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A STEFAN PROBLEM MODELLING DISSOLUTION AND
PRECIPITATION IN POROUS MEDIA

T.L. VAN NOORDEN AND I.S. POP∗

Abstract. A simple one-dimensional model for crystal dissolution and precipitation is
presented. The model equations resemble a one-phase Stefan problem and involve nonlinear
and multi-valued exchange rates at the free boundary. The original equations are formulated
on a variable domain. By transforming the model to a fixed domain and applying a regu-
larization, we prove the existence and uniqueness of a solution. The paper is concluded by
numerical simulations.

1. Introduction. This work is motivated by the need for a rigorous deriva-
tion of macroscopic laws for reactive transport in porous media, and more specif-
ically for crystal dissolution and precipitation in porous media. These laws are
of practical importance in many physical, biological and chemical applications.
Macroscopic laws for reactive transport in porous media are derived rigorously
in, e.g., [7]. For the more specific case of crystal dissolution and precipitation,
macroscopic models are given in [4, 5, 9, 12]. The analysis in these papers
refers strictly to the macroscopic models and is not concerned with the rigorous
derivation of the upscaled models from the micro scale ones. In most of these
papers also the numerical solution of the proposed model equations is studied.

In order to give a rigorous justification of a macroscopic law, a thorough
analysis and understanding of the microscale processes are needed. This is
the main purpose of the work in [17]. In the cited paper, crystal dissolution
and precipitation on the pore scale are studied, assuming that the crystalline
layer attached to the grain surfaces is thin and does not significantly affect the
geometry of the pores. The mathematical difficulties of the model in [17] are
the nonlinear and multi-valued exchange rates.

In the present work we also focus on the analysis at the pore scale, however,
in contrast to [17], we do take into account the change in the pore geometry due
to precipitation and dissolution. We propose a one-dimensional model, which
does not incorporate transport by fluid flow, but does account for the nonlinear
and multi-valued exchange rates. The geometry change appears in the equations
as a free boundary, comparable to the free boundary in the Stefan problem with
a kinetic condition [18].

The model equations presented in this paper have much in common with
model equations in other fields of applications, for example, with the Stefan
type equations studied in [16] modeling an evaporation process. There the
equation for the speed of the moving boundary is linear, whereas in the present
work this equation is nonlinear and involves a multi-valued operator. Another
field of application that benefits from analyzing and simulating dissolution and
precipitation reactions is etching, see e.g., [10, 14].
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2 T.L. VAN NOORDEN AND I.S. POP

The main results presented in this paper are existence and uniqueness results
for the proposed model equations. In addition we present in this paper numerical
approximations to the solutions of the proposed model. The computations are
performed using a finite difference method. Other methods that have been
used to simulate crystal dissolution and precipitation on the pore scale are the
Smoothed Particle Hydrodynamics method [15], and the Lattice Boltzmann
method [8].

This paper is organized as follows. In Section 2, we introduce the model
equations. We show that there exist solutions to the model equations in Section
3, and a uniqueness result is presented in Section 4. In Section 5 a numerical
approximation scheme is discussed and results of the numerical experiments are
shown.

2. Model equations. We consider the interval [−L,L] ⊂ R which is the
region between two (infinite) walls, located at x = ±L [m]. Let the region
[−L,L] be occupied by a fluid in which cations (M1) and anions (M2) are
dissolved. In a precipitation reaction n1 cations of M1, and n2 anions of M2

can precipitate in the form of one molecule of a crystalline solid M12, which
is attached to the boundary. The reverse dissolution reaction is also possible.
We assume that precipitation leads to a homogeneous layer of crystals. The
thickness of this layer is denoted by l [m], and is time-dependent.

We consider here a simplified setting, where diffusion is the only transporting
mechanism for the anions and cations. Let ci [mol

m ] denote the linear molar
concentration of Mi, with i = 1, 2. We also assume that the whole configuration
is symmetric around x = 0. Then ci satisfies the diffusion equation

∂tci = D∂xxci for x ∈ [0, s(t)], i = 1, 2,

where s(t) = L − l(t) is the location of the free boundary separating the fluid
and the precipitate. At x = 0, due to symmetry, we have

∂xci = 0, with i = 1, 2.

Since one molecule of the precipitate contains n1 cations and n2 anions, conser-
vation of mass gives∫ s(t)

0

c1 dx+ (L− s(t))n1ρc = Const.,∫ s(t)

0

c2 dx+ (L− s(t))n2ρc = Const.,

where ρc [mol
m ] denotes the molar density of the crystalline solid. Differentiating

with respect to t, we obtain:

s′(t) =
D∂xc1(s(t), t)

n1ρc − c1(s(t), t)
=

D∂xc2(s(t), t)
n2ρc − c2(s(t), t)

.
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A second equation for s(t) results from the description of the precipitation and
dissolution process. We have

ρcl
′(t) = −ρcs

′(t) = rp − rd, (2.1)

where rp [mol
s ] denotes the precipitation rate and rd [mol

s ] denotes the dissolution
rate. The precipitation rate rp is expressed by

rp = kpr
(
c1(s(t), t), c2(s(t), t)

)
, (2.2)

where kp [mol
s ] is a positive rate constant and r a rate function depending on c1

and c2. A typical example is given by the law of mass action kinetics, leading
to

r(c1, c2) = kmc
n1
1 cn2

2 , (2.3)

with km [
(

mol
m

)−(n1+n2)] a constant. For the dissolution rate rd we follow the
ideas in [9] and write

rd ∈ kdH(l(t)) = kdH(L− s(t)), (2.4)

where H denotes the set-valued Heaviside graph,

H(u) =

{ {0}, if u < 0,
[0, 1], if u = 0,
{1}, if u > 0.

The relation (2.4) expresses the behavior of the dissolution rate in different
cases:

1. in the presence of crystal, i.e., for l(t) > 0, the dissolution rate rd = kd

[mol
s ] is constant (with kd > 0).

2. in the absence of crystal, i.e., l(t) = 0, we can identify two sub-cases:

(a) in the undersaturated regime, i.e., r(c1, c2) ≤ kd/kp, the concentra-
tions of c1 and c2 are too low to start the effective growth of a crys-
talline layer and the overall rate in (2.1) equals zero. In this case
we have rp − rd = 0, and, using (2.2), we obtain rd = kpr(c1, c2).

(b) in the oversaturated regime, i.e., r(c1, c2) > kd/kp, effective growth
of a crystalline layer will start with rate rp − kd, so that we set
rd = kd.

The discussion above can be summarized in

rd =

 0, if L < s(t), or l(t) < 0,
min{kpr(c1, c2), kd}, if L = s(t), or l(t) = 0,
kd, if L > s(t), or l(t) > 0.

(2.5)
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If we now substitute (2.2) and (2.4) in the equation (2.1) for s(t), we obtain

−ρcs
′(t) ∈ kd

(
kp

kd
r
(
c1(s(t), t), c2(s(t), t)

)
−H(L− s(t))

)
. (2.6)

From this equation, we can see that in the oversaturated regime, we have rp > rd
and precipitation (l′(t) = −s′(t) > 0) will occur, and that if crystal is present
and we are in the undersaturated regime, dissolution (l′(t) = −s′(t) < 0) occurs.

2.1. Dimensionless form. We make the simplifying assumptions n1 = n2

and c1(x, 0) = c2(x, 0), and look for solutions such that c1(x, t) = c2(x, t) =
c(x, t). We introduce reference values tref := L2/D and xref := L for the
time and space variables t and x. We also introduce a reference value for the
concentration c, denoted by cref . Defining

t := t/tref , x := x/xref , v := c/cref , h := s/L,

ρ :=
n1ρc

cref
, r(v) :=

kp

kd
r(crefv), k :=

kdtref

ρcL
,

gives the equations

∂tv = ∂xxv, for 0 < x < h(t)), t > 0,
∂xv = 0, for x = 0, t > 0,
∂xv = (ρ− v)∂th, for x = h(t), t > 0,
∂th = k(w − r(v)), for x = h(t), t > 0,
w ∈ H(1− h), for t > 0,
v = v0, for 0 ≤ x ≤ h0, t = 0,
h = h0, for t = 0.

(2.7)

By the scaling, h(t) ≤ 1. From the model point of view, h = 1 means that
crystals are completely dissolved so h cannot exceed 1. In what follows we will
prove this statement rigorously.

The dimensionless number k is usually referred to as the Damköhler number
and expresses the ratio between the diffusion and the reaction time scale. The
auxiliary function w acts as the scaled dissolution rate rd/kd. and, when h < 1,
w attains the value 1, and when h = 1, we have w = r(u). With respect to the
reaction rate function r(v), we assume

1. r : R → [0,∞) is locally Lipschitz;

2. a unique v∗ ∈ [0, ρ) exists such that r(v) = 0 for all v ≤ v∗ and r(v) is
strictly increasing if v > v∗.

3. a unique v∗ ∈ (v∗, ρ) exists such that r(v∗) = 1.

Note that these assumptions are fulfilled in the typical case (2.3).
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3. Existence. We assume that the initial data v0 and h0 satisfy the bounds

0 ≤ v0(x) ≤M < ρ, and 0 < h0 ≤ 1.

We also assume bounded initial ion concentrations and furthermore we assume
that the initial data satisfy the following compatibility conditions{

v0 ∈ C2([0, h0]), ∂xv0(0) = 0,
∂xv0(h0) = k

(
r(v0(h0))− w0

)
(ρ− v0(h0)),

(3.1)

with w0 = w(t = 0) defined as
w0 = 1, if h0 < 1,
w0 = r(v0(1)), if h0 = 1, and v0(1) ≤ v∗,

w0 = 1, if h0 = 1, and v0(1) > v∗.

(3.2)

For a function h ∈ C([0, T ]), let

QhT := {(x, t) | 0 < x < h(t), 0 < t < T}. (3.3)

Definition 3.1. We call a triple (v, w, h) with

1. h ∈ C([0, T ]),

2. v ∈ C2,1(QhT ) ∩ C(QhT ),

3. ∂xv ∈ C(QhT ∪ {x = 0, 0 ≤ t ≤ T}),

4. w ∈ L∞(0, T ),

a solution of (2.7) if it satisfies

∂tv = ∂xxv on QhT ,

∂xv = 0 on {x = 0, 0 ≤ t ≤ T},∫ h(t)

0
(ρ− v) dx = h1, for 0 ≤ t ≤ T,

h(t) = k
∫ t

0

(
w(τ)− r(v(h(τ), τ))

)
dτ + h0, for 0 ≤ t ≤ T,

w(t) ∈ H(1− h(t)) a.e. in [0, T ],
v = v0, for 0 ≤ x ≤ h0, t = 0,

(3.4)

with h1 =
∫ h0

0
(ρ− v0(x)) dx.

Note that the condition
∫ h(t)

0
(ρ − v) dx = h1 expresses mass conservation.

Because the dissolution rate w(τ) in (2.74) may be discontinuous, h may not
be continuously differentiable. Therefore the boundary conditions (2.73,4) are
not defined for every t > 0. To overcome this problem, in Definition 3.1, we
integrate boundary condition (2.74) in time to obtain condition (3.44). Further,
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by integrating (2.71) in space, and using boundary conditions (2.72,3), we obtain
(3.42).

To prove existence of solutions of (2.7), we will take the following steps. We
first apply a coordinate transform that is also used in [16] and rewrite the equa-
tion (3.41) to a fixed domain. Then we regularize the Heaviside graph, and we
prove the existence of a unique classical solution of the transformed, regularized
equations. We establish, using compactness arguments, the existence of weak
solutions to the transformed equations by taking the limit of the regularization
parameter to zero. We show that these weak solutions are regular enough to
make the inverse coordinate transform so that we obtain solutions of (2.7) in
the sense of Definition 3.1. For the proof of the uniqueness result in Section 4,
we use the same coordinate transform to show that uniqueness of weak solutions
of the fixed domain formulation implies uniqueness of solutions in the sense of
Definition 3.1.

3.1. Coordinate transform and regularization. We employ the coor-
dinate transform proposed in [16]:

y(x, t) =
∫ h(t)

x

(ρ− v(z, t)) dz, τ(t) = t. (3.5)

In the new coordinates, the equations (2.7) are transformed into the following
equations for the unknown concentration u(y(x, t), τ(t)) = v(x, t), which are
defined on the fixed interval [0, h1]

∂τf(u) = ∂yyu, for 0 < y < h1, 0 < τ < T,

∂yu = k(r(u)− w), for y = 0, 0 < τ < T,

∂τh = −k(r(u)− w), for y = 0, 0 < τ < T,

w ∈ H(1− h), for 0 < τ < T,

∂yu = 0, for y = h1, 0 < τ < T

u = u0, for 0 ≤ y ≤ h1, τ = 0,
h = h0, for τ = 0,

(3.6)

with f(u) = 1/(ρ − u), and h1 as specified in Definition 3.1. For the initial
condition, it holds u0(y(x, 0)) = v0(x) for 0 ≤ x ≤ h0. Note that the equations
(3.6) are defined on the fixed interval [0, h1]. Using ∂yu(0, τ) = −∂τh(τ) and
(3.61), we obtain the equality

h(t) =
∫ h1

0

f(u)dy. (3.7)

The next step is to regularize the Heaviside graph. With δ > 0, we define

Hδ(u) :=


0 if v < 0,
u/δ if v ∈ [0, δ],
1, if v > δ.
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Using (3.7) and replacing the Heaviside graph H by Hδ, gives the following
problem with non-local boundary conditions

∂τf(u) = ∂yyu, for 0 < y < h1, 0 < τ < T,

∂yu = k
(
r(u)−Hδ

(
1−

∫ h1

0
f(u)dy

))
, for y = 0, 0 < τ < T,

∂yu = 0, for y = h1, 0 < τ < T.

(3.8)

Before we state the initial data for problem (3.8), we must pay special attention
to the compatibility conditions. If h0 < 1, then we can choose δ < 1− h0, and
the transformed initial data u0 satisfies the regularized compatibility condition

∂yu0(0) = k

(
r(u0(0))−Hδ

(
1−

∫ h1

0

f(u0(y))dy

))
. (3.9)

Also if h0 = 1 and u0(0) ≤ v∗ so that r(u0(0)) = 0, the initial data u0 satisfies
the regularized compatibility condition (3.9). If h0 = 1 and u0(0) > v∗ then the
initial data u0 does not satisfy (3.9). To resolve this problem, we modify the
initial data depending on δ, and such that the condition in (3.9) is satisfied. We
define u0,δ in the following way

u0,δ :=

 u0 if h0 < 1 or u0(0) ≤ v∗,
Cδu0 if h0 = 1 and v∗ < u0(0) ≤ v∗,
cδu0 if h0 = 1 and u0(0) > v∗,

(3.10)

with Cδ and cδ such that

1−
∫ h1

0

f(Cδu0)dy = δ r
(
Cδu0(0)

)
,

1−
∫ h1

0

f(cδu0)dy = δ r
(
cδu0(0)

)
− δ cδ

(
r
(
u0(0)

)
− 1
)
.

In Appendix A it is shown that such cδ and Cδ exist and that 0 ≤ cδ ≤ 1 and
0 ≤ Cδ ≤ 1. Furthermore, as δ ↘ 0 we have cδ ↗ 1 and Cδ ↗ 1, so that
u0,δ → u0 for δ → 0. We see that u0,δ satisfies the compatibility conditions{

u0,δ ∈ C2([0, h1]), ∂yu0,δ(h1) = 0,

∂yu0,δ(0) = k
(
r(u0,δ(0))−Hδ

(
1−

∫ h1

0
f(u0,δ(y))dy

))
,

(3.11)

and also

0 ≤ u0,δ(y) ≤ u0(y) ≤M < ρ. (3.12)

Now we supplement the equations (3.8) with the intial condition

u = u0,δ for 0 ≤ y ≤ h1, τ = 0. (3.13)
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The equations (3.8) and (3.13) are closely related to the equations studied in
[1], and the iteration procedure discussed below is based on arguments in [1]. A
classical solution of the equations (3.8) and (3.13) is defined in the usual sense:
let

QT := (0, h1)× (0, T ),

then a classical solution u satisfies (3.8) and (3.13) with

1. u ∈ C2,1(QT ) ∩ C(QT ),

2. uy ∈ C(QT ).

We first start with a boundedness result.

Lemma 3.2. Let u be a classical solution of (3.8) with initial conditions
(3.12-3.13), then 0 ≤ u(y, τ) ≤ max(M,v∗).

Proof. Let M0 = max(M,v∗). We use ideas from [2]: for small ε > 0 we
define ψε(z) := Hε(z) and we write∫ h1

0

∂τ (f(u)− f(M0))ψε(u−M0)dy =
∫ h1

0

∂yy(u−M0)ψε(u−M0)dy.

To avoid confusion with the regularized dissolution rate, we have used the no-
tation ψε. Integration by parts gives∫ h1

0

∂τ (f(u)− f(M0))ψε(u−M0)dy +
∫ h1

0

(∂y(u−M0))2ψ′ε(u−M0)dy

= −k
(
r(u)−Hδ(1− h)

)
ψε(u−M0)|y=0.

Taking the limit ε → 0, which is allowed since
∫ h1

0
|∂τ (f(u) − f(M0))|dy is

bounded, see [11, Lemma V.7.2], and using that ψ′ε ≥ 0 and that for u > M0

we have r(u) > 1, we obtain

∂τ

∫ h1

0

[f(u)− f(M0)]+dy ≤ 0,

so that we may conclude u ≤M0. A similar reasoning proves 0 ≤ u.

Now we introduce the mapping F by the following procedure: given a func-
tion ui−1 ∈ C2,1(QT ), we define the function ui by solving

∂τf(ui) = ∂yyui, for 0 < y < h1, 0 < τ < T,

∂yui = k
(
r(ui)−Hδ(1− h(i−1))

)
, for y = 0, 0 < τ < T,

∂yui = 0, for y = h1, 0 < τ < T,

u = u0,δ, for 0 ≤ y ≤ h1, τ = 0,

(3.14)
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where h(i−1)(τ) =
∫ h1

0
f(ui−1)dy. Given a differentiable h(τ), (3.14) has a

unique classical solution in C2,1(QT ), see [11, Theorem V.7.4]. In this way
the operator F is defined as an operator from C2,1(QT ) into itself. Further-
more, again by [11, Lemma V.7.2] and by using Lemma 3.2 and the continuous
differentiability of f , the integrals

∫ h1

0
|∂τf(ui)|dy are bounded.

Lemma 3.3. For T̃ < δ, the mapping F is a contraction with respect to the
C([0, T̃ ];L1(0, h1)) norm.

Proof. Consider two solutions ui−1 and ũi−1, both in C2,1(QT ), and
define ui := F (ui−1) and ũi := F (ũi−1), obtained by solving (3.14) with
h(i−1) =

∫ h1

0
f(ui−1)dy and h̃(i−1) =

∫ h1

0
f(ũi−1)dy respectively. Now we pro-

ceed similarly as in the proof of Lemma 3.2: we subtract the equations (3.14)
for ui and ũi and test the result with a regularized sign-function. Specifically,
we consider a smooth convex function m : R → R with

m ≥ 0, m(0) = 0, m(r) = |r| − 1
2

for |r| > 1,

and define for ε > 0 approximations of the modulus function by

mε := εm
(r
ε

)
.

We test the equations for ui− ũi with χ[0,t]m
′
ε(ui− ũi), where t ≤ T̃ is arbitrary,

and obtain, after sending ε to zero,∫ h1

0

|f(ui)− f(ũi)|dy

≤
∫ t

0

(
Hδ

(
1−
∫ h1

0

f(ui−1)dy

)
−Hδ

(
1−
∫ h1

0

f(ũi−1)dy

))
sgn(ui − ũi)|y=0dτ

−k
∫ t

0

(
r(ui)− r(ũi)

)
sgn(ui − ũi)|y=0dτ.

Since r is increasing, and using the Lipschitz continuity of Hδ, we can majorize
the right-hand side above by

sup
τ∈[0,T̃ ]

T̃

δ

∫ h1

0

|f(ui−1)− f(ũi−1)|dy

This estimate is uniform in t, therefore it holds that

sup
τ∈[0,T̃ ]

∫ h1

0

|f(ui)− f(ũi)|dy ≤ sup
τ∈[0,T̃ ]

T̃

δ

∫ h1

0

|f(ui−1)− f(ũi−1)|dy
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Because T̃ < δ, the operator F is a contraction on C2,1(QT̃ ) in the norm of the
Banach space C([0, T̃ ];L1(0, h1)).

Remark 3.4. Using the density of C2,1(QT̃ ) in C([0, T̃ ];L1(0, h1)) and
Lemma 3.3, we can extend the operator F to a contraction from C([0, T̃ ];L1(0, h1))
into itself.

Lemma 3.5. Let the sequence {ui} be defined by ui = F (ui−1) with a given
u0. Then {ui(0, t)} is a Cauchy sequence in C([0, T̃ ]).

Proof. Let ε > 0 be given. Since F is a contraction, {ui} is a Cauchy sequence
in C([0, T ];L1(0, h1)). By [11, Theorem V.7.2], the sequence {∂yui} is bounded
in L∞(QT ). This implies the existence of a µ > 0 such that

∫ µ

0
|∂y(um−un)|dy <

ε/3 for all m,n ∈ N. Because {ui} is a Cauchy sequence in C([0, T̃ ];L1(0, h1)),
with T̃ < δ, there is a N0 such that supτ

∫ h1

0
|um(y, τ)− un(y, τ)|dy < µε/3 for

all m,n > N0. It follows that

sup
τ∈[0,T̃ ]

|um(0, τ)− un(0, τ)|

≤ sup
τ∈[0,T̃ ]

(
1
µ

∫ µ

0

|um(y, τ)− un(y, τ)|dy +
∫ µ

0

|∂y(um − un)|dy) < ε,

for all m,n > N0.

Theorem 3.6. Assuming (3.11) and (3.12), there exists a unique classical
solution uδ of (3.8) with initial condition (3.13).

Proof. Lemma 3.3 provides the existence of a unique fixed point uδ ∈
C([0, T̃ ];L1(0, h1)), with T̃ < δ, of F . In order to show that this fixed point is
indeed a classical solution of (3.8), we need to show higher regularity of uδ.

Let {ui} be a sequence in C2,1(QT̃ ) generated by iterating F , converging to
uδ in C([0, T̃ ];L1(0, h1)). We have∫ h1

0

f(ui(y, t))dy = h0,δ − k

∫ t

0

(
r(ui)−Hδ

(
1−

∫ h1

0

f(ui−1)dy

))
dτ,

where h0,δ :=
∫ h1

0
f(u0,δ)dy. By Lemma 3.5, ui(0, τ) converges uniformly to

uδ(0, τ). Since f , r and Hδ are continuous, we conclude that
∫ h1

0
f(uδ)dy is

a C1 function in time. Taking this into account in (3.142), it follows that the
boundary data for y = 0 are in C1([0, T̃ ]). Therefore, by [11, Theorem V.7.4],
uδ is a classical solutions of (3.8) with initial condition (3.13).

To extend the time interval of existence, we note that Lemma 3.2 guarantees
that the solution uδ remains bounded. Therefore we can restart the iteration
at, say, t = δ/2. It follows that the solution exists on the entire interval (0, T ].

We now proceed by obtaining an estimate that is uniform in δ.
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Lemma 3.7. For δ > 0, the classical solution uδ of (3.8) satisfies∫ h1

0

|uδ(y, t)|2 dy +
∫ t

0

∫ h1

0

|∂yuδ|2 dydτ + ‖∂τf(uδ)‖L2(0,t;H−1(0,h1)) ≤ K,

for 0 < t < T , where K > 0 does not depend on δ.

Proof. The first term
∫ h1

0
|uδ(y, t)|2 dy is bounded uniformly in δ by Lemma

3.2. For the second term, we fix an arbitrary t ∈ (0, T ], multiply (3.81) with uδ

and integrate in both time and space to obtain∫ t

0

∫ h1

0

∂τf(uδ)uδ dydτ =
∫ t

0

∫ h1

0

(∂yyuδ)uδ dydτ.

Using the definition of f(uδ), and integrating by parts, we obtain∫ h1

0

ρ

ρ− uδ
+ ln |ρ− uδ| dy +

∫ t

0

∫ h1

0

|∂yuδ|2 dydτ

= −k
∫ t

0

(
r(uδ)−Hδ

(
1−

∫ h0

0

f(uδ)dy

))
dt.

Since uδ is bounded, this immediately yields the uniform bound on
∫ t

0

∫ h1

0
|∂yuδ|2 dydτ .

For the last part of the lemma, we notice that∫ h1

0

∂τf(uδ)φdy = −k

(
r(uδ(0, t)−Hδ

(
1−

∫ h0

0

f(uδ) dy

))
φ(0)

−
∫ h1

0

∂yuδ∂yφdy,

for all φ ∈ H1(0, h1). The L∞ estimates on uδ, together with the trace theorem
for φ, gives∣∣∣∣∣

∫ h1

0

∂τf(uδ)φdy

∣∣∣∣∣ ≤
(
kC
(
r(M0) + 1

)
+
∫ h1

0

|∂yuδ|2 dy

)
‖φ‖H1(0,h1).

Since φ ∈ H1(0, h1) is arbitrary, we can use the estimate on
∫ t

0

∫ h1

0
|∂yuδ|2 dydτ ,

to conclude the remaining part of the lemma.

3.2. The limit δ ↘ 0. By sending δ to zero, a classical solution of (3.6)
cannot be expected. This is because uy(0, τ) may have jumps whenever h arrives
in or leaves the boundary y = h1. Therefore we need a weak formulation of the
problem. Let

U := {u ∈ L2(0, T ;H1(0, h1)) : ∂tu ∈ L2(0, T ;H−1(0, h1))},
V := {w ∈ L∞(0, T ), 0 ≤ w ≤ 1},
W := C([0, T ]),
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and let (·, ·) denote the inner product in L2(0, h1). Further, by < ·, · > we mean
the duality pairing between H−1(0, h1) and H1(0, h1).

Definition 3.8. A triple (u,w, h) ∈ U × V ×W is called a weak solution
of (3.6) if ∫ T

0
< ∂τf(u), φ > dτ +

∫ T

0
(∂yu, ∂yφ)dτ

+k
∫ T

0

(
r(u(0, τ))− w(τ)

)
φ(0, τ)dτ = 0,

(3.15)

for all φ ∈ L2(0, T ;H1(0, h1)) and if in addition

w ∈ H(1− h) a.e. in [0, T ], (3.16)

h(τ) = h0 − k

∫ τ

0

(
r(u(0, t))− w(t)

)
dt, (3.17)

u(y, 0) = u0(y) for 0 < y < h1. (3.18)

Lemma 3.7 gives the necessary uniform estimates to establish the existence
of a triple (u,w, h) ∈ U × V ×W and of a sequence δ ↘ 0, such that

1. uδ → u weakly in L2(0, T ;H1(0, h1)),

2. ∂τf(uδ) → g weakly in L2(0, T ;H−1(0, h1)).

Further, since Hδ

(
1−

∫ h1

0
f(uδ) dy

)
∈ L∞(0, T ), we have

3 wδ := Hδ

(
1−

∫ h1

0
f(uδ) dy

)
→ w weakly-star in L∞(0, T ),

and finally, by the Arzela-Ascoli theorem,

4 hδ := h0,δ − k
∫ τ

0

(
r(uδ(0, t))− wδ(t)

)
dt→ h in C([0, T ]).

Theorem 3.9. The triple (u,w, h) is a weak solution of (3.6).

Proof. First, we observe that the sequence {uδ}, for δ ↘ 0, is bounded
in L2(0, T ;H1(0, h1)) and that f(u) is a C1 function of u for 0 ≤ u ≤ M .
By the chain rule, see [6, Theorem 7.7.8], the sequence {f(uδ)} is bounded in
L2(0, T ;H1(0, h1)). Because {∂τf(uδ)} is a bounded sequence in L2(0, T ;H−1(0, h1)),
it follows that the sequence {f(uδ)} is a bounded sequence in C([0, T ];L2(0, h1)),
see [13, Lemma 9, Corollary 4]. This gives the existence of a g̃ such that

{f(uδ)} → g̃ strongly in L2(0, T ;Hs[0, h1]),

for any s < 1. Since f−1 is continuously differentiable and {f(uδ)} converges
a.e. to g̃, the sequence {uδ} converges a.e. to f−1(g̃). Because {uδ} converges
weakly to u, it follows that f(g̃) = u, or g̃ = f−1(u) a.e. Now, since {∂τf(uδ)}
converges to g and {f(uδ)} converges to f(u), it follows that g = ∂τf(u).
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The trace theorem and the convergence of {uδ} in L2(0, T ;Hs(0, h1)) for
s < 1

2 , implies the strong convergence of {uδ(0, t)} to u(0, t) in L2(0, T ).
The weak convergence of uδ and of ∂τf(uδ), the weak-star convergence of

wδ and the convergence of {uδ(0, t)} imply that u and w satisfy (3.15). By the
strong convergence of {uδ(0, t)} and the weak-star convergence of wδ, we see
that (3.17) holds and by construction of the compatibility conditions (3.11), we
see that the equation (3.18) is satisfied.

It remains to be shown that (3.16) holds. We decompose the interval [0, T ]
into S1 and S2, where

S1 = {t ∈ [0, T ]|h(t) < 1} and S2 = {t ∈ [0, T ]|h(t) = 1}.

We consider two cases:

1. t ∈ S1: there exists a µ > 0 such that h(t) < 1− 2µ. There also exists
a δµ > 0 such that hδ(t) < 1 − µ for all δ < δµ. This means that
1 −

∫ h1

0
f(uδ)dy > µ, and thus wδ(t) = 1 for all δ < min(δµ, µ). This

implies w(t) = 1 for t ∈ S1.

2. t ∈ S2: in this case h = 1 and h′(t) = 0 a.e in S2. Differentiating (3.17),
we obtain that h′(t) = k(w(t) − r(u(0, t))) a.e. in S2. It follows that
w(t) = r(u(0, t)) a.e. in S2, with r(u(0, t)) ≤ 1.

Summarizing, we see that w ∈ H(1−h) a.e. in [0, T ]. This concludes the proof.

Remark 3.10. As follows from the proof, we have that w(t) = r(u(0, t)) for
almost every t ∈ [0, T ] with h(t) = 1.

We now turn our attention to the model (2.7) in the original, variabel domain
formulation. To this aim we first proof that ∂yu is essentially bounded in QT .

Lemma 3.11. Given a weak solution (u,w, h) of (3.6), a K > 0 exists such
that

|∂yu| ≤ K a.e. in QT .

Proof. We consider the following problem for v = ∂yu
∂τv = ∂y( 1

f ′(u)∂yv), for 0 < y < h1, 0 < τ < T,

v = k(r(u)− w), for y = 0, 0 < τ < T,

v = 0, for y = h1, 0 < τ < T,

v = ∂yu0, for 0 ≤ y ≤ h1, τ = 0,

which is obtained by differentiating (3.6) with respect to y. These equations have
a unique weak solution v ∈ L2(0, T ;H1(0, h1)) with ∂τv ∈ L2(0, T ;H−1(0, h1)),
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see e.g., Theorem 3, Chapter 7 in [3]. We test with [v − K1]+, where K1 =
max

(
ess sup0≤τ≤T k

(
r(u(0, τ))− w(τ)

)
, sup0≤y≤h1

(∂yu0), 0
)
, and obtain

∫ T

0

< ∂τv, [v −K1]+ > dτ +
∫ T

0

(
1

f ′(u)
∂yv, ∂y([v −K1]+)

)
dτ

=
∫ T

0

1
f ′(u)

∂yv[v −K1]+|y=h1
y=0 dτ.

Since v = f(r(u)− w) ≤ K at y = 0, it follows that∫ h1

0

1
2
([v −K1]+)2dy +

∫ T

0

∫ h1

0

1
f ′(u)

(
∂y[v −K1]+

)2
dydτ = 0.

Therefore v ≤ K1 a.e. in QT . Similarly we can show that v ≥ K2 a.e. in QT

with K2 = min
(
ess inf0≤τ≤T k

(
r(u(0, τ))−w(τ)

)
, inf0≤y≤h1(∂yu0), 0

)
, and the

result follows, with K = max(K1,K2).

Theorem 3.12. There exists a solution of (2.7) in the sense of Definition
3.1.

Proof. By [11, Theorem III.10.1] a weak solution of (3.6) obtained by Theo-
rem 3.9, is actually in C2,1(QT \{y = 0, 0 < τ < T}) and satisfies the equations
∂τf(u) = ∂yyu in QT and ∂yu = 0 in {y = h1, 0 < τ < T}, and also the initial
conditions. To establish the membership of u in C(QT ), we write

u(0, τ) = u(h1, τ)−
∫ h1

0

∂yu(y, τ) dy.

We know that u(h1, τ) is continuous in τ . Furthermore we know that ∂yu(y, τ)
is continous in τ for 0 < y < h1 and that maxQT

|∂yu| < K, by Lemma

3.11. It follows by the dominated convergence theorem that
∫ h1

0
∂yu(y, τ) dy

is continuous in τ , and thus the same holds for u(0, τ). Therefore u ∈ C(QT ).
Using the coordinate transform

x =
∫ h1

y

f(u)dȳ, t(τ) = τ, (3.19)

which is the inverse transform of (3.5), we obtain a function v(x(y), t(τ)) =
u(y, τ) that is in C2,1(QhT ) ∪ C(QhT ) and satisfies the equation ∂tv = ∂xxv on
QhT and ∂xv = 0 on {x = 0, 0 ≤ t ≤ T}.

By substituting u(0, t) = v(h(t), t) in the equality h(t) = k
∫ t

0
(w(τ) −

u(0, τ))dτ + h0, we get the desired equation for h(t) in Definition 3.1. By the
coordinate transform, we have

h1 =
∫ h1

0

dy =
∫ h(t)

0

(ρ− v) dx.
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This shows that all the requirements in Definition 3.1 are fulfilled and the result
follows.

Remark 3.13. Using similar arguments as in the proof of Lemma 3.2, we
can show that for weak solutions u of (3.6) the result in Lemma 3.2 also holds,
i.e., 0 ≤ u(y, τ) ≤ max(M,v∗). This result remains of course valid for the
solution v(x, t) of (2.7) obtained from u by the transform (3.19), so that we also
have

0 ≤ v(x, t) ≤ max(M,v∗).

Using the lower bound for v and (3.43), we bound h(t) from below, and using
the continuity of h and the fact that ∂th ≤ 0 for h > 1, we bound h(t) from
above, giving

h1

ρ
≤ h(t) ≤ 1.

4. Uniqueness. In this section we prove that (2.7) has a unique solution.
Theorem 4.1. There exists at most one solution of (2.7) in the sense of

Definition 3.1.

Proof. Suppose we have two solution (v, w, h) and (ṽ, w̃, h̃) to the equations
(2.7). Using the coordinate transform (3.5), we transform these solution into
weak solutions (u,w, h) and (ũ, w̃, h̃) of (3.6). From the Theorems 2.3 and 2.4
in [2], it follows that both ∂τf(u) and ∂τf(ũ) are in L2(QT ). Now we proceed
again as in the proof of Lemma 3.2 and define again ψε(z) := Hε(z). With
t ∈ (0, T ] fixed arbitrarily, we test the equations for u and ũ with χ[0,t]ψε(u− ũ)
and the equations for h and h̃ with χ[0,t]ψε(h̃− h), and sum to obtain∫ t

0

< ∂τ (f(u)− f(ũ)), ψε(u− ũ) > dτ

+
∫ t

0

∫ h1

0

(∂y(u− ũ))2ψ′ε(u− ũ)dydτ +
∫ t

0

∂τ (h̃− h)ψε(h̃− h)dτ

+k
∫ t

0

(
r(u)− r(ũ)−H(1− h) +H(1− h̃)

)(
ψε(u− ũ)− ψε(h̃− h)

)
dτ = 0.

Since ψ′ε ≥ 0, letting ε↘ 0 gives the estimate(∫ h1

0

[f(u)− f(ũ)]+dx+ [h̃− h]+

)∣∣∣∣∣
τ=t

≤ −k
∫ t

0

(
r(u)− r(ũ)−H(1− h) +H(1− h̃)

)(
H(u− ũ)−H(h̃− h)

)
dτ.

By the monotonicity of H and of r, the expression on the right is nonpositive.
Since t ∈ (0, T ] was chosen arbitrarily, we obtain that u(y, t) ≤ ũ(y, t) for all
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(y, τ) ∈ QT and h̃(τ) ≤ h(τ) for all 0 < τ < T . By reversing the roles of (u,w, h)
and (ũ, w̃, h̃) we obtain the opposite inequalities, and thus (u,w, h) = (ũ, w̃, h̃).
Hence also (v, w, h) = (ṽ, w̃, h̃).

Remark 4.2. In Section 3.2, we obtained the existence of a subsequence
δ ↘ 0, such that {uδ} converges to u along this subsequence. As a corollary
to Theorem 4.1 we can now assert that {uδ} converges to u along any sequence
δ ↘ 0.

5. Numerical examples. In this section we present numerical examples
for the dimensionless model (2.7). First we approximate the solution of the
regularized and transformed equations (3.8) using the implicit Euler scheme,
and then we make the inverse transform to plot the solutions in the original,
variable, coordinates.

The dimensionless parameters and data used for the first example are

ρ = 1, h0 = 0.5, v0 ≡ 0, k = 1,

and the nonlinear reaction rate is given by r(v) = 3v2. The region between
y = h0 = 0.5 and y = L = 1 is occupied by precipitate and since v0 < v∗ only
dissolution can be encountered. For the transformed equations (3.8), this gives
the parameters and data

h1 = 0.5, u0 ≡ 0.

Note that the nonlinear rate function gives the value u∗ = 1/
√

3 ≈ 0.577. As
in the existence proof, the computations are performed for a regularized model
with δ = 0.01.

For the discretization of equations (3.8), we first fix a time step ∆τ > 0 and
a number n+1 ∈ N of equidistant spatial nodes. This divides the interval [0, h1]
into n sub-intervals of length ∆y = h1

n . For j = 1, ..., n and m = 0, 1, 2, ..., we
introduce the approximations um

j ≈ u(yj , τm), where yj = j∆y and τm = m∆τ .
These approximations are obtained by solving

f(um+1
j )− f(um

j )
∆τ

=
um+1

j−1 − 2um+1
j + um+1

j+1

(∆y)2
, for j = 2, ..., n,

f(um+1
0 )− f(um

0 )
∆τ

=
2um+1

1 − 2um+1
0

(∆y)2
− 2k

∆y

(
r(um+1

0 )

− Hδ

(
1− 1

2∆y

n∑
j=0

[f(um+1
j ) + f(um+1

j+1 )]
))

,

f(um+1
n+1 )− f(um

n+1)
∆τ

=
2um+1

n − 2um+1
n+1

(∆y)2
,

for m = 0, 1, 2, ... Note that the last two equations incorporate the boundary
conditions, and that the integral in (3.8) is replaced by the repeated trape-
zoidal rule. This results in a system of nonlinear equations that we solve using
Newton’s method.
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Fig. 5.1. Results for the first experiment, left plot: the evolution of the concentration

v in time displayed in the original coordinates; right plot: the thickness of the crystal layer
h(t) versus time.

For the first numerical experiment we divide the interval [0, h1] = [0, 0.5] in
n = 100 subintervals so that we obtain 101 equidistant nodes with ∆y = 0.005.
For ∆τ we take 0.005.

For plotting the solution v(x, t) = u(y(x, t), τ(t)) in the original coordinates x
and t, we perform the inverse coordinate transform of (3.5), given by (3.19). The
approximate solution v is presented in Figure 5.1 using the original, variable,
coordinates. In the same figure, on the right, the thickness of the crystal layer
h(t) =

∫ h1

0
f(u)dy is depicted.

We see that the thickness of the crystal layer is decreasing in time. Con-
sequently the ion concentration in the fluid is increasing. Around t = 1.25
the entire precipitate is dissolved, and the ion concentration is approaching the
steady state v ≡ 0.5. Because 0.5 < u∗ ≈ 0.577, there are no crystals present
in the steady state. We see that the total mass is conserved, since also initially
the total mass of the ions was equal to 0.5.

For the second numerical experiment we use the parameters

ρ = 1, h0 = 0.95, k = 20,

and the nonlinear reaction rate is again given by r(v) = 3v2. The initial ion
concentration is a step function with maximal value v = 0.8 and minimal value
v = 0 and with the jump at x = 19/24 ≈ 0.79. This value is chosen such that
the the jump of the step function in the transformed coordinates is located at
y = h1/2. For the transformed equations (3.8), this gives the parameter value
h1 = 19/60. Furthermore we use for the regularized Heaviside graph the value
δ = 0.003. We divide again the interval [0, h1] = [0, 0.5] in n = 100 subintervals
so that we obtain 101 equidistant nodes with ∆y = h1/100 ≈ 0.0079. For ∆τ
we take 0.000125.

In Figure 5.2 we present in the left plot the concentration v against t and x
and in the right plot the thickness of the crystal layer h(t) against t. We see that
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Fig. 5.2. Results for the second experiment, left plot: the evolution of the concentration
v in time displayed in the original coordinates; right plot: the thickness of the crystal layer
h(t) versus time.

Fig. 5.3. Results for second experiment, left plot: zoomed in concentration v versus time
and space in the original coordinates; right plot: the thickness of the crystal layer h(t) versus
time.

because initially the ion concentration near the crystal layer is small the layer
dissolves in a small fraction of one time unit. By diffusion the ion concentration
near the boundary increases, and when the ion concentration at the interface
exceeds u∗ ≈ 0.577, the crystal layer starts to grow again, until a steady state is
reached. At the steady state the ion concentration equals uniformly u∗ ≈ 0.577.

In Figure 5.3, we zoom in near the interface and show also only the initial
evolution of the solution. Here we clearly see that the crystal layer first dissolves
before it starts growing again.
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Appendix A. Initial data and compatibility conditions for the reg-
ularized problem. In Section 3.1 we have defined u0,δ in the following way

u0,δ :=

 u0 if h0 < 1 or u0(0) ≤ v∗,
Cδu0 if h0 = 1 and v∗ < u0(0) ≤ v∗,
cδu0 if h0 = 1 and u0(0) > v∗.

(A.1)

Further u0,δ should satisfy the compatibility conditions{
u0,δ ∈ C2([0, h1]), ∂yu0,δ(h1) = 0,

∂yu0,δ(0) = k
(
r(u0,δ(0))−Hδ

(
1−

∫ h1

0
f(u0,δ(y))dy

))
.

(A.2)

This gives the following equations for Cδ and cδ

1−
∫ h1

0

f(Cδu0)dy = δ r
(
Cδu0(0)

)
,

1−
∫ h1

0

f(cδu0)dy = δ r
(
cδu0(0)

)
− δ cδ

(
r
(
u0(0)

)
− 1
)
.

The existence of solutions to these equations is the subject of the following two
lemmas.

Lemma A.1. Let u0(0) > v∗. For all δ > 0, there exists a Cδ ∈ (0, 1] such
that

1−
∫ h1

0

f(Cδu0)dy = δ r
(
Cδu0(0)

)
.

Moreover Cδ ↗ 1 for δ ↘ 0.

Proof. Define the function

g(C, δ) := 1−
∫ h1

0

f(Cu0)dy − δ r
(
Cu0(0)

)
. (A.3)

For 0 ≤ C ≤ 1 and δ ≥ 0, the function g is continuous in both arguments.
In addition it follows from the definition of f that there is a m > 0 with
∂Cg ≤ −m < 0. Since h0 =

∫ h1

0
f(u0)dy = 1, it holds that g(1, δ) = 1 −∫ h1

0
f(u0)dy − δ r(u0(0)) = −δ r(u0(0)). Because u0(0) > v∗, it follows that

g(1, δ) < 0 for δ > 0. We also have g(0, δ) = 1 − h1
ρ ≥ 0. By the intermediate

value theorem and the strict monotonicity of g, there exists for all δ > 0 a
unique Cδ ∈ (0, 1) with g(Cδ, δ) = 0. Furthermore we have that g(1, δ) ↗ 0 for
δ ↘ 0. From the bound on ∂Cg it follows that Cδ ↗ 1.

Using similar arguments, we can prove the following lemma.
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Lemma A.2. Let u0(0) > v∗. For all δ > 0, there exists a cδ ∈ (0, 1] such
that

1−
∫ h1

0

f(cδu0)dy = δ r
(
cδu0(0)

)
− δ cδ

(
r
(
u0(0)

)
− 1
)
.

Moreover cδ ↗ 1 for δ ↘ 0.
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