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Abstract. An extension of Petri nets with a statechart-like AND/OR
state hierarchy is defined and studied. The resulting net variant, state-
chart nets, is shown to coincide, under certain conditions, with a strict
subclass of safe nets in which concurrency is structured. Next, syntac-
tic constraints on statechart nets are defined that guarantee absence of
deadlocks and livelocks. Such syntactic constraints are hard to give for
ordinary Petri nets. Together, these results give more insight into the
expressive power and usefulness of AND/OR state hierarchies, and into
the differences between statecharts and Petri nets.

1 Introduction

Petri nets [19,21] are a popular formalism for modelling concurrent systems.
One of the most interesting subclasses of Petri nets are safe nets, in which each
place holds at most one token during execution. Properties like reachability and
deadlock can be more efficiently decided for safe nets than for ordinary nets [4].
Moreover, safe nets are more easy to understand and implement than ordinary
nets.

Safeness is a property that is decided by computing the semantics (reachabil-
ity graph) of a Petri net. The complexity of deciding safeness or k-boundedness
in general is PSPACE complete [9,16] and takes in practice exponential time.
Fortunately, there are ways to ensure safeness, thus rendering a safeness check
superfluous. For example, in condition/event nets [21] and elementary nets [22]
a transition cannot fire if one of its output places is filled. The standard Petri
net firing rule does not have this restriction. Condition/event and elementary
nets ensure safeness in a semantic way.

Another, less obvious, way to ensure safeness is to use an AND/OR hierarchy
of states, which is one of the core features of statecharts [11]. AND states denote
concurrency whereas OR states denote sequential behaviour. States can only be
concurrent at the semantic level (so marked with a token in the same state)
if they are specified as potentially concurrent in the syntax using an enclosing
AND state. In particular, a state cannot be concurrent with it self. Thus, an
AND/OR state hierarchy ensures safeness in a syntactic way.

Apart from the fact that every statechart is safe by definition, the expressive
power of concurrency models with an AND/OR state hierarchy is still unclear.
For example, while condition/event and elementary nets are known to correspond



to safe nets in which every enabled transition has none of its output places filled,
it is still unclear what class of safe nets is induced by an AND/OR hierarchy
of states. Also, it is unclear what exactly the benefits are of using an AND/OR
state hierarchy.

This paper defines and studies an extension of Petri nets with a statechart-
like AND/OR state hierarchy imposed on places. The resulting net variant,
statechart nets, uses a firing rule that closely resembles the basic statechart
execution semantics. In contrast to an enabled Petri net transition, an enabled
statechart net transition might remove tokens from non-input places, thus vio-
lating the locality principle which states that only tokens in input places can be
removed [6]. Despite this major difference, we show that under certain conditions
statechart nets coincide with a strict subclass of safe nets. Nets in this subclass
have a restricted form of concurrency, since cross-synchronisation between par-
allel branches does not occur. Thus, concurrency in these nets is structured, in a
similar vein as goto-less programs are structured. This result gives more insight
into the expressive power of AND/OR state hierarchies.

Next, the paper defines syntactic constraints on statechart nets that guar-
antee absence of deadlocks and livelocks. Such syntactic constraints are hard
to define for ordinary Petri nets. Thus, one benefit of using an AND/OR state
hierarchy is that it enables the formulation of such constraints. Under mild
conditions, the constraints are sufficient to guarantee that for every pair of po-
tentially concurrent places there is a reachable state in which these two places
are indeed concurrent. This allows for an efficient syntactic decision procedure
for reachability properties.

The remainder of this paper is organised as follows. Section 2 recalls some
standard Petri net definitions. Next, the syntax and semantics of statechart nets
are defined in Section 3. Also, structured concurrency nets are defined as the
subclass of safe nets for which an equivalent statechart net exists. In Section 4
we compare structured concurrency nets with existing net subclasses. We show
that structured concurrency nets do not coincide with any of these. This justifies
their introduction as separate net subclass in this paper, and yields more insight
into the expressive power of an AND/OR state hierarchy. In Section 4 we also
study some proposed statechart extensions [12,23] that relax the AND/OR hi-
erarchy, and show that the resulting statechart net variants do not coincide with
a subclass of Petri nets. In Section 5 we define structural constraints that guar-
antee absence of deadlock and livelock in statechart nets, making an expensive
semantic analysis of these properties superfluous. Section 6 ends the paper with
a discussion of related work and conclusions.

2 Preliminaries

We recall some basic definition of Petri nets [21]. A Petri net (place/transition
net) is a tuple PN = (P, T, F, My) where

— P is a finite set of places,
— T is a finite set of transitions, PN T # &,



— FC(Px T)U(T x P) is a finite set of arcs, the flow relation, and
— My : P — N is the initial marking.

Given a transition ¢, preset ot = {p € P | (p,t) € F} is the set of input
places of ¢, whereas postset te = {p € P | (t,p) € F } is the set of output places
of t. We require that both e¢ and te be nonempty. Furthermore, we require the
net be connected: for any two nodes n,n’ € P U T, there should be a path
ng, N1, .., Ny, where ng = n and n,, = n’ such that for every 0 < i < m, either
(ni7ni+1) € For (ﬂ,qu,’fli) e F.

Marking M : P — N enables transition ¢ if and only if all of ¢’s input places
have a token: for all p € ot, M(p) > 1. If ¢ fires in M, marking M’ is reached,

written M -5 M, where for every p € P:

M(p)—1,if p€et)\te
M'(p) =14 M(p)+1,if p€te) ot
M(p) , otherwise.

A marking M’ is reachable from M if and only if there is a sequence of transitions
ti,t, .., t, such that M; % My 2 Ms .. M, - M,., where M; = M and
Mp+1 = M'. A marking M is a reachable marking of a Petri net (P, T, F, My)
if and only if M is reachable from Mj.

A Petri net is safe if and only if for every reachable marking M and every
place p, M(p) < 1. A net is bounded if the set of reachable markings is finite.

We only consider nets that have an initial marking that is safe, i.e. My :
P — {0, 1}, so each place is initially filled with at most one token.

3 Statechart nets

Statechart nets extend Petri nets with a statechart-like set of composite AND/OR
nodes which are arranged in a hierarchy. The leaves of this hierarchy are places.
This section formally defines the syntax and semantics of statechart nets. In the
formal definitions, we borrow several concepts from statechart theory [14, 20,
13]. We show that if a statechart net satisfies certain syntactic constraints, it is
bisimilar to the underlying Petri net.

Statechart nets can be considered as a simplified, less expressive version of
statecharts [11]. The main difference with statecharts is that statechart transi-
tions can connect both BASIC nodes (i.e., places) and composite (AND/OR)
nodes, while in statechart nets a transition only connects places. Another differ-
ence is that statecharts typically have a reactive step semantics, whereas state-
chart nets have a token-game semantics, which is not reactive [8].

3.1 Syntax
A statechart net is a tuple SN = (P, T, F', AND, OR, children, Cy) where
— (P, T,F,Cyn P) is a Petri net,



— AND is a set of AND nodes,

— OR is a set of OR nodes,

children : (AND — OR)U(OR — (PUAND)) is a function that defines for
each AND/OR node its immediate subnodes, and

— Cy € PUAND U OR is the initial configuration.

Configurations are explained in Section 3.2.
In the sequel, we use the term “nodes” to refer to both places and composite
nodes, and let N denote the set of all places and composite nodes:

N £ PUAND U OR.

We require that sets P, AND and OR are pairwise disjoint, so for example
a place cannot be an AND node. Furthermore, we do not allow that an AND
(OR) node has an AND (OR) node as subnode. This is not a severe restriction:
an AND (OR) child ¢ of an AND (OR) node n can be eliminated by letting the
children of ¢ become children of n.

The children relation must induce a hierarchy on nodes. To define this for-
mally, we need some auxiliary definitions. Denote by children* the reflexive-
transitive closure of children:

children™(n) = (U, children;(n)
where

children®(n) = {n}
children™'(n) = U children®(n)

n’€children(n)

If n' € children*(n), we say that n is ancestor of n’ and n' is descendant of
n. Two nodes n,n’ are ancestrally related if either n is an ancestor of n’ or n’
an ancestor of n.

The next three constraints ensure that the children relation arranges places
and composite nodes in a hierarchy [24]:

— There is one single composite node root that does not have any parents. For
technical reasons, we require that root has type OR.

3, n € OR : n = root and for all n’ € AND U OR : n & children(n’).
— Node root is ancestor of every node in the statechart, including itself:
N = children*(root).
— Every node, except root, has one parent:

for all n € N, n # root implies 3, n’ € N : n € children(n’).
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Fig. 1. Example statechart net (a) and its node hierarchy (b)

By the last constraint, each composite node or place n has a unique parent.
We write parent(n) to denote the composite node n’ that has n as child. So
n’ = parent(n) iff n € children(n’).

We use the standard statechart notation for visualising AND/OR hierarchies,
so OR children of AND nodes are separated by a dotted line, and the name of
an AND node is specified in a box attached to the node [11]. For example, Fig. 1
shows a statechart net and its AND/OR hierarchy. The AND node has name
al. Note that root is by default not shown in a statechart net.

3.2 Semantics

For statechart nets, a marking is a set, consisting of places, AND nodes and
OR nodes. However, some sets can be invalid. Every valid marking, called a
configuration in statechart terminology, must satisfy several constraints.

Before we define these constraints, we need some additional statechart con-
cepts. The lowest common ancestor of a set X C N of nodes, written lca(X), is
the most nested node n € N that is an ancestor of every node in X:

X C children™*(n)
for all n € N : X C children®(n") = n € children®(n’)

For example, in Fig. 1, lca({p2,p3}) is OR node ol, whereas lca({p3,p4}) is
AND node al.

Given a set X of nodes, lca™(X) is the lowest OR node that is ancestor of
every node in X. For example, in Fig. 1 lcat({p3,p4}) = root, since root is the
OR parent of AND node al.

Two nodes z,y € N are orthogonal if and only if z is neither ancestor nor
descendant of y, and their lca is an AND node. In the example, nodes p2 and p4
are orthogonal, but nodes p2 and ol are not (since p2 is child of 01) and neither
are p2 and p3 (since their lowest common ancestor is an OR node).

A set X of nodes is consistent if and only if for every pair z,y € X, either z is
descendant of ancestor of y, or z and y are orthogonal. Thus, for the statechart
net in Fig. 1 set {p2,p4,01} is consistent.



A configuration is a maximal, consistent set of nodes. Adding a node to
a configuration would make it inconsistent. In the example, set {pl,root} is
a configuration, as well as {p2,p4,01,02,al,r00t}. Configurations are the valid
global states of the statechart.

A configuration C' satisfies the following constraints, for every z € C:

— 2 € OR = |children(z)N C| =1
— x € AND = children(z) C C
— x # root = parent(z) € C.

Like Petri nets, statechart nets change state (configuration) by taking enabled
transitions. A transition ¢ is enabled in configuration C if all its input places are
active: ot C C.

Defining the effect of taking a transition is a bit more complex than for
ordinary Petri nets, since the next configuration has to be valid, i.e., satisfy the
configuration constraints. To ensure this, we need the concept of scope. The
scope of a transition ¢ is the least common ancestor of its preset and postset:

scope(t) = lca™t (ot U te).

Upon taking ¢, all descendants of the scope of ¢ will be left. The configuration
C’ entered by taking ¢ contains places in te, their ancestors, and nodes in the
current configuration C that are ancestors of scope(t):

C" = deomp((C\ children*(scope(t))) U te),

where given a set 5, the default completion dcomp(S) is the smallest set D such
that

-SCD
— if s € D and s # root then parent(s) € D.

While the definition of C’ ensures that nodes below scope(t) are left, it
does not guarantee that C’ is a valid configuration. Transition ¢ might enter
an AND node a only partially by not entering any descendant of some child of
a. For example, in the statechart in Fig. 1, transition t4 only partially enters
AND node al: no descendant of ol is entered. To rule out such a transition, we
require that each transition t be target complete: if ¢t enters some AND node a,
te N children*(a) # @, then t also enters every child of a:

target_complete(t) & ¥ a € children* (scope(t)) :
a € AND A children™(a) Nte # & =
V' n € children(a) : children™(n) N te % &.

Symmetrically, we formulate a constraint specifying that a transition ¢ should
leave an AND node either completely or not at all. Though the execution se-
mantics of statechart nets already enforces AND nodes to be left completely
already, since all nodes below scope(t) are left, this constraint is useful for two



reasons. First, it ensures that the statechart firing rule satisfies the Petri net
locality principle [6]: only places in the preset of ¢ and their ancestors are left.
For instance, transition t5 in Fig. 1 violates this principle: if for example p5 is in
the current configuration, taking t5 will cause the net to leave p5, even though
it is not in the preset of t5. Second, without this constraint, a statechart net
cannot be proven equivalent to its underlying Petri net (see Theorem 1 below).
A transition t € T is source_complete if and only if for each AND node a
that it leaves, i.e., children*(a) N et # &, it leaves each of a’s children as well.

source_complete(t) & Y a € children* (scope(t)) :
a € AND A children™(a) N ot # & =
V' n € children(a) : children™(n) N et # &.

In the statechart net of Fig. 1, transition t5 is not source complete.

If a transition is both source and target complete, we call it complete. If a
complete transition is taken in configuration C, the places left in C are those
contained in et, and the places entered are in the postset te. Elsewhere we have
proven this formally [7]. In Fig. 1, only transitions t1, t2, and t3 are complete.

In addition, each transition ¢ € T should be consistent, i.e., it should have a
consistent preset and a consistent postset:

consistent(t) & consistent(et) A consistent(te).

If a transition ¢ has an inconsistent preset et, then there is no valid configuration
enabling ¢, and if te is inconsistent, the next configuration will be invalid. All
transitions of the statechart net in Fig. 1 are consistent.

A statechart net SN is wellformed iff every transition ¢ € T is consistent and
complete:

wellformed(SN) & Y t € T : consistent(t) A complete(t).

The statechart net in Fig. 1 is not wellformed. If transitions t4 and t5 are re-
moved, the resulting statechart net will be consistent.

3.3 From statechart net to Petri net

By definition, each statechart net has an underlying Petri net. Deriving a Petri
net from a statechart net is straightforward: simply drop the composite nodes
from the statechart net and remove the composite nodes from the configuration.
Function SNtoPN defines this formally:

SNtoPN ((P, T, F,AND, OR, children, Cy)) = (P, T, F, CoN P)

The following theorem asserts the correctness of this function for wellformed
statechart nets.

Theorem 1 (correctness). Given a wellformed statechart net SN. The Petri
net SNtoPN (SN) bisimulates SN.



Proof. Modify the statechart net SN into SN’, by adding an initial place p; and
a transition t; such that et; = {p;} and t;e = Cj N P. Next, apply Theorem 3.1
in [7].

In the remainder of this paper, we only consider wellformed statechart nets.

3.4 From Petri net to statechart net

Some Petri nets have a corresponding equivalent (bisimilar) statechart net. Nat-
urally, such nets are safe.

A safe net PN is called a structured concurrency met if there exists a well-
formed statechart net SN such that SNtoPN(SN) = PN. By Theorem 1, SN
bisimulates PN. A structured concurrency net has a restricted form of concur-
rency, since the statechart AND/OR hierarchy cannot express cross-synchronisation
between parallel branches, as explained in Section 4.1. Thus, concurrency in these
nets is structured, just as goto-less programs are structured. In the next section,
we study the expressiveness of structured concurrency nets.

Elsewhere we have formally defined a polynomial algorithm that maps a Petri
net to a wellformed statechart net by imposing an AND/OR hierarchy on the
places [7]. The variant of statecharts used there is isomorphic to statechart nets,
so the algorithm and its proof of correctness carry immediately over to statechart
nets. The algorithm fails if it cannot construct a statechart net. The algorithm
is not complete, so it fails on some structured concurrency nets.

4 Expressiveness

In the previous section, we defined the class of structured concurrency nets. In
the literature, several other Petri net subclasses have been defined, that are at
first sight remarkably similar to structured concurrency nets. This section shows
that nevertheless all these subclasses are different. This result gives more insight
into the expressive power of an AND/OR state hierarchy.

4.1 Safe Petri nets

By definition, every structured concurrency net is safe. However, not every
safe Petri net is a structured concurrency net. The net in Fig. 2 has a cross-
organisation between parallel branches, which prevents that an equivalent stat-
echart net exists. To see why, consider the statechart net in Fig. 3 that seems
to have a cross synchronisation. However, this statechart net is not wellformed,
because t is not complete, since its postset does not include any descendant of
02.

Another example of a safe Petri net which does not have an equivalent stat-
echart net is shown in Fig. 4. Depending on whether t1 or t2 has fired, p3 is
concurrent with p4 or not. This “conditional” concurrency between p3 and p4
cannot be captured in an AND/OR hierarchy.

So while an AND/OR hierarchy ensures safeness, not every safe net can be
captured in such a hierarchy.
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Fig. 2. Safe Petri net with cross-synchronisation for which no equivalent statechart net
exists

Fig. 3. Statechart net with a transition connecting parallel nodes
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Fig. 4. Safe Petri net that is not a structured concurrency net
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4.2 State machines

A state machine is a Petri net in which every transition ¢ has one input place
and one output place: |et| = |te|] = 1. Thus, state machines represent sequential
processes.

Some safe nets are covered by sequential (S-) components. An S-component
of anet (P, T, F, M) is any net (P’, T, F’, M) such that

— (P, T',F', M}) is a state machine,

- Pl g Pa

—TCcrT,

S F=FA((P'x T')U (T x P)).

— Forevery p’ € P'and t € T,if (p’,t) € F then (p’,t) € F/,and if (t,p’) € F
then (¢,p’) € F'.

— For every p € P', Mj(p) =1 < My(p) = 1.

A net is S-coverable if each place is covered by some S-component [5]. It is well-
known that every S-coverable net is safe. But not every safe net is S-coverable,
as is illustrated by the safe but not S-coverable net in Fig. 4.

There is a close connection between structured concurrency nets and S-
coverable nets. Two places pi, po in a structured concurrency net are part of
the same S-component if and only if in the corresponding statechart net p; and
p2 are not orthogonal, i.e.; their lca is an OR node.

Theorem 2. Given a wellformed statechart net SN =
(P, T,F,AND, OR, children, Cy). A tuple (P', T', F', My) is an S-component of
SN if

- P’ C P is a maximal set of places such that for every pi,ps € P, p1 # p2
implies lea({p1,p2}) € OR.

- T'={teT |3Ip P :(p,t)e FAIpo € P': (t,p2) € F}

- F'=Fn({(P' xTHYU(T x P").

— For everyp € P!, My(p)=1<pe Gy

Proof. We show (i) (P’, T, F’, My) is a state machine and (ii) for every p’ € P’
and t € T, if (p',t) € F then (p’,t) € F', and if (¢,p’) € F then (¢,p’) € F'.

(i) Take a transition ¢ € T'. We show that ef = 1; the case te = 1 can be
proven with similar reasoning. Clearly, et > 0, otherwise ¢ would not be
in T'. For a contradiction, suppose there is a transition ¢ € T’ such that
et N P’ > 1, and let p1,p2 be two different places in et N P’. Since t is
consistent, lca({p1, p2}) has type AND. But then, by definition of P’, places
p1 and py cannot be both in P’.

(ii) We show that for every p’ € P’ and t € T, (p’,t) € F = (p’,t) € F'. The

other case is by similar reasoning.
Assume (p’, t) € F. The postset of ¢ is not empty. There is a place p” in the
postset of ¢ such that lca({p’,p"}) € OR. (If scope(t) € OR, this is trivially
true. If scope(t) € AND, by target completeness such a p” always exists.)
By definition of P” and T’, then p” € P’ and ¢t € T’ and thus (p’,t) € F’
by definition of F’.
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For structured concurrency nets, each place p is covered by an S-component.
Thus, each structured concurrency net is S-coverable. The reverse implication,
however, does not hold. For example, the net in Fig. 2 is S-coverable but is not
a structured concurrency net.

4.3 TP and PT handles

A Petri net has a TP handle if there is a transition ¢ and place p and there are
two directed paths from ¢ to p that are disjoint. A Petri net has a PT handle if
there is a place p and transition ¢ and there are two directed paths from p to ¢
that are disjoint. The notions of TP and PT handle were introduced by Esparza
and Silva [10].

Intuitively, a TP handle between ¢t and p causes p to be unsafe whereas a PT
handle between p and ¢ causes a deadlock at ¢. This intuition suggests that (i)
a Petri net that does not have PT and TP handles is a structured concurrency
net, and that (ii) a structured concurrency net does not have PT or TP handles.
However, both suggestions are false. A counterexample for claim (i) is the Petri
net in Fig. 4. Though that net does not have a TP and PT handle, no equivalent
statechart net exists. A counter example for claim (ii) is shown in Fig. 5 (adapted
from Fig. 6 in Esparza and Silva [10]). The net contains a TP handle between
tl and pl, and a PT handle between p2 and t2. Yet an equivalent statechart net
exists, shown in the same figure.

Nevertheless, there are indeed Petri nets with PT and TP handles that are
not structured concurrency nets. For example, the net in Fig. 6 is safe and has
a PT (p5-t6) and a TP handle (t1-p5). An equivalent statechart net does not
exist.

4.4 Free choice nets

In a free choice net [5], every pair of ¢, ¢ of transitions has either a disjoint or
equal preset: ot Net’ = & V ot = ot’. For example, the net in Fig. 7 is not free
choice since for example t4 and t7 share input place p3, but do not have an equal
preset.

There is no relation between free choice nets and structured concurrency
nets. The net in Fig. 7 is not free choice, yet an equivalent statechart net exists.
The net in Fig. 2 is free choice, yet no equivalent statechart net exists.

4.5 Dead Petri nets

In a Petri net, a transition ¢ is defined to be dead if there is no reachable marking
that enables ¢t. A Petri net that has dead transitions is called dead.

In wellformed statechart nets, each transition has by definition a consistent
set of sources. Each consistent set of nodes can be turned into a configuration.
This might suggest that in a structured concurrency net, each transition cannot
be dead.
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Fig. 5. Petri net with PT and TP handle and equivalent statechart net

Fig. 6. Safe Petri net with PT and TP handles that is not a structured concurrency
net
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Fig. 7. Free choice structured concurrency net that has dead transitions
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However, a structured concurrency net may have dead transitions. Consider
for example the net in Fig. 7. Clearly, transitions t7 and t8 are dead, because
tl and t2 are exclusive. Yet an equivalent statechart net exists, by letting both
p2,p4,p6 and p3,p5,p7 have the same OR parents.

4.6 Statechart variants

As explained in the introduction of Section 3, statechart nets can be seen as
a simplified, less expressive version of statecharts. We now study some pro-
posed extensions of statecharts that extend or relax the hierarchical AND/OR
structure, thus allowing more forms of concurrency. We show that the resulting
statechart net variants do not coincide with a subclass of Petri nets, i.e., there
are statechart nets for which no equivalent Petri net exists.

Statecharts with overlapping. Harel and Kahana [12] propose an extension to
statecharts in which a node can overlap another node. Technically, the statechart
constraint that each node should have one parent is relaxed. The node structure
is no longer required to be a tree. However, the structure should (still) be acyclic.

Obviously, statechart nets with overlapping are more expressive than ordi-
nary statechart nets. Cross-synchronisations between parallel branches can be
modelling using AND nodes that overlap each other. Figure 8 shows a statechart
net with overlapping equivalent to the net in Figure 2, while Fig. 9 shows the
node hierarchy of this statechart net. And even the net in Fig. 6 can be modelled
in a statechart net with overlapping.

Nevertheless, safe nets and statechart nets with overlapping do have different
expressive power. There exist safe nets which have no equivalent statechart net
with overlapping, for example the net in Fig. 4. Conversely, not every statechart
net with overlapping has an equivalent Petri net. For example, the statechart
in Fig. 10 has no equivalent net. Note that the hierarchy in this case is hard
to visualise; the node structure is shown on the right. In the Petri net obtained
by dropping all composite nodes, after firing t1, t2 and t3, a marking is reached
in which place p5 has two tokens. However, in statechart nets with overlapping,
each node can be active at most once, so there cannot be a configuration in
which pb is active twice.

Statecharts with synchronisation nodes. In UML 1.x [23], statecharts have been
extended with synchronisation nodes (called “synch states” in UML). A syn-
chronisation node n synchronises concurrent OR children of some AND node
a. Node n is entered by some transition inside an OR child of a, and left by a
transition inside another OR child of a.

With synchronisation nodes, the net in Fig. 2 can be modelled straightfor-
wardly; see Fig. 11. The synchronisation node is represented by circle on the
dotted line separating the OR nodes that it synchronises. The ‘1’ indicates that
the synch node is activated at most once.

Though this example shows that cross-synchronisations can be modelled in
statecharts with synch nodes, there do exist safe nets that have no equivalent
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Fig. 10. Statechart net with overlapping and correponding node hierarchy for which
no equivalent Petri net exists

Fig. 11. Statechart with synchronisation nodes equivalent to net in Fig. 2

statechart with synch nodes, for example the nets in Fig. 6 and 4. Moreover,
not every statechart net with synch nodes has an equivalent safe net. For in-
stance, if the statechart net of Fig. 11 were extended with a transition ¢ leaving
p6 and entering p3, the synch node would get activated multiple times. Such
multiple activations are forgotten according to the UML 1.x semantics [23]. The
underlying Petri net, however, would grow unbounded in the synch node.

5 Deadlock and livelock

In the previous section, we showed that structured concurrency nets can contain
dead transitions. Moreover, they also can contain deadlocks and livelocks. In this
section, we define constraints on the syntax of statechart nets that guarantee the
absence of deadlocks and livelocks in statechart nets. Such constraints are hard,
if not impossible, to specify on the syntax of safe Petri nets.
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The definitions we use for deadlock and livelock are a bit nonstandard, since
we consider statecharts nets that can terminate properly, i.e. nets that can reach
a final state, whereas usually Petri nets are considered as cyclic systems that
have no final state. (If they do, it is considered a deadlock.) The definitions we
take are useful to model the behaviour of a life cycle, for example of an object,
component, business process, or workflow [1, 3].

5.1 Definitions

Deadlock, livelock, and proper termination. Call a place final if it is not input
to a transition:

final(p) EVteT:pdoet.

A configuration is final if all places it contains are final. Final configuration are
the desirable end states of a net. Note that there can be arbitrarily many final
configurations.

A configuration C' deadlocks iff no transition is enabled in C' and C is not
final. Then there is some transition ¢ some of whose input places are filled. A
statechart net deadlocks iff one of its reachable configurations deadlocks. For
example, the statechart net in Fig. 12 deadlocks in configuration {p1, p3}.

A configuration C livelocks iff no final configuration can be reached from C'.
A statechart net livelocks iff one of its reachable configurations livelocks.

A statechart net terminates properly iff from all configurations, a final con-
figuration can be reached. Clearly, a statechart net terminates properly iff it
neither deadlocks nor livelocks.

OR graphs. To define syntactic constraints that guarantee absence of deadlock
and livelock, we need some additional concepts that can be derived from the
statechart net syntax. For each OR node o, we define a directed graph G, =
(Nodes, Edges) where

— Nodes = children(o)
— Edges = {(01,05) | 01,02 € Nodes A3t € T : lca(et) = 01 A lca(te) = 0o}

We call G, the OR graph of o.

Next, we introduce the concept of drains for OR node. For an OR node o,
a drain is a set of child nodes of o that are not eventually left by edges in
Edges(G,). Formally, a set of state nodes X is a drain of o iff

— X C children(o).

— X is a strongly connected component (SCC) of G,, i.e, any node in X is
reachable from any other node in X and X is maximal.

— For every z € X, if there is an edge (z,2’) € Edges(G,), then ' € X.

The last constraint ensures that X is not eventually left while the net stays in
o. In the statechart net shown in Fig. 12, OR node ol has two drains: {pl} and

{p2}.
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Fig. 12. A deadlocking statechart net

Consider an AND node a. A set Ds = {Dy, Ds,..,D,} is defined to be an
arbitrary drain set of a iff

— For each OR child o of a, there is an element D € Ds such that D is a drain
of o.

— For each D € Ds, there is an OR child o of a such that D is a drain of o.

— n = |children(a)|.

These three constraints ensure that there is a bijection between the drains in Ds
and the OR children of a. For the statechart net in Fig. 12, AND node A has
two arbitrary drain sets: Ds; = {{p1l},{p3}} and Ds2 = {{p2}, {p3}}.

Each arbitary drain set of an AND node should be left by some transition.
AND node a is defined to be exit complete if and only if for each arbitrary drain
set Ds of a, there is a transition ¢ € T such that for every D € DSs there is an
input place of ¢ that is descendant of a node in D, i.e. t leaves D:

exit_complete(a) < for an arbitrary drain set Ds
there is a t € T such that for every D € Ds

( U children™(d)) N et # .
deD

AND node A in Fig. 12 is not exit complete, since there is no transition leaving
Ds;. We call a statechart net exit complete if each of its AND nodes is exit
complete.

In principle, each AND node should be exit complete. However, the net can
end in certain AND nodes, for example in AND node A in the statechart net
in Fig. 13. Such AND nodes are not required to be exit complete. To deal with
them, we slightly modify a statechart net by finalising it. We introduce a spe-
cial final place, that signifies that the statechart net has completed. This special
place is filled if in the original statechart net a final configuration is reached. In
principle, configurations are computed by building a reachability graph. How-
ever, the syntactic constraints on statechart nets allow for a much more efficient
solution. We can compute maximal consistent sets of final places that are candi-
date configurations (candidate only because they might not be reachable). Next,
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Fig. 13. Statechart net that ends in AND node

we define transitions whose preset is a candidate final configuration and whose
postset only contains the final place.

Formally, we define this as follows. Given a statechart net SN =
(P, T,F,AND, OR, children, p;), its finalisation final(SN) is a statechart net
SN’ where

- P'=PU{end}

- T"=TU{tx | X is a maximal, consistent set of final places in SN}
— F'=FU{(tx,final) | tx € T\ T}

— AND' = AND

- OR'= OR

— children’ = children U {(root, end)}.

Next, we show that finalising a statechart net does not affect its deadlock
and livelock properties.

Theorem 3. (i) A wellformed statechart net SN deadlocks iff its finalisation
final(SN) deadlocks.

(i) A wellformed statechart net SN livelocks iff its finalisation final(SN) live-
locks.

Proof. We prove (i); the other case is by similar reasoning.

=. The finalisation final(SN) extends SN by adding a new place and new
transitions. Hence, each deadlock in SN is also a deadlock in final(SN).

<. By definition of final, net final(SN) can only have deadlocks not present
in SN in final configurations of SN or in configuration {end, root}. But by con-
struction, the novel place end is not in the preset of any transition, so it cannot
be part of a deadlock. Moreover, each final configuration C of SN is a preset of

a transition ¢, so each place p € C' can always be left. Hence, each deadlock of
final(SN) is also a deadlock of SN.
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5.2 Absence of deadlocks

Using the notions introduced in Section 5.1, we can finally define a sufficient
constraint that guarantees absence of deadlock.

Theorem 4. Given a wellformed statechart net SN. If final(SN) is exit com-
plete, then SN is deadlock free.

Proof. We show that final(SN) is deadlock free. From Theorem 3 then follows
that SN is deadlock free.

Take a non-final configuration C' that deadlocks, so there is no enabled tran-
sition in C'. Then there is a transition ¢ such that ¢t N C # &. Let a be lca(et).
Then Ds = {{y} | y € children(z) A z € children(a) A {z,y} C C} is a drain
set of a. But there is no transition leaving Ds, so a is not exit complete.

The reverse implication is not true, because an AND node violating exit
completeness might not be reachable because of dead transitions.

5.3 Proper Termination

While exit completeness rules out deadlock, it does not ensure absence of live-
locks. For example, the net in Fig. 14 is exit complete. Yet it can livelock, namely
if t1 has been fired. Then p4 is never filled, and t3 can never fire, and so AND
node A is never left.

To rule out such statechart nets, we require that each OR node has a single
entry point. A child ¢ of an OR node o is an entry point of o if there is a
transition ¢ such that

— a place in te is descendant of ¢, and
— scope(t) is ancestor of o, but not equal to o.

In Fig. 14 OR nodes O1 and O2 have each two entry points: p3, p5, and p6, p7
respectively. Note that p4 is not an entry point.

Under the assumption that each OR node has a single entry point, we can
indeed prove that a wellformed exit-complete statechart net terminates properly.
First we prove a helpful theorem that states that for such a statechart net each
AND node can be left. In the proof, we use the concept of depth of a node.
Places have depth zero, while the depth of a composite node is the maximum
depth of its children plus one. Formally,

depth(p) =0, wherep € P
depth(n) = 1+ maz({depth(c) | ¢ € children(n)}), if ne€ ANDU OR

The nesting depth of a drain is the maximum depth of drain members. The
nesting depth of a drain set is the maximum depth of the individual drains.
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pii

Fig. 14. Statechart net that can livelock

Theorem 5. Given a wellformed statechart net SN such that final(SN) is exit
complete and each OR node has a single entry point. Let a be an arbitrary AND
node of SN.

For every non-final configuration C containing a, there is a transition t

leaving a and a configuration C' reachable from C, such that et N children*(a) C
C’.

Proof. We prove the claim by induction on the depth of the drains of a. Denote
by P, the set of second level children of a: {n € C'| parent(parent(n)) = a}.

Basic Case.

For the basic case, P, only contains places: P, C P. Take some place p € P,.
If p is not part of a drain of parent(p), then by definition of drain, from p a
sequence of transitions (all with singleton presets and singleton postsets) can be
taken such that a place p’ is reached that is part of a drain.

So assume every place p € P, is part of a drain of parent(p). By definition
of exit completeness, there is a t such that for every p € P, there is a p’ € ot
such that p and p’ are in the same drain. By definition of drain, p and p’ are
connected by a sequence of transitions all having singleton presets and postsets.
Hence, p can reach p’ and ¢ can become partly enabled.

Induction case.

By the definition of OR nodes, for each OR child ¢ of a, exactly one node in
P, is a node of ¢’s OR graph. There are two cases:

— Some node p € P, is not part of a drain of parent(p). By definition of drain,
there exists a place p’ € P that is part of a drain, and p’ is reachable from
p in the OR graph. Thus, by definition of OR graph, there is a sequence
of transitions #, ta, .., &, where lca(et;) = p and lca(t,e) = p’. For each
transition ¢;, where 0 < i < n, we have lca™ (ot;) = lca™ (t;0) = parent(p).
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Denote by C; the configuration entered by taking ;. We now show that ¢;
can be taken. Clearly, C; contains lca(et;). There are two cases:

(i) lca(et;) € P. Then et; is a singleton, say {p; }. Since p; is in C;, transition
t; can be taken.

(i) lca(et;) € AND. Let a = lca(et;). By the induction hypothesis, there
is a configuration C,, reachable from C; and a transition {,, such that
ot, N children*(a) C C,. Since each OR child of a has a unique entry
point, we have that each transition leaving a, including ¢;, can become
partly enabled by some configuration C, reachable from C;.

It remains to be shown that ¢; is completely enabled in C,. Because
lca™ (et;) = parent(p), we have ot; C children™(a), and thus et; N
children™ (a) = ot;. Thus et; C C, and hence ¢; is enabled in C,.

— If every node p € P, is part of a drain D, of parent(p), then by definition
of exit completeness, there is a transition ¢ such that for some p’ € D,,
et N D, = {p'}. By definition of drain, in the OR graph of parent(p) there
is a path p, p1,pa,.., pn, p’ leading from p to p’. By similar reasoning as in
(ii), we can prove that p’ is reachable.

Using Theorem 5 we now show that exit completeness and single entry points
for OR nodes are indeed sufficient constraints for proper termination.

Theorem 6. A wellformed statechart net SN terminates properly if final(SN)
is exit complete and each OR node has a single entry point.

Proof. Denote by Gyoor the OR graph of the root node root of final(SN) and
let ¢ be a child node of root such that i € Cy(SN). By definition of final(SN),
there is a directed path p from i to end in G- We show that every node on
this path, once entered, can be left.

Take a pair of neighbouring nodes n, n’ on this path, where n # end, and
let ¢, be the transition for which Ilca(et,) = n and lca(t,e) = n'. Denote by C,
the configuration entered by taking a transition t¢,, where lca(t,®) = n.

— If nin P, then by consistency of et,,, we have ot, = {n} and so t, is enabled
in C,.

— If n is an AND node, then by Theorem 5 and the assumption that each
OR child of n has a single entry point, there is a configuration C’ that is
reachable from C,, such that et, N children*(n) C C’.

Next, since lca™ (et,) = root, we have et, C children™(root), so et, C C’ and
thus C’ enables t,.

The reverse implication is not true in general, but holds if for every place
p € P there is a path from some initial place py € Cy to p. Under that condition,
each potential configuration is a reachable configuration. This gives an efficient
syntactic decision procedure for reachability properties.
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6 Discussion and Conclusion

In this paper, we have studied nets with structured concurrency, i.e. nets whose
concurrency can be cast into an AND/OR state hierarchy. We introduced a novel
Petri net variant, statechart nets, which extend Petri nets with a statechart-like
AND/OR hierarchy on places. We have shown that structured concurrency nets
are a strict subclass of safe and S-coverable nets, but do not coincide with existing
Petri net subclasses. The main distinguishing feature of structured concurrency
nets is that cross-synchronisation between parallel branches is not possible. This
result gives more insight into the expressive power of AND/OR state hierarchies.

Next, we defined syntactic constraints on statechart nets that guarantee ab-
sence of deadlock and livelock. For standard Petri nets, such syntactic constraints
are hard if not impossible to specify. This shows one advantage of using state-
chart nets over Petri nets. Another advantage of statechart nets is that potential
configurations can be syntactically characterised. For example, this feature al-
lowed the simple transformation of a statechart net with multiple end places
into one with only one end place in Section 5, without introducing deadlocks or
livelocks. Van der Aalst and Hofstede [2] define a similar transformation in the
context of Petri nets, but their transformation is a lot more complex than ours,
requiring the use of weighted transitions and a shadow place that keeps track of
the number of parallel streams.

Another contribution of this paper is that it sheds some light on the dif-
ferences between Petri nets and statecharts by studying one specific statechart
feature, the AND/OR hierarchy, in a Petri net setting. Other works incorporating
statechart features in Petri nets are by Holvoet and Baeten [15] and Kishinevsky
et al. [18]. But in the net variants proposed there, places can be decomposed into
a subnet containing other places, which amounts to an OR decomposition. In
particular, concurrency is still expressed in the Petri net way, so it might be not
structured and places might be unsafe or even unbounded. Another difference is
that these variants allow a transition to have a composite place as input, which
we do not consider here.

There are several directions for further work. One is to extend statechart nets
with transitions that leave composite (AND/OR) nodes, thus introducing the
concept of priority, which is typical of statecharts [11,13,23]. Such an extension
might imply that the syntactic constraints guaranteeing absence of deadlock
and livelock have to be adjusted. Another direction is to apply the results of this
paper in a practical setting. We are currently using the syntactic constraints
listed in Section 5 to implement an efficient check for absence of deadlocks and
livelocks in workflow models expressed in Petri nets [17].
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