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GENERAL INTRODUCTION.

This thesis deals with symmetries of dynamical systems and in particular
Hamiltonian systems. Suppose X is a vector field on a manifold M.

With this vector field an autonomous dynamical system

0.1) u(t) = é% u(t) = X(u(r))

on the manifold M is associated. Dynamical systems of this type arise

in many places in science, biology, economy and other desciplines. Often,
but not always the manifold M is also a linear space. An important

special type of dynamical system is the Hamiltonian system. For (autonomous)
Hamiltonian systems, as introduced in definition 3.2.14, there always
exists a function H on M such that H(u(t)) is constant for every solution
u(t) of the system. In physical situations which are described by a
Hamiltonian system this function H is often equal to the energy of the
system. If the initial state ug of the system at t = t is known, we can
try to find the time evolution u(t) of the system by solving (0.1). However,
in most cases for a dynamical/Hamiltonian system an explicit form of the
solution, corresponding to an initial value u(to) = U, cannot be found,

We shall not go into questions concerning existence and uniqueness of the
solutions of (0.1) now. By means of numerical methods it is often possible
to find a very gbod approximation for the solution of (0.1) with initial
value u(to) =ug

An alternative way to obtain some information about the dynamical

system is, instead of looking at a specific solution (as is done in the
-numerical approach), to find properties which are shared by all solutions
or at least classes of solutions. Such properties are for instance the
existence of constants of the motion, the existence of symmetries, the
stability of the solutions or the behaviour of the solutions for t - .

In this thesis we shall only consider symmetries and constants of the motion
of dynamical systems and in particular Hamiltonian systems. For a finite-
dimensional Hamiltonian system the existence of k constants of the motion
in involution (i.e. with vanishing Poisson brackets) allows to reduce

the dimension of the phase space by 2k. If the number of constants of the
motion in involution equals half the dimension of the manifold (which is

always even) the system is called completely integrable. In that case an



explicit form for the solutions of (0.1) can be given. This is one of the
reasons for the interest in constants of the motion.

For infinite-dimensional Hamiltonian systems the relation
between infinite series of constants of the motion and "complete integrability"
is not yet clear. During the last years a number of infinite-dimensional
Hamiltonian systems have been solved using the so-called '"inverse scattering
methods'". All these equations also have an infinite series of constants of
the motion in involution. It is generally assumed that the existence of
such a series is strongly related to the possibility of finding general
solutions of these equations (for instance by inverse scattering).

In chapter 2 we consider a general dynamical (i.e not necessarily
Hamiltonian) system of the form (0.1). A symmetry of a dynamical system
is introduced as an infinitesimal transformation of solutions of the
dynamical systems into new solutions of the sysﬁem. We shall consider
symmetries which also may depend explicitly on t. So Y(u,t) is a symmetry
if for every solution u(t) of (0.1) also u(t) + € Y(u(t),t) is a solution
(up to o(g) for € = 0). This leads to an interpretation of symmetrieé of
(0.1) as, possibly parameterized, (contravariant) vector fields which
‘satisfy

(0.2) 1}+[X,Y]=1}+ny=o A(Y=§§€Y)

where [X,Y] = LXY is the Lie bracket of the vector fields X and Y. Sometimes
this type of infinitesimal transformation is called a generator of a
symmetry; the notion symmetry is then used for a finite (i.e. not infinitesimal)
transformatioﬁ of solutions of (0.1) into new solutions of (0.1). However,
we shall use the notion symmetry only for infinitesimal transformations,
or more precisely for parameterized vector fields which satisfy (0.2). The
relation between symmetries and finite transformations of solutions into
(new) solutions is similar to the relation between a Lie algebra and the
corresponding Lie group. Therefore it is not surprising that the set
of symmetries of a dynamical system has a natural Lie algebra structure.

A second important concept in this thesis is the adjoint
symmetry, that is a, possibly parameterized, one-form (covariant vector

field) o(u,t) which satisfies

(0.3) 6+ L,o=0.



It turns out that every constant of the motion of (0.1) gives rise to an
adjoint symmetry. However, the converse is not true in general. The four
possible types of linear operators which map (adjoint) symmetries into
(adjoint) symmetries are also introduced in chapter 2. These operators
are called recursion operators for (adjoint) symmetries, SA- and AS operators.
An SA operator maps symmetries into adjoint symmetries, an AS operator acts
in the opposite direction. For an arbitrary dynamical system interesting
operators of these four types do not exist in general.If there exists a
nontrivial recursion operator for symmetries or for adjoint symmetries,
it can be shown that under certain conditions its eigenvalues (if they exist)
are constants of the motion. This suggests a possible relation between these
recursion operators and the eigenvalue problems used in the inverse
scattering method. For the Korteweg-de Vries— and Sawada-Kotera equation
(sections 5.6 and 5.7) this relation can be given explicitly.
A more interesting situation appears if the dynamical system
is a Hamiltonian system. In chapter 2 we introduce Hamiltonian systems using
the language of symplectic geometry. The phase space-of these Hamiltonian
systems is a smooth manifold M . This results in Hamiltonian systems which
are more general then the classical Hamiltonian systems written in terms
of P; and q; - For a classical Hamiltonian system with configuration space
Q we have M = T*Q. It turns out that several interesting partial differential
equations (Korteweg-de Vries-, sine-Gordon-, Benjamin-Ono equation) can
be considered as infinite~dimensional Hamiltonian systems of this type.
In chapter 4 we study symmetries for Hamiltonian systems.
The most important consequence of the Hamiltonian character of the system
is that there always exists a relation between symmetries and adjoint
symmetries, i.e. there always exists an SA- and an AS operator. This implies
that every constant of the motion gives rise to a symmetry. This type of
symmetry will be called a canonical symmetry. Very often there also exist
non-canonical symmetries, i.e. symmetries which are not related in this
way to a constant of the motion. For systems which can also be described
by a Lagrangian the theorem of Noether gives a relation between special
types of symmetries and constants of the motion. It can be shown that
Noether's theorem can be applied to symmetries which, in the Hamiltonian
setting, are canonical.
A non-canonical symmetry Z (in fact non-semi-canonical; we omit

the prefix semi in this introduction) can be used to generate SA— and AS



operators out of the already known ones (which are related to the Hamiltonian
structure). By combination of these operators we obtain a recursion operator
for (adjoint) symmetries A(T). Then we can construct an infinite series of

symmetries by
(0.4) X =AT'x .

An alternative way to generate infinite series of symmetries is to take

the repeated Lie bracket with Z ( = Lie derivative in the direction of 2)

L k-1

7 X .

(0.5) Xk =
In section 4.5 we show that if the non-canonical symmetry Z satisfies
a&ditional conditions the series (0.4) consists of canonical symmetries. So
we have constructed an infinite series of constants of the motion (in
involution). The serigs given in (0;5) is considered in section 4.6.

It turns out that if X2 = sz then X, = kak (bk € R). A series which (in

k
general) consists of non-canonical symmetries is given by

(0.6) z =N Z (Z] =27).

The structure of the Lie algebra of symmetries, generated by the series
X, and Z

k I *
method for constructing infinite series of constants of the motion.

is also described in section 4.6. Finally we describe a third

‘This method is in fact a "combination of the previous two methods". It is
clear that the existence of a non-canonical symmetry Z which satisfies
the additional conditions mentioned above is a highly nontrivial property,
which is in some way related to the "complete integrability' of the system.
Several examples of the preceding theory are considered in
chapter 5. The methods described in chapter 4 (sometimes with slight
modifications) can be applied to all given examples except the Burgers
equation (a non-Hamiltonian system) and the Benjamin-Ono equation. For
the Benjamin-Ono equation a non—canonical symmetry which satisfies the
additional conditions (and so a nontrivial recursion operator for (adjoint)
symmetries) has not been found. However; we can generate a rather complicated
algebra of constants of the motion (or canonical symmetries) in another

way. Our most extensive example is the Korteweg-de Vries equation. We shall



show that there exist an infinite series of canonical symmetries and an
infinite series of non-canonical symmetries. So wé construct an infinite
series of constants of the motion using only "infinitesimal transformations"
of solutions (i.e. not by using Backlund (finite) transformations).

Some mathematical preliminaries are given in cﬁapter I. In
particular in section 1.l we shortly describe the differential geometrical
methods used and in section 1.2 we show how these methods can be ''generalized"

to infinite-dimensional systems.



CHAPTER 1: MATHEMATICAL PRELIMINARIES.

sl DIFFERENTIAL GEOMETRY.

In this section we shall briefly describe some aspects of differential
geometry, For a more comprehensive treatise and also for proofs of the
results given here, we refer to the literature, for instance Abraham and

Marsden [1,44] or Choquet-Bruhat [3].

Tangent and cotangent spaces.

Let M be a smooth finite-dimensional manifold with dimension n. The tangent
space to M in a point u € M is denoted by TuM. This is a linear space with.
dimension n. The tangent bundle TM is the union of all tangent spaces of M,
so TM = UEM TuM. The tangent bundle TM is a manifold with dimension 2n,

The tangent bundle projection m : TM ~ M is a mapping which sends a tangent

vector A € TM to its point of a;plication. So if 4 €‘TUM then WI(A) = u.,

The dual space of TuM is the cotangent space T:M. So an element
o€ TEM can be considered as a linear mapping o : TUM + R. Since the
dimension of TuM is finite, the dual space of T:M is again TuM. The duality
map between T M and T:M will be denoted by <+,+>. So if 4 € T M and o € TﬁM
then <q,A> € R,

The cotangent bundle T*M is the union of all cotangent spaces
of M, so T*M = UEM TzM. It is again a manifold with dimension 2n. Suppose
a € T*M, so o € TZM for some u € M. The mapping ﬁ]: ™M >M:a~>uis

called the cotangent bundle projection.

Natural bases. )

Suppose we choose local coordinates ul(i=l,...,n) on an open subset U < M

(so U can be described by one chart). By varying the coordinate u] and
keeping the other coordinates fixed, we obtain a curve in U < M. The
derivative of this curve (with respect to ul) in a point u € M, is an element

of the tangent space TUM. This tangent vector is denoted by e, = —ET .

3 du
In a similar way we can construct the tangent vectors e, = _—T'E TuM
Y du
(i=2,...,n). So in this way we can use the local coordinates u' to comstruct

—EI | i=1,...,n } for TUM for all u € U. This basis is called
du :
a natural basts. 1f A € TUM with u € U, it can be written as

a basis { e, =



(1.1.1) A=A"e, =A —.

In this thests we shall always use the convention that, unless otherwise
indicated, summation takes place over all indices which appear twice, once
as a subseript and once as a superscript.

A basis { du’ | i=1,...,n } for TzM is defined by
(1.1.2) <dul,ej> - 5; Y i,j = l,...,n.
This basis is called the natural cobasis. The bases { e; | i=1,...,n } for
TUM and { du® | i=1,...,n } for TEM are called each others dual bases.

If o E.T:M with u € U, we can write

(1.1.3) o= aidul.

Then

(1.1.4) <a,A> = <q.dut,Ale.> = 0,478% = a.4T,
& ] i 7] i

Tensor fields.

We shall frequently need smooth functions, vector fields, one-forms and
(higher order) tensor fields on M, For a formal definition of these objects
(using sections of the corresponding vector bundles) see for instance

Abraham and Marsden [1,44] or Choquet-Bruhat [3].
1.1.5 ‘ Definition.

The set of smooth functions on M will be denoted by F(M). The sets of
smooth vector fields and (differential) one-forms on M will be denoted by
X(M) respectively X*(M). Finally the set of smooth temsor fields on M with
covariant order j and contravariant order i will be denoted by T;(M).

o
So if 4 € X(M) then A(u) € TuM and if o € X*(M) then a(u) € T:M. Of course

we can expand vector fields and one-forms in the corresponding natural bases:

(1.1.6) A(u) = Ai(u)ei(u) andl o) = ai(u)dui.



One-forms are sometimes called covariant vector fields, in contrast to
vector fields which are called contravariant vector fields. Of course
functions, vector fields and one—forms on M are special cases of tensor

fields, so formally

FQMy = TOM), X(M) = T) (), X*(M) = TS (M.

Lie algebra's.

We now make some remarks on the structure of the sets introduced in definition
1.1.5. Of éourse all these sets are linear spaces (with infinite dimension).
The product of two functions on M is again a function on M. This means that
F(M) is not only a linear space but also a ring (with identity). The product
of a vector field, one-form or tensor field with a function yields again an
object of the same type. This can be expressed by saying that X(M), X*(M) and
Ti(M) are modules over the ring F(M). The linear space X(M) has additional

structure. First we give the following
1.1.7 Definition.

A real linear space E with a bilinear product [+,] : E x E » E; which

satisfies
i) [x,x] =0 vV X€E,
ii) [x,[y,z]1] + [Y,[2,Xx]] + [z,[X,Y]] =0 vV X,Y,Z € E,

is called a Lie algebra.

Note that i) implies that the product is antisymmetric: [X,Y] =-[Y,X].

‘The second condition is called the Jacobi identity. It is well-known that
the space X(M) of vector fields on M is a Lie algebra. The product [4,B] of
two vector fields 4 and B on M is called the LZe product or Lie bracket of
the vector fields 4 and B (see section 2.8 for an unusual (and complicateq)
introduction of the Lie bracket of vector.fields). In }ocal coordinates u-

the Lie bracket of the vector fields 4= Alei and B = Blei is the vector field

(1.1.8) [4,8] = (Br.A3 - 4r.BNe, ,
J ] 1
where we use the notation B}. = hg? B, , ete.
J auJ 1



Tensor products.

In (1.1.6) we showed how vector fields and one-forms can be expanded in the
natural bases corresponding to a coordinate system. By taking tensor products
(8) of the elements of these bases, we can construct bases for the various
types of tensor fields. Suppose & € T;(M), A€ T:(M) and Y € Ti(M). Then, in

a local coordinate system we can write

L=)
]

<I>..du1@du‘], A= A%e.&duj,
ij j i
y=ye. ge,.
1 ]

The tensor product of the tensor fields = € T;(M) and O € TE(M) is a tensor

field @0 € T;:?(M). For instance in local coordinates (4 € X(M))
Cike j
/\o\l’—AJ.\P eisekoegedu 5

Aed = A;Akeieekﬂ duj.
Contractions.
The tensor product is an operator which yields a tensor field of higher
order(s) then the original tensor fields. An operator which lowers both
orders of a tensor field is the contraction. Suppose Z € Tg(M) with i,j 2 1.
: 1(M). In fact if i > 1

1
and/or j > 1 several types of contraction are possible. As an example

Then by contraction we obtain a tensor field EC € Ti:

consider a tensor field E € T?(M). So, using a local coordinate system, we

can write
2 =2 8¢, sdug.
L7173

Then by contraction we can obtain the tensor(vector) fields

e, and = =z

Contracted multiplication.

An operation which will be used very often in this thesis, is contracted
multiplication, that is a tensor product followed by a contraction.

Contracted multiplication of two tensor fields El, 2, will be denoted by

2

10



EIEZ. For instance

(1.1.9) AY

A;szeie‘ez,
ik
AkA e,

(Ae Li’)c

(1.1.10) v

(AOA)C

The duality map between a vector field A and a one-form o can also be written

as a contracted multiplication
<a,A> = 04 = (oc@A)C

However, it will be convenient to use <*,*> for this duality map. It is
easily seen from (1.1.10) that by contracted multiplication of a tensor
field A € T:(M) and a vector field 4 we obtain again a vector field A on M,
This means we can consider A also as a linear mapping A : X(M) - X(M).
Similarly the contracted multiplication of a tensor f1e1d T € T (M) and a
one-form ¢ yields again a one-form o (= F a du ). So we can con51der I also
as a linear mapping T : X¥ (M) + X*(M). Note that A and T are tensor fields
of the same type. The two different mappings are possible since we can
perform different contractions. In general we shall use the symbol A for
tensor fields which are used as a mapping A : X(M) - X(M) and the symbol T
for tensor fields which are used as a mapping I : X*(M) » X*(M). Note that
this means that in the contracted multiplication AZ we contract "using the
lower index of A" while in the contracted multiplication 'S we contract
"using the upper index of I'". The contracted multiplication of a tensor
field ¢ € Tg(H) and a vector field A yields a one-form o = ®4 = ¢ijAjdui.
So we can also consider ¢ as a linear mapping ¢ : X(M) - X*(M). Finally a
tensor field Y € TE(M) can be used to transform a one-form into a vector

field. Hence we can consider it as a linear mapping ¥ : X*(M) » X(M).

Vector bundle maps.

We have seen that a tensor field A € T:(M) can be used as a linear mapping

A s X(M) » X(M). Of course we can also transform a vector 4 € TuM into a
vector M € TuM. So we can also use A as a linear mapping A : TuM - TuM'
Since u € M is arbitrary we can also consider the tensor field A as a mapping
A : TM > TM. A mapping of this type (with A : TuM > TuM linear) is called a

vector bundle map. Similar results hold for the other types of tensor fields.



We summarize the various applications of tensor fields with total order two

in the following scheme

tensor field linear map vector bundle map
NETION | A XD > X(H) A TH - TH,
G PETION | T XY > X*O I T TR,
o€ T‘Z’(M) o @ X(M) -+ X*(M) o+ TM - T*M,
v e Ti(M) Yoo XR(M) > X(M) Yoo T > TH .

The difference between considering A as a vector bundle map A : TM > TM and
as a linear map A : X(M) > X(M) is that with the vector bundle map we can
transform one vector of TM, while the linear map A : X(M) » X(M) transforms

a vector field on M,

Lie derivatives.

An extremely important tool in this thesis will be the Lie derivative.

Suppose = is a tensor field of arbitrary orders and A is a vector field.

Then the Lie derivative LAE is again a tensor field of the same type as E.

In the special case that £ = B is a vector field, we have

(1.1.12) B = [4,B] =—LBA.

Ly

In local coordinates the Lie derivatives of F € F(M), B € X(M), a € X*(M),
¢ € T;(M), A E-T:(M) and ¥ € TE(M) are given by

k
’LAF = F, A5,
i,k 1 ok
LB = [4,B] = (B} A - A}, BY) e,
~ k K i
LAa = (ai,kA + akA,i) du‘,
(1.1.13) <
_ k K k i
LA¢ = (¢ij,kA + ¢ikA’j + ¢ij,i) du” ®du”,
_ ol Gk k,i ik j
Lyh = (0] A = NAS + MAT) e e dud,
ij, k ik, j kj,i
\LAW = (W,kA -y A’k Y A,k) e.e¢



The Lie derivative satisfies Leibniz'rule

Since the Lie derivative "commutes with contraction'" this means that the
Lie derivative also satisfies Leibniz'rule with respect to contracted
multiplication. For instance

[4,AB] = LA(AB) = (LAA)B + ALAB = (LAA)B + Al4,B].

Differential forms.

A (differential) k—form & on M, considered in a point u € M, is a k-linear
completely antisymmetric mapping & : TUM x TUM X L..0x TUM-¥ R. This means
we can identify a k—form with a completely antisymmetric tensor field with
covariant order k and contravariant order 0. For instance a two-form ¢ can

be identified with a tensor field ¢ € Tg(M)
(1.1.14) ®(4,B) = <d4,B> v A,B € X(M).

Note that we consider the tensor field ¢ as a mapping ® : X(M) ~ X* (M.

This different way of using a tensor field and the corresponding differential
form is the reason for introducing a distinct notation. In general we shall
use capital Greek letters for tensor fields. If a tensor field corresponds

to a differential form, we denote this form by the corresponding small greek
letter (Z,&; ¢,¢; Q,w). The interior product iAE of a k—-form with a vector

field yields a (k-1)-form defined by

(1.1.15) 1/15(31’ LR ’Bk—l) = g(A,Bls s ’Bk—])'

It is easily seen that the (k-1)-form iAE corresponds to the tensor field Z4,
The interior product of a two-form with a vector field yields a one-form.
From (1.1,14) we obtain

(1.1.16) 1,6(8)) = <i,0,B,> = ¢(4,B)) = <¥4,B,>,

which means iA¢ = ¢A. For a function F € F(M) we define iAF = 0.



Exterior differentiation.

The interior product lowers the degree of a differential form. An operation
which increases the degree of a differential form is exterior differentiation.
If £ is a k-form, the exterior derivative df is a (k+1)-form. In local
coordinates the exterior derivative of a function F (= zero-form), one-form

o and two—-form ¢ are given by

( <dF,4> = F,.4" ,

. - _ joi
(1.1.17) {4 da(4,B) (O‘i,j ocj’i)AB 5

- Jplak
d‘i’(A’B,C) = (q>l_'],k * ¢Jk,l + (Dkl,_'])A B C 3

for all vector fields 4,B,C € X(M).

1.1.18 Definition.

A k-form £ with df = 0 is called a closed k-form. A k-form £ (k > 0) which
can be written as £ = d¢ with § a (k-1)~form is called an exact k—form.

o
Since dzg = ddg = 0 for all forms  an exact form is always closed. In

general the converse is not true.
1.1.19 Lemma (Poincaré).

Suppose £ is a closed k-form on M. Then for every point u € M there exists

a neighbourhood U such that £ u (£ restricted to U) is exact.

Proof:

See for instance Abraham and Marsden [1, § 2.4.17].
o

So for every closed k-form £ and every point u € M there exists a neighbour-
hood U of u and a (k-1)-form Z on U such that £ = df on U. Of course this
does not imply that § = dZ on the whole manifold M.

Exterior multiplication.

€ Ti(M) and

Suppose E] Ez € T;(M) are two completely antisymmetric tensor



fields. The corresponding differential forms are denoted by El and EZ' It is

easily seen that the tenmsor product Z @ 52 € TE+104) is in general not

1
completely antisymmetric. By "antisymmetrization'" of this tensor field we
obtain a tensor field = € TE+20W) which is again antisymmetric. The

corresponding (k+%)-form £ is written as
E=gl/\€2’

and is called the exterior product of the forms E] and Ez. For instance if

k = 2 = 1 we have

The Lie derivative LAE of a completely antisymmetric tensor
field = € TE(M) is again an antisymmetric tensor field of the same type. The
k-form corresponding to LAE is denoted as LAE, where £ is the k-form
corresponding to the tensor field E. For instance for a two-form ¢ we have
(see (1.1.14))

(1.1.20) (Ly0) (B,B,) = <(L,®)B ,B,>.

Note that this formula is only a consequence of the distinct notations we

use for a tensor field and the corresponding differential form.

Several formulas.

'Now we give a list of various other formulas which will be used in this
thesis (see also Choquet-Bruhat [3, chapter IV, § A4]). Suppose El and 52
are arbitrary tensor fields, 4 and B are vector fields and ¢ is a one-form
on M, Then

(1.1.21) L (E,Ey) = (LB )5, + B (LE),

(Leibniz'rule for contracted multiplication, same type of

contraction in all terms)



(1.1.22) LA<a,B> = <LAa,B> + <a,LAB> "
(special case of (1.1.21))

(1.1.23) LAB =[4,B] = -LBA s

(1.1.24) LALB = LBLA = L[A,B]

For the operators LA’ i, and d on differential forms it can be shown that

A
(1.1.25) (2 i - 0
.. o =ii,=0,
2
(1.1.26) d* =dd =0,
(]'|i27) LA = dlA + 1Ad .

(1.1.28) LAlB - 1BLA = l[A’B] ,

(1.1.29) do.(4,B) = LA<a,B> - LB<a,A> - <a,[4,B]> (o one-form) ,
k

(1.1.30) d(E, A Ey) = dE, A £, + (1)FE A dE, (g, k-form).

It is easily seen from (1.1.27) and (1.1.26) that

(1.1.31) L, = Ld.

Suppose F.is a function on M. Then using iAF = 0 we obtain from (1.1.27)

that

(1.1.32) LF=1i,dF = <dF,A> .

A A

Transformation properties.

Suppose there exists a diffeomorphism f between M and some other manifold N
so £ : M+ N, Then using this diffeomorphism all vector fields, differential
forms, tensor fields on M can be transformed to objects of the same type on
N. All operations described in this section are natural with respect to this

transformation, i.e. the transformed objects satisfy similar relations as



the original objects. For instance suppose A and B are two vector fields on
M. The transformed vector fields on N are given by A=f'4and B = f'B.

Then it can be shown that
f'[AaB] = [(f'A>;(f,B)1:

so the transformed Lie bracket of 4 and B is equal to the Lie bracket of the

transformed vector fields.

Parameterized tensor fields.

We shall frequently use functions, vector fields, differential forms and

tensor fields on M which also depend on some additional parameter (t € R).
1.1.33 Definition.

The set of smooth parameterized functions on M will be denoted as FP(M). The
sets of smooth parameterized vector fields and one—forms on M will be denoted
as X (M) and X*(M) Finally the set of smooth parameterized tensor fiest on
M w1th covarlant order j and contravarlant order 1 will be denoted as Tl M.
In all cases the parameter (t) is allowed to take all values in R.

o
So if Y € x (M), then y(u,t) € T M for all t € R. Of course FP(M) = F(IxR).
However, in order to keep a unlform notation, we shall only use F M.
course F(M), X(M), X*(M) and T (M) are (can be identified with) subsets of
Fp(M) X M), X*(M) and T (M).

_1’2 "DIFFERENTIAL GEOMETRY" ON A TOPOLOGICAL VECTOR SPACE.

In the preceding section we gave an overview of some aspects of differential
geometry on a finite~dimensional manifold M. The notions and relations
introduced in that section will extensively be used in chapters 2, 3 and 4.
So we can make a straightforward use of the results of those chapters if we
consider a dynamical system on a finite—dimensional manifold (for instance
the periodic Toda lattice [52]). However, several interesting dynamical
systems are described by partial differential equations, i.e. they have "an
infinite number of degrees of freedom". So at first sight we need the

machinery of differential geometry, as described in section 1.1, also on



manifolds of infinite dimension. Fortunately most of the interesting

"an infinite number of degrees of freedom" can be

dynamical systems with
considered in a topological vector space instead of on an arbitrary manifold
(of infinite dimension)., In this way we can avoid the problems associated

with differential geometry on manifolds of infinite dimension.

We shall now describe how several differential geometrical
objects, introduced in section l.,l, can be ''generalized" to the case that the
manifold M is an (infinite dimensional) topological vector space W. The
(topological) dual of W will be denoted by W* and the duality map between W
and W* by <.,.>, We only consider the case W** = W, so W is reflexive. The
space of linear continuous mappings of W into some topological vector space
wl will be denoted by L(w,wl). We shall consider L(w,wl) as a topological
vector space with the topology of bounded convergence (see Yosida [45, § 1v.71).

Since M = W is a linear space, we can make the following

identifications

Tuw =W, TW=W0xW,
(r.2.1)

T;w =¥, THW = W x W*,

Using these identifications it is easy to introduce (objects similar to)
vector fields, differential forms and tensor fields on W. A vector field 4

on W is a mapping
(1.2.2) A:W->WxW:u-~+ (u,Z(u))

where 4 : W >~ W is a, possibly nonlinear, mapping. So we can identify the
vector field 4 with the mapping A. Therefore 4 will also be called a vector
field. To simplify notation we shall drop the tilde and write 4 instead of A.
In a similar way we can introduce one-forms and tensor fields of higher order. .
This resu1t§ in the following list of identifications (c.q. definitions in

the infinite-dimensional case) :



tensor field "representation"

4 € XW) AW+,
o € X*(W) _ o W W
¢ € Tg(W), considered as & W LW,WE

vector bundle map ¢ : TW ~ T*W

(1.2.3)
A€ T}(W), considered as A
vector bundle map A : TW > TW

P W L(W,W)

’

I € T:(W), considered as I
vector bundle map I' : T*W -+ T*Ww

: W LW*,W*)

¥ € T2(W), considered as ¥ i W L@t
vector bundle map ¥ : T*W > TW

Note that a tensor field in T:(W) can be represented by a linear operator

(in fact operator field on W) A(u) ¢ W > W and by a linear operator

T(u) ¢ W* > W*, If A(u) and I'(u) correspond to the same tensor field we have

A(u) = T*(u) for all u € W, If & is antisymmetric (so ®(u) is antisymmetric

for all u € W) the corresponding differential two-form ¢ on W is given by
(1.2.4) d(u)(4,B) = <d(u)d,B> vV 4,B € W,

In a similar way we can introduce higher order tensor fields and differential
forms. However, the tensor fields introduced above will be sufficient for the
sequel. )

Next we introduce Lie derivatives and (for differential forms)
exterior derivatives., First some remarks on differential calculus in
topological vector spaces. For a more detailled discussion of this complicated
subject we refer to Yamamuro [46]. Suppose W, is some topological vector space

and f is a (nonlinear) mapping f : W > wl.



1.2.5 Definition.

We call f Gateaux differentiable in u € W if there exists a mapping
6 € L(w,w]) such that for all 4 € W

(1.2.6) Lim = (£(u + €4) - £(a) - 64) = 0
e*0
in the topology of wl. The linear mapping 6 € L(w,w1> is called the Gateawx
derivative of f in u and is written as 0 = £'(u).
o
If £ is Gateaux differentiable in all points u € W, we can consider the

Gateaux derivative as a (in general nonlinear) mapping
£': W~ L(w,wl).

Suppose f' is again Gateaux differentiable in u € W, The second derivative
of f in u € W is a linear mapping f"(u) € L(W, L(W,w])). It is easily seen

that f£"(u) can be considered as a bilinear mapping
£7(u) 2 W ox W1

Under certain assumptions it can be shown that this mapping is symmetric:

£"(u) (v,w) = £"(u)(w,v) for all w,v € W (see [46]). We shall call a mapping
£ W~ w] twice differentiable if its first and second Gateaux derivatives
exist and if f"(u) is a symmetric bilinear mapping for all u € W, We assume

all mappings in this section are twice differentiable.
1.2,7 Remark.

Hote that in the limit given in (1.2.6) a uniformity in w is not required.
If this limit is uniform on all sequentially compact subsets of W, the
mapping f is called Hadamard differentiable. If the limit is uniform on all
bounded subsets of W, the mapping f is called Fréchet differentiable.

o
Suppose A : W ~ W is (represents) a vector field. The Gateaux derivative in
u € Wis a linear mapping A'(u) : W > W, The dual of this mapping is denoted
by A'*(u) : W* > w*,
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1.2.8 Definition.

The Lie derivatives in the direction of a vector field A of a function
F : W~ IR and of the various tensor fields (vector fields, one-forms)
considered in (1.2.3) are defined by

[ L,F(u) = F' (WA = <F'(w),4> ,

LAB(U) = [4,B1(u) = B'"(wA4(u) - 4'(u)B(u) , (B € X(W)),
L) = o' (WA + 4™ (alu) ,

(1:2::9) 9 Lo u) = (@' (u)A(w) + S(wA'(u) + A" (W) ,

+

LACw) = (A" (WAW) + A(w)A" (w) = A" (WA) ,

L,T(u) = (I'(WA@) - TA™ @) + 4™ (W) ,

L LAW(u) = (Y (uA(u)) =~ YA ™ (u) - A" (u)Y¥(u)

o
First some remarks on the notation in these expressions. Consider the formula
for LA¢. Since & : W ~ L(W,W*) we have &'(u) € L(W, L(W,&*)). So (' (u)4d) €

L(W,W*) and (¢'(u)4A)BE W*. By definition

(8" (WAB = lim £ (3(u + €4)B = B(w)B).
>0
Of course in general this expression is not symmetric in A and B. Therefore
we shall always insert brackets in expressions of this type. It is easily
seen that the Lie derivative of an object yields again an object of the same
type. Note that if T*(u) = ACu) (so T and A represent ‘the same tensor field)
the same holds true for the Lie derivatives:(LAF(u))* = LAA(u). Next we

define exterior derivatives of zero-, one— and two-forms.
1.2,10 Definition,

i) The exterior derivative of a function F : ! - R is the mapping
dF :+ W > W* : u>F'(u) (so dF(u) = F'(u)).
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ii) The exterior derivative of a one-form ¢ : W > W* is the two—form

do(4,B) <o’ (u)d,B> - <a'(u)B,A4A>

<(@'(u) - 0'*(u))4,B> V A,BE W,

iii) The exterior derivative of a two-form ¢, corresponding to an operator

d(u) as in (1.2.4), is given by

dp(4,B,C) = <(®'(u)4)B,C> + < (' (u)B)C,A> + <(®'(u)C)4,B>

b

vV A,B,C € W,
' o
Note that the definitioms (1.2.8) and (1.2.10) strongly resemble the
expressions in local coordinates (1.1.13) and (1.1.17) for the corresponding

objects on a finite-dimensional manifold. Contractions and interior products

in the infinite-dimensional case are interpreted via (1.2.3). Also we shall

adopt the notions closed and exact differential forms (see definition 1,1.18).
14211 Theorem.
The relations (1.1.22) up to (1.1.32) included are also valid for Lie

derivatives and exterior derivatives given in definitions 1.2.8 and 1.2.10.

All proofs are similar to proofs in local coordinates of the corresponding
relations on a finite-dimensional manifold. If a second derivative appears,
we need its symmetry,

o
Suppose o is a closed one—form with continuous derivative a'(u) : W + W*,
Then (definition 1.2.10 ii) a'(u) = a'*(u) for all u € W. Since W is a linear
space, a closed differential form is also exact. Define the function
F:W->R by

1
(1.2.12) F(u) = [ <a(au),u> da.
0

Then it 1s easily verified that o = dF, so indeed o is also an exact one-form.
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In a somewhat different context an operator o : W — W* with a'(u) = a'*(u)
is called a potential operator. Expression, similar to (1.2.12), can be
given for closed higher order differential forms.

Finally we mention that we shall use the same notation as
introduced in definition 1.1.33 for parameterized functions, vector fields,

one-forms and higher order tensor fields on W.
1.3 SOME FUNCTION SPACES.

s ; )
In chapter 5 we shall consider several nonlinear evolution equations. Some

of these equations can be written in the form

(1.3.1) u, = f(u,ux,...),
where f is a polynomial in u and its derivatives. The Burgers equation

(section 5.2), Korteweg-de Vriesequation (section 5.6) and the Sawada-Kotera
equation (section 5.7) are of this type. In this section we describe function

spaces in which we shall consider these equations. For convenience we set

d
9 = = .
1.3.2 Definition.

For p > 0 we define the space Sp by
P~ m+p
s, = Luec™(R) | Vilel ™0 € L(R), ¥ m 20},
D

The following two theorems describe some properties of the space Sp'
1.3+3 Theorem.
For every function u € Sp there exists a series of constants Cm such that

C
m m
IB U(x)|s-———ﬂ—1—:§:—1_ m=0,1,2,... .

X +1 .

Proof:

m+p+1
Set vm(x) = Vx2+l Bmu(x). Then
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m+p=1 m+p+1
va(x) = (m+p+1) Vx2+l xamu(x) + Vx2+l 3m+]u(x).
Hence
m+p m+p+] .
av_] < (eprD) [VaPs1 a%u0] + [Vils ™|,
Since u € Sp this means that va € LI(R). Then from
x ¢
vm(x) = vm(O) + oj va(x5 dx’

we see that v is bounded; there exists a constant Cm such that |vm(x)| < Cm
Vx€ER,

1.3.4 Theorem.
Suppose u € S ., Then also xu_€ S .
P X P

Proof:

m+1

From Bm(xux) = X0 u + md"u we obtain

m+p m+p+1 m+p
|Vx2+l Bm(xux)| < IVx2+l 3m+1u| + IVx2+] %,

A

Both terms of the right hand side are elements of LI(DZ), so also the left

hand side is an element of L]( R).

o

We shall also need smooth functions v which satisfy the following conditions

(1.3.5) lim v(x) = -lim v(x) = a € IR, a depends on v,
X0 X =00
m+p
(1.3.6) el ey € L (TR Voaso.
1.3.7 Definition.

For p > 0 we define the space Up by

u ={ve C"(R) | v satisfies (1.3.5) and (1.3.6) }.
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We now consider the relations between the spaces Sp and Up.
1.3.8 Theorem.

i) S . <ci,
P P
ii) if ve U themdv=v €8S,
P X P
iii) if u€ S and v€ U then uv € S .,
P p P

Proof:
The first two parts of this theorem follow immediately from the definitions

of Sp and Up. An elementary calculation yields
: m+p m i+p . m-i
(1.3.9) P+l 3%uv) = X l?] T L AR L
i=0

i+p .
Since u € S we have Vx2+] 3ty € L](IR). We now consider the function
2

T mei
X" +]1 9

v. For i = m this is equal to v, which is clearly a bounded
function.For i < m we obtain from part ii) of this theorem and theorem 1.3.3
also that this function is bounded. Hence the left hand side of (1.3.9) is

an element of L](ZR).

3]
1.3.10 Corollary.
If u€ S and v € S then also uv € S .
D P P
o

We have seen that the operator 0o = g&-maps Up into Sp. It is possible to

define an inverse operator which acts in the opposite direction.

1.3.11 Theorem.
The inverse operator of 9 : Up > Sp is the operator 3_] 3 Sp -+ Up, defined
by
X : ©
-1 1

(1.3.12) 3 ux) = J uy) dy - 3 [ u(y) dy.

-—00 -00
Proof:

For u € Sp both integrals exist. We now show that 27 lu € Up. It is easily
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seen that B_IU satisfies (1.3.5) with

o

3 1w ay.

-0

a =

Since aa"u =uand u€ S it follows from the definition of Sp that B-Iu
also satisfies (1.3.6). The proof is completed by noting that 3-18v = v for
arbitrary v € Up'

o

Next we introduce a topology on Sp and on Up. For v € Up and u € Sp define

(1.3.13) <y,u> = f v(x)u(x) dx.

—o
This bilinear mapping Up x Sp + R is called a @uality or duality map. It is
easily seen that this duality map is separating, i.e. for every nonzero
v € Up there exists a u € S_ such that <v,u> # 0 and for every nonzero
u € S there exists a v € U_with <v,u> # 0, With every v € Up corresponds
a seminorm pv(u) = |<v,u>| on S_. Also every u € S_ gives rise to a seminorm
qu(v) = |<v,u>| on Up. Then, using the family of seminorms { P, | veu 3},
we can supply Sp with a topology. The seminorms { a, | ue Sp } provide Up

with a topology. Some properties of both topological spaces are described in
1.3.14 Theorem.

The spaces Sp and U are locally convex Hausdorff topological vector spaces.
The (topological) dual of SP is (can be represented by) UP and the
(topological) dual of UP is SP, so

S*=Uu ,Uu*=5,
P P P P
See Choquet [43; propositions 22.3 and 22.4].
o
Since we now have a topology on Sp and on Up we can study the
continuity of the various mappings between these spaces. Recall that a
mapping of a topological space into a topological space is continuous iff
the inverse image of an open set is open. Suppose wl and Wz are topological

vector spaces with topologies generated by the families of seminorms {qi}
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respectively {pi}. Then a linear mapping O : w] > w2 is continuous iff for
every seminorm p; on WZ there exist a constant C and a seminorm qj on wl

such that
pi(@w) < qu(w) vV w€ wl.

1f W] < wz we can consider an element of WI also as an element of w2' This

mapping of wl into WZ is called the embedding operator.

1.3.15 Theorem.

The mappings 0 : Up?> Sp and 37 Sp - Up are continuous. Suppose u € Sp
Then the mapping m, Up - Sp : v > uv is continuous. The embedding operator

of Sp into Up is also continuous.,

Proof:

Suppose v € Up, then dv = v € Sp' For an arbitrary w € Up we have

o

pw(vx) = |_£ wV_ dxr = |_£ v dx| = qwx(v).

This means that 93 : Up > Sp is continuous. The continuity of the other

mappings is proved in a similar way.
o

Suppose u € SP. To simplify notation we will denote the mapping m o Up > Sp

(multiplication by u) by u : Up > Sp' Then, using various parts of this

3’ ua—l 1

theorem, we see that for instance ud, Ju, 9 u : Up - Sp and B_Iu, uwd o,

a'lua" : Sp = Up are continuous mappings.
Consider the topological vector spaces Wl and w2 with
(topological) duals WT and W;. The dual operator of a linear operator

0 : W] > wz is the linear operator 0% : w; > WT defined by

(1.3.16) 43*w2,w1> = <Dw1,w2> Vw € wl, W

*
1 € wZ'

2

A special situation occurs if WT = wz and w; = (WT*=) W] (so W] is reflexive).
Then O : wl > wz and also 0% : wl - w2' In this case we call an operator @

symmetric if 0% = 0 and antisymmetric if o* = -0.
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1.3.17 Theorem.

The operators 9 : Up > Sp and 8_]: SP * Up are antisymmetric, so

(1.3.18) <v],3v2> = - <v2,3v‘> v Vv, € UP,

=] =1}
(1.3.19) <9 up,uy> = - <3 uz,ul> v Uy, € Sp'
Proof:

The first expression follows by partial integration. The proof of (1.3.19) is
a straightforward computation using (1.3.12) and (1.3.13).

a
We shall frequently need the dual of an operator which is the composition of
two other operators. Suppose O = 9291 H wl > wz.with Ol : wl +~ W, and

92 : w3 > Wz. Then it is easily seen that 0% = OTQE. ’

Finally we describe some operators which we shall use frequently
in chapter 5 (in particular in section 5.6). For u € S consider the
operators ud, Ju, 83 : U -+ S . The dual operators arepfound to be

P p
Wd* = - 3u, (Bu)* = - uld and (33)* = - 33. This means that

(1.3.20) b=aie Ju=9 s @ =3
P p

is an antisymmetric operator., We shall also meet the operator
- =1 2
'=93 ¢=9 w +u-23" :U ~U_.
p p
The dual operator of T is then given by

- 1

A=T* =% )* =063 =u+2dud -3 :8 >SS,

1.4 THE HILBERT TRANSFORM.

In this section we describe some properties of the Hilbert transform, which

are used in section 5.8. The Hilbert transform of a function u € LZ(HZ) is

defined by
P uly)
Hu(x) = = i E;%;—dy (principal value integral).
—00
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1.4.1 Lemma.
Suppose u € Sp with 0 < p < I, then the function

(1.4.2) w(x) =

g

feo]
/ y;fz) dy (principal value integral)

is bounded for all x € IR.
Proof:

It follows from the definition of Sp that u € L](R). Suppose x > 0, Then

we can write (1.4.2) as

1 2
_ 1 X gy P 2¥ yu(y) Lo yuly)
(1.4.3) w(x) = F'_i =L dy v [ X;:;— dy + 3 ] S5y
2% 2%
=Lttt
(o]
3

It is easily seen that 'Il + I3| S5 f |u(y)|dy. Set v(y) = yu(y). Then
-—00

we obtain from theorem 1.3.3 that

Co Co * Cl
(1.4.4) v | ——, |v,| & ——=57
2 2
y +1 y o+l

for all y € R, Using the mean value theorem we obtain

3
2% _
12 =% I V(X) + (y x)vy(a(y)) dy (Ia(y)_x| < |y—x|).
3x yX
3
j **
= = lf vy(a(y)) dy.
EX
Then (1.4.4) implies
C +C 4(C_+ C.)
I, < i-x . ] < 2 : for x > 0.

2 kil Q%x)z+] m
Hence w(x) 1s bounded for x > 0. A similar estimate can be given for x < 0.
o

1.4.5 Lemma.

If u€ S with 0 < p <1 then Hu € C*(R) and
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(1.4.6) Hu(x) < vV x€ IR.
2
X +1
Proof:
Since u € S we have 3™u € LZ(ﬂZ) form= 0,1,2,... . So H3™u = 3™u

€ L (R), Whlch 1mn11es that Hu E'Cm(BZ). Next note that

duG =2 [ 20D gy
(1.4.7) Sl um ey 2 S ) gy

Then using lemma 1.4.]1 and xHu(x) € CW(WZ) we obtain (1.4.6).

o
1.4.8 Corollary.
If u€ S and xu € S_ then
p P
l (oo}
(1.4.9) Mu(x) = - = [ u(y) dy + H(xu().
-0
Proof:
This result follows at once from (1.4.7).
a]

1.4.10 Theorem,
For 0 < p< 1 we have H : S~ UP.

It follows from lemma 1.4.5 that Hu € Cm(lR) and lim Hu(x) = 0. So we only
have to show that Vh2+l ™™ o € L (R).

Note that if u € S then xJB u € S for j < m (see theorem 1.3.4)., By using
(1,4.9) we obtain

m+] . mt+1 +1
X

3™ My = ™

m+1
u

Ha

m+l

X H( )
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= B lmley

Since xm+18m+lu € Sp we obtain from lemma 1.4.5 and the fact that Hu € c*(R)

that

m+]
| e 8m+lHu| % s

2
X +1

m+p
Since 0 < p < 1 this implies that VX2+1 8m+1Hu(x) € LI(BQ) for m = 0,1,2,..

Thus we proved that Hu € Up.

Finally we mention some other properties of the Hilbert transform:
(e o]

o0
(1.4.11) [ uHv dx = - [ vHu dx (antisymmetry),
—c0

—o0

(1.4.12) HHu(x) = -u(x),

(1.4.13) Hu = Hou,

(1.4.14) (Hu) (Hv) = uv + H(uHv) + H(vHu).
1.5 ANALYTICALLY INDEPENDENT FUNCTIONS.
1.5.1 Definition.

The functions F % ,Fk on a possibly infinite-dimensional manifold M are

1’
called analytically independent if the corresponding one-forms dFl(u)’ wim ¥
dFk(u) are linearly independent elements of T:M for all u € N, where N is a

dense open subset of M,
o

If the manifold M is finite-dimensional, we can introduce local coordinates
ut (i=1,...,n) on U = M. Then it is easily seen that the functions Fl’ ey

Fk are analytically independent iff the Jacobian matrix
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Sul au”
aul . "

has rank k. This also implies that on a manifold of dimension n there can
exist at most n analytically independent functions. The notion analytically

independent is explained in the following

1.5.2 Theorem.
Suppose M is a finite-dimensional manifold. The functions Fl’ cee ,Fk on M

are analytically independent iff locally there does not exist a relation
g(Fl, ams ,Fk) =0

k . . . .
where g : IR~ > IR is a smooth function such that in every point of an open

dense subset of F?k the gradient (one-form dg) does not vanish.

Proof:

See Levi-Civita [54; chapter 1, §5,6].
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CHAPTER 2: SYMMETRIES FOR DYNAMICAL SYSTEMS.
2.1 INTRODUCTION.

This chapter deals with some general properties of dynamical systems on
manifolds. If the dynamical system is a Hamiltonian system, more

specific results can be obtained. Those more specific results will be
considered in chapter 4. In section 2.2 we shall introduce two linear
equations associated with the dynamical system. Solutions of these
equations will be called symmetries and adjoint symmetries. Since most

of the considerations in section 2.2 are of local character, we shall

use a local trivialization of the (co)tangent bundle of the manifold.

An introduction of symmetries without using a local trivialization of

the tangent bundle will be described in the appendix of this chapter.
Several properties of symmetries and adjoint symmetries are considered in
sections 2.3 and 2.4. The possible relations of symmetries and adjoint
symmetries are studied in section 2.5. In section 2.6 we consider a
dynamical system for which there exist two infinite series of symmetries.
This situation will occur several times in chapters 4 and 5. Finally in
section 2.7 we study the transformation properties of (adjoint) symmetries.

A very important tool in this chapter is the Lie derivative
of several types of tensor fields in the direction of a vector field.
Sometimes we shall also give the more classical formulas, using iocal
coordinates. In that case the manifold is assumed to be finite-dimensional.
For an infinite-dimensional manifold our results are formal.

Symmetries (also called invariant variations, infinitesimal
transformations or Lie-Backlund operators) are also studied by Olver [13],
Wadati [14], Fokas [15] , Magri [17] , Fuchssteiner and Fokas [8], etc..
These last mentioned authors also describe adjoint symmetries (which they
call conserved covariants). Most authors consider a dynamical system in
some (unspecified) topological vector space and write their expressions
in terms of Gateaux, Hadamard or Fréchet derivatives. However, the
only natural type of derivative for studying symmetries is the (infinite-
dimensional version of the) Lie derivative, which replaces complicated
combinations of derivatives of one of the previous types. Using this Lie
derivative most expressions are considerably simplified and important

new relations can be found. Since Lie derivatives are also defined on
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(in fact invented for) arbitrary smooth manifolds, we can easily describe
the theory for dynamical systems on manifolds. In contrast to most authors
we also consider (adjoint) symmetries which depend explicitly on the time t.
In several applications this type of (adjoint) symmetry turns out to be

important.
2.2 DEFINITION OF SYMMETRIES AND ADJOINT SYMMETRIES.

Suppose M is a manifold and X a vector fieldon M, so X €X(M). For a curve

u(t) on M we set G(t) = %E u(t) €Tu(t:)M :

In this chapter we shall consider the following autonomous differential

equation on M
(2.2.1) a(t) = X(u(t)).

The parameter t is called time. This equation can be supplied with an
initial condition u(to) =u. Since (2.2,1) is an autonomous system,.it
is no restriction to take t, = 0. We shall assume that for all u, €M and
to €ER there exists a unique solution u(t) of (2.2.1), with u(to) = us
defined on some interval 1 €R.

Suppose U is an open subset of M which can be described by
one chart. This means the tangent bundel TU is a trivial bundle,
TU = UxW for some linear space W. Then we can consider the vector field X
as a mapping X : U > W. The derivative of X(u) in a point u€l is a linear
mapping X'(u) : W - W . Suppose u(t) is a solution of (2.2.1) which lies

in U. Then we can linearize (2.2.1) around u(t) and obtain

u==u.

(2.2.2) v(t) = X'(u(t)) v(t) v(t) € Tu(t)

Since %? X(u(t)) = X'(u(t))X(u(t)), this equation has always the solution
v(t)= X (u(t)). Another interesting linear equation, associated with
(2.2.1) is the so-called adjoint equation of (2.2.2)

(2.2.3) w(t) = - X"*(u(t)) w(t) w(t) ETH = (y*,

w!

where X'*(u) : W*¥ » W* is the dual operator of X'(u) . The equations

(2.2.1) and (2.2.3) can be derived from the following variational principle
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t
(2.2.4)  stat 2 <u(t), d(t) - X(u(t))> dt,

&

over the set of all curves u(t) €U, w(t) €W for t€ [tl’t2] with u(tl)
and u(tz) fixed. A '"variation" of w(t) gives (2.2.1) while a "variation"
of u(t) leads to (2.2.3).

With appropriate initial conditions for v and w we could
study the Cauchy problems, associated with (2.2.2) and (2.2.3).
However, we are only interested in special solutions of (2.2.2) and
(2.2.3). Suppose there exists a Y € Xp(M) (so Y is a vector field on M,
depending on an additional parameter t, Y(u,t) GTQM), such that for all
solutions u(t) of (2.2.1) which lie (partly) in U, v(t) = Y(u(t),t) is a

solution of (2.2.2). This means

¥ (u(t),t) + ¥ (u(t),t) a(r) = X' (u(t)) Y(u(e),t).
Note that Y, the partial derivative of the parameterized vector field Y
with respect to the parameter (t), is again a vector field on M. Since
u(t) is a solution of (2.2.1) we obtain

Y (u(t),t) + Y'(u(e),t) X (u(r)) =X"(u(t)) ¥ (U(t),t);

This condition has to be satisfied for all solutions u(t) (which lie

parly in U) with arbitrary initial condition u(to) =u_, hence
(2.2.5) Y (u,t) = X'"(u) ¥ (u,t) = Y'(u,t) X (u) Yu€l, t€ER .
The right-hand side can be interpreted as the Lie bracket [Y,X] of the

vector fields Y and X. This Lie bracket can also be written in terms of

Lie derivatives

[Y,x] = -LY=1L_X.
X Y

So we can write (2.2.5) as
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Y + [x,¥]1 =Y + LXY =0 Vu€l,t€R.

This condition on the vector field Y does not depend on the local
trivialization TU = U x W,

This leads to the following

2.2.6 Definition.

A parameterized vector field Y on M (so Y € Xp(M)), which satisfies
(2:2:7) } + [X,¥] =0

on M x R is called a symmetry of the dynamical system (2.2.1). The set

of symmetries of (2.2.1) will be denoted by V(X;M).

o

In the appendix of this chapter we shall show how (2.2.7) can be derived
without using a local trivialization of TM. Since Y = X € V(X;M) the set
V(X;M) contains always a non—-zero vector field.

Next we turn to special solutions of (2.2.3). Suppose there
exists a 0 € X*(M) (so 0 is a parameterized one-form or covariant vector
field) such that for all solutions u(t) which lie (partly) in U, w(t) =

= o(u(t),t) satisfies (2.2.3). This implies
S(ut),t) + o' (u(t),t) G(t) = - X*u(t)) o(u(t),t).

Using (2;2.1) we obtain
G(u(t),t) + o' (u(t),t) X(u(t)) = - X"™*(u(t)) o(u(t),t).

This condition has to be satisfied for all solutions u(t) in U, hence
G(u,t) + o' (u,t) X(u) + X"*(u) o(u,t) =0 VueEU,t€ER .

The last two terms in the left-hand side can be written as LXO, the Lie

derivative of the one—-form ¢ in direction of the vector field X. This
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operation results again in a one-form which is independent of the

trivialization TU = U x (/. Hence the following

2.2.8 Definition.

A parameterized one-form 0 (so 0 € X;(M)) which satisfies
2.2.9 G+Lo=0

( .) <

on M x R is called an adjoint symmetry of the dynamical system (2.2.1).
The set of adjoint symmetries of (2.2.1) will be denoted by V¥*(X;M).

o
In contrast to V(X;M) the set of adjoint symmetries V*(X;M) may contain
only the trivial one-form ¢ = 0. Of course V(X;M) c:Xp(M)and V¥ (X;M) < X;(M).
Finally we mention that in the remaining part of this chapter (adjoint)
symmetries, unless stated otherwise, are meant as (adjoint) symmetries

of the dynamical system (2.2.1).

2.3 PROPERTIES OF SYMMETRIES.

First some remarks on the notion of constant of the motion.
23,1 Definition.

We call a function F € Fp(M) a constant of the motion or first integral
of (2.2.1) if, for all solutions u(t) of (2.2.1)

|Q-

F (u(t),t) = 0.

[=9

t

This is equivalent to

(2.3.2) F+<dF,X>=F +L_F=20 on M x R,

Constants of the motion which differ only by a real constant will be
identified. The following two lemma's are an immediate consequence of

the fact that the evolution equation (2.2.1) is autonomous.
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2.3.3 Lemma.

If F is a constant of the motion, then the same holds true for %.
2.3.4 Lemma.

If Y € V(X;M), then also } € V(XM

Some properties of the set of symmetries V(X;M) are described in
2.3.5 Theoremn.

V(X;M) is a real linear space. Further if Y € V(X;M) and F is a constant
of the motion, then FY € V(X;M).

Proof:
Symmetries have to satisfy the linear equation (2.2.7), so the first'

remark is trivial. Next note that (Leibniz' rule)

[X,FY] = LX(FY) = F[X,Y] + (LXF) Y.

Since F is a constant of the motion and Y a symmetry this can be written

as

I 3
[X,FY] = - FY - FY : (FY) .

So the vector field FY is again a symmetry.

Theorem 2.3.5 can be summarized by saying that the set of symmetries

V(X;M) is a module over the ring of constants of the motion of (2.2.1).
2,.3.6 Theorem.
V(X3;M) is a Lie algebra with the same Lie bracket as the algebra X(M)

of all vector fields on M. The autonomous symmetries (that is symmetries
Y with Y = 0) form a subalgebra of V(X;M).
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Proof:

Suppose Y, Y € V(X;M). Set Y = [Y],Yz] . Then

k.
I

- [7,,7,] + [7,,1,]

[L¥,,X], 1,1 + [, [¥,,X]].

Using the Jacobi identity for Lie brackets we get
Y = [[-YI’YZ], X] = [-Y)X] >

which shows that V(X;M) is a Lie algebra. Finally note that if Yl and Y2

are autonomous, then Y = [Y YZ] is also autonomous.

1?

o

Next we consider tensor fields which can be used to construct

(new) symmetries from (already known) symmetries. Suppose A€ T}p(M), so

A is a parameterized tensor field of covariant order 1 and contravariant

order 1. Then A can also be considered as a vector bundle map A : TM »TM
or as a linear mapping A : XP(M) - Xp(M). We can ask under which

conditions A maps V(X;M) into V(X;M). This leads to the following
2.3.7 Theorem.

Suppose the tensor field A € Tip(M) satisfies

(2.3.8) A+LA=0 onMxR.

Then if Y € V(X;M), then also AY € V(X;M).

Proof:

Since the Lie derivative satisfies Leibniz' rule we have

Ft (D ¢ LGAY] = S5 (D % LAY = AE + YD + (el 0 7.

So if ¥ is a symmetry and A satisfies (2.3.8), we see that AY is also a

symmetry. o
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2.3.9 Definition.

A parameterized linear mapping A : Xp(M) - XP(M), ?orresponding to a
parameterized tensor field (also denoted by) A € Tlp(M) which satisfies
(2.3.8), is called a recursion operator for symmetries.

D
Recursion operators for symmetries are sometimes called strong symmetries
[8,9]. “

2.3.10 Remark.

Another possibility for constructing (new) symmetries out of already known
ones is to compute the Lie bracket with some other symmetry. This method
should not be confused with the application of a recursion operator

for symmetries. Suppose Yl and Z are two symmetries and A is a recursion

operator for symmetries. Then we can construct the symmetries Y3 and Y4 by

Y AY

3 L2

k<
[}

[ 2, %, ]

Then in a point u € M the vector Y3(u,t) depends only on Yl(u,t) and
Afu,t), while YA(u,t) depends on Y](u,t), Z(u,t) and their derivatives in u.
a
Suppose for a moment M is a finite-dimensional manifold with
coordinates ui (i=1,..., n). With respect to this Foordinate system
the tensor field A can be represented by a matrix Ai(u,t) (strictly
speaking a matrix valued function on M x R). Then (2.3.8) can be written as

2 i k _ o,k j J -
(2.3.11) Ai + Ai,k X Ai Xk + /\k X’. 0

For a solution u(t) of (2.2.1) this implies

M @, =0 @o & @m0 -8 eo,o 5 oo,

e
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This type of expression is well-known in the theory of isospectral

transformations (or inverse scattering"). In fact it can be shown that

under certain assumptions, an eigenvalue of A is a constant of the motionm.

Consider the following eigenvalue problem

(2.3.12) AY= XYonMx R .

Note that the "eigenvalue" A is a function on M x R and that the
"eigenvector" Y is a parameterized vector field on M. We assume )\ is

a smooth function and Y is a smooth vector field. By taking the Lie

derivative in the direction of X we obtain

(LXA)Y + A(LXY) = (LXA)Y + A (AXY).

Differentiation of (2.3.12) with respect to t gives
AY + AY = A\Y + AY .
After summation of these two expressions we obtain

(A=) (& + Ly = O+ LA Y.

If the recursion operator for symmetries A has a complete set of eigen-—

vectors ("eigenvector fields'"), this means

(2.3.13) X + LXA =0,

so the function A is a constant of the motion.
Finally we remark that in most applications the recursion
operators for symmetries do not depend explicitly on t (so A = 0).

2.4 PROPERTIES OF ADJOINT SYMMETRIES.

The first two results concerning adjoint symmetries correspond to similar

results for symmetries.
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2.4 .1 Lemma.
Suppose 0 € V*(X;M), then also 0 € V*(X;M).
2.4.2 Theorem.

The set of adjoint symmetries V¥(X;M) is a real linear space. Moreover if

F is a constant of the motion and ¢ € V*(X;M), then F o € V*¥(X;M).

Proof:
Adjoint symmetries have to satisfy the linear equation (2.2.9), so
V¥(X;M) is a real linear space. Next assume F is a constant of the motion,

o € Ux(X;M) , then

% (Fo) + L (Fo) = F(5 + L,o) + (F + LF) o = 0.

This means F o € V*(X;M).
o

This theorem can be summarized by saying that U*(X;M) is a module over
the ring of constants of the motion of (2.2.1). In contrast to V(X;M)
the space V*(X;M) does not have a natural Lie algebra structure.

It turns out that there is a close relation between the space
of constants of the motion and a subspace of V¥(X;M). Let F be a function
on M (or on M x R), then its exterior derivative dF is a (parameterized)

one~form on M.
2.4.3 Theorem.

Suppose F € Fé(M) is a constant of the motion. Then the one-form ¢ = dF

is an adjoint symmetry.

Proof:

The function F is a constant of the motion, so F + LXF = 0.

The exterior derivative d commutes with the Lie derivative and with

differentiation with respect to t. Hence

42



+ = 0.
dF LX dF =0
This means that ¢ = dF is an adjoint symmetry. a

2.4.4 Remark .

In fact we proved a little more. Suppose F € FP(M) such that for all
solutions u(t) of (2.2.1)

Fu(t),t) = £(1),

[=W =N
r

where f: R - R is some function. This means F + LX F = f. Then the
calculation above (with df = 0) shows that ¢ = dF is also an adjoint
symmetry. In the following theorem we show that ¢ also can be written

as the exterior derivative of a constant of the motion.
2.4.5 Theorem.

Let g € V*(X;M) be exact, so there exists a function F € FP(M) such that
¢ = dF. Then there exists a function g : R - R such that G(e,t) = F(.,t)-g(t)

is a constant of the motion with ¢ = dG.

Since ¢ is an adjoint symmetry, we have § + LXO = 0. This can be written as
d(f + LXF) = 0, which implies that ﬁ(u,t) + LX F(u,t) = f(t) on MxIR for some
function f : R > R. Let g : R » R be a function such that g = f. Then
G(e,t) = F(e,t) — g(t) is a constant of the motion with o = dG.
o

The theorems 2.4.3 and 2.4.5 can be summarized by saying that every constant
of the motion gives rise to an (exact) adjoint symmetry and that every
exact adjoint symmetry can be written as the exterior derivative of a
constant of the motion.

Now we are going to study operators which map.V*(X;M) into itself.
Consider a parameterized tensor field T € Tip (M) . Then we can consider
I also as a linear mapping I : X¥(M) - X; (M), and we can ask under

which conditions ' maps V*(X;M) into V*(X; M). Analogous to theorem 2.3.7
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we now have

2.4.6 Theorem.

Suppose the tensor field T € T}p(M) satisfies
2.4.7) T +L, T =0 on MxR

Then for all ¢ € V*(X;M) also Tg € V*(X;M).

Proof:

Similar to the proof of theorem 2.3.7 we have

92-(ro) + L(To) = TG+ Loy + (F+ Lo

So if 0 € V¥(X;M) and T satisfies (2.4.7) we see that [ ¢ € V¥(X;M).
2.4.8 Definition.

A parameterized linear mapping I' : X*¥(M) » X*(M), corresponding to a tensor
field (also denoted by) T € T:p(M) which satisfies (2.4.7), is called a

recursion operator for adjoint symmetries.
2.4.9 Remark.

The conditions (2.3.8) and (2.4.7) for the tensor fields A and T are
identicai. This means that a tensor field A which satisfies (2.3.8), gives
also rise to a recursion operator for adjoint symmetries. In local coordinates
on M the tensor field A is represented by a matrix A . Suppose Y is a
symmetry with coordinates ¥* and 0 is an ad301nt symmetry with coordinates

o;- Then the vector field 2 with coordinates Z' = A YJ is again a symmetry.
But also T. A o; is (represents) an adjoint symmetry The dual operator

of A : XP(M) > XP(M) is a linear operator A¥ :X; M - X;(M). So, in operator

notation, we have Z = AY and T = A*0 . This leads to
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2.4.10 Theorem.

Suppose A is a recursion operator for symmetries. Then A¥ is a recursion
operator for adjoint symmetries. Also if T' is a recursion operator for

adjoint symmetries then I'* is a recursion operator for symmetries.

Proof:
The operators A : XP(M) - XP(M) and A*: X;(M) -+ X;(M) correspond both

to the tensor field (also denoted by) A. If A is a recursion operator for
symmetries the tensor field satisfies (2.3.8) and so (2.4.7).

Hence A* is a recursion operator for adjoint symmetries. The second part

of the theorem is proved in a similar way.

In the last part of section 2.3 we have seen that, under
certain conditions, the eigenvalues of a recursion operator A for
symmetries are constants of the motion. In a similar way it can be shown
that, under certain conditions, the eigenvalues of a recursion operator

I' for adjoint symmetries are constants of the motion.
2.5 GENERAL RESULTS.

We first consider operators which relate symmetries and adjoint .symmetries.
Suppose ¥ is a parameterized tensor field of contravariant order 2 and
covariant order 0, so ¥ € Ti p(M). Then we can also consider Y as a

vector bundle map ¥ : T*M + TM or as a linear operator V : X;(M) > Xp(M).
Now we investigate under which conditions ¥ maps adjoint symmetries into

symmetries.

2.5.1 Theorem.

Suppose ¥ € sz)(M) is a tensor field such that
(2.5.2)  ¥+L¥=0 onkMxR .

Then for all o € V*(X;M) we have Yo € V(X;M).
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Proof:

From

% (¥0) + L,(¥0) = ¥(G+L,o) + (¥ +L, ¥)o

we see that, if o € V¥(X;M) and ¥ satisfies (2.5.2), Yo € V(X;M). So ¥
transforms adjoint symmetries into symmetries.
2.5.3 Definition.

Suppose the tensor field Y € Ti éM) satisfies (2.5.2). Then (considered
as mapping Y: X;(M) > XP(M)) Y is called an AS operator.

o
So an AS operator, applied to an adjoint symmetry, yields a symmetry,
Next we consider operators acting in the opposite direction.
2.5.4 Theorem.
Suppose ¢ € T;p (M) is a tensor field such that
(2.5.5)  &+L2=0 on MxR.
Then for all Y € V(X;M) we have & Y € V*(X;M).
Proof: )
The proof is similar to the proof of theorem (2.5.1).
o

2.5.6 Definition.

Suppose the tensor fieldd € T;p(M) satisfies (2.5.5). Then (considered as
mapping ¢ : XP(M) > X;(M)) ¢ is called an SA operator.

So an SA operator ¢ transforms symmetries into adjoint symmetries.

As expected, if an AS (SA) operator is invertible, the inverse

operator is an SA (AS) operator.
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2.5.7 Theorem.

Suppose Y (@) is an invertible AS (SA) operator. Then the inverse

operator ¥ (Q_l) is an SA (AS) operator.

Proof:
Since ¥ ¥ ! = Id : TM > TM we have
-1, = SN
LX(W Y ) —(LXW) Y + Y LX(W ) =0
and
9 -1 = 3
3 MY )y=vyvy + ¥ SE-(W )

This means that if ¥ satisfies (2.5.2), then W~] satisfies (2.5.5).

n]
Recall that with a parameterized two-form ¢ always corresponds
an (anti-symmetric) tensor field ¢ € TZP(M) or equivalently a linear mapping
d : X (M) » X¥(M), such that
P P
¢(4,B) = <PA,B> V 4,B € X(M) .
This leads to

2.5.8 Theorem.

Let 0 be an adjoint symmetry which is not closed, so do % 0. Then the

operator ® which corresponds to the two—form ¢ = do is an SA operator.
Proof:

The adjoint symmetry o satisfies § + LXG = 0. After exterior differentiation
we obtain ¢ + LX¢ = 0, which is equivalent to ¢ + LX¢ = 0. Hence

® is an SA operator.

2.5.9 Remark.

Since d¢ = ddo = O the SA operator ¢ corresponds to a closed two-form (¢).

This means that the SA operator ¢ satisfies additional conditions, which
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are explained in definition 3.2.4 and theorem 3.2.12. Operators of this
type will be called ecyclic operators. 1f ¢ = do is also nondegenerate,
the operator ¢ is invertible. In this case the dynamical system (2.2.1)
is of a special type, a so called Birkhoffian system (see for instance
Santilli [12] ). 1f ¢ (or ¢ ) satisfies one more condition, the system is
Hamiltonian. This will be explained in section 3.5 .
o

Of course theorem 2.5.8 is also correct, if o is closed. However, in that
case we obtain the trivial SA operator & = 0. In a local coordinate system
ui the adjoint symmetry G can be written as ¢ = o dui. The corresponding
SA operator is then represented by the matrix Qij = Oi,j— Oj,i'

Recall that with every vector field 4 and every one-form o
corresponds a function on M, defined by their contraction <o,4> = iAa.

2.5.10 Theorem.

Suppose Y € V(X;M) and o € V¥(X;M). Then the function F = <0,Y> is a

constant of the motion.

Proof:

Using Leibniz' rule we obtain
F+LF=<o0,Y+Lly>+<dg+Llo,Y>=0.
X s T ¥ LA S
This means F is a constant of the motion.

Starting with two symmetries Yl and Y, an AS operator ¥

2
can be defined in the following way. For o € X;(M) set

(2.5.11) Yo = <a, Y\> ¥,.
It is easily seen that ¥ is an AS operator. Application of this operator
to an adjoint symmetry ¢ gives Yo = <o, Y|> YZ' By theorem 2.5.10 we see
that <o, Y1> is a constant of the motion. Then, from theorem 2.3.5 we
see that Yo is a symmetry, so ¥ is indeed an AS operator. Of course

we can also verify that ¥ satisfies (2.5.2). This operator ¥ is rather

trivial. We obtain always the same vector field Y,, multiplied by different

2’
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functions < 0,Y, > . This implies that ¥ is not invertible. It is easily

1
seen that if ¥ # 0, it is not antisymmetric. This method of constructing
an AS operator, starting with two symmetries can be extended. Let Y‘,..., Yk

€ V(X;M) and ci] € R for i,j = l,...,k. Then for .o € X*(M) define

(2.5.12) VYo = ¢ <o, ¥ ¥

Then ¥ is an AS operator. This construction y1e1ds a symmetrlc operator

if c1J = ch and an antisymmetric operator if ¢ i

= —ch. Using similar
methods we can also construct SA operators and recursion operators for
(adjoint) symmetries. For instance, let o € V¥(X;M) and Y € V(X;M). Then

for 4 € Xp(M) define
(2.5.13) M = < 0,4> Y.

Then ¥ is a (rather trivial) example of a recursion operator for symmetries.
There are four different types of operators relating symmetries
and (adjoint) symmetries. They were described in the definitions 2.3.9
(A, recursion operator for symmetries), 2.4.8 (I', recursion operator for
adjoint symmetries), 2.5.3 (¥, AS operator) ard 2.5.6 (®, SA operator).
1f one or more of these operators exist, we can construct new operators
by using products and powers of already known operators. For instance,
suppose there exists an AS operator ¥ and an SA operator ¢. Then Yo is a
recursion operator for symmetries and ®¥ is a recursion operator for adjoint
symmetries. Also other combinations are possible. Let A be a recursion
operator for symmetries and ¥ an AS operator. Then AY is again an AS
operator. Of course all these results have a straightforward proof.
We end this section by giving a more general approach of the
theory described in this section and in the sections 2.3 and 2.4.
Up to now we considered constants of the motion, (adjoint) symmetries
and several operators between those symmetries. All these objects are

(can be considered as) tensor fields Z of different types which satisfy

(2]«

(2.5.14) +{,5 =0 onMx R .

X

If = is a completely antisymmetric tensor field of covariant order k and

contravariant order 0, we can also consider it as a differential k—-form &.
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There are several methods for constructing new tensor fields out of
already known ones. Suppose = is a parameterized tensor field of
arbitrary orders and Y is a parameterized vector field. Then new
parameterized tensor fields can be constructed by the following
methods (see also Abraham and Marsden [1, § 3.4] ):

i) Compute Ly = , the Lie derivative of = in the direction of Y.

1

ii) Compute = @ E], the tensor product of % and some tensor field El.

iii) If the co-and contravariant orders of = are both positive, we

1

can perform a contraction.

iv) If = is antisymmetric and has covariant order k and contravariant
order O we can compute the exterior derivative of the corresponding
k-form £ . Then df corresponds again to a tensor field (with

orders k+1 and 0).

v) Suppose E and some other tensor field E] correspond to k and 2-forms
¢ and El' Then we can construct a tensor field Ez corresponding to
the (k+2)-form 52 = £ A El.

There are several relations between these methods. A tensor field =

constructed by v), can also be obtained by ii). For instance if £ and =

have both covariant order |, then

So we need not consider method v). If Z corresponds to a differential

k-form § then
Lyg =d 1Y§ + i, d g .

The interior product iy of a vector field with a differential form can
be obtained by a tensor product with Y followed by a contraction. So for
k-forms 1) can be obtained from ii), iii) and iv). Almost all results

of sections 2.3 , 2.4 and this section are in fact special cases of the
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following
25515 Theorem.

Suppose Z, El are parameterized tensor fields of arbitrary orders which
satisfy (2.5.14). Let Y be a symmetry. Then

i) LYE satisfies (2.5.14),

ii1) = 8 E| satisfies (2.5.14),
iii) any possible contraction of = satisfies (2.5.14),
iv) if Z corresponds to a differential form &, the tensor field

corresponding to df also satisfies (2.5.14).

Proof:

i) Using the commutation rule for Lie derivatives we obtain

LE+vl, = + Ll

3 _ _
3¢ Ly + LylyE B

(]
=~
(11

|
—

l\<
.
gt
+
—
Sa
—
L<
(]

b4 [x,7]

Since the vector field Y is a symmetry, the last two terms cancel,

so LYE also satisfies (2.5.14).

i1) This part of the theorem is a straightforward consequence of

L(E e2)) = (LYE) ® El + = ¢ L E .

Y( 1 Y1

iii) Suppose Z is a tensor field with both orders positive. Denote the
tensor fields obtained by a contraction in Z and (the same contraction
in) LY: by ¢ and E

. Then LYEC = so "contraction commutes

LC “Le*
with the Lie derivative' Using this property it is easily shown that,

if E satisfies (2.5.14) , then also EC satisfies (2.5.14).

iv) Using Lyd = dLY (for differential forms), this result is also
easily proved.
a
We mentioned already that most results of sections 2.3, 2.4 and of this

section can be obtained from theorem 2.5.15. For instance the theorems
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2.3.5, 2.3.7, 2.4.2, 2.4.6, 2.5.1, 2.5.4 and 2.5.10 follow also from ii)

and iii) of theorem 2.5.15. As an example consider theorem 2.4.6.

In that theorem ' and o are both tensor fields which satisfy (2.5.14).

Then also the tensor product ['ec satisfies this condition. After contraction
we see that the tensor field ' ( = one-form) also satisfies (2.5.14), so

it is an adjoint symmetry. Further theorem 2.3.6 (and in fact also the
lemma's 2.3.3, 2.3.4 and 2.4.1) follows from part i) of theorem 2.5.15.

The theorems 2.4.3 and 2.5.8 are special cases of part iv) of theorem
(2.5.15). Finally we mention that the AS operator ¥ and the recursion
operator for symmetries A, as given in (2.5.12) and (2.5.13), can be

written as
Y = Moy, ® Y.,
1 J
A=oce 4 .

Then by theorem 2.5.15 ii) ¥ is an AS operator and A a recursion

operator for symmetries.
2.6 THE SPECIAL CASE OF TWO SERIES OF SYMMETRIES.

In the examples we shall sometimes meet dynamical systems (and also
Hamiltonian systems), for which there exists a recursion operator for
symmetries A ( with A = 0) and two series of symmetries generated by

the operator

(2.6.1) X =A X 5 Z =A Z

with X1 = X. (We always consider the dynamical system (2.2.1) 4 = X(u)).
2.6.2 Remark. .
The situation as described above occurs for instance in the case of the
Burgers equation (see section 5.2) and the Korteweg-de Vries equation

(see section 5.6). For these equations there also exist symmetries XO and

Zo such that X, = AXo and 7, = AZO. The symmetry Xo is then related to
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the invariance of solutions of the equation for translation along the
X axis, while the symmetry Zo corresponds to invariance of solutions
under a scale transformation. Note that for all (automomous) evolution
equations G = X(u), the symmetry X corresponds to the invariance of
solutions for translations in time. .
o

Recall that (theorem 2.5.15 i) if A is a recursion operator
for symmetries and Y is a symmetry, then LYA is also a recursion
operator for symmetries. If certain conditions on the first elements

of the series of symmetries Xk and Z are satisfied, the various Lie

k
brackets in and between the series Xk and Zk are easily computed. These

conditions are summarized in

2.6.3 Hypothesis.

Suppose there exist real numbers a # O, b # 0 with ka + b # 0 for k = 0,1,2,..,

such that
(2.6.4) L, A =a A,
1
3
(2.6.5) LZ A =aAl”,
2

(2.6.6) L, X =[Z1,X1] =b X2.

In several cases (for instance Burgers equation, Korteweg—dg Vries
equation, linear Hamiltonian systems) these conditions are satisfied.
In the remaining part of this section we shall assume this hypothesis
18 satisfied. The various Lie brackets and Lie derivatives of the

recursion operator A can now be found. We start with the following
2.6.7 Theorem.
[Z], XQ] = ( (2~1)a+b) X2+1 for 2 = 1,2,3,... .

Proof:

The proof is a straightforward computation, using Leibniz' rule , the
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definition of Xk’ (2.6.4) and (2.6.6)
_ -1 -1
[z,,1,) = L B a7z )

(a-1) a A* X, +b Ay

2

2-1)a+ X .
( (-Da+b) X,
This means that the series Xk can also be constructed by using the

(repeated) Lie bracket with Zl'

2.6.8 Theorem.

LX A=0 for k = 1,2,3,...
k

Proof:
The proof is done by induction. Since A is a time independent recursion
operator for symmetries of 4 = X(u) = X](u), we have LX A=0.

Next assume LX A =0 . By the preceding theorem !

k
ferr = ! (2,541
(k-1) a + b
This implies
i
L AN = — (L, L, A- L_L,A).
A+ k-1) a +b 21 % % 4

By assumption the first term in the right hand side vanishes. Using
(2.6.4) and Leibniz' rule we see that the second term in the right hand
side is also zero.

u]
Note that this theorem implies that A is a recursion operator for symmetries
of each equation of the form U = Xk(u), k =1,2,3,.. . The Lie brackets

[X

K’ Xl] and [Zk’ Zg] are now easily obtained.
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2.6.9 Corollary.

[x

i Xl] =0 for k,% =1,2,3,...

Proof:
It is no restriction to assume £ = k + m with m positive.
Then
m
[Xk’ X L (A Xk)

] =
37 Xk K

il
~
—

From theorem 2.6.8 we obtain that LX A" = 0, which concludes the proof.
- k

o
Since Xl =Xand A do not depend explicitly on t, we obtain from (2.6.1)
that kk = 0. The preceding corollary now implies that XR is a symmetry

for each equation u = Xk(u).

2.6.10 Corollary.

[Zk’xl] ( (&-1) a +b) X

K+, for k, & =1,2,3,...

Proof:

[Zk’XQ] =

!
1
-
TN
=
o
Nt
"
|
=
—~
N

Ak—l

[Zl’Xz] = ( (21) a + b) Xk+2,

where we used Leibniz' rule and the theorems 2.6.7 and 2.6.8 .

Next we turn to the Lie bracket in the series Zk' A simple case is

described in the following
2.6.11 Theorem.

(Z,, 29] = a (&-1) sz+1 For %o 14248 5w

l)
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Proof:

[Z], ZQ] = LZ (A Z.)

Using Leibniz' rule and (2.6.4) this becomes

2’ = —
[ZI’Z!L] =a@®-1) A z1 = a(®-1) Z!L‘H

=]
To compute the Lie bracket mk’ZQ] for k > 1 we need the following
2.6.12 Theorem.
L, A =a Ak+] for k = 1,2,3...

VA

k
Proof:
The proof is done by induction. For k = | and k = 2 the theorem follows

from (2.6.4) and (2.6.5). Suppose the theorem is correct for k = ¢ 2 2.

By the preceding theorem we have

R
Zoey = ma=ny L2y 4y

Hence

|
294 T ald-1)

1 2
m(l. L A—BLZA).

Using the induction assumption we obtain

_ 1 41, 2 242
LZQ+1A = 20D (LZI a A 2a° AT %)
1 2 242 2 242
= 20-D) (a”(&+1) A -2a" A9
= A2+2 .
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So we proved the theorem for k = £+1
The Lie brackets [Zk’ ZE] are now easily found.
2.6.13 Corollary.

[2,,2,] = a(®k) 2, -

Proof:

Suppose { = k+m with m positive. Then

_ m _ m
[Zk’ZL] =L, zk) = (L, N Z

K fe &

_ m—1 k+1 o A
.— m A a A Zk = (L-k) a Zk+2'

For future reference we summarize the Lie brackets and Lie derivatives

found in this section

[Xk’Xg] 0,

[Z2X,] = ( (4=1) a+b) X, >

(2.6.14) [Zk,ZQJ =a (k) Z

k+8 °
L A =0,
X
K
(L, A= a
k

Note that all these results were obtained under the assumption that
hypothesis 2.6.3 is satisfied.

2.6.15 Remark.

Note that the results given in (2.6.14) are valid for k,% > 1. Suppose
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there also exist symmetries X0 and Zo as described in remark 2.6.2.
Then, using the same methods as in the precedent, it can be shown that
the relations (2.6.14) are also valid for k,% > 0, if the symmetries

X and Z_ satisfy
o o

(2.6.16) LXOA = 0, LZOA = af, [Zo’ Xo] = (b—a)'Xo.

2.7 TRANSFORMATION PROPERTIES.

Suppose there exists a difféomorphism f between M and some other

g <«
manifold N. Denote the inverse mapping by f , so

+~

(2.7.1) (E MW
f N> M,
Then we can use the derivative of f to transform the equation (2.2.1)

to a differential equation on N

(2.7.2) v = £'7°(£ (V) X(E (M) =: X).
Note that X is a vector field on the manifold N.
Symmetries Y of (2:7.2) are vector fields on N which satisfy

Y+ [X,Y] =0 on N x R,
Adjoint symmetries of (2.7.2) are one-forms on N which satisfy

cg+L =0 onNx R,

The sets of symmetries and adjoint symmetries of (2.7.2) are denoted

by V(};N) respectively V¥ (X;N). Note that all the expressions given in

the sections 2.3, 2.4, 2.5 and 2.6 were given in terms of tensor

fields (vector fields, k-forms), Lie derivatives and exterior differentiation.
The transformation properties of tensor fields are well~known. Suppose

Z 1is an arbitrary tensor field, Y a vector field and N a k-form on M.
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The transformed tensor fields, wvector fields and k-forms on N are

denoted by the same symbol, supplied with a tilde . Then

(2.7.3) Lff Z = LY:’
(2.7.4) afi = dn .

This means that the operations L and d are 'matural with respect to
a diffeomorphism'. Suppose Y is a symmetry of (2.2.1). The transformed

vector field } =f'Y on N satisfies

Y=f'Y=f Ly = LY.

Using (2.7.3) we see that

Y=LY= 010,

so the vector field Y on N is a symmetry of (2.7.2),

In the same way we can show that if ¢ is an adjoint symmetry of (2.2.1),
~ *

then the one-form 0 = £ o on N is an adjoint symmetry of (2.7.2).

So we have proved
2.7.5 Theorem.

If ¥ € V(X;M) then Y = £'Y € V(X;N).
- * .
Also if 0 € VX(X;M) then o = £ 0 € U*(X:N).

Suppose Y is an AS operator for equation (2.2.1) on M. Then using
(2.7.3) we can show that the transformed operator (tensor field) on N
is an AS operator for (2.7.2). Similar results hold for the other

possible operators. We summarize them in
2.7.6 Theorem.
Consider the operators A, I', ¥, & as described in the definitions 2.3.9,

2.4.8, 2.5.3 and 2.5.6. Then the corresponding operators for (2.7.2) on

the manifold N are given by
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A=gp £ L A,e) = £ ET ) AETD,D £ (),
r=""re* | Te,o =0 IE®,D 5w,
(2.7.7) 1 .
Yoo £ Y g L w0 = £ (ECW) Y(ET(W) ) ETX(EC()),
o= e, = £ o (F W), ) £ ().
¥ o
2.8 APPENDIX.

In this appendix the evolution equation G = X(u) on M 1is extended to

an evolution equation for u and its "variation" Su = v on TM. Using this
evolution equation for z = (u,v), we show how (2.2.7) can be derived
without using a local trivialization of the tangent bundle TM. Since
z(t) € TM and so z(t) €T
on TM( not on M).

z(t)(TM) we have to construct a vector field

First some mathematical preliminaries (see also Abraham and
Marsden [1, § 1.6 and exercise 1.6 D] ). The set T(TM) can be considered
as a vector bundle in two different ways. First T(TM) is the tangent

bundle of TM with projection m, : T(TM)> TM . In this case, the internal

structure of TM is unimportant? However, using the fact that TM is

itself a tangent bundle, we can supply T(TM) with another vector bundle
structure. Denote the projection of the tangent bundle TM by mos ™ » M.
The derivative of this map is ﬂ; : T(TM) » TM. Using this map we can
supply T(TM) with an additional vector bundle structure. Note that with
the projection ﬂ; the bundle T(TM) is not a tangent bundle. The two
possible projections are illustrated in figure 1| and figure 2.

Note that in these figures tangent vectors to M can be indicated in two
ways, see y € TuM in figure 2. The situation is summarized in the

"dual tangent rhombic", as shown in figure 3. In the sequel we shall

need the following
2.8.1 Lemma.

There exists a map SM : T(OM) > T(TM) such that

i) §,95S,, = Id on T(TM),

M™ "M

60



3
N
[}
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==
I
3

Proof:

See Abraham and Marsden [1, exercise 1.6 D] .

™ A
A

Ces T,

u
M
A €T (TH)
A€ TZ(TM) T ™ - M, ﬂl(z) =u
NZ(A) =z n;: TZ(TM) - TuM’ ﬂ;(A) =y
Figure 1. ' Pigure 2.
T(TH) A
f==>oom
TT; 'nz TT/ \:TZ
TM ™ y &
L m TT\ /1
M u ’
Figure 3.
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The map SM is called the canonical involution on M. The lemma may be

clearified by looking at figure 2. If~we apply the mapping SM to 4 € T(TM)
we obtain 4 =-SM(A) € T(OM). From m,(4) = ﬂz(SM(A)) = n;
that 4 € Ty(TM) . So we obtain a vector 4 which is tangent to TMin y.

(4) = y we see

Another application of SM to A yields again the vector 4.
Now we are able to express the Lie bracket of two vector fields
on M in terms of the derivatives of the vector fields. Suppose C is

a vector field on M. So it is a mapping (C:M > TM such that
(2.8.2) ﬂ]o(7= Id : M> M.

The derivative of the vector field ¢ in a point u € M is the linear

mapping

(TM) .

¢'(u) : TuM > TC(u)

Suppose E € TuM, then ¢'(u) E € TC(u)(TM)’ hence
(2.8.3) ﬂz(C'(u)E‘ ) = C(u) € TM.

Yo C' =1d : TM > TM.

By taking the derivative of (2.8.2) we obtain m

This implies

(2.8.4) n;(c'(u)E ) = E € TM.

Let B be another vector field on M. Analogous to the expressions for

the Lie bracket in local coordinates or in a local trivialization (see (1.1.8)
or (2.2.5)), we would like to define [B,(] by computing the difference

of C'(u) B(u) and B'(u) ¢(u). But since B'(u) C(u) € TB(U)(TM) and

C'(u) B(u) € TC(U)(TM) this is not possible.

Now we can use the canonical involution S,,. Using lemma 2.8.1 and

M
(2.8.4) we see that

(2.8.5) ﬂz(SM(C'(u)B(u))) = ﬂi (€' (W) B(u)) = B(uw).
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This means that SM(C'(u) B(u)) €T

B(u) (TM) . So we can define

(2.8.6) F(u) : = SM(C'(u) B(u)) - B'(u) C(u) € TB ) (TM)

(u

We now compute the projection ﬂ; of F(u). Using lemma 2.8.1, (2.8.3)

: i ; .
and (2.8.4) and noting that Tt TB(u)(TM) - TuM is a linear map,

we obtain
TE@) = 7, (€ (W) B) - 1l (B'(W) Cw)
=C@) - C(u =0¢ TuM'

This means that F(u) is not only tangent to TM in the point B(u),
but even tangent to T;M in the point B(u). The situation may be

elucidated by the following figure.

C' (u)B(u)

-B'(u)C(u)

Figure 4.

So F(u) € TB(u)(TuM)' Fiﬁally, using the canonical isomorphism between
the linear space TUM and its tangent space TB(u) (TuM) (see for instance
Dieudonné [18], § 16.5.2) we can consider F(u) as an element of TuM.

Since u is arbitrary we constructed a new vector field Fon M. By
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expressing (2.8.6) in local coordinates we see that F = [B,(C],
the Lie bracket of the vector fields Band ¢ on M. So we have proved the

following #
2.8.7 Theorem.

The Lie bracket of the vector fieldsBand C on M is the vector field

[B,Clon M, given by

(2.8.8) [B,C](u) = SM(C'(U) B(u)) = B'(u) C(u).

2.8.9 Remark .

In most text-books the Lie bracket of two vector fields is introduced
in a much simpler way. However, in the derivation of the condition
(2.2.7) for symmetries, both terms of the right hand side of (2.8.8)

first appear seperately.

2.8.10 Remark.

The preceding construction the Lie bracket is not symmetric. Of course
the other possibility (using SM(B'(u) C(u)) € TC(u)(TM)) yields the same
result.

a
After these complicated preliminaries the final results are within reach.
An evolution equation for u and its ''variation" Su = v is easily
obtained. Suppose z = (u, Su) € TM. The expression (2.2.2) suggests
to describe the time evolution of z using X'z. However, from (2.8.3)
we see that ﬂz(X'z) = X(u), which means that (in general) X' z ¢ TZ(TM).

The correct generalization of (2.2.2) is given by
(2.8.11) z = SM(X'z).

Lemma 2.8.1 and (2.8.4) imply that
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ﬁz(SM(X' z)) = ﬂ;(X'z) = z,

so SM(X'z) € TZ(TM). This means that indeed the right hand side of
(2.8.11) is a vector field on TM. From u = ﬂl(z), lemma 2.8.1 and

(2.8.3) we obtain

4 = Tr;(é) = ! (SM(X'z)) =m,(X'z) = X(u),

so we see that (2.2.1) is "contained in " (2.8.11). By using a local
trivialization of TM it is also possible to derive (2.2.2) from (2.8.11).
So the evolution equation (2.8.11) can be considered as an equation
which describes the evolution of u (as given in (2.2.1)) and the
evolution of v = Su (for a local trivialization given in (2.2.2)).
Finally we consider again special solutions of (2.8.11).

This leads to
2.8.12 Theorem.

Suppose Y is a parameterized vector field on M such that for all

solutions u(t) of (2.2.1) z(t) = Y(u(t),t) satisfies (2.8.11). Then
(2.8.13) Y = [Y,X]

Proof:

Since z(t) = Y(u(t),t) has to be a solution of (2.8.11) for all solutions
u(t) of (2.2.1), the vectorfield Y must satisfy

(2.8.14) Y(u,t) + ¥'(u,t) X(u) = SM(X'(U) Y(u,t) ) VueEM, t e R.

Note that Y'(u,t) X(u) € T )(TM) while at first sight Y(u,t) € TuM.

Y(u,t
However, since TuM is a linear space, it is canonically isomorphic

with its tangent space in an arbitrary point, hence

Y, t) €Ty T ST o T
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So (2.8.14) is a correct equation. The theorem now follows from
theorem 2.8.7.

a
Thus we have again obtained condition (2.2.7) (which is equivalent to
(2.8.13)) for the vector field Y.
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CHAPTER 3: HAMILTONIAN SYSTEMS.
3l INTRODUCTION.

In this chapter we make some remarks on Hamiltonian systems. Since many
results in this chapter are standard, a number of proofs is omitted.
In section 3.2 we introduce Hamiltonian systems using symplectic geometry.
In sections 3.3, 3.4 and 3.6 we describe Poisson brackets, variational
principles and completely integrable Hamiltonian systems. The transfor-—
mation properties of Hamiltonian systems are explained in section 3.7.
In chapter 2 we considered (adjoint) symmetries for general dynamical
systems. In section 3.5 we show that, if a certain kind of adjoint
symmetry exists, the dynamical system is Hamiltonian. The general theory
of symmetries for Hamiltonian systems is described in the next chapter.
To us the formulation of definition 3.2.4 and the results given in lemma
3.2.11, theorem 3.2.12 and in section 3.5 are new. Sometimes we give
expressions using local coordinates. In that case the Hamiltonian systems
are considered to be finite-dimensional. In this thesis we only consider
autonomous (possibly infinite-dimensional) Hamiltonian systems.

Introduce coordinates Qps sees Qs Py vees P in phase space
®®. Then a classical Hamiltonian system can be described by a function
H : IRzn + IR, called the Hamiltonian. The system consists of the set of

differential equations

oH
i =—§PT (qu"”pn)

(3.1.1) *

S -

p; = aqi (ql,...,pn) i=1,..., n.
3.2 . DEFINITION OF HAMILTONIAN SYSTEMS.

A very elegant description of Hamiltonian systems is possible in the modern
language of symplectic geometry (see for instance Arnold [2], Abraham and

Marsden [1] , Souriau [4]). This method will finally result in a system

of differential equations, of which .(3.1.1) is a special case. Therefore

we called (3.1.1) a classical Hamiltonian system. The phase space of these

Hamiltonian systems will be a symplectic manifold M.

Consider a two-form w on M. With this two-form corresponds a
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*
vector bundle map 2 : TM - T M, defined by
(3.2.1) < Q A,B > = w(4,B) VA,BGTUM, Yu€M.

Of course @ can also be considered as a tensor field of covariant order
o . . .

2, Q€ TZ(M)' Mostly we use the last designation. Since a two-form is

antisymmetric in its two arguments, the tensor field © also is anti-

symmetric

< Qu) 4,B> = - < Qu) B,A > VA,BET M,YueM .

3.2.2 Definition.

We call a two form w (strongly) nondegenerate if the tensor field
(considered as vector bundle map © : TM + T*M) is an isomorphism. The
inverse tensor field is then denoted by a0 . If the tensor field (vector
bundle map) f is one to one, the two—form w is called weakly nondegenerate.
o
A weakly nondegenerate two-form on a finite-dimensional manifold M is
(strongly) nondegenerate. A nondegenerate two-form can only exist on a
finite-dimensional manifold M if the dimension of M is even. We call Q
and Q' the tensor fields corresponding to the (nondegenerate) two-form w.

. . <+ . . .
It is easily seen that @ 1s also antisymmetric

<a, ST B>=- <B,0(Wa > Va, BE TEM, ¥ u€ M

The tensor field Q@ can be used to transform a vector field on M into a
one—form. So we can consider  as a linear mapping @ : X(M) ~» X*(M).
In the same way we can consider @ as a linear mapping QxR > X(M) .

3.2.3 Definition.

A symplectic manifold is a pair (M,w) where w is a closed, nondegenerate

two—form on the manifold M. The form w is called a symplectic form.

Infinite-dimensional Hamiltonian systems are often described using a

closed, weakly nondegenerate two—form w. Then w is called a weak symplectic
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form.
It is useful to translate the closedness of a two-form w into
. . . “+
properties of the corresponding tensor fields  and Q .

3.2.4 Definition.

Consider the tensor fields ¢ € T;(M) and Y € TZ(M). Define the mappings
oo X(M)yx X(M) x X(M) > IR and g: X¥(M) x X*¥(M) x X*(M) = IR by

(3.2.5) £(4,B,0)

< LA(¢ B, C>

]

(3.2.6) g(a,B,y) = < L s B,¥y > .

b

Then the tensor field & is called cyclic if it is antisymmetric and if
for all vector fields 4, B, C

(3.2.7) f(4,B,C) + £(B,C,4) + £(C,4,B) = 0.

The tensor field ¥ is called canonical if it is antisymmetric and if for

all one-forms o, B, Y

(3.2.8) g(o,B,y) + g(Byy,a) + gly,a,B) = 0.

In the literature cyclic tensor fields unfortunately are also called
symplectic operators (symplectic transformations are explained in remark
3.7.6). For canonical tensor fields various other names are in use, such
as inverse symplectic, implectic, co-symplectic. See for instance,

Magri [5] , Fuchssteiner and Fokas [8] , Fokas and Anderson [9] . In local
coordinates ui on M the tensor fields ¢ and ¥ are represented by matrices
¢ij(u) and Wij(u). Then (3.2.7) can be written in the following well-known

form

(3.2.9) @ij’k(u) + ¢jk’i(u) + @ki’j(u) =0 VYu M.

The condition (3.2.8) for the canonical tensor field ¥ becomes

3210 v @ s V@ e s ) v =0 e .
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Be2s 11 Lemma.

Suppose the tensor field¢ € T;(M) is invertible. If ¢ is cyclic, the inverse
tensor field<1>—l is canonical. Suppose the tensor field Y € Tz(M) is

. . . . i . =] 7 :
invertible. If ¥ is canonical, the inverse tensor field Y is cyclic.

Proof:

1 1

Using LA o = - ¢—1(LA¢) ® ' and the definitions of cyclic and canonical

tensor fields the proof is almost trivial.
302412 Theorem.

Let w be a non degenerate two-form with corresponding tensor fields and
Q" . Then the following conditions are equivalent

i) w is closed,

ii) Q is cyclic,

TR +' .
iii)  1is canonical.

The equivalence of ii) and iii) follows immediately from lemma 3.2.11.
The equivalence of i) and ii) can be shown in the following way. Let
4, B, C be vector fields.Define the one-form o= Q4 = i,w. Applying

A
Leibniz rule to the identity

da(B,C) = LB<QA,C> - LC<QA,B> - <A,[B,C]>

results in

(3.2.13) da(B8,0)

<LB(QA),C> + <0A,[B,c]> - <L, (04),B>,

dw + do we obtain

<(LAQ)B,C > = iA dw(B,C) + da(B,C)

dw(4,B,C) + da(B,C)
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This implies

< LA(QB), ¢ > = dw(4,B,C) + da(B,C) + <Q[4,B], C >.

Substitution of (3.2.13) finally results in
dw(4,B,C) = £(4,B,C) + £(B,C,A) + £(C,A,B)

where f is given in (3.2.5) (with ¢ = Q). So dw = 0 is equivalent with
(3.2.7).

Now we are able to define a Hamiltonian vector field on a
symplectic manifold (M,w). Consider a function H : M ~ IR, then dH is a

one-form on M.
3.2.14 Definition.

The vector fieldX = ( dH is called a Hamiltomian vector field on the
symplectic manifold (M,w). The function H is called the Hamiltonian,
the corresponding dynamical system is called a Hamiltonian system.

o
Note that in = dH. Since w is nondegenerate thevector field X is also
uniquely determined by this relation. Let u : (a,b) - M , then we say

that u is a solution of this Hamiltonian system if
a(e) = 9 () dH(u(t)) Vt€ (a,b).

In a local coordinate system the tensor field Q is represented by a matrix
Qij(u) and the tensor fieldﬁf‘is represented by the inverse matrix QlJ(u).
Then the coordinates ul(t) of u(t) satisfy the following system of

differential equations

(3.2.15) ﬁi(t) = Qij(u(t)) H,j(u(t)).

However, we can always introduce new local coordinates SPEREEETL B SPEEEES

such that the system (3.2.15) transformes into the system (3.1.1).
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(3.2.16) Theorem (Darboux).

For each u € M there exists a neighbourhood with local coordinates
Qpseves Qs PyoeeesPy such that the symplectic form w can be written as

n
(3.2.17) w= I d a4 A d p.

1

See Abraham and Marsden [1] or Choquet-Bruhat [3]

o
The coordinates qq»--->p, are called canonical coordinates. In this new
coordinate system the cyclic tensor field Q and the canonical tensor field

Q" are represented by

(3.2.18) Q. .

1] 6isj+n B ai"'n’j ’

i+n,j i,j+n

(3.2.19) @ =35 -3 vi,j=1, ..., 2n.

With these matrices (3.2.15) reduces to thewell-known classical Hamiltonian

system (3.1.1).

3.3 POISSON BRACKETS.

Let (M,w) be a symplectic manifold. With every pair of functions F and G
on M corresponds a (new) function on M, called the Poisson bracket

of F and G. ‘

k0. T | Definition,

The Poisson bracket of two (possibly explicitly time dependent) functions

F and G on M is the function {F,G} defined by
8.5 {F,G} = <dF, 9 dG>.

Two functions on M are in imvolution if their Poisson bracket vanishes.

a
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In local coordinates (on a finite dimensional manifold) the definition

can be written as

= ij
{F,c} Fyl Q G’j‘

3.3.3 Theorem.
The Poisson bracket satisfies the so called Jacob? identity
({rel, kb + {6k}, F} + {{KF},6l=0

for any three functions F, G, K GFP(M).

Proof:
The proof of this standard result can be found in many text-books, see for
instance Arnold [2]. We now give a proof which only uses that 0 is

. « .. . :
canonical (and not that @ 1is invertible). Note that

{F, G} =<dr, Qdc » = L« F.

This implies

{{F,G}, K} =<dlL F, Q94K >

Qac

=<1l dF, QYdK >

QedG

g(dG, dF, dK)

where g is given in (3.2.6) (with ¥ = Q+). The theorem follows now

from (3.2.8).
o

Recall (definition 2.3.1) that a function F € FP(M) is a constant of the

motion or first integral of a dynamical system on M if

I o

F(u(t),t) =0

[=7)

t
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for all solutions of the dynamical system. For a Hamiltonian system with

Hamiltonian H on the symplectic manifold (M,w) this implies the following

3.3.4 Lemma.

A function F € FP(M) is a constant of the motion iff {F,H} + F = 0 on
M x IR. For functions F, which do not depend explicitly on t (so F € F(M))

this condition is {F,H} = 0.

Proof:

It is easily seen that

d + .
I F(u(t),t) = < dF, Q dH > + F

= {F,H} + F.

o
The following lemma is an immediate consequence of the Jacobi identity.
3.3.5 Lemma.
The set of constants of the motion for a Hamiltonian system 1is a
Lie algebra, if we take the Poisson bracket as Lie product. The set of
autonomous constants of the motion is a subalgebra of this Lie algebra.

a]

3.4 VARIATIONAL PRINCIPLES.

It is well known that the classical Hamiltonian system (3.1.1) can be

derived from the following variational principle
n
2 s
stat [« I p;d; - H(q,-.,p ) dt

where U is the set of all curves in phase space len with qi(tl) and qi(tZ)
fixed. There also exists a variational principle which yields directly the

more general equations (3.2.15):
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3.4.1 Theorem.

For every point ug € M there exists a neighbourhood Uo =) u, and a
one-form o defined on Uo, such that a solution u(t)€ Uo for t€[t1,t2] of

(3.2.15) is a stationary point of the following functional

t
(3.4.2) [ 2 (< atue), i(t) > - HGu(t)) dt
t
1

over the set of all curves u(t) € Uo for t € [tl’t2] with u(tl) = G(t]),

u(tz) = G(tz) .

The two-form w is closed, so for every point u, € M there exists a
neighbourhood u; and a one-form o defined on U;, such that'w = - da .
On a neig?bourhood Uo < Ué there exist local coordinates u® such that

o=y du*. So (3.4.2) can be written as

t .
(.43 % (@) G50 - Bu(e)) dt
&
Then it is an elementary exercise to show that stationary points of (3.4.3)

with u(t]) = ﬁ(t]), u(t2) = E(tz), are solutions of
(3.4.4) (@, .- .)u =H,..

From w = - da = %Q.‘dul A du® we obtain Q.. = o, :- o, .. Multiplication
L J1 1] Js1

of (3.4.4) with QlJ, the inverse matrix of jS, results in (3.2.15).

35 HAMILTONIAN SYSTEMS AND ADJOINT SYMMETRIES.
In this section we deal with the question: when is a dynamical system a

Hamiltonian system? In general this is a very difficult problem. For a

number of equations the Hamiltonian character was only found after a long
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time. For instance, the Hamiltonian character of the Korteweg — de Vries
equation [6,7] was found rather recently by Gardner [11] and Broer [10] .

Consider an autonomous dynamical system on a manifold M
(3.5.1) G = X(u).

We saw in theorem 2.5.8 that a non-closed adjoint symmetry gives rise to

an SA operator.
3.5.2 Theorem.

Suppose the dynamical system (3.5.1) has an adjoint symmetry p such that

w = dp is nondegenerate . Then the vector field X can be written as
(3.5.3) Xx=0 F -p)

where F = - < p,X> , Q is the SA operator corresponding (theorem 2.5.8)

to p and Q= Q_].

Proof:
From F = - <p,X> = - iXp we obtain

dF = -d i, p=- LXp + 1Xdp .
o € V¥(X,M) implies LXp = -5, so

Then from <iX dp,4> = dp (X,A) = <QX,A> V 4 € TuM , we obtain

QX = i,dp = dF - f .

Since dp is nondegenerate , the inverse tensor field 9 € TE(M) of Q

exists. Application of Q" to the formula above results in (3.5.3).

Dynamical systems corresponding to (3.5.3) are sometimes called
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Birkhoffian systems, see for instance Santilli [12] . In local coordinates

u’ the corresponding differential equations can be written as
- - _
(3.5.4) (pi.j(u’t) pj,i(u’t))u F;i(ugc) Qi(u’t)

where the matrix (pi j(u,t) =P i(u,t)) is invertible on MxIR .
L) ’

If the adjoint symmetry p satisfies one more condition, the system is

Hamiltonian.

3.5.5 Theoremn.

Let the dynamical system (3.5.1) have an adjoint symmetry p such that
i) dp is nondegenerate,

ii) there exists a constant of the motion G such that j = dG.

Then the vector field X is a Hamiltonian vector field with Hamiltonian

H=-<p,X> -~ G and symplectic two—form w = dp .

Proof:

Substitution of ii) in (3.5.3) yields
X =0 dF-6) = @ dH.
In the definition of a Hamiltonian system we required H and @ to be
a function and a two-form on M, so they may not depend explicitly on t.
This is easily verified

H=F-G=-<pX>o-06 =-<dGXx> -G =0,

since G is a constant of the motion. Also

3.5.6 Remark.

Theorem 3.5.5 gives sufficient conditions for a dynamical system to be

Hamiltonian. However, this does not mean that, in trying to find out if
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a dynamical system is Hamiltonian, one should try to find an adjoint
symmetry as described in theorem 3.5.5. There are two reasomns for this.
First finding an adjoint symmetry as described in theorem 3.5.5 is not
simpler then finding the symplectic two-form and Hamiltonian. The second
reason is that theorem 3.5.5 gives sufficient but not necessary conditions
for a system to be Hamiltonian. A simple example of this is provided by

a Hamiltonian system with a symplectic form w which is closed but not
exact. The Hamiltonian form of the Korteweg-de Vries equation (section 5.6)

can be found by theorem 3.5.5.

o
3.6 COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS.

o . ; p 2 ;
For symplicity we now consider the symplectic manifold M = IR % with
canonical coordinates Qpsees P Then w = I d a A dpi. Suppose we intro-
duice new coordinates ﬁl,..., ﬁn on IRzn. 1
3.6.1 Definition.
The transformation from qps---s P tO ﬁ],...,ﬁn is called a canonical
coordinate transformation if, in new coordinates w = I dai A dﬁi.

i
o

So after a canonical coordinate transformation the differential equations
for ﬁi, ﬁi are also-of the form (3.1.1).

Sometimes by means of a canonical coordinate transformation,
the system of differential equations is greatly simplified. For instance
suppose all the new coordinates ﬁi are cyclic. This means the Hamiltonian,
written as function of ﬁi and ﬁi, depends only on the ﬁi. The solution of
the corresponding Hamiltonian system is trivial and the system is called
completely integrable.Furthermore the functions ﬁi constitute a set of
n constants in involution. In general it turns out that the existence of
n constants of the motion in involution, is directly related to the

complete integrability of the system.
362 Theorem (Arnold, Liouville).

Suppose there exist n constants of the motion in involution F, = H, FZ""’F .
n

1
Consider the level set of functions Fi
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N, - n = .
Ho = {(apeens p)EM = IR®| F, (q>e00p) = ;)

Assume the one-—forms dFi are linearly independent on Ma and that Ma is
compact and connected.
Then

i) Ma is invariant for the Hamilton flow with Hamiltonian H,

ii) M; is diffeomorphic to the n-dimensional torus T = {(al,...,ﬁn) mod 27},
iii) there exist n functions ﬁi(Fl,...,Fn) such that ﬁl,..., an’ ﬁl,...,ﬁn
are coordinates for a neighbourhood of Ma . The transformation (ql,...,pn) >
(ﬁl,...,ﬁn) is a canonical coordinate transformation and the Hamiltonian H,

expressed in the new coordinates, depends only on the ﬁi : H = H(ﬁl,...,ﬁn).

Proof:

See Arnold [2].

The solution of the corresponding Hamiltonian system

p, =0
G631 G, E)
q, = —mm i=1l,...,n
1 a'so-
Pi

is trivial and the system is completely integrable. The coordinates Bi are
called action variables, while the ai are called angle variables.

Note that we only discussed complete integrability for finite~
dimensional Hamiltonian systems. Some remarks on complete integrability

for infinite-dimensional Hamiltonian systems will be made in section 5.5.
3.7 TRANSFORMATION PROPERTIES OF HAMILTONIAN SYSTEMS.

In section 2.7 we discussed the behaviour under transformations of
(adjoint) symmetries and the four possible operators between (adjoint)
symmetries. The transformation properties of Hamiltonian systems are also
easily found. Consider the Hamiltonian vector field X = Q+dH, on a

manifold M, corresponding to the symplectic form w and Hamiltonian H.
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. . . . . <
Suppose there exists a diffeomorphism f : M>N with inverse f :N->M .
Using the derivative map f' : TM > TN we can transform the vector field

X on M to a vector field } = f'X on N.
3.7.1 Theorem.

The transformed vector field X = £'X of the Hamiltonian vector field X is
again a Hamiltonian vector field. The corresponding Hamiltonian H and

symplectic two-form & on N are given by

(3.7.2)  HW = HE W) vveN,

~ o~ '~ 1~
Fan

(3.7.3) BA,B) = w(E 4, £B) VA,BEXN) .

The tensor fields §2 €T; (N) and Q+ € TE(N) (considered as vector bundle
maps we have Q: TN - T*N and Q" TN > TN) are given by

a PR o |
(3.7.4) Q=f  Qf |,
(3.7.5) - 0" = £'Q7gr*

Proof :

The relations between functions, differential forms and tensor fields are
"natural' with respect to transformationg (see also section 2.7). This
means’ that the transformed vector field X = £'X can also be obtained from
the transformed Hamiltonian H and the transformed two-form &. The

formulas (3.7.2), (3.7.3), (3.7.4) and (3.7.5) give the usual transformation

properties of functions, differential forms and tensor fields.

37,6 Remark.

By the method used in theorem 3.7.1 we can supply the manifold N with a
symplectic two-form ® , the push—~forward of w by f. Suppose there exists
already a symplectic form ¢ on N; so (M,w) and (N,¢ ) are both symplectic
manifolds. On N we now have the symplectic forms ¢ and & . If ¢ = &

the mapping f is called a symplectic transformation (symplectic
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diffeomorphism) or canonical transformation. A canonical transformation
should not be confused with a canonical coordinate transformation, as

described in definition 3.6.1.
o

Other properties of the Hamiltonian system on M are also easily translated

to the transformed system on N.
3.7.7 Corollary.

The transformed Poisson bracket of two functions F], F2 on M is equal to the

Poisson bracket of the transformed function F], F2 on N.

Proof:.

~ 1

From Fi(v) = Fi(f+(v)) (1 = 1,2) we obtain dFi = f+ dFi.
The result now follows from the definition of Poisson bracket and of
(3.7.5).

So if the functions F], F, on M are in involution, the transformed

2

functions F F2 on N are also in involution.

|
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CHAPTER 4: SYMMETRIES FOR HAMILTONIAN SYSTEMS.
4.1 INTRODUCTION.

In chapter 2 we considered some general properties of dynamical systems.
We studied symmetries, adjoint symmetries and four types of operators
between those symmetries. In this chapter we assume the dynamical system
is a Hamiltonian. system. The most important consequence of this Hamiltonian
character is that there always exist at least one SA- and one AS operator.
This implies that with a constant of the motion not only corresponds an
adjoint symmetry, but also a symmetry. However, there can also exist
symmetries which are not related in this way to a constant of the motion.
These so called non-(semi-) canonical symmetries have interesting
properties. In section 4.2 we show how they can be used to construct
(new) SA- and AS operators. If the thus constructed (new) SA operator
is invertible, the system can be written as a Hamiltonian system in
two different ways. These so called bi-Hamiltonian systems are considered
in section 4.3. Non—(semi-) canonical symmetries can also be used in
various ways to construct (new) constants of the motion out of already
known ones. In section 4.4 we shall describe three possible ways for
doing this. In the sections 4.5 and 4.6 we consider Hamiltonian systems
for which there exists a (non-semi-canonical) symmetry which satisfies
some additional conditions. Then we show that there exist two infinite
series symmetries, one of which corresponds to an infinite series of
constants of the motion. The other series consists (in general) of
non-semi-canonical symmetries. This method can be applied for several
(all?) of the popular completely integrable infinite-dimensional
Hamiltonian systems (Korteweg-de Vries equation, sine—-Gordon equation).
Of course the existence of infinite series of constants of the motion
for these equations is well-known. However, several methods we describe
for constructing these series of constants of the motion seem to be new.
Also the second series of symmetries is generally overlooked.

In this chapter we shall consider an autonomous Hamiltonian
system on a symplectic manifold (M,w) with Hamiltonian H. With the two-form
w correspond the tensor fields Q € Tg (M) and Q€ TZ(M) (see section

3.2). The Hamiltonian vector field on M is then given by
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(4.1.1) X =g
and the corresponding differential equation is
. <
(4.1.2) a(t) = X(u(r)) = Q (u(t)) dH(u(t)).

As in chapter 2 we shall assume that for all initial conditions
u(to) =ug there exists a smooth unique solution u(t) of (4.1.2), defined

on some interval I < R
4.2 SA- AND AS OPERATORS.

In this section we discuss the various possible SA- and AS operators
for a Hamiltonian system. The following lemma will be useful in the

sequel.
4.2.1 Lemma.

Suppose a is a closed (parameterized) one-form on M and ¥ € Tg M) 1is

a canonical tensor field. Then LwaW = 0.

Proof:
Let B and y be arbitrary one—forms on M . Then define the vector fields

A= Yo , B =Y¥8 and ¢ = Yy. Application of Leibniz'rule to the identity

do(B,C) LE<a,c> - Lc<a,B> - <a, [B,C]>

results in

(4.2.2) do(B,C) <LBa,c> + < 0,[B,C]> - <Lca,B>~

Using Leibniz' rule and the antisymmetry of ¥ and its Lie derivatives
g ymm

we can write the second term as

<o, [B,C] > = < o,L, (Yy) >
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= <a, ¥ LBy> - <y, (LBW)u >

= <q,¥ LBy> - <y, LB(Wa)> + <Y, WLBa >

- <LBy, Yo> + <y , LA(W8)> - <LBa, Yy>

Substitution in (4.2.2) gives
= - gl - )
da(B,C) < By,Wa> + <y, LA(WB)> <LCq ,B >
Since ¥ is canonical (see definition 3.2.4) this becomes

do(B,C)

<LB,¥y> + <y, L,(48) >

- <, ¥LB> + <y, L, (¥8)

<Y, (QAW)B> .

The one-form o is closed, so the left hand side vanishes. The one-forms

R and Yy are arbitrary, so LAW = LWuW = 0.

a
The first application of this lemma is described in the following
§.2.3, Lemma.
Let o be a closed (parameterized) one-form on M and let 4 = Q+a be
the corresponding vector field. Then LAw =0, LAQ = 0 and LAQ+ = 0.
Proof:
The tensor field Q+ corresponds to the closed two-form w, so by
theorem 3.2.12 it is a canonical tensor field. Then by the preceding
lemma LAQ+ = 0. From LA(QQ+) = 0 we obtain
Lo=-L090 =0
A A Ut
Finally LAQ = 0 is equivalent with LAw = 0.
o
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4.2.4 Remark.

The importance of lemma 4.2.1 is that it can be used in cases where

a canonical tensor field Y is (maybe) not invertible (see for instance

section 5.6). In the proof of lemma 4.2.3 we had ¥ = Q+, which is

invertible. Using this property the proof tha£ LAQ+ = 0 can be

considerably simplified. From 4 = Q0 we obtain a = Q4 = iAw. Since o

is closed we have d iAw = da = 0. Then, because W is cloied, LAw = iAdw +

+d iAw = 0, which is equivalent to LAQ = 0. Finally LAQ = - Q*(LAQ)Q*= 0.
o

Recall that a tensor field Y € sz(M) which can be used to map adjoint

symmetries into symmetries was called an AS operator (see definition

2.5.3). A tensor field ¢ € T;p(M) which maps symmetries into adjoint

symmetries was called an SA operator (see definition 2.5.6). It turns

out that for a Hamiltonian system there always exists an SA- and an AS

operator .
4,2.5 Theorem.

The tensor field © is an SA operator and the tensor field “is an AS

operator.

Proof:
The conditions for an SA operator were given in definition 2.5.6. The

operator 2 is an SA operator if it satisfies
(4.2.6) Q + LXQ = 0.

It follows form lemma 4.2.3 with o = dH that LXQ = (0. Since w does not
+

depend explicitly on t, the corresponding tensor fields © and @ also

don't. So § satisfies (4.2.6). In a similar way we can show that o is

an AS operator. This result also follows from theorem 2.5.7.

In local coordinates the tensor field £ is represented by a matrix
(matrix valued function) Qij(u) and the tensor field @ is represented
by the inverse matrix ng(u). A symmetry Y has components YJ(u,t) and an

adjoint symmetry ¢ has components Og(u,t). Then theorem 4.2.5 says that
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if ¥y is (represents) a symmetry, § (u) YJ(u t) is an adjoint symmetry.

Also if og(u,t) is an adjoint symmetry, (u) ) (u,t) is a symmetry.

Theorem 4.2.5 has a very important consequence. Suppose F
is a constant of the motion. Then theorem 2.4.3 says that dF is an
adjoint symmetry. Next theorem 4.2.5 implies that Q0 arF is a symmetry.
So for a Hamiltonian system every constant of the motion F gives rise

to a symmetry @ dF. This leads to the following
4.2.7 Definition.

i) An adjoint symmetry ¢ which is exact, will be called a canonical
adjoint symmetry. The corresponding symmetry Y = Q0 will be called

a canonical symmetry.

ii) An adjoint symmetry O which is not exact, will be called a non—canonical
adjoint symmetry. A symmetry Y such that ¢ = QY is not exact will be

called a nonm-canonteal symmetry.

4.2.8 Remark.

Suppose 0 = QY is a canonical adjoint symmetry. Then there exists

a function F on M x R such that o = dF. However, by theorem 2.4.5 there
also exists a constant of the motion G such that 0 = dG and Y = G de. So
the space of canonical adjoint symmetries (a subspace of V*(X;M)) and the
space of canonical symmetries (a subspace of V(X;M)) are both isomorphic
to the space of constants of the motion. (Constants of the motion which

differ only by a (numerical) constant are identified).

The following notions also turn out to be useful.

4.2.9 Definition.

i) An adjoint symmetry which is closed, will be called a semi-canonical

adjoint symmetry. The corresponding symmetry Y = @ o will be called

a semi-canonical symmetry.
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ii) An adjoint symmetry o which is not closed, will be called a non—
semi—canonical adjoint symmetry. Finally a symmetry Y such that

0=QY is not closed will be called a non—semi-canonical symmetry.
4.2.10 Remark.

An exact differential form is always closed. In the terminology
introduced above, this means that a canonical (adjoint) symmetry

is also a semi-canonical (adjoint) symmetry. A differential form which

is not closed is also not exact. This implies that a non-semi-canonical
(adjoint) symmetry is also a non—canonical (adjoint) symmetry. Since a
closed form is not necessarily exact, the converse of these two assertions
is not true. By the Poincaré lemma a closed one-form o can locally

be written as o = dF. If this relation holds on M x R the form is exact.
There is a topological condition which implies that closed k-forms are
exact. In our case (one-forms) the condition is that the first cohomology
group of M vanishes. If the manifold M has this property, (non-) semi-
canonical (adjoint) symmetries are identical with (non-) canonical
(adjoint) symmetries. This happens for instance if M is also a linear

space. 5]

In local coordinates u" a canonical adjoint symmetry ¢ has local
coordinates o, = G,i for some constant of the motion G. The coordinates
g of a semi-canonical adjoint symmetry satisfy Ui,j = Oj,i'

In theorem 4.2.5 we have seen that there always exists an SA-
and an AS operator. Non—semi-canonical symmetries also provide us with that

type of operators.

4,2.11 Theorem.

Suppose Z = @ 1 is a non-semi-canonical symmetry.
Then

i) LZQ is an SA operator and LZQ+ is an AS operator,

ii) the operator LZQ is cyclic and corresponds to the two-form dt

(4.2.12) < (L@A4,B> = (L,w) (4,B) = dT(4,B) V A,B € X(M).
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In theorem 4.2.5 we have seen that Q is an SA operator and Q" is an
AS operator. Then by theorem 2.5.15 i the same holds for the Lie derivatives
in the direction of a symmetry Z . Using T = Q2 = iZw and the closedness

of w we obtain

LZm = d iw+ 1Zdw = dt

which implies (4.2.12). Finally dT is closed, so the corresponding

operator LZQ is cyclic (theorem 3.2.12).

In local coordinates u' the operators LZQ and LZQ+ are represented by

the following matrices

(LZQ*)JLJ = Q}IJH 2" -t g - o™ z}m ,

|
+
0N
-
+
O
Ny

In theorem 2.5.8 we have seen that (also for a non-Hamiltonian system) a
non-closed adjoint symmetry T = QZ gives rise to an SA operator. Theorem
4.2.11 states that (for a Hamiltonian system) this operator is identical
to LZQ. Note that in the proof of theorem 4.2.1] we did not use that

the symmetry Z was non-semi-canonical. However, if Z is semi-canonical,
the corresponding adjoint symmetry T is closed. Then by lemma 4.2.3,

LZQ = 0 and LZQ+ = 0. So, if the symmetry Z is semi-canonical, the
constructed operators are trivial.

For a symmetry Z which is non-semi-canonical the constructed
operators do not vanish. Of course this does not imply that they are inver-
tible. As an example for this consider a system with two analytically inde-
pendent constants of the motion F and G. Then Z = Q+T = Qﬁ(FdG) = F(Q+dG)

is a non-semi-canonical adjoint symmetry. The two-form dT is given by

dt(4,B) = < dF,A> <dG,B> - < dG,A> <dF,B> .
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Then (4.2.12) implies that

(LZQ)A = <dF,4> dG - <dG,A> dF.

So the SA operator LZQ maps any vector field A into the module of one-forms
spanned by dF and dG. If the manifold M has dimension larger then 2,
this means that LZQ is not invertible. If LZQ (LZQ+) is invertible, then
also LZQ+ (LZQ). The two inverse operators are related by
g v e =o.
Z z
Even if LZQ is not invertible, we can construct several recursion operators

for symmetries and for adjoint symmetries. For instance the tensor fields

< < <
(4.2.13) Q LZQ , (LZQ 0, (LZQ ) LZQ
are (can be used as) recursion operators for symmetries. However, these
recursion operators are not independent. Using the relation (LAQ+)Q +
QkLAQ = 0 for an arbitrary vector field 4 we can show that
<+ <+
(LZQ n=-Q LZQ .
(4.2.14)
+ _ “~ 2
(LZQ )LZQ = « LZQ) .

Analogously the recursion operators for adjoint symmetries

< < <
(4.2.15) (LZQ)Q , QLZQ s (LZQ) LZQ

are related by

« <«
Q(LZQ ) = - (LZQ)Q s
(4.2.16)
- <. 2
(LZQ) LZQ = ((LZQ)Q )

So the recursion operators given in (4.2.13) and (4.2.15) can all be

expressed as powers of Q+LZQ and (LZQ)QF. Of course we can also construct

SA and AS operators by taking "higher Lie derivatives'.
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4.:2:17 Theorem.

Suppose Z = (1 is a non-semi-canonical symmetry. Then for all k > 1

i) LZkQ is an SA operator and LZkQ+ is an AS operator,

ii) LZkQ is a cyclic operator (cyclic tensor field) and corresponds to

the two~form <iLZk_1T

<(szQ)A,B> = (szw)(A,B) = (d sz—IT)(A,B) vV A,B € X(M),

Proof:

The first part of this theorem follows by induction from theorem 4.2.11
and theorem 2.5,15 i, The SA operator szQ corresponds to the two-form

k
L

szw. Since dLka = dw = 0 this SA operator is cyclic. Finally, by

theorem 4.2.11

4,2.18 Remark .

By combination of the SA operator szﬂ and the AS operator§f_we see that
(LZkQ)Q+ is a recursion operator for adjoint symmetries. In this operator
the symmetry Z is "used k times". This is also the case for the recursion
operator for adjoint symmetries ((LZQ)Q+)k.In general both recursion
operators will be different. As an example for this we take again the

symmetry Z = Q+(FdG) = F(Q+dG) where F and G are constants of the motion.

Then it can be shown Fhat, for an arbitrary one-form o,
(LY a = {F,cH(<dF, §0>de - <d6, 8 0>dF)
and
(Lzzg)sfa = {F,G}(<dF,2 0>dG - <dG,2 a>dF)

+F( <d{F,c},Q+a>dc - <dG,Q+0L>d{F,G} Yo
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So in general both operators are not equal. If there exists a symmetry Z,
such that the recursion operators for adjoint symmetries ((LZS'Z)Q+)2 and
(LZZQ)Q+ are equal up to a multiplicative constant, several interesting
properties can be proved. We shall consider that type of symmetry in
the sections 4.5 and 4.6.
o
Finally we expand a (non-canonical) symmetry in canonical

symmetries. This leads to the following
4.2.19 Theorem.

Suppose there exist constants of the motion Gi’ i=1,..., my such that
. . < - - . .
the canonical symmetries dGi are linearly independent in every poilnt

u € M. Suppose the symmetry Z can be written as

(4.2.20) 7 =

F.0 de, , F. € F_(M
5 1 1 i P

neMz

1
Then the functions Fi(i=l,...,m) are constants of the motion.

Proof:

: S :
Since  is an AS operator and the Gi are constants of the motion, we have

Z + LXZ =

o~

° <+
(Fi + LXF)Q dGi.

i=1

The vector field Z is a symmetry, so the left hand side vanishes.
Since the symmetries Sf_dGi are linearly independent in every point

of M, this implies

F, + LX.Fi =0 i=1,...om .

This means that the functions Fi are constants of the motion.
A completely integrable Hamiltonian system on the finite-dimensional

manifold M= ﬂ22n has always 2n constants of the motion with linearly

independent corresponding symmetries. In the notation of section 3.6

91



these constants of the motion are Fi = p., F, =q, -t — (i=l,...,n).

So in this case we can expand any (non-canonical) symmetry as described

in theorem 4.2.19.
4.3 BI-HAMILTONIAN SYSTEMS.

In theorem 3.5.5 we have seen that, for a general dynamical system, the
existence of a certain adjoint symmetry p implies that the system is
Hamiltonian. Of course this theorem is also valid if the dynamical
system is already a Hamiltonian system. In that case theorem 3.5.5
provides us with a symplectic two—form and a Hamiltonian which may or
may not be equal to the original ones. If the two symplectic forms are
not equal up to a multiplicative constant, we can write the system as

a Hamiltonian system in (at least) two essentially different ways.
Systems of this kind are sometimes called bi—-Hamiltonian systems.
Several popular integrable Hamiltonian systems have this property,

see for instance Magri [5] . In section 4.5 we shall meet dynamical
systems which can be written as a Hamiltonian system in infinitely many
ways (see remark 4.5.16). We now reformulate theorem 3.5.5 in case the

original system is already a Hamiltonian system.
4.3.1 Theoremn.
: . . < . . ..
Let the non-semi-canonical symmetry Z=Q T satisfy the following conditions:
i) the operator LZQ is invertible, or equivalently the two-form dt
is nondegenerate,
11) the symmetry 7 is canonical, so there exists a constant of the motion

G such that Z = 01 = 0'dc.

Then the vector field X is also the Hamiltonian vector field corresponding

to the Hamiltonian H = LZH - G and the symplectic two-form w = dT
Proof:

Theorem 3.5.5 yields that X is the Hamiltonian vector field corresponding

to the Hamiltonian H = - <71,X> - G and symplectic two—form dT, Since
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<« < .
X =0 dH and T = @ Z we can write

«
<T,X> = <T1,0 dH>
= -<dH,Z>

= —LZH.

~

So H = LZH ~ G and this concludes the proof.

o
If a symmetry Z, as described in this theorem exists, the vector field

X can be written as

X =g du
and as
-1 .~
X = (LZQ) dH.
4.4 THE DUALITY MAP.

Suppose Y] = Q+01 and Y2 = QFOZ are two symmetries. Then by theorem
2.5.10 the function

(4.4.1) G = <c],Y2>

is a constant of the motion. We shall now compute the canonical symmetry

0 dG. First rewrite (4.4.1) as

The exterior derivative is given by

I

dG =d i, ¢
Y2 1

L

It

o, -1, do
Yz | Y2 1
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From (4.2.12) (with 1 = 0,, 2 = YI) we obtain

1

iyzdol = (LY]Q) Yz
= LY1 Qr,) - QLY]y2
= LY)OZ - Q [Yl,Yz]
So
dG =

Lyzo1 - LY]OZ + Q[YI,YZ] .

Application of Q+ results in

<
Q dG

“« <
Lyzy1 - (LYZQ )o1 - LYIY2 + (LYIQ )o2 + [YI,YZ]

(4.4.2)

<« «
TALy @ 1 = 0Ly D Ty + [1p,0]

By construction this is a canonical symmetry. In the right hand side
. . . - -
we recognize the recursion operators for symmetries LY 2 and LY S5

acting on Y, respectively Y, and the Lie bracket [Yz, Y]] . First .

2
suppose Y, is a canonical symmetry. Then there exists a constant of
the motion Fl’ such that Yl = Q+0] = Q+dFl. Then by lemma 4.2.3

LY Q = 0. In this case (4.4.1) and (4.4.2) can be written as
1

(4.4.3) G

n

<dF], Y> =L, F

2 Y2 1

and

(4.4.4) @ dc

<+ < S
Q (LYZQ)Q dF, + [YZ,Q dF]]

Formula (4.4.3) can be considered as a method for constructing a (new)

constant of the motion G out of a known constant F, and a symmetry Y

1 2°
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Then the canonical symmetry corresponding to G consists of two parts.

The first part is Q+(LY Q)Q+‘dF1, that is the recursion operator
2
Q+LY ! applied to the symmetry Q+dFl. The second term is the Lie bracket
2

= 3
of Y2 and @ dFl' We can also try to use the single terms to construct
a (new) constant of the motion. So starting with a constant of the motion

F, and a (non-semi-canonical) symmetry Y, there are three possible ways

1 2
to construct another constant of the motion.

i) We can compute G = LY F

2 1

ii) We can apply the recursion operator Q+LY 2 to Q+dF1 and obtain
2
Y, = Q7 (L, 9 dF ..
3 Y, 1
However, the symmetry Y3 can be canonical or non-~canonical, Only in

the first case this method yields a constant of the motion.

1ii)Compute the Lie bracket
<~
¥, = [YZ,Q dFIJ-
Also in this case Y, may be canonical or non-canonical.

It follows from (4.4.4) that QdG = Y3 + Y4' So if method ii) works then
also method iii) works and conversely. Method i) seems very attractive
because it yields at once a constant of the motion. However, it is easier
to describe properties of a constant of the motion which is constructed
with one of the other methods. In section 4.5 we consider the problem of
constructing an infinite series of constants of the motion using a
recursion operator of the type (LY Q)Q+. In section 4.6 we investigate
under which conditions this infinite series can also be obtained using
the (repeated) Lie bracket with Yz.

We now return to (4.4.2) and assume both symmetries Y] and Y2

are canonical. So there exist constants of the motion F1 and F2 such that

Yl = Q‘de1 and YZ = Q+dF2. Then (4.4.1) and (4.4.2) can be written as
+

(4.4.5) G = <dF1’Q dF2> = {Fl,Fz} 5

and
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(4.4.6) Qde = [ dF2,Q+dF]] .

This means the canonical symmetry corresponding to the Poisson bracket
G = {Fl,Fz}is equal to the Lie bracket of the canonical symmetries

corresponding to F, and F‘. So we have proved the following well-known
4.4.7 Theorem.

The canonical symmetries form a subalgebra of the Lie algebra of
symmetries V(X;M). This subalgebra is isomorphic to the Lie algebra
of constants of the motion, as described in lemma 3.3.5.

o
This theorem has the following consequence. Considerations which only
use canonical (adjoint) symmetries can also be held on the level of
constants of the motion. It is only useful to work with vector fields

(one-forms) if non-canonical (adjoint) symmetries are involved.
4.5 INFINITE SERIES OF CONSTANTS OF THE MOTION I.

A lot of popular integrable Hamiltonian systems have an infinite series
of constants of the motion. These constants of the motion Fk do not
depend explicitly on t and are in involution

F, =0, {Fi,Fj} =0.
The most obvious way of constructing a new constant of the motion is by
taking the Poisson bracket of two already known elements of the series.
Since the series Fk is in involution this method will not work. Another
possibility is to take the Poisson bracket with some other constant of
the motion G. It turns out that several equations have a constant of the

motion G, not in the series F such that

k’
{Fk, G} = . Fk+£ e € R.

However, very often £ < 0, which means that in this way we cannot go

upwards in the series F, . For instance, for the Korteweg-de Vries equation

k
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there exists a constant of the motion G such that £= -1 (see for instance
Broer and Backerra [25]). In the case of the Sawada Kotera equation there
is a constant of the motion G with & = 0. For both equations this
method is not suitable for constructing an infinite series of constants
of the motion. For the Benjamin-Ono equation there exists a constant
of the motion G such that & = 1. Then an infinite series of constants
of the motion is easily constructed and the following considerations
are unnecessary. All these three equations will be used as examples
in chapter 5.

In this section we shall consider the problem of constructing
an infinite series of constants of the motion using a recursion operator
for adjoint symmetries of the type (LZQ)Qé. Starting with a non-semi-

canonical symmetry Z= Z 6 we first construct an infinite series of (in

|
general non-semi-canonical) symmetries Zk' With these symmetries correspond
the recursion operators (LZkQ)Q+. If the symmetry Z satisfies a
certain condztion (hypothesis 4.5.1) these recursion operators can be
expressed in terms of powers of (LZQ)Q+ (theorem 4.5.5). An infinite series
of adjoint symmetries is then constructed by Prs] = EL-(LZ 10 dH(ck € R).
In theorem 4.5.10 we give conditions such that this séries consists of
semi-canonical adjoint symmetries. Several properties of the (possibly)
corresponding constants of the motion are described in theorem 4.5.13.
Suppose there exists a non-semi-canonical symmetry Z = ar.
Then A = Q«LZQ is a recursion operator for symmetries and T = (LZQ)Q+ is a
recursion operator for adjoint symmetries. If we '"use the symmetry Z twice",
we can construct the recursion operators for adjoint symmetries

« 2 2
((LZQ)Q ) =T

and
2 “
(LZQ)Q
We saw in remark 4.2.18 that in general these recursion operatos will be

different. However, there may exist a symmetry Z such that both operators

are equal up to a multiplicative constant. This leads to
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4.5.1 Hypothesis.

There existsa non-semi-canonical symmetry Z and a real number ¢ with

c # (k-1)/k, ¥V k € N, such that
2 _ “
(4.5.2) LZQ = c(LZQ)Q LZ Q.

Note that since Z is non-semi-canonical the corresponding adjoint
symmetry T is not closed and (theorem 4.2.11) the operator (tensor
field)LZQ does not vanish. For a semi-canonical symmetry the condition
4.5.2 would be trivial. The existence of a symmetry Z as described in
this hypothesis, is essential for the theory of this section and
section 4.6. For several "completely integrable' Hamiltonian systems
(Korteweg—de Vries equation, sine—Gordon equation) this hypothesis is
satisfied (and also LZQ # af for some a € R). The following lemma

will be used several times in the sequel.
4.5.3 Lemma .

Suppose ¢ is a closed parameterized two—form with corresponding tensor
field ® € T,

2p
o by o = ¢4. Then

(M). Let 4 € XP(M) and define the parameterized one—-form

da(B],Bz) = (LA¢)(BI’B2) = <(LA¢)B],32> V B|,B, € X(M).
Apart from the dependence on the parameter t, this lemma corresponds
to the second part of theorem 4.2.11 with @, T and Z replaced by ¢, o and 4.
In the proof of that part of theorem 4.2.11 the special role of Q (we
consider the Hamiltonian system u = Q+dH) is not used. So the lemma can

be proved in the same way as the second part of theorem 4.2.11.

In local coordinates u® the tensor field '® (or the two-form ¢) is
represented by a matrix ¢i.. The one-form ¢ and the vector field 4 have
components o and 47 such that o; = ¢ijAJ. Then if ¢ is a closed two-form,

lemma 4.5.3 implies that
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< ; ; o
The operator A = Q LZQ is a recursion operator for symmetries. So we can

construct an infinite series of symmetries Z and corresponding adjoint

k
symmetries Ty by

(4.5.4) z, = N5z ,rk=sz=rk“r For k = 1523 een =

We now obtain the important

4.5.5 Theorem.,

Suppose hypothesis 4.5.] is satisfied. Then the symmetries Zk’ defined by
(4.5.4), generate SA operators LZ Q which satisfy
k
k

(4.5.6) L, Q=c¢ I'Q fork=1,2,3,...,

Z k

k
with ¢ = c(k-1) + 2-k.
Proof:

The proof is dome by induction. For k=1 (4.5.6) is an identity. Next

assume (4.5.6) is correct for k = Since hypothesis 4.5.1 is satisfied,

j.
cj # 0. We shall now compute LZ Q . It follows from lemma 4.5.3 with
- - - i*l
¢ w, ¢ Q and 4 Zj+1 that

(4.5.7) <(L Q) B|»>By> = d'rj+ (BI,BZ) Y B|,B, € X(M),

2 1

By construction Tj+ = FJT . We assumed (4.5.6) for k = j, hence

= S
T =50 (LZ‘Q)Q T =T (LZ.Q ) Z .
i ] N ]

The tensor field LZ Q0 corresponds to the closed two—form LZ w . So we can

J J
again apply lemma 4.5.3 with ¢ = g_ LZ w, ¢ = g_ LZ Q and A = Z. Then
37 i
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o =T, and the lemma yields
i+l

_ 1
(4.5.8) T (B,,8,) = EJT.<(LZLZj+lQ)Bl,BZ> VB B, € X(M).

Comparing (4.5.7) and (4.5.8) results in

1
L Q=— L L, R.
Zj+l cj Z Zj

By again using the assumption this can be written as

L, Q= LZ(FJQ )
j+l

The proof is now completed by writing out the right hand side with
Leibniz'rule
j-1

(4.5.8.2) L, = 3 TH(L,D) pi=i-lg rLe .
j+1 i=0

We first compute LZF . Using (4.2.16) and hypothesis 4.5.1 we obtain

LT LZ( (LZQ)Q )

2 X <«
(LZQ)Q + (LZQ)(LZQ )

n

(c-1) T2,
Substitution in (4.5.8.a) finally results in

L, 2= (le-D+D ity
i+l

So we have proved (4.5.6) for k = j+1 ,
a

The tensor field L_ @ corresponds to the closed two-form LZ w, so it 1is
k k
a cyclic tensor field. Theorem 4.5.5 now <mplies that, if hypothesis 4.5.1

s satisfied, the SA operators FkQ are also cyclic. If FkQ # 0 this
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theorem also implies that Z, must be non-semi—-canonical. We now show that,

k
if (besides hypothesis 4.5.1) the non-semi-canonical symmetry Z satisfies
an additional condition, it is possible to construct an infinite series

of semi-canonical adjoint symmetries. First the following
4,5.9 Lemma.

Suppose & is a cyclic SA operator with corresponding (closed) two-form ¢,

which do not depend explicitly on t. Then the adjoint symmetry
“
p =900 dH = oX
is semi-canonical.

Proof:
Since ¢ is an autonomous SA operator we have LX¢ = 0. Since ¢ is cyclic we
obtain from lemma 4.5.3 (with 4 = X and o = p) that dp = 0, so 0 is semi-
canonical.

o
So every autonomous cyclic SA operator gives rise to a semi-canonical adjoint
symmetry (and of course a semi-canonical symmetry). If the first cohomology
group of M vanishes (so semi-canonical symmetries are canonical symmetries)
this means that every autonomous cyclic SA operator gives rise to a constant

of the motion.

4.5.10 Theorem.

Suppose there exists a symmetry Z as described in hypothesis 4.5.1. Suppose
the time derivative Z is a semi-canonical symmetry. Then the adjoint

symmetries

(4.5.11) L (L, wan = L (L, DX K o= 1,2,3,...

p =
k+1 ck K Ck Kk

are semi-canonical.
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Proof:

The SA operator LZ 2 is cyclic. In view of the preceding lemma we only have
k
to show that LZ 2 does not depend explicitly on t. Since @ and Q" do not
k

depend explicitly on t, we have
'_i = <+
(4.5.12) r = T (LZQ)Q = (LéQ)Q .

The symmetry 7 is canonical, so from lemma 4.2.3 we obtain LéQ = 0. This
implies T' = 0. Then it follows from theorem 4.5.5 that g%—(LZ Q) = 0.
k

This completes the proof.

0f course " in practice" we do not have to compute Zk before we can

find O It follows from theorem 4.5.5 that

o, =L (L oatdm =1%dn, k=0,1,2,...
e To g

The corresponding semi-canonical symmetries are

= aky

=
It

X

<
K+l Q ok+l 0,1,2,...

where we have defined o, = dH and Xl =X = Q+dH. The following theorem
describes some properties of the constants of the motion which may be

associated to the adjoint symmetries P
4.5.13 Theorem.

Suppose there exists a symmetry Z which satisfies hypothesis 4.5.1 and
suppose 7 is a canonical symmetry. If the first cohomology group of the
manifold M vanishes, there exists an infinite series of constants of

the motion F] = H, Fz, F3,... for (4.1.1), defined by

k

(4.5.14) dF =T dn k =0,1,2,...

k+1 - Pk+1

These constants of the motion are in involution and do not depend
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explicitly on t.

Proof:

Theorem 4.5.10 states that the adjoint symmetries Py are semi-canonical.
In remark 4.2.10 we explained that, when the first cohomology group

of M vanishes, semi—-canonical adjoint symmetries are also canonical
adjoint symmetries. So (theorem 2.4.5) there exist constants of the
motion Fk which satisfy (4.5.14). We now compute the Poisson brackets

in these series

q° dF

(F, o1

sa0 Fpqgd = SF

k+1> i,k =0,1,2,...

<rdan, ¢r*an>

j+kQ+

<dH, (Q*LZQ) dH> .

Since 0 and LZQ are both antisymmetric, we obtain

{Fj, F } =0 ok = 1,2,3,...

Finally Fk = {H’Fk} = {F Fk} = 0 implies that these constants of the

])
motion do not depend explicitly on t.

4.5.15 Remark.

Note that we did not prove that the constants of the motion constructed
in this way, are (analytically) independeﬁt. On a manifold of dimension
2n there can only exist 2n independent functions. So for a finite-
dimensional manifold the infinite series F, cannot be analytically

independent. Also it may happen that F, = 0 for k > ko or that F, =

k k
= ka, fk € R . This last. situation occurs if LZQ = fQ for some f € R.
However, in the examples in chapter 5 there exist symmetries Z for which

it is easy to see that these trivial situations do not occur.
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4.5.16 Remark.
It follows from (4.5.11) and (4.5.14) that

(4.5.17) (LZkQ)X =cp dFk+]

The SA operator LZ Q2 corresponds to the closed two-form LZ w. If this

k k
two-form is nondegenerate, or equivalently if LZ Q is invertible, we can
k
consider (4.5.17) as a Hamiltonian system with symplectic two-form di = LZ w
k
and Hamiltonian cka+1. Then the vector field X can be written as
=1
(4.5.18) X = (LZkQ) d( ckaH).

The invertability of Lj Q corresponds (theorem 4.5.5) to the invertability
of I'. so if T (or LZQ) is invertible, we can write the vector field X
as (4.5.18) for all k 2 0. Systems of this type are called multi-Hamiltonian.
o
The methods we describe in this section and also in section 4.6 depend
essentially on the use of a series of (in general) non-(semi-)canonical
symmetries Zk' A different method for constructing infinite series of
constants of the motion, using a recursion operator for adjoint symmetries,
was given by Magri [5] (Nijenhuis operators, compatibility conditions
for "symplectic operators") and, using methods similar to those of
Magri, by Fuchssteiner and Fokas [8] (heriditary symmetries). These
authors do not use non-semi-canonical symmetries (Zk)' This means that
several interesting results (various possible methods for constructing
new constants of the motion as given in section 4.4; explicitly given
symplectic forms for the multi-Hamiltonian description, see remark

4.5.16; all results of section 4.6) cannot be found.

4.6 INFINITE SERIES OF CONSTANTS OF THE MOTION II.

In the preceding section we constructed an infinite series of constants

of the motion Fk’ using a recursion operator for adjoint symmetries. The
corresponding canonical symmetries were Xk = §f_dFk = Ak_1 Xl' We also
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constructed another series of symmetries Zk = Ak_lZl. In the first

part of this section we shall consider the various possible Lie brackets
between the elements of both series Xk and Zk' For a general dynamical
system (i.e. not necessarily Hamiltonian) a problem of this type was
considered in section 2.6. In that section we assumed that hypothesis
2.6.3 was satisfied. We now show that for a Hamiltonian system, this
hypothesis follows partly from hypothesis 4.5.1. In this section we

use the same notation as in the preceding section (so (Lle)Q+ =T, etc).

4.6.1 Theorem.

Suppose the non-semi-canonical symmetry Z1 satisfies hypothesis 4.5.1.

Then
2
(4.6.2) LZ A= (c-1)A",
1
3
(4.6.3) LZ A= (c=1)A" .
2
Proof:

Using hypothesis 4.5.1 it is easily seen that

%
L ]A = LZ]<Q LZ]Q)

<« < “~, 2
-Q (LZIQ)Q LZIQ + Q LZ]Q

(c-1AZ.
Next we prove (4.6.3)

«
L, A= LZZ(Q LZIQ)

« < <
-Q (LZZQ)Q (LZIQ) +Q LZZLZ]Q

+ <« +
(4.6.4) (2(LZZQ)Q (LZIQ) +Q (LZ]LZZQ - L[ZI,ZZIQ).

105



From (4.6.2) we obtain

— = = - 2 = -—
(4.6.5) (2,,2,] = LZI(AZI) = (LZIA) Z, = (=) A°Z) = (e-1)) Z,.

Substitution in the last term of (4.6.4) and using theorem 4.5.5 with
k = 1,2 and 3 results after some elementary computations in
LA = (e-DA.

By

It may be surprising that the factor c—1 appears in both Lie derivatives
(4.6.2) and (4.6.3). However, if LZ A=f A3 for some £ € R, then

necessarily £ = c-1. For, using the antisymmetry of the Lie bracket

0 = [z2,22] =LZZ(AZ]) = A[ZZ,Z]] + (EZZA) Z,

A[ZZ’ZI] + f ZA'

Then (4.6.5) implies f = c-l. Using the results of section 2.6 the following

theorems are easily proved.
4.6.6 Theorem.

Suppose the non-semi-canocial symmetry'Z]satisfies hypothesis 4.5.1.

Suppose [Zl’Xl] = bX2 with b # k(l-¢) for k = 0,1,2,... . Then the Lie
brackets between the elements of both series Xk qnd Zk are given by
(4.6.7) [Xk’XQ] =0,

(4.6.8) [Z,X] = (@=D(c=1) +b) X,

(4.6.9) [Zk’ZQ] = (&-k) (c~1) Zk+l

From theorem 4.6.1 and the assumption that [Z],X]] =b X2 we see that
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hypothesis 2.6.3 is satisfied (with a = c-1). The results now follow
from the corollaries 2.6.9, 2.6.10 and 2.6.13,

Note that (4.6.7) corresponds with the fact that the corresponding

constants of the motion F, , as given in theorem (4.5.13), are in involution.

k’
4.6.10 Remark.

From (4.6.8) we see that the series of semi-canonical symmetries Xk can
also be constructed using the (repeated) Lie bracket with Zl' In the
preceding section this series was constructed using a recursion operator
for (adjoint) symmetries A(I'). In fact we could also have starteg with

the method of the repeated Lie bracket, that is define a series Xk = L;;]Xj.
Then we can try to prove that this series consists of canonical symmetries.
Suppgse that

i) X2 = [Z],X’] = él is semi-canonical,

ii) Zl satisfies hypothesis 4.5.1. .

Then it can be shown that the series Xk consists of semi-canonical symmetries.

Moreover, if for some b # 0 X, = AX]’ we can show that the series

2
Xk can also be obtained using the recursion operator for symmetries A.

In section 2.6 we also computed the Lie derivatives of the operator A .
4.6.11 Theorem.

Suppose the conditions of theorem 4.6.6 are satisfied.
Then

LyA=0 , L, A= (D) LI N S
K K

Under the conditions of theorem 4.6.6 hypothesis 2.6.3 is satisfied

(with a = ¢c—1). The theorem now follows from theorem 2.6.8 and 2.6.12.
s}

Note that this theorem implies that A is also a recursion operator for

symmetries of the Hamiltonian systems u = Xk(u), k= 152:3500 s

In section 4.4 we described three (possible) methods for con-

structing a (new) constant of the motion, starting with a known constant of
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the motion and a non-semi-canonical symmetry Z]. In section 4.5 we construc-
ted an infinite series of constants of the motion using a recursion operator
for (adjoint) symmetries (method ii). In the first part of this section we

showed that, under certain conditions, the same series can also be obtained

using the (repeated) Lie bracket with Z, (method iii). We now make some

1
remarks on method i), that is compute the Lie derivative LZ H.
1

4.6.12 Theorem.

Suppose the symmetry Z1 satisfies hypothesis 4.5.1. Let there exist a
real number b # k(i-c¢) for k = 0,1,2,..., such that [Zl’Xl] = bX,. Then

9
(4.6.13) aik, 'y =e0x = k= 1,2,3
"o 2, K% T Tk Pk T
k-2
with f o= 1 (i(c=1)+b+1) .
k .
1=0
Proof:
The proof is done by induction. Since f1 = 1 the theorem is trivial for
k = 1. Next assume (4.6.13) holds for k = j. Then
Ty = i=l
d(LZ H) LZ d(LZ H)
1 1 1
=f. L, (QX.
A £ f

1

I

£f. (L, Q) x. + £. QlZ ,X.
j Ly @ Xy £ 002,]

Using theorem 4.6.6 we can write this as

i
d(L,"H)

fFQANX., + £.((-1 ~-1)+b) Q X.
| G P J((J ) (c—1)+b) ™

£ (GmD(e=1) + b+DQ X,

= £208 Xy = EipiPyan
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So we proved (4.6.13) for k = j+l.

4.6.14 Corollary.

Let the conditions of theorem 4.6.12 be satisfied. Then an infinite series
of constants of the motion in involution (for the Hamiltonian system

4= X(u) = Q«(u) dH(u)) is given by

- k-1
(4.6.15) F, =L H for k =1,2,3,... .
k Z1
Proof:
We only have to show that the Fk are in involution. From theorem 4.6.12
we obtain Fk = kok where Fk is the series of constants of the motion

in involution, as constructed in theorem 4.5.13.

4.6.16 Remark.

Note that in theorem 4.6.12 and corollary 4.6.14 we did not have to assume
that the first cohomology group of M vanishes. The reason is that in the
construction used in corollary 4.6.14 we don't have to reconstruct a
constant of the motion from its corresponding canonical (adjoint) symmetry.
This also means that "in practice'" the method described in the preceding
corollary is the most useful of the three considered methods.

o
Note that we did not prove that the constructed constants of the motion
are analytically independent. Also it can happen that we obtain only

trivial results. See further remark 4.5.15.
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CHAPTER 5 EXAMPLES.
5.1 INTRODUCTION.

In this chapter we shall apply the theory, described in the preceding
chapters, to several well-known differential equations. Most of these
equations have been extensively studied in recent years. However, we obtain
some results which, as far as we know, are new and give also different
proofs of already known properties. As a first example we consider in
section 5.2 the Burgers equation. This equation cannot be written in the
form of an autonomous Hamiltonian system. A non-autonomous ('unphysical'')
Hamiltonian form of the Burgers equation is possible, but the methods
described in the preceding chapters apply only to autonomous systems. In
the following sections of this chapter we consider various (semi-)Hamiltonian
systems. In sections 5.3 and 5.4 we study linear Hamiltonian systems. First,
in section 5.3 we study the most general form of a finite-dimensional
linear Hamiltonian systems. Then in section 5.4 we consider the one-
dimensional wave equation. In section 5.5 we make some remarks on Hamiltonian
systems which are related by a (invertible) transformation to a linear
Hamiltonian system. As an example we consider a nonlinear system of partial
differential equations, which can be transformed into the linear wave equation.
The most extensive example of this chapter will be the Korteweg-de Vries
equation, discussed in section 5.6. Finally in sections 5.7 and 5.8 we
discuss the Sawada-Kotera equation and the Benjamin-Ono equation. The Sawada-
Koteré equation is a "higher order Korteweg-de Vries equation", which is
not an element of the Lax hierarchy of higher order Korteweg-de Vries
equations. For this equation we only describe a 'semi-Hamiltonian form".
However, methods similar to those in chapter 4, can also be applied to
this equation. The Benjamin-Ono equation is an integro-differential equation.
Also other properties of this equation are different from the previous ones.
In chapters 2,3 and 4 we discussed some properties of dynamical
systems and Hamiltonian systems on manifolds. The differential geometrical
methods we used in those chapters, have only a sound foundation if the
manifold M is finite-dimensional. So at first sight we can only use the
results of the preceding chapters to investigate finite-dimensional systems.
An interesting finite-dimensional example is the periodic Toda lattice [52] .

However, most of the examples we wish to consider in this chapter are partial
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differential equations, i.e. dynamical (Hamiltonian) systems on manifolds
with infinite dimension. Fortunately these equations can be considered in
a topological vector space. In section 1.2 we gave definitions of various
differential geometrical objects on a (possibly infinite-dimensional)
topological vector space W. Suppose X is a vector field on W so it is a
(possibly nonlinear) mapping X : W -+ W. Then we can consider in (y the

dynamical system
(5.1.1) G = X(u).

The following theorem describes (adjoint) symmetries and operators between

symmetries for the system (5.1.1).

5.1.:2 Theorem.

Consider the parameterized vector field Y : W x R +~ W, the parameterized
one-form ¥ : W x R > (W* and parameterized tensor fields &, A, I',¥ of the
same type as in (1.2.3). Then:

i) Y is a symmetry of (5.1.1) iff

(5.1.3) Y(u,t) + ¥ (u,0)X() - X' Wy = 0,

ii) o is an adjoint symmetry of (5.1.1) iff

(5.1.4) c;(u,t) + 0" (u,£)X(u) + X"*(u)o(u,t) = 0,
iii) ¢ is an SA operator for (5.1.1) iff
(5.1.5) S(u,t) + (8" (u, )XW+ d(WX' (W) + X* (We(w) = 0,

iv) A is a recursion operator for symmetries of (5.1.1) iff
(5.1.6) ACu,t) + (A" (u,8)X(u)) + ACu,e)X'(u) - X" (uA(u,t) = 0,

v) I' is a recursion operator for adjoint symmetries of (5.1.1) iff



(5.1.7) fmﬁ)+(F%mQan-wax”m)+X"0nNmt)=m
vi) ¥ is an AS operator for (5.1.1) iff

(5.1.8) ¥(u,0) + ¢ L DXW) - ¥(W,OX W - X @Y, =0 .
All these expressions are assumed to vanish for all u € W and t € R.

Using (1.2.9) it is easily seen that all these expressions are equivalent
to the corresponding expressions in chapter 2.

o
Suppose u{t) 1is a solution of (5.1.1). The equation, obtained by linearizing

(5.1.1) around u(t) is
(5.1.9) v(t) = X' (u(t))v(t) v(t) € W.

This equation can be considered as an equation for the "variation'" v(t) = Su(t)
of u(t). Similar equations were considered in (2.2.2) (using a local
trivialization of the manifold) and in (2.8.11) (differential equation on

the tangent bundle). Suppose Y(u,t) is a symmetry of (5.1.1). Then it is
easily seen that v(t) = Y(u(t),t) is a solution of (5.1.9). So symmetries

can be interpreted as solutions of the linearized equation (5.1.9), which

can be expressed in u and t. In fact we can even use this property to

find symmetries. The adjoint equation of (5.1.9) is given by

(5.1.10) w(t) = - ¥X"*¥(u(t))w(t) w(t) € W*.

Let ¢g(u,t) be an adjoint symmetry of (5.1.1). Then it is easily verified
that w(t) = g(u(t),t) satisfies (5.1.10). So adjoint symmetries ¢ can be
considered as solutions of the "adjoint linearized equation" (5.1.10),
which can be written in terms of u and t.

5.1.11 Remark.

Sometimes we shall meet (adjoint) symmetries which do not depend explicitly

on t. For symmetries and adjoint symmetries of that type (autonomous

112



symmetries) the first terms in (5.1.3) and (5.1.4) vanish. Almost all
recursion operators for (adjoint) symmetries, SA- and AS operators which
we shall use in the sequel, do not depend explicitly on t (autonomous
operators). So for these operators the first terms in (5.1.5), (5.1.6),

(5.1.7) and (5.1.8) also vanish.

5.1.12 Remark.

In sections 5.3 and 5.4 we shall meet symmetries of the form Y(u,t) = }u

and adjoint symmetries of the form o(u,t) = au where } : W W and

; : W~ W* are linear operators. In that case the derivatives are easily
found: }(u,t) =0, Y'(u,t) = ; and §(u,t) = 0, o'(u,t) = ;. In sections

5.3 and 5.4 we also use recursion operators for (adjoint) symmetries, SA-

and AS operators which do not depend explicitly on u and t (i.e. constant
operator fields). An SA operator of this type is &(u,t) = Z where E : W » W*
is a linear operator. For operators of this type the derivatives with

respect to u and t vanish. This means that in the conditions (5.1.5), (5.1.6),

(5.1.7) and (5.1.8) the first two terms are zero.

In section 3.2 we considered a closed two-form and the
corresponding tensor field(s).In definition 3.2.4 we introduced cyclic tensor
fields and canonical tensor fields. The corresponding conditions were written
in terms of Lie derivatives. In the case that M = W, a topological vector
space, these conditions can be simplified somewhat.

5.1.13 Theorem.

An antisymmetric tensor field ¢ € Tg(W) (=antisymmetric operator field
du) : W~ W* is cyclic iff

(5.1.14) <(®'(u)4)B,C> + <(P(u)BYC,A> + <(®'(WC)A4A,B> = 0
for all 4, B, C, u € W,
Proof:

By theorem 3.2,12 an antisymmetric tensor field is cyclic iff the corresponding

two—form is closed. Then this theorem follows at once from definition
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1.2.10 iii) (and theorem 1.2.11).
o
An alternative proof of this theorem can be given by substitution of LA¢,

as given in (1.2.9), in definition 3.2.4 (i.e. in (3.2.5)).
5.1.15 Theorem.

An antisymmetric tensor field ¥ € Té(W) (=antisymmetric operator field

Y(u) : W* +~ W) is canonical iff

(5.1.16) <o, (Y"1 (u) (Y(u)B))y> + <B, (¥'(u) (¥(uw)y))a>
+ <y, (Y () (Y(wa))p> =0

for all o, B, v € W* and u € W.

Proof:
A canonical tensor field ¥ has to satisfy (3.2.8). Substitution of LWQB’
as given in (1.2.9) and some elementary operations yield that (3.2.8) is

equivalent to (5.1.16).

5.1.17 Remark.

It is easily seen from (5.1.14) and (5.1.16) that antisymmetric operators
® : W~ W* and ¥ : W*> ) , considered as constant operator fields (i.e.

¢ (u) and ¥(u) do not depend on u) always satisfy (5.1.14) respectively
(5.1.16) . Hence every antisymmetric opérator ® : W~ W* is cyclic (so the
corresponding two—form is closed) and every antisymmetric operator

Y : W* > { is canonical.

The fact that W 1is a topological vector space has also
consequences for the relation between semi-canonical and canonical
symmetries. In section 1.2 we have seen that a closed onezform o on W is
also exact. The corresponding function F on W such that o = dF was given
in (1.2.12). Of course these results also hold if o (and hence F) depend
on a parameter (t). In terms of (adjoint) symmetries this means that
semi—canontcal (adjoint) symmetries are canonical (adjoint) symmetries

and that non-canonical (adjoint) symmetries are non-semi canonical
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(adjoint) symmetries. So we can omit the prefix "semi" in these notions.
Finally we make some remarks on the notation and terminology

in this chapter. In the preceding chapters we used the notation and

terminology of modern differential geometry. We shall also do this in

this chapter, with a few exceptions. If W is infinite-dimensional, the

exterior derivative of a function (functional) F : W - R is the one-form

dF(u) = F'(u), as introduced in definition 1.2.10 i). In cases where the

duality map between W and W* is given by the L, innerproduct (all the examples

§F

except section 5.3), the derivative of F is frequently denoted as 50
(or é%g%p) instead of F'(u). This expression is called the variational
derivative of F. In all sections except section 5.3 we shall mostly use
this notation, so dF(u) will be replaced by %g—.

The derivative of various parameterized objects with respect
to the parameter (t) has always been indicated by a dot, for instance
Y(u,t) = g% Y(u,t) (derivative of a vector field to the parameter) . However,
when dealing with partial differential equations, derivatives with respect
to t (X,y,...) are very often indicated by a subscript t (X,y,...).

Apart from section 5.3 we shall also use this notation. So the derivative
of a parameterized vector field with respect to the parameter will be

written as
Y (u c)=§—y(u t)
£ at >
a dynamical system (Korteweg-de Vriesequation) will be written as

u, = X(u) = 6uux T
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5.2 THE BURGERS EQUATION.

This equation was used by Burgers [48,49] in 1939 in a model for turbulent
fluid motion. It is the simplest possible equation which describes both non-~
linear and diffusion effects . The Burgers equation arises in many places
in physics, particularly in problems where shock waves are involved (see

for instance Whitham [32] ). We shall study it in the form

(5.2.1) u, = X(u) = 2uux *u s x € R .
Various other forms of the Burgers equation can be reduced to (5.2.1), using
transformations of the dependent and independent variables. A transformation
which relates (5.2.1) to the diffusion equation was found in 1950 by

Hopf [50] and in 1951 by Cole [51] . This so-called Hopf-Cole transformation

is given by

=

(5.2.2) ve Bfg) s ¥,
. v
(5.2.3) us=f(v) = V’ﬁ

The corresponding evolution equation for v is given by

(5.2.4) v = £'(WXW = Xx(v) =v__ , x€R (u=f£).
Various methods are available for solving this linear equation. Suppose
we take an initial value ug € S] (see definition 1.3.2) at t = to. Then,
using the relation with (5.2.4), it can be shown that the corresponding
solution u(.,t) € SI for t 2 ty Thgrefore we shall study (5.2.1) in the
space Sl' Define the function space u, = U1 o R = {ueC (22) | u(x) =
=v(x) + a, v € U], a € R}. A duality map between S] and U] is given by

<a,d> = [Talx) A(x)dx Vael, 4€S, .

—o0

Then,similar to theorem 1.3.14, we introduce topologies on S] and U1 such

that ST = U, and UT =8«
We shall now study symmetries and adjoint symmetries for (5.2.1).
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Since we consider (5.2.1) on a topological vector space, a symmetry Y is

(can be considered as) a mapping Y : S, x R - Sl which satisfies (5.1.3).

1
The derivative mapping of X in the point u is given by

2

(5.2.5) X'(u) = 2up + 2ux +93 :8 8

1 1°
Substitution in (5.1.3) yields
2
1] — =
Y§u,t) + Y'(u,t) (2uuX + uxx) (2uj + 2ux +37) Y(u,t) 0,
YV ueg SI,V teR.

Two simple solutions of this equation are

(5.2.6) Y(u,t) = Xo(u) =u and Y(u,t) = Zo(u,t) =u + xu_ + 2t(2uux+uxx

Note that indeed XO 3 S] - S] and Zo : S1 x R ~» Sl' Both symmetries have
a simple geometrical interpretation. The equation (5.2.1) is invariant for
translations along the x-axis. If u(x,t) is a solution of (5.2.1), then
u(x + ¢,t) is also a solution of (5.2.1) for all.e € R . The difference

between these two solutions is given by
2
u(x+e,t) - u(x,t) = € ux(x,t) + 0(e™) for € »~ 0.

This implies that Xo(u) =u, is a solution of the linearized equation and
hence a symmetry (see (5.1.9)). The symmetry Zy is related to the scaling
properties of (5.2.1). It is easily seen that, if u(x,t) satisfies (5.2.1),
the function au(ax,azt) also satisfies (5.2.1) for all a € R . By setting
a=1+g¢ and taking the limit ¢ + 0 we find that the difference between

the two solutions is given by

(1+€)u((1+8)x,(1+€)2t) - oulx,t) = e(ulx,t) + xu (x,£) + 2tu (x,t)) + 0(€2)-

So Zo(u) =qu + Xu + 2t(2uuX + uxx) is a solution of the linearized equation
of (5.2.1) and hence a symmetry (see (5.1.9)).

Recursion operators for symmetries of (5.2.1) can easily be

117

)



found by using the relation with the linear equation (5.2.4). Suppose we
consider the equation (5.2.4) in some linear space W. An autonomous recursion
operator for symmetries of (5.2.4) is a linear operator R(v) : W~ W, defined
for all v € W, such that (see (5.1.6) and remark 5.1.11)

(5.2.7) (R'(v) }(v)) + R(v)}'(v) - }'(v)x(v) =0 Vveuw,

where X(v) = Vox and X'(v) = 82. It is easily verified that A(v) = 3

satisfies this condition.
5.2.8 Remark.

Symmetries of (5.2.4) satisfy the linearized equation of (5.2.4). Since
(5.2.4) is a linear equation, symmetries are solutions of (5.2.4).
Suppose w(x,t) satisfies (5.2.4), then also wx(x,t) satisfies (5.2.4). This
mapping corresponds to the recursion operator A = 3.

o
Using the transformations (5.2.2) and (5.2.3) we can formally transform K
to a recursion operator A for symmetries of (5.2.1). By theorem 2.7.6 the

operator A is given by

ACu) = £ (VDAE)E (u) (v=£ (1))
5 Yl . 8 g
(5.2.9) =(;—-—2 de 3
v
-1
=3 + Jud .
5.2.10 Theorem.

The operator A(u) = 3 + aua_l is a recursion operator for symmetries of
(5.2.1).

Proof:

It is easily seen that A(u) : SI -+ S]. We have to show that A satisfies

(5.1.6). Since A does not depend on t, this becomes
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(5.2.11) (A (WX@) + AX'(u) - X'(WA(u) =0 VYV u€E S,

Recall that the derivative of A(u) in u € SI is a bilinear operator

A (u) : Sl x S1 -+ S,. Inserting one fixed function 4 € Sl this derivative

reduces to the linear operator

1

(A" (u) 4) =043 8, + 8ia

So the first term of (5.2.11) is the linear operator

(' @x() = 3(2uu +u )3

Using (5.2.5) the other terms of (5.2.11) can be found. Then a tedious

computation shows that A satisfies (5.2.11).
o

This recursion operator for symmetries was already given by Olver [13]
Starting with the symmetries Xo and Zo given in (5.2.6), we can construct
two infinite series of symmetries

(5.2.12) X =A Xo’ 2, = N'Z k= 152,350

As far was we know the series of symmetries Z, has not been reported before.

k
The first few elements of these series are given by

X =u,
o X
X =2uu_ +u ,
| X XX 9
(5.2.13) X2 = 3u u + 3uuXX + 3uX t U
Z0 = u2+ Xu_ + 2t(2uux + uxx)’ , ,
Zl =u” +2u +x(2uu_+u )+ 2tBuu + 3uu_ + 3u” +u__ ).
X b'e XX X XX X XXX

Note that X] =X = us this symmetry is related to the invariance of (5.2.1)
for translations along the t-axis. Some properties of the two series of

symmetries are given in the following
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5.2.14 Theorem.
The symmetries Xk and Yk can be written as
Xk(u) = Brk(u,ux,...),

Zk(u) = sk(u,ux,...) + xXk(u) + 2th+1(u), k=0,1,2,...,

where rk(u’ux"") and sk(u,ux,...) are polynomials in u and its first

k derivatives.

Proof:
1

The recursion operator A can be written as A = 8(3+u)8—]. Hence Ak = 3(3+U)k8— .
This implies

a(a+u)ka"ux = 3(a+uw)Fu.

S
I

So rk(u,ux,...) (8+u)ku. In the same way we obtain

[SN]
]

2 (a+w) 8™ (urku r2ex))

k
9(d+u) xu + 2th+]

@+ + Gr)F + kEr ¥ Hu + 2ex

1l

k+1

xxk + sk(u,ux,...) + 2th+1,

with s (u,u,...) = (+uw) ¥u + K@+ .
5.2.15 Remark.

The symmetries X, are mappings X, : Sl - S] (vector fields on Sl)' So

k k
we can study the evolution equation

k

(5.2.16) = X @ = A "y K =1,2,3,...
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By formally applying the (derivative of) the transformation (5.2.2) we

obtain

<
il

= f'(u)ut (u = f+(V))

£ @A T wxw)

(' @A) £ N E (W) X (u)

) x )

= 3k+lv.
So, using the Hopf-Cole transformation, we can transform (5.2.16) into

the linear equation
(5.2.17) v, = 93 v.

Note that (with appropriate boundary conditions) (5.2.17) is a Hamiltonian
system if k is even (k= 22; Q= 9, H(v) = (—1)2 i J_:(alv)zdx). If k is odd,
say k = 22+1, then (5.2.17) is an equation of "diffusion type'" if % is even
and an equation of "anti-diffusion type" if % is odd. Similar properties
hold for the corresponding nonlinear equations (5.2.16). Some properties

of the Hamiltonian system

_ _ 2 2
u, = XZ(U) = 3u u + 3quX + 3uX + U ex

are described by Broer and ten Eikelder [47]
a]

In (5.2.12) we gave two infinite series X, and Z, of symmetries

for the Burgers equation. We now consider the variouS‘tie braﬁkets between

the elements of both series. One possible way for computing these Lie brackets
is to transform to the linear equation (5.2.4) and compute the Lie brackets

of the corresponding symmetries of (5.2.4). This method is possible because
for the Burgers equation a linearizing transformation (Hopf-Cole) is known.
However, a straightforward computation using the results of section 2.6

is also possible. We shall follow this second method. Recall that the Lie-

derivative of the recursion operator A is given by (see (1.2.9) )
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LAA(u) = (A" (WA(u)) + AA' (W) - 4" (WA()

A long computation shows that

(5.2.18) Loa=22, L n=23
By %y

and that

(5.2.19) [Z]’Xl] = 2X2.

5.2.20 Theorem.

The Lie brackets between the elements of the series of symmetries X and

Zk are given by

[X X1 =0,
[2,X,] = @) Xy
[2,,2,] = () 2,5

The Lie derivatives of the recursion operator for symmetries A are

L el

=
]
=
=
[]
o
IS

It follows from (5.2.18) and (5.2.19) that hypothesis 2.6.3 is satisfied
with a = | and b = 2. Then, for k,% 2 I, the theorem is a straightforward
consequence of the results of section 2.6 (summarized in (2.6.14)).For
k = 0 and /for & = 0 a separate proof has to be given. The necessary
conditions, given in remark 2.6.15, are easily verified.

a

We conclude this section on the Burgers equation with some

-

122



remarks on adjoint symmetries for (5.2.1). The function (functional)

F(u) = Im u(x)dx

- o0

is a constant of the motion of (5.2.1). This function is differentiable,

%g =1 € &]. So og(u) = g%— = 1 is an adjoint symmetry of (5.2.1). A recursion

operator for adjoint symmetries is given by

T(u) = A¥@) = (8 + aua"‘)* = -3 + B_IUB : U] > u] .

Since T (u)o(u) = 0 we cannot construct a series of adjoint symmetries by

using the recursion operator I' . We did not find adjoint symmetries which

were essentially different from o.
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5.3 A FINITE DIMENSIONAL LINEAR HAMILTONIAN SYSTEM.

Suppose W is a finite-dimensional (real) linear space with dimension

2n; so W is isomorphic to BZZ“. The dual space of W is denoted by W*.

In this section we shall consider a linear Hamiltonian system on the space
. Some general remarks on dynamical systems and Hamiltonian systems on a
linear space have been made in section 5.1. Let w be a symplectic form on
W such that the corresponding operator Q(u) : W > W* does not depend on

u. So
w(4,B) = <Q4,B> vV 4,B € W,

where Q : W > W* is a linear antisymmetric operator. Since w is nondegenerate,
L . . < .

the operator Q) is invertible. The inverse operator @ : W* > W is also a

linear antisymmetric operator. Suppose H : W >~ R is a homogeneous quadratic

function. Then there exists a unique symmetric operator H : W - W* such that
H(u) = i< H u,u > .

The corresponding one—form is dH(u) = H u. Then the Hamiltonian system cn

the symplectic space (W,w) with Hamiltonian H is given by

(5.3.1) 4= Hu.

With X = §°H : W » W, this system can also be written as

-~

X(u) = Xu.

c.
[}

(5.3.2)

In theorem 3.4.1 we described a variational principle for a Hamiltonian
system. At first sight this theorem provides us with a variational principle
on a neighbourhood Uo of some point ug € M = (. However, in this case

the manifold M is a linear space. This means the second cohomology group

of M vanishes, so every closed two-form is exact. Hence the one-form «,

such that w = - do, exists on the whole space M= W. It is easily seen that
o{u) = -3}Q u. Then (similar to theorem 5.4.1) a solution u(t) of (5.3.1)

is a stationary point of
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t &
(5.3.3) {2 (eat,os = detle,e5) dt

4

over the set of all curves u(t) in W with u(tl) = G(tl) and u(t2) = E(tz).
Note that for every initial value u(to) =u € W the differential

equation (5.3.1) has a unique solution u(t)€ W which exists for all

t € R

- &
(t-t )Q H (e-t )X
u(t) = e ° u =e ° u .

o o

In the remaining part of this section we shall first consider
constants of the motion, (adjoint) symmetries and operators between those
symmetries for the Hamiltonian system (5.3.1). The existence of these
objects turns out to be related with the existence of operators = which
satisfy the condition (5.3.5). Then we shall make some remarks on the
space of operators satisfying (5.3.5). Finally we show how the theory
described in section 4.5 , can be applied in this example.

Suppose F : ! - Ris a homogeneous quadratic function. Then

there exists a symmetric operator E: (0 » W* such that
(5.3.4) F(u) = } <8 u,uw> 3

The function F is a constant of the motion if LXF = <dF,X> = 0 on W.

This means

<EQ+ﬁu,u> =0 YVu€eW.

y s b oei o tes Bath : : g
This condition is satisfied iff 50 H 1s an antisymmetric operator. Since

~ 2 . <, . . R .
5 and H are symmetric and @ is antisymmetric, this is equivalent to

(5.3.5) =GH - 2= = 0.

(1]

This condition can also be written in the following two equivalent ways

(5.3.6) (672,07 5] = [975,X]1= 0
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and

(5.3.7) [=¢%, ue'1 = o,

where [.,.] is the commutator of two linear operators. The linear space
of operators Z : W - W* which satisfy (5.3.5) will be denoted by E. The
canonical adjoint symmetry and the canonical symmetry, corresponding to
the constant of the motion (5.3.4) are given by p(u) = dF(u) = Zu and
Y() = QédF(u) = QeEu. The Poisson bracket of two constants of the motion

Fi(u) =4 <Ei u,u> (i = 1,2) is easily found to be

{F,F,} (w) = <dF, (w),8" dF,(w)>

(5.3.8)
= 1 <50, - 587 Juw> .
Thus we have proved
5.3.9 Theorem.
The function F, defined by (5.3.4) , with £ a symmetric operator, is a

constant of the motion iff = satisfies (5.3.5). The corresponding canonical
(adjoint) symmetries are given by p(u) = dF(u) = Zu and Y(u) = Q+dF(u) =

= Q+E u. The Poisson bracket of two homogeneous quadratic functions

Fi(u) =1 <Eiu,u> is given by (5.3.8). It is again a«homogenegus quadratic
function, corresponding to the symmetric operator EIQ 52 - EZQ El'

Next we study (adjoint) symmetries for (5.3.1).

Note that for all linear operators Z: W - W*, p(u) = S u is a one~form
on W. This one-form is an adjoint symmetry if it satisfies (5.1,4). For a

one-form of this type this condition becomes (see also remark 5,1,12)

{11

(5.3.10) SX+ x*E=0,

Since X*= - H(fl this condition is equivalent to (5.3.5). Of course, in this
case £ is not necessarily symmetric. Suppose Y : W + W is a linear

operator. The vector field Y(u) = Yu is a symmetryiff it satisfies (5.1.3).

For a vector field of this type this condition becomes
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.3.11)  [f, 1 =0.

By setting }= ¢ = we obtain again condition (5.3.5) for Z. Adjoint symmetries
of the form P(u) = Zu and symmetries of the form Y(u) = }u = Q+E u we shall
call Iinear (adjoint) symmetries. The manifold W is a linear space, so its
first cohomology group vanishes. This implies (see section 5.1) that canonical
and semi-canonical (adjoint) symmetries are identical. It is easily seen

that the linear (adjoint) symmetries above are canonical iff the operator =

is symmetric. The corresponding constant of the motion is then F(u) =

} <Su,u> . Also a simple cglculation shows that the Lie bracket of two

linear symmetries Yi(u) = Yiu = Q+Eiu (i=1,2) is the linear symmetry
-~ Cae L
(5.3.12) Y3(u) = [Y],YZ](u) = [YZ,Y]l u=2g (_ZQ S _IQ :Z)u.

Note that the first square bracket is the Lie bracket of two vector fields,
while the second square bracket is the commutator of two linear operators.

We summarize the results concerning linear symmetries in the following
5.3.13 Theorem.

The following three conditions are equivalent:

i) the linear operator Z : (¥ »~ W* satisfies (5.3.5), so % € E,
ii) the one-form p(u) = Z u is a linear adjoint symmetry,

iii) the vector field yY(u) = } u=0F%uis alinear symmetry.

These symmetries are canonical iff Z is a symmetric operator. The corresponding

constant of the motion is given by F(u) = }<%E u,u> . The Lie bracket of two
linear symmetries Yi(u) = }iu (i=1,2) is the linear symmetry Y3 given in
(5.3.12).

=]

The conditions for the four possible operators between (adjoint)
symmetries are also easily derived. Consider the linear operator A: WU .
This linear operator is a recursion operator for symmetries if it satisfies

(5.1.6). Since A does not depend on u and t, this implies
(5.3.14) [A, Xl= 0.
This relation is also easily obtained from (5.3.11).
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. - L. . “ -
Since @ 1is invertible, we can set A=  E. Then the operator Z:W - W*
“has to satisfy (5.3.5). The conditions for recursion operators between
adjoint symmetries and for AS— and SA operators can be derived in a similar

way. We summarise them in the following
5.3.15 Theorem.

Suppose Z : W -+ W* is a linear operator. Then the following conditions

are equivalent:

. L : ’ .

i) A=QZ:W~>W 1is a recursion operator for symmetries,

. a — w2l - ! . . . .

ii) T = 5Q :W* > W* is a recursion operator for adjoint symmetries,

iii) % is an SA operator,

iv) VY = 00" W* > W is an AS operator,

v) = satisfies (5.3.5), so E € E .
If = is antisymmetric, it is a cyclic operator and V¥ is a canonical operator.
Proof:

We showed already that i) and.v) are equivalent. In a similar way it can be
shown that each of the conditions ii), i1ii) and iv) is equivalent with v).
The fact that antisymmetric operators Z : (J + W* are cyclic and antisymmetric
operators Y : W* > W are canonical was already explained in remark 5.1.17.
o

In the preceding part of this section we have discussed
constants of the motion, (adjoint) symmetries and several operators between
those symmetries. It is important to note that these objects not necessarily
are of the considered type. For instance there may exist non-quadratic
constants of the motion and symmetries which are not linear. The existence
of objects of the discussed type was always related to the existence
of a linear operator = : (! »~ W*, which éatisfies (5.3.5). We shall now
make some remarks on the linear space E of operators = satisfying this

condition. The following theorem describes some elementary properties
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of the space E.

5.3.16 Theorem.

i) E is a Lie algebra; if El’ EZE E , then also
E =% 4 8 -8 9&.

The set of symmetric operators Z € E form a subalgebra of E. This
subalgebra is isomorphic with the Lie algebra of homogeneous quadratic
constants of the motion. Further, if El and 52 are both antisymmetric,
Z, 1s symmetric. If one of E], 52 is symmetric and the other is

3
antisymmetric, 53 is antisymmetric.

ii) If &, &, € E, then also 5, = E]Q”Ez €E.

iii) If

1]

" € E, then also =* € E .
o

~

It is easily seen that H € E and Q € E. So E always contains a symmetric
operator and an antisymmetric operator. The fact that H€E gives rise

to the following

5.3.17 Corollary.

Suppose E] € E. Then 52 = Elffile E. If El is symmetric (antisymmetric),
g, is antisymmetric (symmetric).
o

Using this corollary we can construct the following series of elements of E

~

(5.3.18) Q, 0, HOH, B2, ... .

Note that the operators in this series are alternately antisymmetric and

symmetric.

Suppose El is an antisymmetric element of E . If E] is
invertible, the closed two-form &, defined by

J)(A,B) = <El A,B >
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~

is nondegenerate. By corollary 5.3.17 Ez = E]Q$H is a symmetric element of

E . Hence H(u) = } < E,u,u> is a quadratic constant of the motion. Then the

2
differential equation (5.3.2) can also be considered as a Hamiltonian system

on the symplectic space (W,w ) with Hamiltonian H:

(5.3.19) 4=z

The variational principle corresponding to this Hamiltonian form of (5.3.2)
is easily found (see also (5.3.3)). Suppose u(t) is a solution of (5.3.2)
(or (5.3.19). The the curve u(t) in W is a stationary point of

t

(5.3.20) [ 2 (3<s

B

u,u> - - 3< E _u,u >) dt

1 2

over the set of all curves u(t) in W with u(tl) = ;(tl), u(tz) = u(tz)-
If E] #aQ for some a € R, the two ways (5.3.1) and (5.3.19) of writing the

differential equation (5.3.2) as a Hamiltonian system are essentially

~

-
different and the system is bi-Hamiltonian. If the operator X = Q H is

invertible, we can also start with an invertible symmetric operator

52 € E. Then 51 = 52 X ! is an antisymmetric element of £ and we can

write the system again as (5.3.19). So, in the case X is invertible, any

quadratic constant of the motion H(u) = 1} <Ezu,u>, with Ez invertible, can

be considered as Hamiltonian. The corresponding symplectic form is then

B5(4,B) = < 5, x! a,B> V 4,8 € W.

Note that if El is an invertible symmetric element of E, we can write
(5.3.2) also as

(5.3.21) G=3"35 QHu=:

In this expression E] is symmetric and £, is antisymmetric.
Next we consider a basis for the Lie algebra E. Recall ((5.3.5)

and (5.3.6)) that = € E iff the operator Y = Q'S is a commutator of
o Em
X =@Q H.
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5.3.22 Theorem.

Suppose % = Q'H is invertible.Then a basis for E consists of the same
number (=k) of symmetric and antisymmetric operators. So the dimension
of the subalgebra of symmetric operators of E is half the dimension of

the Lie algebra E .

Suppose the operators ¢1, o s S @2 form a basis for E. Define the symmetric
and antisymmetric parts of ¢i by QI = £(¢i + ¢I ) and ¢Z = £(¢i = QE ).
Then by theorem 5.3.16 iii) these (anti)symmetric operators are also
elements of E . Clearly any element E of £ can be written as a linear
combination of the 2% operators Q% (i=1,...,%). We can reduce this set to

a new basis Eps wves Ey of E, which consists only of symmetric or anti-—

1]

symmetric operators. Suppose El, W5 Ek are symmetric and Ek+l’ cees B

are antisymmetric operators. By corollarz 5.3.17 the operators EiQ+H
(i=1, ... , k) are antisymmetric. Since X = OH is invertible, these
operators are linearly independent. Hence £ - k 2 k. In a similar way we can
show £ - k € k. So £ = 2k and the basis Ei consists of k symmetric and
k antisymmetric operators.

o
The symmetric operators Ei(i=],...,k) give rise to k quadratic constants

of the motion Fk(u) = 1 <% u,u> . Every operator Ei (i=1,...,2k) gives rise

k
to a "bilinear constant of the motion". By this we mean a bilinear function
G : Wx W= R such that for every pair of solutions u(t), v(t) of (5.3.1),
the function G(u(t), v(t)) is constant. These '"bilinear constants of the

motion" are given by

(5.3.23) Gi(u,v) =4 <E;w, ¥ 1om 15255 samy 2K,

Note that G (u,u) = F (u) for i =1, ...,k and G (u,u) = for 1 = k+1,...,2k.
If all the eigenvalues of X a° H are dlfferent, a basis for the

space of operators which commute w1th X,ls given by { X |1—0 1,000,201}

The corresponding basis for E is {QX | =0,1,...,2n-1} . So in the case

a basis for E consists of n symmetric operators

(5.3.24) n, 8@, ..., BE@H™2,
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and of n antisymmetric operators

(5.3.25) Q,EGH, ..., HE@DHPTT |

If } has eigenvalues which are degenerate, the dimension of the space of
operators,which commute with %} is higher then 2n(2k > 2n). A basis for E
is then more complicated then the basis given (5.3.24) and (5.3.25).

We shall now show how the theory described in chapter 4, can
be applied to the linear Hamiltonian system under consideration. In
particular we shall construct an infinite series of constants of the
motion, using the methods described in section 4.5. In theorem 4.2.11 we
have seen that with a non-semi-canonical symmetry Z corresponds an SA
operator LZQ. For a linear symmetry of the form Z(u) = Q+E u (Z € E), this

SA operator is given by

*

%3]

(5.3.26) LZQ == -

In theorem 4.2.17 we showed that LZk is also an SA operator. In this casé

we obtain for k = 2

g - =g (E - TH).

5.3.27)  LZq = E-EhHa

In section 4.5 we cénsidered the relation between the two SA operators

Léﬂ and (LZQ)QkLZ . In that section we have assumed that hypothesis 4.5.1

is satisfied, i.e. there exists a non—(semi-)canonical symmetry Z such that
120 = ¢ (L@ L0

for some ¢ € R with ¢# (k-1)/k, Vk€ N.

In this case this condition becomes

(5.3.28) (2 - 20 - 2%07(E - 24 = e(E - 2D (E - ¥).

We shall not try to find the most generél solution for = of this equation.

However, it is easy to see that every antisymmetric operator Z satisfies

(5.3.28) with ¢ = 1 . The theory, described in section 5 of the preceding
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chapter, leads to the following
5.3.29 Theorem.

Suppose Z(u) = ¢ Eu is a non-({semi-)canonical symmetry with Z antisymmetric.
Then the adjoint symmetries defined by

k

ek _
(5.3.30) 0k+](u) = (2@ ) Hu k= 05152 swens

are canonical. The corresponding constants of the motion are given by

~

(5.3.31 F, @ = < EEE me, u .

These constants of the motion are in involution.

Proof:
Since Z is antisymmetric, hypothesis 4.5.1 is satisfied with Z(u) = QEu
and c = 1. The first cohomology group of W vanishes (see also section 5.1).

So this theorem is a straightforward consequence of theorem 4.5.13,
5.3.32 Remark.

A straightforward proof of this theorem can be given in the following way.
Define El = Zand 5, = EQ+Ek_1- Then by theorem 5.3.16 ii) the operators
Ek € E . Since Ek = (EQ ) and Z is antisymmetric, the operanrs Ek are
also antisymmetric. Then, by corollary 5.3.17, the operator EkQ+H is a

symmetric element of E. Hence o sdefined in (5.3.30), is a canonical

adjoint symmetry. It is easily zzén that the corresponding constants of the
motion, given in (5.3.31), are in involution.

a
It is important to note that the alternative proof of theorem 5.3.29 , given
in the preceding remark, depends essentially on the fact that we consider
a linear equation in a linear space. However, the methods described in
chapter 4, can also be applied to a nonlinear equation on an arbitrary
manifold.

Theorem 5.3.29 can only be applied if a non-canonical symmetry Z(u) = Q Z u
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(so Z € E) with £ antisymmetric, is known. A simple example is given by
% = HQ H. Then the constants of the motion Fk are found to be
(5.3.33) Fp (W =4 <™y Xag,u K =0,1,2,... .

Note that these constants of the motion correspond to the symmetric operators
of the series (5.3.18) and that the first n constants correspond to the
operators given in (5.3.24)., It is a simple exercise to show that
Fk+1(u) = (--l)k H(%ku). Note that if u(t) is a solution of (5.3.1), then
vk(t) = Xk u(t) is also a solution of (5.3.1). Hence Fk+](u(t)) = (—l)k-
H(vk(u(t») So the constants of the motion Fk is, up to the sign, equal
to the Hamiltonian, evaluated for a transformed solution.

Finally we remark that, since M = W is a finite-dimensional
linear space, the series Fk (k = 1,2,3,...) gi&en in (5.3.31) or (5.3.33)
cannot be analytically indfpendent (see also remark 4.5.15). For instance,

if all the eigenvalues of X = Q*H are different, only the first n constants

of the motion given in (5.3.33), are analytically independent.
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5.4 THE WAVE EQUATION.
In this section we shall discuss the Hamiltonian character, constants

of the motion, symmetries and operators between symmetries for the linear

second order wave equation

(5.4.1) Gep = Gyp

By setting p = q, we can write this equation as

4e =P »

(5.4.2)

1o
(o)
It
0
"
m
=3

We shall study this equation on the linear space W = U1 x Sl(q € Ul,[>€ Sl’
the spaces U1 and S] are introduced in section 1,3). Suppose we take initial
values q(.,0) = qo(.) € U1 and p(.,0) = po(.) € Sl' The corresponding
solution q(.,t), p(.,t) of (5.4.2) can be obtained with elementary methods.
It is easily verified that this solution is an element of W for all t » 0.
On 31 we take the topology induced by U1 and the duality map

X

<a,A4,> = f o (04, (x) dx for a, € U, A, EISI.

The dual space of W is W* = S] x Ul. Note that W is reflexive W** = (.

The duality map between W and W¥ is given by

o

(5.4.3) <a,4> = | @](x)A](x) + az(x)Az(X)) dx, VA =

4,
4y

By
€ W,o = € W*
By

The exterior derivative of a differentiable function (functional)
F: W~ R is given by

§F
8q
- %
dF = oF Ew
Sp

where %% € S] and %%—6 U] are the variational derivatives (gradients) of F.
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We shall now describe the (well-known) Hamiltonian structure of

(5.4.2). On W we introduce the standard symplectic form

4y

4

B =

©
(5.4.4) WA, B) = <04,B>= [ (4B, - 4,B) dx VA=
So the corresponding operator  : W - W* can be reﬁresented by

0 -1
(5.4.5) Q =(1 . Ol

It is clear that Q is invertible, the inverse operator QW > is given by
(5.4.6) o =(_° 1] .
Define the function H on W by

(5.4.7) H(q,p) = %fm(qi + p?) dx .

—00

Then the evolution equations (5.4.2) can be written as a Hamiltonian system

on W with symplectic form w and Hamiltonian H
(5.4.8) ‘qJ - g an =[ g ’j Tl
Plt -1 0 P

Constants of the motion, symmetries and operators between
symmetries for the infinite-dimensional linear Hamiltonian system (5.4.8)
are easily found. In section 5.3 we studied (quadratic) constants of the
motion, (linear) symmetries and operators between symmetries for a finite-
dimensional linear Hamiltonian system. Therefore the following considerations
will show a strong resemblance with those in section 5.3. We shall also
derive two series of symmetries for (5.4.8) which contain t explicitly.

Define the operators ﬁ and % by.

W W,
0 1 320J

Denote the vector field, given in the right hand side of (5.4.8) by X, so

(5.4.9) x=¢9 au =ff'ﬁ‘g)= }[g).
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Similar to the theoreﬁs 5.3.9, 5.3.13 and 5.3.15 we can prove the following
5.4.10 Theorem.

Suppose £ : W » W* is a linear operator which satisfies

(5.4.11) =08 - Q= = 0,

Then

i) If % is a symmetric operator the function

(5.4.12) F(q,p) = g<5lg), gl>

is a constant of the motion of (5.4.8).

ii) An adjoint symmetry ¢ and a symmetry Y for (5.4.8) are given by

(5.4.13) g =

(11

[q] , ¥=0%= Q+Elql

P P
These symmetries are canonical if Z is symmetric, the corresponding
constant of the motion F is given in (5.4.12).

iii) = is an SA operator, I = 20" is a recursion operator for adjoint
symuetries and A = Q"= is a recursion operator for symmetries of

(5.4.8).

The following two series of linear operators Z : W » W*which satisfy

(5.4.11) are easily found

2 0o -y

[n)
n
)

(5.4.14)

. 0o o L E A

Note that fhe operators EZk and Zopep 3TC symmetric while the operators

52k+1 and EZk are antisymmetric (k = 0,1,2,...). To simplify the notation
) S2k+]
give rise to the following two series of constants of the motion in involution

ve set q,, = akq and Doy = gkp. The symmetric operators EZk and

K _s
(5.4.15)  F (@,p) = 4(-1) <:2klgl,[g)> = TG, * PR X
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k =
= l(— =
(5.4.16) Gk(q,p) (-1 i

> = qu’k+lp,k dX, k = 0,1,2,...
—%0

o)

Note that Fo = H. With every operator given in (5.4.14) corresponds an adjoint

symmetry and a symmetry

e Ps
(5.4.17) p. = E.(q] = I =% = T,
- ql _ _p’j q,J
.4.18 g. = =. = , Y. =Qg. = s =0,1,2,
(B B8 h] J'Pl q,-) ] ] (p,- ] ’
J J
The (adjoint) symmetries ij(pzj) and Y2j+l(02j+l) are canonical:
_ + - j « _ < — (o j <
(5.4.19) ij Q pzj -H-'Q dFj . Y2j+1 Q 02j+1 (-1)-Q de.

It is a simple exercise to show that X ) and Yzj(azj) are non-

2j+1(02j+1
canonical. The various Lie brackets between the elements of both series of

symmetries Xj and Yj can be found in the same way as in section 5.3 (theorem
5.3.13). It turns out that

(5.4.20) [Xk’X 0, [Yk’yl] =0, [Xk’yl] =0, k,L=0,1,2,.

ol =

By theorem 5.4.10 iii) the operators Ej’ e given in (5.4.14), provide us

with the following recursion operators for adjoint symmetries

a2}~ - i
(5.4.21) r. = z.0 & -3 ] T, =BG = (3 0 l

_aJ 0 J ] 0 aJ

Note that every recursion operator of these two series can be written as a
product of powers of Fo and Fl' It is easily seen that

T1Py = Pyarr Ty = T4y
(5.4.22)

foPj = %5420 T3 7 P

Together with (5.4.19) this implies
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(5.4.23) dFj+ =-T dFj . dGJ.+1 = - Ffde ‘
So the two series of canonical adjoint symmetries can be constructed from
dF0 and dGO using the recursion operator Ef.

For the system (5.4.8) there also exist symmetries and
recursion operators for symmetries which contain t explicitly. Suppose
2,6 : W > W* are two linear operators (independent of t). Then we can look

for an adjoint symmetry of the form
(5.4.24) T= (@ + ts)[g] .
It follows from (5.1.4) that T is an adjoint symmetry if

S+ (0 + tE)OH -HY (@ + tE) =0

This implies

~ -~

(5.4.25) =0 H- HO'Z = 0
and
(5.4.26) 2+ 00 H-HY ® =0 ,

The condition (5.4.25) is the same as (5.4.11). So operators T : (W > W*
which satisfy this condition, are given in (5.4.14). It is a simple exercise
to verify that operators ¢j, Qj such that Ej’ ¢j and Ej’ j satisfy (5.4.26)

are given by

- -BJ—XBJ+I 0
0 %337

S I
(5.4.27) o, = | O THx N .o,
] i*l
X9 0

o)

1),321-

Thus we constructed two series of (adjoint) symmetries for (5.4.2) which

depend explicitly on x and t.

“Ps: T XPs . —q,
= (¢j * tEj)[g] B ’ N 1+2
(5.4.28)
Xq, . Ps:
2. =Q1, = . 3*l + t ] j 20,
] ] P;j xP’j+1 q’j+2
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and

=
]

3 =404} =
(Ry + £8,) [p]

(5.4.29)

“~ xpsj_l
U. Qu. = + + t
j Iy Xy

It can be verified that these (adjoint) symmetries are non-canonical (except Z ).
o

The symmetry Zo can be written as

. - xq + tp | %t e )
P+oxp +tq P+ Xp_ + tp,

This symmetry is related to the scaling properties of (5.4.2). Suppose
(q(x,t), p(x,t)) is a solution of (5.4.2), then (q(ax,at), a p(ax,at)) is
also a solution of (5.4.2) for all a € R. Set a =1 + € and consider the
difference between these two solutions for €+ 0. We obtain a solution of
the (linearized) equation which corresponds to the symmetry Zo'

The Lie brackets between the elements of the series of

symmetries (5.4.17), (5.4.18), (5.4.28) and (5.4.29) are given by

(k-2)2

(2-Kk)Z

(2,,2,] kg [UoUgl K+g-2

2-k-1)U.

[Zk’UR] k+f

(5.4.30) 1
. [Zk’XR] = DX s [U,X)] = CLI DM AN

L [2,5,1 =12 [U,,7,] =2

Tewg Xerg-2

5.4.31 Remark.

It is also possible to consider (5.4.1) as a Hamiltonian system on W with
Hamiltonian H = Go = prqxdx and symplectic two-form

-0

BUB) =<U,B> = [T(-B 34, + Bza“’Az)dx.
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Note that indeed w is nondegenerate on W = le Sl. The operators © : W - W¥

and ©°: W* > 0 are given by

N o_l , ce o [T o)
09

Then the differential equations (5.4.2) can also be written as

_3_1 0 _px
0 3 qy

(5.4.32) [ql = 0% =
Pl¢

So the system (5.4.2) can be written as a Hamiltonian system in two ways;

it is a bi-Hamiltonian system.
5.4.33 Remark.

It will be clear that constants of the motion, symmetries and operators
between symmetries for the system (5.4.8) can relatively easy be found.

The reason for this is that (5.4.8) is a very simple linear Hamiltonian
system. In fact we can easily derive more properties of the type discussed
in this section. For instance, using the solutions for (5.4.25) and (5.4.26)
we can also find récursion operators for (adjoint) symmetries which depend

explicitly on t. The non—semi—canoniqal symmetries X and sz.can be

23+1
used if we want to construct infinite series of constants of the motion,
using the method described in section 4.5. We then obtain again the series

Fk and Gk.

141



5.5 A HAMILTONIAN SYSTEM WITH A LINEARIZING TRANSFORMATION.

The concept '"completely integrable Hamiltonian system'" is well defined

for a Hamiltonian system in a finite-dimensional phase space (see section
3.6). Recall that for a finite-dimensional Hamiltonian system with

canonical coordinates Qps +e+ Qs Pys oeee Pos the existence of n analytically
independent constants of the motion in involution implies complete
integrability (theorem 3.6.2). In that case we can perform a transformation
to action angle variables and the differential equations can easily be
solved.

For an infinite-~dimensional Hamiltonian system the situation
is much more complicated. There exist infinite-dimensional Hamiltonian
systems which posses an infinite series of constants of the motion in
involution. In recent years the so called "inverse scattering methods”
have become enormously popular for solving certain types of nonlinear
evolution equations. The Hamiltonian systems, solvable by this method,
turn out to have an infinite series of constants of the motion in
involution. Sometimes (always?) an "inverse scattering method' can be
considered as a transformation to variables of "action angle type'. A famous
example is the introduction of action angle variables for the Korteweg-
de Vries equation by Zakharov and Faddeev [24] . However, if for an infinite-
dimensional Hamiltonian system there exists an infinite series of constants
of the motion, the problem of finding the solution for arbitrary initial
values (for instance by "inverse scattering') is still unsolved. So a
generalization of theorem 3.6.2 to infinite-dimensional Hamiltonian systems
is not straightforward.

Next consider an infinite-dimensional (nonlinear) Hamiltonian
system for which there exists a (global) invertible transformation to a
linear Hamiltonian system. The (formal) solution of the linear Hamiltonian
system can always be given. Constants of the motion, (adjoint) symmetries
and operators between (adjoint) symmetries can also easily be found. Then,
by using the transformation which relates the linear and nonlinear system,
we can find the solution, constants of the motion, (adjoint) symmetries and
operators between (adjoint) symmetries for the nonlinear Hamiltonian system
(see sections 2.7 and 3.7). It will be clear that, independent of the
correct way to generalize the concept "completely integrable" for an

infinite-dimensional system, an infinite-dimensional Hamiltonian system,
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for which there exists a global invertible transformation to a linear
Hamiltonian system must be 'completely integrable". In the remaining part
of this section we give an example of such a system.

Consider the following system of partial differential equations
u_ = -u_ + 2uv,
X

(5.5.1)

v, = v_ - 2uv, x€R ,
x

with initial values

u(x,0) uo(X) .
(5.5.2)

v(x,0) = vo(x).

We shall consider (5.5.1) on the space Z = S] x SI
we take the topology induced by the space U‘ and the duality map given

in (1.3.13) (see theorem 1.3.14). The dual space of 7 is then Z* = U] x U

. On each space Sl

1
and the duality map between Z and 2Z* 1is given by

00

<a,A> = | (@04, (x) + a,(x)4,(x))dx, o=

The system (5.5.1) can be used to study some cases of wave-wave interaction
in plasma physics. In population dynamics it can be used to describe the
growth/decay of two conflicting populations, which meet each other with
velocities | and —-1. In both applications the initial values ug and v

o
satisfy

uo(x) 20,
(5.5.3)

vo(X)ZO, vk €R.

An exact solution of (5.5.1) has been given by Hasimoto [53] . It is

obtained by the following linearizing transformation
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)
(5.5.4) Yos g [q] TR ,
v P -
7q (p+qx)
-1
e—a (u+v)
(5.5.5) lq] = £ :] = .
k. (u—v)e_a (P

It is a simple calculation to show that q and p satisfy the following

linear evolution equations

q_ = P»
(5.5.6) { ¥

pt = qXX
The initial values 4, and P, for (5.5.6) are found by transforming U and
T by (5.5.5). This implies qo(x) 2 0 for all x € R. So for every pair
of initial values ug and v, for (5.5.1) there exists a t, > 0 such that
the corresponding q(x,t) > 0 for x € R and t € [O,to). Hence the trans-—
formation (5.5.4) is regular for t € [O,to). Thus we obtain a solution
(u(x,t),v(x,t)) € Z for t € [O,to) (local existence). If the initial
values ug and vy satisfy (5.5.3), it can be shown that q(x,t) > 0 for x € R
and t 2 0. In that case the transformation (5.5.4) is regular for all
t 2 0 and we obtain a solution (u(x,t),v(x,t)) € Z for all t 2 0 (global

existence).
5:5:7 ) Remark.

In section 5.4 we studied the system (5.5.6) on the space W = Ul x Sl' 1t
will be clear from (5.5.5) that p € Sl but q € U] (for u,v € Sl)' Also the
transformation (5.5.4) does not yield regular functions u and v for an

arbitrary q € Ul. So we cannot consider f and f as mappings f : U1 X S] > 7

with inverse f : Z - U] X S]. The most elegant solution of this problem

is obtained in the following way. Define the set of functions
u

V. =e I o {qlqx) = es(x) with s € UI}'and consider (5.5.6) on Vl x S

1 1

It is easily seen that f : V1 X Sl-* Z and £ : 7~ VI X SI are correctly
defined mappings which are each others inverse. Note that VI is not a linear
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space but an infinite-dimensional manifold. We shall not work out this
relative complicated situation further and leave the function spaces for
(5.5.6) unspecified.
. o

We now indicate how the Hamiltonian structure for (5.5.1) can
be obtained from the Hamiltonian structure of (5.5.6), which was explained
in the preceding section. A symplectic form w with corresponding operators
Q and ¢ and a Hamiltonian for (5.5.6) were given in (5.4.4), (5.4.5),
(5.4.6) and (5.4.7). In section 3.7 we explained the transformation
groperties of these objects. We only compute the transformed operator

< 1o ek 3 s i i
Q = f'Q £'", The derivative of f in the point

g] is the linear operator

ql.— ea_l(u+v) - u - 13 i

(5.5.8) f {p

-v-b -
In the right hand side we already replaced q and p by the new variables u
and v. The dual operator is given by

—u+ 43 -v+ 43

} -4

-]
(5.5.9) f'*[g g o)

The transformed operator Q" is then given by

-—u-v -3 u+v

-1
(5.5.10) 0 = £ratErE = 42?0 (V)

. 7%
—u - v W w % 5l ¥ =+ 1.,
It can be verified that this is a canonical operator (operator field), as

expected from theorem 3.7.1. The Hamiltonian for (5.5.6), given in (5.4.7),

is transformed into

sv 2ve

. -1
(5.5.11)  H(u,v) = [T 22 ) (22 4y
Then -1 -
i ge 23 () o0t li? 4 vhye 20 (utv)y
an =8| - € Z*
L -25"! (utv) g5~ (u+v))

+ 23_]((u2 + vz)e

and the system (5.5.1) can be written in the Hamiltonian form
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(5.5.12)

Constants of the motion for this Hamiltonian system are found by transforming

the series Fk and Gk’ given in (5.4.15) and (5.4.16). Since the series Fk and

Gk are in involution, the transformed series Fk and Gk are also in involution

(see corollary 3.7.7). The first few constants of the motion for (5.5.1)

(or (5.5.12)) are given by

F(,v) = H(u,v)

o0

|
{ e—23 (U+V)((u2+v2)(u2+v2+2uv) = Z(U+V)(“Ux+vvx)

-0

(5.5.13) F](u,v)
2 2 .
+ u + vx)dx,

s =]
Go(u,v) = fwe-za (U+v)(v2 - uz)dx &

—o0

Symmetries of (5.5.1) can be obtained by transforming symmetries of (5.5.6)
as described in theorem 2.7.5. For instance, the symmetry Yy, given in

(5.4.18), transforms into

- - 2(u+v)u_+ u
¥, =£'7, = S

2 - 2(utv)v._+ v
X XX

and the symmetry Zo’ given in (5.4.28), transforms into

- u + xu_ + t(2uv - u)
7 =f'2 = X ¥
v + xv_ + t(-2uv+ v )

X X

The symmetry Zo has been related to the scale transformation for (5.5.6).

It is easily seen that Zo is related to the scale transformation for (5.5.1).

Finally we given the SA operator 52, obtained by transforming

the SA operator ?2 given in (5.4.14)
i o Kk - k*  A-k*

5 f = $.2 > 2%
2 c = -k ’

[$3R24

= f
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where the operators Kk and A are given by

=] . B
= =3 1@ (w2 =3 (e sy 1 s » U

-1 -1
X = a-le—a (u+v)826—8 (U+v)(l+(u—v)3—l) |

> ~4_ . . . . .
52 and  we obtain a recursion operator for adjoint symmetries

By combining

of (5.5.1)

~

ZQ+ VA A

(112

B B
]

This recursion operator can also be obtained by transforming the corresponding

recursion operator for adjoint symmetries of (5.5.6), given in (5.4.21)

- ~y
ZQ = FZ = F].

{11 )

Then, by transforming (5.4.23), we obtain

(5.5.14) dFk+1 = - FdFk, de+1 = - Fde.

5.5.15 Remark.

The justification of (5.5.14) is obtained from the corresponding formula
(5.4.23) for the linear Hamiltonian system (5.5.6). However, if we want

to investigate whether some nonlinear Hamiltonian system has an infinite
series of constants of the motion, looking for an invertible transformation
to a linear Hamiltonian system will be an impossible task. If, for instance
by trial and error, a non-canonical symmetry Z and / or the corresponding
recursion operator (LéQ)Q+ are found, we can generate an infinite series

of adjoint symmetries (starting with "dH"). Then we would like to prove
that these adjoint symmetries are canonical. A possible method for doing
this was explained in section 4.5. This method can be applied if the non-
(semi-) canonical symmetry satisfigs hypothesis 4.5.1. It can be shown

that the non-canonical symmetry Z2 = f'22 indeed satisfies this hypothesis.

a
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5.6 THE KORTEWEG-DE VRIES EQUATION.

During the last decennium the Korteweg-de Vries (KdV) equation has become
one of the most discussed equations of mathematical physics.‘The equation
was derived by Korteweg and de Vries in 1894 [6,7] for describing long
water waves in one direction in a canal. Korteweg and de Vries described
periodic solutions (cnoidal waves) and solitary wave solutions of the
equation. Solitary waves were already reported by Scott Russell [26] in
his famous ride along a channel. His report is quoted in many books on
solitons, see for instance Bullough and Caudrey [27] . For a long time the
Korteweg-de Vries (KdV) equation gained only limited attention in hydro-
dynamics. Interest in the equation increased enormously in the sixties.

In 1965 Zabusky and Kruskal [28] obtained numerical evidence for the
remarkable result that two solitary waves, after their interaction,

assume again their original shape. Gardner, Greene, Kruskal and Miura [19]
showed in 1967 how the initial value problem for the KdV equation on the
real line, with fastly decaying initial value for |x| » ©, could be solved.
The method they used has become known as ''inverse scattering”. In 1968

Lax [29] found an infinite series of "higher order KdV equations', which
all can be solved by this method. These higher order KdV equations are
directly related with the infinite series of constants of the motion of

the KdV equation, found by Miura, Gardner and Kruskal [30] in the same year.
The Hamiltonian character of the KdV equation was pointed out by Gardner [11]
and Broer [10] . After this numerous other papers on the KdV and related
equations appeared. We mention only the work of Wahlquist and Estabrook

on prolongation structures [31] and the paper of Zakharov and Faddeev [24] ,
in which they show that the KdV equation can be considered as an infinite-
dimensional completely integrable Hamiltonian system. The KdV equation

has also been derived in several different physical situations, see for

instance Whitham [32] or Su and Gardner [33]

Of course we shall not give many new results on the Kdv
equation. In this section we consider symmetries of the KdV equation.
Besides the well-known series of symmetries which correspond to the higher
order KdV equations, we shall describe another infinite series of symmetries.
These symmetries depend explicitly on x and t. They are well suited to

illustrate the theory described in chapter 4. Using this second series of
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symmetries we describe several methods for constructing the constants of
the motion. One of these methods is a very simple recursion formula for the
constants of the motion themselves (i.e. not for their gradients (= adjoint
symmetries) or corresponding symmetries). We also show that every constant
of the motion of the infinite series can be considered as a Hamiltonian for
the KdV equation. The corresponding (weak) symplectic forms are explicitly
given. Then we make some remarks on the symmetries which appear in the
inverse scattering method. We end this section with some remarks on the
higher order KdV equatioms.

In this section we consider the KdV equation in the form

(5.6.1) Y = X(u) = 6uu - u x € R .
X XXX

Various other forms of the equation can easily be transformed to (5.6.1).
We shall study (5.6.1) in the space 32, provided with the topology induced
by U, and the duality map (see theorem 1.3.14)

<a,d> = [T a(x)A(x) dx a€l, 4 €S,

-0

We now describe the Hamiltonian form of the KdV equation. Define the two-

form w on S2 by
=1
(5'602) UJ(A)B) = <9 A4,B> .

Note that 3_1:32*-U2 is antisymmetric, so W is correctly defined. The

corresponding operators are

=
3 1 Sy Uy

(5.6.3) Q2

+

(5.6.4)

D
1}
%]

: u2+ SZ‘

It is clear (see remark 5.1.17) that Q is a cyclic operator,Q+ a canonical
operator and  a symplectic form. Define the function (functional)

H:S,+R by

(5.6.5) Hw = [C(u + ) ui) dx.

—o
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The exterior derivative (= variational derivative) is given by

dH(u) = %%(u) =3u" - u .

Then the KdV equation is a Hamiltonian system on 32 with Hamiltonian H

and symplectic form w

o SH 2 _
(5.6.6) u, = T - 9 (3u UXX).

Clearly the Hamiltonian H is a constant of the motion. Several other constants

of the motion are easily found

G(u,t) = fw(xu + 3tu2)dx,

(5.6.7) Fow = [fudx , By = 7 uldx,
F3(u) = H(u), F4(u) = fw (u4 + 2uui + %-uix)dx.

—-00

In 1968 Miura found a relation between the KdV and the so called Modified

Korteweg-de Vries (MKdV) equation.

- fviy -
(5.6.8) ¥, = 6v Ve T Vixx 5 x €ER.

It is easily verified that for every solution v of (5.6.8) the function

(5.6.9) u=f ) =v +v

is a solution of (5.6.1). This transformation has become known as Miura
transformation. Using a modified version of the transformation Miura,
Gardner and Kruskal [30] proved in 1968 that the KdV equation (and also
the MKdV equation) has an infinite series of constants of the motion F .
5.6.10 Remark .

The MKdV equation can also formally be written as a Hamiltonian system on
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some space W of smooth functions, which vanish, together with their
derivatives, fast enough for |x| > <. Using the canonical operator 9 and

the Hamiltonian K(v) = } fm(v4+£vi)dx we can write the MKAV equation as

(5.6.11) v, =0 ——— =
5}

Symmetries Y(u,t) and adjoint symmetries o(u,t) of the KdV equation have
to satisfy the conditions (5.1.3) and (5.1.4). Using

X'(w) = 6ud + 6u_ - 33 = 63u - 37 ; S, S,

—6ud 3> s U > U

X '* ()= 2> Yy
these conditions become
(5.6.12) Y (0,0) + ¥ (u,0) (buu, - u ) = (63u - 3% y(u,t) =0,
(5.6.13) 0, (u,t) + 0" (u,t) (buu, = u_ ) + (-6ud + 3°)o(u,t) = O.

Define the antisymmetric operator (operator field) Y(u) by

(5.6.14) Y(u) = 2ud + 20u - 33 : u, > S,.

It was observed by Magri [5] that the KdV equation can also be written as

(5.6.15) u, = X(w) = ¥() g BF () = (2ud + 20u - 5wy

It is easily verified that ¥(u) satisfies (5.1.16), so it is a canonical
operator. Note that (5.6.15) resembles very much a Hamiltonian system with
Hamiltonian %Fz and canonical operator ¥ . The fact that we did not prove
that ¥ is invertible, prevents us from saying it is a Hamiltonian system.
From the two possible ways of writing the KdV equation (5L6.6) and (5.6.15)

we can obtain some interesting results.
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5.6.16 Theorem.

+

Consider the operators Q : 32 > UZ’ Q :u, > 32 and ¥ : U2 > SZ as given

2
in (5.6.3), (5.6.4) and (5.6.14). Then ¥ ande_are AS operators and { is an

SA operator (for the KdV equation).

The Hamiltonian form (5.6.6) of the KdV equation implies (theorem 4.2.5)
that Q is an SA- and § is an AS operator. The "semi-Hamiltonian form"
(5.6.15) suggests that ¥ is also an AS operator. Indeed, even if ¥ is not
invertible, we obtain from lemma 4.2.1 (witha= %sz) that LXW =0 .
Since Y does not depend explicitly on t this means that ¥ is also an

AS operator.

5.6.17 Corollary.

i )o=que = 20"y + 2007
i) A= ¥Q = 2u + 20ud” !
iii)T= Q¥ = A* = 257!

- 3: 32 - u2 is an SA operator,

2 ; ; ;
-9 82 <+ 32 is a recursion operator for symmetries,

ud + 2u - 92 : U2 - U2 is a recursion operator for
adjoint symmetries.
o
The recursion operator for symmetries A is well-known. It seems first to
be found by Lenard. Several other authors use this operator or derive it
again, see for instance Olver [13] , Wadati [14] , Magri [5] , Calogero and
.Degasperis [34] or Gel'fand and Dikii [35]. Using the recursion operators
A and T two infinite series of (adjoint) symmetries are easily constructed.
We start with two symmetries, which are related to the invariance of
solutions of (5.6.1) for translations along the x-axis and for a scale
transformation. Suppose u(x,t) is a solution of (5.6.1). Then it is easily
seen that u(x+e,t) and azu(ax,aBt) are also solutions of (5.6.1). By taking
the limit for € » 0 of u(x+e,t) - u(x,t) and of azu(ax,a3t) - u(x,t) (with
a = l+g) we obtain the following two solutions of the linearized KdV

equation (linearization around u(x,t))

(5.6.18) Xo(u) =u o
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1
+

|

3
Xu_ + Zt(()uux = uxxx)'

Né-‘

= 1 =
(5.6.19) Zo(u,t) —.Z(Zu + xu * 3tut)

o3

It is easily verified that Xo and Zo satisfy (5.6.12) and that Xo(u,t),
Zo(u,t) € 32 for all u € 32’ t € R. So indeed we have two symmetries;
XO,Zo € V(X; 32). The factor { in (5.6.19) may look strange, but turns out

to be convenient in the sequel. The corresponding adjoint symmetries are

= - - =137, . L 33 -
P = QXO =u, T = Q Zo = 43 u + ZXu * 4t(3u uxx).

Note that indeed po(u,t), To(u,t) € U2. Using the recursion operators A

and I' we now obtain the following
5.6.20 Theorem.

Two infinite series of symmetries for the KdV equation are given by

_ .k _ .k
Xk = A Xo’ Zk = A Zo'

The corresponding adjoint symmetries are given by

The first few elements of the series Xk and Py are

X, =X =6uu_ - u

1 X xxx’
D] = B—IXI = 3u2 T Yax - 22? ?
(5.6.21) X, - 30¢%u - 200 u - 10uu +u s
% X XX XXX XXXXX
0y = a_le = 10u3 = 5ui - lOuuxx Tl %‘%;? .

The first elements of the series Zk and Tk are
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P S N 3 o 3 3
Z] = aa- 4 2 uxa U7 Yk * U 7T Mexx * 4 tXé
N N 1 3
= 2u” + 5 uxa u-u + A xX1 + 7 tXZ’
(5.6.22)
_ ot _ 3 .-1,2 1 -1 3 3.2 1 3
Ty =88 =70 W)+g5ud woFu, b —pwm, 7 Ty

B O N R N S I |
=79 W) +7ud u-Fu +pxEp + T,

So these series of symmetries and adjoint symmetries depend explicitly

on x and t.
5.6.23 Remark.

It is easily shown that the general form of Zk and T, as suggested by
(5.6.19) and (5.6.22), is

_ 1 3
Zk(u,t) = fk(u) + Z—xXk(u) + % th+1(u),

3
xp (u) + 7 to,  (u),

-

T (0, t) = g (W) +

where fk and g, are functions which can be constructed using u, its

y : -1 . o
derivatives and the operator 3 . (So fk and g, may not contain x explicitly;
a translation of u(x) along the x-axis must correspond to the same

translation of (fk(u))(x)and (gk(u))(x) along the x—-axis).

o

The '"variational derivatives" of the constants of the motion Fl and G are
GFl _ 8¢ _

(5.6.26)  Fx = 1 §p =%+ 6tu.

Both derivatives are not elements of Uz, which means that, strictly speaking,
Fl and G are not differentiable (in the choosen topology). The local
conservation law corresponding to F1 is
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2
(5.6.25) u, = (3u” - uxx)x

o

Because f (3u2 = uxx)dx = 3F2, the flux of u in the local conservation

law (5.5?25) is again a conserved quantity. Broer [25] has shown that,
using this conserved flux property, a new constant of the motion can
be constructed. This turns out to be G. In [25] the Poisson brackets

between G and the series F, are also given

k
(5.6.26) {F,Gt =k F _, .
SF
1 1 1 . 1 &G 1 3 .
T o e — = - = — = f
If we set o_l 7 Fa > and T_] 8% "8 X + A tu then we can verify

satisfy (5.6.13) and that

that O_] and T_l

(5.6.27) o, =Tp_, » T, g

The series of symmetries X, is well-known, see for instance Lax [29] ,

k

Olver [13] , Magri [5] or Wadati [14] . The equations u_ = Xk(u) are

t
called higher order Korteweg-de Vries equations. The symmetries X, are SF

canonical and cofrespond to the constants of the motion Fk by Xk = aka ——%Eg
(ak € R). This means that the higher order KdV equations are also Hamiltonian
systems. These results were first found by Gardner. In the sequel we shall
also prove that the symmetries Xk are canonical. The series of symmetries Zk'
although easily found, has attracted much less attention. As far as we know,
it is only reported by Olver [36] . This series is well suited to illustrate
the theory, described in the sections 4.5 and 4.6, which we shall do now.

We first study the SA operators which correspond by the theorems
4.2.11 and 4.2.17 to the (adjoint) symmetries Zo and Z] (To and Tl).
Recall that an arbitrary symmetry Z = Q+T gives rise to an SA operator

(theorem 4.2.11)

LZQ = (Q'2) +Qz' + 2'*Q

= ' - "%

a1 3 a2 k_ 1 .-1 1 3 a2
Using T = % ] # g R + 4t(6u 9" ) and Ts ™" § 3 7 x + i t(6u 37)

we obtain
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So we find again the already known SA operator ). This is not surprising

since the symmetry Z0 corresponds to the scale properties of KdV. The

symmetry Z1 leads to a more interesting result. The derivative of T and
its dual operator are
S T SRR P I R N RN SRRDRD [ S SO
T3 3 u + 2(3 u) + > ud % 3 + 3 XU - g X3 o+ 3 tpz,
3,-1 . 1,.-1 1 .-l 3 1,2 3
Y = 2 2 - il s - = 1%
Ty 70 ut5(0 w -39 +Z 3y Ru - X+ 0y
5 °F)
; . . = 2 S
Since p2 1s canonical (p2 3 5u ), we have p2 Py
Hence
(5.6.28) L,=2"ur 2207 -5=0.

1

So we find the already known SA operator &

. Because of the normalization

factor in (5.6.19) the multiplicative constant in (5.6.28) is equal to 1.

We can compute again the Lie derivative (theorem 4.2.17) and obtain the

SA operator

[SNENS]

-1 2
u

9 + 9uZpy”!

- 63u - 6ud + % 3°

(5.6.29)

¢ Qo

oW

w

<
(LZ]Q)Q (LZ Q).

1

8o

This means that Z1 satisfies hypothesis 4.5.1 with ¢

+ 6ud

1

u - 33

lu - 3u 3_]
XX XX

o w

. This hypothesis

was essential for the theory described in the sections 4.5 and 4.6. As a

first result we obtain from theorem 4.5.5 the following
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5.6.30 Theorem.
The SA operators corresponding to the symmetries Zk are given by

L, 2 = b)) - LA k= 0,1,2,..
k

5.6.31 Corollary.
The (adjoint) symmetries Zk(Tk) are non-canonical for k > 0.
Proof:

It is easily seen that Fk # 0 for k 2 0. So, by the preceding theorem,

LZ  # 0. Then, using lemma 4.2.3 we see that Zk cannot be canonical.
k

o
5.6.32 Corollary.
k k .
The SA operators I' @ = QA" are cyclic.
Proof:
The SA operator LZ Q is cyclic (theorem 4.2.11).
k
o

An infinite series of constants of the motion Fk for the KdV equation is

now easily constructed. (We use ﬁk in stead of Fk since the normalization

is different; the coefficient of uK in F, is assumed to be 1)

k
5.6.33 Theorem.

The (adjoint) symmetries Xk(pk) are canonical. The corresponding constants

of the motion Fk’ defined by
SF
k+2 _ _ -
Su - Py T QXk k =0,1,2,
are in involution, 53 = H.
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Proof:
. 3 15 -« 6F4
From (5.6.22) and (5.6.21) we obtain that th = Z—XZ = —§-Q 5a ’ 5° Z]t

is a canonical symmetry. For k > 1 the theorem now follows from theorem 4.5.13.

The case k = 0 (so fz) has to be considered separately. A simple calculation

shows that fz = 3 uzdx is a constant of the motion, The Poisson bracket
—c0
§F S8F
sl 2 k 2
= { — AE——
{F,,F,} rom LU el

vanishes since I' = Q¥, .and Q and ¥ are antisymmetric. So the whole series

fk (k = 2,3,...) is in involution.
5.6.34 Remark.

The reason that we have to consider fz separately is that in theorem
4.5.13 we constructed a series of constants of the motion, starting with
the Hamiltonian H = F3. In this case there also exists a constant of the

= 4F. = 47 udx

motion F. "below" the Hamiltonian. We can also consider F |

2 i

—c0

as the first element of the series Fk' However, formally %1 is not

differentiable. If we still compute the corresponding symmetry we obtain

8

=0 1 <51
X, =0 = 3 =0,

This would imply that the Poisson bracket of F1 = iF with every other

1
function vanishes.

. . k. = . (2k-3)!
The coefficient of u in Fk is found to be KT (&-2) ! .

So if we set

CkU(k-2)! 3

Be = @37 T

for k > 1
we obtain a series of constants of the motion such that the coefficient

of uk in Fk is equal to 1.

Next we consider the various possible Lie brackets.
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5.6.35 Theorem.

The Lie brackets in and between the elements of the series Xk and Zk for

k, 2 2 0 are given by

[Xk’XQ] =0,
- 1

[2,,%,] = Go+DX ),

[Zk,zg] = i(Q-k)Zkﬁ',Q,‘
Proof:
It is easily verified that [ZI’X]] = 3 X,+ Then for k,2 > 1 the theorem
follows from theorem 4.6.6 (with b = ). For k = 0 or & = 0 the proof
is also easily given, see remark 2.6.15.

o

Of course the fact that the symmetries of the series Xk commute follows
also from the fact that the corresponding constants of the motion §k+2
are in involution.

WS now have described two methods for constructing the constants
of the motion Fk (or Fk). First we used a recursion operator for (adjoint)
symmetries A(I'), viz. the construction described in the theorems 5.6.20
and 5.6.33. The second method consisted in generating the canonical symmetries
X

k
simple method for constructing the infinite series of constants of the

by using the Lie bracket with 4, see theorem 5.6.35. However, the most

motion is described in

5.6.36 Theorem.
The constant of the motion Fk(k > 2) can be obtained from Fk—l by
2k
F,(u=—"——— L, F,__, (v
k 4(k—1)2—] Z] k-1
SF
- 2k2 Jw Guk ] (am” + 2 uxa Iu T Ykx * 7 XUy
4(k-1)"-1 ™
1
7 xuxxx)dx.



Proof:
For k = 3 this result is easily verified. For k > 3 the first expression

follows from corollary 4.6.14 (for the KdV equation H = F, = F The

37 3
normalization coefficient is easily found by considering the highest power

of u. Using the expression for Zl’ as given in (5.6.22), we obtain

GFk
Llek w0 4
SF
%% 2 -1 1 3
= <3—_’ 2u” + 5 u 3 U + 5 Xuu 7 xuXxx + tX,>
GFk
Since < SG—"X2> =4 {Fk’ Fz} = 0 the term with explicit time dependence
vanishes.
o

We shall now show that the KdV equation can also be considered
as a Hamiltonian system with Hamiltonian }(k+1) §k+3(k=0,1,2,...) and an

appropriate (weak) symplectic form. Application of ' to (5.6.6) gives

O B =
t Su Su :
Using theorem 5.6.30 we obtain
SF
k+3
=1 i,
(5.6.37) (L, Duy = J1) —

k

The operator LZ Q 1s cyclic, it corresponds to the closed two-form
k
If this two~form is (weakly) nondegenerate we can

consider (5.6.37) as a Hamiltonian system with Hamiltonian é(k+])f d

k+3 an

(weak) symplectic form dt, . This raises the question of the invertability

of (theorem 5.6.30)

K

L, @ = b+) I = 40D @00
k

We first consider the operator ¥ . Our attempts to prove that Y (u)

is invertible were not sucessful. However, we can prove the following
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5.6.38 Theorem.
Let u € SZ' Then the linear operator_W(u) 5 U2 - 52 is injective.

Proof:

Suppose there exists a function w € UZ’ w # 0 such that

(5.6.39) Y(Ww = 2u w + 4uw_ - w =0.
X X XXX

We shall show that this leads to a contradiction. After multiplication

of (5.6.39) with w we can write this expression as
d 7 -
Ek(Zuw o + %wx) =0,

Since w € U2 and u € 32 this implies

(5.6.40) 2uw2 - ww__ ¥ sz = 0.
XX x

We shall first show that this implies that w cannot change sign on R .
Suppose w(xo) = 0 for some X € R. Then (5.6.40) implies wx(xo) = 0.
Suppose wxx(xo) = 0. Then, by considering (5.6.39) as an initial value
problem with initial values w(x ) = 0, w (x ) =0 and w_(x ) = 0 and
o x "o xx 0
using the existence and uniqueness theorems for ordinary differential
equations, we obtain w = 0 on R, which is a contradiction. So wxx(xo) >0
or wxx(xo) < 0, which means that w(x) cannot change sign on R. It is no
restriction to assume w(x) 2 0 on R. So if w(xo) = 0 then wx(xo) = 0 and
2 .
> 0. - - .
wxx(xo) 0. Hence w(x) ﬁwxx(xo)(x xo) for x - X This means that Yw(x)
is continuous but not differentiable in x = X, - Denote the number of zeros
of w(x) between x and some point X with w(xl) # 0 by n(x). Then it is

easily seen that

(5.6-4]) z(x) = (_l)n(x) m

is again a function with continuous derivatives. Substitution of

w(x) = zz(x) in (5.6.40) results in
(5.6.42) -z + uz = 0.
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From w € U2 and w(x) > 0 for all x € R we obtain lim w(x) = 0. Then

+00
(5.6.41) implies X+

(5.6.43) lim z(x) = 0.

X0

The solution z of (5.6.42) and (5.6.43) can be obtained from the following

integral equation
(5.6.44) z(x) = [ (y=)u(y)z(y) dy.
X

Since u € Sz the integral exists for every bounded continuous function z.
Using a standard contraction argument we show that this equation can only
have the trivial solution z = 0. Since u € S2 there exists a real number
A > 0 such that

(o]

(5.6.45) B={ |u(y)]|y dy < }.
A

Denote by C[A,») the space of bounded continuous functions on [A,®) .
I1f we supply C[A,®) with the uniform norm it is a Banach space. Define
the linear operator © : C[A,») -» C[A,») by
(o]
©2) (x) = [ (y=x)uly)z(y) dy.

X

It is easily seen that O is a contraction

@] < Il f 2ylutp)| dy < 28] .

This means that © has only the fixed point z = 0. Hence (5.6.42) and (5.6.43)

have only the solution z(x) = 0 on [A,®) and so (uniqueness) z(x) = 0 on R.

Then (5.6.41) implies that w(x) = 0 on R, which is again a contradiction.

This completes the proof.
5.6.46 Remark .

It is easily seen that a real number A such that (5.6.45) is satisfied also

exists for u € Sl' So the theorem also holds if u € S1 and if we consider
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¥(u) as an operator Y¥Y(u) : U1 - S]. If u¢ S1 the theorem may be not

correct. For instance with the functions

2 2—]
uE) =T €S,
(x™+1)
w(x) = . € U]
l+x
we can verify that Y(u)w = 2u_w + 4uw_ + w =0.
bl X XXX
o]
5.6.47 Remark.

Let u € SZ be a function which can be obtained by the Miura transformation
(5.6.9) from some smooth function v, so u = v2 + Ve Then it is easily
verified that the operator ¥(u) can be factorized

Y(u) = 2ud + 20u - 9°

(2v+3)3(2v-3).

s ; 2
However, for amn arbitrary u € S2 a function v such that u = v +v* has
singularities on the x—axis. So this factorization cannot be used to

prove injectivity or even invertability.

As a consequence of theorem 5.6.38 we have

5.6.48 Corollary.

The KdV equation can be considered as a Hamiltonian system with Hamiltonian

{(k+1) F

K+3 and weak symplectic form dt

K
Proof:
Since ¥ is injective and Q is invertible we obtain from theorem 5.6.30 that

LZ Q 32 > U2 is also injective. So the corresponding two-form LZ w = di

k k
is a weak symplectic form. The corollary now follows from (5.6.37).
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Up to now we considered two infinite series of symmetries
Xk and Zk(k = 0,1,2,...) for the KdV equation. A completely different
set of symmetries appears in the "inverse scattering method". We shall
first describe the scattering and inverse scattering problems for the
Schrodinger equation and indicate how the initial value problem for the
KdV equation can be solved. Consider the Schrddinger eigenvalue problem

on R with a function u € 32 as potential

(5.6.49) e R = Ay.
For A = k2 > 0 this problem has a continuous spectrum. Define the Jost
functions f(x,k) and g(x,k) as the solutions of (5.6.49) with A = kz,
such that

f(x,k) ~ elkx for x + o ,
(5.6.50)

g(x,k) ~ P

For k # O the pairs f(x,k), f(x,-k) and g(x,k), g(x,-k) form two fundamental
systems of solutions. A solution of (5.6.49) which (in quantum mechanics)
can be interpreted as a wave, coming from —o, which is partly reflected and
partly transmitted, has the asymptotic behaviour

kx

y(x,k) ~ e + R(k)e_lkx for x » — «,

(5.6.51)

X

y(x,k) ~ T(k) ol for x - o,

From (5.6.50) we see that this solution can be written as
(5.6.51a) y(x,k) = g(x,-k) + R(k)g(x,k) = T(k)f(x,k).

The complex functions R and T are called reflection and transmission
coefficient. The eigenvalue problem (5.6.49) can also have a finite
number of discrete (isolated) eigenvalues Aj = ~u§ <0 for j = l,...,n(pj > 0).

We normalize the corresponding real eigenfunctions ¥ by

j y?(x) dx = 1.

-0

164



We fix the sign of yj(x) by requiring yj(x) > 0 as x - - o, For every

discrete eigenfunction yj we define the normalization coefficient by

—2U.x
c. = lim e J yj(x).

3 X>—0

The set {R(k); Xj’ cjl j=1,...,n} will be called the scattering data of
the potential u. The problem of reconstructing the potential u from the
scattering data is called the Znverse scattering problem. This problem
was solved by Gel'fand and Levitan [21] and Kay and Moses [22] . First
define the function B : R > R by

_ . '
(5.6.52) B = % eved 4t [ Rkde T g,
= 2w

Then solve the Gel'fand Levitan equation

X
K(x,y) + B(x+y) + [ B(y+2)K(x,2z) dz =0 x> y.

—0

The potential u can now be obtained from

u(x) = 2 %;— K(x,x).

Next suppose the potential u satisfies the KdV equation (5.6.1). Then the
scattering data and the (improper) eigenfunctions f(x,k), g(x,k), y(x,k),
yj(x) of (5.6.49) will also depend on t. The remarkable discovery of
Gardner, Greene, Kruskal and Miura [19,20] 1is that, if the potential u
of (5.6.49) evolves according to the KdV equation, the evolution of the
scattering data is given by

~

R, (k,t) = - 8 TCR(, B s
(5.6.53) 4 x. (t) =0,
Je
_ 3 - = s
.Cjt(t) = -8 pj(t)cj(t) (uj v Aj) j | T N
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The solution of these ordinary differential equations is trivial. The
initial value problem for the KdV equation can now formally be solved.

We first compute the scattering data of the initial value. The time
evolution of the scattering data is given by (5.6.53). Then by "inverse
scattering'" we can find the solution u for arbitrary t. For future reference
we also give the time evolution of the solutions of (5.6.49) (see for

instance Eckhaus and van Harten [23, § 2.3.1] )
e 2
£ = -4ik’f ~ u £ + 2(u + 2KVE ,
X x

2
(5.6.54) J g = Aikzg -ugt 2(u + 2k )gx,

w3 2
L Ve = 4ik™y uy + 2(u + 2k )yX

and

5.6.55 . o= - .o+ 2(ut2X)y. .
( ) th L4 (u J)YJx
5.6.56 Remark .

If u satisfies the KdV equation, the function B(x,t), as given in (5.6.52)

satisfies Bt + 8 BXxx = 0. This means that w(x,t) = B(2x,t) satisfies
(5.6.57) w, ot w =0.

So the invertible mapping u =+ w is a linearizing transformation for the
KdV equation. This means that the KdV equation is also 'completely integrable'
in the sense discussed in section 5.5. Note that (5.6.57)1is also the equation

obtained by linearizing the KdV equation around u = 0.
5.6.58 Remark .

If we want to express the dependence of the scattering data on the potential
u, we have to write i(k,u), Xj(u), Ej(u) (and n(u)). However, it is usual

in inverse scattering theory to consider the reflection coefficient as a
function of k and t and the discrete eigenvalues with corresponding
normalization coefficients as functions of t (where u is assumed to satisfy

the KdV equation). Then
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Rt(k,t) = R'(k,u)ut, Ajt(t) = )\J!(u)ut and cjt(t) = cj(u)ut.

I1f we consider symmetries Y and adjoint symmetries ¢ also as functions

of x and t, they have to satisfy (see (5.6.12) and (5.6.13))
(5.6.59) Yt(x,t) - (6du(x,t) - 83) Y(x,t) =0,

(5.6.60) 0, (6 0) + (6ul, )0 + 3°) o(x,t) = O,

It is well-known from first order perturbation theory in
quantum mechanics that an infinitesimal change Su in the potential u of
the Schrodinger equation (5.6.49) leads to changes in the discrete eigen-
values and reflection coefficient given by

o0

81, = f y?(X)Gu(x) dx,

-0

SR = 5 7 ¥y (LK) dux) dx.

This implies

By _ 2 . .
(5.6.61) =0 yj(x) j=1l,...,n,
SR(kk) _ 1 2
(5.6.62) e~ " Y (x,k) k#0.

Since ¥y and all its x derivatives vanish exponentially for |x| > ®

SA.
BN . ;
we have yj € 32' So 3 yj € 32 c u2. The asymptotic behaviour of

y(x,k) for lxl + o, as given in (5.6.51), implies that 5§ékl ¢ Uz. So
formally R(k) is not differentiable (in the topology of Sz). From (5.6.53)

we see that a discrete eigenvalue Aj is a constant of the motion and that

.. 3
3 8ik™t _
Y (e R(k,t)) = 0.

This leads to
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5.6.63 Theorem.

: : 2 ; i 5 .
i) The functions Oj = yj (j=t,...,n) are canonical adjoint symmetries
corresponding to the constants of the motion Aj; so they satisfy

(5.6.60). Further

2 2
.6.64 'y, = 4)x.y..
(5.6.64) ¥ AJYJ
8ik3t 2
ii) For k # 0 the functionsgl(x,k,t) = e vy (x,k,t),
giKdt 2 -8ik3t 2
Ly (x,k,t) = e £7(,k,t) and gy(x,k,t) = e g (x,k,t)
satisfy (5.6.60) and
(5.6.65) g Gokot) = 47 ¢ (ok,t)  mo=1,2,3.
Proof:

The discrete eigenvalues Xj are constants of the motion, so their variational
derivatives are adjoint symmetries. Multiplication of (5.6.49) with yj and

application of 48_1 yields x

2 -
-2y. + 4 9 ] (uy.y. ) = ZX.y? ,
iy 373, 373

while multiplication of (5.6.49) with 2yj gives

2 2
-2y.v. + 2uy. = 2A.y.
373 3 373

Then (5.6.64) is obtained by adding these two expressions. The fact that
the functions Cm(m= 1,2,3) satisfy (5.6.60) follows from a straightforward
computation using (5.6.54). The proof of (5.6.65) is similar to the proof
of (5.6.64).

5 Bk

Although C](.,k,t) = 2ik ™ ( R(k,t)) we do not call g, the

-y
canonical adjoint symmetry corresponding to e81k t R(k,t). The reason for

this is that Cl(.,k,t) ¢ U,. Also (asymptotic behaviour) Zo» g3(.,k,t)¢ u,.
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Apart from this difference the two parts of the theorem claim similar
results for the squares of the eigenfunctions of the Schrodinger equation
(5.6.49). The fact that oj(j=l,...,n) and % satisfy (5.6.60) is already
given by Gardner, Greene, Kruskal and Miura [20, theorem 3.6] . However,

as far as we know the interpretation of ¢. as canonical adjoint symmetry

is new. The relations (5.6.64) and (5.6.65) for the 'squared eigenfunctions"
are also well-known. Of course aoj(j=1,...,n) and acm(m=l,2,3) satisfy
(5.6.59) and Boj is a canonical symmetry. These functions are also eigen-~

functions of the recursion operator for symmetries A

(5.6.66) A3c. = 4X.00, J=1l,..u,n,
] 1

(5.6.67) A3t

AkZSC m=1,2,3 .
m m

Recall that at the end of the sections 2.3 and 2.4 we showed that under

certain conditions (which we shall not verify here) the eigenvalues of

recursion operators for symmetries and for adjoint symmetries are constants

of the motion. An example of this situation is given by (5.6.64) and (5.6.66).
We now indicate how a second solution of (5.6.60), corresponding

to a discrete eigenvalue Aj, can be constructed. The Jost functions

f(x,k) and g(x,k) can be continued analytically into the upper half of

the complex k-plane. In k=ipj we have (for a moment we omit t)

M.x
. J
g(x,luj)vv e for x » - « .

A solution hj(x) of (5.6.49) with A= - u§ which is independent of g(x,iuj) s

“u.X
g

must have asymptotic behaviour h(x) ~ e for x + - ». Then, by considering

the behaviour for x - —wwe see that the solution-yj(x) can be written as

Yj x) = \/EE g(X;i]Jj) .

This means the canonical adjoint symmetry oj can be written as

o) (x,t) = y§<x,t) = ¢y (®) gz(x,iuj,t)-
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We now consider the derivative of g(x,k,t) with respect to k. The time

evolution of this function in k = iuj follows from (5.6.54)

3 2
= 4y’ - -2,
Byt Mgy u gt 2-2u0g

(5.6.68)
3 ;
- 12ip5g - 8ip.
inle M8y

Then a long but straightforward computation, using (5.6.53), (5.6.54),
(5.6.68) and (derivatives with respect to x and k in k = iul of) the

Schrodinger equation (5.6.49) shows that

-~ : . . 2
5.6.69 G.(x,t) = ic.(t ,id,,t ., t) - "t
( ) J(x ) 1cJ( Ye(x . s )gk(x,lul t) IZUJtOJ(x,t)

satisfies (5.6.60). It can be shown that aj is a real function with

asymptotic behaviour

2U.x

]

aj(x,t) ~ cj(t)xe for x > — o

aj(x,t) ~ ] for x > o,

So aj ¢ U2 which means that we cannot call Ej an adjoint symmetry. Using
derivatives of (5.6.49) with respect to x and k it is a simple exercise

‘to show that

I6. = - 4u2s - 4y.0, jo=1,...,n.
] i3 359 T

Thus, related with the "inverse scattering method', we constructed the

following solutions of (5.6.60):

i) continuous spectrum A = k2, k € R\{0}

i3
eBlk t y2(x,k,t),

C] (x,k, t)

o3
eSlk t fz(x,k,t),

CZ(X’k’t)
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w3
- 2
Ca(xyka t) =e Bik7e g (x,k,t),
with T = 4K’z (m=1,2,3)
. m m ’ ’ 3
.. . 2 .
ii) discrete spectrum Xj = - uj s J = lseaesn

2 _ 2, .
Oj(X.t) = yj(x,t) cj(t)g (x,llﬁ,t).

s , . . 2
cj(x,t) = 1cj(t)g(x,luj,t)gk(x.luj,t) = lzujtoj(x,t),
with o, = - 4u20
3 ity
To, = - 4u28 - 4u.o
b 373 i3

It follows from (5.6.51a) that [, (x,k,t) = T-(k) £,(x,k,t). A more pro-
found study of the inverse scattering method shows that a infinitesimal
variation Su (smooth, fast decaying as|x|> ©) .can be written in terms of

C3, 0. and 8.. See for instance Zakharov and Faddeev [24, the first
expression in 82] . This enables us to express the symmetries Xk and Zk’
which we studied in the first part of this section, in terms of G350 and Gy

We only give the formal result

XO(X’ t) = ux(x’ t)
3 21 o ikt n
=2 £t R dk - 4 I yu,0.(x,t)],
(5.6.70) = = _i kR(k,t)e Ty (x,k, ) dk & UJOJ(X, )]
Zo(x,t) = 2u(x,t) + xux(x,t) + 3t ut(x,t)
.3
= %;— %- jw(kRk(k,t) + 24iKOER(k, b)) ST t T4 (x,k,t)dk

(5.6.71)

n ~
j§] (ZOj(X,t) + 4Uj0j(xyt)]-

The expression (5.6.70) has already been given (in a somewhat different
form) by Deift and Trubowitz [37] . By applying the recursion operator A

(T inside the square brackets) we can obtain similar expressions for Xk
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and Zk for k = 1,2,3,...

We end this section by making some remarks on the higher order

KdV equations. Denote the "time independent part" of the symmetries Zk by
Ak’ s0
(5.6.72) A =7, -3t X . = A0 u+ixu) Kk =0,1,2

U k k¢ Tk+l f Tk P

Then from theorem 5.6.35 we get

[4,%,1 = GadX o,

(5.6.73)
P4

4,14, ] kg

Some properties of higher order KdV equations are described in the following
5.6.74 Theorem.
Consider in S2 the higher order KdV equation

(5.6.75) u, = Xﬁ(u) ,m=1,2,3,...

Then

i) this equation is a Hamiltonian system with Hamiltonian Fm+2 and

symplectic form w
6F

_ A m+2
B, = Xm(u) =Q 3o 5

ii) the functions (functionals) fk( or Fk) are also constants of the
motion for this higher order KdV equation,

iii) the operator A(I') is a recursion operator for (adjoint) symmetries of
(5.6.75),

iv) two infinite series of symmetries for (5.6.75) are

§F
« k+2 ]
Xk = Q = (independent of m),
= 1 1 -
Um,k Ak + (Jm + Dt Xk k 0515244
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So Xk, Um,k € V(Xm,Sz). The symmetries Xk are canonical while the Um,k
are non-canonical. The Lie brackets between elements of these series are
given by

[Xk’X,Q,] = 0,
5.6.76 | 1
( ) [0, %] 42+ DX, s

= 1(0— =

[Um,k’Um,Ql 1L k)Um,k+l k,2 0,1,2,

Proof:

Part i) and ii) follow at once from theorem 5.6.33. Theorem 4.6.11 yields

that LX A = 0. Since A does not depend explicitly on t this implies that
m
A is a recursion operator for symmetries of (5.6.75). Using (5.6.73) we

obtain
2w oy +x,U 1=0
ot m,k m’m’k
s0 Um K is a symmetry for (5.6.75). The Lie brackets given in (5.6.76)

follow immediately from (5.6.73).

Note that the structure of the Lie algebra of symmetries {Xk, _—
’
k =0,1,2,... } of (5.6.75) does not depend on m. For the KdV equation

itself (m=1) this Lie algebra is already described in theorem 5.6.35.
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5.7 THE SAWADA~KOTERA EQUATION.

In this section we consider an equation of "KdV type" found by Sawada and
Kotera [38] and also by Caudrey, Dodd and Gibbon [39]., We study this so
called Sawada-Kotera (SK) equation in the form

x € R

+ 30uu + u

(5.7.1) u. = x(u) = 180u2ux + 30u_u o

t 2x 5%?

n . . . .
where u = o u. The SK equation is essentially different from the higher
order KdV equation u, = XZ(U) in the notation of the preceding section.

This equation reads

= lOuu3X - 20uu2x + Ugy.

2
(5.7.2) u, = 30u uy

0f course the coefficients of both equations can be changed by scale
transformations of x, t and u. However, it is impossible to transform
(5.7.1) into (5.7.2) by a scale transformation. It is shown in [39] that
(5.7.1) and (5.7.2) are the only equations of this type which have
multi-soliton solutions. We shall consider the SK equation in the space
Sp (p = 1,2,...) with the topology induced by Up and the usual duality
map. In this section we study symmetries and constants of the motion of
the SK equation. We also make some remarks on the "inverse scattering
problem" for (5.7.1). For the SK equation there exists a series of

constants of the motion Fk' The first few elements of this series are

given by
F1 = _i u dx , F3 =5 _i (2u” - u ) dx ,
] = 4 :
Fr = 17 [ (12¢” - 18uu - + u22) dx ,
(5.7.3) oo X X
1 > 6 3 2 4 2 2
Fo = 575 _i (576u” - 3600u”u © - 204u * + 576u’u,  +
3 2 2
+ 32u2x - 42uu3x + qu) dx .

A constant of the motion of a different type is given by
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[

[ xu dx + 60t Fj.

—00

(5.7.4) G

The SK equation (and also (5.7.2)) is invariant for the scale transformation

u(x,t) ~ a2u(ax,ast). Under this scale transformation the constants of the

motion Fk are proportional to a2k, 1¢ appears that constants of the motion

of the type F3k+2 (with densities which are polynomials in u and its
derivatives) do not exist. For k = 0 this is easily verified. Using a
computer program (formula manipulation) it can be shown that also Fg, Fg
and Fll do not exist. In the sequel we shall describe several methods to

obtain Fk+3 from Fk. Then, starting with Fl and F3 we can construct the

series F3k+1 and ij+3 for k = 1,2,3,... . Of course this does not exclude
the possibility that a constant of the motion F3k+2 exists for some k
(k > 3).

Symmetries Y(u,t) and adjoint symmetries o(u,t) of the SK

equation have to satisfy (see (5.1.3) and (5.1.4))

(5.7.5) Y (u,) + ¥'(u,t) X(u) - X' (u) Y(u,t) = 0,
(5.7.6) Ut(u,t) + 0'(u,t) X(u) + X'*(u) o(u,t) =0
with

X'(u) = 1803u” + 300%u - 603ud + 97 : S S

X'¥(u) = -180u”d - 30ud° - 603ud - B°

Two "semi-Hamiltonian forms" of the SK equation have been found by Broer

and ten Eikelder [40] and also by Fuchssteiner and Oevel [41]. Define the

antisymmetric operators (in fact operator fields) Q" and © by

12ud + 120u + 33 : U =S,

(5.7.7) £ (uw) D b

(5.7.8) d(u) = 63%ud”! + 697 ud2 + 1807 w2 + 18027l + 33 1 S_» U
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It is easily seen that the SK equation (5.7.1) can be written as

w Bl 3.2
(5.7.9) u = Q (u) E = (12ud + 1238u + 37 )(3u” + uxx).
A simple calculation shows that Q" satisfies (5.1.16), so it is a canonical

operator. Note that, up to a scale transformation, a corresponds to the
operator ¥, as given in the preceding section in (5.6.14). So from theorem
5.6.38 we obtain that O is injective. This property is not sufficient to
call (5.7.9) a Hamiltonian system. However, using lemma 4.2.] we obtain
from the "semi-Hamiltonian form" (5.7.9) that LXQ+ = 0. Since Q+ does not
depend explicitly on t, this means that @ is a (canonical) AS operator,
Another "semi-Hamiltonian form" of the SK equation is obtained by applying

¢ to (5.7.1). This results in

6F6
(5.7.10) d(u) u, = 288 —.
t Su
It can be verified that ¢ satisfies (5.1.14), so it is a cyclic operétor.

This means that the two-form ¢ defined by

(5.7.11) $(4,B) = <d(u)4,B> V A4,B € Sp

is closed. This two-form is (weakly) nondegenerate iff ¢ is invertible
(injective). In that case we can consider (5.7.10) as a Hamiltonian system
with Hamiltonian 288 F6 and (weak) symplectic form ¢. However, we shall

not try to prove that ®(u) is injective or even invertible. The "semi-

Hamiltonian form" (5.7.10) suggests that ¢ is an SA operator. Indeed a
long but straightforward computation shows that
LX¢ = (®'X) + X' +X'"*% = 0,

Since ¢ does not depend explicitly on t this implies that & is an SA

operator. Hence we have proved the following

5.7.12 Theorem.

%
The operator §! , as given in (5.7.7) is an AS operator. The operator ¢,
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defined in (5.7.8) is an SA operator. Further A = 0% Sp - Sp is a
recursion operator for symmetries and I = o0 Up > Up is a recursion

operator for adjoint symmetries.

5.7.13 Remark.

Note that, although we have given the "two semi-Hamiltonian forms" (5.7.9)
and (5.7.10), we did not prove that the SK equation is a Hamiltonian system.
This means that we cannot make straightforward use of the results and
definitions of chapter 4 (in particular the sections 4.5 and 4.6). However,
a number of results can be obtained by using similar techniques as in
chapter 4. We shall adopt the definitions of canonical and non-canonical
adjoint symmetries, as given in definition 4.2.7, also for this case, with
the restriction that canonical/non-canonical is only defined for symmetries
Y which can be written as ¥ = £ 0. Also we shall use the notion of Poisson
bracket (with canonical operator Q+) as explained in.section 3.3. Note that
we gave a proof of the Jacobi identity (theorem 3.3.3) in which we only

i
used that € 1is canonical.

The "variational derivatives" of F, and G are given by

SF

1 u 5G_ 6 2 u
s 1€ p* o= X + 60t (3u” + uxx) g -

This means that F, and G are not differentiable (in the choosen topology).

However, if we set

SF
N I 2 _ L8
% =11 Su |’ To = 72 x* 6 LA uxx) T 72 Su ’
|
then 0, and T satisfy (5.7.6). The factor 72 turns out to be convenient

-

in the remaining part of this section. Application of @ results in
Y =0, = 12u €S,

(5.7.13.a)

1 .
2o =R 15 = 5 (2u + xu + 5tX(u)) € SP.

It is easily seen that Y, and Zy satisfy (5.7.5), so they are symmetries
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of the SK equation, Note that the symmetry Z, corresponds to the scale

transformation u(x,t) > azu(ax,ast) of the SK equation. By applying the SA
operator ¢ to Y, and Z, we obtain the adjoint symmetries

6FA
oy = 0¥, (= To,) = 72 == and 1) = 0Z, (= I').

Three infinite series of (adjoint) symmetries are constructed in
5.7.14 Theorem,
The series

k-1 SF3 k-1 k-1

5.7.15) Py = T 3e 0 %k T T Oy Ty = '™ty k=1,2,3,...

consist of adjoint symmetries of the SK equation. The corresponding

symmetries are given by

o, - pk-l k _
X,o=Qp, = AT = AX, X, =5,
_ o k-1 k
Yk Q O A Yl A Yo,
- k-1l k
Zk =Q Ty = A Z] = A Zo
Proof:
. 6F3
This theorem is a straightforward consequence of the fact that P = o
a

9, and T, are adjoint symmetries and that I' is a recursion operator

for adjoint symmetries.

We shall show that the series Xk(pk) and Yk(ck) consist of canonical
(adjoint) symmetries which correspond to the constants of the motion F3k
and F3k+]' The (adjoint) symmetries Zk(Tk) turn out to be non-canonical
for k 2 1, Since the adjoint symmetry T, and the symmetry Z] = Q+Tl are

1

essentially for the following considerations, we give T explicitly

1
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1 =1

(5.7.16) 1, =507 (W) + 30PN - 27w uy 37w+ 10uu +
oF
5 3.3 2 I 6
+ Z Uay + x(4u” + 7 Yy + 3uuXX + g-uax) + 240t ?i?
oF
=q, + 240t -—é
1 Su °

It is easily seen that T]' # T]'*, which implies that 7 is a non-canonical

adjoint symmetry and Z] is a non-canonical symmetry. The same property holds

for the other elements of the series Zk(Tk).
5.7.17 Theorem.
The (adjoint) symmetries Zk(Tk) are non-canonical for k > 1.

Proof:
This theorem is proved by considering the terms of Tk which do not depend
explicitly on t and which are proportional to b under the transformation

u * bu. For T these terms are

2 ok

6 Bx 77§ Mux-
The only term in the recursion operator I' which generates again terms of
this type is the operator 36. So the terms of this type in T, are given by

86(k—l) 5 1

(g.u3x *% *

- L1
5 ¥4 T (7 P 3y * T X (er-2)x

This implies that T, ' # Tk'* which means that T, and hence Z; = Q+Tk are
non-canonical for k 2 1.
o

Notice that the terms which contain x explicitly in Tl can be written as

SF
X E—i (see remark 5.6.23 for a similar property of the non-canonical
“ .
symmetries of the KdV equation).

o
By theorem 2.5.15 i the operator LZQ is again an AS operator
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and the operator LZ® is again an SA operator. A very long computation shows

that

(5.7.18) L, 95 = 2%a"
1

(5.7.19) Lo = 2000,

<«
Suppose for a moment the inverse operator { of @ exists. Then (5.7.18)
implies that ¢ = LZ 2 and (5.7.19) can be written as

|

2 _ -+
LZlQ = Z(LZlQ)Q LZIQ.

This would imply that Z] satisfies the conditions of hypothesis 4.5.1 with
¢ = 2 and so the theory described in the sections 4.5 and 4.6 could be
applied., However, since  is not known, and even possibly does not exist,
a straightforward application of this theory is not possible. Therefore

we shall show that the series Xk and Yk consist of canonical symmetries
using methods which differ slightly from those in section 4.5. The

following theorem can be compared with theorem 4.5.5.
5.7.20 Theorem.

The SA operators LZ'® are given by
k

< k k
Ly @ = (k+1) (22 )7¢ = (k+D)IT0 k = 1,2,3,...
k

Proof:
See the proof of theorem 4.5.5 with @ replaced by o.

o

k
(5.7.11). The closedness of ¢ implies that LZ ¢ 1is also closed and hence
k
that the SA operator LZ ¢ is cyclic. Then theorem (5.7.20) implies the
k
(nontrivial) result that the SA operators Fk¢ (k = 1,2,3,...) are also

The SA operator LZ® corresponds to the two—form LZ ¢, with ¢ given in
k

cyclic, Next we consider the symmetri.es'Xk and Yk'
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5.7.21 Theorem,

i = Q+pk, as introduced in theorem 5.7.14 are canonical.

The corresponding constants of the motion F3k’ defined by

The symmetries X

SF SF
k k-1 °F3 B
(5.7.22) ot = =T 2 K =1,2,3,...

are in involution and do not depend explicitly on t.

Proof:
See the proofs of theorem 4.5.10 (with @ replaced by ¢ and H by F3) and
4.5.13 - (with LZQ replaced by ¢ and H by F3).

5.7.23 Theorem.

<
The symmetries Y, = Q O as introduced in theorem 5.7.14 are canonical.

k

The corresponding constants of the motion F3k+l’ defined by
SF §F
3k+1 _ _ k-1 _ k-1 4 _
(5.7.24) ——-gu——ok— r Gl = 72T TU— k=1,2,3,...

are in involution and do not depend explicitly on t. The Poisson bracket

between the constants of the motion F3k+l and F3£ also vanish.

Proof:
The proof of this theorem is somewhat different from the proofs of the
preceding theorems, therefore we give it completely, We first show that

the adjoint symmetries O, are canonical. Using o, = ¢Yo and theorem 5.7.20

k
we can write

)Y k =2,3,...

The SA operator LZ ® is cyclic, it corresponds to the closed two-form
k-1
L $¢. So we can apply lemma 4.5.3 (with A:= Y , ¢:= 1L ¢ and ¢:= L ).
Z o Z z
k-1 k-1 k-1
This yields "

1

dok(Bl,Bz) = < (LY LZ $)B

o Zx-1 1 2
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By again using theorem 5.7.20 this becomes

_ k-1
(5.7.25) do, (B, ,B,) = < (LYO(F ®)B, , B, >.

Q" and LY ® = 0. Then by Leibniz'rule

A simple calculation shows that L
) Yo o

we see that the right hand side of (5.7.25) vanishes. So the adjoint

symmetries Gk are canonical. In the same way as in the proof of theorem

4,5.13 we can show that the corresponding constants of the motion F3k+1

are in involution. We now consider the Poisson bracket between F3k+l and

the "Hamiltonian" F3 = F3. Since F3k+] is a constant of the motion we have

(Fyper T3

8 ~
b+ st Py = O

SF
The derivative ——%%:l =0, does not depend explicitly on t. This means

that E3k+l can only depend explicitly on t through an "additive function
of t" (see also the proof of theorem 2.4.5). Substitution of u = 0 shows

that this is impossible, so
{f F } = 0 and 4 F =0
3k+1°73 9t 3k+1 :

Finally it follows from

-~ ~ ~

e Fa) = (FypigpopsFs

} =0

that the two series F3k+l and F32 are also in involution.

o

Thus we have constructed two series of constants of the motion; a series

§3k by applying the recursion operator for adjoint symmetries I to 6F3
SF Su
and a series F3k+1 by applying I' to 5o Note that F3 and F6 appear

in the "semi-Hamiltonian forms" (5.7.9) and (5.7.10). This simplified

somewhat the construction of the series F By normalizing these constants

3k’
of the motion so that the coefficient of uk in Fk is equal to I, we obtain
thg series F3k and F3k+1' So there exist real numbers N such that

(3:7528) Foe ™ Saifmd  Pypey ™ “aparFapest”
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Next we consider the various possible Lie brackets between
the elements of the three series of symmetries Xk' Yk and Zk. This type of
problem is considered in section 2.6. The results of that section were
obtained under the assumption that hypothesis 2.6.3 was satisfied. A careful
reading of section 2.6 yields that the second condition of hypothesis 2.6.1

(that is (2.6.5)) is only used in theorem 2.6.12 and corollary 2.6.13.
5.7.27 Theorem.

The Lie brackets between the elements of the series of symmetries Xk’ Yk

and Z, are given by

Kk
(5.7.28) [x,,%,0 =0, [x,r]=0, [1,7]=0,
(5.7.29) z,,x1 = & - %’Xk+z'
(5.7.30) [2,,7,] = (& + DY, ;-
Proof:
The symmetries Xk and Yk are given by’

X, =0 SFn , y -0t SFy

L e T
In the theorems 5.7.21 and 5.7.23 we have seen that the various Poisson
brackets of the constants of the motion of the series §3k and §3k+l vanish.
This implies that the corresponding symmetries commute. The formulas
(5.7.29) and (5.7.30) are proved using the methods of section 2.6. We first
‘verify that (2.6.4) and (2.6.6) are satisfied. From (5.7.18) and (5.7.19)

we obtain

g e e = A2,

LZIA = LZI(Q $)

so (2.6.4) is satisfied with a = 1. Since Z, is a symmetry we obtain from

1
(5.7.13.a) that

=z = AL Z =2 px =2
(2,01 = g2, = Ay 2 =2 M =32X
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so (2.6.6) is satisfied with b = % . Then (5.7.29) follows from corollary

2,6.10. In a similar way we can prove (5.7.30).

o
The only Lie bracket which remains is the bracket of two elements of the
series Zk. In section 2.6 this bracket is given in corollary 2.6.13.
However, in the proof of the preceding theorem 2.6.12 we used the second

condition of hypothesis 2.6.3. So we face the problem of computing

(5.7.31) LA =L, @9).
Zy Zy

From theorem 5.7.20 we obtain

2
L, & = 3(3Q )¢
%y

. r g
which means that we "only" have to compute LZ 0 . Assume for a moment that
2
&
the inverse operator @ of @ exists. Then using the theory of section 4.5

it is easily shown that

(5.7.32) L, o - 2@ ) %",
2

However, since we do not know whether § exists, we have to verify this
expression in some other way. The only method we know to verify (5.6.32)
is a straightforward computation. We did not carry out this extremely
laborous task completely. If (5.7.32) would turn out to be correct, we

obtain from corollary (2.6.13) that
(5.7.33) [2,,2,] = (-K)Z, .

We now have discussed two different methods for constructing the series of
constants of the motion ESk and 53k+1' The first method was to construct
the corresponding adjoint symmetries using the recursion operator I (see
the theorems 5.7.21 and 5.7.23). The second method consisted in generating
the corresponding symmetries by using the repated Lie bracket with ZI (see
theorem 5.7.27). The simplests method for constructing the two series of

constants of the motion is described in
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5.7.34 Theorem.

The constants of the motion F3k and F3k+1 can be found recursively by

Fares = &l 7, P ™ % - I a ¥ ay dx,

? T aert o
s = Ptz Faen T B | —5— %o, &
where o is given in (5.7.16). The normalization constants a  and bk have
to be choosen such that the coefficients of u3k+3 and u3k 4 in F

3k+3

respectively F are again equal to 1.

3k+4
Proof:

See the proofs of theorem 4.6.12 (with Q replaced by ®), corollary 4.6.14
and theorem 5.6.36.

Finally we make some remarks on the "scattering-inverse
scattering problem" for the SK equation. A "scattering problem" for the SK

equation, given by Satsuma and Kaup [42], reads
(5.7.35) A 6uyx = \y.

Suppose this equation has a discrete eigenvalue )\ with an eigenfunction y
o

such that | y§x dx exists. Then it can be shown that the eigenvalue X
00

is purely imaginary and that (formally)

‘i Yy dx

If u evolves according to the SK equation, the discrete eigenvalue A is a
constant of the motion and so i %é is an adjoint symmetry. Indeed, using
the time evolution of y given in [42], it can be shown that i %% satisfies
(5.7.6). We now can apply the recursion operator I to i rri After a long
computation, using (x derivatives and complex conjugates of) (5.7.35) we
find
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(5.7.36) ri 8% = oy SA

So the recursion operator I has an eigenvalue 27AX which is again a constant
of the motion. Recall that at the end of the sections 2.3 (and 2.4) we
showed that, under certain conditions, the eigenvalues of the recursion
operators A (and I') are constants of the motion. The formula (5.7.36) is

similar to the relation (5.6.64) in the case of the Korteweg-de Vries

equation.
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5.8 THE BENJAMIN-ONO EQUATION .

Internal waves in a stratified fluid with infinite depth can be described by
the Benjamin-Ono (BO) equation [55,56]. In fact the BO equation can be
considered as a limit of a more general equation (this equation is sometimes
called the Whitham equation, see for instance [57]), which describes internal
waves in a stratified fluid with finite depth. In the deep water and shallow
water limit this equation reduces to the KdV-respectively the BO equation.

We shall consider the BO equation in the form

(5.8.1) u, = 2uux + Huxx x € R,

where H is the Hilbert transform

Hu(x) =

ERL-]

Jm géﬁ) dy  (principal value integral).

Multi-soliton solutions of this equation have been found by Matsuno [59]
and by Chen, Lie and Pereira [60] . A single soliton solution with velocity
- ¢ has the form

(5.8.2) u(x,t) = - c > 0.

1+c2(x+ct)2

We shall consider the BO equation in the space Sp(O < p < 1) with dual space
UP. Clearly the soliton solution given in (5.8.2) is an element of Sp'

In theorem 1.4.10 we have proved that the Hilbert transform can be considered
"as a linear antisymmetric operator H : SP > Up. Several other properties of
H are given in section 1.4. An infinite series of constants of the motion

of the BO equation has been constructed by Nakamura [61] and by Bock and

Kruskal [62] . The first elements of this series are

= 0 2
F?(u) = [Tudx 5 Fg(u) = % jm udx ,
—0 -0
o 1 3.3
(5.8.3) PR =3 [T+ guuy)ax,
FZ(u) = % foo(u4+3u2Hux + Zui)dx.

—0
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It is easily verified that the BO equation can be written in the form

5F§ .
(5.8.4) 0, = 9 — = 3" + uHux).
Su

So we can consider the BO equation as a Hamiltonian system with Hamiltonian
Fg and canonical operator 3. A simple calculation shows that the BO equation
can also be written in the form
8T, 2 2
(5.8.5) u, = ¥Y(@u) — = ( ud + = du + 9HI)u.
t su 3 3

winN

However the antisymmetric operator Y(u) = = ud + %-Bu + 9HY : Up > Sp

is not canonical.Hence (5.8.5) is not a Hamiltonian form of the BO equation.
5.8.6 Remark.

The two ways (5.8.4) and (5.8.5) of writing the BO equation strongly resemble
the similar expressions (5.6.6) and (5.6.15) for the KdV equation. However,
(5.6.6) and (5.6.15) are both ('semi') Hamiltonian forms of the KdV equation.
The two corresponding AS operators have been used to construct recursion
operators for (adjoint) symmetries of the KdV equation (see theorem 5.6.16 and
corollary 5.6.17). Since (5.8.5) is not a (semi-~) Hamiltonian form, a
similar approach is not possible for the BO equation.
‘o

It is remarkable that for the BO equation there also exist
infinite series of constants of the motion which can only be expressed in
terms of densities which depend explicitly on x and t. First define the

following functions (functionals) on Sp.

| 1 2 1 1 3 3
Cz(u) =-§ I xudx , C3 =3 j x(u” + 5 uHuX)dX,
(5.8.7)
CZ(U) =-% f x(u4 + 2u2Hux - 2quHu + ZUi)dX
and also
2, . 1 (22 1 ¢ 2.3 _3
Cz(u) == fx"udx | Cg = §-f X (u” + E-uHux)dx,
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(5.8.8)
2 2, 4 2 2
c4(u) = 1 I x“(u’ + 2u Hux - 2uuxHu + Zux)dx .

Then a long computation shows that

] N o
Fz(u,t) = Cz(u) + 2tF3(u) s
(5.8.9)
Fl(u t) = Cl(u) + 2tF) (u)
3+ 3 4
and also
2 2 1 2_0
Fz(u,t) = Cz(u) + 4tc3(u) + 4t F4(u),
(5.8.10)  F2(u,t) = Ci(u) + 4tCl(w) + 4t2F0(w),
3 3 4 5
2 2 1 2.0
F4(u,t) = CA(u) + 4tcs(u) + 4t F6(u)
are constants of the motion of the BO equation. In these expressions Fg
and F° are the following two constants of the motion of the series whose

6
first elements are given (5.8.3). Further C;(u) is an expression of the form

given in (5.8.7) (C;(u) = %—f(xus + ...)dx). We do not give the very lengty
o

expressions for Fg, F, and Cl explicitly. The symmetry corresponding the

6 5
constant of the motion F; is given by
1 §F,
X, =0—— =3xu_ +u + 2t(2uu_ + Hu_ ) = xu_ + u + 2tu_.
2 Su X X XX X t

.This symmetry is related to the scale transformation u(x,t) > au(ax,azt)

of the BO equation. By taking the repeated Poisson brackets of the constants
of the motion given in (5.8.3), (5.8;9) and (5.8.10) (and of already
constructed elements) we can generate an infinite dimensional Lie algebra

of constants of the motion for the BO equation. However some care is necessary

s . . W . s 2
in this construction. The variational derivatives of C2 and C2 are given by

3

(g
O
NN

2
6y w1

—= = x"u" +

Su Su

n
=
c
N W
»
e
=)
+
N w

- -
~~

®
N
e
N
»
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2

2 86
For u € S we have xu € U but xXu=— ¢ U . Also Hu_ = 3_Hu € S
P P Su P X X p

(see section 1.4), so xHux € Up but szux ¢ up. In a similar way we can show

3,2 6c3
that E—H(x u)x ¢ Up. Hence — ¢ U

5 So formally 02 and 02 are not
Su

2 3

differentiable in the choosen topology. This means that Poisson brackets

between F;, F2 and other (differentiable) constants of the motion may not

3
exist. To avoid these problems we generate a Lie algebra E of constants of
o 1 1 2
30 Fy» F3: Fa} .
Next we make some remarks on the structure of this Lie algebra.

the motion of (5.8.1) starting with {Fg, F

The leading terms of the constants of the motion F: given in (5.8.3),

(5.8.9) and (5.8.10) are of the form

0
k ] K 2
Ly (W =5 _i x u dx.

It is easily seen that

r+i-1
s+j—2

(5.8.11) wl, L?} = (i(s-1) -r(G-1)L

; k . ;
This means that there can be several methods to conmstruct L, using Poisson

; 2
bracket of elements L; with "lower orders'". Hence it may be possible to

generate distinct constants of the motion of the algebra £ which have the

same leading term Lk . For small values of k and £ it can be verified -that

elements of E whichlhave the same leading term Lz are identical. We

conjecture that this also holds true for the other elements of E. In that
case a constant of the motion with leading term LE is uniquely determined.
We shall denote this constant of Ehe motion by F

(5.8.11)

e Then, similar to

r+i-l
s+j-2

(5.8.12) (vr, F;} = tifs-1) - (G-I F

If the conjecture mentioned above is correct, we can also generate an
k G s o _ .0 0 _ _0 1 1
algebrg {CZ} , starting with {C2 = F2, C3 = F3, C3, C4,

be shown (see Broer and ten Eikelder [58] ) that

Cz} . Then it can

k . .
k -
=t entdhe)
i=0

K
Fy
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In any case we can construct an infinite series of constants

of the motion FE by

o 1 o I, _ 1 o 1 2t o o
(5.8-19) ol =11 e Fab = oy (FoCgh + (5 (R B
If the Poisson bracket of the F; with FZ vanishes, we obtain
(5.8.14)  °, = (¥, ch
U k+1 k-1 Kk’ 73"

Then the corresponding symmetries satisfy (see (4.4.5) and (4.4.6))

1

8C

o _ 1 1 o4 .. .1 %3
(5.8.15) Xk+1 = i:i_[A3’ Xk 1 with A3 = BS:— .

This relation has been used by Fokas and Fuchssteiner [63] to generate

an infinite series of symmetries and corresponding constants of the motion
for the BO equation. However, since all symmetries in this relation are
canonical, there is no reason to work with symmetries instead of the
corresponding constants of the motion (see also theorem 4.4.7). Moreover

a straightforward construction of the constants of the motion using (5.8.14)
also avoids the problem of showing that the symmetries constructed in (5.8.15)
are canonical. Note that (5.8.14) and (5.8.15) are only correct if

{FE, FZ} = 0 for k 2 3. This holds if the series FE is in involution. This
last property is often mentioned in the literature, but as far as we know

a correct proof has not yet been given. The proof given by Fokas and
Fuchssteiner [63] is incomplete. If the conjecture mentioned above turns out
to be correct, it follows immediately from (5.8.12) that the series FC is in

k
involution.
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LIST OF SYMBOLS.

4,B,C

C*(R)

d

du], _re dun

g = B
3u1

3 ses 9

E
F,G,K

F(i)

T*M
u
T*M
T M
HCY

i
ij(M)

V(X;M)

: vectors or vector fields

: infinitly differentiable functions on IR

: exterior derivative 14,21

natural cobasis 8

: natural basis 7

: various Lie algebra's 9

: (parameterized) functions on M (elements of F(M)

or FP(M)) or constants of the motion

: smooth functions on M 8

: smooth parameterized functions on M 17,23

: various functions or mappings

: Hamiltonian 71

: Hilbert transform 28,187

interior product with a vector field 4 13,22

: Lebesgue space of integrable functions

: Lebesgue space of square integrable functions

: linear continuous mappings of W into wl 18

: Lie derivative in the direction of 4 12,21

manifolds 7

: canonical coordinates 72

reflection coefficient 164

: transmission coefficient 164

: function spaces 23,24

: local coordinates 7

: arbitrary point of M

tangent space in u € M 7

: tangent bundle of M 7

: cotangent space in u € M 7

: cotangent bundle of M 7

: tensor fields on M with covariant order i and

contravariant order j 8,19

: parameterized tensor fields on M with covariant

order i and contravariant order j 17,23

: symmetries of the dynamical system u=X(u) on M 36
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V¥ (X M) . : adjoint symmetries of the dynamical system U=X(u)

on M 37

X (M) : smooth vector fields on M 8,19

XP(M) : smooth parameterized vector fields on M 17,23

X* (M) : smooth one—forms on M 8,19

x* (M) : smooth parameterized one-forms on M 17,23

X,Y,Z : symmetries (elements of V(X;M))

U,UO,U; : open subsets of M

w,Z : topological vector spaces

w*,z* : topological duals of W,Z

0,8,y : elements of TzM or one-forms on M

r : recursion operator for adjoint symmetries (tensor
field)

A : recursion operator for symmetries (tensor field)

= : various tensor fields or linear mappings

£ : differential k-form (corresponding to Z)

0,0,T : adjoint symmetries (elements of V*(X;M))

¢ : SA operator (tensor field)

‘¢ : two-form (corresponding to ¢)

Yy : AS operator (tensor field)

Q : cyclic (SA) operator (tensor field)

Q+ : canonical (AS) operator (tensor field)

w : symplectic two-form (corresponding to )

® tensor product 10

A exterior product 15

<oy > : duality map (between TEM and TuM or between W and
w*) 7,18

[+,°] : Lie bracket of vector fields 9,21

[*,°] : commutator of two linear operators 126

{+,} : Poisson bracket of two functions 72

8—1 : 7(?% or & 23

3 inverse of 9 25

%g : variational derivative of F 115

Derivatives with respect to u are indicated by a prime. Derivatives with res-
pect to t are indicated by a dot, except when partial differential equations
are considered. In that case derivatives with respect to t are denoted by the

subscript t.
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INDEX OF TERMS.

A: local — 7
cotangent
— bundle 7

action variables 79
adjoint symmetry (see symmetry)

___ -
33,37,111 bund}e projection 7

analytically independent 31 — Hpace 7
angle varisbles 79 covariant order 17,23
antisymmetric 9,27 D:

autonomous differential equation 34 Darboux, theorem of 72
differential form 13

closed — 14,22

B:

Backlund transformations 5

Benjamin-Ono (BO) equation 187 ezack == lhyll
"bilinear constant of the motion" difngrental suesLomm o

131 parameterized — 17

Birkhoffian system 48,77 dual basis 8

Burgers equation 116 dmality 28

duality map 7,26

c: .dual operator 27

canonical coordinate transformation
78

dual space 26

canonical involution 62 E:

canonical transformation 81 ebediioy spersfon 47

Cauchy oroblem 35 exterior

s . s — derivative 21
classical Hamiltonian system 67 NanEE

cnoidal wave 148 —.differentiation 14

commutator of two linear operators == prcsluck 13
126 F

completely integrable 78 first cohomology group 87
composition 28 first integral 37
conserved flux property 155 formula manipulation 175
constant of the motion 37 Fréchet differentiable 20
contracted multiplication 10 functions
contraction 10,22 parameterized — 17,23
contravariant order 17,23 — on a manifold 8
coordinates G:

canonical — 72 F—

cyelic — 78 — derivative 20
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— differentiable 20

H:
Hadamard differentiable 20
Hamiltonian 71
Hamiltonian system 71
bi- — 82,92
classical — 67
"completely integrable" infinite
dimensional — 142,148
finite dimensional linear — 124
infinite dimensional linear —
136
multi- — 104
— with a linearizing transforma-
tion 142
Hamiltonian vector field 71
Hilbert transform 28,187

Hopf Cole transformation 116

I:
in involution 72
interior product 13,22
invariance for
— scale transformations 53
— translations along the x-axis
53
— translations in time 53
inverse scattering 142,148,164,165,
185

J:
Jacobi identity 9,73

Jost functions 164

K:
Korteweg-de Vries (KdV) equation
148
higher order — 148,155

L:
Lagrangian 3

Leibniz'rule 13,15

Lie
— algebra 9
— bracket 9
— derivative 12,21
—— group 2

— product 9

local conservation law 155

M:

manifold
finite-dimensional — 7
infinite-dimensional— 18
symplectic — 68

Miura transformation 150

Modified Korteweg-de Vries (MK&V)

equation 150

module 9

N:
natural
— basis 7

~—— cobasis 8

— with respect to transformations

Noether, theorem of 3
nondegenerate

(strongly) — 68

weakly — 68
0:
operator

AS — 46,112

autonomous — 113

‘canonical — 69,114

cyclic — 48,69,113

recursion — for adjoint symme-

tries 44,111

200

16



recursion — for symmetries 40,
111
SA — 46,111

P:

Poincaré, lemma of 14
Poisson bracket 72
population dynamics 143

potential operator 23

R:
recursion operator
— for adjoint symmetries 44,111
— for symmetries 40,111
reflection coefficient 164
reflexive 18,27

ring 9

S:
Sawada-Kotera (SK) equation 174
scattering data 165
Schrodinger eigenvalue problem 164
"semi-Hamiltonian form" 152,175,176
seminorm 26
separating 26
solitary wave 148
summation convention 8
symmetric 27
symmetry (of a dynamical system) 33,
36,111
adjoint — 33,111
autonomous — 38,112
canonical — 86
canonical adjoint — 86
linear —— 127
linear adjoint — 127
non-canonical — 86
non-canonical adjoint — 86

non-semi-canonical — 82,87

non-semi-canonical adjoint — 87
semi-canonical — 86
semi-canonical adjoint — 86
symplectic form 68
weak — 68
symplectic
— manifold 68

— transformation 80

T:
tangent
— bundle 7
— bundle projection 7
— space 7
tensor field 8
canonical — 69
cyclic — 69
parameterized — 17,23
tensor product 10
Toda lattice 17,110
topological vector space 18
locally convex Hausdorff — 26
transmission coefficient 164

twice differentiable 20

v
variational
— derivative 115
— principle 34,74,124,130
vector bundle map !I
vector field 8
contravariant — 9
covariant — 9
Hamiltonian — 71

parameterized — 17,23

I"H
wave

cnoidal — 148
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— equation 135

internal — in a stratified fluid 187
long water — 148
shock — 116

solitary — 148
wave-wave interaction 143

Whitham equation 187
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SAMENVATTING.

Dit proefschrift behandelt symmetrieén van dynamische systemen en in het
bijzonder Hamiltonse systemen van de vorm u = X(u), waarbij X een vectorveld
op een varieteit M is. Een korte beschrijving van de gebruikte wiskundige
methoden is gegeven in hoofdstuk !. In hoofdstuk 2 bekijken we symmetrieén
van dynamische systemen. Symmetrieén worden ingevoerd als infinitesimale
transformaties van oplossingen van het systeem in nieuwe oplossingen van het
systeem, Dit leidt tot een interpretatie van symmetrieén als vectorvelden Y
op M zodat v+ [x,7] = ¥ + LXY = 0. Naast symmetrieén worden ook geadjungeerde
symmetrieén bekeken, Dat zijn een—vormen (covariante vectorvelden) O die vol-
doen aan G + LXU = 0. Bij elke bewegingsconstante van het dynamisch systeem
hoort een geadjungeerde symmetrie; het omgekeerde geldt echter niet,

In hoofdstuk 3 worden (gegeneralizeerde) Hamiltonse systemen
ingevoerd, Verschillende partiéle differentiaalvergelijkeingen kunnen dan als
Hamiltons systeem worden opgevat, Symmetrieén van Hamiltonse systemen worden
onderzocht in hoofdstuk 4. Bij een Hamiltons systeem bestaat er altijd
(minstens) een operator die symmetrieén overvoert in geadjungeerde symmetrieen
en een operator die werkt in de omgekeerde richting. Dit betekent dat bij een
Hamiltons systeem elke bewegingsconsténte aanleiding geeft tot een symmetrie
van het systeem., Dit type symmetrie noemen we een canonieke symmetrie, Vaak
bestaan er ook symmetrieén die niet op deze wijze met een bewegingsconstante
samenhangen, de zogenaamde niet-canonieke symmetrieen. Het blijkt dat een niet-
canonieke symmetrie Z aanleiding geeft tot een recursie operator voor symme-
trieén. Uitgaande van X en Z kunnen dan twee oneindige rijen van symmetrieén Xk
en Zk geconstrueerd worden. In paragraaf 4.5 laten we zien dat, als de niet-
canonieke symmetrie Z aan een aantal extra voorwaarden voldoet, de rij Xk
bestaat uit canonieke symmetrieen. In dat geval bestaat er dus een oneindige
rij bewegingsconstanten., De rij Zk bestaat (in het algemeen) uit niet-
canonieke symmetrieén, De Lie algebra voortgebracht door de symmetrieén Xk en
Zk wordt onderzocht in paragraaf 4.6.

In hoofdstuk 5 worden verschillende voorbeelden van de vooraf-
gaande theorie gegeven. Het belangrijkste voorbeeld is de Korteweg-de Vries

vergelijking.
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Beschouw een Hamiltons systeem op een oneindig dimensionale symplectische
variéteit. Een verzameling bewegingsconstanten van dit systeem, die
voldoet aan de door Abraham en Marsden gegeven definitie van volledige

integreerbaarheid, bestaat niet.

R.Abraham & J.E.Marsden, Foundations of Mechanics, Benjamin/Cummings,
New York, Second Editon 1978, definition 5.2.20.

De behandeling door Mayer van connecties in geassocieerde vectorbundels

is zowel voor physici als mathematici onbegrijpelijk.

W.Drechsler & M.E.Mayer, Fiber Bundle fechniques in Gauge Theories,

Springer Verlag, Berlin 1977, § 4.3.

De Bell-ongelijkheden kunnen worden geinterpreteerd als een gevolg van
de veronderstelling dat er een gemeenschappelijke meetprocedure bestaat

voor de vier betrokken (deels incompatibele) observabelen.

Het gebruik van de term volledig integreerbaar bij oneindig dimensionale

Hamiltonse systemen zonder verdere toelichting is een bron van verwarring.

Beschouw een Hamiltons systeem met een symplectische vorm w en bijbeho-
rende SA- en AS operatoren { en 0" . Laat Z een niet canonieke
symmetrie van dit systeem zijn zoals beschreven in hypothese 4.5.1 van
dit proefschrift. Als 7 een canoniecke symmetrie is,is de operator

A= QéLZQ een erfelijke symmetrie, zoals gedefinieerd door Fuchssteiner.

B.Fuchssteiner, Application of hereditary symmetries to nonlinear

evolution equations, Nonlinear Anal.Theory Meth.Appl. 3 (1979), 849-862.

Beschouw een oneindige Toda-keten met bewegingsvergelijkingen
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constanten, geldig voor oplossingen met a, > 4, bn + 0 voldoend snel

als |n| + o, kan geconstrueerd worden met de volgende recursie formule

o oF

k
F = I — - -
ket T2 [ 5a_ an((2n+3)bn+] (2n l)bn)
JF
k 2 2 2
+ 53; (4an(n+]) - 4an_](n 1) + 2bn )],
waarbij F,. = L b .
| p=—o D

In de meeste toepassingen van de sine-Gordon vergelijking in de vaste

7.
stof fysica speelt de "volledige integreerbaarheid" van deze vergelijking
geen rol.

8. De door Aiyer gegeven inverse van de recursie operator voor symmetrieén

van de Korteweg-de Vries vergelijking bestaat niet.

R.N.Alyer Recursion operators for infinitesimal transformations and

their inverses for certain nonlinear evolution equations, J. Phys.

A. Math. Gen. 16 (1983) 255-262.

9. De door Sarlet gegeven voorwaarden voor het bestaan van een Lagrangiaan
voor een stelsel tweede orde differentiaalvergelijkingen zijn alleen

geschikt om het niet bestaan van zo'n Lagrangiaan aan te tonen.

W.Sarlet, The Helmholtz conditions revisited. A wew approach to the

inverse problem of Lagrangian dynamics, J. Phys. A. Math. Gen.

15 (1982) 1503-1517.

10. Sportief autorijden is niet sportief.

Eindhoven, 3 februari 1984.



