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1 Introduction 

1.1 Hierarchical Types 

Type disciplines have featured prominently in formal approaches to natural language since 
the work of Montague (e.g. (Mon731). Monlogue avoided the paradoxe. of naive sel theory by 
a,\opting a version of R1Issell's cumulative hierarchy of types. Despite the SUCCeSses of Mon
tague's type system for English, it h .... met with criticism in recen~ year. for being excessively 
rigid. One line of research, initiated by Partee and Rooth (RP82,PR.83), has tried to achieve 
greater flexibility, especially in the treatment of quantifiers, by .l..signing each expression a 
family of Iypes. Another line of work bas moved in the direction of type-free theories of prop
erlies, in order to accommodate the difficultie. raised by nominalization and self-application. 
In this paper, we will focus our attention on the second of these two endeavours. 

lIistorically, type disciplines for languages have developed in dose association with intended 
models for interpretation. The proposals we shaH make Can also be construed in thls way, 
inasllIuch as they were inspired in part by Aczel's (Acz80) notion of a Frege structure, whlch 
is intended to provide a consistent rormulation of Frege'. logical notion of Set. 

A system of types provides a classificatory scheme for the domain and range of functors. The 
type of an expression determines the domain in which that expression receives an interpre
ta(ion. Thus, in (I) (where we use tbe notation ",!(1 to mean that expression", bas type a), 

eWe ale gnt('(ul to D:tyid Beaver, loge Bethke, Max. Cresswell, Lex lIott and an anonymOQ!J referee for 
tll{'ir comments on previoU!1 versions of this pAper. 

t j{.un:ucddine i~ grateful to the D~pltrtmen' of Mathematics and Computin8 Science, Technical Univenily 
of EindllO\"(~n. fot their f;nllndal f'Urport and bOl'lpitality durin« the academic year 1991-92. 

IKlein't!1 work hM been eluded out u put of the researclt progu.inmes ot the DVANA project (DR. 3175), 
fund(':(1 hy CF.C F.St'R1T nitS-it-: Re~eat(:h, a.od o( c.he Human Communication Research. Centre, .Ilpporled by the 
UK F..<:onomk .nd SociAl Research Council. 
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the proper nOlln Gln.gow might be assigned type e, the type of entitle!!, while the predkate 
ru .. i< a«ignc<i type (c, p), which we construe as the type of objects which combine with 
e"presions of type e to yield expressions of type p. 

(I) GIMgow:e i. fun:(e, pl. 

If we make the pla"si}'le aSSllJnption that the copular verb I. here denotes the identity function 
011 predicates, then st •. ndard rilles of type inference yield the resllit that (1) i. an expression 
of type 1', the type of propositions. 

In recent years, the semantic problems of nominalization in linguistically·motivated type 
theories have received increa.,ing attention, particularly as a result of the work of Bealer, 
Chierchia and TUfllcr {Oea82, Chi84, Chi85, ChT88, Tur87J. To illustrate, notice that we 
might w""t to assig" dilTerent types to dilTerent kinds of syntactic subjects, as shown in the 
following two examples: 

(2) a (Running around the lake):(e,p) is fun:«e,p),p) 

b (For us to run around the lake):p is fun:(p,p) 

)n (20), we might expect the gNundive subject phrase to denote a property, hence to be 
assign~d lype (e, pl. nut if (2a) is to be of type p, fun will require a new type, n"mely 
«e, 11), I')' Similarly, if the subject of(2b) denotes a proposition, then the type of the predicate 
has to be changed to (1',1'). Yet there is no independent linguistic motivation for posttd"Ung 
distinct lexical entries for the dilferent funs of each type. 

1\ related prohlem aris~s when we consider cases 'of self· application, illustrated in (3,,) and 
the simpler (though lIlore artificial) instance (3b).1 

(3) a [Being f\lnJ:(e,p) is fun:«e,p),p) 

h Fun:(e,p) is fun:«e,p),p) 

SlIppose we poslulate a first-order predicate fun:(e,p), "nd a second order predlc"te of pred. 
icates Cun:«e,J'),p). This allows us to deal with (3); but what h"ppens if we want to affirm 
that Cun:«e, "),,,) is fun? We "re at the bottom of an infinitely ascending I"dder of types: 

(1) FlIn:(e,p),p) is fun:«(e,p),p),p) 

There seelll to be bro"dly three c1MSes of response to these problems of 'type inOation ': 
type-lowering, type-freedom, and polymorphism. We briefly consider these In turn. 

J D('.~pite "'-ppetlnnce!t, such locutions M~ not ~nlirely defined to the dil\cOUf$e of th.eorelidllftsj the {onowin, 
[C:cnlence Wa9 noled in the Time. lIigher Eduu,jon Supplementol 28b September 1990, p.l~: 

In bet, t.he fnn of rt':st','lUch is more fun than fun. 
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Typc- Lowering 

We have just observed the potential difficulties which arise if the subject running in (5) is 
assigned the type (e,p) of verb phrases: 

(5) Running hurts. 

For then we are apparently forced to assign a correspondingly higher type to run9. The ap
proach IHoposed by Chierchia (e.g" in (Chi841l postulates a nominw.ation operator n which 
maps proposilional functions (and propositions) into entities.' That is, if run' (the seman
tic translation of run-we use Montague's prime" notation for semantic constanta) denotes a 
propositional function J, then "run' is an expression of type e wbich denotes an individual 
correlated to J. We might Msume that the morphological operation which relates the gerun
dive form running to the finite form runs has as its semantic counterpart the introduction 
of this n operator. The resulting semantic analysis is illustrated in (6): 

(6) hurt':(e,],}(nrun':e) 

Type-Freedom 

From a technical point of view, it is not necessary to explkitly map propositional functions 
into their individual correlates. Instead, we can regard all properties as being a special sort 
of individual. following Aczel [Acz80), Bealer [Bea82) and othero, properties are those first
order objects ""hieh can be applied-using an explicit operation app of predication-to other 
objccts so as to yield a proposition. Thi. fir.t-order approach is illustrated in (7): 

(7) npp(hurt':e, run' :e):p 

Although we have declared the types ot the expressions in (7), they serve !HUe purpose, since 
1I0ne of thcm are functional in nature. 

Polymorp hism 

We say that a function is polymorphic if it yields appropriate outputs for inputs of a variety 
of types. Th.re are at leut two notion. of polymorphism which CAn be Invoked to deo.l with 
these \,roblems. The first, called p<lmmetric polymorphism (d. (CW85)), obtains polymorphic 
types by admitting type variables. In Milner's approacb (Mit7S), as implemented for the 
programming language ML, types containing type variables are called generic. Suppose, for 
exalllple, that v is a type variable, and that we assign to fun the generic type (1),1')' What 
happens when we try to determine tbe type of an expression invoh'ing self-application like 
flln( (un)? Assuming th"t the second occurrence of fun has the most general type (i.e.,(I1, p», 
the first occurrence will have to be assigned a more complex type, namely «v, p), p}, where 

'One or the urliesl diflCUl"t."!ioM of treAting propodtional arguments in .. Montague fn.meworJc, nA.mely 
Thorn~<;on (Tho76]. adorts a t;imilar type~lowering operation. 
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th" tYI'" variable v has itself becn instantiated as (v,p). Although we are required to ""sign 
dilTerenl lypes 10 funclor an,l argument in such a CMe, it should b~ noled that the complexity 
o( a (""etor's type is no greater than that required by the most g~.neral type of its argument; 
thus we avoid the 'infinitely "'!rending ladder of types' alluded to in our discussion of strictly 
hierarchical type systems. An approach Bimilar in Bpirit to M L is adopted by Parsons [P",,879), 
,,·herc Monlagne's (rarne"'ork is modified to allow 'Aoating' typ"" ",hieh again contain type 
v:triables. Although Parsons conoiders an interesting range of data, he does not explicitly 
discnss problems of nominalizalioD. 

A difTerent route avoids lype variables by using something which [CW8S] caU inclusion poly
morphism. Suppose, for example, that /7Jt /72, and r are types such that /7, :j a., Xi.e., 
"2 is subsumed by, or contained in (cr. [Mit88!), /710 and let f be a functor of type (at, r), 
Suppose further that 0 io a term, not of type 17., but of the more 'pecific type a,. Then f is 
polymorphic ill the sen.e that it can apply to 0, and yields a value of type T. From a semantic 
poinl of view, we model a type a as a set Do of values, and containment as inclusion bet .... een 
"Jeh sets. Now if a function assigns values to members of a particular set DOl' then it will 
also a~"ign values to members of any subset Do, of Dal • 1I0w does this help us de'" with 
norninali7.ation? Our 80lutioll is to let the type (e,p) of predicates be contained "'ithin the 
type e of individuals. Then, for example, fun of type ("'1') can apply to any expression of 
type a ~ e, includillg fun itself. 

1.2 Individuals, properties and fUllctions 

Our treatlllent takes SUh5uIIII,tion polymorphism as a starting point-that is, we will develop 
" nolion of type containm"nt, but avoid type variable •. In fact, the formal framework that 
we develop is flexi"le enough to encompMs a range of dilTerent approaches to nominaliza
tiOll, including type-free ones. However, within the space of optioDs, we have made cerlain 
t)worctica) choices which a\Jow U8 to model certain linguistic generalizations. In this section, 
t"crefore, we will consider some of the motivating data. 

In ordcr 1I0t to prejudge the issues to be decided, we use tbe term proposiliorlal/unctor to 
refer to any expressioll I of English which caR combine with an argument a so that the 
result I( a) is a declarative sentence, I.e., capable oC being used to assert a proposition. Thus, 
a finite verh phrase such as walk. is a propositional functor, as is a declarative sentence 
lacking a. direct object, such M John annO,)'8 _' We assume that propositional functors 
,fenote propositional lunctions, though just what these are supposed to be is left till later. 

We will lise the more lIeutrai term predicafiue to .:over both propositional functo •• and ,,·o.ds 
or phrases which intuitively express properties but which cannot combine with other expres
sions to ma.ke sentences. Again, we leave till later what the denotation of predicatives is, if 
not propositional functions. 

The first generalization which we wish to capture is, 

CfniJll 1.1 P,..,dicativc expressions can appear in fhe position olnown phmse (NP) aryumenl8 
to propositional lunclors. 
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For ('xampl~, pr(!dicn.tiv(!ft can occur in Rubjet.t position or tensed sentences, Le., a. position 
which is typically occupied by NPs: 

(8) a To run wiU tire Mary. 

b Running annoys Mary. 

Thu", according to our terminology, (8a) contains two predicatives, to run and will tire MarYi 
the latter is, in addition, a propositional functor. 

It ca II also be observed that the distribution of predicalives sometimes extends beyond that 
of NPs. Thus we have: 

CI"im 1.2 Prcdicative e:r:p,oes •• ions can appeor os arguments 10 propositionol functors where 
N Ps ore prohibited. 

In pa.rticular, certain lexical items are subcategorized to require predicative arguments, as 
opposed to ordinary noun phrases. The examples in (9) contrast with those in (10): 

(9) a John seems 10 annoy Mary/happy 

b With John annoying Mary/hoppy/in love, we can stop worrying. 

c Mary saw John run/running/happy 

(10) a 'John seems thai boy. 

b 'With John thai boy, we can slop worrying. 

c 'Mary saw John thai boy 

It might be claimed that this patterning of d .. ta is purely .yntactic. Certainly, it is true that 
items which require predicatives are usually subcategorized to take only a subset thereor. 
Thus, seems takes intinit;"al complements but nol bare or gerundive VAl, while see patterns 
the opposite way. Despite these idiosyncracies, however, there are a variety of generalizations 
that can only be expressed on the assumption that the class of predicatives can be some
how picked out (d. (Dach79, PS87])j and it is manifestly desirable to characterize this class 
semantically instead of invoking some arbitrary syntactic feature. In general, we adopt the 
position, fundamental to categorial grammar, that syntactic categories should be semantically 
motivated. . 

The next two claims have b<!Cn partleul .. rly emphasized by Chlerehl .. (Chl85, ChT88). Reeall 
Frege's view that a (propositional) function is 'unsaturated', or requires completion by an ar
gllment. On completion, the function yields a value, e.g., Il proposition. Changing perspective 
slightly, we can say that only function. hal·e the combinatorial potential to 'glue together' 
with arguments. The individual correlate of a function, by contrast, is 'inert': it cannot by 
itself combine with an argllment to produce a value. Translated into the realm of grammar, 
we ha.ve: 

Clnhn 1.3 Tensed pr-edieative ."'pres.io .... ore propositional/unctor., but untensed prcdica
ti IJCS ar'c not. 
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TI,,,". the ex""'ple" in (11) do not express as..,rtible propositions, ... ·bNeas those in (12) do: 

(11) a 'John to mn. 

b 'John (be) happy. 

(12) a John run.'. 

b John i. happy. 

This claim, though attractive, seems to require modification when embedded infinitives are 
considered. Thus, Jacobson [Jac90] has recenlly drawn attention 10 data like 

(13) Everyone likes their tea to be hot. 

The crucial quest jon about such an example is whether the substring their tea to be hot 
is an infinit;"al sentence (as opposed to a sequence of two distinct complements of like). 
Evidence in favour of there being a single constituent here is provided by standard tests: 

(14) a What everyone likes is their tea to be hot. 

b Everyone likes their tea to be bot and their beer to be cold. 

Despite these examples, the fact that nonfinite verbs cannot combine directly with subjects 
in root dauses still requires explanation. In the present paper, therefore, we sha1\ maintain 
Cla.irn 1.3 .... it stands, while accepting tbat furtber analysis of the is.ues i. called for. 

The fourth claim ca.n be regarded as a furtber specification of Claim 1.1. Chierchia sllggests 
that it is an empirical generalization which bolds for many. if not all, natural languages: 

Claim 1.4 Tensed predicalive e",pre~.iQn~ cannot occur as argument .. 0/ propasitional/unc
tor·s. 

Thus, ungrammaticality results if we attempt to replace the unlensed predkatives in our 
previolls examples by tensed predicatives: 

(15) a 'Run. annoys Mary 

b 'John seems nnnoy~ Mnry/i~ happy 

c • John tries annoy. Mnry/i~ happy 

Let \IS now consider how these observations might be rendered in a formal framework. The 
generally accepted interpretation of Claim 1.1 is that propositional functions have individual 
correlates. As a further terminological step, let us use the term nominal predicalive. to refer 
to expressions which denote such Individual correlate •. 3 Our models, derived from Aczel's 
Frege Structures, contain a collection :Fo of individuals (or objects, in Aczel's terminology), 

3 'A'e c!'Ichew the term 'nominR.liu.tion' because we do not wil'Jh to claim that linch expressions have undergone 
any dl<lngc of !!:yntllclic category, at I~ast in the way this Is 08UaJ)y underdood. 
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;uul th;!; !;('t iR 'hig ~nolJgh' to contain, for ea.ch function frotn obj(!-cts to ohjccts, an object 
thi'\l COr1'C~pont18 to that [unction. The collection of propositional functions, i.e., functions 
frolll Fo to propositions (which are also objects) is called pro We implement the idea of 
individual correlates by letting the collection PF be explicitly mapped, Ilia the ~ operator, 
onto a subcollection SET of the domain of Fo individual objects. That is, each objecl in SET 

i< Ihe individual correlate of a propositional functlon. (Se<! Lemma 2 for a proof that .x is 
bijective.) 

Clailll 1.2 shows tlt"l sOllie lexical ilems select as their arguments nominal predicatives, which 
we t;,ke \0 denote objects in SET. Since we want to treat this selection as a kind of semantic 
dependency, this means that our type system should give us a type of those individuals which 
belong to SET.4 We shall let (e,p) be the type required and, as we .hall see later, we arrange 
thing. So that (e,r) is a .• ublype of the type e of ir.dividuals. Moreover, expre .. ioRR which 
sdect objects of it particnl'" type will be encoded as functions over the appropriate domain; 
consequently. We will have to allow '\-bound variables to be of type {e,p).5 

If Claim 1.3 is given a semantic explanation, then we must capture the difference in com
binatorial potential between tensed and untensed predicalh·es. A. pointed out by Chierehia 
nnd Turner ((ChT88)), this distinction appears to be inadequately captured by first-order 
theories of properties .IIch as that of Bealer (Deo.82) in .. -hieh propositions only result by 
vir tile of explicitly applying a property to another object. for example, on snch an approach, 
John ,,-alks would be expressed as (16a) or, adopting the approach of building the collection 
of individual correlates within F o• as (I6b): 

(16) a tlpp(walk':e,john':e) 

b 0P1,(wnlk':(e,r), john':.) 

The fr~gean view (which is vigorously disputed by Bealer (Beo.82, Bea.89)) holds that proposi
tional functions sbonld not be thought of as objects, but indeed as functions. This is renee ted 
in ollr framework, therefore, by the decision to view propositional functions as elements of PF, 

not Fo. This has tbe virtue of providing a natural explanation for C1a.im lA. For although 
elements of PF do have individual correla.tes in ro, they a.fe not themselves objects, and as 
sucb are not potential arguments for other propositional functions. 

As we will see, 'nominal' types (including predicative nominals) are all constructed as subtypes 
of e. Since, according to what we have just said, propositional funelors are not nominals, they 
cannot be assigned a nominal type. We therefore require a new kind of type for slIeh functors, 
one which i. nof a subtype of e. ExpressIon. whose denotations lie outoide the doma.in Fo of 
objects "'iII be assigned what we call metatllpell. Whenever rr and r are {meta- )types, (rr -+ r) 
will be a metalype. Note that we will not need to quantify over propositional functions, nor 
will we need '\-expressions whose domain of interpretation is the coDection of propositional 
functions-we can use nominalised properties instead! lienee, variables in our language will 
never be assigned rnetatypes. 

t Dc:::pilt. the rtecedent of (ChT8S], we ha:ve tthained from nmns t.he term Ceort' rather than 'type' ror 
c1;t..c;~ilir.l\tion!l of blL.qic object",. 

!oThll!'l, our type (e,p) is equivlllent to (ChT881" sort nJor nominaTued (unctionll. 
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W" "h~tI ~~<lIme th"t IIninReded (or base form) verb phras"s denote ohjech rather than 
ptop"sition.,1 (unctioos; for example, walk wiU be of type (e,p). When verb phrases receh'e 
tense, they are mapped by a predication operator U into propositional fUDctions, with the 
metatype (e -4 p). Thus if nonlinite walk translates as walk':e, then tensed wlllks translates 
as uwalk':(e -4 pl. Putting the various pieces together, We replace (16) with (17), where the 
propositionaJ (unclor is applied directly to its argument, rather than by the mediation of app: 

(17) [Uwalk':(e .... p)(john':e»):p 

Dy way of summary, we give the following tabular presentation of our articulation of the data: 

Synlllctic Nolion Semllntic Notion Domain (Meta- )Type Example 
Propositional fUllctor propositional function PF (e -4 p) walks, is fun 

nominal predicative set SET (e,p) walk, be fun 

III this section, we have attempted to present and motivate the general structure of our 
approach, and it will be observed that we have followed (ChT88) closely in (""ouring .. Fregean 
analysis oVer a first order property theory. Nevertheless, our formal (ramework differs, from 
that of [ChT88j in many respects; this will become obvious in the following seetio"", where 
we give a more systematic presentation of the theory. 

2 The Language L.<, 

2.1 J udgel1lents and Type Containment 

In the theory C~ developed in lhis paper, we follow (Acz80) in starting from models of tbe 
type-free lambda calculus, on top of which an interpretation for logical connectives bas been 
constructed; we then construct types within the set of object •. In place oftbe domain to, l) of 
truth vallles, we have a domain PRor of propositions, included in which is the domain TRUTH 

of lrue propositions. These collections provide values for the types p and I respectively. As 
mentioned earlier, there is also a domain To of individuals, with assodated type e. This 
domain turns out to be much richer than one might have expected. Indeed, it contains PROP 

(and hence TRUTJI) as .ubcollections. In S 4, we shall look in more detail at the intended 
models; for the time being, however, we present the type strudure. 

Following IIsllal practice in type theory {e.g., (CW85, Mit88]), we use a natural deductioD 
format for rules of type inference. A simple example is the following: 

hp:p 
I- 3x :<T.cp:p 

The statement I-cp:p is an assertion or judgement meaning that we can infer that", i. of type 
p. The r"le lIS a whole i. a logical Implication; given the premiss, We can infer that 3%.cp is 
aJwor~~~ , 
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'\Jhat we h;\\'~ I'r~~""tr.fl iR not quite Bufficlent. however; ir V' tontainlll OCCurrf!ncep; of the 
v>riabl" x, the inference that it is of type p may in turn depend on the type of :1:; in other 
words, the judgement is made under the assumption, or in the context, :1::11. Using 

f,x:<1 

to r~I"~'~nt a context r which contains the relevant assumption, we replace our earlier rule 
by the following: 

r, x:<1hp:p 
n- 3x:11 .<p:p 

Let us now present these idea-It in a more Bystematic format. A type si(Jlentent is a pair, 
written o:cr, consisting of an expression a and a type 11, read ·0 has type 11~; a i. said to 
be the subject of the statement. A a;gno!ure I: is a linite set of distinct type statement. the 
sllbjects of which are constants, while a con lui r is a finite set of distinct type statemenh, 
the suhjects of wllieh are variables or sentences. In the latter case, a statement of the form 
<p:1 iudic>leg that <p is a sentence of the logic whose truth i. being Mstlmcd in ti,e course of 
a. I'mof; th"t is, we Me "Iso using contexts in .. sequent calculus style to encode the currenl 
set of assumptions required at each line of a proof, 

As \1511,,1, we c"n regard signat",es and contexts lIS (unction. from expressions to type •. Thus, 
dom(E) denotes the set of expressions to which the signature I: assigns a type, and similarly 
for contexts. If A is a sig""ture or a context; we write A,a:" in place of A U {a:I1}. 

Althollgh the system used here does not uSe the power of higher·order type theory (e.g., such 
as dependent types), we have nevertheless (ound It convenient to take as our framework lhe 
theory of expressions developed in the Edinburgh Logical Framework [HlIP87J. As pointed out 
in the preceding section, we distinguish types, whose interpretation. are constructed within 
the domain of objects, from metatypes, which have a disjoint interpretation as coUectlons of 
functions and functionals. Types and metalype. are both 1ci"J$, 

We need three further kinds, or classifications of types: non-proposifionof II/pes (np-types for 
short), fixed poinl Iwes (fp-types) and well-behoved 'ypes (wb-types); these are aU interpreted 
within the domain of objects. As we shall see later, there i. a sense in which an fp-type is a 
complex type which does not have any proper subtype •. 

We will use 11 and T (or types, !lt11 (or metatypes, and fI, fit."" to range over bolh lyp.,. and 
metatypes. We use c for constants (a special instance of which is J.), %,1/ for "ariables, a,fJ for 
arbitrary object language expressions and 'P,.p, X (or expression. which denote proposition •. 
We \lse r I- 8 to mean that 8 is derivable within context r, and rh: • to me"n that ~ is 
deriva.ble from the signature E within context r ..... and h: • stand respectively (or 0 f- • 
and 01-£ 8, where 0 is the empty context. 

The synta.x of the various sorts of expression can now be specified lIS foUow8: 
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SignnttH'C8 E .. - 01 E, e,'1 
Contexts \' "- 01 r,""u I r,o: t .,-
Kinds K "- type I Ip-type I np-type I wb-type I mefofype 
Types u .. - e I tip I (11, r) 
M€lotypes ntO' .. - ('11 ..... 'h) 
ET lu'(:ssions 0 .. - c I., I >'.,:u.o I opp(o,P) 1 ~o 110 J\ /JIllo v /JI 

1 [a :J PI 1 [0 = PI 1 I/z:u.a 1 3:>:,u.a 

\Ve wilt omit square brackets around complex Bentences except in those cases where the scope 
of a typing .tatement needs to be made explicit. 

Type theory (d. [M-L79J) provides rules for making judgements of various forms. The ones 
which we are concerned with are the following: 

J udgell1ents 

I- E Big 
I-I: r context 
l'\'I:'1!( 
!'I-I: "~r 
n-I: """1' 
£'I-I: <>:<1 

E i3 a signolure 
r is a conled 
'1 has kind K 
type u is contained in type T 

type C1 is equivalent to type T 

o has type C1 

Note that the"" relation between types is the symmetric closure of ~, the containment 
relation. 

We mentioned earlier that the inference rules by which judgements can be derived are formu
lated in natura.! deduction notation. We add glosses to a representative sample of the rules 
in order to help readers not familiar wfth this mode of presentation. 

Valid Signature 

(n,,11 sig) I- 0 sig 

1'IIe emply relalion is a signature. 

(: sig) I- E .;g ~I: t) K il c It dom (E) 
I- E, c:t) 81g 

11'1 ;s <I /rilld, <lnd E doesn't already <lss;gn a (mel<l-)type /0 the cons/"nt c, then we can 
augment E with the •• Inlemenl c,'1. 
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Vnli<1 Cont"xt 

(null con ted ) 

(: context) 

(: Irutheonlexl) 

f- E sig 
h: 0 conted 

f-I; r con led 
f-£ 1', .,:<1 conted 

i! 'Z t dom (I') 

f-I; r conled 

f-E r, '1':1 cDnle.,1 
if 'I' t dom (f) 

11 

It should be noted th"t (: context) requires <1 to be a type, not an arbitrary kind; thua, our 
contexts will /lot assign met:ttypea to any variables. 

As we pointed out above, the following semantic domains are ordered by inclusion: 

TRUTII S;; I'RQP S;; Fo 
SET S;; Fo 

And indeed there are other inclusions in the domains. This structure is r<~necled by the 
contaimncnt relation ~ (in fact, a partial order) which is imposed on the types. When U:iT, 
We say that (J is contoined ill, or is a subtype 01, T. (J~T means that any expression ",lIkb is 
of type 17 is also of type Tj moreover, any object in the model which belongs to the domain 
Du .$sociated with (J • .Iso belongB to the dom>aiD DT associated with T. The most salient 
containments in our system are the following: 

t -<p:ie 
(0-, r) ~ e 

Rules for inferring judgements about containment will be given shortly. Defore that, however, 
we present the various kinds required. Within the class of types, we distinguish three useCul 
Rubsets: n01l-proposilio1lal (IIp-Iype), fi.,ed-poin' (!p-Iype). and well-behaved (wb-type). These 
are characterized in tbe following rules: 

fOnds, Types and Metatypes 

(base types) 
f- E sig h: r cDntext 

rf-E e type 

I- r; sig f-E r context 
rf-E , type 

f- E .ig f-E r con ted 
I'I-.E p type 
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/'I-I: u type rl-E r Iype 
rl-E (u, r) type 

(np bau) 
I-E 8ig I-E r con ted 

rt-I: e np-tl/pe 

(lip complex) 
rl-I: u np-Il/pe rI-1: r Iype 

rl-I: (u, r) np-Iype 

( wb- I ypes) 
rl-I: ('" r) wb-Iype 

(fp-Iypes) 
rl-I: u Iype rl-I: r-<p 

rl-I: «u, r), r) fp-Iype 

If" is a Iype and T is conlained in p (Ihal U, T = I or p), Ihen «u, r), T} U an fp-Iype-

(metalypes) 
1'1-I: '11 K rl-I: '12 K 
1'1-I: ('11 -+ ",) mdalype 

There is a complementarity between np-types and fp-types, in the following sense_ From 
rl-I: T np-Iype, we can conclude that r rE «u, r), T} fp-Iype; for example, ({u, e),e} is not 
a" f,,-type_ Conversely, from I'I-I: «u, r), r) fp-Il/pe, we can conclude that r rE r np-Iype; 
for example, «"'p},p) is an fp-type, but p is not an np-type_ Note, however, that np-types 
and fp-types are not mutually exclusive; for example, «e,p},p) is both. 

As we will see later, A-abstraction.will only be permitted when the type of the abstract is a 
,,,b-type. A complex type i. a wb-type just in case the range is an np-type which i. contained 
in the domain type. For example, (e,e), (e,(e,e)}, (e,(e,p)} and «e,p),(e,p» are wb-types, 
but (e, p) and (p, e) are not. 

The containment relation is governed by the following conditions:6 

Containment 

(e~) 

Objects in Ihe domain Du of anl/'Ype u are also in De. 

I- I: l' conle:d 
1'1-1: l;:5p 

Truths al'e propositions. 

e fot I. ~imiJar propO$M, 8ee (CG89]. 
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(lJo",~) 
I'I-I: (11-<02 

ft-I: (02. ;}~(Dt. e) 
" 

Every Junction (returning argumenl8 in De) defined on a domain Do, is also defined 
on subsets DOl oJ Du,. 

(Ran~) 
I'I-I: u type fI-I: rl~1'2 

H-I: (u, 1'1}~(D. 1',) 

Every Junction with volues in the trJnge Drl also lIielth valuu in supersel8 Dr2 uJ Dr,. 

(Id::5) 

(Trans::5) 

(Anti"!,) 

(Fix"!,) 

l'\-E u Iype 

rI-1: u"!,o 

r~1: u-<r r~E r-<p 
r~E o~p 

\'I-I: «u, r), r) Jp.tllpe 

r~E {(D, r), 1'):::::(0, r) 

The a,xiom (Fix "!,) gives us fIXed points for type containment. That i., if r ~ p, then (0, r) 
"" «u,r),r) "" «(o,r),r),r) .". While types ouch as (c,e). «e,e),e), «(e,e}.e},e), ".are 
distinct, we need to be more restrictive about types such as (e,p), «e,p),p), ... if we are 
to avoid the paradoxes. According to (Dam ~). since (e.p) ~ e, we should have (e,p) ::5 
«e,p),p). The intuition behind cal.ling ((e,p),p) an [p-type is that this containment i. not 
proper; that is, we cannot gel anything extra by going from (e,p) to «e.p),p). In other words, 
we can only map sets into proposition. to tbe extent that we map those sets qua objects into 
propositions. 

As already noted, the containment relation plays a central role in our approacb to polymor
phism. In §4, we shall .ho"· that there are models of the typing .ystem; that is, we will have 
(unctioll,,1 domains from Do to Dr which are included in De; moreover, when Dr ~ PIlOP, 

we also have the result that objects in tbe function space domain 'Du to Dr' are in Du. 

Not all functions can b" mapped down Into the coUectlon of object., and following Aczel 
(Acz8\J], we shaU call the.<e Junclionals. Tbat is, adopting Frege'. correlation thesis [Fre77), 
we will see that all we need in the formal theory are objects, functions and functionals and that 
functions at a higher levellhan those three can be mapped down to the lower domains. Among 
the functionals we will counl the interpretations of determiner. and logical cOIinectives-and 
indeed, these are expressions l\'hich do Dot admit of nominaUzation. 
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2.2 Type Inference Rules 

In the preceding subsection, we gave a definition of the syntax of ""pressions occurring in 
judgements. These definitions were deliberately general, and could encompass a variety of 
logical systems. In specifying a particular calculus, such as C-<., we need to make explicit how 
Ihe Iypes of expressions of C;!, are inferred. It is to this task-that ".., DOW turn. 

The signature E of C-<. contains a finite number of statements C:'1 which assign types and 
JIletalypcs to constantsof the language. For now, we are only concerned with logical constants 
and functionals: 

Signature of Cj 

.L:p 

-.:(e ..... e) A:(e ..... e) 

A:(e ..... (e ..... e» V:(e __ (e -- e» 
:J:(e ..... (e ..... e» =:(e ..... (e ..... e» 
u:(e ..... (e ..... e» app:(e ..... (e ..... e» 

V:«e ..... e) ..... e) 3:«e ..... e) ..... e) 

Two comments on the above are called for. First, it will be noticed that, for example, -. 
is interpreted as a functional which maps an,l object in :Fo into another such object; we 
cannot tell, for a given expression a, whether -.a is a proposition unless we have some way 
of proving that a itself is a proposition. This will be made explicit in the axioms for type 
inference given below. Second, we will use conventional notation for the syntax of the various 
constants, writing cP A t/J in place of A(cp)(t/J), app(z,II) in place of app(x)(II), and Vz.", in 
place ofV(Ax.cp). 

A context r for C-<. contains a finite number of statements of the form X:(J, for any type (J. 

Recall however that r never assigns metatypes to variables. 

Defore launching into the type inference rules, we first define substitution on expressions, 
where we take ali1/x] to be the result of substituting (3 for all free occurrences of x in a. 

z[P/X] ;: fJ 
x[J3fy] _ x if", ¢ Y 

c[fJjz) ;: c 
(Ax.a )1i1/x] _ Ax.a 

(Ax.a)I{3/y] - Ax.alP/y) if x "t y and z not free in {3 

(h.a)[.olyj _ h.alz/x)[.ollll if x "t II and z is free in fJ and z i. not free in a or fJ 
EI,(a)[fJ/x) _ EI,(al{3/x]), where Ell i8 ... ,O,A,V,J,=,opp,V, or 3 
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The other dau5cs for ""bstitulion in logically complex exprcRsionR carryon"" usual. 

The next definition serves the following functions: 

1. It gives rules by which the type of an arbitrary expression of c.~ can be inferred. 

15 

2. It exploits the type I of truths to give introduction (l) and elimination (E) rules for the 
logical connectives in L-j. 

Vefinition 1 (Type Inference (or L:S) 

( Dnse) 

( Co .. /n; .. ) 

(.\) 

(Fund) 

(= prop) 

(= E) 

I- E I' conlexl 

l'f-E 0:<1 
where Q:<1 E r 

I'I-E <1:Sf 

r, T:ol-E O:T rl-I: (d, T) wb-lllpe 
('I-E ('\:I::<1.0):(<1,T) 

I'I-E 0:(17, T) I'I-E fJ:<1 
I'I-E app(o,fJ):r 

nE f:(<1 -. T) I'l-l: P:d 
I'I-E f(fJ):T 

I'I-E o:(e,p) 
n-E uo:(e -+ 1') 

I'I-E 0:" I'l-l: p:" 
l'I-E (0 = fJJ:p 

I'I-E (0 = fJ):t I'I-E 0:" 

I'h; <p:p 

I'I-E ~<p:p 

['f-E fJ:., 

I'I-E <p:p r, <p:11-1: .L:I 

)'I-E ~'P:I 

r , ~<p:tl-E .l:1 rl-,; <pop 

I'I-E <p:1 

I 
. I 
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(fIl) 

(AE) 

(Vprop) 

(vI) 

(VE) 

(:> prop) 

(:::J E) 

(Vprop) 

(VI) 

(VE) 

(3prop) 

(31) 

(3E) 

nOE 'I':p n-E "':p 
i'f-E (II''' "'1:p 

rl-E 'I':t 1'1-1: ",:t 

fl-I; ['I' " "']:1 

fl-E 1'1''' "'J:t 
fl-E 11':1 

fl-E ('I''' "'1:t 
fl-E ",:1 

fl-E '{':p fl-v .p:p 
rl-v ['{' V .p]:p 

rl-I; '1':1 fl-I: tP:p fl-I; 'I':P fl-I: ",:t 
fl-E (II'V "'1:t 

r, 'I':tl- I; X:t r, "':II-I: X:t 

fh: X:I 

r, '{':tl-I: .p:p rl-I: <P:P 
[I-E ('I' ::> "'I:p 

r, '{':tl-E .p:t fl-I: ",:p 

rl-E ('I' :> "']:1, 

[I-I; '{':I fh: [I" ::> "']:1 
rl-I: ",:1 

r, X:<7I-E <p:p 

rl-I; VX:<7.",:p 

rl-I; ['I'V "'1:1 
rl-I; ['I' V "'):1 

r, x:<7rE I":t h r 
w ere x is nol free in 'I' or any assumplions in 

frE VX:<7.",:1 

rrE VX:<7.II':! rl-I: 0:<7 
fl--}; ",[o/z):1 

r, x :<7I-I; I":P 
fl-I: 3x: ... ",:p 

1', x:<7I--}: ",[a/x):1 

fl-I: 3x:<7''I':1 

fl-E 3x:<7.'I':1 r,<p[O/%):(I-E tP:t 
rl-I: "':1 

16 

Although most of these clauses are standard, it should perhaps be pointed out tbat tbe 
definition (:>prop) of implication is somewbat unusual; following [Acz80)'s proposal, it has 
the consequence that if the antecedent I" of a conditional is not true, then 'I' ::> .p is a 
proposition whatever object .p is. 
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2.3 Equnlity Axioms 

We now give a set of equality axioms which are similar to those of the .\.calculus, except 
that we allow self-application and polymorphism. Note however that self-application is only 
possible for those expressions which have a complex type; indeed, this is what is required by 
clause (ol'P) of the syntax above. 

(0) rl-E [(.\X:I7.0) = (.\Y:I7.o[y/x])):I, where y is not free in 0. 

(fJ) rl-E [OpP('\X:I7.0, 0) = o[4/x)):I, 

rh; (0. = a,l:! rl-f; [PI = fJ,):t 
rl-E [app(ObfJd = app(o"fJ2»):t 

rl-E 0:17 
(0) rl-E [a = a):t 

«) rl-E [a\ = (2):t rl-f; [0\ = (3):t 
rl- E [a, = (3):t 

«() rl-f; [opp(a),x) = app(o"x»):t " . . 
rl- [ ) 

where x )s not free ID 0),0, or any assumptIOns ID r. 
E 0) = 0, :1 

2.4 Russell's and Curry's Paradoxes 

It might be thought that the theory presented above would fall foul of Russell's paradox, 
due to the fact that ,app(x,x) isa well-formed formula for % of any type (17,r); hence by 
abstracting over 'opp(x, x), we could obtain the equality 

app( a, a) = ..,app( a, a) 

where a is .\%.,app(%,%). 

For example, given the following proof, 

r,%:(e,p)h; %:(e,p) 
....:........:....:..:.:.....:~-=-:.:..: ( Contain) 

r,%:(e,p)I-E %:(e,p) r,%:{e,p)I-E %:e 
....:........:....:~.::..........:....:~--...:-.:..~-=--( app) 

r,x:{e,p)I-E app(x,%):p 
-~:..-'-'---=-....:..:.-=-~-=-( ,prop) 
r,x:(e,p)I- E ,app{x,x):p 

we might conclude that we can set a equal to the abstraction 

.\x:(e, pl. ,app( x, % ):( (e, p), p) 
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".nd infer that npl'{a,a) is or type p, leading. 10 a contradictory proposition from the above 
e'lua.lity. 

1I0wever, olle or the steps necessary to derive this contradiction is incorrect. That is, even 
if x is of type (e,I'), and even though -,,,pp(:r,:r) is a proposition, >.x:(e, 1') . .., app(x , x) is not 
tYl,able in L~. More specifically, it i8 excluded by virtue or clause (>.) in the definition of 
type inference, sillce we cannot derive n-E I' np-tvpe, and hence cannot derive that «e,p),p) 
is " wh-type. 

In ract we have a more general result: the paradox does not arise for :r of any type (0, r), 
where r= t or p. This is a consequence of the following lemma. 

Lemma 1 Ilx is 01 type (<T,r), r=' or 1', then >.:r::(o,r) . ..,opp(:r,:r:) is no! !Yvable. 

Proof According to the definition 01 type inle ... nce lor L-(, it is enough to show that we 
ca'lUot dc,·jve n-I: I' lip-type or fI-E t np-type. This is obvious. 

o 

Our manner of avoiding the paradox is somewhat new, we believe. It is similar to Russell's 
o\\'n approach in that type constraints are Invoked to limit abstraction, but differs of course 
with respect to the non-hierarchical nature of the type system. Unlike Aczel [AczSOJ, we do 
1I0t take ti,e step or questioning the propositionhood of app( a, a); and unlike Turner [TurS7J, 
V;~ do nol restrict the axiom of .a-conversion. 

Let us turn now to the question of Curry's paradox. Recall the Deduction Theorem (in fact, 
our rule (:J I): 

If we lake a to be the formula 

'\:r:0[01'1'(>:,:r):J .LJ, 

then by tl·conversion we derive 

(lD) app(a,o): (app(a,a) J J..J. 

Now, it holds trivially that 

01'1'( a, a ):tl--I: app( a, a lot. 

lIellce, by (ID) we derive 

lIpl'(n, a):tl--I: (npp(n, a) J .LJ:t, 

and by (J E) we get 
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01'1'( 0, a ):tl-I: .1:1. 

In order to derive by (DT) that 

l-I: [opp(o,a) J .1):1 

we JIllist first be able to show 

01-1: 01'1'(0,0):1', 

(w here 0 is the empty context). For we can derive the latter, we can use it in tbe following 
slep: 

01'1'«(1,0):11-1: .1:1 01-1: opp(a, 0):1' 
01-1: [app(o,o) J .1):1 

(::> prop) 

and also by (JD) and (= E) 

01- I: 01'1'(0, a ):1. 

Given the last two steps, ,,'e can again apply (J E) to get 

l-I: 1.:1. 

The proof only goes through, however, if Ill-I: 01'1'(0,0):1' is derivable. For this, we .... ould have 
to assign the type (",1') to o. i.e .• to "'>::olapp(>:,"):J .1]. How could we show tho.' 

(18) l-I: >'x:o[opp('" x) J .1}:(0,p)1 

This can only be the Ia..t step of an inference involving the rules (>.) or (Conlain). We consider 
the t 9,,'0 cases in t urn~ 

Cllse 1: The premisses of the inference must include >::01-1: lopP(>:,"') J .1}:p, which in turn 
is only derivable by (J prop) from the assnmption that "':01-£ opp(."",):p. However. we 
can only prove the laller if for IIOme 0', 0 == (0',1'). where (0'.1') ~o'. But in 1101. e ...... 
we would have to show that rI-J; l' np-II/pe, whkh i. impos.ible. 

Cnse 2: We have to find some type T such that T j(o.p) and ",:oh: >.",:o[opp(x. 2:) J l.J:r. 
The only applicable derivation ruJe is, (Ran j). setting r to be (a,f). 1I0 .... e\'er. the 
judgement 1-£ >,x:I7[app(x.x) J 1.}:(o, l) is not derivable, for the same reasons as those 
given in Case 1 above. since we cannot show that rl-I: p "p·lype. 
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3 Models of £-<, 

3.1 Frege Structures 

A$ pointed out ,,;ulier, our model. are ,constructed using the notion of a Frege strudure 
•.• defined by Aczel [AczSO). We begin with a collection Fo or object., and (or each natural 

nli'm~. 

Itumber n ~ I. we define Fn as {/ : Fo ...... Fo}.where Fon '" Fo)( Fo'x ... Fo'. In particular. 
F. is the set of all unary functions from Fo to Fo. Within Fo we pick out Pllor. the collection 
of proposilions, and TIlUTH, the collection of aU true propositions. (Thus. Aczel makes a 
uucial departure from Frege in denying that aU true propositions can be identified with the 
True). 

So far. then ollr Frege strudures contain objects. fundions, propositions and truths. To 
these. we need to add functionals, logical connectives. and some closure conditions. We now 
show how Ihey are supplied. 

Two funclionals are required in order to provide a model for the lambda calculus:7 

.\: :FIH:Fo 
UPI' : :Fo X :Fo>->:Fo 

These obey a comprehension principle such that whenever I is a propositional function in 
:F .. i.e .• f is an element of F, which maps its a.rguments into Pllor, then 

npp(,h.f(:z:).a) == I(a). 

Let r r be the collection of unary propositional functions in a Frege structure: 

PF == U E :F. I for all:z: in:Fo, 1("') is in PROP} 

We can now identify a further slIbcolledion of ro, namely SET. as the individllal correlates 
of propositional functions under ~: 

Definition 2 (Sets) An object is in SET iff it is.\/ for some I in rr. 

The distinguishing characteri.Uc of seh (I .... elements of SET) I. that they can be predicated 
of any ohject in :Fo to yield a proposition: 

Definition 3 (Predication) 11 a is in SET, then app(a, b) is in PROP, for any object b in 
:Fo. 

Comprehen,ioll can be .estated "" follows: 

7\Ve ",dOll' the nobtionaJ convention of ttmn, boldface terma to denote ~Iementll or the model, reserving 
it,l\Ii.cs Cot Ur'~~~101"1 of th~ (\hj~t l&ng"a8~. Fot e.:u.mple, "I'P 's .. {undions! ,n 'be model whicb cone"ponda 
to the fundor OPP in the JangollKe. 
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:Fo 

PF 
SET 

Figure 1: The functional >. 

Definition 4 (Comprehension) If / is in pr, then >../ is a set .. such that for any object 
b, app{a, b) is in PROP, and app( .. , b) is in TRUTH iff I (b) is in TRUTH. 

The notions that we have introduced so far-<>bjects, functions, PROP, TRUTH, SET, compre
hension and predication-are based on a model of the >.-calculus. 10 order to ensure that 
they have the properties we want, our models should also contain a logic. We know that 
such a construction is not straightforward; for instance, logic cannot be built in a simple way 
on the top of Scott domains (cr. [Sc076)). Tbe construction provided by Aczel inductively 
increases the two basic collections of propositions and truths, and the fixed point theorem 
is then applied to provide the limit of these newly obtained collections, resulting in PROP 

and TRUTH. lienee PROP is closed under all the logical connectives fo., V,.." ... (more strictly, 
the fnnctionals corresponding to these connectives) and TRUTH is the collection of all true 
propositions. The organization of Fo and Fl in a Frege structure is illustrated in Figure 1. 

We now need to ensure that we have full abstraction. That is, if ~[x .. X" ... , xnJ is an 
expression formed out of objects, functions, functionals and variables (ranging over objects 
in a Frege structure), where "'1. X" .. . , %n are free variables of €, tben tbere is a function J 
in the Frege structure such that f( ...... 2, ... ' .. n) = €[O./"' .. 02/X' .... 'on/"'n)' where the 
substition of objects for variables is simultaneous. 

We assume our construction is based on the model Eoo of the untyped ~-calculus [8c076]. We 
then take 

Bp = {O, I} !;; Fa = Eoo. 
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\\'r. nrxt conRlr1lc:t th(! logic;".1 constants 110 tha."t PROP If! the fJh1A.11cnt Ret cont~ining Br which 
i~ dm:ctl under t.he relevant clauses for connectives presented in Definition 1. Here, we give 
just two exanlples. 

I 
(" schema) If 'P i. in PROP a.nd ." i. in PROP, then 'P" ." ioln PROP, Ilnd 'P" ." i. in TRUTH 

iff 'P is in TIlUTR and." is in TRUTH. 

(V selWin,,) For a.ll n-ary fundions!, if !( "' .. "' ...... "'n) i. in PROP for "II ("''' "' ...... "'n) E 

Fo", then VI i. in rRor. and "Ilia In TRUTH ilT I(a .. a ...... a.) ia hi TRUTH for all 
(a.,6 7 , ••• ,an) E ;0". 

Whcnever 'P is a wIT open in x. We understand ('PI"') to be the fnndlon I In F. such that 
for any a in F o, f(a) = \O[a/x). Since we have rullllbstraction, we can "",,sume that! exists. 
Now, we take II: Fo>--+F. to be the functiona.1auch that 

lal '= (app(a,x) I x). 

In general, we define lin :Fo~Fn such that 

"'here app. = app and apPn+l(a.b.;;) = apPn(app(a,b),;;), and iii,;; are sequences of n 
variables or elements of F o. Now, 

is defined inductive1y, for ii = al t ••• , an as 

(.:\~+I /)(0) = ':\{/(a,") ' "') 
(.:\~+m+l /)(0) = .:\~+t(.:\~ti+l f) 

In particular, >-;; nominalizes an n-ary function I returning .:\~f in To. 

We take 

SET = {.:\~ III is any propositiona.1 function}. 

Denllition 5 A Frege Structure i~ 0 triple F = (To, PRor,sET) cort8trucled O~ above. 

It might be unclear wlty we have only included To, PROP, and SET in tlte structure and 
ignored functions in general (though not Cunctiona.1s). The reMon for tlti. Is that the principle 
of extensionality holds in Eo<> and hence we have a bijection between To and Tn Cor n :c:; I. 
In fact, we can show that .:\(lal) == a. 

I,emmR 2 I'he functional .:\ : 1".>->1"0 'i6 bijective. 

Proof 
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1 . .\ is primitive, Ihal i." if.\/ =< >'g, Ihen I = g. 

2 . .\ is surjective, b<rouse if a u. in To Ihen lal, i.e. (npp(a, z)lz), i$ in Tlond ).(lal) '" a. 
D 

lIence we have sufficient structure within To to do everything we want without having to 
c(lllF:hlcr :F I_ 

So (ar, we have not sajd anything about the interpretation o( the predication operator u. It 
will be recalled that, by virtue o( (U I), whenever Q is an expression of type (e,p), uQ is 
of type (e -+ pl. If Q denotes the nominalization >./ of a propositional function I, then we 
want u Q to denote (npp(>'I,z)lz). However, the functional corresponding to U must carry 
any object in To into an appropriate va1ue in To. What happens if Q denotes an object 
n nol in SET? In this eMe, (npp(a, "')10,) will not be a proposilional (unction; that is, for 
any argument b, npp(o,b) will just denote an arbitralY object in To. We take this to be 
an acceptable alternative to the approach used in [Pat84) where U is interpreted as a partia.! 
(unction, defined only on objects in SET. lienee, we a1waY8 let U Q denote (nPP«(Q),z)I"'), 
where (oJ is the interpretation of Q. 

We shan now show how to construct domains inside Fo such that the type. described earlier 
can be lJIapped into them. 

3.2 Domains 

\Ve distinguish between two kinds of domains; Doml and Dom •. We use X" Y, to range over 
(Joml, X" }r, to range over Dorn" and X, Y to range over both domains. We a.lso assume 
that, is a distinguished element in Fo which will be used to give funclions a undefined va.!ue. 

Tol X,~Y, 
PROP I TRUTH I XL..+X. 

Definition 6 (* Function Space) 
X *Y = {x E To: for oil x' E X[app(z,z') E Y)}. 

Definition 7 ( ..... Function Space) 
X ..... l r

'" {x EX: for 01/ :<'( if x' E X then IlPp(x,x') E YI, else opp(z,x') '" .}. 

We shan write 'f is true' instead of 'I is in TIlUTH'. Similarly we use 'f is folse' instead of 
'f is in PROP- TRUTH'. \\' .. also assume the presence of two special elements of the Frege 
structure, I in TRUTH and 0 in PROP-TRUTH. 

Definition 8 (Intern"1 Deflnability) We My that a eolleclionC i8 infernally definoble in 
o H'Cge structure if the following holds: there u. Borne I in rF 8ueh that for all", in To, f ("'J 
i.< true iff '" is in C. In this case, 1 u. the characteristic Cunction 0/ C. 
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The dOIll •. in Vorn, <an be understood lUI the collection of objects which provide interpretations 
for types not involving" and I. All the domains of Dom, are internally definable. This can 
be proved by induction as foUows: 

Lemmn 3 1.:Fo is intemall/l definable. b/l laking the function / : :Fo .... PROP. where 
J(x) = I./omll x E:Fo 

2. Assume X •• Y. are intemall/l definable b/l the propositional/unctions J and g respec
tively. Then we wont to show that the collection X. ~ 1'; is also intemall/l definable. 

J::FO .... PROP where 

I( ). {true Jor all % € X. 
X IS lalse olherwise 

g::FO .... PROP where 

( ). {true lor 011/1 E Y. 
g II IS lalse otherwise 

h(z) '" Vx(J(x) :l g(npp(z,x))] 

Now, 

(a) h is a propositional/unction because / and g are, and 

(b) we have to prove thai ... E X.~ 1'; iff h( ... ) is true. 

i. Assume ... E X.~ Yj. Let % E X.; then J(x) E PROP because I E PF and 
al'p("', x) E Y, because ... EX.=> 1';. g(app( ... , x» is true because g intemall/l 
defines Y,. Hence lex) E PROP and J(x) E TRUTR implies g(app(z, x)) E 

TRUTII. lienee I(%):l g(8pp(",,%» i$ true. But this holds lor every x, hence 
Vx(J(x) :l g(al'p(z, x») is true. Hence h(z) i$ true. 

ii. Assume h(z) is true. z E :Fo, a/course. Let x E X .. then J(x):l g(app( ... ,x» 
is lrue. Dut f(x) is true because x E X,. So g(8pp(""X» i. true, and 
app(z,x) E 1';, sinceg intemallJl defines Y. Hence:r E X,=>Y,. 

lIence z E X,=>y' ~ h( ... ) is 'rue. 
o 

Now that we know Dom, is the domain of internaUy definable collections, we can write X =>Y 
using I X and Iy. the characteristic Cunctions of X and Y: 

X=>}' = (x E:Fo: Cor aU x'[/x(",'):> /y(app(""",'»))} 
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/)0,"" on the other hand, involves domains which are not internally definable. For example, 
the two basic domains PROP and TRUTH cannot be internally defined. In fact, according 
to 'farski's theorem on the undefinability of Iruth, we cannot have a propositional function 
in the object language which internally defines trutb; this implies that we cannot have a 
propositional function which internally defines propositions; see [Acz80J for discussion. 

It might be asked whether the existence of judgements like fJ-l: 0:1 means that we have in 
errect committed ourselves to the internal definability of Iruth. The first point to note is that 
typing statements are not propositions in t:.~, but judgements aboul the language. Second, 
we have no way of telling for an arbitrary expression a whether the judgement fl-E a : I 
holds. In particular, since contexts f are finite, they will not necessarily determine the type 
of an arbitrary variable. 

Recall that app is the functional in the Frege structure which corresponds to app in the lan
guage of t:.--<. We saw that in a standard Frege structure, fl '" {f: fo ..... f o} is the collection 
of all functTons from fa to fa, and contains a subcollection PF of unary propositional func
tions. We also saw earlier that ~ is a bijective map from fl to SET. What we now have to 
check is that, as a special case of Definition 6, there is an appropriate domain fo'-+PROP in
side fa which will contain the nominals of propositional functions. In fact (foL--> PROP) '" SET 

(easy to prove). 

Our next lemma illustrates the fact that the domains constructed above do indeed model the 
types in our language. 

Lemma 4 If X" Y, are any domains in Doml, then (X,=>Y,)~fo. 
The proof is trivial. 

o 

In other words, every function in Dam) is an object. This enables us to interpret self
a.pplication and nominalization. 

Lemma 5 If X is any domain and Y. is in Doml then (X'-+ Y.)~X. 
The proof is trivial. 

Lemma 6 If X" Y" Y.' are in Domb then Y.~Y,' implies (X.=>Y,)~(X,=>Y,'). 

o 

Proof If x E X,=>Y" then Vx' E X"app(x,x') E Y" by Definition 6. Since Y,~Y,', il 
follows that for all x' E X"app(x,x') E Y,' and so x E X.=>y,'. o 

Lemma 7 If x, Y" Y,' are domains such that Y" Y,' are in Dam., then Y,C;Y,' implies 
(X L--> Y,)<;;( X L-> Y, '). 

Proof Same as above. 
o 

Lemma 8 If X"X.' and Y, are in Doml, Ihen X,~X.' implie8 (X.'=>Y,)<;;(X.=>Y.). 

Proof If x E (X.'=>Y.), Ihen by Definition 6, for all x' E X/, app(x,x') E Y,. Since 
X,~X,', then for all x' E X"app(x,x') E Y •. Therefore x E X.=>Y,. 
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o 

A modd for £-:, is a 6-tuple M =' (F. =>. '-+.I. D. gl. where 

I. :F is a Frege Structure. 

2. => and ...... are defined as above. 

3. I is an interpretation function which takes any constant of kind" to an object in D~. 
and takes .lto the element 0 in PROP, 

4. D is a funclion which maps types into domains of M as follows: 

(a) TJ. =' :Fo 

(b) Dr> =' rnop 

(c) V, =' TRUTH 

(d) v _ { Vo~ DT , if DT E Doml 
('" T) - V o* Dr if D" E Dom. and DT E Dom, 

(e) D(" ..... T) = {f: I is an F-funclionalsuch that for all:l: E Vo./(x) E Dd. 

5. 9 is an ", •• ignrnent function which takes any variable of type" to an objed in D". 

Note that Dom, n Doml is empty and that Dom. will inte.p.et np-types which are not fp
typcs. among others. Dom, will interpret the (p-types. among othe.s. 

Since we do not allow vari.bles to range over F-(unctional •• the interpretation fundion I is 
suRident to dete.mine the denotation of functors. 

We now define a valuation function [) which given an expression a and an assignment 9 
yields a value in Dom) U Dom2' 

1. (elM." '" I(c) 

2. [:tIM." = g(:I:) 

3. (app(a.!1)JM.g = npp«a)M,g.li1)M,g) 

4. IU{a))M.g =1 (aIM .• 1 
5. (>'x:O'.'PIM .• '" >'1. where I E F. and 1(0.) =' 1'P]M,g(a/z) for all 0. E V" 

6. (''PIM.g = ~(rpIM.g 
7. lop" '/'1M .• = lopJM.,I\I.pJM." 

8. lop V V'IM." '" IrpJM.,vlv'JM,g 

9. lop:> VJIM.p = l'I'IM .. ;:)lvJ]M." 
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10. [Vx:<T.'I'J.<.i., = "If, where I E 7", and ita) == (<rIM..,lfl/rl if a E Du, and I(a) == 
() otherwise 

11. (3.1::u.'I'],\.-I .. == 3f, where / E 7", and Ita) == I'I'JM..,[II/%) if a E Du , and /(11) == 
o otherwise 

It will be obsen-ed that these valuation clauses depend on the existence of the appropriate 
rl1nctiono.ls (e.g., app,~, 1\, V, "1,3) in the Frege .tructure. It would be straightforward to 
convert the clauses for propositions into truth-theoretic definitions, along the following lines: 

8' ('I':J V']M .. E TRUTH {==} ''''JM ... E TRUTH whenever l'l'lM ... E TRUTH 

9' IVx:u . ..,lM,g E TRUTH -¢=> (IP)M,g[II/%) E TRUTH for all a E Du 

Lemma 9 D«7, T) == (Du '* Dr)~ De i/ Du , Dr E Doml 

Proof Obviousby Lemma -4. 

LCII .. nn 10 D(<1, .)<;D<1 i/DT E Do~ 

Proof If Dr E Dom., the .. D(u, T) == (DuY> Dr)~Du by Lemma 5 . 

Lcmmn 11 For a .. " type 17, Du is either in Doml or in Dam,. 

Proof b" inducfion on tile cons/ruelion 0/ 'ypes. 

• II a == p, I, or e, then obvious. 

• If" = (al. a.), where the property holds lor 171 ond 172, then olso obvious. 

Lemma 12 DaC;De lor any Iype 17.8 

Proof B" indUe/ion on a. 

• 17 i. base 'llpe (i.e., e,l or p). Ob";01l8_ 

• Assume a '" (al,u,), where Du,~De ond Dq2~De. 

o 

o 

o 

Case 1 Da == Dal~Du,. Then Dq<;Du, by Lemma 10. Since Do, ~De, by induc
tion hypothesis, we have Du~De. 

Cnse % Do = DUI,*/Ja •. Then Do~/Je b" Lemmo 9. 
o 

"Of C(HIUle, the dom;\in rOt (n - f'1)) is Bot contained In De; but this fonows (rom the bet ""d (Tl _ ,.,) 

is not a type bal a meblype. 
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(.ctntnn 13 If o:s r. lIten Vo !;; Dr. 

Proof 

(e~) Case o~ e. 
DIY !;; De always hold .• , by Lemma It. 

(" ~) Cn ... t :S ". 
V. ~ VI" sillce TRUTH ~ PRO!'. 

(Ran~) Case rl ~ r,. 

1. If V rl , Vrz E Vom. Ihen use Lemma 7. 

2. If Dr" DT, E VOlnl then use Lemmo 6. 

3. It carmol be Ihe caSe thaI DTI E Voml and Dr, E Dom,. 
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4. If Dr, E Dom, ond Dr. E Doml then D(o, T,) '" (Do'-' lh.) ond D(o, T,) = 
(lJo* Dr,). 1/ is en"11 10 check (D,,--. D rl ) c (D,,=!> Dr,). 

(ld~, Tmns ~, Anli~) Obvious. 

(Prup ~) r ~ I' implies D(IY, T)~ DIY. Tltis. holds since D(a, r) '" (Da ..... Dr)~ Da , by 
l,cnullo 5. 

(Fir:s) T ~ I' implies D«IY,r),T) '" D(a,T)' We need to show Ihol (Da'-+ Dr)'-+ Dr '" 
Do'-+ Dr· Frum the proof of (Prop ~}above, it follows that D«a,T),T)!; D(a,T)' The 
.-everse inclusion is estoblished 08 fo/l0tD8. Let II! E (D" ..... Dr). This impliu thai for 
all ",' E (D" ..... Dr K Da , nPP(II!,II!') E Dr. Hence II! E (D(f ..... DT) ..... Dr. 

(Dom j) u, ~ U2 implies D(""e)~ D(,,\o,,). By the induclion hypothesis, "d u, implies 
DUI (, [Ja,. V. is in Daml and as '"' rutricl types 80 that a domain type is never 
strict/y less Ihan the range Iype, Ihen D"I and D", must be in Dom,. Hence by def· 
inition, V(a"e) = V",=!> D •. Let II! E D(", • .,). Hence II! E (V"z,*V.). So", E:Fo 

and for all ",' E V""lIpp(II!,II!') E D. and D(a" e) '" D"j'* D •. Since D", ~ D" •• it 

follows thai II! E:Fo and for all.,' E D(fl.npp(", • .,') E f} •. lienee II! E V(fI=!>D •. 
o 

Theorem 1 If n-n:a, where V(f E Doml then (aJM E D(f. ,g 

Proof 

• If a i., n conslnnt c or var'iable %, this u obvious from the definition of I and g. 
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• I,d fl.' " .... "'''e Ihe properly holth for ezpressions 0, P. and shollJ Ihal it holds lor appro, P). 
i'I-nPI,(o,p):r iff n-o:(u, r) and n-p:o. So (OIM.o E D(u, r)' (PIM .• E Du , and 

lapp(o'P))M,g = app((oIM"" [P1M,o)' The loiter belong. to Dr. as D(o, r) = Do 
=> Dr . 

• Let us prove px:u.oIM ... E D(o,r)' where rho r np-typc,r fE 0 -< r, and by induc

lion hypothesis (oIM,.la/ol E Dr for a/l z:o. 

SinceD(o,r) isinDomtlhenD(o,r) =Do =>Dr . Hence(Ax:o.aIM ... E.1'o, andfor 

all a E Do, app«(Ax:u.oIM,II' a) = app(~f,a) = lea), trhere lea) = [aIM,gral_] E 
Dr. Hence [Ax:o.aIM E Do=>Dr . ,. 

o 

4 A Fragment of English 

The English fragment that we consider is intentionally simple,9 and will focus attention on 
issues of polymorphism and self-application. One possible way of setting up the grammar 
would be to follow Montague in using tbe standard fractional notation of categorial grammar, 
together with a homomorphism which maps the categories into semantic types. However, 
for our purposes, it would be preferable to build the syntactic categories directly on top 
of the types. Consequently, the categories of the grammar will consist of decoraled types 
and metatypes of C-<; that is, types and metatypes annotated with phrase structure labels. 
The latter will provide us with the power'to draw somewhat finer distinctions of the kind 
required for English syntax. For example, intransitive verbs, adjectives and common nouns 
will all belong to the type (e,p); however, thls type will be annotated as (e,p)v, (e,p)A, or 
{e,p)N, respectively. The list of admissible labels is the fonowing: S (sentences), V (verbs), 
N (nouns), CN (common nouns), A(adjectives), P (prepositions), Adv (adverbials). In some 
cases, we modestly extend these labels with features. For example; we use 'Plto]' as the label 
for prepositional phrases whose head is the word to. We use X as an undersperified category 
label; thls will be useful when we want to give a maximally general decoration to a type. 

Whenever '1 is a kind, and C is a category label, then uC is a decorated kind. The rules 
given previously for constructing a complex kind Can be generalized in the obvious way to 
decorated kind. We use the symbols's, I, r' as metavariables ranging over decorated kinds. 
It is obvious that we can simply strip the labels off a decorated kind ~ to recover our original 
kind. We use 'Os' to denote the stripped-down version of s, where O(s, f)C = (0 .. , °/), and 
O(s --+ rf == (Os --+ °1). 

An English grammar object will be a triple 

(w,s,o) 

9In particular, we do not bed quantified Doun phrases. It would be straightforward to implement [ChT88]'s 
treatment of lype-flhifting for quantifier arguments. It it: unclear to UII. however, "hat the appropriate analysis 
of scope would be in the current settingj [Moo90]'s approach Seems promising. 
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where 111 is a phonological (in practice, orthographic) form, 3 i. a decorated type, 0 is an 
expression of C-(, and moreover rf-E o:·~, with E as specified before .. 

As a typographical convenience, we shall also employ the following vertical format for these 
triples: 

111 

S 

<> 

For example, the representations of the words John and kiss are: 

(19) John 
eN 

john' 

kiss 
(eN,(e,p)V) V 
kiss' 

Thus, kiss has the type of a verbal expression which will combine witb something of type eN 
to make something of type (e,p}v. The decorated type therefore combines standard categorial 
information, which would usually be notated V PIN P (i.e., a functor ... hkh combines with 
all NP to make VP, together with the semantic type that such a category would be mapped 
into. 

The rules of type inference are like those for C-(, except that we add the following provisos, 
where s, t are decorated types, X, Yare category decorations, and ~" is a partial order over 
category labels: 

Definition 9 (Containment oC decorated types) 

2. ~" is reflexive, transitive and ontisymmetric. 

3. X:::>"X. 

4. P:::>"N. 

It will be noticed that the type assigned to kiss, namely, 

appears redundant in the sense that not only is the type as whole speciJied to be V, but the 
result type, (e,p}V, is also so specified. Yet inasmuch as kiss is the head of verb phrase, 
it should be predictable that the result type has the same category decoration as the whole 
complex type. In response to this observation, we adopt the convention that if the result 
type lacks a decoration, then it can be inferred from the decoration of the enclosing decorated 
type; in other words, a type like (21) is shorthand for (20). 
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We could make this more explicit by means of a modified inference rule of the following sort 
(where u is restricted to undecorated types): 

(22) 
O:(8,0')C {J:" 

app( 0, {J):uc 

In fact, we will not adopt (22) exactly as it stands, but ... iII propose a further slight modifi
cation in the next section. 

Our grammar for English is non-directional, in the sense that we do not encode whether a 
functor seeks its argument to the left or to the right. Modifying the notation to allow this 
would be trivial, but would add an extra degree of complexity which would detract from the 
main thrust of the exposition. For convenience, we shall simply write the premisses of a type 
inference rule in the correct left-to-right order, stipulate that the string in the conclusion is 
the right of concatenating the strings of the premisses. This is shown in the following schema 
for type inference in the fragment, (where .~, indicates concatenation): 

Definition 10 (Inference Schema for Englisb) 

(WhShOt) (W2,82,02) 

(W,W2, 83, (3) 

is valid just in case the cOrTesponding inference 

is dErivable for the undecorated types 0 8 ), ·82, and· "3. 

4.1 Argument Asymmetries 

A number of authors have claimed that there are semantic asymmetries between subject and 
object argument •. Marantz (MarS4), for example, hu noted thILt the cholee of direct object 
can significantly alTect the semantic role played by the snbj<>ct, whereas choice of subject has 
no such effect on the role of the object_ This is illustrated in the contrast between (23) and 
(24): 

(23) a throw a baseball 

b throw one's support behind a candidate 

c throw a party 
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(21) a The player threw NP 
b The I,olit.ician threw NP 

c The social directory threw NP 

A second a-,ymmetry is that it is a matter oClexical idiosyncrasy whelher a verb takes a direct 
ohj~ct, indirect object, and 00 on, where,,"" by and large, it is entirely predictable that verbs 
("I leMI in English) t"ke a "ynt"ctic subject. 

In the current context, a third asymmetry can be noted. Whether a verb is tensed affects its 
"bility to combine with a subject, hut Dot it. ability 10 combine wilh objecl argument. and 
complements: 

(25) " to kiss M",y/kissed Mary 

b • John to kiss Mary/John kissed Mary 

The semantic framework we have developed gives us an account, though not a complete one, 
of this third fact. For there are t ... o distinct ways in which a syntactic functor can combine 
semantically with an argument: either via the opp relation, or by normal functional applica
tion. Moreover, al'I'is invoked for funclors which we earlier called 'nominal predicatives', i.e., 
expressions which denote objects in the Frege structure domain :Fo; by contrast, expressions 
which denote propositional Cunctions live outside :Fo and thereCore cannot act as nominal 
arguments. What is lacking stiU is a mechanism which precludes tbe use oC opp to effect the 
semantic counterp",t of • John to ki8s Mary. 

Let us start by looking at transitive and inhansitive verbs. The base, or nontensed, form of 
an intransitive verb like run is translated as a constant run' of ty.,., (e,p)V; M we observed 
in § I, such constants denote (a special 80rt oC) nominal objects, not propositional Cunctions. 
Simila.r\y, the baM form of a transitive verb such as kiss is translated as a cotistant kiss' of 
type (eN,(e,p)v)v, which also denotes a 80rt of nominal object. As we observed earlier, this 
decorated type corresponds to a Cunctor category of the form V /N in calegorial grammar; 
i.e., something which combines with an N to make a V. By contrast, it is hard to see what 
the calegorial equivalent of (e,p)v might be, since we have omilted any mention oC the 
argn ment 's syntactic label; that is, there is no syntactic specification for the e component 
of the type. Let us adopt the stipnlation that an expression with decorated type (~, t)A is 
only a ~yntndic functor if 8 i. itself a decorated type of the form ,H. It then conows that no 
expression with type (.,p)V is a syntactic funetor. 

This leads U8 to the foJ/owing formulation oC a modified axlom for app within the English 
fragment: 

Den nition 11 

(w .. ( .• ,o)C,o,) (IV".,O.) 
( "'ittJ2, u C , nl'/>( Ot, (2) 

is valid just in case s is (I decoroted Iype, and the corresponding infe",nce 
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!'I-I; od~·.,oL !'I-I; 0,:"6 
1"1-1.: 01'1'(0,,0,):0 

is derivable for I/.e undecoroled Iype "6. 

This licenses derivations like the foUowing: 

F,xDmple 1 

kiss 
(eN, (e, p» VIBASEJ 

kiss' 

kiss Mary 
pV 
oPl,(kiss', mary') 
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By contr"st, the foUowing inference is prohibited, since walk has not been categorized as a 
syntactic functor: 

(26) 

john' 

John walk 
pV 

walk 
(e,p)V 
walk' 

opp( walk' ,joh n') 

Before pursuing this point further, let us introduces some new notation to indicate the iterated 
application of a functor 0 to a series of arguments: 

Den "it ion 12 (M ultip!e Application) 

EXAmple 2 Assuming give' to be of type (ePllol, (eN, (e,p)))V, we have the following seman· 
tic Imnslation for give the CAt to Mary: 

(si"e', mary', (the cat)'):(e, p) = app(app(glve', muy'), (the cat )'):(e, p) 

The last step in the derivation of Ih;8 example ;8: 

give to Mary 
(eN,(e,p»v 
[give', rnA ry1 

the cat 
eN 

the cat' 

give the cat to Mary 
(e,p)V 
(give', mary', (the cat)'] 
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Since the ,1,,<or31.<1 type for give, namely (eP('.), (eN, (e,p»)V, does give a syntactic spec· 
ification of it" argument expreMion., we treat It lUI a syntactic (unctor, and use app at the 
semantic level to combine it with itB object arguments to Mary and the cat. lIowever, the 
resulting IV phrase has type (e, p)v. and this as we saw above cannot combine directly with 
a subject NP according to our rules. 

\Vhat we must do now is make explicit the way in which tense is introduced. From a semantic 
point of view, it "'0,,1d be e .... jest to take a phrlUle like (untensed) give the cat to Mary and 
iliaI' it into the (tensed) phr .... e gives the cat to Mary. Dut (rom a morphological point o( 
view, it would be more straightforward to have a lexical rule, mapping base form give into 
tensed gives. We will side with morphological economy, and elTed the change at the lexical 
level; for simplicity, we will restrict attention to tbe mapping from base form verb. of type 
.~\,(RASEI into third person singular present tense verbs of type sV(351. Thus, We have the 
following inference schema (where las i. a (unction which supplies the third person singular 
present innection): 

Deflnition 13 (Inflection Schemll) 

o 

("\'("'('.,(e,p» ... » V(BASEJ 
0' 

135(0) 
(.,,,( ... ( .•• ,(eX -+ p)} ... ))v(3sJ 
),Xl:o"I ... >':r: n:"sn,u[o',:l:1t" o ,%n] 

EXRmpie 3 

kiss 
(eN, (e,p»V[BASEJ 

kiss' 

kisses 
(eN,(eX -+p»\'(351 

.:\x:eY[kiss'. xl 

be 
((e, p)X ,(e, p)} V(8ASEI 

be' 

is 
«e,p)X ,(ex -+ p»V(3sJ 
~x:(e, p).U[be', xl 

As a further illustration, we show how a tensed intransitive verb combines with a subject 
noun phrase: 

Exnmple 4 

, 
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John w,,)ka 
eN (eN _. pS)v 

john' uw"lk' 

John w,,/ks 
pS 
uwnlk'(john') 

3S 

In 0\ similar ma.nl\~r t the tensed verbs illustta.t~d above wiD combine with their arguments to 
yield tbe following translations: 

EXAmple 5 

John kisses 1\1nry Imns/ales as 

(app(~x:e.U[kis.', xl, mary'»(john') = U[kiss', marY1(john') 

John is hnppy lruns/ales as 

(opp(>.x:(e, p)Y(he', xl, happy'»(john') = U[he', hIlppY1(john') 

To recapitulate lhen, the two different kinds of semantic combination, namely 0PP and stan· 
dard function application, are correlated wilh two kinds of arguments in a proposition: on 
the one hand, those arguments which in phrase structure grammars are deemed to be subcon
st;tuents of the verb phrase, and on the other hand, the subject. Thi. di.tinction corre.ponds 
loosely to lhe one drawn by Williams between 'intern a.! , and 'external' arguments [Wil81), 
though it is obviously impossible Cor U8 to follow Williams' daim that tbere are propositions 
,,-hieh possess no exlerna.! arguments. 

Table 1 summarizes the ..... signmenl DC categories to expression. of English in our fragment. 

4.2 Nominalization and Polymorphism 

As ,,-e indicated at the beginning of thi. paper, we do not employ a rule of nominalization 
as such_ nather, some expressions-the on"" categorised as 'nominalizable' in Table I-have 
Iduds wl.icl. are contained in the type e ofindividua.! •. Tbe type inference rule (Contain) tben 
comes into play to derive the more genera.! type. TWs i. illustrated In the next derivation: 
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fujo,."",/ Nn"" I 1'ypc IJnsic Expt'(.. ..... ions 

NP 
CN"",", 
CNmnu 

ADJ 
1'1' 
TV 

TTV 

IV 
S 
S' 
IVin, 

Oct 
VI' 
AdSen! 
AdVerb 
I' 
AdNolll 
COMP 

(27) 

Nomina.lizable Expressiolls 
eN John, Mary 
{e,p)CN dog, man, woman, park 
(e,p)N water, gold, fun 
(.,p)" happy, drunk, old 
«" pIX ,(e, p)X)P ., 
(eJtl, {e,p»V kis., seek 
{eX ,(e,p»V believe, know 
{{e, p}VI'o) , (e,pJ)V try, want 
«e,p)X ,(e,p» be 
(.1'1101, (eN, (e,pmV give, !!fend 
«e, p)Vllo), (~, (e, pmv force, believe 
(e,p)V run, walk, h,lk 
ps ., 
pS(comp) ., 
(.,p)VI"" ., 

Non-nominalizable Expressions 
«e, p}eN --+ eN)D •• the. a. 80me 
(ex --+ pSI ., 
("s --+ "s ) Ad. necessarily, possibly 
«_,p}v --+ (e,p}v}"~. slowly, rudely 
(eN --+ «e,p)x,(e,p)X)t in, with 
«e,p)N --+ (e,p}N)A former 
«e,p)v --+ (.,p)V!"',) to 
("s --+ "slcomp) that 

Table 1: Categories a.nd expressions in the fragment 

fun 
(e,p)N 
fun' 
---'I Contain} 

run 
eN 

fun' 

is 
«e,p)X,(e ...... p»v 
.h::{e,p)Y[b,,', x) 

fun 
(e,p)N 
fun' 

----------'(app) 
is run 
(ex --+ "S)v 
U[b,,', fun1 

---------------j(F'uncl) 
fun is fun 
1'~ 

U[be', Cun1(Cun'} 

36 
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We have chosen to analyse Cun as a mas. noun rather than an adjective, on the grounds that 
collocations involving noun modifier., as (28a), seem significantly belter than those involving 
adjectival modifiers, as (28b): 

(28) a It wa..n't much fun. 

b ?It was extremely/very fun. 

Nothing crucial hangs on this decision. Nevertheless, it follow. on our account that an mass 
nouns can occur as nominal arguments. They can also occur as predkative complement. by 
virtue of the polymorphic type assigned to be. 

As another example of polymorphism, consider tbe bebaviour of prepositional phrases. We 
would like to be able to treat them as IV and eN modifiers, as illustrated below (for brevity, 
we have omitted the (Contain) step which maps (e,p)V to (e,p)X): 

(29) 

in the park 
((e,p)X, (e,p)X)P 
[b.', (the park)') 

walk in the park 
(e,p)V 

walk 
(e,p)V 
walk' 

[in',(the park)"walk1 

in the park 
((e,p)X, (e,p)X)P 
[in', (the park)') 

man in the park 
(e,p)V 

man 
(e,p)N 
man' 

[in', (the park)"man1 

We would also like prepositional phrases to act like nominal arguments. Tbe desired result i. 
achieved as follows (again, we have omitted tbe (Contain) step whicb maps (e,p)P to (e,p)N, 
using the condition Pj· N given in Definition 9): 
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(30) 
give 
(ePlto), (eN, (e,p»)V 
give' 

to Mary 
«e,p)X, (e,p)X)Pllo) 
(to Mary), 
--------( Contain) 

to Mary 
eP[lo) 

(to Mary), 
-------------.-:..-1(app) 

give to Mary 
(~,(e,p»V 
U(give', (to Mary),1 

4.3 Comparison with the ChierchiacThrner Fragment 

38 

We conclude .... ith some brief remarks relating our approach to the Iragment proposed by 
[ChT8S]. 

First, it will be observed that there is a broad correspondence between our type '(e,p)' and 
their sort 'n/', standing for nominalized functions, and to this extent the two Iragments are 
quite similar. However, (ChT88)'s semantic domain Dnf is the nominalization of all functions 
from e to e, rather than those from e to p; i.~., it corresponds to the whole codomain oI "', 
not just to the collection SET. 

Second, for Chierchia and Turner, only expressions of type nf are nominals. Since their 
nominalization operator is exclusively defined {or expressions oI type (e, e}IO, and they do not 
have any kind oI type containment for functional types, they do not allow transitive verbs 
like love and ditransitives like give to be nominalised. Yet examples such as (31a) (from 
[Par86]) and (3Ib) show that nntensed transitive verbs enter into the same nominal patterns 
as intransitives: 

(31) a To love is to exalt. 

b To give is better than to receive. 

By contrast, we have (eN, (e,p»Vlto) ~ eVI'o), and can thus accommodate such data straight· 
forwardly. 

l°This type corre1!pond!!l to our metatype (e: _ e). 
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