. 
With this vector field an autonorneus dynamical system 

(0. I) û (t) 
d 

- dt u(t) X(u(t)) 

on the manifold M is associated. Dynamical systems of this type arise 

~n many places in science, biology, economy and other desciplines. Often, 

but not always the manifold Mis also a linear space. An important 

special type of dynamical system is the Hamiltonian system. For (autonomous) 

Hamiltonian systems, as introduced in definition 3.2.14, there always 

exists a function H on M such that H(u(t)) is constant for every solution 

u(t) of the sys tem. In physical situations which are described by a 

Hamiltonian system this function H is often equal to . the energy of the 

system. If the initial state u
0 

of the system at t = t
0 

is known, we can 

try to find the time evolution u(t) of the system by solving (0.1). However, 

in most cases for a dynamical/Hamiltonian system an explicit form of the 

solution, corresponding to an initial value u(t
0

) = u
0

, cannot be found, 

We shall not go into questions concerning existence and uniqueness of the 

solutions of (0.1) now. By means of numerical methods it is often possible 

to find a very good approximation for the solution of (0.1) with initial 

value u(t
0

) = u
0

. 

An alternative way to obtain some information about the dynamical 

sys t em is, instead of looking at a specific solution (as is clone in the 

· numerical approach) , to find properties which are shared by all solutions 

or at least classes of solutions. Such properties are for instanee the 

exis tence of constants of the motion, the existence of symmetries, the 

stability of the solutions or the behaviour of the solutions for t + oo , 

In this thesis we shall only consider symmetries and constants of the motion 

of dynamical systems and in particular Hamiltonian systems. For a finite ­

dimensional Hami ltonian system the existence of k constants of the motion 

in involution (i.e. with vanishing Poisson brackets) allows to reduce 

the dimension of the phase space by 2k. If the number of constants of the 

motion in involution equa l s half the dimension of the manifold (which is 

a lways even) the system is called completel y integrable. In that case an 



explicit form for the solutions of (0.1) can be given. This is one of the 

reasans for the interest in constants of the motion. 

For infinite-dimensional Hamiltonian systems the relation 

between infinite series of constants of the motion and "complete integrability" 

is not yet clear. During the last years a number of infinite-dimensional 

Hamiltonian systems have been solved using the so-called "inverse scattering 

methods". All these equations also have an infinite series of constants of 

the motion in involution. It is generally assumed that the existence of 

such a series is strongly related to the possibility of finding general 

solutions of these equations (for instanee by inverse scattering). 

In chapter 2 we consider a general dynamical (i.e not necessarily 

Hamiltonian) system of the form (0.1). A symmetry of a dynamica! system 

is introduced as an infinitesimal transformation of solutions of the 

dynamical systems into new solutions of the system. We shall consider 

symmetries which also may depend explicitly on t. So Y(u,t) 1s a symmetry 

if for every salution u(t) of (0.1) a lso u(t) + E Y(u(t),t) is a salution 

(up to o(E) for E + 0). This leads to an interpretation of symmetries of 

(0.1) as, possibly parameterized, (contravariant) vector fields which 

· satisfy 

(0.2) Y + [X,Y] y + L~ 0 
. a 

(Y =- Y) 
. (lt 

where [X,Y] = L~ is the Lie bracket of the vector fields X and Y. Sametimes 

this type of infinitesimal transformation is called a generator of a 

symmetry; the notion symmetry is then used fora finite (i.e. not infinitesimal) 

transformation of solutions of (0.1) into new solutions of (0.1). However, 

we shall use the notion symmetry only for infinitesimal transformations, 

or more precisely for parameterized vector fields which satisfy (0.2). The 

relation between symmetries and finite transformations of solutions into 

(new) solutions is similar to the relation between a Lie algebra and the 

corresponding Lie group. Therefore it is not surprising that the set 

of symmetries of a dynamica! system has a natural Lie algebra structure. 

A second important concep t in this thesis i s the adjoint 

symmetry, that is a,possibly parameterized, one-form (covariant vector 

field) o(u,t) which satisfies 

(0. 3) 0 . 
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It turns out that every constant of the motion of (0.1) gives rise to an 

adjoint symmetry. However, the converse is nat true in general. The four 

possible types of linear operators which map (adjoint) syrnmetries into 

(adjoint) symmetries are also introduced in chapter 2. These operators 

are called recursion operators for (adjoint) symmetries, SA- and AS operators. 

An SA operator maps symmetries into adjoint symmetries, an AS operator acts 

in the opposite direction. For an arbitrary dynamical system interesting 

operators of these four types do nat exist in general. If there exists a 

nontrivial recursion operator for symmetries or for adjoint symmetries, 

it can be shown that under certain conditions its eigenvalues (if they exist) 

areconstantsof the motion. This suggestsa possible relation between these 

recursion operators and the eigenvalue problems used in the inverse 

scattering method. For the Korteweg-de Vries- and Sawada-Kotera equation 

(sections 5.6 and 5.7) this relation can be given explicitly. 

A more interesting situation appears if the dynamical system 

is a Hamiltonian system. In chapter 2 we introduce Hamiltonian systems using 

the language of symplectic geometry. The phase space of these Hamiltonian 

systems is a smooth manifold M . This results in Hamiltonian systems which 

are more general then the classical Hamiltonian systems written in terms 

of pi and qi. Fora classica! Hamiltonian system with contiguration space 

Q we have M = T*Q. It turns out that several interesting partial differential 

equations (Korteweg-de Vries-, sine-Cordon-, Benjamin-Ono equation) can 

be considered as infinite-dimensional Hamiltonian systems of this type. 

In chapter 4 we study symmetries for Hamiltonian systems. 

The most important consequence of the Hamiltonian character of the system 

is that there always exists a relation between symmetries and adjoint 

symmetries, i.e. there always exists an SA- and an AS operator. This implies 

that every constant of the motion gives rise to a symmetry. This type of 

symmetry will be called a canonical symmetry. Very aften there also exist 

non-canonical symmetries, i.e. symmetries which are not related in this 

way to a constant of the motion. For systems which can also be described 

by a Lagrangian the theorem of Noether gives a relation between special 

types of symmetries and constants of the motion. It can be shown that 

Noether's theorem can be applied to symmetries which, in the Hamiltonian 

setting, are canonical. 

A non-canonical symmetry Z(in fact non-semi-canonical; we omit 

the prefix semi in this introduction) can be used to generate SA- and AS 
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operators out of the already known ones (which are related to the Hamiltonian 

structure). By combination of these operators we obtain a recursion operator 

for (adjoint) symmetries A(f). Then we can construct an infinite series of 

symmetries by 

(0.4) 

An alternative way to generate infinite series of symmetri.es is to take 

the repeated Lie bracket with Z ( = Lie derivative in the direction of Z) 

(0. 5) 

In section 4.5 we show that if the non-canonical symmetry Z satisfies 

additionaZ conditions the series (0.4) consists of canonical symmetries. So 

we have constructed an infinite series of constauts of the motion (in 

involution). The series given in (0.5) is considered in section 4.6. 

It turns out that if X2 = bX2 then Xk = bkXk (bk E JR). A series which (in 

genera!) consists of non-canonical symmetries is given by 

(0.6) Z). 

The structure of the Lie algebra of symmetries, generated by the s eries 

Xk and Zk , is also described in section 4.6. Finally we describe a third 

methad for constructing infinite series of constauts of the motion. 

This methad is in facta "combination of the previous two methods". It is 

clear that the existence of a non-canonical symmetry Z which satisfies 

the additional conditions mentioned above is a highly nontrivial property, 

which is in some way related to the "complete integrability" of the system. 

Several examples of the preceding theory are considered ~n 

chapter 5. The methods described in chapter 4 (sometimes with slight 

modifications) can be applied to all given examples except the Burgers 

equation (a non-Hamiltonian system) and the Benjamin-Ono equation. For 

the Benjamin-Ono equation a non-canonical symmetry which satisfies the 

additional conditions (and so a nontrivial recursion operator for (adjoint) 

symmetries) has not been found. However, we can generate a rather complicated 

algebra· of constauts of the motion (or canonical symmetries) in another 

way. Our most extensive example is the Korteweg-de Vries equation. We shall 
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show that there exist an infinite series of canonical symmetries and an 

infinite series of non-canonical symmetries. So we construct an infinite 

series of constauts of the motion using only "infinitesimal transformations" 

of solutions (i.e. not by using Bäcklund (finite) transformations). 

Some mathematica! preliminaries are given in chapter I. In 

particular insection I .I we shortly describe the differential geometrical 

methods used and insection 1.2 we show how these methods can be "generalized" 

to infinite-dimensional systems. 

5 



GRAPTER I: MATHEMATICAL PRELIMINARIES. 

1.1 DIFFERENTlAL GEOMETRY. 

In this sec tion we shall briefly des cribe s ome aspec ts of differential 

geometry. For a more comprehensive treatise and also for proofs of the 

results given here, we refer to the literature, for instanee Abraham and 

Marsden [1,44] or Choquet-Bruhat [3]. 

Tangent and co t angent spaces. 

Let M be a srnooth finite - dimensionaZ manifoZd with dirneusion n. The tangent 

space to M in a point u E M is denoted by TuM. This is a linear space with 

dirneusion n. The t angent bundZe TM is the union of all tangent spaces of M, 

so TM= u~M TuM . The tangent bundle TM is a manifold with dimension 2n. 

The tangent bundZe projection 1T
1

: TM -+ Mis a mapping which sends a tangent 

vec t or A E TM to its point of application . So if A E TuM t hen JT
1

(A ) =u. 

a E T*M can 
u 

The dual space of TuM is the cotangent space T~M . So an element 

be considered as a linear mapping a : T uM -+ 1R • Si nee the 

dimension of T M is 
u 

finite, the dual space of T*M is again T M. The duaZity 
u u 

map between T Jf and T* M will be denoted by < ·,· > . So if A E T Mand a E T*M u u u 
then <a ,A> E 1R. 

The cotangent bundZe T*H is t he union of a ll cotangent spaces 

of M, so T*M = u~M T~M. It is again a manifo l d with dimension 2n. Suppose 

a E T*M, so a E T~M forsome u EM. The mapp i ng 1f
1

: T*M-+ M : a-+ u is 

called the cotangent bundZe projection. 

Na tura! bases. 

Suppose we choose ZocaZ coordinates ui(i=l, •.. ,n) on an open subset U c M 

(soU can bedescribed by one chart). By varying the coordinate u 1 and 

keeping the other coordinates fixed, we ob t ain a curve in U c M. The 
I derivative of t h i s curve (with r espect to u ) i n a point 

of the tangent s pace TuM. This t angen t vector is denoted 

I n a s imi lar way we can cons truc t t he tangent veetors e . 
1 

u E M, i s an e l ement 
a by e = --

1 au I 
_ a_ ET M 
aui . u 

1 
u to construct (i=2, ..• ,n). So in this way we can use the l ocal coordinates 

a 
a basis { e . . ) i =l, ... ,n 

1 au1 
for T M f or a ll u E U. This basis is called 

u 

a naturaZ basis . I f A E T M with u E U, i t can be written as 
u 
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(l.I. I) ·A 

In this thesis uJe shall always use the convention that, unless otherwise 

indicated, summation takes place over all indices which appear twice, once 

as a subscript and once as a superscript. 

(1.1.2) 

A basis dui i=l, •.. ,n} for T*M is defined by 
u 

i 
<du ,e. > 

J 
ö~ 

J 
V i,j l, ... ,n. 

This basis is called the natural cobasi s. The bases { e . I i=l, .•. ,n} for 
1 

T M and { d} 
u 

If a E:. T*M with 
u 

(1.1.3) 

Th en 

i=l, ... ,n} for T*M are calledeach others dual bases. 
u 

u E: U, we can write 

i 
a .du • 

1 

(1.1.4) <a,A> 

Tensor fie lds. 

We shall frequently need smooth functions, vector fields, one-forms and 

(higher order) tensor fields on M. For a forma! definiÜon of these objects 

(using sections of the corresponding vector bundles) see for instanee 

Abraham and Marsden [1,44] or Choquet-Bruhat [3]. 

I. I. 5 Definition. 

Thesetof smooth functions on M will be denoted by F(M). The sets of 

smooth vector fields and (differential) one-forms on M will be denoted by 

X(M) respectively X* (M). Finally the set of smooth t ensor fields on M with 
i covariant order j and contravariant order i will be denoted by T .(M). 
J 

c 

So if A E: X(M) then A(u) E: TM and if a E: X*(M) then a(u) E: T*M. Of course 
u u 

we can expand vector fields and one-forms in the corresponding natura! bases: 

(I • I. 6) A(u) i A (u)e.(u) and a(u) 
1 

8 
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One-forms are sometimes called covariant vector fields, in contrast to 

vector fields which are called contravariant vector fields. Of course 

functions, vector fields and one-forms on M are special cases of tensor 

fields, so formally 

F(M) T~(M). 

Lie algebra's. 

We now make some remarks on the structure of the sets introduced in definition 

I. l.S. Of course all these sets are linear spaces (with infinite dimension). 

The product of two functions on M is again a function on M. This means that 

F(M) is not only a linear space but also a ring (with identity). The product 

of a vector field, one-form or tensor field with a function yields again an 

object of the same type. This can be expressed by saying that X(M), X*(M) and 

T~(M) are modules over the ring F(M). The linear space X(M) has additional 
1. 

structure. First we give the following 

I. I. 7 Definition. 

A real linear space E with a bilinear product [·,·] 

satisfies 

i) [X,X] = 0 V X E E, 

E x E...,. E; which 

ii) [X,[Y,Z)] + [Y,[Z,X)] + [Z,[X,Y)) 

is called a Lie algebra. 

0 V X,Y,Z E E, 

0 

Note that i) implies that the product is antisymmetric : [X,Y) =-[Y,X]. 

·rhe second condition is called the Jacobi identity. It is well-known that 

the space X(M) of vector fields on M is a Lie algebra. The product [A,B] of 

two vector fields A and B on M is called the Lie product or Li e bracket of 

the vector fields A and B (see section 2.8 for an unusual (and complicated) 

introduetion of the Lie bracket of vector fields). 

the Lie bracket of the vector fields A= A
1
e. and B 

1. 

(1.1.8) [A,B] (B l.,· .Aj i j -A,.B)e. 
J J 1. 

i 
where we use the notation B, . 

J 

9 
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In local coordinates ui 
i 

Be. is the vector field 
1. 



Tensor products, 

In (1.1.6) we showed how vector fields and one-forms can be expanded in the 

natura! bases corresponding to a coordinate system. By taking tensor products 

(a) of the elements of these bases, we can construct bases for the various 

types of tensor fields. Suppose <ll E T~Uf), 1\ E T:(lf) and 'Jl E T~(M). Then, in 

a local coordinate system we can write 

i j 
<!l •• du ®du, 1\ 

q 

ij 
'Jl e. ® e .. 

~ J 

i j 
1\.e.®du, 

J ~ 

The tensor product of the tensor fields :: E T~U{) and 8 E T~O·O is a tensor 

field :':atG E T~+~OO. For instanee in local coordinates (A E X(M)) 
;v+J 

1\®A 

Contractions. 

i k . 
1\.A e. ® ek® duJ, 

J ~ 

The tensor product is an operator which yields a tensor field of higher 

order(s) then the original tensor fields. An operator which lewers both 

orders of a tensor field is the contraction. Suppose :: E T~ (IA) wi th i, j ~ I . 

Then by contraction we obtain a tensor field ::CE ri=:(M).~In fact if i> 

and/or j > I several types of contraction are possible. As an example 
2 consider a tensor field:: E T
1

(M), So, using alocal coordinate system, we 

can write 

Then by contraction we can obtain the tensor(vector) fields 

_ij 
::.. e .. 

J ~ 

Contracted multiplication. 

An operatien which will be used very of ten in this thesis, is contracted 

multiplication, that is a tensor product followed by a contraction. 

Contracted multiplication of two tensor fields ::
1

, ::
2 

will be denoted by 

10 



(I. 1.9) A 'V 

(1.1.10) 

The duality map between a vector field A and a one-form a can also be written 

as a contracted multiplication 

<a,A> 

However, it will be convenient to use <·,·> for this duality map. It is 

easily seen from (1.1.10) that by contracted multiplication of a tensor 

field A E r: (H) and a vector field A we obtain again a vector field M on M. 

This means we can consider A also as a linear mapping A : X(M) 7 X(M). 

Similarly the contracted multiplication of. a te~sor field rE T:(M) and a 

one-form a yields again a one-form fa(= r7a.duJ). So we can consider r also 
J 1 

as a linear mapping r X*(M) 7 X*(M). Note that A and r are tensor fields 

of the same type. The two different mappings are possible since we can 

perfarm different contractions. In general we shall use the symbol A for 

tensor fields which are used as a mapping A : X(M) 7 X(M) and the symbol r 

for tensor fields which are used as a mapping r : X*(M) 7 X*(M). Note that 

this means that in the contracted multiplication /1.:3. we contract "using the 

lower index of A" while in the contracted multiplication r::: we contract 

"using the upper index of r". The contracted multiplication of a tensor 

field <ll E T~(H) and a vector field A yields a one-form a= <!>A = <IJ •• Ajdui. 
lJ 

So we can also consider <IJ as a linear mapping <IJ X(M) 7 X*(M). Finally a 
2 

tensor field 'V E T (M) can be used to transfarm a one-form into a vector 
0 

field. Hence we can consider it as a linear mapping 'V : X*(M) 7 X(M). 

Vector bundle maps. 

We have seen that a tensor field A E T:(M) can be used as a linear mapping 

A : X(M) + X(M). Of course we can also transfarm a vector A ET Mintoa 
u 

vector M E T M. So we can also use A as a linear mapping A T M 7 T M. u u u 
Since u E M is arbitrary we can also consider the tensor field A as a mapping 

A : TM + TM. A mapping of this type (with A T M + T M linear) is called a 
u u ---

vector bundle map. Similar results hold for the other types of tensor fields. 

11 



We summarize the various applications of tensor fields with total order two 

in the following scheme 

tensor field linear map vector bundle map 

A E 
1 r1uo A X(M) + X(M) A TM +TM, 

(1.1.11) r E r: (M) r X*(M) + X*(M) r T*M + T*M, 

<!> E T~(M) <!> X(M) + X*(M) <!> TM -+ T*M, 

'!' E T2(M) '!' X* (M) + X(M) 'I' T*M + TM . 
0 

The difference between consiclering A as a vector bundle map A : TM + TM and 

as a linear map A : X(M)-+ X(M) is that with the vector bundle map we can 

transfarm one vector of Hj, while the linear map A : X(M) + X(M ) transfarms 

a vector field on M. 

Lie derivatives. 

An extremely important taal in this thesis will be the Lie derivative. 

Suppose ~ is a tensor field of arbitrary orders and A is a vector field. 

Then the Lie derivative LA~ is again a tensor field of the same type as ~. 

In the special case that ~ = B is a vector field, we have 

(1.1.12) 

In local coordinates the Lie derivatives of FE F(M), BE X(M), a E X*~M), 

<!> E T~(M), A E T:(M) and 'I' E T~(M) are given by 

[A ,B] 

LA a 
k k i 

(a . kA + akA' i) du , 
1, 

(1.1.1 3) 

LA<!> 
k k k dui ID duj, (<!> .. kA + <l>.l·· + <!>k.A,.) 

1]' 1 J J 1 

LAA (A~ Ak - k i i k j 
11
l'k 

+ AkA, j) e i e du , J,k 

LA'!' ('!'ij Ak 
'k 

'l'ikAj 
'k 

'!'kj A i ) e . 111 e .. 'k 1 J 

I 2 



The Lie derivative satisfies Leibniz'ruZe 

Since the Lie derivative "commutes with contraction" this means that the 

Lie derivative also satisfies Leibniz'rule with respect to contracted 

multiplication. For instanee 

[A ,J\B] <L/\)B + 1\[A , B]. 

Differential forms. 

A (differentiaZJ k-forrn i;, on 11, considered in a point u E M, is a k-linear 

completely antisymmetrie raapping i;, : T M x T M x ... x T M + IR. This means 
u u u 

we can identify a k-forrn with a completely antisymmetrie tensor field with 

covariant order k and contravariant order 0. For instanee a two-form ~ can 

be identified with a tensor field t E T~(M) 

(1.1.14) ~(A ,B) <<!>A ,B> V A ,B E X(M). 

Note that we consider the tensor fieldt as a raapping t : X(M) ~ X*(M). 

This different way of using a tensor field and the corresponding differential 

form is the reason for introducing a distinct notation. In general we shall 

use capita! Greek letters for tensor fields. If a tensor field corresponds 

to a differential form, we denote this form by the corresponding smal! greek 

letter <=,i;,; t,~; n ,w) . The interior product iAÇ, of a k-form with a vector 

field yields a (k-1)-form defined by 

(I • I . IS) 

It is easily seen that the (k-1)-form iAÇ, corresponds to the tensor field ~. 

The interior product of a two-form with a vector field yields a one-form. 

From (1.1.14) we obtain 

(I . I • 16) 

which means iA~ = tA. For a function F E F(M) we define iAF 0. 
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Exterior differentiation. 

The interior product lowers the degree of a differential form. An eperation 

which increases the degree of a· differential form is exterior differentiation. 

If ~ is a k-form, the exterior derivative d~ is a (k+l)-form. In local 

coordinates the exterior derivative of a function F (= zero-form), one-form 

a and two-form ~ are given by 

<dF ,A> 

(1.1.17) da(A,B) 

d~(A,B,C) 

for all vector fields A,B,C E X(M). 

1.1.18 Definition. 

A k-form ~ with d~ = 0 is called a alosed k-form. A k-form ~ (k > 0) which 

can be written as~= dç with Ç a (k-1)-form is called an exaat k-form. 

Since d2ç = ddç = 0 for all forms t;,an exact form is always closed. In 

general the converse is not true. 

1.1 .19 Lemma (Poincaré). 

D 

Suppose ~ is a closed k-form on M. Then for every point u E M there exists 

a neighbourhood U such that ~~U (~ restricted to U) is exact. 

Proof: 

See for instanee Abraham and Marsden [I, § 2.4.17). 
D 

So for every closed k-form ~ and every point u E M there exists a neighbour­

hood U of u and a (k-1)-form Ç on U such that ~ = dç on U. Of course this 

does not imply that ~ = dç on the whole manifold M. 

Exterior multiplication. 

Suppose ~I E T~(M) and ~2 E T~(M) are two completely antisymmetrie tensor 
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fields. The corresponding differential forms are denoted by ~I and s
2

. lt is 

easily seen that the tensor product :: 1e ::: 2 E T~+i(M) is in general not 

completely antisymmetric. By "antisymmetrization" of this tensor field we 

obtain a tensor field=: E T~+i(M) which is again antisymmetric. The 

corresponding (k+2)-form ~ is written as 

s=~ 1 A~2 • 

and is called the exterior product of the forms s1 and s
2

. For instanee if 

k = i = I we have 

The Lie derivative LA=: of a completely antisymmetrie tensor 

field ::: E T~(M) is again an antisymmetrie tensor field of the same type. The 

k-form corresponding to LA:: is denoted as LA s , where s is the k-form 

corresponding to the tensor field ::: . For instanee for a two-form ~ we have 

(see (1.1.14)) 

(I. I. 20) 

Note that this formula is only a consequence of the distinct notations we 

use for a tensor field and the corresponding differential form. 

Several formulas. 

Now we give a list of various other formulas which will be used in this 

thesis (see also Choquet-Bruhat [3, chapter IV, §A4]). Suppose -
1 

and :::
2 

are arbitrary tensor fields, A and B are vector fields and a is a one-form 

on M. Then 

(1.1.21) 

(Leibniz'rule for contracted multiplica tion, sametype of 

contraction in all terms) 

IS 



(1.1.22) 

(special case of (I. 1.21)) 

(I. I. 23) [A ,B] 

(1.1.24) 

For the operators LA, iA and don differential forms it can be shown that 

(I. I. 25) 

(1.1.26) 

(1.1.27) 

(I. I. 28) 

(I. I. 29) du(A,B) = LA<u,B> - L8<u,A>- <u,[A,B]> (a one-form) , 

(I. I. 30) 

It is easily seen from (1.1.27) and (1.1.26) that 

(1.1.31) 

Suppose F is a function on M. Then using iAF 

that 

(I. I . 32) L F = i dF = <dF,A> A A 

Transformation properties. 

0 we obtain from (1.1.27) 

Suppose there exists a diffeomorphism f between M and some other manifold N 
so f : M + N. Then using this diffeomorphism all vector fields, differential 

forms, tensor fields on M can be transformed to objects of the same type on 

N. All operations described in this sectien are naturaZ with respect to this 

transformation, i.e. the transformed objects satisfy similar relations as 
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the original objects. For instanee suppose A and B are two vector fields on 

M. The transformed vector fields on N are given by A = f'A and B = f'B. 

Then it can be shown that 

f' [A , B ] [(f'A),(f'B) l, 

so the transformed Lie bracket of A and B is equal to the Lie bracket of the 

transformed vector fields. 

Parameterized tensor fields. 

We shall frequently use functions, vector fields, differential forms and 

tensor fields on M which also depend onsome additional parameter (tEW). 

I. I. 33 Definition. 

The set of smooth parameterized functions on M will be denoted as F (M). The 
p 

sets of smooth parameterized vector fields and one-forms on M will be denoted 

as X (M) and X*(M). Finally thesetof smooth parameterized tensor 
p p 

M with covariant order j and contravariant order i will be denoted 

In all cases the parameter (t) is allowed to take all values inW. 

fields on 

as T~ (M). 
JP 

D 

So if Y EX (M), then Y(u ,t) ET M for all tE JR. Of course F (M) = F(MxW). p u p . 
However, in order to keep a uniform notation, we shall only use F (M). Of 

p 
are (can be identified with) subsets of course F(M), X(M), X*(M) and T~(M) 

0 J 
F (M), X (M), X*(M) and T7 (M). 
P P p JP 

1. 2 "DIFFERENTIAL GEOMETRY" ON A TOPOLOGICAL VECTOR SPACE.. 

In the preceding sectien we gave an overview of some aspects of differential 

geometry on a finite-dimensional manifold M. The notions and relations 

introduced in that sec tien '-lill extensively be used in chapt ers 2 , 3 and 4. 

So we can make a straightforward use of the results of those chapters if we 

consider a dynamical system on a finite-dimensional manifold (for instanee 

the periodic Toda lattice [52]). However, several interesting dynamical 

sys tems are described by partial differential equations, i.e. they have "an 

infinite number of degrees of freedom", So at first sight weneed the 

machinery of differential geometry, as described in sectien I. I, also on 
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manifolds of infinite dimension. Fortunately most of the interesting 

dynamica! systems with "an infinite number of degrees of freedom" can be 

considered in a topoLogicaL vector space instead of on an arbitrary manifold 

(of infinite dimension). Iri this way we can avoid the problems associated 

with differential geometry on manifolds of infinite dimension. 

We shall now describe how several differential geometrical 

objects, introduced in sectien I .I, can be "generalized" to the case that the 

manifold M is an (infinite dimensional) topological vector space W. The 

(topological) dual of W will be denoted by W* and the duality map between W 

and W* by <.,. >.We only consider the case W** = W, so Wis ref~exive. The 

space of linear continuous mappings of W into some topological vector space 

W
1 

will be denoted by L(W,W
1
). We shall consider L(W,W

1
) as a topological 

vector space with the topology of bounded convergence (see Yosida [45, § IV.7]). 

Since M = W is a linear space, we can make the following 

identifications 

(I • 2. I) 

T W 
u 

T*W 
u 

W , TW 11) x w • 

W*, T*W W x W*. 

Using these identifications it is easy to introduce (objects similar to) 

vector fields, differential forms and tensor fields on W. A vector field A 

on W is a mapping 

(I. 2. 2) A w -+ w x w u -+ (u,A(u)) 

where A : ·w-+ Wis a, possibly nonlinear, mapping, So we can identify the 

vector field A with the mapping À. Therefore À will also be called a vector 

field. To simplify notatien we shall drop the tilde and write A instead of A. 

In a similar way we can introduce one-forms and tensor fields of higher order. 

This results in the following list of identifications (c.q. definitions in 

the infinite-dimensional case) : 
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(I. 2. 3) 

tensor. field 

A E X(W) 

a E X* (W) 

~ E T~(W), considered as 

vector bundle map ~ : TW + T*W 

A E T:(W), considered as 

vector bundle map A : TW + TW 

rE T:(W), considered as 

vector bundle map r : T*W + T*W 

~ E T
2

(W), considered as 
0 

vector bundle map ~ : T*W + TW 

"representation" 

A w + w ' 

a : W + W* , 

W + L(W,W*) , 

W + L(W,W) , 

r W + L(W* ,W*) , 

W + L(W*,W) . 

Note that a tensor field in T:(W) can be represented by a linear operator 

(in fact operator field on W) A(u) : W + W and by a linear operator 

r(u) W* + W*. If A(u) and r(u) correspond to the sametensor field we have 

A(u) r*(u) for all u E W. If ~ is antisymmetrie (so ~(u) is antisymmetrie 

for all u E W) the corresponding differential two-form ~ on W is given by 

(I. 2. 4) ~(u)(A,B) <~(u)A,B> V A,B E W, 

In a similar way we can introduce higher order tensor fields and differential 

forms. However, the tensor fields introduced above will be sufficient for the 

sequel. 

Next we introduce Lie derivatives and (for differential forms) 

exterior derivatives. First some remarks on differential calculus in 

topological vector spaces. For a more detailled discussion of this complicated 

subject we refer to Yamamuro [46]. Suppose W1 is some topological vector space 

and fis a (nonlinear) mapping f: w + wl. 
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I. 2. 5 Definition. 

We call f Gateaux di fferent i ab le in u E W if there exists a mapping 

6 E L(W,W
1
) such that for all A E W 

(1.2.6) lim .!_ (f(u + e:A) - f(u) - 6A) 
e:+O e: 

0 

in the topology of W
1

• The linear mapping 6 E L(W,W
1

) is called the Gateaux 

derivative of fin u and is written as e = f'(u). 

[J 

If f is Gateaux differentiable in all points u E W, we can consider the 

Gateaux derivative as a (in general nonlinear) mapping 

Suppose f' is again Gateaux differentiable in u E W, The second derivative 

of fin u E Wis a linear mapping f"(u) E L(W, L(W,W
1
)). It is easily seen 

that f"(u) can be considered as a bilinear mapping 

f"(u) w x w + (l)l' 

Under certain assumptions it can be shown that this mapping is symmetrie: 

f"(u)(v,w) = f"(u)(w,v) for all w,v E W (see [46]). We shall call a mapping 

f : W + W
1 

twice differentiable if its first and second Gateaux derivatives 

exist and if f"(u) is a symmetrie bilinear mapping for all u E W, We assume 

all mappings in this section are twice differentiable. 

I. 2. 7 Remark. 

!late that in the limit given in (1.2.6) a uniformity in wis not required. 

If this limit is uniform on all sequentially compact subsets of W, the 

mapping f is called Hadamard differentiable. If the limit is uniform on all 

bounded subsets of W, the mapping f is called Fréche t differentiable. 
[J 

Suppose A : W + W is (represents) a vector field. The Gateaux derivative in 

u E Wis a linear mapping A'(u) : W + W. The dual of this mapping is denoted 

by A'*(u) : W* + W*. 
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I. 2. 8 Definition. 

The Lie derivatives in the direction of a vector field A of a function 

F : W ~ W and of the various tensor fields (vector fields, one-forms) 

considered in (1.2.3) are defined by 

F' (u)A = <F' (u) ,A> , 

LAB(u)- [A,B] (u) = B'(u)A(u)- A'(u)B(u) (BE X(W)), 

a '(u)A(u) + A'*(u)a(u) , 

(1.2.9) (~'(u)A(u)) + ~(u)A'(u) + A'*(u)~(u) , 

(A' (u)A (u)) + .t\(u)A' (u) ~ A' (u)fl(u) , 

(f'(u)A(u))- f(u)A'*(u) + A'*(u)f(u) , 

LA~(u) = (~'(u)A(u)) - ~(u)A'*(u) - A'(u)~(u) . 

0 

First some remarks on the notation in these expressions. Consider the formula 

for LA~. Since ~ : W ~ L(W,W*) we have ~·(u) E L(W, L(W,W*)). So . C~' (u)A) E 

L(W,W*) and (~' (u)A)B E W*. By definition 

(~' (u)A)B lim ~(~(u+ EA)B- ~(u)B). 
E~O E 

Of course in general this expression is not symmetrie Ln A and B. Therefore 

we shall always insert brackets in expressions of this type. It is easily 

seen that the Lie derivative of an object yields again an object of the same 

type. Note that if r*(u) = A(u) (so f and A represent the same tensor field) 

the same holds true for the Lie derivatives: (LAf(u))* = LA.t\(u). Next we 

define exterior derivatives of zero-, one- and two-forms. 

I. 2. I 0 Definition. 

i) The exterior derivative of a function F : W ~ R is the mapping 

dF: W ~ W* :u~ F'(u) (so dF(u) = F'(u)). 
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i i) The exterior derivative of a one-form a w ~ w* is the two-form 

da(A ,B) <a 1 (u)A ,B> - <a 1 (u)B ,A> 

<(a 1 (u)- a 1 *(u))A,B> V' A,B E W. 

iii) The exterior derivative of a two-form ~. corresponding to an operator 

~(u) as in (1.2.4), is given by 

d~ (A ,B ,C) <(~ 1 (u)A)B,C> + <(~ 1 (u)B) C ,A> + <(~ 1 (u)C)A,B> , 

V'A,B, C EW. 

0 

Note that the definitions (1.2.8) and (1.2.10) strongly resemble the 

expressionsin local coordinates (1.1.13) and (1.1.17) for the corresponding 

objects on a finite-dimensional manifold. Contractions and interior products 

in the infinite-dimensional case are interpreted via (1.2.3). Also we shall 

adopt the notions closed and exact differential forms (see definition 1.1.18). 

I. 2. 11 Theorem. 

The relations (1.1.22) up to (1.1.32) included arealso valid for Lie 

derivatives and exterior derivatives given in definitions I .2.8 and 1·.2. 10. 

Proof: 

All proofs are similar to proofs in local coordinates of the corresponding 

relations on a finite-dimensional manifold. If a second derivative appears, 

we need its symmetry. 

0 

Suppose a is a closed one-form with continuous derivative a 1 (u) W ~ W*. 

Then (definition 1.2. 10 ii) Cl.
1 (u) a 1 *(u) for all u E W. Since Wis a linear 

space, a closed differential form is also exact. Define the function 

F : W ~ R by 

(I • 2. I 2) F(u) 
I 

f <a(au), u> da. 
0 

Then it ~s easily verified that a dF, so indeed a is also an exact one-form. 
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In a somewhat different context an operator a: W + W* with a'(u) = a'*(u) 

is called a potential operator. Expression, similar to (1.2.12), can be 

given for closed higher order differential forms. 

Finally we mention that we shall use the same notation as 

introduced in definition 1.1.33 for parameterized functions, vector fields, 

one-forms and higher order tensor fields on W . 

.1.3 SOME FUNCTION SPACES . 

In chapter 5 we shall consider several nonlinear evolution equations. Some 

of these equations can be written in the form 

(1.3.1) u = f(u,u , ••• ), 
t x 

where f is a polynomial in u and its derivatives. The Burgers equation 

(section 5.2), Korteweg-de Vriesequation (section 5.6) and the Sawada-Kotera 

equation (section 5. 7) are of this type. In this section we describe function 

spaces in which we shall consider these equations. For convenience we set 

a = _<!_ 
dx 

I. 3. 2 Definition. 

For p > 0 we define the space S by 
p 

s 
p 

{ u E c"' con 

The following two theorems describe some properties of the space S • 
p 

1.3.3 Theorem. 

D 

For every function u E S there exists a series of constants C such that 
P m 

Proof: 

Set v (x) 
m 

c 
I amu<x) I ~ __ .:::;m_--=­..;;;.z:;. m+p+1 

.~ m+p+1 
Vx-+1 amu(x). Then 

m=0,1,2, .... 
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élv (x) 
m 

rz-- m+p-1 m rz-- m+p+l 
(m+p+l) vx-+1 xél u(x) + vx-+1 am+lu(x). 

Hence 

Si nee u E S p this means that élv m E L 1 ( 1R). Th en from 

V (x) = V (0) + 
m m f 

0 

x 
élv c-1> dx' 

m 

we see that vm is bounded; there exists a constant Cm such that 

V'xE7R. 

I. 3. 4 Theorem. 

Suppose u E S • Then also xu E S • 
p x p 

Proof: 

From élm(xu ) = xélm+lu + mélmu we obtain 
x 

I v (x) I 
m 

D 

~ c 
m 

Both terms of the right hand side are elements of 1 1 ( 7R), so also the left 

hand side is an element of 1
1 
(IR). 

D 

We shall also need smooth functions v which satisfy the following conditions 

(I. 3. 5) lim v(x) = -lim v(x) a E 1R, a depends on v, 
x-><><> x+-"" 

(1.3.6) 
~m+p 

Vx-+1 élm+lv(x) E 1
1 

(IR) V m ~ 0. 

I. 3. 7 Definition. 

For p > 0 we define the space U by 
p 

u 
p 

{ v E C
00

(7R) v satisfies (1.3.5) and (1.3.6) }. 
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We now consider the relations between the spaces S and U . 
p p 

1.3.8 

i) 

ii) 

iii) 

Proof: 

s c Ij 
p 

if V t 

if u e: 

Theorem. 

p' 
u then av 

p 
s and v E: 

p 

= V e: s p' x 
u then uv E s 

p p 

The first two parts of this theerem follow immediately from the definitions 

of S and U . An elementary calculation yields 
p p 

(1.3.9) ~ m+pam(uv) = ~ r~J (~ i+paiu)(Jx2+1 m-iam-iv). 

i=O 1 

rz i+p . 
u ES we have Vx-+1 a 1 u E L

1
(IR). We now consider the function 

m-i P. 
Since 

;;.z:; am- 1 v. For i = m this is equal to v, which is clearly a bounded 

function.For i < m we obtain from part ii) of this theerem and theerem 1.3.3 

also that this function is bounded. Hence the left hand side of (1.3.9) is 

an element of 1
1 
(IR). 

[J 

I. 3. I 0 Corollary. 

If u E S and v E: S then also uv E: S • 
p p p 

[J 

d 
We have seen that the operator a dx maps Up into SP. It is possible to 

define an inverse operator which acts in the opposite direction. 

I. 3. I I Theorem. 

inverse a u +S is the 
-I s u defined The operator of operator a + 

p p p p' 
by 

x co 

(1.3.12) 
-I J u(y) 

I J u(y) a u(x) dy - 2 dy. 
- CO 

Proof: 

For u e: s both integrals exist. We now show that a-Iu E u It is easily 
p p 
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seen that 3- 1u satisfies (1.3.5) with 

00 

a = I f u(y) dy. -
Since aa- 1u = u and u E S it follows from the definition of SP that 3-1u 

p -1 
also satisfies (1.3.6). The proof is completed by noting that 3 3v = v for 

arbitrary v E U • 
p 

0 

Next we introduce a t opology on S and on U . For v E U and u E S define 
p p p p 

00 

(I. 3. 13) <v,u> f v(x)u(x) dx. 
.J>O 

This bilinear mapping U x S + IR is called a duality ar duality map. It is 
p p 

easily seen that this duality map is separating, i . e. for every nonzero 

v E U there exists a u E S such that <v,u> ~ 0 and for every nonzero 
p p 

u E S there exists a v E U with <v,u> ~ 0. With every v E U corresponds 
p p p 

a seminoPm p (u) = l<v,u> l onS . Also every u ES gives rise to a seminorm 
V p p 

q (v) = l<v,u> l on U . Then, using the family of seminorros { p 
U p V 

we can supply S with a topology. The seminorros { q I u E S } 
p u p 

with a topology. Some properties of bath topological spaces are 

I. 3. 14 Theorem. 

V E u } ' 
p 

provide U 
p 

described in 

The spaces S and u are locally convex Hausdorff t opol ogical vector spaces. p p 
The (topological) dua l of S 

(topological) dual of u is p 

Proof: 

S* 
p 

u 
p 

u* 
p 

p 
is 

s p' 

s . 
p 

(can be represented by) 

so 

See Choquet [43; propositions 22.3 and 22 .4] . 

u and the 
p 

0 

Since we now have a topology on S and on U we can study the 
p p 

continuity of the various mappings between these spaces. Reeall that a 

mapping of a topological space into a topological space is continuous iff 

the inverse image of an open set is open. Suppose W1 and W2 are topological 

vector spaces with topologies generated by the families of seminorros {q.} 
~ 
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respectively {pi}. Then a linear mapping 0 : W1 ~ W2 is continuous iff for 

every seminorm pi on W2 there exist a constant C and a seminorm qj on W1 
such that 

p. (0w) $. Cq. (w) 
1 J 

If W
1 

c W2 we can consider an element of W
1 

also as an element of W2. This 

mapping of wl into w2 is called the embedding operator. 

I. 3. IS Theorem. 

The mappings () : U ~ S and ()-I : S ~ U are continuous. Suppose u E S • 
p p p p p 

Then the mapping mu Up ~SP : v ~ uv is continuous. The embedding operator 

of S into U is also continuous. p p 

Proof: 

Suppose V E U p' then Clv = V E s For an arbitrary w E u we have 
x p p 

00 00 

p)v) I J wv dxl I J vw dxl =~ (v). x x -oo -00 x 

This means that () : U ~ S is continuous. The continuity of the other 
p p 

mappings is proved in a similar way. 

c 

Suppose u E S . 
p 

To simplify notation we will denote the mapping m u 
u p 

(mul tipHeation by u) by u : u ~ s Then, using various parts of this 

theorem, we see 
()-Iu<l-l : S U . . p ~ p are cont1nuous mapp1ngs. 

p p 
()3 -I -I that for instanee u<l, êlu, Ud U : u ~s and d u, • p p 

Consider the topological vector spaces W
1 

and W2 with 

(topological) duals W~ and w;. The dual operator of a linear operator 

0 : wl ~ w2 is the linear operator 8* : w; ~ w~ defined by 

(I. 3. 16) 

~s 
p 

-I 
Ud , 

A special situation occurs if W~ = W2 and w; = (W~*=) W
1 

(so W1 1s reflexive). 

Then 8 : W
1 
~ W2 and also 0* : W

1 
~ W2. In this case we call an operator 8 

symmetrie if 8* = 8 and antisymmetri e if 8* = -e. 
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I. 3. 17 Theorem. 

The operators () u + s and a-1: s +u are antisymmetric, so 
p p p p 

(I. 3. 18) 

(I. 3. 19) V u I, u 2 E: S p 

Proof: 

The first expression follows by partial integration. The proof of (1.3.19) is 

a straightforward computation using (1.3 . 12) and (1.3.13). 

0 

We shall frequently need the dual of an operator which is the composition of 

two other operators. Suppose 0 = 020 1 : W1 + W
2 

with 0
1 

8 2 : W3 ->- W2 • Then it is easily seen that 0* = 0 ~8;. 

Finally we describe some operators which we shall use frequently 

in chapter 5 (in particular in section 5.6). For u E: S consider the 
p 3 operators u(), au, a : u 

p 
+ S • The dual operators are found to be 

an~ (a3
)* =- a3 . This means that (ua)* = - au, (au)* = - ua 

(1.3 .20) u() + au - a3 : u .... s 
p p 

is an antisymmetrie operator. We shall also meet the operator 

u .... u . 
p p 

The dual Óperator of r is then given by 

s .... s . 
p p 

I. 4 THE HILBERT TRANSFORM. 

In this section we describe some properties of the Hilbert transform, which 

are used insection 5.8. The Hilbert t ransfarm of a function u E: L
2

(m) is 

defined by 

00 

Hu(x) ~ J ~dy 
-oo y-x 

(principal value integral). 
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1.4. I Lemma. 

Suppose u E: s with 0 < p < I' then the function p 

00 

(I. 4. 2) w(x) 
p 

J yu(y) dy (principal value integral) 
1T 

-oo 
y-x 

is bounded for all x E: IR • 

Proof: 

It follows from the definition of SP that u E: L
1 

( 1R). Suppose x > 0. Then 

we can write (1.4.2) as 

(I. 4. 3) w(x) =-
1T 

II 

I 
2X J yu(y) dy 

y-x 

+ I2 + I3. 

3 
ÏX 

+ ~ J yu(y) dy + 
1T 1 y-x 11 zX 

00 

J ~dy 3 y-x 
zx 

It is easily seen that I I1 + r 3 1 < l J lu(y)ldy. Set v(y) - 1T yu(y). Then 
-co 

we obtain from theorem 1.3.3 that 

(I. 4. 4) I v(y) I 

for all y E: IR . Using the niean value theorem we obtain 

3 

p ïx v(x) + (y-x)v (a(y)) 
I2 =- J y dy <la(y)-xl < ly-xl). 

1T 
zx y-x 

3 zX 
= _!_ J v (a(y)) dy. 

1T 1 y 
2x 

Then (1.4.4) implies 

for x > 0. 

Herree w(x) is bounded for x > 0. A similar estimate can be given for x < 0. 

I. 4. 5 Lemma. 

If u E: S with 0 < p < I then Hu E: C
00

(1R) and 
p 
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(I • 4. 6) 

Proof: 

Since u E 

E 1
2 

(IR ) , 

(I. 4. 7) 

Hu(x) ~ 'v' x E IR. 

s we have <lmu E 12 (IR ) for m = 0, 1,2, ... Sa 
p 

00 

which imolies that Hu E c (IR ) . Next note that 

xHu(x) 

00 

u(y) dy + .!: f 
7T 

yu(y) dy. 
y-x 

...00 

H<l mu 

Then using lemma 1.4.1 and xHu(x) E C
00

('lR.) we obtain (1.4.6). 

1.4.8 Corollary. 

If u E S and xu E S then 
p p 

(I. 4. 9) xHu(x) 

Pro of: 

I 
7T f 

00 

u(y) dy + H(xu(x)). 

This result follows at 6nce from (1.4.7). 

1.4. I 0 Theorem. 

For 0 < p < I we have H s -+ u . 
p p 

Proof: 

()~u 

0 

0 

It follows from lemma 1.4.5 that Hu E C
00

(IR) and lim Hu(x) 0. Sa we only 
rT-: m+p m+ I x-+±oo 

have to show that vx-+1 . a Hu(x) E 1 1(1R). 

Note that if u ES then xJamu ES for j ~ m (see theorem 1.3.4). By using 
p p 

(1.4.9) we obtain 
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Since xm+lam+lu ES we obtain from lemma 1.4.5 and the fact that Hu E C
00

(m) 
p 

that 

~ m+p m+l 
Since 0 < p < I this implies that Vx-+1 a Hu(x) E 1 1 (IR) for m 0,1 ,2, ... 

Thus we proved that Hu E U . 
p 

0 

Finally we mention some ether properties of the Hilbert transform: 

00 

(1.4.11) J uHv dx - J vHu dx (antisymmetry), 
--00 --00 

(I • 4. 12) HHu(x) -u(x), 

(I • 4. 13) 8Hu Hau, 

(I . 4. 14) (Hu)(Hv) uv+ H(uHv) + H(vHu), 

I. 5 ANALYTICALLY INDEPENDENT FUNCTIONS. 

I. 5. I Definition. 

The functions F1, ..• ,Fk on a possibly infinite-dimensional manifold Mare 

called analytically independent if the corresponding one-forms dF
1
(u), ..• , 

dFk(u) are linearly independent elements of r:M for all u E N, where N is a 

dense open subset of M. 
0 

If the manifold M is finite-dimensional, we can introduce local coordinates 
i u (i=l, •.• ,n) on U cM. Then it is easily seen that the functions F

1
, ..• , 

Fk are analytically independent iff the Jacobian matrix 
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()FI ()FI 
-1 
<lu <lun 

()Fk . <lFk 
-1 
dU dUn 

has rank k. This also implies that on a manifold of dimension n there can 

exist at most n analytically independent functions. The notion analytically 

independent is explained in the following 

I .5. 2 Theorem. 

Suppose Mis a finite-dimensional manifold. The functions F
1

, ... ,Fk on M 
are analytically independent iff locally there does not exist a relation 

g(F I, 

k where g : IR + IR is a smooth function such that in every point of an open 

dense subset of IRk the gradient (one-form dg) does not vanish. 

Proof: 

See Levi-eivita [54; chapter I, § 5,6]. 

D 
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CHAPTER 2: SYMMETRIES FOR DYNAMICAL SYSTEMS. 

2. I INTRODUCTION. 

This chapter deals with some general properties of dynamica! systems on 

manifolds. If the dynamical system is a Hamiltonian system, more 

specific results can be obtained. Those .more specific results will be 

considered in chapter 4. In section 2.2 we shall introduce two linear 

equations associated with the dynamical system. Solutions of these 

equations will be called symmetries and adjoint symmetries. Since most 

of the considerations in sectien 2.2 are of local character, we shall 

use a local trivialization of the (co)tangent bundle of the manifold. 

An introduetion of symmetries without using a local trivialization of 

the tangent bundle will be described in the appendix of this chapter. 

Several properties of symmetries and adjoint symmetries are considered in 

sections 2.3 and 2.4. The possible relations of symmetries and adjoint 

symmetries are studied in sectien 2.5. In section 2.6 we consider a 

dynamical system for which there exist two infinite series of symmetries. 

This situation will occur several times in chapters 4 and 5. Finally in 

sectien 2.7 we study the transformation properties of (adjoint) symmetries. 

A very important tool in this chapter is the Lie derivative 

of several types of tensor fields in the direction of a vector field. 

Sametimes we shall also give the more classical formulas, using local 

coordinates. In that case the manifold is assumed to be finite-dimensional. 

For an infinite-dimensional manifold our results are formal. 

Symmetries (also called invariant variations, infinitesimal 

transformations or Lie-Bäcklund operators) arealso studied by Olver [13], 

Wadati [14], Fokas [IS] , Magri [17] , Fuchssteiner and Fokas [8], etc .. 

These last mentioned authors also describe adjoint symmetries (which they 

call conserved covariants). Most authors consider a dynamical system in 

some (unspecified) topological vector space and write their expressions 

in terros of Gateaux, Hadamard or Fréchet derivatives. However, the 

only natural type of derivative for studying symmetries is the (infinite­

dimensional version of the) Lie derivative, which replaces complicated 

combinations of derivatives of one of the previous types. Using this Lie 

derivative most expressions are considerably simplified and important 

new relations can be found. Since Lie derivatives arealso defined on 

33 



(in fact invented for) arbitrary smooth manifolds, we can easily describe 

the theory for dynamica! systems on manifolds. In contrast to most authors 

we also consider (adjoint) symmetries which depend explicitly on the time t. 

In several applications this type of (adjoint) symmetry turns out to be 

important. 

2.2 DEFINITION OF SYMMETRIES AND ADJOINT SYMMETRIES. 

Suppose Mis a manifold and X a vector field on M, so X EX(M). Fora curve 
d 

u(t) on M we set Ü(t) = dt u(t) ETu(t)M . 

In this chapter we shall consider the following autonomous diffe~ential 

equation on M 

(2. 2. I) Ü(t) X(u(t)). 

The parameter t is called time. This equation can be supplied with an 

initial condition u(t
0

) = u
0

• Since (2.2.1) is an autonomous system, it 

is no restrietion to take t = 0. We shall assume that for all u EM and 
0 0 

t 
0 
E~ there exists a unique salution u(t) of (2.2.1), with u(t

0
) 

defined on some interval 1 E~ . 

Suppose U is an open subset of M which can be described by 

one chart. This means the tangent bundel TU is a trivial bundle, 

TU UxW for some linear space W. Then we can consider the vector field X 

as a mapping X : U + W. The derivative of X(u) in a point uEU is a linear 

mapping X' (u) : W + W • Suppose u(t) is a salution of (2.2.1) which lies 

in U. Then we can linearize (2.2.1) around u(t) and obtain 

(2.2.2) v (t) X' (u(t)) v(t) v(t) E Tu(t)U = W. 

Since ~t X(u(t)) = X'(u(t))X(u(t)), this equation has always the salution 

v(t)= X(u(t)). Another interesting linear equation, associated with 

(2.2.1) is the so-called adjoint equation of (2.2.2) 

(2.2.3) w(t) - X'*(u(t)) w(t) W*, 

where X'*(u) : W* + W* is the dual operator of X'(u) . The equations 

(2.2.1) and (2.2.3) can be derived from the following va~iational p~nciple 
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(2.2.4) stat 
t2 J <w(t), Ü(t)- X(u(t))> dt, 

tI 

over thesetof all curves u(t) EU, w(t) EW fortE [t 1,t2] with u(t 1) 

and u(t
2

) fixed. A "variation" of w(t) gives (2.2.1) while a "variation" 

of u(t) leads to (2.2.3). 

With appropriate initial conditions for v and w we could 

study the Cauchy problems, associated with (2.2.2) and (2.2.3). 

However, we are only interested in special solutions of (2.2.2) and 

(2.2.3). Suppose there exists a Y EX (M) (so Y is a vector field on M, 
p 

depending on an additional parameter t, Y(u, t) ET M), such that for all 
u 

solutions u(t) of (2.2.1) which lie (partl~ in U, v(t) = Y(u(t),t) is a 

solution of (2.2.2). This means 

Y (u(t), t) + Y' (u(t), t) u(t) X'(u(t)) Y(u(t),t). 

Note that Y, the partial derivative of the parameterized vector field Y 

with respect to the parameter (t), is again a vector field on M. Since 

u(t) is a solution of (2.2.1) we obtain 

Y (u(t),t) + Y'(u(t),t) X (u(t)) =X'(u(t)) Y (u(t),t). 

This condition has to be satisfied for all solutions u(t) (which lie 

parly in U) with arbitrary initial condition u(t
0

) 

(2.2.5) Y (u, t) X' (u) Y (u, t) - Y' (u, t) X (u) 

u , hence 
0 

VuE U, tEJR . 

The right-hand side can be interpreted as the Lie bracket [Y,X] of the 

vector fields Y and X. This Lie bracket can also be written in terms of 

Lie derivatives 

[Y,X] - L y 
x 

So we can write (2.2.5) as 
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Y + [X,Y] Y + L Y = 0 VuEU, tEJR . 
x 

This condition on the vector field Y does not depend on the local 

trivialization TU = U x W. 
This leads to the föllowing 

2.2.6 Definition. 

A parameterized vector field · Y on M 

(2.2.7) Y + [X,Y] = 0 

(so Y E X (M)) , which sa tisfies 
p 

on M x 1R is called a symmetry of the dynamieal system (2.2.1). The set 

of symmetriesof (2.2.1) will be denoted by V(X;M). 
[J 

In the appendix of this chapter we shall show how (2.2.7) can be derived 

without using a local trivialization of TM. Since Y =XE V(X;M) the set 

V(X;M) contains always a non-zero vector field. 

Next we turn to special solutions of (2.2.3). Suppose there 

exists a oE X*(M) (soa is a parameterized one-form or covariant vector 
p 

field) such that for all solutions u(t) which lie (partly) in U, w(t) = 

= o(u(t),t) satisfies (2.2.3). This implies 

ó(u(t),t) + o'(u(t),t) û(t) - X'*(u(t)) o(u(t),t). 

Using (2.2.1) we obtain 

ó(u(t),t) + o'(u(t),t) X(u(t)) - X'*(u(t)) o(u(t),t). 

This condition has to be satisfied for all solutions u(t) in U, hence 

Ó(u,t) + o'(u,t) X(u) + X'*(u) o(u,t) 0 VuEU, tEJR . 

The last two terms in the left-hand side can be written as LXa, the Lie 

derivative of the one-form a in direction of the vector field X. This 
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operation results again in a one-form which is independent of the 

trivialization TU= U x W. Hence the following 

2.2.8 Definition. 

A parameterized one-form o (so o E X*(M)) which satisfies 
p 

(2.2.9) ó + L o x 0 

on M x~ is called an adjoint symmetry of the dynamical system (2.2.1). 

The set of adjoint sy=etries of (2.2.1) will be denoted by V*(X;M). 

Cl 

In contrast to V(X;M) the set of adjoint symmetries V*(X;M) may contain 

only the trivial one-forrn o = 0. Of course V(X;M) eX (M) and V*(X;M) c X*(M). 
p p 

Finally we mention that in the ·remaining part of this chapter (adj oint) 

symmetries, unless stated otherwise, are meant as (adjoint) symmetries 

of the dynamical system (2.2.1). 

2.3 PROPERTIES OF SYMMETRIES. 

First some remarks on the notion of constant of the motion. 

2. 3. I Definition. 

We call a function F E F (M) a constant of the motion or first integral 
p 

of (2.2.1) if, for all solutions u(t) of (2.2.1) 

d 
dt F (u(t), t) 

This is equivalent to 

(2.3.2) F + < dF,X > 

0. 

0 on M x ~ • 

Constauts of the motion which diffe r only by a real constant will be 

identified. The following two lemma's are an immediate consequence of 

the fact that the evolution equation (2.2.1) is autonomous. 
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2.3.3 Lemma. 

If F is a constant of the motion, then the same holds true for F. 
IJ 

2.3.4 Lemma. 

If Y E V(X;M), then also Y E V(X;M) 
IJ 

Some properties of the set of symmetries V( X;M) are described in 

2.3.5 Theorem. 

V(X;M) is a real linear space. Furth~r if Y E V(X;M) and F is a constant 

of the motion, then FY ·E V(X;M). 

Proof: 

Symmetries have to satisfy the linear equation (2.2.7), so the first 

remark is trivia!. Next note that (Leibniz' rule) 

[X,FY] F[X,Y] + (LXF) Y. 

Since F is a constant of the motion and Y a symmetry this can be written 

as 

[X,FY] - FY - FY d 
3t (FY) . 

So the vector field FY is again a symmetry. 

D 

Theorem 2.3.5 can be summarized by saying that the set of symmetries 

V(X;M) is a module over the ring of constantsof the motion of (2.2.1). 

2.3.6 Theorem. 

V(X;M) is a Lie algebra with the same Lie bracket as the algebra X(M) 

of all vector fields on M. The autonomous symmetries (that is symmetries 

Y with Y = 0) forma subalgebra "of V(X;M). 

38 



Proof: 

Suppose Y1, Y2 E V(X;M). Set Y 

Using the Jacobi identity for Lie brackets we get 

[Y,X] 

which shows that V(X;M) is a Lie algebra. Finally note that if Y
1 

and Y2 
are autonomous, then Y = [Y

1
, Y

2
] is also autonomous. 

0 

Next we consider tensor fields which can be used to construct 

(new) symmetries from Calready known) symmetries. Suppose A E T:P(M), so 

A is a parameterized tensor field of covariant order I and contravariant 

order I. Then A can also be considered as a vector bundle map A :TM 7TM 

or as a linear mapping A: X (M) 7 X (M). We can ask under which 
p p 

conditions A maps V(X;M) into V(X;M). This leads to the following 

2.3.7 Theorem. 

Suppose the tensor field A E T~p(M) satisfies 

(2.3.8) 0 on M x 1R. • 

Then if Y E V(X;M), then also AY E V(X;M). 

Proof: 

Since the Lie derivative satisfies Leibniz' rule we have 

d d at (AY) + [X,AY] =at (AY) + LX(AY) A(Y + [X,Y]) + (A +L A) Y. x 

So if Y is a symmetry and A satisfies (2.3.8), we see that AY is also a 

symmetry. 0 
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2.3.9 Definition. 

A parameterized linear mapping ~:X (M) +X (M), corresponding toa 
p p 

parameterized tensor field (also denoted by) A E r:P(M) which satisfies 

(2.3.8), is called a recursion operator for symmetries. 

D 

Recursion operators for symmetries are sametimes called strongsymmetries 

[8, 9]. 

2.3. I 0 Remark. 

Another possibility for constructing (new) symmetries out of already known 

ones is to compute the Lie bracket with sorne other symmetry. This methad 

should not be confused with the application of a recursion operator 

for symmetries. Suppose Y1 and Z are two symmetries and ~ is a recursion 

operator for symmetries. Then we can construct the symmetries Y
3 

and Y
4 

by 

Then in a point u E M the vector Y3 (u,t) depends only on Y1 (u,t) and 

~(u,t), while Y4 (u,t) depends on Y1(u,t), Z(u,t) and their derivatives ~nu. 

D 

Suppose for a moment M is a finite-dimensional manifold with 

coordinates ui (i= I, ... , n). With respect to this coordinate system 

the tensor field ~ can be represented by a matrix ~~ (u,t) (strictly 
~ 

speaking a matrix valued function on M x ~). Then (2.3.8) can be written as 

(2. 3. 11) 0 

Fora salution u(t) of (2.2.1) this implies 

d 
dt ~j (u(t),t) 

i 
Xj (u(t)) i\~ (u(t) ,t) - Akj (u(t) ,t) xk. (u(t)). 
.k ~ .~ 
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This type of expression is well-known in the theory of isospeetral 

transformations (or "inverse scattering"). In fact it can be shown that 

under certain assumptions, an eigenvalue of A is a constant of the motion. 

Consider the following eigenvalue problem 

(2.3.12) A Y = À Y on M x JR 

Note that the "eigenvalue" À is a function on M x JR and that the 

"eigenvector" Y is a parameterized vector field on M. We assume À is 

a smooth function and Y is a smooth vector field. By taking the Lie 

derivative in the direction of X we obtain 

Differentiation of (2.3.12) with r espect tot gives 

AY+AY ÀY + H 

After summatien of these two expressions we obtain 

(A-À) ( Y + Lr ) 

If the recursion operator for symmetries A has a complete set of eigen­

veetors ("eigenvector fields"), this means 

(2.3.13) 0, 

so the function À is a constant of the motion. 

Finally we remark that in most applications the recursion 

operators for symmetries do notdepend explicitly on t (soA= 0) . 

2.4 PROPERTIES OF ADJOINT SYMMETRIES . 

The first two results concerning adjoint symmetries correspond to similar 

results for symmetries. 
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2.4. I Lemma. 

Suppose a E V*(X;M), then also a E V*(X;M). 

D 

2.4.2 Theorem. 

The set of adjoint symmetries V*(X;M) is a real linear space. Moreover if 

Fis a constant of the motion and a E V*(X;M), then Fa E V*(X;M). 

Proof: 

Adjoint symmetries have to satisfy the linear equation (2.2.9), so 

V*(X;M) is a real linear space. Next assume F is a constant of the motion, 

a E V*(X;M) , then 

0. 

This means Fa E V*(X;M). 

This theorem can be summarized by saying that V*(X;M) is a module over 

the ring of constauts of the motion of (2.2.1). In contrast to V(X;M) 

the space V*(X;M) does not have a natura! Lie algebra structure. 

D 

It turns out that there is a close relation between the space 

of constauts of the motion and a subspace of V*(X;M). Let F be a function 

on M (or on M x 1R), then its exterior derivative dF is a (p.arameterized) 

one-form on M. 

2.4.3 Theorem. 

Suppose F E F (M) is a constant of the motion. Then the one-form a dF 
p 

is an adjoint symmetry. 

Proof: 

The function F is a constant of the mot.ion, so F + LxF = 0. 

The exterior derivative d commutes with the Lie derivative and with 

differentiation with respect to t. Hence 
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dF + LX dF 0. 

This means that 0 dF is an adjoint symmetry. 

2.4.4 Remark. 

In fact we proved a little more. Suppose F E F (M) such that for all 
p 

solutions u(t) of (2.2.1) 

d 
dt F(u(t), t) f (t), 

where f: JR. -+ JR. is some function. Th is means F + LX F = f. Then the 

calculation above (with df = 0) shows that a = dF is also an adjoint 

symmetry. In the following theerem we show that a also can be written 

as the exterior derivative of a constant of the motion. 

2.4.5 Theorem. 

D 

D 

Let a E V*(X;M) be exact, so there exists a function F E F (M) such that 
p 

a= dF. Then there exists a function g: JR. -+JR. such that G(•,t) = F(.,t)-g(t) 

is a constant of the motion with 0 = dG. 

Proof: 

Since a is an adjoint symmetry, we have a + L~ = 0. This can be written as 

d(F + LXF) = 0, which implies that F(u,t) +LX F(u,t) = f(t) on MxlR forsome 

function f : JR. -+ JR.. Let g : JR. -+ 1R be a function such that g = f. Then 

G(.,t) = F(.,t) - g(t) is a constant of the motion with a =dG. 

D 

The theorems 2.4.3 and 2.4.5 can be summarized by saying that every constant 

of the motion gives rise to an (exact) adjoint symmetry and that every 

exact adjoint symmetry can be written as the exterior derivative of a 

constant of the motion. 

Now we are going to study operators which map V*(X;M) into itself. 

Consider a parameterized tensor field f E r:P (M). Then we can consider 

r also as a linear mapping r : X*(M)-+ X* (M), and we can ask under 
p p 

which conditions r maps V*(X;M) into V*(X; M). Analogous to theerem 2.3.7 
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we now have 

2.4.6 Theorem. 

Suppose the tensor field r E T:p(M) satisfies 

(2.4.7) 0 on M x 1R 

Then for all a E V*(X;M) also fo E V*(X;M). 

Proof: 

Similar to the proof of theorem 2.3.7 we have 

So if a E V*(X;M) and f satisfies (2.4.7) we see that fa E V*(X;M). 

[] 

2.4.8 De fini ti on. 

A parameterized linear mapping r: X*(M) ~ X*(M), corresponding toa tensor 
p p 

field (also denoted by) rE r:P(M) which satisfies (2.4.7), is called a 

recursion operator for adjoint symmetries. 

[] 

2.4.9 Remark. 

The conditions (2.3.8) and (2.4.7) for the tensor fields A and rare 

identical. This means that a tensor field A which satisfies (2.3.8), gives 

also rise to a recursion operator for adjoint symmetries. In local coordinates 

on M the tensor field A is represented by a matrix A~ . Suppose Y is a 
. J 

symmetry with coordinates Y1 and a is an adjoint symmetry with coordinates 

a .. Then 
1 

the vector 

T. =A~ o. 

field Z with coordinates Zi = A~ Yj is again a symmetry. 
J 

J J 1 
is (represents) an adjoint symmetry. The dual operator But also 

of A : X (M) ~ X (M) is a linear 
p p 

notation, we have Z = AY and '! = 
operator A* :X* (M) ~ 

p 
A*o . This leads to 
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2.4.10 Theorem. 

Suppose A is a recursion operator for symmetries. Then A* is a recursion 

operator for adjoint symmetries. Also if r is a recursion operator for 

adjoint symmetries then f* is a recursion operator for symmetries. 

Proof: 

The operators A : X (M) ~X (M) and A*: X*(M) ~ X*(M) correspond bath 
p p p p 

to the tensor field (also denoted by) A. If A is a recursion operator for 

symmetries the tensor field satisfies (2.3.8) and so (2.4.7). 

Hence A* is a recursion operator for adjoint symmetries. The second part 

of the theorem is proved in a similar way. 

[J 

In the last part of section 2.3 we have seen that, under 

certain conditions, the eigenvalues of a recursion operator A for 

symmetries are constauts of the motion. In a similar way it can be shown 

that, under certain conditions, the eigenvalues of a recursion operator 

r for adjoint symmetries are constauts of the motion. 

2.5 GENERAL RESULTS. 

We first consider operators which relate symmetries and adjoint symmetries. 

Suppose ~ is a parameterized tensor field of contravariant order 2 and 

covariant order 0, so ~ E T
2 (M). Then we can also consider ~as a 
op 

vector bundle map~: T*M ~TM or as a linear operator~ : X*(M) ~X (M). 
p p 

Now we investigate under which conditions ~ maps adjoint symmetries into 

symmetries. 

2.5. I Theorem. 

Suppose ~ E T2 
(M) is a tensor field such that op 

(2.5.2) on M x 1R 

Then for all a E V*(X;M) we have ~a E V(X;M). 
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Proof: 

Fr om 

we see that, if a E V*(X;M) and ~ satisfies (2.5.2), ~a E V(X;M). So ~ 

transforms adjoint symmetries into symmetries. 

2.5.3 Definition. 

D 

Suppose the tensor field~ E T2 (M) satisfies (2.5.2). Then (considered 
0 p 

as mapping ~: X*(M) +X (M)) ~ is called an AS operator. 
p p 

So an AS operator, applied to an adjoint symmetry, yields a symmetry. 

Next we consider operators acting in the opposite direction. 

2.5.4 Theorem. 

Suppose ~ E T~P (M) is a tensor field such that 

(2.5.5) on MxJR. 

Then for all Y E V(X;M) we have~ Y E V*(X;M). 

Proof: 

The proof is similar to the proof of theorem (2.5.1). 

2.5.6 Definition. 

D 

D 

Suppose the tensor field~ E T~P(M) satisfies (2.5.5). Then (considered as 

mapping ~ : X UA) + X*(M)) ~ is called an SA operator. 
p p 

[] 

So an SA operator~ transforms symmetries into adjoint symmetries. 

As expected, if an AS (SA) operator is invertible, the inverse 

operator is an SA (AS) operator. 
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2.5.7 Theorem. 

Suppose ~ (~) is an invertible AS (SA) operator. Then the inverse 
-1 -1 

operator~ (~ ) is an SA (AS) operator. 

Proof: 
-I 

Sinee ~ ~ = Id : TM + TM we have 

and 

This means that if ~ satisfies -(2.5.2), then ~-I satisfies (2.5.5). 

0 

Reeall that with a parameterized two-form cj> always eorresponds 

an (anti-symmetrie) tensor field ~ E T~p(M) or equivalently a linear mapping 

~ :X (M) + X*(M), sueh that 
p p 

cj> (A, B) <M,B> V A,B E X(M) • 

This leads to 

2.5.8 Theorem. 

Let a be an adjoint symmetry whieh is not elosed, so da * 0. Then the 

operator ~ whieh eorresponds to the two-form cj> = da is an SA operator. 

Proof: 

The adjoint symmetry a satisfies ó + LXa = 0. After éxterior differentiation 

we obtain ~ + LXq, = 0, whieh is equivalent to ~ + LX~ = 0. Henee 

~ is an SA operator. 
0 

2.5.9 Remark. 

Sinee dcj> = dda = 0 the SA operator~ eorresponds toa elosed two-form (cj>). 

This means that the SA operator ~ satisfies additional eonditions, whieh 

47 



are explained in definition 3.2.4 and theorem 3.2.12. Operators of this 

type will be called cyclic operators. If ~ = da is also nondegenerate, 

the operator ~ is invertible. In this case the dynamica! system (2.2. I) 

is of a special type, a so called Birkhoffian system (see for instanee 

Santilli [12] ). If a (or ~) satisfies one more condition, the system is 

Hamiltonian. This will be explained in section 3.5 • 

[] 

Of course theorem 2.5.8 is also correct, if a is closed. However, in that 

case we obtain the trivial SA operator ~ = 0. In a local coordinate system 

i · · · du i. The corresponding u the adJo1nt symmetry a can be wr1tten as a = a i 

SA operator is then represented by the matrix~ .. = a .. - a . .. 
1J 1,J ],1 

Reeall that with every vector field A and every one-form a 

corresponds a function on M, defined by their contraction <a,A> = iAa. 

2.5.10 Theorem. 

Suppose Y E V(X;M) and a E V*(X;M). Then the function F 

constant of the motion. 

Proof: 

Using Leibniz' rule we obtain 

This means F is a constant of the motion. 

<o,Y> i s a 

Starting with two symmetries Y
1 

and Y
2 

an AS operator ~ 

can be defined in the following way. For a E X*(M) set 
p 

(2. 5 . I I) 

[] 

It is easily seen that ~ is an AS operator. Application of this operator 

to an ad joint symmetry a gives ~a = <a , Y
1
> Y2 . By theorem 2 . 5 .10 we see 

that <a , Y1> is a constant of the motion. Then, from theorem 2.3 .5 we 

see that ~a is a symmetry, so ~ is iudeed an AS operator. Of course 

we can also verify that ~ sa tisfies ( 2.5. 2) . This operator ~ is rather 

trivial . We obta in a lways the same vector field Y2, multiplied by different 
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functions < a,Y1 > • This implies that ~ is not invertible. It is easily 

seen that if ~ 1 0, it is not antisyrnmetric. This method of constructing 

an AS operator, starting with two syrnmetries can be extended. Let Y
1

, ••• , Yk 

E V(X;M) and cij E m for i,j =I, ... ,k. Then for ,a E X*(M) define 
p 

(2.5.12) C
ij 

<a, Y.> Y . • 
~ J 

Then ~ is an AS operator. This construction yields a symmetrie operator 
. ij j i . . . f ij j i . . ' 1 
~f c = c and an ant~symmetr~c operator ~ c = -c . Us~ng s~m~ ar 

methods we can also construct SA operators and recursion operators for 

(adjoint) symmetries. For instance, let a E V*(X;M) and Y E V(X;M). Then 

for A E X (M) define 
p 

(2.5.13) M < a,A> Y. 

Then ~ is a (rather trivial) example of a recursion operator for symmetries. 

There are four different types of operators relating symmetries 

and (adjoint) syrnmetries. They were described in the definitions 2.3.9 

(A, recursion operator for symmetries), 2.4.8 (r, recursion operator for 

adjoint symmetries), 2.5.3 (~,AS operator) artd 2.5.6 (~,SA operator). 

If one or more of these operators exi s t, we can construc t new operators 

by using produc ts and powers of already known operators . For instanée, 

suppose there exists an AS operator ~ and an SA operator ~ . Then ~~ is a 

recursion operator for syrnmetries and ~~is a recursion operator for.adjoint 

symmetries. Also other combinations are possible. Let A be a r ecursion 

operator for syrnmetries and ~ an AS operator. Then A~ is again an AS 

operator. Of course all these results have a straightforward proof. 

We end this section by giving a more general approach of the 

theory described in this section and in the sections 2.3 and 2.4. 

Up to now we considered constants of the motion, (adjoint) syrnmetries 

and several operators between those symmetries. All these objects are 

(can be considered as ) tensor fields = of different types which satisfy 

(2.5.14) o on M x m 

If = is a completely antisymmetrie t ensor fie ld of covariant order k and 

contravariant order 0, we can al so consider it as a diffe r en tial k-form ~ . 
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There are several methods for constructing new tensor fields out of 

already known ones. Suppose _ is a parameterized tensor field of 

arbitrary orders and Y is a parameterized vector field. Then new 

parameterized tensor fields can be constructed by the following 

methods (see also Abraham and Marsden [I, § 3.4] ) : 

i) Compute Ly _ , the Lie derivative of _ in the direction of y, 

ii) Compute _®=I' the tensor product of_ and some tensor field =I. 

iii) If the co-and contravariant orders of _ are both positive, we 

can perform a contraction. 

iv) If ~ is antisymmetrie and has covariant order k and contravariant 

order 0 we can compute the exterior derivative of the corresponding 

k-form ~ . Then d~ corresponds again to a tensor field (with 

orders k+l and 0). 

v) Suppose ~ and some other tensor field ~I correspond to k and ~-forms 

~ and ~ 1 . Then we can construct a tensor field ~ 2 corresponding to 

the (k+~)-form ~ 2 =~A ~ 1 . 

There are several relations between these methods. A tensor field ~2 
constructed by v), can also be obtained by ii). For instanee if ~ and _

1 
have both covariant order I, then 

So weneed not consider method v). If _ corresponds toa differential 

k-form ~ then 

The interior product iy of a vector field with a differential form can 

be obtained by a tensor product with Y followed by a contraction. So for 

k-forms i) can be obtained from ii), iii) and iv). Almost all results 

of sections 2.3 , 2.4 and this section ar~ in fact special cases of the 
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following 

2.5. 15 Theorem. 

Suppose _, _ 1 are parameterized tensorfieldsof arbitrary orders which 

satisfy (2.5.14). Let Y be a symmetry. Then 

i) LJ= satisfies (2.5.14), 

ii) :": ® ::
1 

satisfies (2.5.14), 

iii) any possible contraction of:": satisfies (2.5.14), 

iv) if :": corresponds to a differential form s, the tensor field 

corresponding to ds also satisfies (2.5.14). 

Proof: 

i) Using the commutation rule for Lie derivatives we obtain 

L :": 
y 

L :: 
y 

L :: + L 
Y [X,Y] 

+ L L :": x y 

Since the vector field Y is a symmetry, the last two terms cancel, 

soL~ also satisfies (2.5.14). 

ii) This part of the theorem is a straightforward consequence of 

iii) Suppose :": is a tensor field with both orders positive. Denote the 

tensor fields obtained by a contraction in _ and (the same contraction 

in) Ly:': by :':C and :':Lc· Then L~C = :':LC' so "contraction commutes 

with the Lie derivative': Using this property it is easily shown that, 

if :": satisfies (2.5.14) , then also :':C satisfies (2.5.14). 

iv) Using Lyd = dLY (for differential forms), this result is also 

easily proved. 

0 

We mentioned already that most results of sections 2.3, 2.4 and of this 

section can be obtained from theorem 2.5.15. For instanee the theorems 
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2.3.5, 2.3.7, 2.4.2, 2.4.6, 2.5.1, 2.5.4 and 2.5.10 follow also from ii) 

and iii) of theorem 2.5.15. As an example consider theorem 2.4.6. 

In that theorem rand a are both tensor fields which satisfy (2.5.14). 

Then also the tensor product fea satisfies this condition. After contraction 

we see that the tensor field ro ( = one-form) also satisfies (2.5.14), so 

it is an adjoint symmetry. Further theorem 2.3.6 (and in fact also the 

lemma's 2.3.3, 2.3.4 and 2.4.1) follows from part i) of theorem 2.5.15. 

The theorems 2.4.3 and 2.5.8 are speci'al cases of part iv) of theorem 

(2.5.15). Finally we mention that the AS operator~ and the recursion 

operator for symmetries A, as given in (2.5.12) and (2.5.13), can be 

written as 

~ cijY.eY., 
l. J 

A a e A • 

Then by theorem 2.5.15 ii) ~is an AS operator and A a recursion 

operator for symmetries. 

2.6 THE SPECIAL CASE OF TWO SERIES OF SYMMETRIES. 

In the examples we shall sometimes meet dynamical systems (and a lso 

Hamiltonian systems), for which there exists a recursion operator for 

symmetries A ( with A = 0) and two series of symmetries generated by 

the op er a tor 

(2 .6. I) 

2.6.2 

Ak-I z 
I 

X. (We always consider the dynamical system (2.2.1) û 

Remark. 

X(u)). 

The situation as described above occurs for instanee in the case of the 

Burgers equation (see section 5.2) and the Korteweg-de Vries equation 

(see section 5.6). For these equations there also exist symmetries X
0 

and 

Z
0 

such that x1 AX
0 

and z1 = AZ
0

• The symmetry X
0 

is then related to 
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the invariance of solutions of the equation for translation along the 

x axis, while the symmetry Z
0 

corresponds to invariance of solutions 

under a scale transformation. Note that for all (autonomous) evolution 

equations u= X(u), the symmetry X corresponds to the invariance of 

solutions for translations in time• 

Reeall that (theorem 2.5. 15 i) if A is a recursion operator 

for symmetries and Y is a symmetry, then L~ is also a recursion 

operator for symmetries. If certain conditions on the first elements 

0 

of the series of symmetries Xk and Zk are satisfied, the various Lie 

brackets in and between the series Xk and Zk are eas i ly computed. These 

conditions are summarized in 

2.6.3 Hypothesis. 

Suppose there exist real numbers a f 0, b f 0 with ka + b f 0 for k 

such that 

(2.6.4) L2 A 2 
a A , 

I 

L2 A 3 
a A , 

2 
(2.6.5) 

(2.6.6) 

In several cases (for instanee Burgers equation, Korteweg-de Vries 

equation, linear Hamiltonian systems) these conditions are satisfied. 

In the vemaining part of this section we shall assume this hypothesis 

is satisfied. The various Lie brackets and Lie derivatives of the 

recursion operator A can now be found. We start with the following 

2.6.7 Theorem. 

( (~-l)a+b) x~+l for ~ I, 2,3, •.•• 

Proof: 

The proof is a straightforward computation, us i ng Leibniz' rule , the 
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definition of xk' (2.6.4) and (2.6.6) 

( (R.-I)a+b) X
0 

• 
JC+I 

This means that the series Xk can also be constructed by using the 

(repeated) Lie bracket with z1• 

2.6.8 Theorem. 

0 for k I, 2, 3, .•.. 

Proof: 

CJ 

The proof is done by induction. Since A is a time independent recursion 

operator for symmetriesof ü = X(u) = X1(u), we have LX A= 0. 
I Next assume LX A = 0 . By the preceding theorem 

k 

(k-1) a + b 

This implies 

(k-1) a + b 

By assumption the first t erm in the right hand side vanishes. Using 

(2.6.4) and Leibniz' rulewe see that the second term in the right hand 

side is also zero. 

CJ 

Note that this theorem implies that A is a recursion operator for symmetries 

of each equation of the form ü = Xk(u), k = 1,2,3, ••• The Lie brackets 

[Xk, XR,] and [ Zk, Zt] are now easily obtained. 
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2.6.9 Corollary. 

0 for k,R. 1 '2,3' .... 

Proof: 

It is no restrietion to assume R. k + m with m positive. 

Th en 

From theerem 2.6.8 we obtain that LX Am 
k 

0, which concludes the proof. 

D 

Since x
1 

=X and A do not depend explicitly on t, we obtain from (2.6.1) 

that Xk = 0. The preceding corollary now implies that XR, is a symmetry 

for each equation Ü = Xk(u). 

2.6.10 Corollary. 

( (R.-1) a + b) xk+R, for k, ~ I, 2,3, .... 

Proof: 
- ,k-1 L Z 

H x I 
R, 

( (R.-1) a + b) xk+ R. ' 

where we used Leibniz' rule and the theorems 2.6.7 and 2.6.8 . 

Next we turn to the Lie bracket in the series zk . A simple case is 

described in the following 

2.6. 11 Theorem. 

I, 2, 3, .•.. 
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Proof: 

Using Leibniz' rule and (2.6.4) this becomes 

D 

To compute the Lie bracket ~k,Zt ] for k > I weneed the following 

2.6. 12 Theorem. 

a J\k+l for k I, 2, 3 ... 

Proof: 

The proof is done by induction. For k = I and k = 2 the theorem follows 

from (2.6.4) and (2.6 . 5). Suppose the theorem i s correct for k = t ~ 2 . 

By the preceding theorem we have 

Hence 

I 
= a(~-1) 

I 
= a(~-1) 

Using the induction assumption we obtain 
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So we proved the theorem for k ~+I • 

The Lie brackets [Zk, Z~) are now easily found. 

2.6. 13 Corollary. 

Proof: 

Suppose ~ k+m with m positive. Then 

(L ,m) z H 

k 

(~-k) a zk+~· 

For future reference we summarize the Lie brackets and Lie derivatives 

found in this section 

0 ' 

( (~-I) a+b) Xk+~' 

(2.6.14) 

L A o , 
x 
k 

L • ,k+J 
Z ,.=a,. . 

k 

Note that all these results were obtained under the assumption that 

hypothesis 2.6.3 is satisfied. 

2.6. IS Remark. 

Note that the results given in (2.6.14) are valid for k,~ ~I. Suppose 
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there also exist symmetries X
0 

and Z
0 

as described in remark 2.6.2. 

Then, using the same methods as in the precedent, it can he shown that 

the relations (2.6.14) arealso valid for k,~ ~ 0, if the symmetries 

X
0 

and Z
0 

satisfy 

(2.6.16) o, Lz A 
0 

aA, [ Z , X ] 
0 0 

2 .7 TRANSFORMATION PROPERTIES. 

Suppose there exists a diffeomorphism f between M and some other 
+-

manifold N. Denote the inverse mapping by f , so 

{
f+-:M-+N (2. 7. I) 
f:N-+M. 

Then we can use the derivative of f totransfarm the equation (2.2.1) 

to a differential equation on N 

(2.7.2) 
+- +-

f'(f (v)) X(f (v)) X(v) . 

Note that X is a vector field on the manifo ld N. 
Symmetries Y of (2;7.2) are vector fields on N which satisfy 

Y + [X,Y] 0 onNx1R.. 

Adjoint symmetriesof (2.7.2) are one-forms on N which satisfy 

o + L_ o 
x 

0 on N x 1R. 

D 

The sets of symmetries and adjoint symmetriesof (2.7.2) are denoted 

by V(X;N) respectively V*( X;N) . Note that all the expressions given in 

the sections 2 . 3, 2.4, 2 .5 and 2 .6 were given in terms of tensor 

fields (vector fields, k-forms), Lie derivatives and exterior differentiation. 

The transformation properties of tensor fields are well-known. Suppose 

is an arbitrary tensor field, Y a vector field and n a k-form on M. 
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The transformed tensor fields, vector fields and k-forms on N are 

denoted by the same symbol, supplied with a tilde . Then 

(2. 7.3) 

(2.7.4) 

L- -y 

dn 

This means that the operations L and d are "natural with respect to 

a diffeomorphism". Suppose Y is a symmetry of (2.2.1). The transformed 

vector field Y = f 1 Y on N satisfies 

.: 
y f I y f I L;? 

Using (2.7.3) we see that 

y LXX [X,Y] 

so the vector field y on N is a symmetry of (2.7.2). 

In the same way we can show 
+I* 

then the one-form a = f a 

that if a is an adjoint symmetry of (2.2.1), 

on Nis an adjoint symmetry of (2.7.2). 

So we have proved 

2.7.5 Theorem. 

If Y E V(X;M) then Y = f 1 Y E V(X;N). 

Also if a E V*(X;M) then à +I* 
f a E V*(X:N). 

Suppose ~is an AS operator for equation (2.2.1) on M. Then using 

(2.7.3) we can show that the transformed operator (tensor field) on N 
is an AS operator for (2.7.2). Similar results hold for the other 

possible operators. We summarize them in 

2.7.6 Theorem. 

0 

Consider the operators A, f, ~. ~ as described in the definitions 2.3.9, 

2.4.8, 2.5.3 and 2.5.6. Then the corresponding operators for (2.7.2) on 

the manifold N are given by 
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A f I A f 
+I 

A(v,t) f 1 (f+ (v)) A(f .... (v),t) 
+I 

f (v), 

+I* r f 1 * r (v' t) f+ 1 *(v) f(f+(v),t) f 1 *(f+(v)), r f 

(2.7.7) 

Ijl fl Ijl fl* IJ' (v, t) f 1 (f+(v)) IJ'(f+(v),t) f 1 *(f+(v)), 

+I* +I 
<t>(v, t) t-<-

1

*(v) <t>(t-<-(v) ,t) f+
1 
(v). <!> f <!> f 

[J 

2.8 APPENDIX. 

In this appendix the evolution equation Ü = X(u) on M is extended to 

an evolution equation for u and its "variation" êu = v on TM. Using this 

evolution equation for z = (u,v), we show how (2.2.7) can be derived 

without using a local trivialization of the tangent bundle TM. Since 

z(t) E TM and so z(t) E Tz(t)(TM) we have to construct a vector field 

on TM( not on M). 

First some mathematical preliminaries (see also Abraham and 

Marsden [I, § I .6 and exercise 1.6 D] ) . The set T(TM) can be considered 

as a vector bundle in two different ways. First T(TM) is the tangent 

bundle of TM with projection TI
2 

: T(TM)~ TM In this case, the internal 

structure of TM is unimportant. However, using the fact that TM is 

itself a tangent bundle, we can supply T(TM) with another vector bundle 

structure. Denote the projection of the tangent bundle TM by TI 1 : TM~ M. 
The derivative of this map is TI; : T(TM) ~ TM. Using this map we can 

supply T(TM) with an additional vector bundle structure. Note that with 

the projection TI; the bundle T(TM) is not a tangent bundle. The two 

possible projections are illustrated in figure I and figure 2. 

Note that in these figures tangent veetors to M can be indicated ~n two 

ways, see y E TM in figure 2. The situation is summarized in the 
u 

"dual tangent rhombic", as shown in figure 3. In the sequel we shall 

need the following 

2.8.1 Lemma. 

There exists a map SM : T(TM) ~ T(TM) such that 

i) SMP SM= Id on T(TM), 
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Proof: 

See Abraham and Marsden [1, exercise 1.6 D] · 

[J 

A E: T (TM) 
z 

TT z (A) = z 

A E: Tz(TM) 

TT
1

: TM~ M, TT
1

(z) =u 

TT i : T z (TM) .... T UM' TT i (A) y 

Figure 1. Figure 2. 

M u 

Figure 3 . 
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The map SM is called the ca:nonical involution on M. The lemma may be 

clearified by looking at figure 2. If_we apply the mapping SM toA E T(TM) 

we obtain A = SM (A) E T (TM) . Fr om 1T 
2 

(A) : 1T 
2 

(SM (A)) = 1T; (A) = y we see 

that À E T (TM) . So we obtain a vector A which is tangent toTMin y. 
y -

Another application of SM toA yields again the vector A. 

Now we are able to express the Lie bracket of two vector fields 

on M in terms of the derivatives of the vector fields. Suppose C is 

a vector field on M. So it is a mapping C:M + TM such that 

(2.8.2) rr 
1 
o C = Id : M + M • 

The derivative of the vector field C in a point u E M is the linear 

mapping 

C' (u) 

Suppose E E TuM' then C' (u) E E T C(u) (TM), herree 

(2.8.3) rr
2

(c' (u)E ) C(u) E TM. 

By taking the derivative of (2.8.2) we obtain rr; o C' 

This implies 

(2.8.4) rr; (C'(u) E ) E E TM. 

Id TM+ TM. 

Let B be another vector field on M. Analogous to the expressions for 

the Lie bracket in local coordinates or in alocal trivializatiorr (see (I. 1.8) 

or (2.2.5)), we would like to define [B,C] by computing the difference 

of C'(u) B(u) and B'(u) C(u). But sirree B'(u) C(u) E TB(u)(TM) and 

C'(u) B(u) E TC(u)(TM) this is not possible. 

Now we can use the canonical involution SM. Using lemma 2.8.1 and 

(2.8.4) we see that 

(2.8.5) rr; (C' (u)B(u)) B (u). 
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This means that SM(C' (u) B(u)) E T B(u) (TM). So we can define 

(2.8.6) F(u) SM(C' (u) B(u)) - B' (u) C(u) E TB(u) (TM) • 

We now compute the projection n; of F(u). Using lemma 2.8.1, (2.8.3) 

and (2.8.4) and noting that n; 
we obtain 

n
2

(C'(u) B(u))- n; (B'(u) C(u)) 

C(u) - C(u) 0 E TM. 
u 

This rneans that F(u) is not only tangent to TM ~n the point B(u), 

but even tangenttoTMin the point B(u). The situation may be 
u 

elucidated by the following figure. 

C' (u)B(u) 

c 

B 

M 

Figure 4. 

So F(u) E TB(u)(TuM). Finally, using the canonical isornorphisrn between 

the linear space TuM and its tangent space TB(u) (TuM) (see for instanee 

Dieudonné [18], § 16.5.2) we can consider F(u) as an element of TM. 
u 

Since u is arbitrary we constructed a new vector field Fon M. By 
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expressing (2.8.6) in local coordinates we see that F = [B,C], 

the Lie bracket of the vector fiel.ds Band C on M. So we have proved the 

following 

2.8.7 Theorem. 

The Lie bracket of the vector fields Band C on M is the vector field 

[B,C]on M, given by 

(2.8.8) [B,C] (u) SM(C' (u) B(u)) - B' (u) C(u). 

2.8.9 Remark. 

In most text-books the Lie bracket of two vector fields is introduced 

in a much simpler way. However, in the derivation of the condition 

(2.2.7) for symmetries, both terms of the right hand side of (2.8.8) 

first appear seperately. 

2.8.10 Remark . 

D 

D 

The preceding construction the Lie bracket is not symmetrie. Of course 

the other possibility (using SM(B'(u) C(u)) E TC(u)(TM)) yields the same 

result. 

D 

After these complicated preliminaries the final results are within reach. 

An evolution equation for u and its "variation" óu = v is easily 

obtained. Suppose z = (u, 8u) E TM. The expression (2 .2.2) suggests 

to describe the time evolution of z using X'z. However, from (2.8.3) 

we see that n 2 (X'z) = X(u), which means that (in general) X' z ~ T
2

(TM). 

The correct generali zation of (2.2.2) is given by 

(2.8.11) z 

Lemma 2.8 . 1 and (2 . 8.4) imply that 
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z, 

so SM(X'z) E Tz(TM). This means that indeed the right hand side of 

(2.8.11) is a vector field on TM. From u= n 1 (z), lemma 2.8.1 and 

(2.8.3) we obtain 

û X(u), 

so we see that (2.2.1) is "contained in" (2.8.11). By using alocal 

trivialization of TM it is also possible to derive (2.2.2) from (2.8.11). 

So the evoZution equation (2.8.11) aan be considered as an equation 

which describes the evoZution of u (as given in (2.2.1)) and the 

evoZution of v = ou (fora ZocaZ triviaZization given in (2.2.2 )). 

Finally we consider again special solutions of (2.8.1 I). 

Th is leads to 

2 .8.12 Theorem. 

Suppose Y is a parameterized vector field on M such that for all 

solutions u(t) of (2.2.1) z(t) = Y(u(t),t) satisfies (2.8.11). Then 

(2. 8. I 3) Y [Y,X] • 

Proef: 

Since z(t) = Y(u(t),t) has to be a solution of (2.8.11) for all solutions 

u(t) of (2.2.1), the vectorfield Y must satisfy 

(2.8.14) Y(u,t) + Y'(u,t) X(u) = SM(X'(u) Y(u,t) ) VUE M, tE 7R. 

Note that Y'(u,t) X(u) E TY(u,t)(TM) while at first sight Y(u,t) E TuM· 
However, since TuM is a linear space, it is canonically isomorphic 

with its tangent space in an arbitrary point, hence 
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So (2.8.14) is a correct equation. The theorem now follows from 

theorem 2.8.7. 

Thus we have again obtained condition (2.2.7) (which is equivalent to 

(2.8.13)) for the vector field Y . 
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CHAPTER 3: HAMILTONIAN SYSTEMS. 

3.1 INTRODUCTION. 

In this chapter we make some remarks on Hamiltonian systems. Since many 

results in this chapter are standard, a number of proofs is omitted. 

In sectien 3.2 we introduce Hamiltonian systems using symplectic geometry. 

In sections 3.3, 3.4 and 3.6 we describe Poisson brackets, variational 

principles and completely integrable Hamiltonian systems. The transfor­

mation properties of Hamiltonian systems are explained in sectien 3.7. 

In chapter 2 we considered (adjoint) synnnetries for general dynamica! 

systems. In sectien 3.5 we show that, if a certain kind of adjoint 

symmetty exists, the dynamica! system is Hamiltonian. The general theory 

of symmetries for Hamiltonian systems is described in the next chapter. 

To us the formulation of definition 3.2.4 and the results given in lemma 

3.2.11, theerem 3.2.12 and in sectien 3 .5 are new. Sametimes we give 

expressions using local coordinates. In that case the Hamiltonian systems 

are considered to be finite-dimensional. In this thesis we only consider 

autonorneus (possibly infinite-dimensional) Hamiltonian systems. 

Introduce coordinates q 1, ... , qn' p 1, ... , pn in phase space 

ntn. Then a cZassicaZ HamiZtonian system can be described by a function 
2n 

H : IR + IR, called the Hamiltonian. The system consists of the set of 

differential equations 

{ 
q. dH 

(ql, ... ,pn) 
~ =~ 

(3. I • I) 
~ 

élH 
(ql, •.. ,pn) i I, ... , p. -äq. n. 

~ 
~ 

3.2 DEFINITION OF HAMILTONIAN SYSTEMS. 

A very elegant description of Hamiltonian systems is possible in the modern 

language of symplectic geometry (see for instanee Arnold (2], Abraham and 

Marsden (1] , Souriau [4]). This me thad will finally result i n a system 

of differential equations, of which .(3.1 .I) is a special case. Therefore 

we called (3.1.1) a classica! Hamiltonian system. The phase space of these 

Hamiltonian systems will be a symplectic manifold M. 
Consider a two-form w on M. With this two- form corresponds a 
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vector bundle map ~ * TM + T M, defined by 

(3.2. 1) < ~ A,B > w(A,B) VA,BET M, VuEM. 
u 

Of course ~ can also be considered as a tensor field of covariant order 

2, ~ E T~(M). Mostly we use the last designation. Since a two-form is 

antisymmetrie in its two arguments, the tensor field ~ also is anti­

symmetrie 

< ~(u) A,B> 

3.2.2 Definition. 

- < ~(u) B,A > VA, BET M,VuEM . 
u 

We call a two farm w (strongly) nondegenerate if the tensor field ~ 

(considered as vector bundle map ~ : TM + T*M) is an isomorphism. The 
+ 

inverse tensor field is then denoted by ~ . If the tensor field (vector 

bundle map) ~ is one to one, the two-form w is called weakly nondegenerate. 

A weakly nondegenerate two-form on a finite-dimensional manifold M is 

(strongly) nondegenerate. A nondegenerate two-form can only exist on a 

finite-dimensional manifold M if the dimension of M is even. We call ~ 

and ~+ the tensor fields corresponding to the (nondegenerate) two-form w. 

It is easily seen that ~+ is also antisymmetrie 

< S,~+(u)a > V a, S E T~ M, V u E M. 

The tensor field ~ can be used to transfarm a vector field on M into a 

one-form. So we can consider ~as a linear mapping ~ X(M) + X*(M). 

c 

In the same way we can consider ~+as . a linear mapping ~+ X*(M) + X(M). 

3.2.3 Definition. 

A symplectic manifold is a pair (M,w) where w is a c losed, nondegenerate 

two-form on the manifold M. The farm w is called a symplectic form. 

c 

Infinite-dimensiona l Hamiltonian systems are aften described using a 

closed, weakly nondegenerate two-form w. Then w is called a weak symplectic 
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farm. 

It is useful to translate the closedness of a two-form w into 
.... 

properties of the corresponding tensor fields n and n . 

3.2.4 Definition. 

Consider the tensor fields ~ E T~(M) and ~E T~(M). Define the mappings 

f : X (M) x X OA) .x X (M) + IR and g: X* (M) x X* (M) x X* (M) + IR by 

(3.2.5) f (A ,B,C) < LA(~ B), C > 

(3.2.6) g(a,B, y) < L'l'a B,'l'y > . 

Then the tensor field <!>is called cyclie if it is antisynunetric and if 

for all vector fields A, B, C 

(3.2.7) f(A,B,C) + f(B,C,A) + f(C,A,B) = O. 

The tensor field 'I' is called canonical if it is antisymmetrie and if for 

all one-forms a, B, y 

(3.2.8) g(a,B,y) + g(B,y,a) + g(y,a,f3) o. 
0 

In the literature cyclic tensor fields unfortunately are also called 

symplectic operators (symplectic transformations are explained in remark 

3.7.6) . For canonical tensor fields various other narnes are in use, such 

as inverse symplectic, implectic, co-symplectic. See for instance, 

Magri [5] , Fuchssteiner and Fokas [8] , Fokas and Anderson [9] . In local 

coordinates ui on M the tensor fields ~ and 'I' are represented by matrices 

~ . . (u) and 'l'ij(u). Then (3.2.7) can be written in the following well-known 
lJ 

form 

(3.2.9) ~ .. k(u) + q,,k . (u) + q,k, . (u) 
lJ, J ,l l,J 

0 'v'u EM. 

The condition (3.2.8) for the canonical tensor field ~ becomes 

(3.2.10) 0 'v'uEM . 
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3.2.11 Lemma. 

Suppose the tensor field <I> E T~ (M) is invertible. If <I> is cyclic, the inverse 

tensor field <1>-l is canonical. Suppose the tensor field 'I' E T2(M) is 
0 

invertible. If 'I' is canonical, the inverse tensor fie ld '1'- l is cyclic. 

Proof: 

Using LA <1>-l = - <ll-l (LA<Il) cf>-l and the definitions of cyclic and canonical 

tensor fields the proof is almost trivial. 
Cl 

3. 2.12 Theorem. 

Let w be a non degenerate two-form with corresponding tensor fields SI and 

SI+ Then the following conditions are equivalent 

i) w is closed, 

ii) n is cyclic, 

iii) n+ is canonical. 

Proof: 

The equivalence of ii) and iii) follows immediately from lemma 3.2.1 I. 

The equivalence of i) and ii) can be shown in the fo llowing way. Let 

A, B, C be vector fields.Define the one-form a= nA = iAw . Applying 

Leibniz rule to the identity 

results in 

(3.2.13) 

da(B, C) 

da(B,C) 

<(L n)B,C > 
A 

iA dw + da we obtain 

iA dw(B,C) + da(B ,C) 

dw(A, B,C) + da(B, C) . 
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This implies 

< LA (riB) , C > dw(A,B,C) + da(B,C) + <n [A,B], C >. 

Substitution of (3.2.13) finally results in 

dw(A ,B, C) f(A,B,C) + f(B, C,A) + f(C,A,B) 

where f is given in (3.2.5) (with ~ 

(3.2.7). 

n) . Sa dw 0 is equivalent with 

D 

Now we are able to define a Hamiltonian vector field on a 

symplectic manifold (M,w). Consider a function H : M + 1R, then dH is a 

one-form on M. 

3. 2.14 Definition. 

The vee tor field X = n +-dH is called a Hami ltom:an vector fie Zd on the 

symplectic manifold (M,w). The function H is called the HamiZtonian, 

the corresponding dynamical system is called a HamiZtonian system. 

No te that i~ = dH. Since w is nondegenera te the vector field X is a lso 

uniquely determined by this relation. Let u : (a,b) + M , then we say 

that u is a salution of this Hamiltonian system if 

ü (t) 
+-

n (u(t)) dH(u(t)) VtE (a,b). 

D 

In alocal coordinate system thetensor fieldnis represented by a matrix 

n .. (u) and the tensor field n+- is represented by the inverse matrix nij (u). 
~J . 

Then the coordinates u~(t) of u(t) satisfy the following system of 

differential equations 

(3.2.15) 

However, we can always introduce new local coordinates q 1, ... ,qn,pl,. · · ,pn 

such that the system (3.2.15) transfermes into the system (3.1.1). 
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(3.2.16) Theorem (Darboux). 

For each u
0 

E M there exists a neighbourhood with local coordinates 

q
1

, ... , qn' p
1

, .•. ,pn such that the symplectic form w can be written as 

(3. 2. 17) 

Proof: 

n 
w = L 

i= I 

See Abraham and Marsden [I] or Choquet-Bruhat [3] 

[J 

The coordinates q
1

, ••• ,pn are called canonica~ coordinates. In this new 

coordinate system the cyclic tensqr field Q and the canonical tensor field 

Q+ are represented by 

(3.2.18) n .. ö . . - ö. . 
' l.J l.,J+n J.+n,J 

(3.2.19) nij 0
i+n, j 

0
i, j +n 

V i,j I' • 0 ., 2n. 

With these matrices (3.2.15) reduces to thewell-known classica! Hamiltonian 

system (3.1.1). 

3.3 POISSON BRACKETS . 

Let (M,w) be a symplectic manifold. With every pair of functions F and G 

on M corresponds a (new) function on M, called the Poisson bracket 

of F and G. 

3.3 .I De fini t ion. 

The Poisson bracket of two (possibly explicitly time dependent) functions 

F and G on Mis the function {F,G} defined by 

(3.3.2) {F,G} 
+ 

<dF, Q dG>. 

Tw9 functions on M are in invoZution if their Poisson bracket vanishes. 

[J 
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In local coordinates (on a finite dimensional manifold) the definition 

can be written as 

{ F,G } 

3.3.3 Theorem. 

The Poisson bracket satisfies the so called Jacobi identity 

{{ F,G }, K} + {{ G,K }, F} + {{ K,F }, G} 0 

for any three functions F, G, KEF (M). 
p 

Proof: 

The proof of this standard result can be found in many text-books, see for 

instanee Arnold [2]. We now give a proof which only uses that ~+is 

canonical (and not that ~+is invertible). Note that 

{ F, G } + 
< dF, ~ dG > 

This implies 

{{ F,G }, K} 

g (dG, dF, dK) 

where g is given in (3.2.6) (with ~ 

from (3.2.8). 

+ 
~ ). The theorem follows now 

c 

Reeall (definition 2.3.1) that a function F E F (/.1) is a constant of the 
p 

motion or first integral of a dynamica! system on M if 

d 
dt F(u(t), t) 0 
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for all solutions of the dynamical system. For a Hamiltonian system with 

Hamiltonian H on the symplectic manifold (M,w) this implies the following 

3.3.4 Lemma. 

A function FE F (M) is a constant of the motion iff {F,H} + F = 0 on 
p 

M x IR. For functions F, which do notdepend explici tly on t (so F E F (M) ) 

this condition is {F,H} = 0. 

Proof: 

It is easily seen that 

d ~ 
dt F(u(t),t) = < dF, Q dH > + F 

{F,H} + F. 

The following lemma is an immediate consequence of the Jacobi identity. 

3.3.5 Lemma. 

The set of constauts of the motion for a Hamiltonian system is a 

Lie algebra, if we take the Poisson bracket as Lie produc t. The set of 

autonorneus constauts of the motion i s a subalgebra of this Lie algebra . 

3.4 VARIATIONAL PRINCIPLES. 

It is well known that the classical Hamiltonian system (3.1 .I) can he 

derived from the following vari ational princip l e 

stat 
u 

n 
E 

i= I 

D 

D 

where U is the set of all curves in phase space IR Zn wi th qi ( t 
1) and qi ( t

2) 

fixed. There also exists a variational principle which yields directly the 

more general equa tions (3.2.15): 
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3.4.1 

For every 

one-form 

(3.2.15) 

(3.4.2) 

Theorem. 

point u E M there exists a neighbourhood u 3 u and a 
0 0 0 

a defined on U , 
0 

such that a solution Ü (t)E u 
0 

for tE[t 1,t2 l 
is a stationary point of the following functional 

t2 
f ( < a(u(t)), Ü(t) > - H(u(t))) dt 
ti 

over thesetof all curves u(t) E U
0 

fortE [t
1
,t2 ] with u(t 1) 

u(t2) : u Ct 2). 

Proof: 

The two-form w is closed, so for every point u E M there exists a 
0 

neighbourhood U~ and a one-form a defined on U~, such that.w:- da 

On a neighbourhood U c U' there exist local coordinates uL such that 
. 0 0 

a: a. duL. So (3.4.2) can be written as 
L 

(3.4.3) 
t2 . 

f (a.(u(t)) ÜL(t)- H(u(t))) dt 
L 

of 

Then it is an elementary exercise to show that stationary points of (3.4.3) 

with u(tl) : u(tl)' u(t2) : u(t2)' are solutions of 

(3.4.4) 

From w 

) . i 
(a . . - a . . u 

L, J J, L 
H, . • 

J 

- da !rl .. dui A duJ we obtain SI .• 
J 1 JL 

a .. - a . .. Multiplication 
L, J J, L 

of (3.4.4) with nij, the inverse matrix of n .. , results in (3. 2 .15). 
JL 

0 

3.5 HAMILTONIAN SYSTEMS AND ADJOINT SYMMETRIES. 

In this section we deal with the question: when is a dynamical system a 

Harniltonian systern? In general this is a very difficult problern. For a 

nurnber of equations the Hamiltonian character was only found after a long 
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time. For instance, the Hamiltonian character of the Korteweg - de Vries 

equation [6,7) was found rather recently by Gardner [IJ) and Broer [10) 

Consider an autonorneus dynamical system on a manifold M 

(3. 5. I) ü X(u). 

We saw in theerem 2.5.8 that a non-closed adjoint symmetry gives rise to 

an SA operator. 

3.5.2 Theorem. 

Suppose the dynamical system (3.5.1) has an adjoint symmetry p such that 

w = dp is nondegenerate . Then the vector field X can be written as 

(3 .5 .3) x 0.+- (dF - p 

where F = - < p,X> , r2 is the SA operator corresponding (theorem 2.5.8) 

top and n+ n- 1 • 

Proof: 

From F - <p,X> - iXp we obtain 

dF 

p E V*(X,M) implies LXp - p , so 

dF - p 

Then from <ix dp,A > dp (X ,A) <ri.X,A> V A E TuM , we obtain 

dF - p 

Since d p is nondegenera te , the inverse tensor field Q+- E T
2

(M) of Q 
0 

exists. Application of Q+- to the formula above results in (3.5.3). 

Dynamical systems corresponding to (3.5.3) are sametimes called 
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Birkhoffian systems, see for instanee Santilli [12] . In local coordinates 
i u the corresponding differential equations can be written as 

(3.5.4) (p .. (u, t) - P· . (u, t))Üj 
:!..] J ,1 

F 'i (u,t) - pi (u, t) 

where the matrix (p .. (u,t)- P· .(u,t)) is invertible on MxiR. 
1, J J ,1 

If the adjoint symmetry p satisfies one more condition, the system is 

Hamiltonian. 

3.5.5 Theorem. 

Let the dynamica! system (3.5.1) have an adjoint symmetry p such that 

i) dp is nondegenerate, 

ii) there exists a constant of the motion G such that p dG. 

Then the vector field X is a Hamiltonian vector field with Hamiltonian 

H = - < p,X> - G and symplectic two-form w = d p 

Proof: 

Substitution of ii) in (3.5.3) yields 

x 0. + d (F-G) + 
0. dH. 

In the definition of a Hamiltonian system we required H and w to be 

a function and a two-form on M, so they may not depend explicitly on t. 

This is easily verified 

H F - G - < p.X> - G - < dG, X> - G 0, 

since G is a constant of the motion. Also 

ddG 0. 

0 

3.5.6 Remark. 

Theorem 3.5 . 5 gives sufficient conditions for a dynamica! system to be 

Hamiltonian. However, t h is does not mean that, in trying to find out if 

77 



a dynamica! sys~em is Hamiltonian, one should try to find an adjoint 

symmetry as described in theorem 3.5.5. There are two reasans for this. 

First finding an adjoint symmetry as described in theorem 3.5.5 is not 

simpler then finding the symplectic two-form and Hamiltonian. The second 

reason is that theorem 3.5.5 gives sufficient but not necessary conditions 

for a system to be Hamiltonian. A simple example of this is provided by 

a Hamiltonian system with a symplectic form w which is closed but not 

exact. The Hamiltonian form of the Korteweg-de Vries equation (section 5.6) 

can be found by theorem 3.5.5. 
0 

3.6 COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS. 

. . . d 1 . . M IR 2n . For sympl~c~ty we now cons~ er the symp ect~c man~fold = w~th 

canonical coordinates q 1, ... , pn. Then w 

d . - - IR2n duce new coor ~nates q 1, ... , pn on 

~ d qi A dpi. Suppose we intro-

3 . 6.1 Definition. 

The transformation from q 1, ... , pn to q1, .•. ,pn is called a canonical 

coordinate transformation if, in new coordinates w 

0 

So after a canonical coordinate transformation the differential equations 

for qi' pi arealso of the form (3.~.1). 

Sametimes by means of a canonical coordinate transformation, 

the system of differential equations is greatly simplified. For instanee 

suppose all the new coordinates qi are cyclic. This means the Hamiltonian, 

written as function of p. and ij., depends only on the p .. The salution of 
~ ~ ~ 

the corresponding Hamiltonian system is trivial and the system is called 

completely integrable.Furthermore the functions p. constitute a set of 
~ 

n constants in involution. In general it turns out that the existence of 

n constants of the motion in involution, is directly related to the 

complete integrability of the system. 

3.6.2 Theorem (Arnold, Liouville). 

Suppose there exist n constants of the motion in involution F1 
Consider the level set of functions F . 

~ 
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M 
a 

F.(ql, ••• ,p) 
1 n 

Assume the one-forms dF. are linearly independent on M 
1 a 

compact and connected. 

Th en 

a.} 
1 

and that M 
a 

i) Ma is invariant for the Hamilton flow with Hamiltonian H, 

is 

ii) Ma is diffeomorphic to the n-dimensional torus Tn = {(q
1

, ••. ,qn) rood 2n}, 

iii) there exist n functions p.(F
1
, ... ,F) such that q

1
, ... , q, p

1
, ... ,p 

1 n n n 
are coordinates fora neighbourhood of M . The transformation (q

1
, ... ,p) + 

a n 
(q

1
, ... ,pn) is a canonical coordinate transformation and the Hamiltonian H, 

expressed in the new coordinates, depends only on the pi : H = H(p 1, ... ,pn). 

Proof: 

See Arnold [2]. 

0 

The solution of the corresponding Hamiltonian system 

I 
!. = 0 p. 

1 

(3.6.3) a f!(pl' ... ,pn) .:, 
i q. I, ... ,n 

1 a iJ. 
l. 

is trivia! and the system is completely integrable. The coordinates pi are 

called action variables, while the q. are called angle variables. 
l. 

Note that we only discussed complete integr ab ility for finite-

dimensional Hamiltonian systems. Some remarks on complete integrability 

for infinite-dimensional Hamiltonian systems will be made in section 5.5. 

3.7 TRANSFORMATION PROPERTIES OF HAMILTONIAN SYSTEMS. 

In sectien 2.7 we discussed the behaviour under transformations of 

(adjoint) symmetries and the four possible operators between (adjoint) 

symmetries. The transformation properties of Hamiltonian systems are also ... 
easily found. Consider the Hamiltonian vector field X = n dH, on a 

manifold M, corresponding to the symplectic form w and Hamiltonian H. 
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Suppose there exists a diffeomorphism f: M-+N with inverse f+:N-+M. 

Using the derivative map f' : TM-+ TN we can transferm the vector field 

X on M to a vector field X= f'X on N. 

3. 7. I Theorem. 

The transformed vector field X = f'X of the Hamiltonian vector field X is 

again a Hamiltonian vector field. The corresponding Hamiltonian H and 

symplectic two-form w on N are given by 

(3.7 . 2) H(v) 
+ 

H(f (v)) V vEN, 

(3.7.3) w(A,B) 
+'...... + ' ...... 

w(f A, f B) V A,B E X(N) . 

The tensor fields Q ET~ (N) and Q+ E T~(N) (considered as vector bundle 

maps we have n : TN -+ T*N and n+ : T*N -+ TN) are given by 

(3.7.4) +'* +' f n f 

(3.7.5) 

Proof: 

The relations between functions, differential farms and tensor fields are 

"na tural" wi th respect to transforma tions (see a lso sec ti on 2 . 7) • Th is 

means· that the transformed vector field X= f'X can also be obta ined from 

the transformed Hamiltonian H and the transformed two-form w. The 

f ormulas (3.7.2), (3.7.3), (3 .7.4) and (3.7.5) give the usua l transfor mation 

properties of functio~s, differential forms and tensor fields. 

0 

3. 7. 6 Remark. 

By the method used in theorem 3.7.1 we can supply the manifold N with a 

symplectic two-form w , the push-forward of w by f. Suppose there exists 

already a symplec tic farm t on N; s o (M,w) and (N,~ ) a r e bath symplectic 

manifolds. On N we now have the symplec tic forms ~ and w • If ~ = w 

the mapping f is ca lled a sympZeatia t rans f ormati on (symplec tic 
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diffeomorphism) or eanonieal transformation. A canonical transformation 

should not be confused with a canonical coordinate transformation, as 

described in definition 3.6.1. 
D 

Other properties of the Hamiltonian system on M are also easily translated 

to the transformed system on N. 

3.7.7 Corollary. 

The transformed Poisson bracket of two funct~ons_F 1 , F2 on M 1s equal to the 

Peissen bracket of the transformed function F
1

, F2 on N. 

+ -+-'* 
FromFi(v) Fi(f(v)) (i=l,2)weobtaindFi f dFi. 

The result now follows from the definition of Poisson bracket and of 

(3.7.5). 

So if the func ti ons F 
1

, F 2 on M are in involu ti on, the transformed 

functions F
1

, F
2 

on Nare also in involution. 
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CHAPTER 4: SYMMETRIES FOR HAMILTONIAN SYSTEMS. 

4.1 INTRODUCTION. 

In chapter 2 we considered some general properties of dynamical systems. 

We studied symmetries, adjoint symmetries and four types of operators 

between those symmetries. In this chapter we assume the dynamical system 

is a Hamiltonian system. The most important consequence of this Hamiltonian 

character is that there always exist at least one SA- and one AS operator. 

This implies that with a constant of the motion not only corresponds an 

adjoint symmetry, but also a symmetry. However, there can also exist 

symmetries which are not related in this way to a constant of the motion. 

These so called non-(semi-J canonica~ symmetries have interesting 

properties. In section 4.2 we show how they can be used to construct 

(new) SA- and AS operators. If the thus constructed (new) SA operator 

is invertible, the system can be written as a Hamiltonian system in 

two different ways. These so called bi-Hami~tonian systems are considered 

in section 4.3. Non-(semi-) canonical symmetries can also be used in 

various ways to construct (new) constauts of the motion out of already 

known ones. In section 4.4 we shall describe three possible ways for 

doing this. In the sections 4.5 and 4.6 we consider Hamiltonian systems 

for which there exists a (non-semi-canonical) symmetry which satisfies 

some additional conditions. Then we show that there exist two infinite 

series symmetries, one of which corresponds to an infinite series of 

constànts of the motion. The other series consists (in general) of 

non-semi-canonical symmetries. This method can be applied for several 

(all?) of the popular completely integrable infinite-dimensional 

Hamiltonian systems (Korteweg-de Vries equation, sine-Gordon equation). 

Of course the existence of infinite series of constauts of the motion 

for these equations is well-known. However, several methods we describe 

for constructing these series of constauts of the motion seem to be new. 

Also the second series of symmetries is generally overlooked. 

In this chapter we shall consider an autonorneus Hamiltonian 

system on a symplectic manifold (M,w) with Hamiltonian H. With the two-form 

w correspond the tensor fields n E T~ (M) and n+ E T~(M) (see section 

3.2). The Hamiltonian vector field on Misthen given by 
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(4.1.1) X = ~+ dH 

and the corresponding differential equation is 

(4.1.2) u(t) X(u(t)) ~+(u(t)) dH(u(t)). 

As in chapter 2 we shall assume that for all initial conditions 

u(t
0

) u
0 

there exists a smooth unique solution u(t) of (4.1.2), defined 

on some interval I c ~ 

4.2 SA- AND AS OPERATORS. 

In this sectien we discuss the various possible SA- and AS operators 

for a Hamiltonian system. The following lemma will be useful in the 

sequel. 

4.2.1 Lemma. 

Suppose a is a closed (parameterized) one-form on M and ~ E r 2 
(M) LS 

0 

a canonical tensor field. Then L~a~ = 0. 

Proef: 

Let 8 and y be arbitrary one-forms on M • Then define the vector fields 

A = ~a , B = ~8 and C = ~y. Application of Leibniz'rule to the identity 

da(B,C) 

results in 

(4.2.2) da(B,C) <L8a,C> + < a,[B,C] > - <L~, B> . 

Using Leibniz ' rule and the antisymmetry of ~ and its Lie deriva tives 

we can write the second term as 

<a,[B,C] > 
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Substitution in (4.2.2) gives 

Since ~ is canonical (see definition 3.2.4) this becomes 

det(B,C) 

<y, (LA~)B>. 

The one-form a is closed, so the left hand side vanishes. The one-forms 

8 and y are arbitrary, so LA~ = L~Ct~ = 0. 

The first application of this lemma is described in the following 

4.2.3 Lemma. 

Let et be a closed (parameterized) one-form on M and let A 
the corresponding vector field. Then LAw = 0, LAQ = 0 and 

Proef: 

The tensor field Q+ corresponds to the closed two-form w, so by 

theerem 3.2.12 it is a canonical tensor field. Then by the preceding 

lemma LAQ+ = 0. From LA(QQ+) = 0 we obtain 

0 is equivalent with LAw 0. 
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4.2.4 Remark. 

The importance of lemma 4.2.1 is that it can be used in cases where 

a canonical tensor field 'jl is (maybe) not invertible (see for instanee 

section 5.6). In the proof of lemma 4.2.3 we had 'jl = 
+-

Q , which is 
+-

invertible. Using this property the proof that L AQ = 0 can be 
+-

considerably simplified. From A Q a we obtain a 

is closed we have d iAw = do. = 0. Then, because w is closed, LAw = iAdw + 

+ d iAw = 0, which is equivalent to LAQ = 0. Finally LAQ+- - st+-(LAQ)st+-= 0. 

0 

Reeall that a tensor field 'jl E T2 (M) which can be used to map adjoint op 
symmetries into symmetries was called an AS operator (see definition 

2.5.3). A tensor field ~ E T~p(M) which maps symmetries into adjoint 

symmetries was called an SA operator (see definition 2.5.6). It turns 

out that for a Hamiltonian system there always exists an SA- and an AS 

operator 

4.2.5 Theorem. 

The tensor field Q is an SA operator and the tensor field n+-is an AS 

operator. 

Proof: 

The conditions for an SA operator were given in definition 2.5.6. The 

operator Q is an SA operator if it satisfies 

(4.2.6) 0. 

It follows form lemma 4.2.3 with a= dH that L~ = 0. Since w does not 

depend explicitly on t, the corresponding tensor fields Q and Q+- also 

don't. So Q satisfies (4.2.6). In a similar way we can show that Q+- is 

an AS operator. Th is re sult a lso fo,llows from theorem 2. 5. 7. 

In local coordinates the tensor field Q is represented by a matrix 

(matrix valued function) Q •• (u) and the tensor field Q+- is represented 

0 

k1 11 . 
by the inverse matrix Q (u). A symmetry Y has components Y1 (u,t) and an 

adjoint symmetry 0 has components o1 (u,t). Then theorem 4.2.5 says that 
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if Yj is (represents) 

Also if a~(u,t) is an 

a symmetry, rl .. (u) Yj (u, t) is an adjoint symmetry. 
l.J H 

adjoint symmetry, rl (u) a~(u,t) is a symmetry. 

Theorem 4.2.5 has a very important consequence. Suppose F 

l.S a constant of the motion. Then theorern 2.4.3 says that dF is an 

adjoint symmetry. Next theorem 4.2.5 implies that rl+dF is a symmetry. 

So foP a Hami~tonian system evePy constant of the motion F gives Pise 

toa symmetPy rl+dF. This leads to the following 

4.2.7 De fini ti on. 

i) An adjoint symmetry a which is exact, will be called a canoniaa~ 

adjoint symmetPy. The corresponding symrnetry Y = n+a will be called 

a canonica~ symmetPy. 

ii) An adjoint symmetry a which is not exact, will be called a non-canonica~ 

adjoint symmet Py. A symmetry Y such that a = S"IY is not exact will be 

called a non-eanoniea~ symmetPy. 

D 

4.2.8 Remark. 

Suppose a = S"IY is a canonical adjoint symmetry. Then there exists 

a function F on M x ~ such that a = dF. However, by theorem 2.4.5 there 
+ 

also exists a constant of the motion G such that a = dG and Y = n dG. So 

the space of canonical adjoint symmetries (a subspace of V*(X; M) ) and the 

space of canonical symmetries (a subspace of V(X;M)) are both isomorphic 

to the space of constauts of the motion. (Constants of the motion which 

differ only by a (numerical) constant are identified). 

D 

The following notions also turn out to be useful. 

4.2.9 Def inition. 

i) An adjoint symmetry which is closed, will be called a semi-aanoniea~ 

adjoint symmetPy . The corresponding symmetry Y = n+a will be called 

a semi-eanonieaZ symmetPy. 
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ii) An adjoint symmetry a which is not closed, will be called a non­

semi-aananical adjoint symmetry. Finally a symmetry Y such that 

a=QY is not closed will be called a non-semi-aananical symmetry. 

4.2.10 Remark. 

An exact differential form is always closed. In the terminology 

introduced above, this means that a canonical (adjoint) symmetry 

is also a semi-canonical (adjoint) symmetry . A differential form which 

is not c losed is also not exac t. This implies that a non-semi-canonical 

(adjoint) symmetry is also a non-canonical (adjoint) symmetry. Since a 

c losed form is not necessarily exac t, the converse of these two assertions 

1s not true. By the Poincaré lemma a closed one-form a can l ocally 

be written as a = dF. I f this relation holds on M x ~ the form is exact. 

There i s a topological condition which implies that c losed k-f orms are 

exact. In our ca se (one-forms) t he condition is tha t the first cohomology 

group of M vanishes. If the manifold M has this property, (non-) semi­

canonical (adjoint) symme tries are identical with (non-) canonical 

(adjoint) symmetries. This happens for instanee if Mis also a linear 

space . D 

In local coordinates u1 a canonical adj oint symme try a has loca l 

coordinates a i = G,i for some constant of the motion G. The coordinates 

a; of a semi-canonical adjoint symmetry satisfy a . . = a . . . 
• 1,] ],1 

I n theerem 4.2 . 5 we have seen that t here always ex ists an SA-

and an AS oper a t or. Non-semi -canonical s ymme tries al so provi de us wi th tha t 

type of oper ators . 

4 . 2.11 Theorem. 

Suppose Z 

Then 

n+T is a non-semi-canonical symmetry . 

i) L
2
n is an SA 

ii) the operator 

(4 . 2 .1 2) 

+ 
oper ator and L

2
n 

L
2
n is cyclic and 

is an AS operator, 

corresponds t o the two-form dT 

dT(A,B) V A,B E X(M) . 
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Proef: 

In theerem 4.2.5 we have seen that Q is an SA operator and Q+ is an 

AS operator. Then by theerem 2.5.15 i the same holds for the Lie derivatives 

in the direction of a symmetry Z . Using T = QZ = i 2w and the closedness 

of w we obtain 

which implies (4.2.12). Finally dT is closed, so the corresponding 

operator L
2
n is cyclic (theorem 3.2.12). 

In local coordinates ui the operators L
2
n and L

2
n+ are represented by 

the following matrices 

<L2m . . 
~J 

n. . zm + n. z~. + n . z~. 
~J,m ~m J mJ ~ 

T •• - T • 
~. J j '~ 

[] 

In theerem 2.5.8 we have seen that (also for a non-Hamiltonian system) a 

non-closed adjoint symmetry T = QZ gives rise to an SA operator. Theerem 

4.2.1 I states that (fora Hamiltonian system) this operator is identical 

to L
2
n. Note that in the proef of theerem 4.2.11 we did not use that 

the symmetry Z was non-semi-canonical. However, if Z is aemi-canonical, 

the corresponding adjoint symmetry T is closed. Then by lemma 4.2.3, 
+ L2n = 0 and L2n = 0. So, if the symmetry Z is semi-canonical, the 

constructed operators are trivial. 

For a symmetry Z which is non-semi-canonical the constructed 

operators do not vanish. Of course this does not imply that they are inver­

tible. As an example for this consider a system with two analytically inde­

pendent constants of the motion F and G. Then Z = Q+T = n~(FdG) = F(Q+dG) 

is a non-semi-canonical adjoint symmetry. The two-form dT is given by 

dT(A,B) < dF,A > <dG,B> - < dG,A > <dF, B> 
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Then (4.2.12) implies that 

<dF,A> dG- <dG,A > dF. 

So the SA operator L
2
n maps any vector field A into the module of one-forms 

spanned by dF and dG. If the manifold M has dimension larger then 2, 

this means that L
2
n is not invertible. If L

2
n (L

2
n+) is invertible, 

+ . 
L

2
n (L

2
Q). The two 1nverse operators are related by 

then 

a lso 

Even if L
2
n is not invertible, we can construct several recursion operators 

for symmetries and for adjoint symmetries. For instanee the tensor fields 

(4.2.13) 

are (can be used as) recursion operators for symmetries. However, these 

recursion operators are not independent. Using the relation (LAQ+)Q + 
+ 

Q LAQ = 0 for an arbitrary vector field A we can show that 

(4.2.14) 

Analogously the recursion operators for adjoint symmetries 

(4.2.15) 

are related by 

(4.2.16) 

So the recursion operators given in (4.2.13) and (4.2.15) can all be 

expressedas powersof Q+L~ and (L
2
Q)Q+. Of course we can also construct 

SA and AS operators by taking "higher Lie derivatives". 
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4. 2. 17 Theorem. 

+ 
Suppose Z = Q T is a non-semi-canonical symmetry. Then for all k ~ 

i) L kt"\ . L k"+ . " 1s an SA operator and " 1s an AS operator, z z 
ii) L2kn is a cyclic operator (cyclic tensor field) and corresponds to 

the two-form d L
2
k-IT 

k 
(L

2 
w)(A,B) 

k-1 
(d L

2 
1) (A,B) V A ,B E X(M). 

Proof: 

The first part of this theorem fellows by induction from theorem 4.2.1 I 

and theorem 2.5.15 i. The SA operator L
2

kn corresponds to the two-form 

L k . Lk Lk . . . · z w. S1nce d z w z dW = 0 th1s SA operator 1s cycllc. F1nally, by 

theerem 4. 2. I I 

D 

4. 2. 18 Remark. 

By combination of the SA operator L2 kn and the AS opera tor n+ we see that 

(L2kn)n+ is a recursion operator for adjoint symmetries. In this operator 

the symmetry Z is "used k times". This is also the case for the recursion 

opera~or for adjoint syuunetries ( (L2S1)Q+)k. In general both recursion 

operators will be different. As an example for this we take again the 
+ ..... 

symmetry Z = S1 (FdG) = F(S"I dG) where F and G are constants of the motion. 

Then it can be shown that, for an arbitrary one-form a, 

and 

+F( <d{F,G},Q+a>dG- <dG,Q+a>d{F,G} ). 
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Sa in general bath operators are nat equal. If there exists a symmetry Z, 

such that the recursion operators for adjoint symmetries ((L
2

n)Q+)Z and 

(L2
2Q)Q+ are equal up to a multiplicative constant, several interesting 

properties can be proved. We shall consider that type of symmetry in 

the sections 4.5 and 4.6. 

Finally we expand a (non-canonical) symmetry in canonical 

symmetries. This leads to the following 

4. 2. 19 Theorem. 

0 

Suppose there exist constauts of the motion Gi, i=!, ... , m, such that 
+ 

the canonical symmetries Q dGi are linearly independent in every point 

u E M. Suppose the symmetry Z can be written as 

m 
z + 

1: F.Q dG. 
i=l ~ ~ 

(4.2.20) F. E F (M) 
~ p 

Then the functions Fi (i=l, ... ,m) are constauts of the motion. 

Proef: 

Since Q+ is an AS operator and the G. are constauts of the motion, we have 
~ 

dG .. 
~ 

The vector field Z is a symmetry, so the left hand side vanishes. 

Since the symmetries Q+dG. are linearly independent in every point 
~ 

of M, this implies 

0 i I, ... ,m 

This means that the functions F. are constauts of the motion. 
~ 

A completely integrable Hamiltonian system on the finite-dimensional 
2n 

manifold M = 1R has always 2n constauts of the motion with linearly 

independent corresponding symmetries. In the notatien of sectien 3.6 
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these constants of the motion are F. 
l. Pi' Fi+n 

ClH 
qi- t (i=J, ... ,n). 

()pi 

So in this case we can expand any (non-canonical) symmetry as described 

in theorem 4.2.19. 

4.3 BI-HAMILTONIAN SYSTEMS. 

In theorem 3.5.5 we have seen that, for a general dynamica! system, the 

existence of a certain adjoint symmetry p implies that the system is 

Hamiltonian. Of course this theorem is also valid if the dynamica! 

system is already a Hamiltonian system. In that case theorem 3.5.5 

provides us with a symplectic two-form and a Hamiltonian which may or 

may not be equal to the original ones. If the two symplectic forms are 

not equal up to a multiplicative constant, we can write the systern as 

a Hamiltonian system in (at least) two essentially different ways. 

Systems of this kind are sametirnes called bi-Hamiltonian systems . 

Several popular integrable Hamiltonian systems have this property, 

see for instanee Magri [5] In section 4.5 we shall meet dynamica! 

systems which can be written as a Hamiltonian system in infinitely many 

ways (see remark 4.5.16). We now reformulate theorem 3.5.5 in case the 

original system is already a Hamiltonian system. 

4. 3. I Theorem. 

Let the non-semi-canonical symmetry Z=Q+T satisfy the following conditions: 

i) the operator LzQ is invertible, or equivalently the two-form dT 

is nondegenerate, 

ii) the symmetry Z is canonical, so there exists a constant of the motion 
. +• + 

G such that Z = Q T = Q dG. 

Then the vector fi e ld X is a lso the Hamiltonian vector field corresponding 

to the Hami ltonian H = L
2
H - G and the symplectic two- form w = dT . 

Proof: 

Theorem 3.5 .5 yields that X is the Hamiltonian vector field c.orresponding 

to the Hamiltonian H = - <T ,X> - G and symplectic two-form dT, Since 
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.... x i1 dH and T 

<T,X> 
.... 

<T,rl dH> 

-<dH,Z> 

So H L
2
H ~ G and this concludes the proof. 

If a symmetry Z, as described in this theerem exists, the vector field 

X can be written as 

.... x n dH 

and as 

4.4 THE DUALITY MAP . 

.... 
Suppose Y1 i1 OI and Y

2 

.... 
i1 a

2 
are two symmetries. Then by theerem 

2.5.10 the function 

(4. 4. I) G 

CJ 

is a constant of the motion. We shall now compute the canonical symmetry 

Q-+-dG. First rewrite (4.4.1) as 

The exterior derivative is given by 
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From (4.2.12) (with T = o 1, Z = Y
1
) we obtain 

So 

iy do 1 
2 

.... 
Application of ~ results in 

.... 
~ dG 

(4.4.2) 

By construction this is a canonical symmetry. In the right hand side 
.... .... 

we recognize the recursion operators for symmetries ~ Ly ~ and ~ Ly ~ , 
I 2 

acting on Y2 respectively Y1 and the Lie bracket [Y2 , Y
1

] • Firs t 

suppose Y1 is a canonical symmetry. Then there exists a constant of 
. .... .... 

the mot1on F1, such that Y
1 

= ~ o 1 = ~ dF 1. Then by lemma 4. 2.3 

Ly ~ = 0. In this case (4.4.1) and (4.4.2) can be written as 
I 

(4.4.3) G 

and 

(4.4.4) 

Formula (4.4.3) can be considered as a methad for constructing a (new) 

constant of the motion G out of a known cons tant F
1 

and a symmetry Y
2

• 
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Then the canonical symmetry corresponding to G consists of two parts. 

The first part is the recursion operator 

+ 
n Ly n applied to 

2 
second term is the Lie bracket 

+ . 
of Y

2 
and n dF

1
• We can also try to use the s1ngle terms to construct 

a (new) constant of the motion. So starting with a constant of the motion 

F
1 

and a (non-semi-canonical) symmetry Y
2 

there are three possible ways 

to construct another constant of the motion. 

i) We can compute G = Ly F 1 • 
2 

ii) We can apply the recursion operator n+L n to n+dF
1 

and obtain 
Y2 

However, the symmetry Y
3 

can be canonical or non-canonical. Only in 

the first case this method yields a constant of the motion. 

iii)Compute the Lie bracket 

Also in this case Y4 may be canonical or non-canonical. 

It follows from (4.4.4) that nrlG = Y3 + Y4. So if me thod ii) works then 

also method iii) works and conversely. Method i) seems very attractive 

because it yields at once a constant of the motion. However, it is easier 

to describe properties of a constant of the motion which is constructed 

with one of the other methods. In sec tion 4.5 we consider the problem of 

cons tructing an infinite series of constants of the motion using a 

recursion operator of the type (Ly n )n+ . In section 4.6 we investigate 

under which conditions this infiniEe series can also be obtained using 

the (repeated) Lie bracke t with Y
2

• 

We now return to (4.4.2) and assume bath symmetries Y
1 

and Y
2 

are canonical. So there exist constants of the motion F
1 

and F
2 

such that 
+ + 

Y 1 = n dF 1 and Y2 n dF2. Then (4.4.1) and (4.4.2) can be written as 

(4.4.5) G 
+ 

<dF I , n dF 2> 

and 
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(4.4.6) 

This means the canonical symmetry corresponding to the Poisson bracket 

G ~ {F
1
,F2} is equal to the Lie bracket of the canonical symmetries 

corresponding to F2 and F 1. So we have proved the following well-known 

4.4.7 Theorem. 

The canonical symmetries form a subalgebra of the Lie algebra of 

symmetries V(X;M). This subalgebra is isomorphic to the Lie algebra 

of constauts of the motion, as described in lemma 3.3.5. 

This theorem has the following consequence. Considerations which only 

use canonical (adjoint) symmetries can also be held on the level of 

constauts of the motion. It is only useful to work with vector fields 

(one-forms) if non-canonical (adjoint) symmetries are involved. 

4.5 INFINITE SERIES OF CONSTANTS OF THE MOTION I. 

[] 

A lot of popular integrable Hamiltonian systems have an infinite series 

of constauts of the motion. These constauts of the motion Fk do not 

depend explicitly on t and are in involution 

F. 
~ 

0, {F., F.} 
~ J 

0. 

The most obvious way of constructing a new constant of the motion is by 

taking the Poisson bracket of two already known elementsof the series. 

Since the series Fk is in involution this method will not work. Another 

possibility is to take the Poisson bracket with some other constant of 

the motion G. It turns out that several equations have a constant of the 

motion G, not in the series Fk, such that 

However, very often ~ ~ 0, which means that in this way we cannot go 

upwards in the series Fk. For instance, for the Korteweg-de Vries equation 
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there exists a constant of the motion G such that ~= -1 (see for instanee 

Broer and Backerra [25]). In the case of the Sawada Kotera equation there 

is a constant of the motion G with ~ = 0. For both equations t his 

methad is not suitable for constructing an infinite series of constants 

of the motion. For the Benjamin-Ono equation there exists a cons tant 

of the motion G such that ~ = I. Then an infinite series of constants 

of the motion LS easily constructed and the following considerations 

are unnecessary. All these three equations will be used as examples 

in chapter 5. 

In this section we shall consider the problem of constructing 

an infinite series of constants of the motion using a recursion operator 

for adjoint symmetries of the type (L2n)n~. Starting with a non-semi­

canonical symmetry Z = z
1 

we first construct an infinite series of (in 

general non-semi-canonical) symmetries zk. With these symmetries correspond 

the recursion operators (Lz n)n~. If the symmetry Z satisfies a 
k 

certain cond~tion (hypothesis 4.5.1) these recursion operatorscan be 

expressed in terms of pü\vers of (L
2
n) n~ ( theorem 4. 5. 5) . An infini te series 

of adjoint symmetries is then constructed by pk+l = -f- (L2 n)n~ dH(ck E 1R). 

5 0 . d' . h h h' k . k . In theorem 4 • . I we gLve con LtLons suc t at t LS serLes cons1sts of 

semi-canonical adjoint symmetries. Several properties of the (possibly) 

corresponding constantsof the motion are described in theorem 4.5.13. 

Suppose there exists a non-semi-canonical symmetry Z = n~T. 

Then A = n~L2n is a recursion operator for symmetries and r = (L 2n)n~ is a 

recursion operator for adjoint symmetries. If we "use the symmetry Z twice", 

we can construct the recursion operators for adjoint symmetries 

and 

We saw in remark 4.2.18 that in general these recursion operatos will be 

different. However, there may exist a symmetry Z such that bath operators 

are equal up to a multiplicative constant. This leads to 
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4.5.1 Hypothesis. 

There existsa non-semi-canonical symmetry Zand a real number c with 

c # (k-1)/k, V k E ~ such that 

(4.5.2) 

Note that since Z is non-semi-canonical the corresponding adjoint 

symmetry 1 is not closed and (theorem 4.2.11) the operator (tensor 

field)L2~ does not vanish. For a semi-canonical syrnrnetry the condition 

4.5.2 would be trivial. The existence of a symmetry Z as described in 

this hypothesis, is essential for the theory of this section and 

section 4.6. For several "completely integrable" Hamiltonian systems 

(Korteweg-de Vries equation, sine-Gordon equation) this hypothesis is 

satisfied (and also L 2~ # ~ for some a E 1R). The following lermna 

will be used several times in the sequel. 

4.5.3 Lemma. 

Suppose ~ is a closed parameterized two-form with corresponding tensor 
0 

field~ E r 2p(M). Let A E Xp(M) and define the parameterized one-form 

a by a= ~A. Then 

Proof: 

Apart from the dependenee on the parameter t, this lemma corresponds 

D 

to the secoud part of theorem 4.2.1 I with ~. 1 and Z replaced by ~. a and A. 

In the proof of that part of theerem 4.2.1 I the special role of~ (we 

consider the Hamiltonian system ü = ~~dH) is not used. So the lemma can 

be proved in the same way as the secoud part of theorem 4.2.11. 

D 

In local coordinates ui the tensor field '~ (or the two-form ~) is 

represented by a matrix~ ... The one-form a and the vector field A have . ~] . 
components a. and AJ such that a. ~ . . AJ. Then if ~is a closed two-form, 

~ ~ ~J 

lemma 4.5.3 implies that 
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a .. -a .. 
1,] ],1 

The operator h = D+L2D is a recursion operator for symmetries. So we can 

construct an infinite series of symmetries Zk and corresponding adjoint 

symmetries Tk by 

(4.5.4) 1,2,3, •.•. 

We now obtain the important 

4.5.5 Theorem. 

Suppose hypothesis 4.5.1 is satisfied. Then the symmetries Zk' defined by 

(4.5.4), generate SA operators L2 D which satisfy 
k 

(4.5.6) k 
ck r D for k I, 2, 3, ... , 

c(k-1) + 2-k. 

Proof: 

The proof is done by induction. For k=l (4.5.6) is an identity. Next 

assume (4.5.6) is correct for k = j. Since hypothesis 4.5.1 is satisfied, 

c. # 0. We shall now compute L2 D . It follows from lemma 4.5.3 with 
J . I 

~ = w, ~ = D and A = z. that J+ 
J+l 

(4.5.7) <(Lz. D) B1,B2> 
J+l 

dT. (B
1 
,B

2
) 

J+l 

By construction T j+l rjT • We assumed (4.5.6) for k 

c. c. CL 2 . n ) z . 
J J J 

j, hence 

The tensor field L2 .n corresponds to the closed two-form L2 .w . So we can 

J I I J 
again apply lemma 4.5.3 with ~ = c. L2 .w, ~ = ~ L

2
.n and A = Z. Then 

J J J J 
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a = T and the lemma yields 
j+l 

(4.5.8) dT. (B ,B) = ~ <(L L Q)B ,B > 
J+l I 2 c. Z Z. I 2 

J J+l 

Camparing (4.5.7) and (4.5.8) results in 

c. 
J 

By again using the assumption this can be written as 

The proof is now completed by writing out the right hand side with 

Leibniz'rule 

(4.5.8.a) 

We first compute L
2
r Using (4.2.16) and hypothesis 4.5.1 we obtain 

2 
(c-1) r . 

Substitution in (4.5.8.a) finally results in 

(j (c-1 )+I) rj+l SG 

So we have proved (4.5.6) for k j+ I • 

0 

The tensor field L Q corresponds to the closed two-form L w, so it ~s 
zk zk 

a cyclic tensor field. Theorem 4.5.5 now implies that, if hypothesis 4.5.1 

is satisfied, the SA operators rkn are aZso oyoZio. If rkn # o this 
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theorem a~so imp~ies that Zk must be non-semi-canonica~. We now show that, 

if (besides hypothesis 4.5.1) the non-semi-canonical symmetry Z satisfies 

an additional condition, it is possible to construct an infinite series 

of semi-canonical adjoint symmetries. First the following 

4.5.9 Lemma. 

Suppose ~ is a cyclic SA operator with corresponding (closed) two-form ~. 

which do not depend explicitly on t. Then the adjoint symmetry 

.... 
p = 4>11 dH <PX 

is semi-canonical. 

Proof: 

Since 4> is an autonomous SA operator we have LX<P = 0. Since 4> is cyclic we 

obtain from lemma 4.5.3 (with A = X and a = p) that dp = 0, so p is semi­

canonical. 

[J 

So every autonomous cyclic SA operator gives rise to a semi-canonical adjoint 

symmetry (and of course a semi-canonical symmetry). If the first cohomology 

group of M vanishes (so semi-canonical symmetries are canonical symmetries) 

this means that every autonomous cyclic SA operator gives rise to a constant 

of the motion. 

4.5.10 Theorem. 

Suppose there exists a symmetry Z as described in hypothesis 4.5.1. Suppose 

the time derivative Z is a semi-canonical symmetry. Then the adjoint 

symmetries 

(4. 5. 11) k 1 ,2,3, ... 

are semi-canonical. 
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Proof: 

The SA operator L2 ~ is cyclic. In view of the preceding lemma we only have 
k 

to show that L2 ~ does not depend explicitly on t. Since ~ and ~+ do not 
k 

depend explicitly on t, we have 

(4.5.12) r 

The symmetry Z is canonical, so from lemma 4.2.3 we obtain L.~ = 
a z 

implies f = 0. Then it follows from theorem 4.5.5 that at (Lzk~) 
0. This 

= o. 
This completes the proof. 

Of course " in practice" we do not have to compute Zk before we can 

find pk+l. It follows from theorem 4.5.5 that 

(Lz ~)~+dH = fk dH, 
k 

k 

The corresponding semi-canonical symmetries are 

k 

0, I ,2, .... 

0, I ,2, ... 

+ 
where we have defined p

1 
= dH and x

1 
= X= ~ dH. The following theorem 

describes some properties of the constants of the motion which may be 

associated to the adjoint symmetries pk. 

4.5. 13 Theorem. 

0 

Suppose there exists a symmetry Z which satisfies hypothesis 4.5.1 and 

suppose Z is a canonical symmetry. If the first cohomology group of the 

manifold M vanishes, there exists an infinite series of constants of 

the motion F1 = H, F2, F3, ... for (4.1.1), defined by 

(4.5.14) dFk+l - p = fk dH - k+l k 0, I ,2, ... 

These constants of the motion are in involution and do not depend 
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explici tly on t. 

Proof: 

Theorem 4.5.10 states that the adjoint symmetries pk are semi-canonical. 

In remark 4 . 2.10 we explained that, when the first cohomology group 

of M vanishes, semi-canonical adjoint symmetries are also canonical 

adjoint symmetries. So (theorem 2.4.5) there exist constauts of the 

motion Fk which satisfy (4.5.14). We now compute the Poisson brackets 

in these series 

j,k 0, I ,2, .. . 

Since n~and L
2
n are both antisymmetric, we obtain 

0 j ,k I ,2,3, .. . . 

Finally Fk = {H,Fk} = {F1,Fk} = 0 implies that theseconstantsof the 

motion do not depend explicitly on t. 

4 .s. 15 Remark. 

Cl 

Note that we did not prove that the constauts of the motion construc ted 

in this way, are (analytically) independent. On a manifold of dirneusion 

2n there can only exist 2n independent functions. So for a finite­

dimensional manifold the infinite series Fk cannot be analytically 

independent. Also it may happen that Fk = 0 for k > k
0 

or that Fk 

= fkH, fk E 7R.. Thi s last. situation occurs if L
2
n = f n for s ome f E 7R. 

However, in the examples in chapter 5 there exist symmetries z for which 

it is easy to see that these trivial situations do not occur. 

Cl 
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4. 5.16 Remark. 

It follows from (4.5.11) and (4.5.14) that 

(4.5.17) 

The SA operator L2 n corresponds to the closed two-form Lz w. If this 
k k 

two-form is nondegenerate, or equivalently if Lz n is invertible, we 
k 

can 

consider ~.5. I7)as a Hamiltonian system with symplectic two-form dek 

and Hamiltonian ckFk+l. Then the vector field X can be written as 

(4.5.18) x 

Lz w 
k 

The invertability of Lz n corresponds (theorem 4.5.5) to the invertability 
k 

of r. So if r (or L2n) 1s invertible, we can write the vector field X 

as (4.5.18) for all k ~ 0. Systems of this type are called multi-Hami ltonian. 

0 

The methods we describe in this section and also in section 4 .6 depend 

essentially on the use of a series of (in general) non-(semi-)canonical 

symmetries zk . A different method for constructing infinite series of 

constants of the motion, using a recursion operator for adjoint symmetries, 

was given by Magri [5] (Nijenhuis operators, compatibility conditions 

for. "symplec tic opera tors") and, using methods s imi lar to those of 

Magri, by Fuchssteiner and Fokas [8] (heriditary symmetries). These 

authors do not use non-semi-canonical symmetries (Zk). This means that 

several interes ting results (various possible methods for constructing 

new constauts of the motion as given in section 4.4; explicitly given 

symplectic forms for the multi-Hamiltonian description, see remark 

4.5.16; all results of section 4.6) cannot be found. 

4.6 INFINITE SERIES OF CONSTANTS OF THE MOTION II. 

In the preceding section we constructed an infinite series of constauts 

of the motion Fk, using a recursion operator for adjoint symmetries. The 

corresponding canoni cal symme tries were Xk = n+- dFk = Ak-I x
1

• We also 
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k-1 
constructed another series of symmetries Zk = h z1. In the first 

part of this sectien we shall consider the various possible Lie brackets 

between the elements of bath series Xk and Zk. For a general dynamica! 

system (i.e. nat necessarily Hamiltonian) a problem of this type was 

considered in sectien 2.6. In that sectien we assumed that hypothesis 

2 . 6.3 was satisfied. We now show that for a Hamiltonian system, this 

hypothesis fellows partly from hypothesis 4.5.1. In this sectien we 

use the samenotatien as in the preceding sectien (so (L
2 

Q)Q+ r, etc). 
I 

4.6 .I Theorem. 

Suppose the non-semi-canonical symmetry z1 satisfies hypothesis 4.5.1. 

Th en 

(4.6.2) 

(4.6.3) 

Proof: 

2 
(c-l)h , 

3 
(c-I)A • 

Using hypothesis 4.5.1 it is easily seen that 

2 
(c- I)A . 

Next we prove (4.6.3) 

(4.6.4) 
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From (4.6.2) we obtain 

(4.6.5) (c-1) p,_2z 
I 

Sub s titution 'in the last term of (4.6.4) and using theorem 4.5.5 with 

k = 1, 2 and 3 results aftersome elementary computations in 

3 L
2 

A = (c-I) A • 
2 

0 

It may be surprising that the factor c-1 appears in bath Lie derivatives 

(4.6.2) and (4.6.3). However, if L2 A= f A3 for some f E 1R, then 

necessarily f = c-1. For, using the
2
antisymmetry of the Lie bracket 

0 

Then (4.6.5) implies f = c-1. Using the results of section 2.6 the following 

theorems are easily proved. 

4.6.6 Theorem. 

Suppose the non-semi-canocial symmetryZ
1 

satisfies hypothesis 4.5. I. 

Suppose [Z 1 ,X1] = bX
2 

with b i< k( 1-c) for k = 0, I ,2, .. . . Then the Lie 

brackets between the elements of bath series Xk and Zk are given by 

(4.6. 7) 

(4.6 .8) ((~-l)(c-1) + b) xk+~ ' 

(4.6.9) (~-k) (c-l) zk+JI, 

Proof: 

From theorem 4.6.1 and the assumption that [Z 1,X1J b x
2 

we see that 
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hypothesis 2.6.3 is satisfied (with a= c-1). The results now follow 

from the corollaries 2.6.9, 2.6.10 and 2.6.13. 

0 

Note that (4.6.7) corresponds with the fact that the corresponding 

constauts of the motion Fk, as given in theorem (4.5.13), are in involution. 

4.6.10 Remark. 

From (4.6.8) we see that the series of semi-canonical symmetries Xk can 

also be constructed using the (repeated) Lie bracket with z1. In the 

preceding section this series was constructed using a recursion operator 

for (adjoint) symmetries A(f). In fact we could also have started with 
k-1 

the methad of the repeated Lie bracket, that is define a series Xk = L
2 

x1. 
I 

Then we can try to prove that this series consists of canonical symmetries. 

Suppose that 

zl is semi-canonical, 

ii) zl satisfies hypothesis 4.5.1. 

Then it can be shown that the series Xk consists of semi-canonical symmetries. 

Moreover, if forsome bI 0 x
2 

= AX
1

, we can show that the series 

Xk can also be obtained using the recursion operator for symmetries A. 

In section 2.6 we also computed the Lie derivatives of the operator A . 

4.6.11 Theorem. 

Suppose the conditions of theorem 4.6.6 are satisfied. 

Th en 

0 

Proof: 

L A = (c-1) Ak+I 
zk 

for k 1,2,3, .... 

Under the conditions of theorem 4.6.6 hypothesis 2.6.3 is satisfied 

(with a= c-1). The theorem now follows frorn theorem 2.6.8 and 2.6.12. 

Note that this theorem implies that A is also a recursion operator for 

symmetriesof the Hamiltonian systerns ü = Xk(u), k = 1,2,3, •..• 

0 

0 

In section 4.4 we described three (possible) rnethods for con­

structing a (new) constant of the motion, starting with a known constant of 
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the motion and a non-semi-canonical symmetry z
1

. Insection 4.5 we construc­

ted an infinite series of constants of the motion using a recursion operator 

for (adjoint) symmetries (method ii). In the first part of this section we 

showed that, under certain conditions, the same series can also be obtained 

using the (repeated) Lie bracket with z
1 

(method iii). We now makesome 

remarks on method i), that is compute the Lie derivative L2 H. 
1 

4 .6 . 12 Theorem. 

Suppose the symmetry z1 satisfies hypothesis 4.5.1. Let there exist a 

real number b ~ k(1-c) for k = 0,1,2, ... , such that [Z1,X1] bX2 . Then 

(4.6.13) 

with 

Proof: 

d(l k- 1 H) 
z1 

k-2 
n 

i=O 

1 ,2,3, ... 

(i(c-1 )+b+1) . 

The proof is done by induction. Since f 1 = 1 the theorem is trivial for 

k = I. Next assume (4.6 . 13) holds fo r k = j. Then 

f. L2 cm.) 
J 1 J 

Using theorem 4.6.6 we can write this as 

f.~ A X. + f .((j - 1)(c-1)+b) ~X. 
J J J ]+1 

f. ((j-1) (c-1) + b+1)~ X. 
1 J J+ 

f. 1 ~ x. 1 J+ J+ 
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So we proved (4.6.13) for k j+l • 

[J 

4.6.14 Corollary. 

Let the conditions of theerem 4.6.12 be satisfied. Then an infinite series 

of constants of the motion in involution (for the Hamiltonian system 

Ü = X(u) = rt (u) dH(u)) is given by 

(4.6.15) 
k-1 

Lz H 
I 

for k I ,2,3, ... 

Proof: 

We only have to show that the Fk are in involution. From theorem 4.6.12 

we obtain Fk fkFk where Fk is the series of constauts of the motion 

in involution, as constructed in theerem 4.5.13. 

[J 

4.6.16 Remark. 

Note that in theerem 4.6.12 and corollary 4.6.14 we did nothave to assume 

that the first cohomology group of M vanishes. The reasen is that in the 

construction used in corollary 4.6.14 we don't have to reconstruct a 

constant of the motion from its corresponding canonical (adjoint) symmetry. 

This also means that "in practice" the method described in the preceding 

corollary is the most useful of the three considered methods. 

[J 

Note that we did not prove that the constructed constants of the motion 

·are analytically independent. Also it can happen that we obtain only 

trivial results .. See further remark 4.5.15. 
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CHAPTER 5 EXAMPLES. 

5. I INTRODUCTION. 

In this chapter we shall apply the theory, described in the preceding 

chapters, to several well-known differential equations. Most of these 

equations have been extensively studied in recent years. However, we obtain 

some results which, as far as we know, are new and give also different 

proofs of already known properties. As a first example we consider in 

section 5.2 the Burgers equation. This equation cannot be written in the 

form of an autonorneus Hamiltonian system. A non-autonorneus ("unphysical") 

Hamiltonian form of the Burgers equation is possible, but the methods 

described in the preceding chapters apply only to autonorneus systems. In 

the following sections of this chapter we consider various (semi-)Hamiltonian 

systems. In sections 5.3 and 5.4 we study linear Hamiltonian systems. First, 

in section 5.3 we study the most general form of a finite-dimensional 

linear Hamiltonian systems. Then in section 5.4 we consider the one­

dimensional wave equation. Insection 5.5 we make some remarks on Hamiltonian 

systems which are related by a (invertible) transformation to a linear 

Hamiltonian system. As an example we consider a nonlinear system of partial 

differential equations, which can be transformed into the linear wave equation. 

The most extensive example of this chapter will be the Korteweg-de Vries 

equation, discussed in section 5.6. Finally in sections 5.7 and 5.8 we 

discuss the Sawada-Kotera equation and the Benjamin-Ono equation. The Sawada­

Kotera equation is a "higher order Korteweg-de Vries equation", which is 

not an element of the Lax hierarchy of higher order Korteweg-de Vries 

equations. For this equation we only describe a "semi-Hamiltonian form". 

However, methods similar to those in chapter 4, can also be applied to 

this equation. The Benjamin-Ono equation is an integro-differential equation. 

Also other properties of this equation are different from the previous ones. 

In chapters 2,3 and 4 we discussed some properties of dynamica! 

systems and Hamiltonian systems on manifolds. The differential geometrical 

methods we used in those chapters, have only a sound foundation if the 

manifold M is finite-dimensional. So at first sight we can only use the 

results of the preceding chapters to investigate finite-dimensional systems. 

An interesting finite-dimensional example is the periadie Toda lattice [52] . 

However, most of the examples we wish to consider in this chapter are partial 
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differential equations, i.e. dynamica! (Hamiltonian) systems on manifolds 

with infinit~ dimension. Fortunately these equations can be considered in 

a topological vector space. Insection 1.2 we gave definitions of various 

differential geometrical objects on a (possibly infinite-dimensional) 

topological vector space W. Suppose X is a vector field on W so it is a 

(possibly nonlinear) mapping X : W + W. Then we can consider in W the 

dynamica! system 

(5. I. I) ü X(u). 

The following theorem describes (adjoint) symmetries and operators between 

symmetries for the system (5.1.1). 

5. I. 2 Theorem. 

Consider the parameterized vector field Y : W x ~ + W, the parameterized 

one-form y : W x ~ + W* and parameterized tensor fields ~. A, r.~ of the 

sametype as in (1.2.3). Then: 

i) Y is a symmetry of (5.1.1) iff 

(5. I. 3) Y(u,t) + y' (u,t)X(u) -X' (u)Y(u) 0, 

ii) o is an adjoint symmetry of (5.1.1) iff 

(5 . 1.4) o(u,t) + o'(u,t)X(u) + X'*(u)o(u,t) 0, 

iii) ~is an SA operator for (5.1 .I) iff 

(5. I .5) ~(u, t) + (~'(u, t)X(u)) + ~(u)X' (u) +X'* (uH(u) 0, 

iv) A is a recursion operator for symmetriesof (5.1.1) iff 

(5.1.6) A(u,t) + (A'(u,t)X(u)) + A(u,t)X'(u)- X'(u)/\(u,t) 0, 

v) ris a recursion operator for adjoint symmetriesof (5.1.1) iff 
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(5.1.7) f(u,t) + (f'(u,t)X(u))- f(u,t)X'*(u) + X'*(u)f(u,t) 0, 

vi) ~is an AS operator for (5.1.1) iff 

(S. I. 8) ~(u,t) + ('l''(u,t) X(u))- 'l' (u,t)X'*(u)- X'(u) ~ (u,t) 0 • 

All these expressions are assumed to vanish for all u E W and t E ~. 

Proof: 

Using (1.2.9) it is easily seen that all these expressions are equivalent 

to the corresponding expressions in chapter 2. 

a 

Suppose u(t) is a solution of (5.1 . 1). The equation, obtained by linearizing 

(S.J.!) around u(t) is 

(5. l. 9) v (t) X' (u(t) )v(t) v(t) E W. 

This equation can be considered as an equation for the "variation" v(t) 

of u(t). Similar equations were considered in (2.2.2) (using alocal 

trivialization of the manifold) and in (2.8.\l) (differential equation on 

the tangent bundle). Suppose Y(u,t) is a symmetry of (S.l.l ) . Then it is 

easily seen that v(t) = Y(u(t),t) is a solution of (5.1.9 ) . So symmetries 

can be interprered as solutions of the linearized equation (5.1.9), which 

can b,e expressed ~n u and t. In fact we can even use this property to 

find symmetries. The adjoint equation of (5. 1 .9) is given by 

(5. l . l 0) w(t) - X'* (u(t) )w(t) w ( t) E W*. 

Let o(u,t) be an adjoint symmetry of (5.1.1). Then it is easily verified 

that w(t) = o (u(t),t) satisfies (5.1.10). So adjoint symmetries o can be 

considered as solutions of the "adjoint linearized equation" (5.1.10), 

which can be written in terms of u and t. 

5.1.11 Remark . 

óu ( t) 

Sametimes we shall meet (adjoint) symmetries which do not depend explicitly 

on t. For symmetries and adjoint symmetries of that type (autonomous 
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symmetries) the first termsin (5.1.3) and (5.1.4) vanish. Almost all 

recursion operators for (adjoint) symmetries, SA- and AS operators which 

we shall use in the sequel, do not depend explicitly on t (autonomous 

operators). Soforthese operators the firstrerms in (5.1.5), (5.1.6), 

(5 : 1.7) and (5.1.8) also vanish. 

D 

5. I. 12 Remark. 

In sections 5.3 and 5.4 we shall meetsymmetriesof the form Y(u,t) Yu 

and adjoint symmetries of the form a(u,t) =au where Y : W +Wand 

a : W + W* are linear operators. In that case the derivatives are easily 

found: Y(u,t) = 0, Y'(u,t) = Yandà(u,t) = 0, a'(u,t) =a. In sections 

5.3 and 5.4 we also use recursion operators for (adjoint) symmetries, SA­

and AS operators which do not depend explicitly on u and t (i.e. constant 

operator fields). An SA operator of this type is ~(u,t) = = where =: W + W* 

is a linear operator. For operators of this type the derivatives with 

respect to u and t vanish. This means that in the conditions (5.1 .5), (5.1 .6), 

(5.1.7) and (5.1.8) the first two terms are zero. 

D 

In section 3.2 we considered a closed two-form and the 

corresponding tensor field(s) .In definition 3.2.4 we introduced cyclic tensor 

fields and canonical tensor fields. The corresponding conditions were written 

in terms of Lie derivatives. In the case that M = W, a topological vector 

space, these conditions can be simplified sornewhat. 

5. I. 13 Theorem. 

An antisymmetrie tensor field ~ E T~(W) (=antisymmetric opera tor field 

~(u) : W + W*) is cyclic iff 

(5. I. 14) <(t' (u)A)B,C> + < (t~u)B) C,A> + <(t'(u)C)A,B> 0 

for all A, B , C, u E W. 

Proof: 

By theorem 3.2.12 an antisymmetrie tensor field is cyclic iff the corresponding 

two-form is closed. Then this theorem follows at once frorn definition 
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1.2.10 iii) (and theorem 1.2.11). 

D 

An alternative proof of this theorem can be given by substitution of LA~' 

as given in (I .2.9), in definition 3.2.4 (i.e. in (3.2.5)), 

5. I. 15 Theorem. 

An antisymmetrie tensor field ~ E T~(W) (=antisymmetric operator field 

~(u) : W* + W) is canonical iff 

(5. I . 16) <a ,(~' (u)(~(u)S))y> + <S ,(~ '(u)(~(u)y)) a> 

+ <y ,(~'(u)(~(u)a))8> 0 

for all a, 8, y E W* and u E W. 

Proof: 

A canonical tensor field~ has to satisfy (3.2.8). Substitution of L~aS' 

as given in (1 .2.9) and some elementary operations yield that (3. 2.8) is 

equivalent to (5.1 .16). 

D 

5. I. 17 Remark. 

It is easily seen from (5. 1 .14) and (5.1.16) that antisymmetrie operators 

~ : W + W* and ~ : W*+ W , considered as constant operator fields (i.e. 

~(u) ~nd ~(u) do notdepend on u) always satisfy (5.1 .14) respectively 

(5 . 1. 16). Hence every antisymmetrie operator~: W + W* i s cyclic (so the 

corresponding two-form is closed) and every antisymmetrie operator 

~ : W* + W i s canonical. 

D 

The fact that W is a topological vector space has also 

consequences f or the relation between semi-canonical and canonical 

symmetries. I nsec tion 1. 2 we have seen that a closed one~form a onWis 

also exact. The corresponding func tion F on W such that a = dF was given 

in (1.2.12). Of course these results also hold if a (and hence F) depend 

on a parameter (t). In terros of (adjoint) symmetries this means that 

semi-canonical (adjoint) symmetries are canonical (adjoint) symmetr ies 

and that non-canonical (adjoint) symmetries are non- semi canonical 
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(adjoint) symmetries. So we can omit the prefix "semi" in these notions. 

Finally we make some remarks on the notatien and terminology 

in this chapter. In the preceding chapters we used the notatien and 

terminology of modern differential geometry. We shall also do this in 

this chapter, with a few exceptions. If Wis infinite-dimensional, the 

exterior derivative of a function (functional) F : W + ~ is the one-form 

dF(u) = F'(u), as introduced in definition 1.2.10 i). In cases where the 

duality map between W and W* is given by the 1 2 innerproduct (all the examples 

except sectien 5.3), the derivative of Fis frequently denoted as~~ 
(or oF(u)) insteadof F'(u). This expression is called the variationaZ OU 
derivative of F. In all sections except sectien 5.3 we shall most ly use 

oF this notation, so dF(u) will be replaced by Ou . 

The derivative of various parameterized objects with respect 

to the parameter (t) has always been indicated by a dot, for ins tanee 

Y(u,t) = ; t Y(u,t) (derivative of a vector field to the parameter). However, 

when dealing with partial different ial equations, deriva tives with r espec t 

tot (x,y, ... ) are very often indicated by a subscript t (x,y, ... ). 

Apart from sectien 5.3 we shall also use this notation. So the derivative 

of a parameterized vector field with respect to the parameter will be 

written as 

él 
Yt(u,t) = ät Y(u,t), 

a dynamical system (Korteweg-de Vriesequation) will be written as 

X(u) 6uu - u 
X XXX 
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5.2 THE BURGERS EQUATION. 

This equation was used by Burgers [48,49] in 1939 in a model for turbulent 

fluid motion. It is the simplest possible equation which describes both non­

linear and diffusion effects . The Burgers equation arises in many places 

in physics, particularly in problems where shock waves are involved (see 

for instanee Whitham [32] ). We shall study it in the form 

(5. 2. I) ut = X(u) x E: 1R 

Various other farms of the Burgers equation can be reduced to (5.2. 1), using 

transformations of the dependent and independent variables. A transformation 

which relates (5.2.1) to the diffusion equation was found in 1950 by 

Hopf [SO] and in 1951 by Cole [SI) . This so-called Hopf-Cole t ransformati on 

is given by 

(5.2.2) f (u) 
a- 1u 

V = e 

V 

(5.2.3) f+(v) x 
u = 

V 

The corresponding evolution equation for v is given by 

(5.2.4) f'(u)X(u) X(v) V 
XX 

,xE:7R (u 

Various methods are available for solving this linear equation. Suppose 

we take an initial value u
0 

E: S 1 (see definition 1.3.2) at t = t
0

. Then, 

using the relation with (5.2.4), it can be shown that the corre sponding 

salution u (. 't) E: SI for t ::: t Therefore we shall study (S. 2. I) in the 
0 -

space S1. De fine the function space U1 = UI 1R {u E: C 
co 

(IR ) I u(x) $ = -
= v (x) + a, V E: u I' a E: 1R } • A duality map between SI and U1 is given by 

<a,A> (a(x) A(x)dx 

Then,similar to theorem I .3. 14, we introduce topologies on S1 and u
1 

such 

that S~ = U1 and U~ = S 1. 

We shall now study symmetries and adjoint symmetries for (5.2.1). 
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Since we consider (5.2.1) on a topological vector space, a symmetry Y is 

(can be considered as) a mapping Y : s1 x 1R + S1 which satisfies (5.1.3). 

The derivative mapping of X in the point u is given by 

(5.2.5) X' (u) 2u() + 2u 
x 

Substitution in (5.1.3) yields 

2 
Yt(u, t) + Y' (u, t) (2uux + uxx) - (2u() + 2ux + a ) Y(u, t) 0, 

V u E S1 ,V t E 1R. 

Two simple solutions of this equation are 

(5.2.6) Y(u,t) ux and Y(u,t) Z
0

(u,t) 

Note that indeed X
0 

: S 1 + S 1 and Z
0 

: S 1 x 1R + S 1. Both symmetries have 

a simple geometrical interpretation. The equation (5.2.1) is invariant for 

translations along the x-axis. If u(x,t) is a solution of (5.2.1), then 

u(x + E,t) is also a solution of (5.2.1) for all E E 1R. The difference 

between these two solutions is given by 

u(x+E,t) - u(x,t) 
2 

E ux(x,t) + O(E) for E + 0. 

This implies that X
0

(u) = ux is a solution of the linearized equation and 

hence a symmetry (see (5.1 .9)). The symmetry Z
0 

is related to the sealing 

properties of (5.2.1). It is easily seen that, if u(x,t) satisfies (5.2.1), 
2 the function au(ax,a t) also satisfies (5.2.1) for all a E JR.. By setting 

a= I+ E and taking the limit E + 0 we firid that the . difference between 

the two solutions is given by 

2 
(I+E)u((I+E)X, (I+E) t) - u(x,t) E(u(x,t) + xux(x,t) + 2 

2tut(x,t)) + O(E ). 

So Z
0

(u) =u + xux + 2t(2uux + uxx) is a solution of the linearized equation 

of (5.2 . 1) and hence a symmetry (see (5.1.9)). 

Recursion operators for symmetriesof (5.2.1) can easily be 
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found by using the relation with the linear equation (5.2.4). Suppose we 

consider the equation (5.2.4) insome linear space W. An autonomous recursion 

operator for symmetries of (5.2.4) is a linear operator A(v) : W + W, defined 

for all v E W, such that (see (5.1.6) andremark 5.1.11) 

(5. 2. 7) (A'(v) X(v)) + A(v)X'(v)- X'(v)A(v) 0 V V E w ' 

where X(v) = v and X'(v) 
XX 

satisfies this condition. 

5.2.8 Remark. 

a2 . It is easily verified that A(v) 

Symmetriesof (5.2.4) satisfy the linearized equation of (5.2.4). Since 

(5.2.4) is a linear equation, symmetries are solutions of (5.2.4). 

Suppose w(x,t) satisfies (5.2.4), then also w (x,t) satisfies (5.2.4). This 
x_ 

mapping corresponds to the recursion operator A = a. 
0 

Using the transformations (5.2.2) and (5.2.3) we can formally transfarm A 

toa recursion operator A for symmetriesof (5.2. I). By theorem 2.7.6 the 

operator A is given by 

(5. 2 ._9) 

5. 2.10 

A(u) 
+ -

f '(v)A(v)f'(u) 

-I a + aua . 

Theorem. 

(v=f(u)) 

-I 
The operator A(u) = a + aua is a recursion operator for symmetries of 

(5. 2. I). 

Proof: 

It is easily seen that A(u) : S1 + S1. We have to show that A satisfies 

(5. 1.6). Since A does notdepend on t, this becomes 
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(5. 2. I I) (A'(u)X(u)) + A(u)X'(u) - X'(u)A(u) 0 

Reeall that the derivative of A(u) in u E S 1 is a bilinear operator 

A'(u) : S1 x S
1 

+ S
1

• Inserting one fixed function A E S1 this derivative 

reduces to the linear operator 

(A' (u) A) =<lA Cl-I 

So the first term of (5.2. I I) is the linear operator 

(A' (u)X(u)) 

Using (5.2.5) the other termsof (5.2.11) can be found. Then a tedious 

computation shows that A satisfies (5.2.11). 

D 

This recursion operator for symmetries was already given by Olver [13) . 

Starting with the symmetries X
0 

and Z
0 

given in (5.2.6), we can construct 

two infinite series of symmetries 

(5. 2. I 2) k I ,2,3, ... 

As far was we know the series of symmetries Zk has not been reported before. 

The first few elements of these series are given by 

x u x' 0 

x, 2uu + u 
xx' 2x 

+ 3u2 (5.2.13) x2 3u u + 3uu + u xxx' x XX x 
zo u + xu + 2t(2uux + uxx), 

2 x 
2 

3u
2 

zl u + 2u x + x(2uux + u ) + 2t(3u ux + 3uu + + u ) . 
XX XX x XXX 

Note that x
1 

= X= ut; this symmetry is related to the invariance of (5.2.1) 

for translations along the t-axis. Some proper ties of the two series of 

symmetries are given in the following 
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5.2.14 Theorem. 

The symmetries Xk and Yk can be written as 

k 0,1,2, .... 

where rk(u,ux, ... ) and sk(u,ux, ... ) are polynomials in u and its first 

k derivatives. 

Proof: 

The recursion operator A can be written as A 
This implies 

-I k 
(l((l+u)a . Hence A 

Sork(u,ux, ... ) 

k 
aca+u) u. 

(3+u)ku. In the same way we obtain 

k 
3((l+u) xu + 2tXk+l 

k k k-1 
(xa(a+u) + ((l+u) + k(l((l+u) )u + 2tXk+l 

k k-1 
with sk(u,ux, ... ) = (Cl+u) u+ k(l((l+u) u . 

5. 2. IS Remark. 

The symmetries Xk are mappings Xk : S1 + S1 (vector fields on S1). So 

we can study the evolution equation 

k -1 
aca+u) a . 

0 

(5.2.16) k I ,2,3, .... 
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By formally applying the (derivative of) the transformation (5.2.2) we 

obtain 

f' (u)ut (u= f-<-(v)) 

k-1 
f'(u)i\ (u)X(u) 

So, using the Hopf-Cole transformation, we cantransferm (5.2.16) into 

the linear equation 

(5. 2. 17) 

Note that (with appropriate boundary conditions) (5.2.17) is a Hamiltonian 
-<- i 00 i 2 . 

system if kis even (k= 2i; Q = a, H(v) = (-1) i J-oo(a v) dx). If k ~s odd, 

say k = n+ I , then (5. 2. 17) is an equation of "diffusion type" if !1- is even 

and an equation of "anti-diffusion type" if i is odd. Similar properties 

hold for the corresponding nonlinear equations (5.2.16). Some proper ties 

of the Hamiltonian system 

are described by Broer and ten Eikelder [47] . 
Cl 

In (5.2.12) we gave two infinite series Xk and Zk of symmetries 

for the Burgers equation. We now consider the various Lie brackets between 

the elements of both series. One possible way for computing these Lie brackets 

~s to transferm to the linear equation (5.2.4) and compute the Lie brackets 

of the corresponding symmetries of (5.2.4). This me thod is possible because 

for the Burgers equation a linearizing transformation (Hopf-Cole) is known. 

However, a straightforward computation using the results of section 2 .6 

is also possible. We shall follow this second method. Reeall that the Lie · 

derivative of the recursion operator i\ is given by (see (1. 2.9) ) 
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LAJ\(u) = (/\' (u)A(u)) + 1\(u)A' (u) -A' (u)/\(u) . 

A long computation shows that 

(5.2.18) 

and that 

(5.2.19) 

5.2.20 Theorem. 

The Lie brackets between the elements of the series of symmetries Xk and 

Zk are given by 

0 ' 

(Q,+I) xk+.Q..' 

k , Q, 0, I , 2 , .... 

The Lie derivatives of the recursion operator for symmetries 1\ are 

Lx 1\ o , 
k 

k 0, I , 2, ... . 

Proof: 

It follows f r om (5.2.18) and (5.2.19) that hypothesis 2 . 6 .3 i s sati sfied 

with a= I and b = 2 . Then, for k, Q, ~ I, the theorem is a stra ightforward 

consequence of the r esults of section 2 . 6 (summari zed in (2 . 6.14)) .For 

k = 0 and /or Q, = 0 a separate proof has to be given. The necessary 

conditions, given in remark 2.6.15, are easily verified. 

D 

We conc lude this s ec tion on the Burgers equation with some 
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remarks on adjoint symmetries for (5.2.1). The function (functional) 

F(u) ~ u(x)dx 
- 00 

is a constant of the motion of (5.2.1). This function 1s differentiable, 

oF- IE U
1

• So o(u) =oF =I is an adjoint symmetry of (5.2.1). A recursion OU - OU 
operator for adjoint symmetries is given by 

r(u) 
-1 -I 

A*(u) = (a + aua )* = - a + a ua 

Since r (u)o(u) = 0 we cannot construct a series of adjoint symmetries by 

using the recursion operator r . We did not find adjoint symmetries which 

were essentially different from a. 
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5.3 A FINITE DIMENSIONAL LINEAR HAMILTONIAN SYSTEM. 

Suppose W is a finite-dimensional (real) linear space with dimension 

2n; so Wis isomorphic to m2n. The dual space of Wis denoted by W*. 

In this section we shall consider a linear Hamiltonian system on the space 

W. Some general remarks on dynamica! systems and Hamiltonian systems on a 

linear space have been madeinsection S.J. Let w be a symplectic form on 

W such that the corresponding operator ~(u) : W + W* does not depend on 

u. So 

w(A,B) <~,B> V A,B E W, 

where ~ : W + W* is a linear antisymmetrie operator. Since w is nondegenerate, 

the operator ~ is invertible. The inverse operator ~~ : W* + W is also a 

linear antisymmetrie operator. Suppose H : W + m is a homogeneous quadratic 

function. Then there exists a unique symmetrie operator H : W + W* such that 

H(u) ! < H u,u > • 

The corresponding one-form is dH(u) = H u. Then the Hamiltonian system on 

the symplectic space (W, w) with Hamiltonian H is given by 

(S. 3. I) û ~~ H u. 

With X 
+-~ 

~ H W + W, this system can also be written as 

(5 • 3 • 2) û X(u) Xu. 

In theorem 3.4.1 we described a variational principlefora Hamiltonian 

system. At first sight this theorem provides us with a variational principle 

on a neighbourhood U
0 

of some point u
0 

E M = W. However, in this case 

the manifold M is a linear space. This means the second cohomology group 

of M vanishes, so every closed two-form is exact. Hence the one-form a , 

such that w = - da , exists on the whole space M= W. It is easily seen that 

a(u) =-!~u. Then (similar to theorem 3.4.1) a solution u(t) of (5.3.1) 

is a stationary point of 
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(5.3.3) 
t2 f (!<RU,u> - !<Hu,u>) dt 

t 1 

over thesetof all curves u(t) in W with u(t 1) = u(t 1) and u(t2) = ~(t2 ). 
Note that for every initial value u(t

0
) = u

0 
E W the differential 

equation (5.3.1) has a unique solution u(t)E W which exists for all 

t E 1R 

u(t) 

In the remaining part of this section we shall first consider 

constants of the motion, (adjoint) symmetries and operators between those 

symmetries for the Hamiltonian system (5.3.1). The existence of these 

objects turns out to be related with the existence of operators - which 

satisfy the condition (5.3.5). Then we shall makesome remarks on the 

space of operators satisfying (5.3.5). Finally we show how the theory 

described in section 4.5 , can be applied in this example. 

Suppose F : W + 1R is a homogeneous quadratic function. Then 

there exists a symmetrie operator ~: W + W* such that 

(5.3.4) F(u) <~ u,u> 

The function F is a constant of the motion if L~ 

This means 

<~rt"H.u,u> 0 V u E W 

<dF, X> 0 on W. 

This condition is satisfied iff ~n+~ is an antisymmetrie operator. Since 

~ and H are symmetrie and n+ is antisymmetrie, this is equivalent to 

(5.3.5) 0. 

This condition can also be written in the following two equivalent ways 

(5.3.6) 
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and 

(5.3.7) 
+ ~ + 

r::n , Hn J 0, 

where [.,.1 is the aommutato~ of two linea~ ope~ato~s. The linear space 

of operators ::: : W + W* which satisfy (5.3.5) will be denoted by E. The 

canonical adjoint symmetry and the canonical symmetry, corresponding to 

the constant of the motion (5.3.4) are given by p(u) = dF(u) =::u and 
+ + 

Y(u) = rl dF(u) = rl ::u. The Poisson bracket of two constauts of the motion 

Fi(u) =~ <~i u,u> (i= 1,2) is easily found to be 

(5.3.8) 

<(:::1<1+::0 - ..... +-) - " - 2 - ::2" ::I u' u> 

Thus we have proved 

5 .3.9 Theorem. 

The func tion F, defined by (5. 3 .4) , with ::: a symmetrie operator, is a 

constant of the motion iff:;:;: satisfies (5 .3.5). The corresponding canonical 

(adjoint) symmetries are given by p(u) = dF(u) = :;:u and Y(u) = rl+dF(u) 

= n+:;: u. The Poisson bracket of two homogeneaus quadratic functions 

Fi (u) = ~ <::iu,u> is given by (5.3.8). It is again a homogeneaus quadratic 

function, corresponding to the symmetrie operator :: 1n+::2 :: 2n~~ 1 . 

D 

Next we study (adjoint) symmetries for (5.3.1). 

Note that for all linear operators:::: W + W*, p(u) = :;:;: u is a one-form 

on W. This one-form is an adjoint symmetry if it satisfies (5. 1.4). Fora 

one-form of this type _ this condition becomes (see also remark 5.1.12) 

~ 

(5.3.10) _ x + x*::: = o • 

~ 

Since x*= + 
Hrl, this condition is equivalent to (5.3.5). Of course, Ln this 

case ::: is not necessarily symmetrie. Suppose Y : W + W is a linear 

operator. The vector field Y(u) = Yu is a symmetry iff it satisfies (5.1.3). 

For a vector field of this type this condit ion becomes 
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(5. 3. 11) [X, Y] 0. 

~ + _ 
By setting Y= Q ~ we obtain again condition (5.3.5) for - · Adjoint symmetries 

of the form p(u) = =u and symmetries of the form Y(u) Yu n+= u we shall 

call linear (adJoint) symmetries. The manifold W is a linear space, so its 

first cohomology group vanishes. This implies (see section 5 . 1) that canonical 

and semi-canonical (adjoint) symmetries are identical. It is easily seen 

that the linear (adjoint) symmetries above are canonical iff the opera tor -

is symmetrie. The corresponding constant of the motion is then F(u) = 

! <=u,u> . Also a simple calculation shows that the Lie bracket of two 

linear symmetries Yi(u) Y. u = n+= .u (i=1,2) is the linear symmetry 
l. l. 

(5 . 3 . 12) 

Note that the first square bracket is the Lie bracket of two vec tor f ields , 

while the second square bracket is the commutator of two linear operators. 

We summarize the results concerning linear symmetries in the following 

5.3. 13 Theorem. 

The following three conditions are equiva lent: 

i) the linear operator _ W + W* satisfies (5.3.5), so _ E E, 

i i ) the one-form p (u) = _ u is a linear adjoint symmetry, 

iii) the vector field Y(u) y u= n+ = u is a linear symmetry. 

These symmetries are canonical iff ~ is a symmetrie operator. The corresponding 

constant of the motion is given by F(u) ~ < = u,u> . The Lie bracket o f two 

linear symmetries y . (u) 
l. 

(5.3.12). 

Yiu (i=1,2) is the linear symmetry Y
3 

given in 

D 

The conditions for the four possible operators between (adjoint) 

symmetrie s are also easily derived. Conside r the linear ope r a t or A: W+W 
This linear operator is a recursion operator for symmetries if it satisfies 

(5.1 .6) . Since A does notdepend on u and t, this implies 

(5.3.14) [A, X]= 0. 

This relation is also easily obtained from (5.3.11). 
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Since rt· is invertible, we can set/\= n+::_. Then the operator ::::W-+ W* 

.has to satisfy (5.3.5). The conditions for recursion operators between 

adjoint symmetries and for AS- and SA operators can be derived in a similar 

way. We summarise them in the following 

5. 3 .IS Theorem. 

Suppose ::_ : W-+ W* is a linear operator. Then the following conditions 

are equivalent: 

i) fl n+::: :W -+ W is a recursion operator for symmetries, 

ii) r :::n+ :W*-+ W* is a recursion operator for adjoint symmetries, 

iii) _ ~s an SA operator, 

iv) 'I' W* -+ W is an AS operator, 

v) _ satisfies (5.3.5), so _ E E . 

If - is antisymmetric, it is a cyclic operator and 'I' is a canonical operator. 

Proof: 

We showed already that i) and ,v) are equivalent. In a similar way it can be 

shown that each of the conditions ii), iii) and iv) is equivalent with v). 

The fact that antisymmetrie operators :;:: : (IJ -+ W* . are cyclic and antisymmetrie 

operators 'I': W* -+ Ware canonical was already explained in remark 5.1.17. 

0 

In the preceding part of this section we have discussed 

constants of the motion, (adjoint) symmetries and several operators between 

those symmetries. It is important to note that theseobjects not necessarily 

are of the considered type. For instanee there may exist non-quadratic 

constants of the motion and symmetries which are not linear. The existence 

of objects of the discussed type was always related to the existence 

of a linear operator :;:: : W-+ W*, which satisfies (5.3.5). We shall now 

make s ome remarks on the linear space E of operators :;:: satisfying this 

condition. The following theorem describes some elementary properties 

128 



of the space E. 

5.3 .16 Theorem. 

i) E is a Lie algebra; if ::: 1, 22 E E , then also 

The set of symmetrie operators ~ E E forma subalgebra of E. This 

subalgebra is isomorphic with the Lie algebra of homogeneaus quadratic 

constants of the motion. Further, if ~I and =2 are both antisymmetric, 

2.
3 

is symmetrie. If one of 2 1, 22 is symmetrie and the other is 

antisymmetric, 23 is antisymmetric. 

ii) 

iii) If _ E E, then also 2'" E E • 
[J 

It is easily seen that H E E and Q E E. So E always contains a symmetrie 

operator and an antisymmetrie operator. The fact that HE E gives rise 

to the following 

5. 3.17 Corollary. 

Suppose 21 E E. Then 22 = 
+~ 

- 1n HE E. If ::: 1 is symmetrie (antisymmetric), 

22 is antisymmetrie (symmetrie). 
[J 

Using this corollary we can construct the following series of elements of E 

(5.3.18) 

Note that the operators in this series are alternately antisymmetrie and 

symmetrie. 

Suppose 21 is an an:isymmetric element of E . If ::: 1 is 

invertible, the closed two-form w, defined by 

w(A,B) 
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+~ 

is nondegenerate. By corollary 5.3.17 ~ 2 = - 1n H is a symmetrie element of 

E . Hence H(u) = ~ < ~2u,u> is a quadratic constant of the motion. Then the 

differential equation (5.3.2) can also be considered as a Hamiltonian system 

on the symplectic space (W,w ) with Hamiltonian H: 

(5.3.19) ü 

The variational principle corresponding to this Hamiltonian form of (5.3.2) 

is easily found (see also (5.3.3)). Suppose u(t) is a salution of (5.3.2) 

(or (5.3.19). The the curve u(t) in W is a stationary point of 

(5.3.20) 

over thesetof all curves u(t) in W with u(t 1) = u(t 1), u(t 2) = u(t2). 

If ~I f.an forsome a E JR., the two ways (5.3.1) and (5.3.19) of writing the 

differential equation (5.3.2) as a Hamiltonian system are essentially 
.... ~ 

different and the system is bi-Hamiltonian. If the operator X = n H is 

invertible, we can also start with an invertible symmetrie operator 
~-I 

~2 E E. Then ~I = ~ 2 X is an antisymmetrie element of E and we can 

write the system again as (5 . 3.19). So, in the case X is invertible, any 

quadratic constant of the motion H(u) = <~2u,u>, with ~ 2 invertible, can 

be considered as Hamiltonian. The corresponding symplectic form is then 

w(A,B) < ~2 X-J A,B > V A,B E W. 

Note that if =I is an invertible symmetrie element of E, we can write 

(5.3.2) also as 

(5.3.21) û 
--1 
=J =2 u. 

In this expression =1 is symmetrie and ~ 2 is antisymmetric. 

Next we consider a basis for the Lie algebra E. Reeall ((5.3.5) 

and (5.3.6)) that:;:;: E E iff the opera tor Y = n+::. is a cormnutator of 
+~ x = n H. 
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5.3.22 Theorem. 

Suppose X Q+H is invertible.Then a basis for E consists of the same 

number (=k) of symmetrie and antisymmetrie operators. So the dimension 

of the subalgebra of symmetrie operators of E is half the dimension of 

the Lie algebra E 

Proof: 

Suppose the operators ~I' ... , ~t forma basis for E. Define the symmetrie 

and antisymmetrie partsof ~- by ~: = !(~. + ~~) and ~~ = !(~. - ~~ ). 
L L L L 1 L 1 

Then by theerem 5.3.16 iii) these (anti)symmetric operators arealso 

elements of E • Clearly any element ~ of E can be written as a linear 

combination of the 2t operators~~ (i=l, •.. ,t). We can reduce this set to 
L 

a new basis =1, ... ,=tof E, which consists only of symmetrie or anti-

symmetrie operators. Suppose =1, ... , =k are symmetrie and ~k+l' .•. , ~ t 

are antisymmetrie operators. By corollary 5.3.17 the operators =.n+H 
~ 1 

(i= I, ... , k) are antisymmetrie. Since X Q+H is invertible, these 

operators are linearly independent. Hence t - k ~ k. In a similar way we can 

show t - k ~ k. So t = 2k and the basis =i consists of k symmetrie and 

k antisymmetrie operators. 

0 

The symmetrie operators =i(i=l, ... ,k) give rise tok quadratic constants 

of the motion Fk(u) =! <=ku,u>. Every operator =i (i=l, ••• ,2k) gives rise 

to a "bilinear constant of the motion". By this we mean a bilinear function 

G: W x W->- 1R such that for every pair of solutions u(t), v(t) of (5.3.1), 

the function G(u(t), v(t)) is constant. These '~ilinear constantsof the 

motion" are given by 

(5.3.23) i • I , 2 , · ... , 2k . 

Note that Gi(u,u) = Fi(u) for i= I, .• ~,k and Gi(u,u) = 0 for i= k+l, ... ,2k. 

If all the eigenvalues of x = n+H are different, a basis for the 

space of operators which commute with X,is given by { iili=O,I, •.. ,2n-l} . 

The corresponding basis for Eis {Q~il i= 0,1, .•. ,2n-l} . So in the case 

a basis for E consists of n symmetrie operators 

(5.3.24) 
~ +~ 2 ~ +~ Zn-2 

H, H(n H) , ... , H(Q H) , 
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and of n antisymmetrie operators 

(5.3.25) 
~ +~ ~ +~ 2n-l 

Q,HQ H, ... , H(Q H) 

If X has eigenvalues which are degenerate, the dirneusion of the space of 

operators,which commute with X, is higher then 2n(2k > 2n). A basis for E 

is then more complicated then the basis given (5.3.24) and (5.3.25). 

We shall now show how the theory described in chapter 4, can 

be applied to the linear Hamiltonian system under consideration. In 

particular we shall construct an infinite series of constants of the 

motion, using the methods described insection 4.5. In theorem 4.2.11 we 

have seen that with a non-semi-canonical symmetry Z corresponds an SA 

operator L n. For a linear symmetry of the form Z(u) = n+~ u (::: E E), this 
z 

SA operator is given by 

(5.3.26) 

k 
In theorem 4.2.17 we showed that Lz is also an SA operator. In this case 

we obtain for k 2 

(5. 3. 27) 

In section 4.5 we considered the relation between the two SA operators 
2 + 

L2Q and (LzQ)Q L2 n. In that section we have assumed that hypothesis 4.5.1 

is satisfied, i.e. there exists a non-(semi-)canonical symmetry Z 'Such that 

forsome c E 1R with cf (k-1)/k, VkE f.l. 

In this case this condition becomes 

(5.3.28) 

We shall nottry to find the most general salution for =of this equation, 

However, it is easy to see that every antisynmetric operator - satisfies 

(5.3.28) with c = I . The theory, des cribed in s ec tion 5 of the pre ceding 
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chapter, leads to the following 

5.3.29 Theorem. 

+ 
Suppose Z(u) = Q =u is a non-(semi-)canonical symmetry with _ antisymmetric. 

Then the adjoint symmetries defined by 

(5.3.30) k 0,1,2 •...• 

are canonical. The corresponding constants of the motion are given by 

(5.3.31 ( ) 12< (-__ ,."+)k H Fk+l u = " u, u > 

These constants of the motion are in involution. 

Proof: 

Since _is antisymmetric, hypothesis 4.5.1 is satisfied with Z(u) = Q+= u 

and c I. The first cohomology group of W vanishes (see also section 5.1). 

So this theorem is a straightforward consequence of theorem 4.5.13. 

[J 

5.3.32 Remark. 

A straightforward proof of this theorem can be given in the following way. 
- +_ 

Define =
1 

= = and =k = ~n ~k-1" Then by theorem 5.3.16 ii) the operators 
- E E . - (-_-"+)k-l-__ d - . . . h ~k . S1.nce ~k " an · ~ l.S antl.symmetrl.c, t e operators - k are 

also antisymmetric. Then, by corollary 5.3.17, the operator =kn+~ is a 

symmetrie element of E. Hence ak+l'defined in (5.3.30), is a canonical 

adjoint symmetry. It is easily seen that the corresponding constants of the 

motion, given in (5.3.31), are in involution. 

[J 

It is important to note that the alternative proof of theorem 5.3.29 , given 

in the preceding remark, depends essentially on the fact that we consider 

a linear equation in a linear space. However, the methods described in 

chapter 4, can also be applied to a nonlinear equation on an arbitrary 

manifold. 

Theorem 5.3.29 can only be applied if a non-canonical symmetry Z(u) ,."+-
" ~ u 
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(so = E E) with = antisymmetric, is known. A simple example is given by 
+-

HQ H. Then the constants of the motion Fk are found to be 

(5.3.33) Fk+l(u) k 0, I ,2, .... 

Note that these constants of the motion correspond to the symmetrie operators 

of the series (5.3.18) and that the first n constants correspond to the 

operators given in (5.3.24). It is a simple exercise to show that 
k -k 

Fk+l(u): (-1) H(X u). Note that if u(t) is a salution of (5.3.1), then 

vk(t) = Xk u(t) is also a salution of (5.3.1). Hence Fk+l(u(t)) = (-l)k· 

H(vk(u(t))). So the constantsof the motion Fk is, up to the sign, equal 

to the Hamiltonian, evaluated for a transformed solution. 

Finally we remark that, since M = W is a finite-dimensional 

linear space, the series Fk (k = 1,2,3, ... ) given in (5.3.31) or (5.3.33) 

cannot be analytically independent (see also remark 4.5.15). For instance, 
+-

if all the e igenvalues of X = Q H are different, only the first n constants 

of the motion given in (5.3.33), are analytically independent. 
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5.4 THE WAVE EQUATION. 

In this sectien we shall discuss che Hamiltonian character, constauts 

of the motion, symmetries and operators between symmetries for the linear 

secend order wave equation 

(5. 4. I) x E 1R. 

By setting p = qt we can write this equation as 

{''. p 
' 

(5. 4. 2) 

pt qxx ' 
x E 1R. 

We shall study this equation on the linear space W = U1 x S 1(q E U1, pE S 1, 

the spaces U1 and S
1 

are introduced in sectien 1.3). Suppose we take initial 

values q(.,O) = q
0
(.) E U1 and p(.,O) = p

0
(.) E S1. The corresponding 

solution q(.,t), p(.,t) of (5.4.2) can be obtained with elementary methods. 

It is easily verified that this solution is an element of W for all t ~ 0. 

On S1 we take the topology induced by U1 and the duality map 

00 

f a 1 (x)A 1 (x) dx for a 1 E U I, A I E SI. 
--oo 

The dual space of W.is W* = S1 x U1. Note that Wis reflexive W** W. 
The duality map between W and W* is given by 

(5. 4. 3) <a,A> 

The exterior derivative of a differentiable function (functional) 

F : W _,. 1R is given by 

dF = (l~) EW' 

where ~! E S 1 and ~ E U1 are the variatierral derivatives (gradients) of F. 
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We shall now describe the (well-known) Hamiltonian structure of 

(5.4.2). On W we introduce the standard symplectic form 

00 

(5.4.4) w(A, B) <Sl4, B> = f (A
1 
B
2 

- A
2

B1) dx 

So the corresponding operator Q w ~ w* can be represented by 

(5.4.5) Q =(~ . -~J . 
It is clear that Q is invertible, the inverse operator Q+ w* ~ w is given by 

(5.4.6) ~) . 

Define the function H on W by 

(5.4.7) 'f"" 2 2 H(q,p) = ; (qx + p ) dx 

Then the evolution equations (5.4.2) can be written as a Hamiltonian system 

on W with symplectic form w and Hamiltonian H 

(5.4.8) 

Constants of the motion, symmetries and operators between 

symmetries for the infinite-dimensional linear Hamiltonian system (5.4.8) 

are easily found. In sectien 5.3 we stuclied (quadratic) constants of the 

motion, (linear) symme tries and operators between symmetries for a finite­

dimensional linear Hamiltonian system. Therefore the following considerations 

will show a strong resemblance with those in sectien 5.3. We shall also 

derive two series of symmetries for (5.4.8) which contain t explicitly. 

Define the operators H and X by 

w ~ w. 

Denote the vector field,given in the right hand side of (5.4.8) by X, so 

(5.4 . 9) 
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Similar to the theorems 5.3.9, 5.3.13 and 5.3.15 we can prove the following 

5.4.10 Theorem. 

Suppose _ W + W* is a linear operator which satisfies 

(5 .4. 11) 0. 

Th en 

i) If _ is a symmetrie operator the function 

(5.4.12) F(q,p) 

is a constant of the motion of (5.4.8). 

ii) An adjoint symmetry a and a symmetry Y for (5.4.8) are given by 

(5.4.13) 

These symmetries are canonical if _ is symmetrie, the corresponding 

constant of the motionFis given in (5.4.12). 

iii) ~ is an SA operator, r 3Q~ is a recursion operator for adjoint 

symmetries and A = Q~3 is a recursion operator for symmetries of 

(5.4.8). 

The following two series of linear operators _ 

(5.4 . 11) are easily found 

(5 .4 . 14) -j 
(-a:+2 :jl -j ( :j 

W + W* which satisfy 

-:jl· 0, I, 2, ... 

D 

Note that :he operators ~2k and ::2k+l are symmetrie while the operators 

32k+l and 32k are antisymmetrie (k = 0,1,2, •.. ). To simplify the notatien 
k k A 

we set q,k = a q and p,k .= a p. The symmetrie operators ::2k and ::2k+l 

give rise to the following two series of constants of the motion in involution 

(5.4.15) Fk(q,p) ~(-l)k <3 !ql lql> 2k p , p 
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(5.4.I6) k 0, I ,2, .••. 

Note that F 
0 

H. With every operator given in (5.4.I4) corresponds an adjoint 

symmetry and a symmetry 

(5.4.I7) p. = ~·(q] =l-q'j+2) + ( p'. ) x. n p. 
q, j~2 J J p p,j J J 

(5.4.I8) ~j r~l (-p, j) + = ( q, j l a. Y. na . 0, I, 2, ... . 
J q,j J J p,j 

The (adjoint) symmetries x2 j(p 2 j) and Y2j+I(a2j+I) are canonical: 

(5.4.19) 
j + 

(-I) n dG . . 
J 

It is a simple exercise to show that X2j+I(p2j+1) and Y2j(a2j) are non­

canonical. The various Lie brackets between the elements of both series of 

symmetries X. and Y . can be found in the same way as in sectien 5.3 (theorem 
J J 

5.3.I3). It turns out that 

(5.4.20) 0 ' k,t 0, I, 2, .... 

By theorem 5.4.IO iii) the operators =·• =., given in (5.4.14), provide us 
J J 

with the following recursion operators for adjoint symmetries 

(5.4.2I) 

Note that every recursion operator of these two series can be written as a 

product of powersof f
0 

and ri. It ~s easily seen that 

ripj pj+I, r 1oj o j+J, 
(5.4.22) 

r P . a j+2' r a. = pj 
0 J 0 J 

Together with (5 .4. 19) this implies 
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(5.4.23) dFj+l dGj+l 

So the two series of canonical adjoint symmetries can be constructed from 
~2 

dF
0 

and dG
0 

using the recursion operator r
1

. 

For the system (5 . 4 . 8) ' there also exist symmetries and 

recursion operators for symmetries which contain t explicitly. Suppose 

~.~ : W + W* are two linear operators (independent of t). Then we can look 

for an adjoint symmetry of the form 

(5.4 . 24) 

It follows from (5.1 . 4) that T is an adjoint symmetry if 

This implies 

(5.4.25) 0 

and 

(5.4.26) 0 . 

The condition (5.4.25) is the s ame as (5.4.11). So operators~: W + w~ 

which satisfy this condition, are g:lven in (5.4.14). It is a simple exercise 

to verify that operators ~j' ~j such that =j' ~j and =j' ~j satisfy (5.4.26) 

are given by 

(5.4.27) ~ . 
J 

Thus we constructed two series of (adjoint) symmetries for (5.4.2) which 

depend explicitly on x and t. 

T. = (~ . + t~.) !ql 
J J J p (

- p,. - xp,. +ll 
= J J + 

xq, j +l 

t(-q, j+2) 

p, j 

(5.4.28) 

z. 
J 

+ 
Q T . 

J l xq, · 1 ) 
p,j + ~;'j + l + [ 

p) . ) 

t q, j~Z j ~ 0 , 
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and 

1-l· 
J 

(c!J. 
J 

(5.4.29) 

+ t~j) l~l ( -q' j - xq ' j + I ) 
xp, j-1 

+ t(-p'j) 
q,j 

+ r xp •. I J t (q, j) u. Q 1-l· 
q, j + ~~. j+l 

+ ;:: I . 
J J p' j 

It can be verified that these (adjoint) symmetries are non-canonical (except z ). 
0 

The symmetry Z
0 

can be written as 

xq + tp ) 
+ x; + tq 

X XX 

This symmetry is related to the sealing properties of (5.4.2). ·suppose 

(q(x,t), p(x,t)) is a solution of (5.4.2), then (q(ax,at), a p (ax,at)) is 

also a salution of (5.4.2) for all a E 7R. Set a= I+ E: and considei: the 

difference between these two solutions for E:+ 0. We obtain a salution of 

the (linearized) equation which corresponds to the symmetry Z
0

• 

The Lie brackets between the elements of the series of 

symmetries (5.4.17), (5.4.18), (5.4.28) and (5.4.29) are given by 

[Zk,ZQ.] (k-.I'.)Zk+.l'.' [Uk,U.I'.] (.1'.-k)Zk+.l'.-2 

[Zk,U.I'.] (.1'.-k-1) uk+.l'. 

(5.4.30) 

[Zk,X.I'.] (.1'.+1)Xk+i' [Uk,X.I'.] (.1'.+1)Yk+.l'. 

5.4.31 Remark. 

It is also possible to consider (5.4.1) as a Hamiltonian s ystem on W with 

Hamiltonian H = G
0 

= f "'pqxdx and symplectic two-form 
- co 

w(A,B) = <nA,B> 
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Note that indeed w is nondegenerate on W W + W* 
~ ... 

and n : W* + W are given by 

(-~-1 ~) . 

Then the differential equations (5.4.2) can also be written as 

(5.4.32) 
( 

-I -a 
0 

So the system (5.4.2) can be written as a Hamiltonian system in two ways; 

it is a bi-Hamiltonian system. 

5.4.33 Remark. 

It will be clear that constauts of the motion, symmetries and operators 

between symmetries for the system (5.4.8) can relatively easy be found. 

The reason for this is that (5.4.8) is a very simple linear Hamiltonian 

system. In fact we can easily derive more properties of the type discussed 

in this section. For instance, using the solutions for (5.4. 25) and (5.4.26) 

we can also find recursion operators for (adjoint) s ymmetries which depend 

explicitly on t. The non-semi-canonical symmetries x2j+l and z2j. can be 

used if we want to construct infinite series of constauts of the motion, 

using the method described in section 4.5. We then obtain again the series 

Fk and Gk. 

Cl 
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5.5 A HAMILTONIAN SYSTEM WITH A LINEARIZING TRANSFORMATION. 

The concept "completely integrable Hamiltonian system" is well defined 

for a Hamiltonian system in a finite-dimensional phase space (see section 

3 . 6). Reeall that fora finite-dimensional Hamiltonian system with 

canonical coordinates q 1, ... qn' p 1, ..• pn' the existence of n analytically 

independent constauts of the motion in involution implies complete 

integrability (theorem 3.6.2). In that case we can perfarm a transformation 

to action angle variables and the differential equations can easily be 

solved. 

For an infinite-dimensional Hamiltonian system the situation 

is much more complicated. There exist infinite-dimensional Hamiltonian 

systems which posses an infinite series of constauts of the motion in 

involution. In recent years the so called "inverse scattering methods" 

have become enormously popula r for solving certain types of nonlinear 

evolution equations. The Hamiltonian systems, solvable by this method, 

turn out to have an infinite series of constauts of the motion in 

involution. Sametimes (always?) an "inverse scattering method" can be 

considered as a transformation to variables of "action angle type". A famous 

example i s the introduetion of action angle variables for the Korteweg-

de Vries equation by Zakharov and Faddeev [24] . However, if for an infinite­

dimensional Hamiltonian system there exists an infinite series of constants 

of the motion, the problem of finding the salution for arbitrary init~al 

values (for instanee by "inverse scattering") is still unsolved. So a 

generalization of theerem 3.6.2 to infinite-dimensional Hamiltonian systems 

is not straightforward. 

Ne xt consider an infinite-dimensional (nonlinear) Hamiltonian 

system for which there exists a (global) invertible transformation to a 

linear Hamiltonian system. The (forma!) solution of the linear Hamiltonian 

system can always be given. Constants of the motion, (adjoint) symmetries 

and operators be tween (adjoint) symmetries can also easily be found. Then, 

by using the transformation which relates the linear and nonlinear system, 

we can find the solution, constants of the motion, (adjo int) symmetries and 

operators between (adjoint) symmetries for the nonlinear Hamiltonian system 

(see sections 2.7 and 3.7). It will be clear that, independent of the 

corr ect way to generali ze the concept " completely integrable " for an 

infinite-dimensional system, an infinite- dimensional Hamiltonian system, 
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for which there exists a glob~l invertible transformation to a linear 

Hamiltonian system must be "completely integrable". In the remaining part 

of this sectien we give an example of such a system. 

Consider the following system of partial differential equations 

{"' 
- u + 2uv, 

x 
(5. 5. I) 

vt V - 2uv, x E 7R , 
x 

wi th in i ti al va lues 

{ u(x,o) u
0

(x), 

(5.5.2) 

v(x,o) v (x). 
0 

We shall consider (5.5.1) on the space Z = S 1 x S1. On each space S
1 

we take the topology induced by the space U1 and the duality map given 

in (1.3.13) (see theerem 1.3.14). The dual space of Z is then Z* = U1 x U1 
and the duality map between Z and Z* is given by 

00 

<o. ,A> f (o. 1(x)A 1(x) + a 2(x)A2(x))dx, 
-oo 

Cl.= (:~)EZ*, A I~~) E z 

The system (5.5.1) can be used to study some cases of wave-wave interaction 

in plasma physics. In population dynamics it can be used to describe the 

growth/decay of two conflicting populations, which meet each ether with 

veloeities 

satisfy 

(5.5.3) 

and -1. In both applications the initia l values u
0 

and v
0 

VxE7R.. 

An exact solution of (5.5.1) has been given by Hasimoto [53] . It is 

obtained by the following linearizing transformation 
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(5.5.4) 
( 

.!_ (p-q )) 2q x 
-1 ' 
2q (p+qx) 

(5.5.5) ( 
e-a-

1 ~~+v) ) 

( ) 
-d (u+v) 

u-v e 

It is a simple calculation to show that q and p satisfy the following 

linear evolution equations 

p, 
(5.5.6) 

The initial values q
0 

and p
0 

for (5.5.6) are found by transforming u
0 

and 

v
0 

by (5.5.5). This implies q
0

(x) ~ 0 for all x E ~.Sa for every pair 

of initial values u
0 

and v
0 

for (5.5.1) there exists a t
0 

> 0 such that 

the corresponding q(x,t) > 0 for x E ~ and tE [O,t
0
). Hence the trans­

formation (5.5.4) is regular fortE [O,t
0
). Thus we obtain a salution 

(u(x,t),v(x,t)) EZ fort E [O,t
0

) (local existence). If the initial 

values u
0 

and v
0 

satisfy (5.5.3), it can be shown that q(x,t) > 0 for x E ~ 

and t ~ 0. In that case the transformation (5.5.4) is regular for all 

t ~ 0 and we obtain a salution (u(x,t),v(x,t)) EZ for all t ~ 0 (global 

existence). 

5.5.7 Remark. 

In sectien 5.4 we studied the system (5.5.6) on the space W = U
1 

x S
1. It 

will be clear from (5.5.5) that p E S1 but q ~ U1 (for u,v E S1). Also the 

transformation (5.5.4) does nat yield regular functions u and v for an 

arbitrary q E U1. Sa we cannot consider f and f+- as mappings f: U
1 

x S
1 

+ Z 

with inverse f+-: Z + U
1 

x S
1

• The most elegant salution of this problem 

is obtained in the following way. Define the set of functions 

v
1 

eU 1 = {qlq(x) = es(x) with sE U
1
} · and consider (5.5.6) on V

1 
x S

1
. 

It is easily seen that f: V1 x S
1

+ Zand f 
+-

Z + V 1 x S 1 are correctly 

defined mappings which are each others inverse. Note that V
1 

is not a linear 

144 



space but an infinite-dimensional manifold. We shall not work out this 

relative complicated situation further and leave the function spaces for 

(5.5.6) unspecified. 

D 

We now indicate how thè Hamiltonian structure for (5.5.1) can 

be obtained from the Hamiltonian structure of (5.5.6), which was explained 

in the preceding section. A symplectic form w with corresponding operators 

S1 and !1+- and a Hamiltonian for (5.5.6) were given in (5."4.4), (5.4.5), 

(5.4.6) and (5.4.7). Insection 3.7 we explained the transformation 

properties of these objects. We 

n+- f'S1+-f'*. The derivative of 

only compute the transformed operator 

f in the point ~~ is the linear operator 

(5.5.8) f' 1~1 = 

-I 
e() (u+v) ( -u-~a !) 

- v - !a -! 

In the right hand side we already replaced q and p by the new variables u 

and v. The dual operator is given by 

(5.5.9) 
-V + !<J) 

-! 

The transformed operator n+- is then given by 

(5.5.10) 

-I a (u+v) 
e 

U + V 

U + V + 

It can be verified that this is a canonical operator (operator field), as 

expected from theorem 3.7. I. The Hamiltonian for (5.5.6), given in (5.4.7), 

is transformed into 

(5. 5. 11) H(u,v) 

Th en 

-I 
roe-2() (u+v) 2 2 J (u +v ) dx 

--oo 

( 

-I 
2ue-2a (u+v) + 2a- l((u2 

- I 
2ve-2() (u+v) 

and the system (5.5.1) can be written in the Hamiltonian form 
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(5.5.12) 

Constauts of the motion for this Hamiltonian system are found by transforming 

the series Fk and Gk, given in (5.4.15) and (~.4.16)~ Since the series Fk and 

Gk are in involution, the transformed series Fk and Gk are also in involution 

(see corollary 3.7.7). The first few constauts of the motion for (5.5.1) 

(or (5.5.12)) are given by 

F
0

(u,v) = H(u,v) 

(5.5.13) 

~e-23-1(u+v)(v2- u2)dx 
-<X> 

Symmetriesof (5.5.1) can be obtained by transforming symmetriesof (5.5.6) 

as described in theorem 2.7.5. For instance, the symmetry Y2, given in 

(5.4.18), transfarms into 

2(u+v)ux + uxx I 
2(u+v)vx + vxx 

and the symmetry Z
0

, given in (5.4.28), transfarms into 

- (u Z = f'Z = 
0 0 

V 

+ xu 
x 

+ XV 
x 

+ t(2uv - u)) • 

+ t(-2uv+ v) 

The symmetry Z
0 

has been related to the scale transformation for (5.5.6). 

It is easily seen that Z
0 

is related to the scale transformation for (5.5.1). 

Finally we given the SA operator ~ 2 • obtained by transforming 

the SA operator ~ 2 given in (5 .4. 14) 

::.2 = f 
+'* ...... +' 

~2f 
= r: ~ :: À- K*) 

À- À* 
Z ->- Z* , 

146 



where the operators K and À are given by 

By combining ~ 2 and n+ we obtain a recursion operator for adjoint symmetries 

of (5.5.1) 

r Z* + Z* . 

This recursion operator can also be obtained by transforming the corresponding 

recursion operator for adjoint symmetriesof (5.5.6), given in (5.4.21) 

Then, by transforming (5.4.23), we obtain 

(5.5.14) 

5. 5. IS Remark. 

The justification of (5.5.14) is obtained from the corresponding formula 

(5.4.23) for the linear Hamiltonian system (5.5.6). However, if we want 

to investigate whether some nonlinear Hamiltonian system has an infinite 

series of. constauts of the motion, looking for an invert ible transformation 

to a linear Hamiltonian system will be an impossible task. If, for instanee 

by trial and error, a non-eauanical symmetry Z and I or the corresponding 
. . + 

recurs~on operator (L2n)n are found, we can generate an infinite series 

of adj oint symmetries (starting with "dH"). Then we would like to prove 

that these adjoint symmetries are canonical. A possible methad for doing 

this was explained in section 4.5. This methad can be applied if the non­

(semi-) eauanical symmetry satisfi~s hypothesis 4.5.1. It . eau be shown 

that the non-canonical symmetry z2 = f' Z2 indeed satisfies this hypothesis. 

IJ 
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5.6 THE KORTEWEG-DE VRIES EQUATION. 

During the last decennium the Korteweg-de Vries (KdV) equation has become 

one of the most discussed equations of mathematica! physics .. The equation 

was derived by Korteweg and de Vries in 1894 [6,7] for descrihing long 

water waves in one direction in a canal. Korteweg and de Vries described 

periadie solutions (cnoidal waves) and solitary wave solutions of the 

equation. Solitary waves were already reported by Scott Russell [26] in 

his famous ride along a channel. Ris report is quoted in many books on 

solitons, see for instanee Bullough and Caudrey [27] . For a long time the 

Korteweg-de Vries (KdV) equation gained only limited attention in hydro­

dynamics. Interest in the equation increased enormously in the sixties. 

In 1965 Zabusky and Kruskal [28] obtained numerical evidence for the 

remarkable result that two solitary waves, after their interaction, 

assume again their original shape. Gardner, Greene, Kruskal and Miura [19] 

showed in 1967 how the initia! value problem for the KdV equation on the 

real line, with fastly decaying initia! value for lxl + 00 , could be solved. 

The metbod they used has become known as "inverse scattering". In 1968 

Lax [29] found an infinite series of "higher order KdV equations", which 

all can be solved by this method. These higher order KdV equations are 

directly related with the infinite series of constauts of the motion of 

the KdV equation, found by Miura, Gardner and Kruskal [30] in the same year. 

The Hamiltonian character of the KdV equation was pointed out by Gardner [IJ] 

and Broer [JO] . After this numerous other papers on the KdV and related 

equations appeared. We mention only the workof Wahlquist andEstabrook 

on prolongation structures [31] and the paper of Zakharov and Faddeev [24] , 

in which they show that the KdV equation can be considered as an infinite­

dimensional completely integrable Hamiltonian system. The KdV equation 

has also been derived in several different physical situations, see for 

instanee Whitham [32] or Su and Gardner [33] . 

Of course we shall not give many new results on the KdV 

equation. In this section we consider symmetries of the KdV equation. 

Besides the well-known series of symmetries which correspond to the higher 

order KdV equations, we shall describe another infinite series of symmetries. 

These symmetries depend explicitly on x and t. They are well suited to 

illustrate the theory described in chapter 4. Using this second series of 
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symmetries we describe several methods for constructing the constauts of 

the motion. One of these methods is a very simple recursion formula for the 

constauts of the motion themselves (i.e. not for their gradients (= adjoint 

symmetries) or corresponding symmetries) . We also show that every constant 

of the motion of the infinite series can be considered as a Hami ltonian for 

the KdV equation. The corresponding (weak) symplectic forms are explicitly 

given. Then we make some remarks on the symmetries which appear in the 

inverse scattering method. We end this sectien with some remarks on the 

higher order KdV equations. 

In this sectien we consider the KdV equation in the form 

(5. 6. 1) X(u) 6uu - u x E 1R • 
X XXX 

Various ether forms of the equation can easily be transformed to (5.6.1). 

We shall study (5.6.1) inthespace s2, provided with the topology induced 

by u2 and the duality map ( see theerem 1.3.14) 

<a, A> j et(x)A(x) dx 

We now describe the Hamiltonian ferm of the KdV equation. Define the two­

form w on s2 by 

(S. 6. 2) w(A,B) 
-1 

<<l A,B> 

-] 
No te that () :S

2 
+ u

2 
is antisymmetric, so w is correctly defined. The 

corresponding operators are 

(5.6.3) 

(5.6.4) 

It is clear (see remark S.J. 17) that nis a cyclic operator,Q+ a canonical 

opera tor and w a symplectic form. Define the function (functional) 

H : S 2 + 1R by 

(5.6.5) H(u) 
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The exterior derivative (= variational derivative) is given by 

dH(u) oH( ) = Ju2 _ ruu u 
XX 

Then the KdV equation is a Hamiltonian system on S2 with Hamiltonian H 

and symplectic farm w 

(5.6.6) 

Clearly the Hamiltonian H is a constant of the motion. Several other constants 

of the motion are easily found 

(5.6.7) 

G(u,t) = ~(xu + 3tu2)dx, 
-oo 

F I (u) J00
udx , F2 (u) = J00 

u
2
dx, 

--oo 

H (u), =~ (u4 
+ 2uu2 

+ 
1 u2 )dx 

X S XX • 

In 1968 Miura found a relation between the KdV and the so called Modified 

Korteweg-de Vries (MKdV) equation. 

(5.6.8) - V 
XXX 

x E 1R • 

It is easily verified that for every salution v of (5.6.8) the f unction 

(5.6.9) u = f (v) 
2 

= V + V 
x 

is a salution of (5.6.1). This transformation has become known as Miura 

transformation. Using a modified version of the transformation Miura, 

Gardner and Kruskal [30] proved in 1968 that the KdV equation (and also 

the MKdV equation) has an infinite series of constants of the motion Fk. 

5.6 .10 Remark. 

The MKdV equation can also formally be written as a Hamiltonian system on 
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some space W of smooth functions, which vanish, tagether with their 

derivatives, fast enough for lxl + 00 • Using the canonical operator a and 

the Hamiltonian K(v) = ! ~(v4+!v2 )dx we can write the MKdV equation as x 
-<Xl 

(5 .6. IJ) vt =a êK(v) = aczv3 - v ). 
Ov XX 

c 

Symmetries Y(u,t) and adjoint symmetries a(u,t) of the KdV equation have 

to satisfy the conditions (5.1.3) and (5.1.4). Using 

X' (u) 

these conditions become 

(5.6.12) 

(5.6.13) 

Yt(u,t) + Y'(u,t)(6uux- u ) - (6au- a
3

) Y(u,t) 
XXX 

3 . 
at(u,t) + a'(u,t)(6uux- uxxx) + (-6ua +a )a(u,t) 

Def~ne the antisymmetrie operator (operator field) o/(u) by 

(5.6.14) 3 o/(u) = 2ua + zau - a 

0, 

o. 

It was observed by Magri [5] that the KdV equation can also be written as 

(5.6.15) X(u) 
ê 

o/(u) êu 
3 !F2 (u) = (2ua + Zau - a ) u. 

It is easily verified that o/(u) satisfies (5.1.16), soit is a canonical 

operator. Note that (5.6.15) resembles very much a Hamiltonian system with 

Hamiltonian !F2 and canonical operator~ • The fact that we did not prove 

that o/ is invertible, prevents us from saying it is a Hamiltonian system. 

From the two possible ways of writing the KdV equation (5.6.6) and (5.6.15) 

we can obtain some interesting results. 
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5.6. 16 Theorem. 

Consider the operators ~ : S
2 

7 U
2

, n+ u
2 

7 S2 and ~ : U
2 

7 S
2 

as given 

in (5.6.3), (5.6.4) and (5.6.14). Then ~ and~+are AS operators and ~is an 

SA operator (for the KdV equation). 

Proof: 

The Hamiltonian form (5.6.6) of the KdV equation implies (theorem 4.2.5) 

that ~ is an SA- and ~+ is an AS operator. The "semi-Hamiltonian form" 

(5.6. 15) suggests that ~ is also an AS operator. Indeed, even if ~ is nat 

invertible, we obtain from lennna 4.2.1 (with a = !dF2) that LX~ = 0 

Since ~ does not depend explicitly on t this means that ~ is also an 

AS operator. 

D 

5. 6. 17 Corollary. 

i ) <!> = ~~~ -1 2ua - 1 
= 2él u + Cl: S2 + U2 is an SA operator, 

i i ) A= ~~ 2u + 

iii) r= ~~ A* 

2CluCl- 1 

-I 
2él ua + 

a2 

2u 

s2 7 s2 is a recursion operator for synnnetries, 

- a2 u2 + u2 is a recursion operator for 

adjoint synnnetries. 

D 

The r ecursion operator for symmetries A is well-known. It seems first to 

be found by Lenard. Several other authors use this operator or derive it 

again, see for instanee Olver [13] , Wadati [14] , Magri [5] , Calogero and 

Degasperis [34] or Gel'fand and Dikii [35]. Using the recursion operators 

A and r two infinite series of (adjoint) symme tries are easily construc ted. 

We start with two synnnetries, which are re la ted to the invariance of 

solutions of (5.6.1) for translations along the x-axis and fora scale 

transformation. Suppose u(x,t) is a salution of (5.6.1~ Then it is easily 

seen that u(x+E,t) and a 2u(ax,a3t) arealso solutions of (5.6.1). By taking 
2 3 the limit for € 7 0 of u(x+E,t) - u(x,t) and of a u(ax,a t) - u(x,t) (with 

a = I+E) we obtain the following two solutions of the linearized KdV 

equation (lineari zation around u(x,t)) 

(5.6.18) X (u) 
0 

u 
x 
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(5.6.19) 

It is easily verified that X
0 

and Z
0 

satisfy (5.6.12) and that X
0

(u,t), 

Z
0 

(u, t) E S2 for all u E S
2

, t E 1R. So indeed we have two symmetries; 

X
0

,Z
0 

E V(X; S2). The factor ! in (5.6. 19) may look strange, but turns out 

to be convenient in the sequel. The corresponding adjoint symmetries are 

llX 
0 u, 'o ll z 

0 

Note that indeed p
0

(u,t), T
0

(u,t) E U2• Using the recursion operators A 

and r we now obtain the following 

5.6.20 Theorem. 

Two infinite series of symmetries for the KdV equation are given by 

The corresponding adjoint symmetries are given by 

llXk 

IJ 

The first few elements of the series Xk and pk are 

XI x 6uu - u 
xxx' x 

PI 
a- 1x = 3u

2 óF
3 - u 
~· 1 XX 

(5.6.21) 
Xz 30u2u - 20u u - !Ouu + u 

x X XX XXX xxxxx' 

a- 1x !Ou3 - 5u 2 IOuu 
5 ÓF4 

Pz - + u 
= ïTu 2 x XX xxxx 

The first elements of the series Zk and Tk are 
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zl 2u 
2 I -I 3 I 3 

tX
2 

+ 2 u a u - u + 2 xuux - - xu + -
x XX 4 XXX 4 

2u 2 +.!.u -I + .!. xX 3 
tX

2
, a u - u +-

2 x XX 4 I 4 

(5.6.22) 
3 -1 2 I -1 3 3 2 I 3 4 a (u ) + 2 ui) u - 4 ux + 4 xu - 4 xuxx + 4 tp2 

So these series of symmetries and adjoint symmetries depend explicitly 

on x and t. 

5.6.23 Remark. 

It is easily shown that the general form of Zk and Tk' as suggested by 

( 5 . 6 • I 9) and ( 5 . 6 . 2 2) , is 

Zk(u,t) 

Tk (u, t) 

where fk and gk are functions which can be constructed using u, its 

derivatives and the operator a-l. (So fk and gk may not contain x explicitly; 

a translation of u(x) along the x-axis must correspond to the same 

translation of (fk(u))(x)and (~(u))(x) along the x-axis). 

D 

The "variational derivatives" of the constauts of the motion F
1 

and Gare 

(5.6.24) I, x + 6tu. 

Both derivatives are not elements of U
2

, which means that, stric tly speaking , 

F
1 

and Gare not differentiable (in the choosen topology). The local 

conservation law corresponding to F
1 

is 
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(5.6.25) 

co 

Because f (3u2 - u )dx = 3F2 , the flux of u in the local conservation 
-<X> XX 

law (5.6.25) is again a conserved quantity. Broer [25] has shown that, 

using this conserved flux property, a new constant of the motion can 

be constructed. This turns out to be G. In [25] the Poisson brackets 

between G and the series Fk are also given 

(5.6.26) {Fk,G} = k Fk-l. 

I oFI I 
If we set p = ---- =- and T -1 2 ou 2 -1 

I oG I 3 S6ü = B x+ 4 tuthen we can verify 

that p_ 1 and T_ 1 satisfy (5.6.13) and that 

(5.6.27) fT_]. 

The series of symmetries Xk is well-known, see for instanee Lax [29] 

Olver [13] , Magri [5] or Wadati [14] • The equations ut= Xk(u) are 

called higher order Korteweg-de Vries equations. The symmetries Xk are 
oFk+2 

canonical and correspond to the constants of the motion Fk by Xk = aka ~ 

(~ER). This means that the higher order KdV equations arealso Hamiltonian 

systems. These results were first found by Gardner. In the sequel we shall 

also prove that the symmetries Xk are canonical. The series of s·ymmetries Zk' 

although easily found, has attracted much less attention. As far as we know, 

it is only reported by Olver [36] . This series is well suited to illustrate 

the theory, described in the sections 4.5 and 4.6, which we shall do now. 

We first study the SA operators which correspond by the theorems 

4.2.11 and 4.2.17 to the (adjoint) symmetries Z
0 

and z1 ( T
0 

and T
1
). 

Reeall that an arbitrary symmetry Z = !"{T gives rise to an SA operator 

(theorem 4.2.11) 

T
1 

- T
1 * 

T ' = .!_ "-1 I 3 2 •* Using 
0 4 o + 7j x + t;t(6u - 3 ) and T

0 

we obtain 
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Lz n = ~a-1 ~n . 
0 

So we find again the already known SA operator Q. This is not surprising 

since the symmetry Z
0 

corresponds to the scale properties of KdV. The 

symmetry z1 leads toa more interesting result. The derivative of T1 and 

its dual operator are 

3 -1 1 -1 1 -1 _la 3 1 2 3 , 
T; 2 a u + 2(() u) + 2 u(l 4 + 2 xu - 4 xa + 4 tp2 , 

3 · -1 I -1 I -1 3 3 I 2 3 
T;*= - 2 a u + 2(a u) - 2 a u + 4 a + 2 xu - 4 a X + 4 tpz*• 

Since o
2 

is canonical (p 2 
5 oF2 
2 ~),we have o; n'* "2 . 

Hence 

(5.6.28) L
2 

Q = 2<J- 1u + 2ua-l - a 
I 

<!> • 

So we find the already known SA operator <!> • Because of the normalization 

factor in (5.6.19) the multiplicative constant in (5.6.28) is equal to I. 

We can compute again the Lie derivative (theorem 4.2.17) and obtain the 

SA operator 

(5.6.29) 

- 6au - 6ua + l a5 
2 

- 3u a -I 
XX 

This means that z1 satisfies hypothesis 4.5.1 with c = ~ This hypothesis 

was essential for the theory described in the sections 4.5 and 4.6. As a 

first result we obtain from theorem 4.5.5 the following 

156 



5.6.30 Theorem. 

The SA operators corresponding to the symmetries Zk are given by 

5.6.31 

L
2 

n = !<k+l)rkn = !<k+l)nAk 
k 

Corollary. 

k 0, I ,2, •.. 

The (adjoint) symmetries Zk(Tk) are non-canonical for k ~ 0. 

Proof: 

It is easily seen that rk # 0 for k ~ 0. So, by the preceding theorem, 

L
2 

n # 0. Then, using lemma 4.2.3 we see that Zk cannot be canonical. 
k 

5.6.32 Corollary. 

k k The SA operators f n = nA are cyclic. 

Proof: 

The SA operator L
2 

nis cyclic (theorem 4.2.11). 
k 

[J 

[J 

[J 

An infinite series of constants of the motion Fk for the KdV equation is 

now easily constructed. (We use Fk in stead of Fk since the normalization 

is different; the coefficient of uk in Fk is assumed to be 1). 

5.6.33 Theorem. 

The (adjoint) symmetries Xk(pk) are canonical. The corresponding constants 

of the motion Fk' defined by 

k 0, I ,2, ..• 

are in involution, F3 H. 
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Proof: 
3 15 .,_ oF4 

From (5.6.22) and (5.6.21) we obtain that z1t = 4 x2 :S ~ ~, so Z1t 

is a canonical symmetry. For k ~I the theorem now follows from theorem 4.5.13. 

The case k = 0 (so F2) has to be considered separately. A simple calculation 

shows that F
2 

= ~ ~u 2dx is a constant of the motion. The Poisson bracket 
-oo 

vanishes since r = ~~. and ~ and ~ are antisymmetric. So the whole series 

Fk (k = 2,3, ... ) is in involution. 

0 

5.6.34 Remark. 

The reason that we have to consider F2 separately is that in theorem 

4.5.13 we constructed a series of constauts of the motion, starting with 

the Hamiltonian H = F3 . In this case there also exists a constant of the 

motion F2 "below" the Hamiltonian. We can also consider F1 = ~F 1 H"' udx 

as the first element of the series Fk. However, formally F1 is not 

differentiable. If we still compute the corresponding symmetry we obtain 

0 • 

This would imply that the Poisson bracket of F1 
function vanishes. 

~F 1 with every other 

The coefficient of uk in Fk is found to be ~~~~=~;: 
So if we set 

for k > I 

0 

we obtain a series of constauts of the motion such that the coefficient 
k 

of u in Fk is equal to I. 

Next we consider the various possible Lie brackets. 
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5.6.35 Theorem. 

The Lie brackets in and between the elements of the series Xk and Zk for 

k, ~ ~ 0 are given by 

0, 

Proof: 

It is easily verified that [Z 1,X 1] =i x2 • Then for k,~ ~ the theorem 

follows from theorem 4.6.6 (with b =i). For k = 0 or ~ 0 the proof 

is also easily given, see remark 2.6.15. 

D 

Of course the fact that the symmetries of the series Xk commute follows 

also from the fact that the corresponding constants of the motion Fk+2 
are in involution. 

We now have described two methods for constructing the constauts 

of the motion Fk (or Fk). First we used a recursion operator for (adjoint) 

symmetries A(f), viz. the construction described in the theorems 5.6.20 

and 5.6.33. The second method consisted in generating the canonical symmetries 

Xk by using the Lie bracket with 1• see theorem 5.6.35. However, the most 

simple method for constructing the infinite series of constants of the 

motion is described in 

5.6.36 Theorem. 

The constant of the motion Fk(k > 2) can be obtained from Fk-l by 

2k 
Fk(u) = 2 

4(k-I) -I 

2k Joo oFk-1 2 I -I 

2 ~ (2u + 2 uxa u 
4(k-l) -1 -<lO 

I -- xu )dx. 4 XXX 
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Proof: 

For k = 3 this result is easily verified. For k > 3 the first expression 

follows from corollary 4.6.14 (for the KdV equation H = F3 = F
3
). The 

normalization coefficient is easily found by considering the highest power 

of u. Using the expression for z1, as given in (5.6.22), we obtain 

Si nee 0 the term with explicit time dependenee 

vanishes. 

D 

We shall now show that the KdV equation can also be considered 

as a Hamiltonian system with Hamiltonian !(k+l) Fk+3 (k=0,1, 2, ..• ) and an 

appropriate (weak) symplec tic form. Application of rk~ to (5.6. 6) gives 

Using theorem 5.6. 30 we obtain 

(5.6.37) 

The ope rator L
2 
~ i s cyc l ic , it correspond s t o the c l osed two-form 

k 
L
2 

w = d i
2 

w = dTk . If t hi s two-~orm is (weakl y ) nondegenerate we can 
k k 

consider (5. 6 .37) as a Hamiltonian system wi t h Hamil t onian i (k+I)Fk+
3 

and 

(weak) symplectic form dTk· This raises the question of the invertability 

of (theorem 5.6.30) 

We first consider the opera tor o/ . Our attempts to prove that o/ (u) 

i s invertib l e wer e nat sucess f ul. Howeve r, we can prove the following 
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5.6.38 Theorem. 

Let u E s
2

• Then the linear operator ~(u) u2 + s2 is injective. 

Proof: 

Suppose there exists a function w E U
2

, w f 0 such that 

(5.6.39) ~(u)w = 2u w + 4uw - w 
X X XXX 

0 . 

We shall show that this leads to a contradiction. After multiplication 

of (5.6.39) with w we can write this expression as 

d 2 2 
dx (2uw - wwxx + !w) 0 • 

Since wE U2 and u E S2 this implies 

(5.6.40) 
2 2 

2uw - wwxx + !wx = 0. 

We shall first show that this implies that w cannot change sign on ~ . 

Suppose w(x
0

) = 0 for some x
0 

E ~. Then (5.6.40) implies wx(x
0

) = 0. 

Suppose w (x ) = 0. Then, by consiclering (5.6.39) as an initial value 
· XX 0 

problem with initial values w(x
0

) = 0, wx(x
0

) = 0 and wxx(x
0

) = 0 and 

using the existence and uniqueness theorems for ordinary differential 

equations, we obtain w = 0 on~. which is a contradiction. So w (x ) > 0 
XX 0 

or w (x ) < 0, which means that w(x) cannot change sign on~ . It is no 
XX 0 

restrietion to assume w(x) ~ 0 on ~. So if w(x ) = 0 then w (x ) = 0 and 
2 0 x 0 

w (x) > 0. Hence w(x) ~ !w (x )(x-x) for x+ x . This means that lw(x) 
XX 0 XX 0 0 0 

is continuous but not differentiable in x = x . Denote the number of zeros 
0 

of w(x) between x and some point x 1 with w(x
1
) f 0 by n(x). Then it is 

eas ily se en that 

(5.6.41) n(x) ~ z(x) = (-J) YW\X} 

is again a function with continuous derivatives. Substitution of 

w(x) = z
2

(x) in (5.6.40) results in 

(5.6.42) -z + UZ 
XX 

0. 
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From w E u
2 

and w(x) ~ 0 for all x E 1R we obtain lim w(x) 
x-++oo 

(5.6.41) implies -

(5.6.43) lim z(x) 
x -><x> 

o. 

0. Then 

The salution z of (5.6 . 42) and (5. 6 .43) can be obtained from the following 

integral equation 

co 

(5.6.44) z(x) f (y-x)u(y)z(y) dy. 
x 

Since u E S
2 

the integral exists for every bounded continuous function z. 

Using a standard contraction argument we show that this equation can only 

have the trivial salution z = 0. Sin·ce u E S2 there exists a real number 

A > 0 such that 

(5.6.45) B 

co 

J /u(y)/y dy < !. 
A 

Denote by C[A,co) the space of bounded continuous functions on [A, co). 

If we supply C[A,co) with the uniform norm it is a Banach space. Define 

the linear operator 8 : C[A,co) -> C[A,co) by 

(8 z) ( x ) 
co 

J (y-x)u(y)z(y) dy. 
x 

It is easily seen that 8 is a contrac tion 

co 
iiC0z)JI s/i z l/ f 2yiu(y)i dy s; 2B/\z// • 

A 

This means that 8 has only the fi xed point z = 0. Hence (5.6.42) and (5.6. 43) 

have only the salution z(x) = 0 on [A,co) and so (uniqueness) z(x) = 0 on 1R. 

Then (5.6.41) implies that w(x) = 0 on 1R, which is again a contradiction. 

This completes the proof. 

D 

5.6.46 Remark. 

It is easily seen that a real number A such that (5.6.45) is satisfied also 

exists for u E s 1. So the theoremalso holds if u E s 1 and if we consider 
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~(u) as an operator ~(u) : U1 + S1• If u~ S1 the theerem may be not 

correct. For instanee with the functions 

u(x) 

w(x) ---2 E 
l+x 

we can verify that ~(u)w 

5.6.47 Remark. 

2u w + 4uw + w 0 • 
X X XXX 

D 

Let u E S 2 be a function which can be obtained by the Miura transformation 

(5.6.9) from some smooth function v, so u = v2 
+ vx. Then it is easily 

verified that the operator ~(u) can be factorized 

(2v+o)o(2v-a). 

However, for an arbitrary u E s2 a function V such that u = v2+v~ has 

singularities on the x-axis. Sa this factorization cannot be used to 

prove injectivity or even invertability. 

As a consequence of theerem 5.6.38 we have 

5.6.48 Corollary. 

D 

The KdV equation can be considered as a Hamiltonian system with Hamiltonian 

!Ck+l) Fk+3 and weak symplec tic farm dTk' 

Proof: 

Since ~ is injective and n is invertible we obta in from theerem 5.6. 30 that 

Lz n : S2 + U2 is also injective. So the corresponding two-form Lz w dTk 
k k 

is a weak symplectic form. The corollary now fellows from (5.6. 37). 

D 
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Up to now we considered two infinite series of symmetries 

Xk and Zk(k = 0,1,2, ... ) for the KdV equation. A completely different 

set of symmetries appears in the "inverse scattering method". We shall 

fir s t de s cribe the scattering and inverse scattering problems f or the 

SchrÖdinger equation and indica t e how the initia! va lue problem for t he 

KdV equation can be solved. Consider the Schrödinger eigenvaZue probZem 

on IR with a function u E S2 as po tential 

(5.6.49) -yxx + uy = Ày . 

For À = k
2 

> 0 this problem has a continuous spectrum. Define t he Jast 

funct i ons f(x,k) and g(x,k) as the solutions of (5.6.49) with À = k2 , 

such that 

{ f(x,k) 
ik x f or x + oo , e 

(5.6.50) 

g(x,k) -
-ikx f or x + -<X> • e 

For k # 0 the pairs f(x,k), f( x,-k) and g(x,k), g (x ,-k) form two fundamental 

sys tems of solutions. A salution of (5.6.49) which (in quanturn mechani cs) 

can be interpreted as a wave , comi ng from -<X> , which is partly ref l ected and 

partly transmi tted, has the asymptotic behaviour 

{ y(x,k) 
ik x + R(k)e-ikx for x + - "' • e 

(5.6.51) 

y (x ,k) - T(k) 
ikx 

for x -+ "' · e 

Fr om (5. 6.50) we see t ha t this s a lution can be wr it t en as 

(5.6.51 a ) y(x , k ) g (x,-k) + R(k)g(x ,k) T(k)f(x,k). 

The complex f unctions R and T are called refZection and t r>ansmission 

coe f ficient . The e i genva lue pr oblem (5 . 6 .49) can a l so have a f inite 

number of discrete (isolated) eigenvalues À.= ïJ ~ < 0 for j = l, ... ,n(~. > 0) . 
J J J 

We normali ze the corresponding real eigenfunctions y . by 
J 

()() 2 
J y . (x) dx = I . 
_" ] 
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We fix the sign of y.(x) by requ~r~ng y.(x) > 0 as x~- oo, For every 
J J 

discrete eigenfunction y. we define the normalization coefficient by 
J 

c. lim 
J 

x~--oo 

-2)l.X 
e J 2 

y. (x). 
J 

The set {R(k); À., c.l j =I, .•• ,n} will be called the scattering data of 
J J 

the potential u. The problem of reconstructing the potential u from the 

scattering data is called the inverse scattering problem. This problem 

was solved by Gel'fand and Levitan [2Il and Kay and Moses [22] . First 

define the function B 1R -+ 1R by 

(5.6.52) B(x) 
n 
l: 

j=I 

p.x 
c. e J 

J 
+-- Joo R(k)e-ikx dk. 

21T 

Then solve the Gel'fand Levitan equation 

x 
K(x,y) + B(x+y) + J B(y+z)K(x,z) dz 

-oo 

The potential u can now be obtained from 

u (x) 2 ~ K(x,x). 
dx 

0 x > y. 

Next suppose the potential u satisfies the KdV equation (5.6.1). Then the 

scattering data and the (improper) eigenfunctions f(x,k), g(x,k), y(x,k), 

y.(x) of (5.6.49) will also depend on t. The remarkable discovery of 
J 

Gardner, Greene, Kruskal and Miura [19,20] is that, if the potential u 

of (5.6.49) evolves according to the KdV equation, the evolution of the 

scattering data is given by 

(5.6.53) À. (t) 
Jt 

c. (t) 
Jt 

0, 

3 8 )J.(t)c.(t) 
J J 

(JJ. 
J 
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The solution of these ordinary differential equations is trivia!. The 

initia! value problem for the KdV equation can now formally be solved. 

We first compute the scattering data of the initial value. The time 

evolution of the scattering data is given by (5.6.53). Then by "inverse 

scattering" we can find the solution u for arbitrary t. For future reference 

we also give the time evolution of the solutions of (5.6.49) (see for 

instanee Eckhaus and van Harten [23, § 2.3.1] 

ft -4ik
3

f - u f + 2(u + 2k
2
)f ' x x 

. 3 
uxg + 2(u + 

2 
(5.6.54) g t 4~k g - 2k )gx' 

yt - 4ik3y - u y + 2(u + 
x 

2k
2

) Yx 

and 

(5.6.55) 

5.6.56 Remark. 

If u satisfies the KdV equation, the function B(x,t), as given in (5.6.52) 

satisfies Bt + 8 Bxxx = 0. This means that w(x,t) = B(2x,t) satisfies 

(5.6.57) 0 • 

So the invertible mapping u + w is a linea rizing transformation for the 

KdV equation . This means that the KdV equation is also'completely integrable' 

in the sense discussed in section 5.5. Note that (5.6.57) i s also the equation 

obtained by linearizing the KdV equation around u = 0. 

0 

5.6.58 Remark . 

If we want to express the dependenee of the scattering data on the potential 

u, we have to write R(k,u), ~ .(u), ~ -(u) (and n(u)). However, it is usual 
J J 

in inverse scattering theory to consider the reflection coefficient as a 

function of k and t and the discrete eigenvalues with corresponding 

normalization coefficients as functions of t (where u is assumed to satisfy 

the KdV equation) . Then 
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Rt (k, t) R' (k,u)ut' Àj (t) 
t 

À~(u)u and c. (t) 
J t J t 

c~ (u) u • 
J t 

lf we consider symmetries Y and adjoint symmetries o also as functions 

of x and t, they have to satisfy (see (5.6.12) and (5.6.13)} 

(5.6.59) Yt(x,t) - (6au(x,t) - a
3

) Y(x,t) 0, 

(5.6.60) 3 ot(x,t) + (-6u(x,t)a + a ) o(x,t) o. 
D 

It is well-known from first order perturbation theory in 

quanturn mechanics that an infinitesimal change ou in the potential u of 

the SchrÖdinger equation (5.6.49) leads to changes in the discrete eigen­

values and reflection coefficient given by 

00 

2 y. (x)ou(x) dx, 
J 

oÀ. 
J 

I 

oR(k) 2ik ~ y2
(x,k)ou(x) dx. 

-oo 

This implies 

6\. 2 
(5.6.61) _J = y. (x) I,. · .. ,n, 

OU J 

(5.6.62) oR(k) I 2 
k f 0 • öU 2ik 

y (x,k) 

Since y. and all its x derivatives vanish exponentially for jx l ~ oo 
J o\. 2 

we have yj E s2. Sö OUJ = yj E s2 c u2. The asymptotic behaviour of 

y(x,k) for lx l ~oo, as given in (5.6.51), implies that 0~~k) ~ u2 . So 

formally R(k) is not differentiable (in the topology of S2). From (5.6.53) 

we see that a discrete eigenvalue À. is a constant of the motion and that 
J 

8
. 3 

~t (e 1 k t R(k,t)) 0. 

This leads to 
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5.6.63 Theorem. 

i) The functions o. = y~ (j=J, ... ,n) are canonical adjoint symmetries 
J J 

corresponding to the constants of the motion À·; so they satisfy 
J 

(5.6.60). Further 

(5.6.64) 2 r Y. 
J 

2 4À .y . . 
J J 

ii) For k # 0 the functions 1;; 1 (x,k, t) 
Bik\ 2 

e y (x,k,t), 

( k ) Bik\ fz( k ) d < k ) ~;; 2 x, , t = e x, , t an ~;;3 x, , t -sik\ z 
e g (x,k,t) 

satisfy (5.6.60) and 

(5.6.65) m I ,2,3. 

Proof: 

The discrete eigenvalues À. are constants of the motion, so their variational 
J 

derivatives are adjoint symmetries. Multiplication of (5.6. 49) with y. and 
I Jx 

application of 4d- yields 

2 
2À .y . 

J J 

while multiplication of (5.6.49) with Zy. gives 
J 

2 -2y .y . + 2uy . 
J Jxx J 

2 2À .y. 
J J 

Then (5.6.64) is obtained by adding these t\vO expressions. The fact that 

the functions i';;m(m= 1,2, 3) satisfy (5.6.60) fellows from a straightforward 

computation using (5.6.54). The proof of (5.6 . 65) is similar t o the proof 

of (5 .6 .64). 
0 

Although ~;; 1 (.,k,t) = 2i k :U (eBik
3

t R(k,t)) we do not call ~;; 1 the 

canonical adjoint symmetry corresponding to eBik
3

t R(k,t). The reasen for 

this is that t;; 1(.,k,t) ~ U2 . Also (asymptotic behaviour) 1;;2 , t;; 3 ( .,k, t) ~ U2 . 
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Apart from this difference the two parts of the theorem claim similar 

results for the squares of the eigenfunctions of the SchrÖdinger equation 

(5.6.49). The fact that aj(j=l, ... ,n) and ç1 satisfy (5.6.60) is already 

given by Gardner, Greene, Kruskal and Miura [20, theorem 3. 6 ] . However, 

as far as we know the interpretation of a . as canonical adjoint symmetry 
J 

is new. The relations (5.6.64) and (5.6.65) for the "squared eigenfunctions" 

arealso well-known. Of course aa.(j=I, ••. ,n) and aç (m=l,2,3 ) satisfy 
J m 

(5.6.59) and aa . is a canonical symmetry. These functions are also eigen­
J 

functions of the recursion operator for symmetries A 

(5.6.66) Aaa. 
J 

4:X..aa. 
J J 

j I, ... , n, 

(5.6.67) m I, 2, 3 

Reeall that at the end of the s ec tions 2 . 3 and 2.4 we showed that unde r 

certain conditions (which we shall not veri f y here) the eigenval ues of 

recursion operators for symmetries and for adjoint symmetries are constauts 

of the motion. An example of this situation is given by (5.6.64) and (5.6.66). 

We now indicate how a second salution of (5 .6.60), corresponding 

toa discrete e i genvalue :X. ., can be constructed. The Jost f unc t ions 
J 

f(x,k) and g(x,k) can be continued analytica lly into the uppe r half of 

the complex k-plane. In k=i~. we have (for a moment we omit t) 
J 

g(x,i~ . )~ 
J 

~jx 
e for x -+ - co 

A salution h.(x) of (5.6.49) withÀ=- ~ ~ which is independent of g(x,i~. ) , 
J J J 

-)J . x 
must have asymptotic behaviour h(x) ~ e J for x-+ - co, Then, by considering 

the behaviour for x -+ - co we see that the solution y.(x) can be written as 
J 

y. ( x ) 
J 

IC. g(x,i~.) • 
J J 

This means the canonical adjoint symmetry a. can be written as 
J 

a.(x,t) 
J 

2 
y.(x,t) 

J 
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We now consider the derivative of g(x, k ,t) with respect to k . The time 

evolution of this function in k = i~ . f ollows from (5.6.54) 
J 

(5.6.68) 

2 . 2 s· - l 1~.g- 1~ . g 
J J x .• 

Then a long but straightforward computation, using (5.6.53), (5.6.54), 

(5 .6 .68) and (derivatives with respect to x and k in k = i~,Q, of) the 

SchrÖdinger equation (5.6.49) shows that 

(5 .6 .69) o .(x,t) 
J 

i c. (t)g(x,i~.,t)gk(x,i~ . ,t) 
J J J 

2 
12~. t o . (x , t) 

J J 

satisfies (5.6.60). It can be shown that a. is a real func tion with 
J 

asymptoti c behaviour 

0. (x, t ) 
J 

2~ .x 
c.(t)xe J 

J 

a. (x , t) ~ l 
J 

for x -+ - oo 

f or x -+ ""· 

A 

So o j ~ u2 which means that we cannot call o j an adjoint symmetry. Using 

derivatives of (5.6.49) with respect to x and k it is a simple exercise 

t o show tha t 

ra . 
J 

4~~0. 
J J 

I, .. . ,n. 

Thus, related with the "inverse scattering me thod", we constructed the 

f ollowing solutions of (5.6.60): 

i) 2 continuous spec trum,\ = k , k E JR\ {0 } 

r; 1(x ,k,t) 8ik3t 2 e y (x ,k,t), 

r; 2 (x ,k,t) 8ik3 t 2 e f (x,k,t) , 
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~;: 3 (x,k, t) 
-8ik3

t 2 e g (x, k, t) , 

(m=l,2,3), 

ii) discrete spectrum À. 
J 

2 
- llj j I, ... ,n 

o.(x,t) 
J 

o . (x,t) 
J 

with ro. 
J 

ro. 
J 

2 
y. (x, t) 

J 
c. (t)g

2
(x,i Jl· ,t), 

J J 

2 ie. (t) g(x, iJl., t) gk(x, i)l., t) - 12]1. to. (x, t), 
J J J J J 

2 - 41J.O. 
J J 

2-
4]1.0. - 4]1.0. 

J J J J 

2 It follows from (5.6.51a) that ~;: 1 (x,k,t) = T (k) ç
2
(x,k,t). A more pro-

found study of the inverse scattering methad shows that a infinitesimal 

variation êu (smooth, fast decaying asjxj+ oo) .can be written in terms of 

~;: 3 , a. and o .. See for instanee Zakharov and Faddeev [24, the first 
J J 

expression in §2] . This enables us to express the symmetries Xk and Zk, 

which we studied in the first part of this section, in termsof ç 3 ,o j and oj' 

We only give the formal result 

X
0 

(x, t) 

(5.6.70) 

Z
0

(x,t) 

(5.6.71) 

u x (x, t) 

3 [2i J
00

kR(k,t)eSik\ r ( k )dk 4 a x ïT -oo " 3 x. 't -

2u(x,t) + xux(x,t) + 3t ut(x,t) 

n 
- . l: I (2o. (x, t) + 4]1. o. (x, t)] . 

J= J J J 

n 
L 

j=l 
)l.O.(x,t)], 

J J 

The expression (5.6.70) has already been given (in a somewhat different 

form) by Deift and Trubowitz [37] By applying the recursion operator h 

er inside the square brackets) we can obtain similar expressions for xk 
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and zk for k = 1,2,3, ... 

We end this section by making some remarks on the higher order 

KdV equations. Denote the "time independent part" of the symmetries Zk by 

Ak, so 

(5.6.72) k 0, I ,2, ... 

Then from theorem 5.6.35 we get 

(5.6.73) 

Some properties of higher order KdV equations are described in the following 

5.6.74 Theorem. 

Consider in S
2 

the higher order KdV equation 

(5.6.75) X (u) 
m 

,m I ,2,3, .... 

Th en 

i) this equation is a Hamiltonian system with Hamiltonian Fm+ 2 and 

symplectic form w 

X (u) 
m 

oF 
rt~ 

éiu 

ii) the functions (functionals) Fk( or Fk) are also constauts of the 

motion for this higher order KdV equation, 

iii) the operator A(f) is a recursion operator for (adjoint) symmetries of 

(5.6.75), 

iv) two infinite series of symmetries for (5.6.75) are 

u m,k 

(independent of m), 

k 0, I, 2, ... 
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So Xk, Um,k E V(Xm,S2). The symmetries Xk are canonical while the Um,k 

are non-canonical. The Lie brackets between elements of these series are 

given by 

(5.6.76) 

[U k'U 0 ] m, m,JV !(R.-k)U k n m, +x. 
k,R. 0, I ,2, ... 

Proof: 

Part i) and ii) follow at once from theorem 5.6.33. Theorem 4.6.11 yields 

that LX A = 0. Since A does not depend explicitly on t this implies that 
m 

A is a recursion operator for symmetriesof (5 . 6.75). Using (5.6.73) we 

obtain 

d 
"t (U k) + [X ,U k] 0 o m, m m, 

so U k is a symmetry for (5.6.75). The Lie brackets given in (5.6.76) 
m, 

follow immediately from (5.6.73). 

IJ 

Note that the structure of the Lie algebra of symmetries {Xk, um,k' 

k = 0, 1,2, ... } of (5.6.75) does notdepend on m. For the KdV equation 

itself (m=l) this Lie algebra is already ~escribed in theorem 5.6.35. 
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5.7 THE SAWADA-KOTERA EQUATION. 

In this sectien we consider an equation of "KdV type" found by Sawada and 

Kotera [38] and also by Caudrey, Dodd and Gibbon [39]. We study this so 

called Sawada-Kotera (SK) equation in the form 

(5. 7. I) X(u) x E 1R 

where u 
nx anu. The SK equation is essentially different from the higher 

order KdV equation ut 

This equation reads 

X
2

(u) in the notatien of the preceding section. 

(5.7.2) 

Of course the coefficients of both equations can be changed by scale 

transforrnat ions of x, t and u. However, it is impossible to transferm 

(5.7.1) into (5.7.2) by a scale transforrnation. It is shown in [39] that 

(5.7.1) and (5.7.2) are the only equations of this type which have 

multi-soliton solutions. We shall consider the SK equation in the space 

S (p = 1,2, ... ) with the topology induced by U and the usual duality 
p p 

map. In this sectien we study syrnrnetries and constants of the motion of 

the SK equa tion. We also make some remarks on the "inverse scattering 

problem" for (5.7.1). For the SK equation there exists a series of 

constants of the motion Fk. The first few elements of this series are 

given by 

"" 
Fl J u dx I 

F3 = 2 J (2u3 - u 2) dx , 
- 00 x 

00 

(12u
4 2 J - 18uu 2 

F4 TI + u2x) dx , 
(5.7.3) x 

-oo 

00 

I J 6 3600u3u 2 204u 4 2 2 
F6 576 (576u - + 576u u2x + x x 

- 00 

3 
+ 32u2x 

2 
- 42uu3x + 

2 
u4x) dx • 

A constant of the motion of a different type is given by 
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00 

(5.7.4) G f 
--oo 

xu dx + 60t F3 • 

The SK equation (and also (5.7.2)) is invariant for the scale transformation 

u(x,t) ~ a2u(ax,a5t). Under this scale transformation the constantsof the 

motion Fk are proportional to a2k. It appears that constants of the motion 

of the type F
3

k+2 (with densities which are polynomials in u and its 

derivatives) do not exist. For k = 0 this is easily verified. Using a 

computer program (formula manipulation) it can be shown that also F5 , F8 
and F 1 1 do not exist. In the sequel we shall describe several methods to 

obtain Fk+3 from Fk. Then, starting with F1 and F
3 

we can construct the 

series F3k+l and F3k+3 for k = 1,2,3, •.•. Of course this does not exclude 

the possibility that a constant of the motion F
3

k+
2 

exists for some k 

(k > 3). 

Symmetries Y(u,t) and adjoint symmetries a (u,t) of the SK 

equation have to satisfy (see (5. I .3) and (5.1 .4)) 

(5.7.5) 

(5.7.6) 

with 

Yt(u,t) + Y'(u,t) X(u)- X'(u) Y(u,t) 0, 

a (u,t) + a'(u,t) X(u) + X'*(u) a(u,t) 0 
t 

X' (u) s ~ s p p. 

X'*(u) 

Two "semi-Hamiltonian forms" of the SK equation have been found by Broer 

and ten Eikelder [40] and also by Fuchssteiner and Oevel [41]. Define the 

antisymmetrie operators (in fact opera tor fields) Q+ and ~ by 

(5.7.7) 
+ 

Q (u) 12ua + 123u + a3 u -+ s 
p p' 

(5.7.8) ~(u) 
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It is easily seen that the SK equation (5.7.1) can be written as 

(5.7.9) u 
t 

+-n (u) 
3 2 

(12ud + 12du +a )(3u + uxx). 

A simple calculation shows that n+ satisfies (5.1.16), sa it is a canonical 
+ 

operator. Note that, up to a scale transformation, S1 corresponds to the 

operator ~.as given in the preceding sectien in (5.6.14). Sa from theorem 

5.6.38 we obtain that n+ is injective. This property is nat sufficient to 

call (5.7.9) a Hamiltonian system. However, using lemma 4.2.1 we obtain 

from the "semi-Hamiltonian farm" (5.7.9) that LXS1+ = 0. Since S"l+ does nat 

depend explicitly on t, this means that n+ is a (canonical) AS operator. 

Another "semi-Hamiltonian farm" of the SK equation is obtained by applying 

~ to (5.7.1). This results in 

(5.7.10) 

It can be verified that ~ satisfies (5.1.14), sa it is a cyclic operator. 

This means that the two-form ~ defined by 

(5. 7. I I) <j> (A ,B) <<P(u)A,B> VA, B ESP 

is closed. This two-form is (weakly) nondegenerate if f <P is invertible 

(injective). In that case we can consider (5.7.10) as a Hamiltonian system 

with Hamiltonian 288 F
6 

and (weak) symplectic farm <j>. However, we shall 

nat try to prove that ~ (u) is injective ar even invertible. The "semi­

Hamiltonian farm" (5.7.10) suggests that ~ is an SA operator. Indeed a 

long but straightforward computation shows that 

(~'X)+ ~X' +X'*~ 0. 

Since ~ does nat depend explicitly on t this implies that <P is an SA 

operator. Hence we have proved the following 

5. 7. 12 Theorem . 

+ 
The operator S1 , as given in (5.7.7) is an AS operator. The operator~. 
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defined in (5.7.8) is an SA operator. Further A=~+~ : S 
p 

+ s 
p 

is a 
+ 

recursion operator for syrnmetries and r = ~~ 

operator for adjoint syrnmetries. 

5. 7. 13 Remark. 

u 
p 

+u 
p 

is a recursion 

c 

Note that, although we have given the "two semi-Hamiltonian forms" (5.7.9) 

and (5.7.10), we did notprove that the SK equation is a Hamiltonian system. 

This means that we cannot make straightforward use of the results and 

definitions of chapter 4 (in particular the sections 4.5 and 4.6). However, 

a number of results can be obtained by using similar techniques as in 

chapte·r 4. We shall adopt the def in i ti ons of canon i cal and non-canonical 

adjoint syrnmetries, as given in definition 4.2.7, also for this case, with 

the restrietion that canonical/non-canonical is only defined for symmetries 

Y which can be written as Y =~+a. Also we shall use the notion of Poisson 
+ 

bracket (with canonical operator~) as explained in . section 3.3. Note that 

we gave a proof of the Jacobi identity (theorem 3.3.3) in which we only 

used that ~+ is canonical. 

The "variational derivatives" of F
1 

and Gare given by 

éiG 
I~ U, -0 p u 

x + 60t(3u2 + u ) ~ U . 
XX p 

c 

This means that F1 and Gare not differentiable (in the choosen topology). 

However, if we set 

a = I (= ~) 0 éiu 

I 

72 
x + 5 2 ( I ÖG ) - t(3u + u ) = --

6 XX 72 OU 

I 
then a

0 
and T

0 
satisfy (5.7.6). The factor 

72 
turns out to be convenient 

+ 
in the remaining part of this section. Application of ~ results in 

+ 
E SP, y ~ a 12ux 

0 0 

(5.7.13.a) 
+ I 

Zo ~ To - (2u + x u + 5 tX (u)) E S • 
6 x p 

lt is easily seen that Y0 and Z0 satisfy (5.7.5), so they are symmetries 
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of the SK equation. Note that the symmetry 20 corresponds to the scale 

transformation u(x,t) + a 2u(ax,a5t) of the SK equation. By applying the SA 

operator ~ to Y0 and Z0 we obtain the adjoint symmetries 

oF4 72 -- and T 1 OU 

Three infinite series of (adjoint) symmetries are constructed in 

5. 7. 14 Theorem. 

The series 

(5.7.15) 
k-1 

f 0 I , Tk 
k-1 

r 1 I' k I ,2,3, ... 

consist of adjoint symmetries of the SK equation. The corresponding 

symmetries are given by 

.... 1\.k-lx 1\.kx xk n Pk I 0 (X I X), 

yk 
.... 1\.k-ly f\.ky n ok I o' 

... /\.k-1 2 1\.kZ . zk n Tk I 0 

Proef: 
oF3 This theerem is a straightforward consequence of the fact that p 1 = --­ou 

o 1 and Tl are adjoint symmetries and that fis a recursion operator 

for adjoint symmetries. 

0 

We shall show that the series Xk(pk) and Yk(ok) consist of canonical 

(adjoint) symmetries which correspond to the constauts of the motion F
3
k 

and F3k+l. The (adjoint) symrnetries Zk(Tk) turn out to be non-canonical 
.... 

for k ~I, Since the adjoint symmetry Ti and the symmetry Z
1 

= n Tl are 

essentially for the following considerations, we give Tl explicitly 
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(5.7.16) 

6F 
+ ~ u + x(4u

3 
+ l u 2 

+ 3uu + ~ u ) + 240t ~u6 
6 3x 2 x xx 6 4x u 

6F6 
a 1 + 240t Tu 

It is easily seen that T1 ' ~ T1'* which implies that Tl is a non-canonical 

adjoint symmetry and z
1 

is a non-canonical symmetry. The same property holds 

for the other elementsof the series Zk(Tk). 

5. 7. 17 Theorem. 

The (adjoint) symmetries ~(Tk) are non-canonical for k ~ I. 

Proof: 

This theorem is proved by consiclering the terms of Tk which do nat depend 

explicitly on t and which are proportional to b under the transformation 

u -+ bu. For T 1 these terms are 

5 I 
6 U:3x + 6 xu4x · 

The only term in the recursion operator r which generates again terms of 

this type is the operator o6 • So the terros of this type in Tk are give·n by 

..,6(k-1) (~ 1 ) 
0 6 u3x + 6 xu4x 

I 1 
(k- 6)u(6k-3)x + 6 xu(6k-2)x 

k = 1,2,3, ... 

This implies that Tk' ~ Tk'* which means that Tk and hence Zk 

non-canonical for k ~ I. 

0 

Notice tha t the terms which contain x explicitly in T can be written as 
I 

êF4 
x--- (see remark 5.6.23 for a similar property of the non-canonical 

6u 
symmetriesof the KdV equation). 

By theorem 2.5.15 i the operator L
2
n+ is again an AS operator 
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and the operator L2~ is again an SA operator. A very long computation shows 

that 

(5.7.18) 

(5.7.19) 

Suppose fora moment the inverse operator~ of~+ exists. Then (5.7.18) 

implies that ~ = L2 ~ and (5.7.19) can be written as 
I 

Lz2I~ = 2(L z ~ )~+Lz ~ . 
I I 

This would imply that z
1 

satisfies the conditions of hypothesis 4.5. I with 

c = 2 and so the theory described in the sections 4.5 and 4.6 could be 

applied. However, since n is not known, and even possibly does not exist, 

a straightforward application of this theory is not possible. Therefore 

we shall show that the series Xk and Yk consist of canonical symmetries 

using methods which differ slightly from those in section 4.5. The 

following theorem can be compared with theorem 4.5.5. 

5.7. 20 Theorem. 

The SA operators L
2 
~ are given by 

k 

Proof: 

See the proof of theorem 4.5 . 5 with n replaced by ~. 

k = 1,2,3, .... 

The SA operator L2 ~ corresponds to the two-form L2 ~ . with ~ given in 
k k 

D 

(5.7. I I). The closedness of ~ implies that L2 ~ is also c losed and hence 
k 

that the SA operator L2 ~ is cyclic. Then theorem (5.7.20) implies the 
k 

(nontrivial) result that the SA operators rk~ (k = 1, 2 , 3 , ... ) arealso 

cyclic. Next we consider the symmetries ·xk and Yk. 
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5. 7. 21 Theorem. 

The symmetries Xk 
+-

Q pk, as introduced in theorem 5.7. 14 are canonical. 

The corresponding constants of the motion F3k, defined by 

(5.7.22) k = 1,2,3, ... 

are in involution and do not depend explicitly on t. 

Proof: 

See the proofs of theorem 4.5. 10 (with Q replaced by ~ and H by F
3

) and 

4.5. 13 · (with L
2
n replaced by ~ and H by F

3
), 

[J 

5.7.23 Theorem. 

+-
The symmetries Yk Q ok , as introduced in theorem 5.7.14 are canonical. 

The corresponding constantsof the motion F3k+l' defined by 

(5.7.24) k I , 2 ,3, ... 

are in involution and do not depend explicitly on t. The Poisson bracket 

between the constants of the motion F3k+l and F32 also vanish. 

Proof: 

The proof of this theorem is somewhat different from the proofs of the 

preceding theorems, therefore we give it completely. We first show that 

the adjoint symmetries ok are canonical. Using o 1 = ~Y0 and theorem 5.7. 20 

we can write 

k 2,3, .... 

The SA operator L2 ~ is cyclic, it corresponds to the closed two-form 
k-1 

L2 ~ . So we can apply lemma 4.5.3 (with A:= Y, ~ := L2 ~ and ~:= L2 ~). 
k-1 ° k-1 k-1 

This yields 
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By again using theerem 5.7.20 this becomes 

(5.7.25) 

A simple calculation shows that Ly n~ and Ly ~ = 0. Then by Leibniz'rule 
0 0 

we see that the right hand side of (5.7.25) vanishes. Sa the adjoint 

symmetriesok are canonical. In the same way as in the proof of theerem 

4.5.13 we can show that the corresponding constantsof the moti~n F3k+l 

are in involution. We now consider the Poisson bracket between F3k+l and 

the "Hamiltonian" F
3 

= F
3

. Since F3k+l is a constant of the motion we have 

The derivative 
êF3k+l 
~ = ok does nat depend explicitly on t. This means 

that F
3

k+l can only depend explicitly on t through an "additive function 

of t'' (see also the proof of theerem 2.4.5). Substitution of u= 0 shows 

that this is impossible, sa 

0 and 0. 

Finally it fellows from 

0 

that the two series F3k+l and F 3~ are also in involution. 

D 

Thus we have constru cted two series of constants of the motion; a series 

F
3

k by applying the recursion operator for adjoint symmetries r to êF3 
_ oF

4 
~ 

and a series F3k+l by applying r to ~· Note that F3 and F6 appear 

in the "semi-Hamiltonian farms" (5. 7 .9) and (5. 7 .JO). This simplified 

somewhat the construction of the series F
3
k. By normalizing these constants 

of the motion sa that the coefficient of uk in Fk is equal to I, we obtain 

th~ series F3k and F3k+l. So there exist real numbers ck such that 

(5.7.26) 
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Next we consider the various possible Lie brackets between 

the elements of the three series of symmetries Xk, Yk and Zk. This type of 

problem is considered in sectien 2.6. The results of that sectien were 

obtained under the assumption that hypothesis 2.6.3 was satisfied. A careful 

reading of section 2.6 yields that the second condition of hypothesis 2.6. I 

(that is (2.6.5)) is only used in theorem 2.6.12 and corollary 2.6.13. 

5.7.27 Theorem. 

The Lie brackets between the elements of the series of symmetries Xk, Yk 

and Zk are given by 

(5.7.28) [Xk,X~_l o, [Xk,Yt] 0, [Yk,Yt] 0, 

(5.7.29) [Zk,Xt] 
I 

(t - 6)Xk+t' 

(5. 7.30) [Zk,Yt] 
I 

(t + 6)Yk+t' 

Proof: 

The symmetries xk and Yk are given by 

xk rt oF3k y = ~{ êF3k+l 
~ 

k ----cu-
In the theorems 5.7.21 and 5.7.23 we have seen that the various Poisson 

brackets of the constants of the motion of the series F
3

k and F
3

k+l vanish. 

This implies that the corresponding symmetries commute. The formulas 

(5.7.29) and (5.7.30) are proved using the methods of sectien 2.6. We first 

verify that (2.6.4) and (2.6.6) are satisfied. From (5.7.18) and (5.7.19) 

we obtain 

sa (2.6.4) is satisfied with a 

(5.7.13.a) that 

I. Since z1 is a symmetry we obtain from 
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5 so (2.6.6) is satisfied with b = 6. Then (5.7.29) fellows from corollary 

2.6.10. In a similar way we can prove (5.7.30). 

[J 

The only Lie bracket which remains is the bracket of two elements of the 

series z k. In sectien 2.6 this bracket is given in corollary 2.6.13. 

However, in the proof of the preceding theerem 2.6. 12 we used the secend 

condition of hypothesis 2.6.3. So we face the problem of computing 

(5.7.31) 
-<-

Lz /I. = Lz m <!>). 
2 2 

From theerem 5.7.20 we obtain 

which means that we "only'' have to compute L
2 

rt 
2 

Assume for a moment that 
.... 

the inverse operator ~ of ~ exists. Then using the theory of sectien 4.5 

it is easily shown that 

(5.7.3 2) 
-<- -<- 2 .... L

2 
~ = -2(~ <!>) ~ • 

2 

However, since we do nat know whether ~ exists, we have to verify this 

expression in some other way. The only methad we know to verify (5.6.32) 

is a straightforward computation. We did nat carry out this extremely 

laborous task completely. If (5.7.32) would turn out to be correct, we 

obtain from corollary (2.6. 13) that 

(5.7.33) 

We now have discussed two different methods for constructing the series of 

constantsof the motion F
3

k and F
3
k+

1
. The first methad was to construct 

the corresponding adjoint symmetries using the re cursion operator r (see 

the theorems 5.7.21 and 5.7.23). The secend methad consisted in generating 

the corresponding symmetries by using the repated Lie bracket with z
1 

(see 

theerem 5.7.27). The simplests methad for constructing the two series of 

constants of the motion is described in 
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5.7.34 Theorem. 

The constants of the motion F
3
k and F)k+l can be found recursively by 

F3k+3 
00 oF3k .... 

J -~--- ~ a 1 dx , 
-co uu 

oo oF 3k+ I +-
J ___ o_u ___ ~ al dx 

-oo 

where a
1 

is given in (5.7. 16). The -normalization constantsak and bk have 

to be choosen such that the coefficients of u3k+ 3 and u3k+ 4 in F
3

k+) 

respectively F3k+ 4 are again equal to I, 

Proof: 

See the proofs of theorem 4.6.12 (with ~ replaced by ~ ) , corollary 4.6.14 

and theorem 5.6.36. 

[] 

Finally we make some remarks on the "scattering-inverse 

scattering problem" for the SK equation. A "scattering problem" for the SK 

equation, given by Satsuma and Kaup [42], reads 

(5.7.35) 

Suppose this equation has a discrete eigenvalue À with an eigenfunction y 

such that J 
00 

yy dx exists. Then it can be shown that the eigenvalue À 
x 

is purely imaginary and that (formally) 

00 

J 
-oo 

If u evolves according to the SK equation, the discrete eigenvalue À is a 
• 0 oÀ o d 0 0 d d 0 

constant of the mot1on and so 1 OU 15 an a J01nt symmetry. In ee , us1ng 

h o 1 o f o o [ 42 ] . b h h o oÀ o f 0 t e t1me evo ut1on o y g1ven 1n , 1t can e s own t at 1 ~ sat1s 1es 
oÀ uu 

(5.7.6). We now can apply the recursion operator r to i ou. Aftera long 

computation, using (x derivatives and complex conjugates of) (5. 7 .35) we 

find 
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(5.7.36) fi oÀ 
OU 

So the recursion operator r has an eigenvalue 27ÀÀ which is again a constant 

of the motion. Reeall that at the end of t he sections 2.3 (and 2 . 4) we 

showed that, under certain conditions, the eigenvalues of the recursion 

operators A (and f) areconstantsof the motion. The formula (5.7.36) is 

similar to the relation (5.6.64) in the case of the Korteweg-de Vries 

equation. 
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5.8 THE BENJAMIN-ONO EQUATION . 

Internal waves in a stratified fluid with infinite depth can be described by 

the Benjamin-Ono (BO) equation [55,56]. In fact the BO equation can be 

considered as a limit of a more general equation (this equatïon is sametimes 

called the Whitham equation, see for instanee [57]), which describes internal 

waves in a stratified fluid with finite depth. In the deep water and shallow 

water limit-this equation reduces to the KdV-respectively the BO equation. 

We shall consider the BO equation in the form 

(5. 8. I) 2uu + Hu 
X XX 

x E 1R , 

where H is the HiZbert transfarm 

Hu(x) 
p 

1T Joo u(y) dy 
y-x (principal value integral) . 

-()() 

Multi-soliton solutions of this equation have been found by Matsuno [59] 

and by Chen, Lie and Pereira [60] . A single soliton solution with velocity 

- c has the form 

(5.8.2) u (x, t) 
2c 

c > o. 2 2 l+c (x+ct) 

We shall consider the BO equation in the space S (0 < p < I) with dual space 
p 

U . Clearly the soliton solution given in {5.8.2) is an element of S . 
p p 

In theerem 1.4.10 we have proved that the Hilbert transferm can be considered 

· as a linear antisymmetrie operator H : S + U . Several other properties of 
p p 

Hare given in sectien 1.4. An infinite series of constauts of the motion 

of the BO equation has been constructed by Nakamura [61] and by Bock and 

Kruskal [62] . The first elements of this series are 

0 = judx 
0 = .!.. j 

2 
F I (u) F2(u) u dx , 

-()() 2-<lO 

(5.8.3) 
0 - I j 3 3 F
3

(u) -3 (u + zuHu)dx, 
-oo 

0 I j 4 2 2 F 
4 

(u) =4 (u +3u Hu + 2u)dx. x 
-()() 
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It is easily verified that the BO equation can he written in the ferm 

OU 

2 
a(u + uHu). (5.8.4) 

So we can consider the BO equation as a Hamiltonian system with Hamiltonian 

F~ and canonical operator a. A simple calculation shows that the BO equation 

can also be written in the ferm 

OU 

2 2 c3 ua + 3 au + aHa)u. (5.8.5) '!'(u) 

However the antisymmetrie operator 'l'(u) ~ ua + ~ au + aHa 
3 3 

u + s 
p p 

is not canonical.Hence (5.8.5) is nota Hamiltonian ferm of the BO equation. 

5.8 . 6 Remark. 

The two ways (5.8.4) and (5.8.5) of writing the BO equation strongly resembie 

the similar expressions (5.6.6) and (5.6.15) for the KdV equation. However, 

(5.6.6) and (5.6.15) are both ("semi") Hamiltonian forms of the KdV equation. 

The two corresponding AS operators have been used to construct recursion 

operators for (adjoint) symmetriesof the KdV equation (see theerem 5.6.16 and 

corollary 5.6.17). Since (5.8.5) is nota (semi-) Hamiltonian ferm, a 

similar approach is not possible for the BO equation. 

It is remarkable that for the BO equation there also exist 

infinite series of constauts of the motion which can only be expressed in 

terros of densities which depend explicitly on x and t . . First define the 

following functions (functionals) 

I _ I f 2 
c2 (u) - 2 xu dx ' 

(5.8.7) 

and also 

onS . 
p 

cl 
3 
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(5.8.8) 
2 J 2 4 2u2Hu - 2uu Hu + 

2 
c4 Cu) x (u + 

x x 2u)dx 

Then a long computation shows that 

1 1 
+ 2tF~ (u) F2(u,t) C2 (u) ' 

(5.8.9) 
1 F
3

(u,t) 
1 

c
3

(u) 
0 

+ 2tF4(u) 

and also 

2 
c2 (u) 

1 
+ 4tC

3 
(u) 

2 0 
+ 4t F 4 (u), 

(5.8. JO) 
2 

c
3 

(u) 
I 

+ 4tC4 (u) 2 0 
+ 4t F

5
(u), 

2 c4 (u) I 
+ 4tc

5
(u) 

2 0 
+ 4t F

6
(u) 

are constants of the motion of the BO equation. In these expressions Fo 
5 

and F~ are the following two constants of the motion of the series whose 

first elements are given (5.8.3). Further C~(u) is an expression of the form 

given in (5.8.7) (C~(u) =} Jcxu5 
+ ••• )dx). We do not give the very lengty 

expressions for F~, F~ and C! explicitly. The symmetry corresponding the 

f . 1 . . b constant o the mot1on F
2 

1s g1ven y 

This symmetry i s related to the scale transformation u(x ,t) 
2 

+ au(ax,a t) 

of the BO equation. By taking the repeated Poisson brackets of the constants 

of the motion given in (5.8.3), (5.8.9) and (5.8.10) (and of already 

constructed elements) we can generate an infinite dimensional Lie algebra 

of constants of the motion for the BO equation. However some care is necessary 

in this construction. The variational derivatives of C~ and c; are given by 

öu 

2 
x u 

öu 

2 2 3 2 3 2 
x u + 2 x Hux + 2 H(x u)x. 
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2 oc
2 

For u E S we have E U but 
2 

l u . A lso Hu = a Hu E S x u. x u p p óu 
p x x p 

(see section I. 4), so x Hu E U but x
2

Hu f u . In a similar way we can show 
x p x p 

3 2 oc2 
c2 c2 that f u . Hence 3 t u . So formally and 2 H(x u)x are not p OU p 2 3 

differentiable in the choosen topology. This means that Poisson brackets 
2 F2 between F2 , 

3 
and other (differentiable) constauts of the motion may not 

exist. To avoid these problems we generate a Lie algebra E 

the motion (5. 8. I) starting with 0 0 I I F2} of {F2' F3, F2' F3' 4 
Next we make some remarks on the structure of 

The leading terms of the constauts of the motion 

(5.8.9) and (5.8.10) are of the form 

L
k I 
2 (u) = I 

It is easily seen that 

(5. 8. I I) (i(s-1) -r(J'-I))Lr+~-l 
s+J-2 

Fk 
~ 

given 

of constauts of 

this Lie algebra. 

in (5.8.3), 

k This means that there. can be several me thods to construct L~ using Poisson 

bracket of elements 1: with "lower orders". Hence it may be pos s ible to 
J 

generate distinct constauts of the motion of the algebra E which have the 

same leading term L~ . For small values of k and ~ it can be verified that 

elements of E which have the same leading term L~ are identical. We 

eonjecture that this also holds true for the other elements of E. In that 

case a constant of the motion with leading term L~ is uniquely determined. 
k We shall denote this constant of the motion by F~. Then, similar to 

(5. 8. 11) 

(5.8.12) ( i(s-1) - r(J'-I))Fr+~-l 
s+J-2 

If the conjec ture men t ioned above is correct, we can a lso generate an 
k . . o o o o I I 2 

algebra {C~} , startlng w1th {C2 = F2, c
3 

F
3

, c
3

, c
4

, c
4

} . Then it can 

be shown (see Broer and ten Eikelder [58] ) that 
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In any case we can construct an infinite series of constauts 

of the motion F
0 

by 
k 

(5.8.13) k-1 

If the Poisson bracket of the F0 with F0 vanishes, we obtain k 4 

(5.8.14) 

Then the 

(5.8.15) 

I 
k-"T 

corresponding 

0 

xk+l k-1 

symmetries 

I xo [A3' k 

satisfy (see (4.4.5) and (4.4.6)) 

. 1 oc 1 

=()-3 Wlth A3 
OU 

This relation has been used by Fokas and Fuchssteiner [63] to generate 

an infinite series of symmetries and corresponding constauts of the motion 

for the BO equation. However, since all symmetries in this relation are 

canonical, there is no reasou to work with symmetries instead of the 

corresponding constauts of the motion (see also theerem 4.4.7). Moreover 

a straightforward construction of the constauts of the motion using (5.8.14) 

also avoids the problem of showing that the symmetries constructed in (5.8.15) 

are canonical. Note that (5.8.14) and (5.8. IS) are only correct if 

{F~, F~} = 0 for k ~ 3. This holds if the series F~ is in involution. This 

last property is often mentioned in the literature, but as far as we know 

a correct proof has not yet been given. The proof given by Fokas and 

Fuchssteiner [63] is incomplete. If the conjecture mentioned above turns out 

to be correct, it fellows immediately from (5.8.12) that the series F~ is in 

involution. 
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LIST OF SYMBOLS. 

A,B,C 

C
00 

(IR ) 

d 

du 1, ••• , dun 
d d 

el= --1 ' ... ' e = --au n dUn 

E 

F,G,K 

F(M) 

F (M) 
p 

f,g 

H 

H 

iA 

L1(7R) 

12 (7R ) 

L(W,W
1

) 

LA 
M,N 

PI' •Pn,ql, •·• ,qn 
R(k) 

T(k) 

s ,u 
p p 
I n 

u ' • • • u 

u 

TM 
u 

TM 

T*M 
u 

T*M 

T~(M) 
J 

T~ (M) 
JP 

V(X;M) 

veetors or vector fields 

infinitly differentiable functions on m 
exterior derivative 14,21 

natural cobasis 8 

natural basis 7 

various Lie algebra's 9 

(parameterized) functions on M (elements of F(M) 

or F (M)) or constauts of the motion 
p 

smooth functions on M 8 

smooth parameterized functions on M 17,23 

various functions or mappings 

Ham i 1 tonian 71 

Hilbert transform 28,187 

interior product with a vector field A 13,22 

Lebesgue space of integrable functions 

Lebesgue space of square integrable functions 

linear continuous mappings of W into W
1 

18 

Lie derivative in the direction of A 12,21 

manifolds 7 

canonical coordinates 72 

reflection coeffic ient 164 

transmission coefficient 164 

function spaces 23 ,24 

local coordinates 7 

arbitrary point of M 
tangent space in u E M 7 

tangent bundle of M 7 

cotangent space in u E ~ 7 

cotangent bundle of M 7 

tensor f i e lds on M with covariant order i and 

contravariant order j 8,19 

parameterized tensor fields on M with covariant 

order i and contravariant order j 17, 23 

symmetries of the dynamical system Ü=X (u) on M 36 
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V* (X ;A~) 

X(M) 

X (M) 
p 

X* (M) 

X* (M) 
p 

X,Y,Z 
I ll,U

0
,U

0 

w,z 
w*,z* 
a, S ,y 

r 

p,a,T 

w 

A 

< · '· > 

[ . ' . ] 
[. '•l 
{. ' . } 

() 

()-1 

oF 
OU 

adjoint symmetries of the dynamica! system Ü=X(u) 

on M 37 

smooth vector fields on M 8,19 

smooth parameterized vector fields on M 17,23 

smooth one-forms on M 8,19 

smooth parameterized one-forms on M 17,23 

symmetries (elements of V(X;M)) 

open subsets of M 
topological vector spaces 

topological duals of W,Z 
elements of T*M ar one-forms on M 

u 
recursion operator for adjoint symmetries (tensor 

field) 

recursion operator for symmetries (tensor field) 

various tensor fields ar linear mappings 

differential k-form (corresponding to 2) 

adjoint symmetries (elements of V*(X;M)) 

SA operator (tensor field) 

two-form (corresponding to ~) 

AS operator (tensor field) 

cyclic (SA) operator (tensor field) 

canonical (AS) operator (tensor field) 

symplectic two-form (corresponding to ~ ) 

tensor product 10 

exterior product IS 

duality map (between T*M and T M ar between W and 
u u 

W*) 7,18 

Lie bracket of vector fields 9,21 

commutator of two linear operators 126 

Paissen bracket of two functions 72 

_a_ ar ...i.. 23 
()x dx 
inverse of () 25 

variational derivative of F 115 

Derivatives with respect to u are indicated by a prime. Derivatives with res­

pect to t are indicated by a dot, except when partial differential equations 

are considered. In that case derivatives with respect to t are denoted by the 

subscript t. 
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INDEX OF TERMS. 

A: 

action variables 79 

adjoint symmetry (see symmetry) 

33,37, lil 

analytically independent 31 

angle variables 79 

antisymmetrie 9,27 

autonomous differential equation 34 

B: 

Bäcklund transformations 5 

Benjamin-Ono (BO) equation 187 

"bilinear constant of the motion" 

Birkhoffian system 48,77 

Burgers equation 116 

C: 

131 

canonical coordinate transformation 

canonical involution 62 

canonical transformation 81 

Cauchy problem 35 

classica! Hamiltonian system 67 

cnoidal wave 148 

78 

commutator of two linear operators 

126 

completely integrable 78 

composition 28 

conserved flux property 155 

constant of the mot i on 37 

contracted multiplication 10 

contraction 10,22 

contravariant order 17,23 

coordinates 

canonical 

cyclic - 78 

72 

local - 7 

co tangent 

- bundle 7 

- bundle projection 7 

- space 7 

covariant order 17,23 

D: 

Darboux, theerem of 72 

differential form 13 

closed- 14,22 

exact - 14,22 
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SAMENVATTING. 

Dit proefschrift behandelt symmetrieën van dynamische systemen en in het 

bijzonder Hamiltonse systemen van de vorm u= X(u), waarbij X een vectorveld 

op een variëteit M is. Een korte beschrijving van de gebruikte wiskundige 

methoden is gegeven in hoofdstuk l. In hoofdstuk 2 bekijken we symmetrieën 

van dynamische systemen. Symmetrieën worden ingevoerd als infinitesimale 

transformaties van oplossingen van het systeem in nieuwe oplossingen van het 

systeem. Dit leidt tot een interpretatie van symmetrieën als vectorvelden Y 

op M zodat Y + [X,Y] Y + L~ = 0. Naast symmetrieën worden ook geadjungeerde 

symmetrieën bekeken, ~at zijn een-vormen(covariante vectorvelden) 0 die vol­

doen aan Ö + LXo = 0. Bij elke bewegingscanstante van het dynamisch systeem 

hoort een geadjungeerde symmetrie; het omgekeerde geldt echter niet. 

In hoofdstuk 3 worden (gegeneralizeerde) Hamiltonse systemen 

ingevoerd. Verschillende partiële differentiaalvergelijkeingen kunnen dan als 

Hamiltons systeem worden opgevat. Symmetrieën van Hamiltonse systemen worden 

onderzocht in hoofdstuk 4. Bij een Hamiltons systeem bestaat er altijd 

(minstens) een operator die symmetrieën overvoert in geadjungeerde symmetrieën 

en een operator die werkt in de omgekeerde richting. Dit betekent dat bij een 

Hamiltons systeem elke bewegingscanstante aanleiding geeft tot een symmetrie 

van het systeem. Dit type symmetrie noemen we een canonieke symmetrie. Vaak 

bestaan er ook symmetrieën die niet op deze wijze met een bewegingscanstante 

samenhangen, de zogenaamde niet-canonieke symmetrieën. Het blijkt dat een niet­

canonieke symmetrie Z aanleiding geeft tot een recursie operator voor symme­

trieën. Uitgaande van X en Z kunnen dan twee oneindige rijen van symmetrieën Xk 

en Zk geconstrueerd worden. In paragraaf 4.5 laten we zien dat, als de niet­

canonieke symmetrie Z aan een aantal extra voorwaarden voldoet, de rij Xk 

bestaat uit canonieke symmetrieën. In dat geval bestaat er dus een oneindige 

rij bewegingsconstanten. De rij Zk bestaat (in het algemeen) uit niet­

canonieke symmetrieën. De Lie algebra voortgebracht door de symmetrieën Xk en 

Zk wordt onderzocht in paragraaf 4.6. 

In hoofdstuk 5 worden verschillende voorbeelden van de vooraf­

gaande theorie gegeven. Het belangrijkste voorbeeld is de Korteweg-de Vries 

vergelijking. 
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STELLINGEN BEHORENDE BIJ HET PROEFSCHRIFT VAN 

H.M.M. TEN EIKELDER 



1. Beschouw een Hamiltons systeem op een oneindig dimensionale symplectische 

variëteit. Een verzameling bewegingsconstanten van dit systeem, die 

voldoet aan de door Abraham en Marsden gegeven definitie van volledige 

integreerbaarheid, bestaat niet. 

R.Abraham & J.E.Marsden, Foundations of Mechanics, Benjamin/Cummings, 

New York, Second Editon 1978, definition 5.2.20. 

2. De behandeling door Mayer van connecties ln geassocieerde vectorbundels 

is zowel voor physici als mathematici onbegrijpelijk. 

W.Drechsler & M.E .Mayer, Fiber Bund'le l'echniques in Gauge Theories, 

Springer Verlag, Berlin 1977, § 4.3. 

3. De Beli-ongelijkheden kunnen worden geinterpreteerd als een gevolg van 

de veronderstelling dat er een gemeenschappelijke meetprocedure bestaat 

voor de vier betrokken (deels incompatibele) observabelen. 

4. Het gebruik van de term volledig integreerbaar bij oneindig dimensionale 

Hamiltonse systemen zonder verdere toelichting is een bron van verwarring. 

5. Beschouw een Hamiltons systeem met een symplectische vorm w en bijbeho-
<-

rende SA- en AS operatoren ~ en ~ . Laat Z een niet canonieke 

symmetrie van dit systeem zijn zoals beschreven in hypothese 4.5.1 van 

dit proefschrift. AlsZeen canonieke symmetrie is,is de operator 

Ä = ~<-Lz~ een erfelijke symmetrie, zoals gedefinieerd door Fuchssteiner. 

B.Fuchssteiner, App'lication of hereditary symmetries to non'linear 

evo'lution equations, Nonlinear Anal.Theory Meth.Appl. l (1979), 849-862. 

6. Beschouw een oneindige Toda-keten met bewegingsvergelijkingen 

Stel a 
n 

-!p . Een oneindige rij bewegings­
n 



constanten, geldig voor oplossingen met an + ~. bn + 0 voldoend snel 

als ln l + oo, kan geconstrueerd worden met de volgende recursie formule 

00 

n=-oo 

00 

\vaarbij F 1 n=-co 
b . 

n 

a (( 2n+ 3) b - ( 2n-l ) b ) 
n n+l n 

7. In de meeste toepass ingen van de sine-Gordon vergelijking in de vas te 

stof fysica spee lt de "volledige integreerbaarheid" van deze vergelijking 

geen rol. 

8. De door Aiyer gegeven inverse van de recursie operator voor symmetrieën 

van de Korteweg-de Vries vergelijking bes taat niet . 

R.N.Aiyer,Reaursion operators for infinitesima ~ transformations and 

t heir inverses for certain nonlinear evolution equations, J. Phys. 

A. Math. Gen. 16 (1983) 255-262. 

9. De door Sarlet gegeven voorwaarden voor het bestaan van een Lagrangiaan 

voor een s telsel tweede orde differentiaa lverge lijkingen zijn alleen 

geschikt om het niet bes t aan van zo 'n Lagrangiaan aan te tonen. 

W.Sarlet, The Helmholtz aonditions revisited . A, new approach to the 

inverse prob lem of Lagrangian dynamias, J. Phys . A. Math. Gen. 

15 ( 1982) 1503-1 517. 

10. Sportief au torijden ~ s niet sportief. 

Eindhoven, 3 februari 1984 . 


