

Nominalization, predication and type containment

Citation for published version (APA):
Kamareddine, F., & Klein, E. (1992). Nominalization, predication and type containment. (Computing science
notes; Vol. 9223). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/28eb239e-c841-4940-879a-035a410cf193

Eindhoven University of Technology

Depantnent of Mathematics and Computing Science

Nominalization, Predication and
Type Containment

by

F. Kamareddine and E. Klein

Computing Science Note 92/23
Eindhoven, September 1992

92/23

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 ME EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Nominalization, Predication and Type Containment *

Fairoll? I<a.lllareddine I
ikpartmcllt of Computing Science

17 Lilybank Gardens
University of Glasgow

Gla$gow Gl2 8QQ
email: fairouzil)dcs. glasgov. lie. uk

Ewan Klein I

Centre for Cognitive Science
2 Buccleuch Place

University of Edinburgh
Edinburgb ElI8 9LW

emaif. kleinClcogsci. ed. lie. uk

April 13, 1992

1 Introduction

1.1 Hierarchical Types

Type disciplines have featured prominently in formal approaches to natural language since
the work of Montague (e.g. (Mon731). Monlogue avoided the paradoxe. of naive sel theory by
a,\opting a version of R1Issell's cumulative hierarchy of types. Despite the SUCCeSses of Mon
tague's type system for English, it h met with criticism in recen~ year. for being excessively
rigid. One line of research, initiated by Partee and Rooth (RP82,PR.83), has tried to achieve
greater flexibility, especially in the treatment of quantifiers, by .l..signing each expression a
family of Iypes. Another line of work bas moved in the direction of type-free theories of prop
erlies, in order to accommodate the difficultie. raised by nominalization and self-application.
In this paper, we will focus our attention on the second of these two endeavours.

lIistorically, type disciplines for languages have developed in dose association with intended
models for interpretation. The proposals we shaH make Can also be construed in thls way,
inasllIuch as they were inspired in part by Aczel's (Acz80) notion of a Frege structure, whlch
is intended to provide a consistent rormulation of Frege'. logical notion of Set.

A system of types provides a classificatory scheme for the domain and range of functors. The
type of an expression determines the domain in which that expression receives an interpre
ta(ion. Thus, in (I) (where we use tbe notation ",!(1 to mean that expression", bas type a),

eWe ale gnt('(ul to D:tyid Beaver, loge Bethke, Max. Cresswell, Lex lIott and an anonymOQ!J referee for
tll{'ir comments on previoU!1 versions of this pAper.

t j{.un:ucddine i~ grateful to the D~pltrtmen' of Mathematics and Computin8 Science, Technical Univenily
of EindllO\"(~n. fot their f;nllndal f'Urport and bOl'lpitality durin« the academic year 1991-92.

IKlein't!1 work hM been eluded out u put of the researclt progu.inmes ot the DVANA project (DR. 3175),
fund(':(1 hy CF.C F.St'R1T nitS-it-: Re~eat(:h, a.od o(c.he Human Communication Research. Centre, .Ilpporled by the
UK F..<:onomk .nd SociAl Research Council.

1

!\ominalization, Predication and Type Containment 2

the proper nOlln Gln.gow might be assigned type e, the type of entitle!!, while the predkate
ru .. i< a«ignc<i type (c, p), which we construe as the type of objects which combine with
e"presions of type e to yield expressions of type p.

(I) GIMgow:e i. fun:(e, pl.

If we make the pla"si}'le aSSllJnption that the copular verb I. here denotes the identity function
011 predicates, then st •. ndard rilles of type inference yield the resllit that (1) i. an expression
of type 1', the type of propositions.

In recent years, the semantic problems of nominalization in linguistically·motivated type
theories have received increa.,ing attention, particularly as a result of the work of Bealer,
Chierchia and TUfllcr {Oea82, Chi84, Chi85, ChT88, Tur87J. To illustrate, notice that we
might w""t to assig" dilTerent types to dilTerent kinds of syntactic subjects, as shown in the
following two examples:

(2) a (Running around the lake):(e,p) is fun:«e,p),p)

b (For us to run around the lake):p is fun:(p,p)

)n (20), we might expect the gNundive subject phrase to denote a property, hence to be
assign~d lype (e, pl. nut if (2a) is to be of type p, fun will require a new type, n"mely
«e, 11), I')' Similarly, if the subject of(2b) denotes a proposition, then the type of the predicate
has to be changed to (1',1'). Yet there is no independent linguistic motivation for posttd"Ung
distinct lexical entries for the dilferent funs of each type.

1\ related prohlem aris~s when we consider cases 'of self· application, illustrated in (3,,) and
the simpler (though lIlore artificial) instance (3b).1

(3) a [Being f\lnJ:(e,p) is fun:«e,p),p)

h Fun:(e,p) is fun:«e,p),p)

SlIppose we poslulate a first-order predicate fun:(e,p), "nd a second order predlc"te of pred.
icates Cun:«e,J'),p). This allows us to deal with (3); but what h"ppens if we want to affirm
that Cun:«e, "),,,) is fun? We "re at the bottom of an infinitely ascending I"dder of types:

(1) FlIn:(e,p),p) is fun:«(e,p),p),p)

There seelll to be bro"dly three c1MSes of response to these problems of 'type inOation ':
type-lowering, type-freedom, and polymorphism. We briefly consider these In turn.

J D('.~pite "'-ppetlnnce!t, such locutions M~ not ~nlirely defined to the dil\cOUf$e of th.eorelidllftsj the {onowin,
[C:cnlence Wa9 noled in the Time. lIigher Eduu,jon Supplementol 28b September 1990, p.l~:

In bet, t.he fnn of rt':st','lUch is more fun than fun.

Nominalization, Predication and Type Containment 3

Typc- Lowering

We have just observed the potential difficulties which arise if the subject running in (5) is
assigned the type (e,p) of verb phrases:

(5) Running hurts.

For then we are apparently forced to assign a correspondingly higher type to run9. The ap
proach IHoposed by Chierchia (e.g" in (Chi841l postulates a nominw.ation operator n which
maps proposilional functions (and propositions) into entities.' That is, if run' (the seman
tic translation of run-we use Montague's prime" notation for semantic constanta) denotes a
propositional function J, then "run' is an expression of type e wbich denotes an individual
correlated to J. We might Msume that the morphological operation which relates the gerun
dive form running to the finite form runs has as its semantic counterpart the introduction
of this n operator. The resulting semantic analysis is illustrated in (6):

(6) hurt':(e,],}(nrun':e)

Type-Freedom

From a technical point of view, it is not necessary to explkitly map propositional functions
into their individual correlates. Instead, we can regard all properties as being a special sort
of individual. following Aczel [Acz80), Bealer [Bea82) and othero, properties are those first
order objects ""hieh can be applied-using an explicit operation app of predication-to other
objccts so as to yield a proposition. Thi. fir.t-order approach is illustrated in (7):

(7) npp(hurt':e, run' :e):p

Although we have declared the types ot the expressions in (7), they serve !HUe purpose, since
1I0ne of thcm are functional in nature.

Polymorp hism

We say that a function is polymorphic if it yields appropriate outputs for inputs of a variety
of types. Th.re are at leut two notion. of polymorphism which CAn be Invoked to deo.l with
these \,roblems. The first, called p<lmmetric polymorphism (d. (CW85)), obtains polymorphic
types by admitting type variables. In Milner's approacb (Mit7S), as implemented for the
programming language ML, types containing type variables are called generic. Suppose, for
exalllple, that v is a type variable, and that we assign to fun the generic type (1),1')' What
happens when we try to determine tbe type of an expression invoh'ing self-application like
flln((un)? Assuming th"t the second occurrence of fun has the most general type (i.e.,(I1, p»,
the first occurrence will have to be assigned a more complex type, namely «v, p), p}, where

'One or the urliesl diflCUl"t."!ioM of treAting propodtional arguments in .. Montague fn.meworJc, nA.mely
Thorn~<;on (Tho76]. adorts a t;imilar type~lowering operation.

Nominalization, Predication and Type Containment 4

th" tYI'" variable v has itself becn instantiated as (v,p). Although we are required to ""sign
dilTerenl lypes 10 funclor an,l argument in such a CMe, it should b~ noled that the complexity
o(a (""etor's type is no greater than that required by the most g~.neral type of its argument;
thus we avoid the 'infinitely "'!rending ladder of types' alluded to in our discussion of strictly
hierarchical type systems. An approach Bimilar in Bpirit to M L is adopted by Parsons [P",,879),
,,·herc Monlagne's (rarne"'ork is modified to allow 'Aoating' typ"" ",hieh again contain type
v:triables. Although Parsons conoiders an interesting range of data, he does not explicitly
discnss problems of nominalizalioD.

A difTerent route avoids lype variables by using something which [CW8S] caU inclusion poly
morphism. Suppose, for example, that /7Jt /72, and r are types such that /7, :j a., Xi.e.,
"2 is subsumed by, or contained in (cr. [Mit88!), /710 and let f be a functor of type (at, r),
Suppose further that 0 io a term, not of type 17., but of the more 'pecific type a,. Then f is
polymorphic ill the sen.e that it can apply to 0, and yields a value of type T. From a semantic
poinl of view, we model a type a as a set Do of values, and containment as inclusion bet een
"Jeh sets. Now if a function assigns values to members of a particular set DOl' then it will
also a~"ign values to members of any subset Do, of Dal • 1I0w does this help us de'" with
norninali7.ation? Our 80lutioll is to let the type (e,p) of predicates be contained "'ithin the
type e of individuals. Then, for example, fun of type ("'1') can apply to any expression of
type a ~ e, includillg fun itself.

1.2 Individuals, properties and fUllctions

Our treatlllent takes SUh5uIIII,tion polymorphism as a starting point-that is, we will develop
" nolion of type containm"nt, but avoid type variable •. In fact, the formal framework that
we develop is flexi"le enough to encompMs a range of dilTerent approaches to nominaliza
tiOll, including type-free ones. However, within the space of optioDs, we have made cerlain
t)worctica) choices which a\Jow U8 to model certain linguistic generalizations. In this section,
t"crefore, we will consider some of the motivating data.

In ordcr 1I0t to prejudge the issues to be decided, we use tbe term proposiliorlal/unctor to
refer to any expressioll I of English which caR combine with an argument a so that the
result I(a) is a declarative sentence, I.e., capable oC being used to assert a proposition. Thus,
a finite verh phrase such as walk. is a propositional functor, as is a declarative sentence
lacking a. direct object, such M John annO,)'8 _' We assume that propositional functors
,fenote propositional lunctions, though just what these are supposed to be is left till later.

We will lise the more lIeutrai term predicafiue to .:over both propositional functo •• and ,,·o.ds
or phrases which intuitively express properties but which cannot combine with other expres
sions to ma.ke sentences. Again, we leave till later what the denotation of predicatives is, if
not propositional functions.

The first generalization which we wish to capture is,

CfniJll 1.1 P,..,dicativc expressions can appear in fhe position olnown phmse (NP) aryumenl8
to propositional lunclors.

Nominalization, rredication and Type Containment 5

For ('xampl~, pr(!dicn.tiv(!ft can occur in Rubjet.t position or tensed sentences, Le., a. position
which is typically occupied by NPs:

(8) a To run wiU tire Mary.

b Running annoys Mary.

Thu", according to our terminology, (8a) contains two predicatives, to run and will tire MarYi
the latter is, in addition, a propositional functor.

It ca II also be observed that the distribution of predicalives sometimes extends beyond that
of NPs. Thus we have:

CI"im 1.2 Prcdicative e:r:p,oes •• ions can appeor os arguments 10 propositionol functors where
N Ps ore prohibited.

In pa.rticular, certain lexical items are subcategorized to require predicative arguments, as
opposed to ordinary noun phrases. The examples in (9) contrast with those in (10):

(9) a John seems 10 annoy Mary/happy

b With John annoying Mary/hoppy/in love, we can stop worrying.

c Mary saw John run/running/happy

(10) a 'John seems thai boy.

b 'With John thai boy, we can slop worrying.

c 'Mary saw John thai boy

It might be claimed that this patterning of d .. ta is purely .yntactic. Certainly, it is true that
items which require predicatives are usually subcategorized to take only a subset thereor.
Thus, seems takes intinit;"al complements but nol bare or gerundive VAl, while see patterns
the opposite way. Despite these idiosyncracies, however, there are a variety of generalizations
that can only be expressed on the assumption that the class of predicatives can be some
how picked out (d. (Dach79, PS87])j and it is manifestly desirable to characterize this class
semantically instead of invoking some arbitrary syntactic feature. In general, we adopt the
position, fundamental to categorial grammar, that syntactic categories should be semantically
motivated. .

The next two claims have b<!Cn partleul .. rly emphasized by Chlerehl .. (Chl85, ChT88). Reeall
Frege's view that a (propositional) function is 'unsaturated', or requires completion by an ar
gllment. On completion, the function yields a value, e.g., Il proposition. Changing perspective
slightly, we can say that only function. hal·e the combinatorial potential to 'glue together'
with arguments. The individual correlate of a function, by contrast, is 'inert': it cannot by
itself combine with an argllment to produce a value. Translated into the realm of grammar,
we ha.ve:

Clnhn 1.3 Tensed pr-edieative ."'pres.io ore propositional/unctor., but untensed prcdica
ti IJCS ar'c not.

Norninalization, Predication and Type Containment 6

TI,,,". the ex""'ple" in (11) do not express as..,rtible propositions, ... ·bNeas those in (12) do:

(11) a 'John to mn.

b 'John (be) happy.

(12) a John run.'.

b John i. happy.

This claim, though attractive, seems to require modification when embedded infinitives are
considered. Thus, Jacobson [Jac90] has recenlly drawn attention 10 data like

(13) Everyone likes their tea to be hot.

The crucial quest jon about such an example is whether the substring their tea to be hot
is an infinit;"al sentence (as opposed to a sequence of two distinct complements of like).
Evidence in favour of there being a single constituent here is provided by standard tests:

(14) a What everyone likes is their tea to be hot.

b Everyone likes their tea to be bot and their beer to be cold.

Despite these examples, the fact that nonfinite verbs cannot combine directly with subjects
in root dauses still requires explanation. In the present paper, therefore, we sha1\ maintain
Cla.irn 1.3 it stands, while accepting tbat furtber analysis of the is.ues i. called for.

The fourth claim ca.n be regarded as a furtber specification of Claim 1.1. Chierchia sllggests
that it is an empirical generalization which bolds for many. if not all, natural languages:

Claim 1.4 Tensed predicalive e",pre~.iQn~ cannot occur as argument .. 0/ propasitional/unc
tor·s.

Thus, ungrammaticality results if we attempt to replace the unlensed predkatives in our
previolls examples by tensed predicatives:

(15) a 'Run. annoys Mary

b 'John seems nnnoy~ Mnry/i~ happy

c • John tries annoy. Mnry/i~ happy

Let \IS now consider how these observations might be rendered in a formal framework. The
generally accepted interpretation of Claim 1.1 is that propositional functions have individual
correlates. As a further terminological step, let us use the term nominal predicalive. to refer
to expressions which denote such Individual correlate •. 3 Our models, derived from Aczel's
Frege Structures, contain a collection :Fo of individuals (or objects, in Aczel's terminology),

3 'A'e c!'Ichew the term 'nominR.liu.tion' because we do not wil'Jh to claim that linch expressions have undergone
any dl<lngc of !!:yntllclic category, at I~ast in the way this Is 08UaJ)y underdood.

•

Nominalization, Predication and Type Containment 7

;uul th;!; !;('t iR 'hig ~nolJgh' to contain, for ea.ch function frotn obj(!-cts to ohjccts, an object
thi'\l COr1'C~pont18 to that [unction. The collection of propositional functions, i.e., functions
frolll Fo to propositions (which are also objects) is called pro We implement the idea of
individual correlates by letting the collection PF be explicitly mapped, Ilia the ~ operator,
onto a subcollection SET of the domain of Fo individual objects. That is, each objecl in SET

i< Ihe individual correlate of a propositional functlon. (Se<! Lemma 2 for a proof that .x is
bijective.)

Clailll 1.2 shows tlt"l sOllie lexical ilems select as their arguments nominal predicatives, which
we t;,ke \0 denote objects in SET. Since we want to treat this selection as a kind of semantic
dependency, this means that our type system should give us a type of those individuals which
belong to SET.4 We shall let (e,p) be the type required and, as we .hall see later, we arrange
thing. So that (e,r) is a .• ublype of the type e of ir.dividuals. Moreover, expre .. ioRR which
sdect objects of it particnl'" type will be encoded as functions over the appropriate domain;
consequently. We will have to allow '\-bound variables to be of type {e,p).5

If Claim 1.3 is given a semantic explanation, then we must capture the difference in com
binatorial potential between tensed and untensed predicalh·es. A. pointed out by Chierehia
nnd Turner ((ChT88)), this distinction appears to be inadequately captured by first-order
theories of properties .IIch as that of Bealer (Deo.82) in .. -hieh propositions only result by
vir tile of explicitly applying a property to another object. for example, on snch an approach,
John ,,-alks would be expressed as (16a) or, adopting the approach of building the collection
of individual correlates within F o• as (I6b):

(16) a tlpp(walk':e,john':e)

b 0P1,(wnlk':(e,r), john':.)

The fr~gean view (which is vigorously disputed by Bealer (Beo.82, Bea.89)) holds that proposi
tional functions sbonld not be thought of as objects, but indeed as functions. This is renee ted
in ollr framework, therefore, by the decision to view propositional functions as elements of PF,

not Fo. This has tbe virtue of providing a natural explanation for C1a.im lA. For although
elements of PF do have individual correla.tes in ro, they a.fe not themselves objects, and as
sucb are not potential arguments for other propositional functions.

As we will see, 'nominal' types (including predicative nominals) are all constructed as subtypes
of e. Since, according to what we have just said, propositional funelors are not nominals, they
cannot be assigned a nominal type. We therefore require a new kind of type for slIeh functors,
one which i. nof a subtype of e. ExpressIon. whose denotations lie outoide the doma.in Fo of
objects "'iII be assigned what we call metatllpell. Whenever rr and r are {meta-)types, (rr -+ r)
will be a metalype. Note that we will not need to quantify over propositional functions, nor
will we need '\-expressions whose domain of interpretation is the coDection of propositional
functions-we can use nominalised properties instead! lienee, variables in our language will
never be assigned rnetatypes.

t Dc:::pilt. the rtecedent of (ChT8S], we ha:ve tthained from nmns t.he term Ceort' rather than 'type' ror
c1;t..c;~ilir.l\tion!l of blL.qic object",.

!oThll!'l, our type (e,p) is equivlllent to (ChT881" sort nJor nominaTued (unctionll.

•

Nomillalization, Predication and Type Containment 8

W" "h~tI ~~<lIme th"t IIninReded (or base form) verb phras"s denote ohjech rather than
ptop"sition.,1 (unctioos; for example, walk wiU be of type (e,p). When verb phrases receh'e
tense, they are mapped by a predication operator U into propositional fUDctions, with the
metatype (e -4 p). Thus if nonlinite walk translates as walk':e, then tensed wlllks translates
as uwalk':(e -4 pl. Putting the various pieces together, We replace (16) with (17), where the
propositionaJ (unclor is applied directly to its argument, rather than by the mediation of app:

(17) [Uwalk':(e p)(john':e»):p

Dy way of summary, we give the following tabular presentation of our articulation of the data:

Synlllctic Nolion Semllntic Notion Domain (Meta-)Type Example
Propositional fUllctor propositional function PF (e -4 p) walks, is fun

nominal predicative set SET (e,p) walk, be fun

III this section, we have attempted to present and motivate the general structure of our
approach, and it will be observed that we have followed (ChT88) closely in (""ouring .. Fregean
analysis oVer a first order property theory. Nevertheless, our formal (ramework differs, from
that of [ChT88j in many respects; this will become obvious in the following seetio"", where
we give a more systematic presentation of the theory.

2 The Language L.<,

2.1 J udgel1lents and Type Containment

In the theory C~ developed in lhis paper, we follow (Acz80) in starting from models of tbe
type-free lambda calculus, on top of which an interpretation for logical connectives bas been
constructed; we then construct types within the set of object •. In place oftbe domain to, l) of
truth vallles, we have a domain PRor of propositions, included in which is the domain TRUTH

of lrue propositions. These collections provide values for the types p and I respectively. As
mentioned earlier, there is also a domain To of individuals, with assodated type e. This
domain turns out to be much richer than one might have expected. Indeed, it contains PROP

(and hence TRUTJI) as .ubcollections. In S 4, we shall look in more detail at the intended
models; for the time being, however, we present the type strudure.

Following IIsllal practice in type theory {e.g., (CW85, Mit88]), we use a natural deductioD
format for rules of type inference. A simple example is the following:

hp:p
I- 3x :<T.cp:p

The statement I-cp:p is an assertion or judgement meaning that we can infer that", i. of type
p. The r"le lIS a whole i. a logical Implication; given the premiss, We can infer that 3%.cp is
aJwor~~~ ,

NominaUzation, Predication and Type Containment 9

'\Jhat we h;\\'~ I'r~~""tr.fl iR not quite Bufficlent. however; ir V' tontainlll OCCurrf!ncep; of the
v>riabl" x, the inference that it is of type p may in turn depend on the type of :1:; in other
words, the judgement is made under the assumption, or in the context, :1::11. Using

f,x:<1

to r~I"~'~nt a context r which contains the relevant assumption, we replace our earlier rule
by the following:

r, x:<1hp:p
n- 3x:11 .<p:p

Let us now present these idea-It in a more Bystematic format. A type si(Jlentent is a pair,
written o:cr, consisting of an expression a and a type 11, read ·0 has type 11~; a i. said to
be the subject of the statement. A a;gno!ure I: is a linite set of distinct type statement. the
sllbjects of which are constants, while a con lui r is a finite set of distinct type statemenh,
the suhjects of wllieh are variables or sentences. In the latter case, a statement of the form
<p:1 iudic>leg that <p is a sentence of the logic whose truth i. being Mstlmcd in ti,e course of
a. I'mof; th"t is, we Me "Iso using contexts in .. sequent calculus style to encode the currenl
set of assumptions required at each line of a proof,

As \1511,,1, we c"n regard signat",es and contexts lIS (unction. from expressions to type •. Thus,
dom(E) denotes the set of expressions to which the signature I: assigns a type, and similarly
for contexts. If A is a sig""ture or a context; we write A,a:" in place of A U {a:I1}.

Althollgh the system used here does not uSe the power of higher·order type theory (e.g., such
as dependent types), we have nevertheless (ound It convenient to take as our framework lhe
theory of expressions developed in the Edinburgh Logical Framework [HlIP87J. As pointed out
in the preceding section, we distinguish types, whose interpretation. are constructed within
the domain of objects, from metatypes, which have a disjoint interpretation as coUectlons of
functions and functionals. Types and metalype. are both 1ci"J$,

We need three further kinds, or classifications of types: non-proposifionof II/pes (np-types for
short), fixed poinl Iwes (fp-types) and well-behoved 'ypes (wb-types); these are aU interpreted
within the domain of objects. As we shall see later, there i. a sense in which an fp-type is a
complex type which does not have any proper subtype •.

We will use 11 and T (or types, !lt11 (or metatypes, and fI, fit."" to range over bolh lyp.,. and
metatypes. We use c for constants (a special instance of which is J.), %,1/ for "ariables, a,fJ for
arbitrary object language expressions and 'P,.p, X (or expression. which denote proposition •.
We \lse r I- 8 to mean that 8 is derivable within context r, and rh: • to me"n that ~ is
deriva.ble from the signature E within context r and h: • stand respectively (or 0 f- •
and 01-£ 8, where 0 is the empty context.

The synta.x of the various sorts of expression can now be specified lIS foUow8:

Nomi"alization, Predication and Type Containment 10

SignnttH'C8 E .. - 01 E, e,'1
Contexts \' "- 01 r,""u I r,o: t .,-
Kinds K "- type I Ip-type I np-type I wb-type I mefofype
Types u .. - e I tip I (11, r)
M€lotypes ntO' .. - ('11 'h)
ET lu'(:ssions 0 .. - c I., I >'.,:u.o I opp(o,P) 1 ~o 110 J\ /JIllo v /JI

1 [a :J PI 1 [0 = PI 1 I/z:u.a 1 3:>:,u.a

\Ve wilt omit square brackets around complex Bentences except in those cases where the scope
of a typing .tatement needs to be made explicit.

Type theory (d. [M-L79J) provides rules for making judgements of various forms. The ones
which we are concerned with are the following:

J udgell1ents

I- E Big
I-I: r context
l'\'I:'1!(
!'I-I: "~r
n-I: """1'
£'I-I: <>:<1

E i3 a signolure
r is a conled
'1 has kind K
type u is contained in type T

type C1 is equivalent to type T

o has type C1

Note that the"" relation between types is the symmetric closure of ~, the containment
relation.

We mentioned earlier that the inference rules by which judgements can be derived are formu
lated in natura.! deduction notation. We add glosses to a representative sample of the rules
in order to help readers not familiar wfth this mode of presentation.

Valid Signature

(n,,11 sig) I- 0 sig

1'IIe emply relalion is a signature.

(: sig) I- E .;g ~I: t) K il c It dom (E)
I- E, c:t) 81g

11'1 ;s <I /rilld, <lnd E doesn't already <lss;gn a (mel<l-)type /0 the cons/"nt c, then we can
augment E with the •• Inlemenl c,'1.

Nomin:tliz:ttion, Predication and Type Containment

Vnli<1 Cont"xt

(null con ted)

(: context)

(: Irutheonlexl)

f- E sig
h: 0 conted

f-I; r con led
f-£ 1', .,:<1 conted

i! 'Z t dom (I')

f-I; r conled

f-E r, '1':1 cDnle.,1
if 'I' t dom (f)

11

It should be noted th"t (: context) requires <1 to be a type, not an arbitrary kind; thua, our
contexts will /lot assign met:ttypea to any variables.

As we pointed out above, the following semantic domains are ordered by inclusion:

TRUTII S;; I'RQP S;; Fo
SET S;; Fo

And indeed there are other inclusions in the domains. This structure is r<~necled by the
contaimncnt relation ~ (in fact, a partial order) which is imposed on the types. When U:iT,
We say that (J is contoined ill, or is a subtype 01, T. (J~T means that any expression ",lIkb is
of type 17 is also of type Tj moreover, any object in the model which belongs to the domain
Du .$sociated with (J • .Iso belongB to the dom>aiD DT associated with T. The most salient
containments in our system are the following:

t -<p:ie
(0-, r) ~ e

Rules for inferring judgements about containment will be given shortly. Defore that, however,
we present the various kinds required. Within the class of types, we distinguish three useCul
Rubsets: n01l-proposilio1lal (IIp-Iype), fi.,ed-poin' (!p-Iype). and well-behaved (wb-type). These
are characterized in tbe following rules:

fOnds, Types and Metatypes

(base types)
f- E sig h: r cDntext

rf-E e type

I- r; sig f-E r context
rf-E , type

f- E .ig f-E r con ted
I'I-.E p type

Nomillalization, Predication and Type Containment 12

/'I-I: u type rl-E r Iype
rl-E (u, r) type

(np bau)
I-E 8ig I-E r con ted

rt-I: e np-tl/pe

(lip complex)
rl-I: u np-Il/pe rI-1: r Iype

rl-I: (u, r) np-Iype

(wb- I ypes)
rl-I: ('" r) wb-Iype

(fp-Iypes)
rl-I: u Iype rl-I: r-<p

rl-I: «u, r), r) fp-Iype

If" is a Iype and T is conlained in p (Ihal U, T = I or p), Ihen «u, r), T} U an fp-Iype-

(metalypes)
1'1-I: '11 K rl-I: '12 K
1'1-I: ('11 -+ ",) mdalype

There is a complementarity between np-types and fp-types, in the following sense_ From
rl-I: T np-Iype, we can conclude that r rE «u, r), T} fp-Iype; for example, ({u, e),e} is not
a" f,,-type_ Conversely, from I'I-I: «u, r), r) fp-Il/pe, we can conclude that r rE r np-Iype;
for example, «"'p},p) is an fp-type, but p is not an np-type_ Note, however, that np-types
and fp-types are not mutually exclusive; for example, «e,p},p) is both.

As we will see later, A-abstraction.will only be permitted when the type of the abstract is a
,,,b-type. A complex type i. a wb-type just in case the range is an np-type which i. contained
in the domain type. For example, (e,e), (e,(e,e)}, (e,(e,p)} and «e,p),(e,p» are wb-types,
but (e, p) and (p, e) are not.

The containment relation is governed by the following conditions:6

Containment

(e~)

Objects in Ihe domain Du of anl/'Ype u are also in De.

I- I: l' conle:d
1'1-1: l;:5p

Truths al'e propositions.

e fot I. ~imiJar propO$M, 8ee (CG89].

Nominalization, Predication and Type Containment

(lJo",~)
I'I-I: (11-<02

ft-I: (02. ;}~(Dt. e)
"

Every Junction (returning argumenl8 in De) defined on a domain Do, is also defined
on subsets DOl oJ Du,.

(Ran~)
I'I-I: u type fI-I: rl~1'2

H-I: (u, 1'1}~(D. 1',)

Every Junction with volues in the trJnge Drl also lIielth valuu in supersel8 Dr2 uJ Dr,.

(Id::5)

(Trans::5)

(Anti"!,)

(Fix"!,)

l'\-E u Iype

rI-1: u"!,o

r~1: u-<r r~E r-<p
r~E o~p

\'I-I: «u, r), r) Jp.tllpe

r~E {(D, r), 1'):::::(0, r)

The a,xiom (Fix "!,) gives us fIXed points for type containment. That i., if r ~ p, then (0, r)
"" «u,r),r) "" «(o,r),r),r) .". While types ouch as (c,e). «e,e),e), «(e,e}.e},e), ".are
distinct, we need to be more restrictive about types such as (e,p), «e,p),p), ... if we are
to avoid the paradoxes. According to (Dam ~). since (e.p) ~ e, we should have (e,p) ::5
«e,p),p). The intuition behind cal.ling ((e,p),p) an [p-type is that this containment i. not
proper; that is, we cannot gel anything extra by going from (e,p) to «e.p),p). In other words,
we can only map sets into proposition. to tbe extent that we map those sets qua objects into
propositions.

As already noted, the containment relation plays a central role in our approacb to polymor
phism. In §4, we shall .ho"· that there are models of the typing .ystem; that is, we will have
(unctioll,,1 domains from Do to Dr which are included in De; moreover, when Dr ~ PIlOP,

we also have the result that objects in tbe function space domain 'Du to Dr' are in Du.

Not all functions can b" mapped down Into the coUectlon of object., and following Aczel
(Acz8\J], we shaU call the.<e Junclionals. Tbat is, adopting Frege'. correlation thesis [Fre77),
we will see that all we need in the formal theory are objects, functions and functionals and that
functions at a higher levellhan those three can be mapped down to the lower domains. Among
the functionals we will counl the interpretations of determiner. and logical cOIinectives-and
indeed, these are expressions l\'hich do Dot admit of nominaUzation.

Norninalization, Predication and Type Containment 14

2.2 Type Inference Rules

In the preceding subsection, we gave a definition of the syntax of ""pressions occurring in
judgements. These definitions were deliberately general, and could encompass a variety of
logical systems. In specifying a particular calculus, such as C-<., we need to make explicit how
Ihe Iypes of expressions of C;!, are inferred. It is to this task-that ".., DOW turn.

The signature E of C-<. contains a finite number of statements C:'1 which assign types and
JIletalypcs to constantsof the language. For now, we are only concerned with logical constants
and functionals:

Signature of Cj

.L:p

-.:(e e) A:(e e)

A:(e (e e» V:(e __ (e -- e»
:J:(e (e e» =:(e (e e»
u:(e (e e» app:(e (e e»

V:«e e) e) 3:«e e) e)

Two comments on the above are called for. First, it will be noticed that, for example, -.
is interpreted as a functional which maps an,l object in :Fo into another such object; we
cannot tell, for a given expression a, whether -.a is a proposition unless we have some way
of proving that a itself is a proposition. This will be made explicit in the axioms for type
inference given below. Second, we will use conventional notation for the syntax of the various
constants, writing cP A t/J in place of A(cp)(t/J), app(z,II) in place of app(x)(II), and Vz.", in
place ofV(Ax.cp).

A context r for C-<. contains a finite number of statements of the form X:(J, for any type (J.

Recall however that r never assigns metatypes to variables.

Defore launching into the type inference rules, we first define substitution on expressions,
where we take ali1/x] to be the result of substituting (3 for all free occurrences of x in a.

z[P/X] ;: fJ
x[J3fy] _ x if", ¢ Y

c[fJjz) ;: c
(Ax.a)1i1/x] _ Ax.a

(Ax.a)I{3/y] - Ax.alP/y) if x "t y and z not free in {3

(h.a)[.olyj _ h.alz/x)[.ollll if x "t II and z is free in fJ and z i. not free in a or fJ
EI,(a)[fJ/x) _ EI,(al{3/x]), where Ell i8 ... ,O,A,V,J,=,opp,V, or 3

NominalizaUon, Predication and Type Containment

The other dau5cs for ""bstitulion in logically complex exprcRsionR carryon"" usual.

The next definition serves the following functions:

1. It gives rules by which the type of an arbitrary expression of c.~ can be inferred.

15

2. It exploits the type I of truths to give introduction (l) and elimination (E) rules for the
logical connectives in L-j.

Vefinition 1 (Type Inference (or L:S)

(Dnse)

(Co .. /n; ..)

(.\)

(Fund)

(= prop)

(= E)

I- E I' conlexl

l'f-E 0:<1
where Q:<1 E r

I'I-E <1:Sf

r, T:ol-E O:T rl-I: (d, T) wb-lllpe
('I-E ('\:I::<1.0):(<1,T)

I'I-E 0:(17, T) I'I-E fJ:<1
I'I-E app(o,fJ):r

nE f:(<1 -. T) I'l-l: P:d
I'I-E f(fJ):T

I'I-E o:(e,p)
n-E uo:(e -+ 1')

I'I-E 0:" I'l-l: p:"
l'I-E (0 = fJJ:p

I'I-E (0 = fJ):t I'I-E 0:"

I'h; <p:p

I'I-E ~<p:p

['f-E fJ:.,

I'I-E <p:p r, <p:11-1: .L:I

)'I-E ~'P:I

r , ~<p:tl-E .l:1 rl-,; <pop

I'I-E <p:1

I
. I

Nominalization. Predication and Type Containment

(fIl)

(AE)

(Vprop)

(vI)

(VE)

(:> prop)

(:::J E)

(Vprop)

(VI)

(VE)

(3prop)

(31)

(3E)

nOE 'I':p n-E "':p
i'f-E (II''' "'1:p

rl-E 'I':t 1'1-1: ",:t

fl-I; ['I' " "']:1

fl-E 1'1''' "'J:t
fl-E 11':1

fl-E ('I''' "'1:t
fl-E ",:1

fl-E '{':p fl-v .p:p
rl-v ['{' V .p]:p

rl-I; '1':1 fl-I: tP:p fl-I; 'I':P fl-I: ",:t
fl-E (II'V "'1:t

r, 'I':tl- I; X:t r, "':II-I: X:t

fh: X:I

r, '{':tl-I: .p:p rl-I: <P:P
[I-E ('I' ::> "'I:p

r, '{':tl-E .p:t fl-I: ",:p

rl-E ('I' :> "']:1,

[I-I; '{':I fh: [I" ::> "']:1
rl-I: ",:1

r, X:<7I-E <p:p

rl-I; VX:<7.",:p

rl-I; ['I'V "'1:1
rl-I; ['I' V "'):1

r, x:<7rE I":t h r
w ere x is nol free in 'I' or any assumplions in

frE VX:<7.",:1

rrE VX:<7.II':! rl-I: 0:<7
fl--}; ",[o/z):1

r, x :<7I-I; I":P
fl-I: 3x: ... ",:p

1', x:<7I--}: ",[a/x):1

fl-I: 3x:<7''I':1

fl-E 3x:<7.'I':1 r,<p[O/%):(I-E tP:t
rl-I: "':1

16

Although most of these clauses are standard, it should perhaps be pointed out tbat tbe
definition (:>prop) of implication is somewbat unusual; following [Acz80)'s proposal, it has
the consequence that if the antecedent I" of a conditional is not true, then 'I' ::> .p is a
proposition whatever object .p is.

Nominalization, Predication and Type Containment 17

2.3 Equnlity Axioms

We now give a set of equality axioms which are similar to those of the .\.calculus, except
that we allow self-application and polymorphism. Note however that self-application is only
possible for those expressions which have a complex type; indeed, this is what is required by
clause (ol'P) of the syntax above.

(0) rl-E [(.\X:I7.0) = (.\Y:I7.o[y/x])):I, where y is not free in 0.

(fJ) rl-E [OpP('\X:I7.0, 0) = o[4/x)):I,

rh; (0. = a,l:! rl-f; [PI = fJ,):t
rl-E [app(ObfJd = app(o"fJ2»):t

rl-E 0:17
(0) rl-E [a = a):t

«) rl-E [a\ = (2):t rl-f; [0\ = (3):t
rl- E [a, = (3):t

«() rl-f; [opp(a),x) = app(o"x»):t " . .
rl- [)

where x)s not free ID 0),0, or any assumptIOns ID r.
E 0) = 0, :1

2.4 Russell's and Curry's Paradoxes

It might be thought that the theory presented above would fall foul of Russell's paradox,
due to the fact that ,app(x,x) isa well-formed formula for % of any type (17,r); hence by
abstracting over 'opp(x, x), we could obtain the equality

app(a, a) = ..,app(a, a)

where a is .\%.,app(%,%).

For example, given the following proof,

r,%:(e,p)h; %:(e,p)
....:........:....:..:.:.....:~-=-:.:..: (Contain)

r,%:(e,p)I-E %:(e,p) r,%:{e,p)I-E %:e
....:........:....:~.::..........:....:~--...:-.:..~-=--(app)

r,x:{e,p)I-E app(x,%):p
-~:..-'-'---=-....:..:.-=-~-=-(,prop)
r,x:(e,p)I- E ,app{x,x):p

we might conclude that we can set a equal to the abstraction

.\x:(e, pl. ,app(x, %):((e, p), p)

NomillaJjzaUon, Predication and Type Containment 18

".nd infer that npl'{a,a) is or type p, leading. 10 a contradictory proposition from the above
e'lua.lity.

1I0wever, olle or the steps necessary to derive this contradiction is incorrect. That is, even
if x is of type (e,I'), and even though -,,,pp(:r,:r) is a proposition, >.x:(e, 1') . .., app(x , x) is not
tYl,able in L~. More specifically, it i8 excluded by virtue or clause (>.) in the definition of
type inference, sillce we cannot derive n-E I' np-tvpe, and hence cannot derive that «e,p),p)
is " wh-type.

In ract we have a more general result: the paradox does not arise for :r of any type (0, r),
where r= t or p. This is a consequence of the following lemma.

Lemma 1 Ilx is 01 type (<T,r), r=' or 1', then >.:r::(o,r) . ..,opp(:r,:r:) is no! !Yvable.

Proof According to the definition 01 type inle ... nce lor L-(, it is enough to show that we
ca'lUot dc,·jve n-I: I' lip-type or fI-E t np-type. This is obvious.

o

Our manner of avoiding the paradox is somewhat new, we believe. It is similar to Russell's
o\\'n approach in that type constraints are Invoked to limit abstraction, but differs of course
with respect to the non-hierarchical nature of the type system. Unlike Aczel [AczSOJ, we do
1I0t take ti,e step or questioning the propositionhood of app(a, a); and unlike Turner [TurS7J,
V;~ do nol restrict the axiom of .a-conversion.

Let us turn now to the question of Curry's paradox. Recall the Deduction Theorem (in fact,
our rule (:J I):

If we lake a to be the formula

'\:r:0[01'1'(>:,:r):J .LJ,

then by tl·conversion we derive

(lD) app(a,o): (app(a,a) J J..J.

Now, it holds trivially that

01'1'(a, a):tl--I: app(a, a lot.

lIellce, by (ID) we derive

lIpl'(n, a):tl--I: (npp(n, a) J .LJ:t,

and by (J E) we get

Nominalization, Predication and Type Containment 19

01'1'(0, a):tl-I: .1:1.

In order to derive by (DT) that

l-I: [opp(o,a) J .1):1

we JIllist first be able to show

01-1: 01'1'(0,0):1',

(w here 0 is the empty context). For we can derive the latter, we can use it in tbe following
slep:

01'1'«(1,0):11-1: .1:1 01-1: opp(a, 0):1'
01-1: [app(o,o) J .1):1

(::> prop)

and also by (JD) and (= E)

01- I: 01'1'(0, a):1.

Given the last two steps, ,,'e can again apply (J E) to get

l-I: 1.:1.

The proof only goes through, however, if Ill-I: 01'1'(0,0):1' is derivable. For this, we ould have
to assign the type (",1') to o. i.e .• to "'>::olapp(>:,"):J .1]. How could we show tho.'

(18) l-I: >'x:o[opp('" x) J .1}:(0,p)1

This can only be the Ia..t step of an inference involving the rules (>.) or (Conlain). We consider
the t 9,,'0 cases in t urn~

Cllse 1: The premisses of the inference must include >::01-1: lopP(>:,"') J .1}:p, which in turn
is only derivable by (J prop) from the assnmption that "':01-£ opp(."",):p. However. we
can only prove the laller if for IIOme 0', 0 == (0',1'). where (0'.1') ~o'. But in 1101. e
we would have to show that rI-J; l' np-II/pe, whkh i. impos.ible.

Cnse 2: We have to find some type T such that T j(o.p) and ",:oh: >.",:o[opp(x. 2:) J l.J:r.
The only applicable derivation ruJe is, (Ran j). setting r to be (a,f). 1I0 e\'er. the
judgement 1-£ >,x:I7[app(x.x) J 1.}:(o, l) is not derivable, for the same reasons as those
given in Case 1 above. since we cannot show that rl-I: p "p·lype.

Nominalization. Predication and Type Containment 20

3 Models of £-<,

3.1 Frege Structures

A$ pointed out ,,;ulier, our model. are ,constructed using the notion of a Frege strudure
•.• defined by Aczel [AczSO). We begin with a collection Fo or object., and (or each natural

nli'm~.

Itumber n ~ I. we define Fn as {/ : Fo Fo}.where Fon '" Fo)(Fo'x ... Fo'. In particular.
F. is the set of all unary functions from Fo to Fo. Within Fo we pick out Pllor. the collection
of proposilions, and TIlUTH, the collection of aU true propositions. (Thus. Aczel makes a
uucial departure from Frege in denying that aU true propositions can be identified with the
True).

So far. then ollr Frege strudures contain objects. fundions, propositions and truths. To
these. we need to add functionals, logical connectives. and some closure conditions. We now
show how Ihey are supplied.

Two funclionals are required in order to provide a model for the lambda calculus:7

.\: :FIH:Fo
UPI' : :Fo X :Fo>->:Fo

These obey a comprehension principle such that whenever I is a propositional function in
:F .. i.e .• f is an element of F, which maps its a.rguments into Pllor, then

npp(,h.f(:z:).a) == I(a).

Let r r be the collection of unary propositional functions in a Frege structure:

PF == U E :F. I for all:z: in:Fo, 1("') is in PROP}

We can now identify a further slIbcolledion of ro, namely SET. as the individllal correlates
of propositional functions under ~:

Definition 2 (Sets) An object is in SET iff it is.\/ for some I in rr.

The distinguishing characteri.Uc of seh (I elements of SET) I. that they can be predicated
of any ohject in :Fo to yield a proposition:

Definition 3 (Predication) 11 a is in SET, then app(a, b) is in PROP, for any object b in
:Fo.

Comprehen,ioll can be .estated "" follows:

7\Ve ",dOll' the nobtionaJ convention of ttmn, boldface terma to denote ~Iementll or the model, reserving
it,l\Ii.cs Cot Ur'~~~101"1 of th~ (\hj~t l&ng"a8~. Fot e.:u.mple, "I'P 's .. {undions! ,n 'be model whicb cone"ponda
to the fundor OPP in the JangollKe.

Nominalization, Predication and Type Containment 21

:Fo

PF
SET

Figure 1: The functional >.

Definition 4 (Comprehension) If / is in pr, then >../ is a set .. such that for any object
b, app{a, b) is in PROP, and app(.. , b) is in TRUTH iff I (b) is in TRUTH.

The notions that we have introduced so far-<>bjects, functions, PROP, TRUTH, SET, compre
hension and predication-are based on a model of the >.-calculus. 10 order to ensure that
they have the properties we want, our models should also contain a logic. We know that
such a construction is not straightforward; for instance, logic cannot be built in a simple way
on the top of Scott domains (cr. [Sc076)). Tbe construction provided by Aczel inductively
increases the two basic collections of propositions and truths, and the fixed point theorem
is then applied to provide the limit of these newly obtained collections, resulting in PROP

and TRUTH. lienee PROP is closed under all the logical connectives fo., V,.." ... (more strictly,
the fnnctionals corresponding to these connectives) and TRUTH is the collection of all true
propositions. The organization of Fo and Fl in a Frege structure is illustrated in Figure 1.

We now need to ensure that we have full abstraction. That is, if ~[x .. X" ... , xnJ is an
expression formed out of objects, functions, functionals and variables (ranging over objects
in a Frege structure), where "'1. X" .. . , %n are free variables of €, tben tbere is a function J
in the Frege structure such that f(...... 2, ... ' .. n) = €[O./"' .. 02/X' 'on/"'n)' where the
substition of objects for variables is simultaneous.

We assume our construction is based on the model Eoo of the untyped ~-calculus [8c076]. We
then take

Bp = {O, I} !;; Fa = Eoo.

NominaJization, Predication and Type Containment 22

\\'r. nrxt conRlr1lc:t th(! logic;".1 constants 110 tha."t PROP If! the fJh1A.11cnt Ret cont~ining Br which
i~ dm:ctl under t.he relevant clauses for connectives presented in Definition 1. Here, we give
just two exanlples.

I
(" schema) If 'P i. in PROP a.nd ." i. in PROP, then 'P" ." ioln PROP, Ilnd 'P" ." i. in TRUTH

iff 'P is in TIlUTR and." is in TRUTH.

(V selWin,,) For a.ll n-ary fundions!, if !("' .. "' "'n) i. in PROP for "II ("''' "' "'n) E

Fo", then VI i. in rRor. and "Ilia In TRUTH ilT I(a .. a a.) ia hi TRUTH for all
(a.,6 7 , ••• ,an) E ;0".

Whcnever 'P is a wIT open in x. We understand ('PI"') to be the fnndlon I In F. such that
for any a in F o, f(a) = \O[a/x). Since we have rullllbstraction, we can "",,sume that! exists.
Now, we take II: Fo>--+F. to be the functiona.1auch that

lal '= (app(a,x) I x).

In general, we define lin :Fo~Fn such that

"'here app. = app and apPn+l(a.b.;;) = apPn(app(a,b),;;), and iii,;; are sequences of n
variables or elements of F o. Now,

is defined inductive1y, for ii = al t ••• , an as

(.:\~+I /)(0) = ':\{/(a,") ' "')
(.:\~+m+l /)(0) = .:\~+t(.:\~ti+l f)

In particular, >-;; nominalizes an n-ary function I returning .:\~f in To.

We take

SET = {.:\~ III is any propositiona.1 function}.

Denllition 5 A Frege Structure i~ 0 triple F = (To, PRor,sET) cort8trucled O~ above.

It might be unclear wlty we have only included To, PROP, and SET in tlte structure and
ignored functions in general (though not Cunctiona.1s). The reMon for tlti. Is that the principle
of extensionality holds in Eo<> and hence we have a bijection between To and Tn Cor n :c:; I.
In fact, we can show that .:\(lal) == a.

I,emmR 2 I'he functional .:\ : 1".>->1"0 'i6 bijective.

Proof

Nomina.!ization, Predication and Type Containment 23

1 . .\ is primitive, Ihal i." if.\/ =< >'g, Ihen I = g.

2 . .\ is surjective, b<rouse if a u. in To Ihen lal, i.e. (npp(a, z)lz), i$ in Tlond).(lal) '" a.
D

lIence we have sufficient structure within To to do everything we want without having to
c(lllF:hlcr :F I_

So (ar, we have not sajd anything about the interpretation o(the predication operator u. It
will be recalled that, by virtue o((U I), whenever Q is an expression of type (e,p), uQ is
of type (e -+ pl. If Q denotes the nominalization >./ of a propositional function I, then we
want u Q to denote (npp(>'I,z)lz). However, the functional corresponding to U must carry
any object in To into an appropriate va1ue in To. What happens if Q denotes an object
n nol in SET? In this eMe, (npp(a, "')10,) will not be a proposilional (unction; that is, for
any argument b, npp(o,b) will just denote an arbitralY object in To. We take this to be
an acceptable alternative to the approach used in [Pat84) where U is interpreted as a partia.!
(unction, defined only on objects in SET. lienee, we a1waY8 let U Q denote (nPP«(Q),z)I"'),
where (oJ is the interpretation of Q.

We shan now show how to construct domains inside Fo such that the type. described earlier
can be lJIapped into them.

3.2 Domains

\Ve distinguish between two kinds of domains; Doml and Dom •. We use X" Y, to range over
(Joml, X" }r, to range over Dorn" and X, Y to range over both domains. We a.lso assume
that, is a distinguished element in Fo which will be used to give funclions a undefined va.!ue.

Tol X,~Y,
PROP I TRUTH I XL..+X.

Definition 6 (* Function Space)
X *Y = {x E To: for oil x' E X[app(z,z') E Y)}.

Definition 7 (..... Function Space)
X l r

'" {x EX: for 01/ :<'(if x' E X then IlPp(x,x') E YI, else opp(z,x') '" .}.

We shan write 'f is true' instead of 'I is in TIlUTH'. Similarly we use 'f is folse' instead of
'f is in PROP- TRUTH'. \\' .. also assume the presence of two special elements of the Frege
structure, I in TRUTH and 0 in PROP-TRUTH.

Definition 8 (Intern"1 Deflnability) We My that a eolleclionC i8 infernally definoble in
o H'Cge structure if the following holds: there u. Borne I in rF 8ueh that for all", in To, f ("'J
i.< true iff '" is in C. In this case, 1 u. the characteristic Cunction 0/ C.

Nominalization, Predication and Type Containment 24

The dOIll •. in Vorn, <an be understood lUI the collection of objects which provide interpretations
for types not involving" and I. All the domains of Dom, are internally definable. This can
be proved by induction as foUows:

Lemmn 3 1.:Fo is intemall/l definable. b/l laking the function / : :Fo PROP. where
J(x) = I./omll x E:Fo

2. Assume X •• Y. are intemall/l definable b/l the propositional/unctions J and g respec
tively. Then we wont to show that the collection X. ~ 1'; is also intemall/l definable.

J::FO PROP where

I(). {true Jor all % € X.
X IS lalse olherwise

g::FO PROP where

(). {true lor 011/1 E Y.
g II IS lalse otherwise

h(z) '" Vx(J(x) :l g(npp(z,x))]

Now,

(a) h is a propositional/unction because / and g are, and

(b) we have to prove thai ... E X.~ 1'; iff h(...) is true.

i. Assume ... E X.~ Yj. Let % E X.; then J(x) E PROP because I E PF and
al'p("', x) E Y, because ... EX.=> 1';. g(app(... , x» is true because g intemall/l
defines Y,. Hence lex) E PROP and J(x) E TRUTR implies g(app(z, x)) E

TRUTII. lienee I(%):l g(8pp(",,%» i$ true. But this holds lor every x, hence
Vx(J(x) :l g(al'p(z, x») is true. Hence h(z) i$ true.

ii. Assume h(z) is true. z E :Fo, a/course. Let x E X .. then J(x):l g(app(... ,x»
is lrue. Dut f(x) is true because x E X,. So g(8pp(""X» i. true, and
app(z,x) E 1';, sinceg intemallJl defines Y. Hence:r E X,=>Y,.

lIence z E X,=>y' ~ h(...) is 'rue.
o

Now that we know Dom, is the domain of internaUy definable collections, we can write X =>Y
using I X and Iy. the characteristic Cunctions of X and Y:

X=>}' = (x E:Fo: Cor aU x'[/x(",'):> /y(app(""",'»))}

Nominalization, Predication and Type Containment 25

/)0,"" on the other hand, involves domains which are not internally definable. For example,
the two basic domains PROP and TRUTH cannot be internally defined. In fact, according
to 'farski's theorem on the undefinability of Iruth, we cannot have a propositional function
in the object language which internally defines trutb; this implies that we cannot have a
propositional function which internally defines propositions; see [Acz80J for discussion.

It might be asked whether the existence of judgements like fJ-l: 0:1 means that we have in
errect committed ourselves to the internal definability of Iruth. The first point to note is that
typing statements are not propositions in t:.~, but judgements aboul the language. Second,
we have no way of telling for an arbitrary expression a whether the judgement fl-E a : I
holds. In particular, since contexts f are finite, they will not necessarily determine the type
of an arbitrary variable.

Recall that app is the functional in the Frege structure which corresponds to app in the lan
guage of t:.--<. We saw that in a standard Frege structure, fl '" {f: fo f o} is the collection
of all functTons from fa to fa, and contains a subcollection PF of unary propositional func
tions. We also saw earlier that ~ is a bijective map from fl to SET. What we now have to
check is that, as a special case of Definition 6, there is an appropriate domain fo'-+PROP in
side fa which will contain the nominals of propositional functions. In fact (foL--> PROP) '" SET

(easy to prove).

Our next lemma illustrates the fact that the domains constructed above do indeed model the
types in our language.

Lemma 4 If X" Y, are any domains in Doml, then (X,=>Y,)~fo.
The proof is trivial.

o

In other words, every function in Dam) is an object. This enables us to interpret self
a.pplication and nominalization.

Lemma 5 If X is any domain and Y. is in Doml then (X'-+ Y.)~X.
The proof is trivial.

Lemma 6 If X" Y" Y.' are in Domb then Y.~Y,' implies (X.=>Y,)~(X,=>Y,').

o

Proof If x E X,=>Y" then Vx' E X"app(x,x') E Y" by Definition 6. Since Y,~Y,', il
follows that for all x' E X"app(x,x') E Y,' and so x E X.=>y,'. o

Lemma 7 If x, Y" Y,' are domains such that Y" Y,' are in Dam., then Y,C;Y,' implies
(X L--> Y,)<;;(X L-> Y, ').

Proof Same as above.
o

Lemma 8 If X"X.' and Y, are in Doml, Ihen X,~X.' implie8 (X.'=>Y,)<;;(X.=>Y.).

Proof If x E (X.'=>Y.), Ihen by Definition 6, for all x' E X/, app(x,x') E Y,. Since
X,~X,', then for all x' E X"app(x,x') E Y •. Therefore x E X.=>Y,.

NorninaJization. Predication and Type Containment 26

o

A modd for £-:, is a 6-tuple M =' (F. =>. '-+.I. D. gl. where

I. :F is a Frege Structure.

2. => and are defined as above.

3. I is an interpretation function which takes any constant of kind" to an object in D~.
and takes .lto the element 0 in PROP,

4. D is a funclion which maps types into domains of M as follows:

(a) TJ. =' :Fo

(b) Dr> =' rnop

(c) V, =' TRUTH

(d) v _ { Vo~ DT , if DT E Doml
('" T) - V o* Dr if D" E Dom. and DT E Dom,

(e) D(" T) = {f: I is an F-funclionalsuch that for all:l: E Vo./(x) E Dd.

5. 9 is an ", •• ignrnent function which takes any variable of type" to an objed in D".

Note that Dom, n Doml is empty and that Dom. will inte.p.et np-types which are not fp
typcs. among others. Dom, will interpret the (p-types. among othe.s.

Since we do not allow vari.bles to range over F-(unctional •• the interpretation fundion I is
suRident to dete.mine the denotation of functors.

We now define a valuation function [) which given an expression a and an assignment 9
yields a value in Dom) U Dom2'

1. (elM." '" I(c)

2. [:tIM." = g(:I:)

3. (app(a.!1)JM.g = npp«a)M,g.li1)M,g)

4. IU{a))M.g =1 (aIM .• 1
5. (>'x:O'.'PIM .• '" >'1. where I E F. and 1(0.) =' 1'P]M,g(a/z) for all 0. E V"

6. (''PIM.g = ~(rpIM.g
7. lop" '/'1M .• = lopJM.,I\I.pJM."

8. lop V V'IM." '" IrpJM.,vlv'JM,g

9. lop:> VJIM.p = l'I'IM .. ;:)lvJ]M."

Nomina\iza\ion, rredication and Type Containment 21

10. [Vx:<T.'I'J.<.i., = "If, where I E 7", and ita) == (<rIM..,lfl/rl if a E Du, and I(a) ==
() otherwise

11. (3.1::u.'I'],\.-I .. == 3f, where / E 7", and Ita) == I'I'JM..,[II/%) if a E Du , and /(11) ==
o otherwise

It will be obsen-ed that these valuation clauses depend on the existence of the appropriate
rl1nctiono.ls (e.g., app,~, 1\, V, "1,3) in the Frege .tructure. It would be straightforward to
convert the clauses for propositions into truth-theoretic definitions, along the following lines:

8' ('I':J V']M .. E TRUTH {==} ''''JM ... E TRUTH whenever l'l'lM ... E TRUTH

9' IVx:u . ..,lM,g E TRUTH -¢=> (IP)M,g[II/%) E TRUTH for all a E Du

Lemma 9 D«7, T) == (Du '* Dr)~ De i/ Du , Dr E Doml

Proof Obviousby Lemma -4.

LCII .. nn 10 D(<1, .)<;D<1 i/DT E Do~

Proof If Dr E Dom., the .. D(u, T) == (DuY> Dr)~Du by Lemma 5 .

Lcmmn 11 For a .. " type 17, Du is either in Doml or in Dam,.

Proof b" inducfion on tile cons/ruelion 0/ 'ypes.

• II a == p, I, or e, then obvious.

• If" = (al. a.), where the property holds lor 171 ond 172, then olso obvious.

Lemma 12 DaC;De lor any Iype 17.8

Proof B" indUe/ion on a.

• 17 i. base 'llpe (i.e., e,l or p). Ob";01l8_

• Assume a '" (al,u,), where Du,~De ond Dq2~De.

o

o

o

Case 1 Da == Dal~Du,. Then Dq<;Du, by Lemma 10. Since Do, ~De, by induc
tion hypothesis, we have Du~De.

Cnse % Do = DUI,*/Ja •. Then Do~/Je b" Lemmo 9.
o

"Of C(HIUle, the dom;\in rOt (n - f'1)) is Bot contained In De; but this fonows (rom the bet ""d (Tl _ ,.,)

is not a type bal a meblype.

Nominalizalion, Predication and Type Conlainment

(.ctntnn 13 If o:s r. lIten Vo !;; Dr.

Proof

(e~) Case o~ e.
DIY !;; De always hold .• , by Lemma It.

(" ~) Cn ... t :S ".
V. ~ VI" sillce TRUTH ~ PRO!'.

(Ran~) Case rl ~ r,.

1. If V rl , Vrz E Vom. Ihen use Lemma 7.

2. If Dr" DT, E VOlnl then use Lemmo 6.

3. It carmol be Ihe caSe thaI DTI E Voml and Dr, E Dom,.

28

4. If Dr, E Dom, ond Dr. E Doml then D(o, T,) '" (Do'-' lh.) ond D(o, T,) =
(lJo* Dr,). 1/ is en"11 10 check (D,,--. D rl) c (D,,=!> Dr,).

(ld~, Tmns ~, Anli~) Obvious.

(Prup ~) r ~ I' implies D(IY, T)~ DIY. Tltis. holds since D(a, r) '" (Da Dr)~ Da , by
l,cnullo 5.

(Fir:s) T ~ I' implies D«IY,r),T) '" D(a,T)' We need to show Ihol (Da'-+ Dr)'-+ Dr '"
Do'-+ Dr· Frum the proof of (Prop ~}above, it follows that D«a,T),T)!; D(a,T)' The
.-everse inclusion is estoblished 08 fo/l0tD8. Let II! E (D" Dr). This impliu thai for
all ",' E (D" Dr K Da , nPP(II!,II!') E Dr. Hence II! E (D(f DT) Dr.

(Dom j) u, ~ U2 implies D(""e)~ D(,,\o,,). By the induclion hypothesis, "d u, implies
DUI (, [Ja,. V. is in Daml and as '"' rutricl types 80 that a domain type is never
strict/y less Ihan the range Iype, Ihen D"I and D", must be in Dom,. Hence by def·
inition, V(a"e) = V",=!> D •. Let II! E D(", • .,). Hence II! E (V"z,*V.). So", E:Fo

and for all ",' E V""lIpp(II!,II!') E D. and D(a" e) '" D"j'* D •. Since D", ~ D" •• it

follows thai II! E:Fo and for all.,' E D(fl.npp(", • .,') E f} •. lienee II! E V(fI=!>D •.
o

Theorem 1 If n-n:a, where V(f E Doml then (aJM E D(f. ,g

Proof

• If a i., n conslnnt c or var'iable %, this u obvious from the definition of I and g.

Nominalization, Predication and Type Containment 29

• I,d fl.' " "'''e Ihe properly holth for ezpressions 0, P. and shollJ Ihal it holds lor appro, P).
i'I-nPI,(o,p):r iff n-o:(u, r) and n-p:o. So (OIM.o E D(u, r)' (PIM .• E Du , and

lapp(o'P))M,g = app((oIM"" [P1M,o)' The loiter belong. to Dr. as D(o, r) = Do
=> Dr .

• Let us prove px:u.oIM ... E D(o,r)' where rho r np-typc,r fE 0 -< r, and by induc

lion hypothesis (oIM,.la/ol E Dr for a/l z:o.

SinceD(o,r) isinDomtlhenD(o,r) =Do =>Dr . Hence(Ax:o.aIM ... E.1'o, andfor

all a E Do, app«(Ax:u.oIM,II' a) = app(~f,a) = lea), trhere lea) = [aIM,gral_] E
Dr. Hence [Ax:o.aIM E Do=>Dr . ,.

o

4 A Fragment of English

The English fragment that we consider is intentionally simple,9 and will focus attention on
issues of polymorphism and self-application. One possible way of setting up the grammar
would be to follow Montague in using tbe standard fractional notation of categorial grammar,
together with a homomorphism which maps the categories into semantic types. However,
for our purposes, it would be preferable to build the syntactic categories directly on top
of the types. Consequently, the categories of the grammar will consist of decoraled types
and metatypes of C-<; that is, types and metatypes annotated with phrase structure labels.
The latter will provide us with the power'to draw somewhat finer distinctions of the kind
required for English syntax. For example, intransitive verbs, adjectives and common nouns
will all belong to the type (e,p); however, thls type will be annotated as (e,p)v, (e,p)A, or
{e,p)N, respectively. The list of admissible labels is the fonowing: S (sentences), V (verbs),
N (nouns), CN (common nouns), A(adjectives), P (prepositions), Adv (adverbials). In some
cases, we modestly extend these labels with features. For example; we use 'Plto]' as the label
for prepositional phrases whose head is the word to. We use X as an undersperified category
label; thls will be useful when we want to give a maximally general decoration to a type.

Whenever '1 is a kind, and C is a category label, then uC is a decorated kind. The rules
given previously for constructing a complex kind Can be generalized in the obvious way to
decorated kind. We use the symbols's, I, r' as metavariables ranging over decorated kinds.
It is obvious that we can simply strip the labels off a decorated kind ~ to recover our original
kind. We use 'Os' to denote the stripped-down version of s, where O(s, f)C = (0 .. , °/), and
O(s --+ rf == (Os --+ °1).

An English grammar object will be a triple

(w,s,o)

9In particular, we do not bed quantified Doun phrases. It would be straightforward to implement [ChT88]'s
treatment of lype-flhifting for quantifier arguments. It it: unclear to UII. however, "hat the appropriate analysis
of scope would be in the current settingj [Moo90]'s approach Seems promising.

Nominalization, Predication and Type Containment 30

where 111 is a phonological (in practice, orthographic) form, 3 i. a decorated type, 0 is an
expression of C-(, and moreover rf-E o:·~, with E as specified before ..

As a typographical convenience, we shall also employ the following vertical format for these
triples:

111

S

<>

For example, the representations of the words John and kiss are:

(19) John
eN

john'

kiss
(eN,(e,p)V) V
kiss'

Thus, kiss has the type of a verbal expression which will combine witb something of type eN
to make something of type (e,p}v. The decorated type therefore combines standard categorial
information, which would usually be notated V PIN P (i.e., a functor ... hkh combines with
all NP to make VP, together with the semantic type that such a category would be mapped
into.

The rules of type inference are like those for C-(, except that we add the following provisos,
where s, t are decorated types, X, Yare category decorations, and ~" is a partial order over
category labels:

Definition 9 (Containment oC decorated types)

2. ~" is reflexive, transitive and ontisymmetric.

3. X:::>"X.

4. P:::>"N.

It will be noticed that the type assigned to kiss, namely,

appears redundant in the sense that not only is the type as whole speciJied to be V, but the
result type, (e,p}V, is also so specified. Yet inasmuch as kiss is the head of verb phrase,
it should be predictable that the result type has the same category decoration as the whole
complex type. In response to this observation, we adopt the convention that if the result
type lacks a decoration, then it can be inferred from the decoration of the enclosing decorated
type; in other words, a type like (21) is shorthand for (20).

Nominalizalion, Predication and Type Containment 31

We could make this more explicit by means of a modified inference rule of the following sort
(where u is restricted to undecorated types):

(22)
O:(8,0')C {J:"

app(0, {J):uc

In fact, we will not adopt (22) exactly as it stands, but ... iII propose a further slight modifi
cation in the next section.

Our grammar for English is non-directional, in the sense that we do not encode whether a
functor seeks its argument to the left or to the right. Modifying the notation to allow this
would be trivial, but would add an extra degree of complexity which would detract from the
main thrust of the exposition. For convenience, we shall simply write the premisses of a type
inference rule in the correct left-to-right order, stipulate that the string in the conclusion is
the right of concatenating the strings of the premisses. This is shown in the following schema
for type inference in the fragment, (where .~, indicates concatenation):

Definition 10 (Inference Schema for Englisb)

(WhShOt) (W2,82,02)

(W,W2, 83, (3)

is valid just in case the cOrTesponding inference

is dErivable for the undecorated types 0 8), ·82, and· "3.

4.1 Argument Asymmetries

A number of authors have claimed that there are semantic asymmetries between subject and
object argument •. Marantz (MarS4), for example, hu noted thILt the cholee of direct object
can significantly alTect the semantic role played by the snbj<>ct, whereas choice of subject has
no such effect on the role of the object_ This is illustrated in the contrast between (23) and
(24):

(23) a throw a baseball

b throw one's support behind a candidate

c throw a party

Nominatization, Predication and Type Containment 32

(21) a The player threw NP
b The I,olit.ician threw NP

c The social directory threw NP

A second a-,ymmetry is that it is a matter oClexical idiosyncrasy whelher a verb takes a direct
ohj~ct, indirect object, and 00 on, where,,"" by and large, it is entirely predictable that verbs
("I leMI in English) t"ke a "ynt"ctic subject.

In the current context, a third asymmetry can be noted. Whether a verb is tensed affects its
"bility to combine with a subject, hut Dot it. ability 10 combine wilh objecl argument. and
complements:

(25) " to kiss M",y/kissed Mary

b • John to kiss Mary/John kissed Mary

The semantic framework we have developed gives us an account, though not a complete one,
of this third fact. For there are t ... o distinct ways in which a syntactic functor can combine
semantically with an argument: either via the opp relation, or by normal functional applica
tion. Moreover, al'I'is invoked for funclors which we earlier called 'nominal predicatives', i.e.,
expressions which denote objects in the Frege structure domain :Fo; by contrast, expressions
which denote propositional Cunctions live outside :Fo and thereCore cannot act as nominal
arguments. What is lacking stiU is a mechanism which precludes tbe use oC opp to effect the
semantic counterp",t of • John to ki8s Mary.

Let us start by looking at transitive and inhansitive verbs. The base, or nontensed, form of
an intransitive verb like run is translated as a constant run' of ty.,., (e,p)V; M we observed
in § I, such constants denote (a special 80rt oC) nominal objects, not propositional Cunctions.
Simila.r\y, the baM form of a transitive verb such as kiss is translated as a cotistant kiss' of
type (eN,(e,p)v)v, which also denotes a 80rt of nominal object. As we observed earlier, this
decorated type corresponds to a Cunctor category of the form V /N in calegorial grammar;
i.e., something which combines with an N to make a V. By contrast, it is hard to see what
the calegorial equivalent of (e,p)v might be, since we have omilted any mention oC the
argn ment 's syntactic label; that is, there is no syntactic specification for the e component
of the type. Let us adopt the stipnlation that an expression with decorated type (~, t)A is
only a ~yntndic functor if 8 i. itself a decorated type of the form ,H. It then conows that no
expression with type (.,p)V is a syntactic funetor.

This leads U8 to the foJ/owing formulation oC a modified axlom for app within the English
fragment:

Den nition 11

(w .. (.• ,o)C,o,) (IV".,O.)
("'ittJ2, u C , nl'/>(Ot, (2)

is valid just in case s is (I decoroted Iype, and the corresponding infe",nce

NOlllinalization, Predication and Type Containment

!'I-I; od~·.,oL !'I-I; 0,:"6
1"1-1.: 01'1'(0,,0,):0

is derivable for I/.e undecoroled Iype "6.

This licenses derivations like the foUowing:

F,xDmple 1

kiss
(eN, (e, p» VIBASEJ

kiss'

kiss Mary
pV
oPl,(kiss', mary')

33

By contr"st, the foUowing inference is prohibited, since walk has not been categorized as a
syntactic functor:

(26)

john'

John walk
pV

walk
(e,p)V
walk'

opp(walk' ,joh n')

Before pursuing this point further, let us introduces some new notation to indicate the iterated
application of a functor 0 to a series of arguments:

Den "it ion 12 (M ultip!e Application)

EXAmple 2 Assuming give' to be of type (ePllol, (eN, (e,p)))V, we have the following seman·
tic Imnslation for give the CAt to Mary:

(si"e', mary', (the cat)'):(e, p) = app(app(glve', muy'), (the cat)'):(e, p)

The last step in the derivation of Ih;8 example ;8:

give to Mary
(eN,(e,p»v
[give', rnA ry1

the cat
eN

the cat'

give the cat to Mary
(e,p)V
(give', mary', (the cat)']

Nominalization, Predication and Type Conta.inment 34

Since the ,1,,<or31.<1 type for give, namely (eP('.), (eN, (e,p»)V, does give a syntactic spec·
ification of it" argument expreMion., we treat It lUI a syntactic (unctor, and use app at the
semantic level to combine it with itB object arguments to Mary and the cat. lIowever, the
resulting IV phrase has type (e, p)v. and this as we saw above cannot combine directly with
a subject NP according to our rules.

\Vhat we must do now is make explicit the way in which tense is introduced. From a semantic
point of view, it "'0,,1d be e jest to take a phrlUle like (untensed) give the cat to Mary and
iliaI' it into the (tensed) phr e gives the cat to Mary. Dut (rom a morphological point o(
view, it would be more straightforward to have a lexical rule, mapping base form give into
tensed gives. We will side with morphological economy, and elTed the change at the lexical
level; for simplicity, we will restrict attention to tbe mapping from base form verb. of type
.~\,(RASEI into third person singular present tense verbs of type sV(351. Thus, We have the
following inference schema (where las i. a (unction which supplies the third person singular
present innection):

Deflnition 13 (Inflection Schemll)

o

("\'("'('.,(e,p» ... » V(BASEJ
0'

135(0)
(.,,,(... (.•• ,(eX -+ p)} ...))v(3sJ
),Xl:o"I ... >':r: n:"sn,u[o',:l:1t" o ,%n]

EXRmpie 3

kiss
(eN, (e,p»V[BASEJ

kiss'

kisses
(eN,(eX -+p»\'(351

.:\x:eY[kiss'. xl

be
((e, p)X ,(e, p)} V(8ASEI

be'

is
«e,p)X ,(ex -+ p»V(3sJ
~x:(e, p).U[be', xl

As a further illustration, we show how a tensed intransitive verb combines with a subject
noun phrase:

Exnmple 4

,

•

l'ominalization, Predication aDd Type Containment

John w,,)ka
eN (eN _. pS)v

john' uw"lk'

John w,,/ks
pS
uwnlk'(john')

3S

In 0\ similar ma.nl\~r t the tensed verbs illustta.t~d above wiD combine with their arguments to
yield tbe following translations:

EXAmple 5

John kisses 1\1nry Imns/ales as

(app(~x:e.U[kis.', xl, mary'»(john') = U[kiss', marY1(john')

John is hnppy lruns/ales as

(opp(>.x:(e, p)Y(he', xl, happy'»(john') = U[he', hIlppY1(john')

To recapitulate lhen, the two different kinds of semantic combination, namely 0PP and stan·
dard function application, are correlated wilh two kinds of arguments in a proposition: on
the one hand, those arguments which in phrase structure grammars are deemed to be subcon
st;tuents of the verb phrase, and on the other hand, the subject. Thi. di.tinction corre.ponds
loosely to lhe one drawn by Williams between 'intern a.! , and 'external' arguments [Wil81),
though it is obviously impossible Cor U8 to follow Williams' daim that tbere are propositions
,,-hieh possess no exlerna.! arguments.

Table 1 summarizes the signmenl DC categories to expression. of English in our fragment.

4.2 Nominalization and Polymorphism

As ,,-e indicated at the beginning of thi. paper, we do not employ a rule of nominalization
as such_ nather, some expressions-the on"" categorised as 'nominalizable' in Table I-have
Iduds wl.icl. are contained in the type e ofindividua.! •. Tbe type inference rule (Contain) tben
comes into play to derive the more genera.! type. TWs i. illustrated In the next derivation:

Norninalization, Predication and Type Containment

fujo,."",/ Nn"" I 1'ypc IJnsic Expt'(.. ions

NP
CN"",",
CNmnu

ADJ
1'1'
TV

TTV

IV
S
S'
IVin,

Oct
VI'
AdSen!
AdVerb
I'
AdNolll
COMP

(27)

Nomina.lizable Expressiolls
eN John, Mary
{e,p)CN dog, man, woman, park
(e,p)N water, gold, fun
(.,p)" happy, drunk, old
«" pIX ,(e, p)X)P .,
(eJtl, {e,p»V kis., seek
{eX ,(e,p»V believe, know
{{e, p}VI'o) , (e,pJ)V try, want
«e,p)X ,(e,p» be
(.1'1101, (eN, (e,pmV give, !!fend
«e, p)Vllo), (~, (e, pmv force, believe
(e,p)V run, walk, h,lk
ps .,
pS(comp) .,
(.,p)VI"" .,

Non-nominalizable Expressions
«e, p}eN --+ eN)D •• the. a. 80me
(ex --+ pSI .,
("s --+ "s) Ad. necessarily, possibly
«_,p}v --+ (e,p}v}"~. slowly, rudely
(eN --+ «e,p)x,(e,p)X)t in, with
«e,p)N --+ (e,p}N)A former
«e,p)v --+ (.,p)V!"',) to
("s --+ "slcomp) that

Table 1: Categories a.nd expressions in the fragment

fun
(e,p)N
fun'
---'I Contain}

run
eN

fun'

is
«e,p)X,(e p»v
.h::{e,p)Y[b,,', x)

fun
(e,p)N
fun'

----------'(app)
is run
(ex --+ "S)v
U[b,,', fun1

---------------j(F'uncl)
fun is fun
1'~

U[be', Cun1(Cun'}

36

Nominalization, Predication and Type Containment 37

We have chosen to analyse Cun as a mas. noun rather than an adjective, on the grounds that
collocations involving noun modifier., as (28a), seem significantly belter than those involving
adjectival modifiers, as (28b):

(28) a It wa..n't much fun.

b ?It was extremely/very fun.

Nothing crucial hangs on this decision. Nevertheless, it follow. on our account that an mass
nouns can occur as nominal arguments. They can also occur as predkative complement. by
virtue of the polymorphic type assigned to be.

As another example of polymorphism, consider tbe bebaviour of prepositional phrases. We
would like to be able to treat them as IV and eN modifiers, as illustrated below (for brevity,
we have omitted the (Contain) step which maps (e,p)V to (e,p)X):

(29)

in the park
((e,p)X, (e,p)X)P
[b.', (the park)')

walk in the park
(e,p)V

walk
(e,p)V
walk'

[in',(the park)"walk1

in the park
((e,p)X, (e,p)X)P
[in', (the park)')

man in the park
(e,p)V

man
(e,p)N
man'

[in', (the park)"man1

We would also like prepositional phrases to act like nominal arguments. Tbe desired result i.
achieved as follows (again, we have omitted tbe (Contain) step whicb maps (e,p)P to (e,p)N,
using the condition Pj· N given in Definition 9):

,

Nominalization, Predication and Type Containment

(30)
give
(ePlto), (eN, (e,p»)V
give'

to Mary
«e,p)X, (e,p)X)Pllo)
(to Mary),
--------(Contain)

to Mary
eP[lo)

(to Mary),
-------------.-:..-1(app)

give to Mary
(~,(e,p»V
U(give', (to Mary),1

4.3 Comparison with the ChierchiacThrner Fragment

38

We conclude ith some brief remarks relating our approach to the Iragment proposed by
[ChT8S].

First, it will be observed that there is a broad correspondence between our type '(e,p)' and
their sort 'n/', standing for nominalized functions, and to this extent the two Iragments are
quite similar. However, (ChT88)'s semantic domain Dnf is the nominalization of all functions
from e to e, rather than those from e to p; i.~., it corresponds to the whole codomain oI "',
not just to the collection SET.

Second, for Chierchia and Turner, only expressions of type nf are nominals. Since their
nominalization operator is exclusively defined {or expressions oI type (e, e}IO, and they do not
have any kind oI type containment for functional types, they do not allow transitive verbs
like love and ditransitives like give to be nominalised. Yet examples such as (31a) (from
[Par86]) and (3Ib) show that nntensed transitive verbs enter into the same nominal patterns
as intransitives:

(31) a To love is to exalt.

b To give is better than to receive.

By contrast, we have (eN, (e,p»Vlto) ~ eVI'o), and can thus accommodate such data straight·
forwardly.

l°This type corre1!pond!!l to our metatype (e: _ e).

,

•
Nominalization, Predication and Type Containment 39

References

{Acz80} Aczel, P. (1980) 'Frege Structures and the Notions of Proposition, Truth and Set.'
In Barwise, J., Keisler, H. J. and Kunen, K. (eds.) The Kleene Symposium, pp31-59.
Amsterdam: North Holland.

{Bach79} Bach, E. (1979) 'Control in Montague Grammar.' Linguistic Inquiry 10, 515-531.

{Bach80} Bach, E. (1980) 'In Defence of Passive.' Linguislic8 and Philosophy 3,297-341.

[Bea82j Bealer, G. (1982) Quality and Concept. Oxford: Clarendon Press.

{Bea89} Bealer, G. (1989) 'On the Identification of Properties and Propositional Functions.'
Lingui . .!ics and Philosophy 12, 1-14.

{CW85] Cardelli, L. and P. Wegner (1985) 'On understanding types, data abstraction and
polymorphism.' Computing Surveys 17,471-522.

{Chi84} Chierchia, G. (1984) Topics in'the Syntaz and Semantics 0/ Infinitive. and Gerund •.
Unpublished PhD Thesis, University of Massachusetts.

[Chi85} Chierchia, G. (1985) 'Formal Semantics and The Grammar of Predication.' lin
guistic Inquiry 16, pp.417-443.

{ChT88} Chierchia, G. and R. Turner (1988) 'Semantics and Property Theory.' Linguistics
and Philosophy 11, pp.261-302.

[CG89} Curien, P.-L. and G. Gbelli (1989) 'Coberence of Subsumption.' Unpublished ms,
Liens (elms), Paris.

[Fre77} Frege, G. (1977) 1hmslations from the Philosophical Writings 0/ Golllob Frege.
Geach, P. and Black, M. (eds.), 3rd Edition, pp56-78. Oxford: Basil Blackwell.

!IlHP87] Harper, R., lIonsell, F., and G. Plotkin (1987) 'A Framework for Defining Logics.'
Second Annual Symposium on Logic in Computer Science, IEEE, pp.194-204.

[Jac90] Jacobson, P. (1990) 'Raising as Function Composition.' Linguistics and Philosophy
13, pp.423-475.

!Mar84] Marantz, A.P. (1984) On Ihe Nalure oJ Grommatical Relations. MIT Press, Cam
bridge, Massachusetts.

{M-L79J Malin-Lof, P. (1978) 'Constructive Mathematics and Computer Programming.'
In Logic, Methodology and Philosophy oJ Science, VI, 1979, pp.153-175, North
Holland.

{MiI78] Milner, R. (1978) 'A Theory of Type Polymorphism in Programming.' Journal 0/
Computer and System Sciences 17, pp.348-375.

{Mit88] Mitchell, J. C. (1988) 'Polymorphic Type Inference and Containment.' In/ormation
and Computation 76, pp.211-249.

•
Nominalization, Predication and Type Containment 40

[Mon731 Montagu~, R. (1973) 'The proper t!eatment of quantification in ordinary English.'
In Jlintikka, J., Moravcsik, J. M. E. and Suppes, P. (eds.) Approaches to Natural
Language. Dorclrecht: D. Reidel. Reprinted in R. H. Thomason (cd.) (1974), Formal
Philosophy: Selected Papers of Richard Montague, 1'1'247-2;0. Yale University Press:
New Haven, Conn.

[Moo90] Moortgat, M. (1990) 'Discontinuous Type Constructors.' Unpublished paper pre
sented to Workshop on Categorial Grammar and Linear Logic, 2nd European Sum
mer School in Logic, Language and Information, Leuven, August 1990.

(Pars79] Parsons, T. (1979) 'The theory of types and ordinary language.' In S. Davies and
M. Mithun (eds.) Linguistics, Philosophy and Montague Grammar, University of
Texas Press, Austin.

(PR83J Partee, D. H. and M. Rooth (1983) 'Generalized conjunction and type ambiguity.'
In R. Bauerle, C. Schwarze, and A. von Stechow (eds.) Meaning, Use, and Inler
pretation of Language, De Gruyter.

[Par84) Partee, D. H. (1984) 'Compositionality.' In F. Landman and F. Veltman (eds.)
Varieties of FONnal Semantics: Proceedings of The Fourth .4 mstemam Colloquium,
Sept 1982 Foris Press, Dordrecht.

[Par86} Partee, D. H. (1986) 'Ambiguous pseudo-clefts with ambiguous be.' In S. Derman,
J. Choe and J. McDonough (eds.) Proceedings of the Siztunth Annual Meeting oj
the North Easlem Linguistic Society, University of Massachusetts, Amherst.

[PS87) Pollard, C. and /. A. Sag (1987) Information-Based Syntaz and Semantics, Vol. 1.
CSLI Lecture Notes, No. 13.

[RP82] Rooth, M. and D. H. Partee Mats Rooth 'Conjunction, type ambiguity, and wide
scope 'or'.' In M. Barlow, D. Flickinger and M. Westcoat (eds.) Proceedings of the
Second Wesl Coast Conference on Formal Linguistics, pp353·362.

[Se076) Scott, D. (1976) 'Data Types as Lattices.' SIAM Journal of Computing, 5, 522-587.

[Tho76] Thomason, R. II. (1976) 'On the Semantic Interpretation of the Thomason 1972
Fragment'. Distributed by Indiana University Linguistics Club, Bloomington, Indi
ana.

[Tur87] Turner, R. (1987) 'A Theory of Properties.' Journal of S~bolic Logic 52, 63-86.

[WiI81) Williams, E. (1981) 'Argument Structure and Morphology.' Linguistic Research 1,
81-114.

In this series appeared:

90/1 W.P.de Roever
H.Barringer
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

DynamiC process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 11 O.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p. 23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 I.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 I.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.I. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
I. v.d. Woude

91/11 RC. Backhouse
P.I. de Bruin
G.Malcolm
E.Voermans
I. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
KM. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
KM. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 KM. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compoSitional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
lS.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement. p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculUS, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity cheCking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

92/18 R.Ncderpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bcrgstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamarcddinc

92/22 R. Nedcrpclt
F.Kamareddinc

92/23 F.Kamareddinc
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processcs:
ACP with Gcnerative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-founded ness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

I

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

	1. Introduction
	1.1 Hierarchical Types
	1.2 Individuals, properties and functions
	2. The Language ...
	2.1 Judgements and Type Containment
	2.2 Type Inference Rules
	2.3 Equality Axioms
	2.4 Russel's and Curry's Paradoxes
	3. Models of ...
	3.1 Frege Structures
	3.2 Domains
	4. A Fragment of English
	4.1 Argument Asymmetries
	4.2 Nominalization and Polymorphism
	4.3 Comparison with the Chierchia-Turner Fragments
	References

