EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Pattern-based evaluation of Oracle-BPEL

Citation for published version (APA):
Mulyar, N. A. (2005). Pattern-based evaluation of Oracle-BPEL. (BPM reports; Vol. 0524). BPMcenter. org.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/35a6a5c1-e528-43de-87a9-a63eee13db41

Pattern-based Evaluation of Oracle-BPEL (v.10.1.2)

N.A. Mulyar

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
{n_mulyar@tm.tue.nl}

Table of contents

TaADIE OF CONTENTS....couiiiiieeiieiee ettt e st se e te e e e sreenbeeneeeneenre s 2
L1l [FTox (o] o SRS P PP PRORPRPRN 3
1. Evaluation of Oracle BPEL PM from the control-flow perspective...........cc.ccocvvennee. 4
2. Evaluation of Oracle BPEL PM from the data perspective..........ccccovvevviicieennenn, 107
3. Evaluation of Oracle BPEL PM from the resource perspectivecc.cceovevvernenne. 125
CONCIUSIONS ...ttt ettt bbb bbb e e st et e seenbesbesbearenre s 153

Standardness and Completeness of Oracle BPEL PM..........cccooeiiiiiiiiiienenie s 157
REIAIEA WOTK ... ettt r e 158
ACKNOWIEAGEMENTS ...ttt es 159
RETEIEINCES ...ttt bbbttt e b 160

Introduction

In the light of the emerging paradigm, known as web-services composition, for enabling
application integration within and across organizational boundaries several steps have
been made to systematically evaluate the capabilities and limitations of languages and
techniques proposed by different vendors and coalitions. In particular, an in-depth
analysis of the Business Process Execution Language for Web Services (BPEL4WS) has
been made in [1]. BPEL is a language that defines business processes and how these
processes interact within/between organizations. The comparison of BPEL to other web
services composition languages has been made in [2], [3], [4] and [15]. In all referred
sources the evaluation of the web services composition languages has been made from
the control-flow perspective, i.e. the degree of support of the 20 workflow patterns (cf.
www.workflowpatterns.com) has been analyzed.

To make BPEL operational, it has been implemented in numerous tools. Similar to the
evaluation of the BPEL core, the facilities offered by such tools have been a subject for
the evaluation. In particular, an analysis of web services workflow patterns in Collaxa has
been made in [11]. Based on the Collaxa engine [12] Oracle has implemented BPEL PM
Designer that offers facilities for modeling of processes which can be deployed and made
operational via the BPEL Console. The purpose of this work is to evaluate up to which
degree the workflow patterns are supported by Oracle BPEL. For the purposes of this
analysis we used not only the control-flow patterns described in [8], but also workflow
data patterns and workflow resource patterns described in [9] and [10] respectively.

While Workflow Control Patterns characterize the range of control flow constructs that
might be encountered when modeling and analyzing workflow, Workflow Data Patterns
and Workflow Resource Patterns capture the various ways in which data resources are
represented and utilized in workflows respectively. Workflow Control Patterns consist of
basic control patterns, advanced branching and synchronization patterns, structural
patterns, patterns involving multiple instances, state-based patterns and cancellation
patterns. Workflow Data Patterns consist of data visibility, data interaction, data transfer
and data-based routing patterns. In turn, Workflow Resource Patterns consist of creation
patterns, push patterns, pull patterns, detour patterns, auto-start patterns, visibility
patterns, and multiple resource patterns. These patterns have served as a reference
point for the evaluation of Oracle BPEL PM.

As a knowledge base for the tool we used the tutorials and training material Oracle
provided on-line (cf. http://www.oracle.com/technology/products/ias/bpel/index.html).

This document summarizes the results of evaluation of process modeling facilities
offered by Oracle-BPEL PM (v.10.1.2) based on the evaluation of the contemporary set
of workflow control, data and resource patterns. Since the evaluation of Oracle BPEL PM
has been started for the v.2.1.2, and on the half-way of the evaluation the new version of
Oracle BPEL PM has appeared, the majority of the results obtained from the evaluation
of v.2.1.2 from the control-flow and data perspectives has been reused. The evaluation of
the resource perspective is based purely on the v.10.1.2. Section 1 contains the detailed
description of the Oracle BPEL PM facilities offered for support of the control-flow
patterns. Sections 2 and 3 offer the detailed evaluation from the data and resource
perspectives respectively. Finally, this document is completed by the Conclusions
section.

1. Evaluation of Oracle BPEL PM from the control-flow
perspective

CFP1: Sequence

Description: An activity in a workflow process is enabled after the completion of another
activity in the same process.

Oracle BPEL PM supports this pattern directly. Graphically, two activities available at the
BPEL Palette that can be connected by an arrow form a sequence. An example of the
<seguence> is given in Figure 1. The <receive> activity that gets an input message from
the client is followed by three <assign> activities which modify the input message. The

result of modification is returned synchronously to the client by means of the <reply>
activity.

FPartner Links Partner Links

¥ Ye1t] 11K

receivelnput

Agzign_1

[= ‘_&r D
o

client
Azzign_2

Azzign_3

« BF

replhy0utput

=

Figure 1 Sequence pattern

The code snippets corresponding to this block diagram are shown below.

<process name="'CFP1l_sequence"
targetNamespace="http://xmIns.oracle.com/CFP1_sequence"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20="http://www.oracle.com/XSL/Transform/java/Zoracle.tip.pc.servi
ces.functions.Xpath20"
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmIns:client="http://xmIns.oracle.com/CFP1_sequence"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension™
xmlns:ora="http://schemas.oracle.com/xpath/extension’
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.ExtFunc'><I--

——><I-
- PARTNERLINKS -
><I-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-——>
<partnerLink name="client" partnerLinkType=""client:CFP1l_sequence"
myRole=""CFP1_sequenceProvider'/>
</partnerLinks><I--

—-—><1I-
- VARIABLES --
><Il-- List of messages and XML documents used within this BPEL process
——><l

-—>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType="client:CFP1_sequenceRequestMessage'/><I--
Reference to the message that will be returned to the requester
-—>
<variable name="outputVariable"
messageType=""client:CFP1_sequenceResponseMessage'/>
</variables><Il--
——><1I-

- ORCHESTRATION LOGIC --
><I1-- Set of activities coordinating the flow of messages across the
--><I-- services iIntegrated within this business process

——><l

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP1_sequence.wsdl
-—>
<receive name="receivelnput” partnerLink="client”
portType="client:CFP1_sequence' operation=""process"
variable="inputVariable" createlnstance="yes"/><!-- Generate reply to
synchronous request -->

<assignh name="Assign_1">
<Copy>
<from
expression="concat(bpws:getVariableData("inputVariable®, "payload®,"/clie
nt:CFP1_sequenceProcessRequest/client:input®),"1")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP1_sequenceProcessResponse/client:result'/>
</copy>
</assign>
<assign name='"Assign_2"">
<Copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli
ent:CFP1_sequenceProcessResponse/client:result®),"2")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP1_sequenceProcessResponse/client:result'/>
</copy>
</assign>
<assign name="Assign_3"">
<Copy>
<from
expression="concat(bpws:getVariableData("outputVariable”, "payload”,"/cli
ent:CFP1_sequenceProcessResponse/client:result®),*3")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP1_sequenceProcessResponse/client:result'/>
</copy>
</assign>
<reply name="replyOutput” partnerLink="client"
portType="client:CFP1_sequence" operation=""process"
variable="outputVariable"/>
</sequence>

</process>

The content of the wsdl file is shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP1l_sequence"
targetNamespace="http://xmIns.oracle.com/CFP1_sequence"
xmIns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmIns.oracle.com/CFP1_sequence"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

—~—— >
<types>
<schema attributeFormDefault="qualified"
elementFormbDefault="qualified"

targetNamespace="http://xmlns.oracle.com/CFP1_sequence"
xmIns="http://www.w3.0rg/2001/XMLSchema’>
<element name=""CFP1_sequenceProcessRequest'>
<complexType>
<seguence>
<element name="input"
type="'string'/>

</sequence>
</complexType>
</element>
<element name="'CFP1_sequenceProcessResponse''>
<complexType>
<seguence>
<element name="result"
type=""string"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<l_—

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

~—— >

<message name="'CFP1l_sequenceRequestMessage'>
<part name="payload"
element="client:CFP1_sequenceProcessRequest'/>
</message>
<message name="'CFP1l_sequenceResponseMessage''>
<part name="payload"
element="client:CFP1_sequenceProcessResponse' />
</message>

<l_—

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

~—— >

<I-- portType implemented by the CFP1l _sequence BPEL process -->
<portType name="CFP1l_sequence'>
<operation name='process''>
<input message="client:CFP1_sequenceRequestMessage"

/>
<output
message=""client:CFP1_sequenceResponseMessage"' />
</operation>
</portType>

<l

PARTNER LINK TYPE DEFINITION

~—— >
<pInk:partnerLinkType name="CFP1l_sequence'>
<pInk:role name="CFP1_sequenceProvider'>
<pInk:portType name="client:CFP1l_sequence'/>
</plnk:role>
</plnk:partnerLinkType>
</definitions>

An audit trail visualizing the execution history of the considered example is shown below:

[2005/08/10 10:30:25] New instance of BPEL process "CFP1_sequence" initiated (# "202").
E<process>

E<sequence>

("@receivelnput
[2005/08/10 10:30:25] Received "inputVariable" call from partner "client" More...

DQAsﬁgn_l

[2005/08/10 10:30:25] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_sequenceProcessResponse xmIns="http://xmins.oracle.com/CFP1_sequence">
<result>bl</result>

</CFP1_sequenceProcessResponse>

</part>

</outputVariable>

DQAssign_z

[2005/08/10 10:30:25] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_sequenceProcessResponse xmIns="http://xmins.oracle.com/CFP1_sequence">
<result>bl2</result>

</CFP1_sequenceProcessResponse>

</part>

</outputVariable>

DQAsggn_S

[2005/08/10 10:30:25] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_sequenceProcessResponse xmIns="http://xmlins.oracle.com/CFP1_sequence">
<result>b123</result>

</CFP1_sequenceProcessResponse>

</part>

</outputVariable>

':’%replyOutput

[2005/08/10 10:30:25] Reply to partner "client”. less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_sequenceProcessResponse xmIns="http://xmins.oracle.com/CFP1_sequence">

<result>b123</result>
</CFP1_sequenceProcessResponse>
</part>
</outputVariable>

BPEL process instance 202" completed

Another possibility to implement the sequence, which is not the most straightforward
solution, is to use links within the <flow> structure. In particular, to ensure that activities
Assign_1, Assign_2, and Assign_3 are executed in the sequential lexical order, these
activities are associated with links Link12 and Link23. As such the activity Assign_2

serves as a target of the Link12 and a source of the Link23. The process model of the
considered example is shown in Figure 2.

FPartner Links Partner Links

. 2

receivelnput

b

client

=

Azzign_3 Azzign_2 Azzign_1

a BY

reply0utput

=

Figure 2 Sequence by means of <flow> and links

The code snippets of the considered example are shown below:

<process name=""CFP1_flow_links"
targetNamespace=""http://xmIns.oracle.com/CFP1_flow_links"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20*
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlIns: ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:client="http://xmlns.oracle.com/CFP1_flow_links"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension™
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc''><I--

__><!_
- PARTNERLINKS -—
><Il-- List of services participating in this BPEL process
——>< -

-——>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
—_—>
<partnerLink name="client” partnerLinkType=""client:CFP1_flow_links"
myRole="CFP1_flow_linksProvider'/>
</partnerLinks><l--

——><I-
- VARIABLES -

><I-- List of messages and XML documents used within this BPEL process
——><l

-——>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP1_flow_linksRequestMessage'/><I--
Reference to the message that will be returned to the requester
-——>
<variable name="outputVariable"
messageType=""client:CFP1_flow_linksResponseMessage' />
</variables><!l--
——><I-

- ORCHESTRATION LOGIC --
><Il-- Set of activities coordinating the flow of messages across the
-—><I-- services integrated within this business process

——><l

<sequence name=""main''><!-- Receive input from requestor.

Note: This maps to operation defined in CFP1_flow_ links.wsdl

-——>

<receive name="‘receivelnput" partnerLink="client"
portType="client:CFP1_flow_links" operation="process"
variable=""inputVariable" createlnstance="yes"/><1-- Generate reply to
synchronous request -->

<flow name="Flow_1"">

<links>

10

<link name="Link12"/>
<link name="Link23"/>
</links>
<sequence name="'Sequence_3'">
<target linkName="Link23"/>
<assign name="Assign_3">
<copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli
ent:CFP1_flow_linksProcessResponse/client:result®),*3")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP1_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<seqguence name=''Sequence_2"''>
<target linkName="Link12"/>
<source linkName="Link23"/>
<assign name="Assign_2"">
<C0py>
<from
expression="concat(bpws:getVariableData("outputVariable”, "payload”,"/cli
ent:CFP1_flow_linksProcessResponse/client:result®),*2")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP1_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<sequence name="'Sequence_1'">
<source linkName="Link12"/>
<assignh name="Assign_1">
<Copy>
<from
expression="concat(bpws:getVariableData("inputVariable”, "payload®,"/clie
nt:CFP1_flow_linksProcessRequest/client:input®),1")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP1_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</Flow>
<reply name="replyOutput” partnerLink="client"”
portType="client:CFP1_flow_links" operation="process"
variable="outputVariable'/>
</sequence>
</process>

An audit trail visualizing the execution history of the considered example is shown below:

New instance of BPEL process "CFP1_flow_links" initiated (# "203").

' @}receivelnput

Received "inputVariable" call from partner “client" less
<inputVariable>

11

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_flow_linksProcessRequest xmlns="http://xmins.oracle.com/CFP1_flow_links">
<input>a</input>

</CFP1_flow_linksProcessRequest>

</part>

</inputVariable>

=E<flow>

E<sequence>

|:1'|:|Assign_1

[2005/08/10 10:45:24] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_flow_linksProcessResponse xmins="http://xmins.oracle.com/CFP1_flow_links">
<result>al</result>

</CFP1_flow_linksProcessResponse>

</part>

</outputVariable>

</sequence=>

E<sequence>

|:1'|:|Assign_2

[2005/08/10 10:45:24] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_flow_linksProcessResponse xmins="http://xmins.oracle.com/CFP1_flow_links">
<result>al2</result>

</CFP1_flow_linksProcessResponse>

</part>

</outputVariable>

</sequence=>

E<sequence>

|3'|:|Assign_3

[2005/08/10 10:45:24] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_flow_linksProcessResponse xmlns="http://xmins.oracle.com/CFP1_flow_links">
<result>al23</result>

</CFP1_flow_linksProcessResponse>

</part>

</outputVariable>

</sequence=>

</flow=>

E"ﬁreplyOutput

[2005/08/10 10:45:24] Reply to partner "client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP1_flow_linksProcessResponse xmins="http://xmins.oracle.com/CFP1_flow_links">
<result>al23</result>

12

</CFP1_flow_linksProcessResponse>
</part>
</outputVariable>

BPEL process instance "203" completed

CFP2 Parallel Split

Description: A point in the process where a single thread of control splits into multiple
threads of control which can be executed in parallel, thus allowing activities to be
executed simultaneously or in any order.

Oracle BPEL PM supports this pattern directly by means of the <flow> construct. The
<flow> construct allows creating multiple branches, which are independent and may
execute in any order. Oracle BPEL PM implemented this construct with an assumption
that multiple activities will be present in every branch, therefore offering the <sequence>
construct as the wrapper for these activities.

An example of implementing the Parallel split pattern is shown in Figure 3. In this
example three <assign> activities are executed in parallel. In order to check whether the
branches are executed in parallel, each of the <assign> activities is preceded by the
<wait> block.

13

Partner Links

YRGB DD

I -—o} D
"
client

Figure 3 Parallel split by means of <flow>

receivelnput

Azzign_4

v &

< b
o

Wait_2

Aigsign_2

« B

reply0utput

=

Partner Links

Wait_1

Aizsign_ 3

The code snippets corresponding to the considered example are shown below:

<process hame="'CFP23_flow"

targetNamespace=""http://xmlns.oracle.com/CFP23_flow"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""

xmlns:xsd="http://www.w3_.0org/2001/XMLSchema""

xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi

ces.functions.Xpath20"

xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:client="http://xmlns.oracle.com/CFP23_flow"

14

xmIns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc'>

<l-- >

<!-- PARTNERLINKS -
-><l-- List of services participating in this BPEL process

——>< -

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client"” partnerLinkType="client:CFP23_flow"
myRole=""CFP23_flowProvider'/>
</partnerLinks><!l--

——><I-
- VARIABLES --

><I-- List of messages and XML documents used within this BPEL process
——>< -

-—>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP23_flowRequestMessage'/><1--
Reference to the message that will be returned to the requester
-—>
<variable name="outputVariable"
messageType=""client:CFP23_flowResponseMessage'' />
</variables><I--
——><I-

- ORCHESTRATION LOGIC -
><I-- Set of activities coordinating the flow of messages across the

--><I-- services integrated within this business process
——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP23_flow.wsdl
-—>
<receive name="'receivelnput" partnerLink="client"
portType="client:CFP23 flow" operation=""process"
variable=""inputVariable" createlnstance="yes"/><l-- Generate reply to
synchronous request -->
<assign name='"Assign_4"">
<Copy>
<from variable="inputVariable" part="payload"
query="/client:CFP23_flowProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"
query=""/client:CFP23_flowProcessResponse/client:result'/>
</copy>
</assign>
<flow name="Flow_1"">
<seguence name=''Sequence_3"">
<wait name="Wait_1" for=""PT1IM""/>
<assign name="Assign_3"">
<copy>

15

<from
expression="concat(bpws:getVariableData("outputVvVariable”, "payload”,"/cli
ent:CFP23_flowProcessResponse/client:result®),*3")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP23_flowProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<sequence name="''Sequence_2'">
<wait name="Wait_2" for=""PT2M""/>
<assigh name="Assign_2">
<copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli
ent:CFP23_ flowProcessResponse/client:result®),"2")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP23_flowProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<seguence name=''Sequence_1"">
<wait name="Wait 3" for=""PT3M""/>
<assign name="Assign_1">
<copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload”,"/cli
ent:CFP23 flowProcessResponse/client:result™),"1")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP23_flowProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</flow>
<reply name="replyOutput’” partnerLink="client"
portType="client:CFP23 flow" operation=""process"
variable=""outputVariable"/>
</sequence>
</process>

An audit trail visualizing the execution history of the considered example is shown below:

New instance of BPEL process "CFP23_flow" initiated (# "205").

' ﬁ}receivelnput

Received "inputVariable" call from partner "client" less

<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP23_flowProcessRequest xmlns="http://xmlins.oracle.com/CFP23_flow">
<input>b</input>

</CFP23_flowProcessRequest>

</part>

</inputVariable>

16

|_—'.}ElAs;sign_4
Updated variable "outputVariable" less

<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP23_flowProcessResponse xmins="http://xmins.oracle.com/CFP23_flow">
<result>b</result>

</CFP23_flowProcessResponse>

</part>

</outputVariable>

r~'f:'i"\"Wait_3 - pending
Waiting for the expiry time "2005/08/10 11:00:53".

I"f--t""Wait_z - pending
Waiting for the expiry time "2005/08/10 10:59:53".

@Wait_l
Waiting for the expiry time "2005/08/10 10:58:53".
Wait has finished.
DDAss;ign_3
Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP23_flowProcessResponse xmins="http://xmins.oracle.com/CFP23_flow">
<result>b3</result>
</CFP23_flowProcessResponse>
</part>
</outputVariable>

CFP3 Synchronization

Description: A point in the process where multiple parallel branches converge into one
single thread of control, thus synchronizing multiple threads. It is an assumption of this
pattern that after an incoming branch has been completed, it cannot be completed agai
while the merge is still waiting for other branches to be completed. Also, it is assumed
that the threads to be synchronized belong to the same global process instance (i.e., to
the same case in workflow terminology).

Oracle BPEL PM supports this pattern directly by means of the <flow> construct. Every
branch of the flow construct may be executed only once, and it completes only after all
branches have completed. See as a reference an example implementing Parallel Split

pattern.

n

17

CFP4 Exclusive Choice

Description: A point in the workflow process where, based on a decision or workflow
control data, one of several branches is chosen.

Oracle BPEL PM supports this pattern directly by means of the <switch> construct. The
<switch> allows making deterministic choice between several branches, i.e. cases,
depending on the fulfillment of the case conditions. If none of the specified conditions is
fulfilled, the <otherwise> branch is taken (or deemed to be taken). If the conditions for
several branches are satisfied, then the first one specified in the lexical order is taken.

An example demonstrating the use of the <switch> construct is given in Figure 4. Each of
the three branches is associated with a certain data conditions; the otherwise branch
handles all conditions not specified for the other two branches. Each of these data
conditions is evaluated after a string input has been supplied by the client. In order to
check which branch is to be selected when conditions associated with multiple branches
are satisfied, the branches with activities Assign_1 and Assign_2 are associated with
overlapping data conditions. As a result, if multiple cases can be selected, the first
branch specified in the lexical order is selected.

FPartner Links Partner Links

FREGBPBDD

receivelnput

-» Q
=CAzEs I;-/i = =CEIE= I_/] = =otherwize= E

clistt

4

Agzign_1 Aggigh 3 Aggign_2

a BN

replyDdutput

=

Figure 4 Exclusive choice

18

The code snippets describing the process model presented in Figure 4 are shown below:

<process name="'CFP4_switch"
targetNamespace=""http://xmlns.oracle.com/CFP4_switch"
xmlns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20*

xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:client="http://xmIns.oracle.com/CFP4_switch"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.ExtFunc'><l--

——><1I-
- PARTNERLINKS --
><I-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client" partnerLinkType="client:CFP4_switch"
myRole=""CFP4_switchProvider/>
</partnerLinks><I--

——><I-
- VARIABLES --

><Il-- List of messages and XML documents used within this BPEL process
——>< -

-—>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP4_switchRequestMessage'/><!--
Reference to the message that will be returned to the requester
-——>
<variable name="outputVariable"
messageType=""client:CFP4_switchResponseMessage'/>
</variables><I--
——><

- ORCHESTRATION LOGIC -
><Il-- Set of activities coordinating the flow of messages across the

-—><I-- services integrated within this business process
——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP4_switch.wsdl
-——>
<receive name="‘receivelnput” partnerLink="client”
portType="client:CFP4_switch"™ operation="process"
variable="inputVariable" createlnstance="yes"/><!-- Generate reply to
synchronous request -->

19

<switch name="Switch_1">
<case condition="contains("cde",
bpws:getVariableData("inputVariable®, "payload”,"/client:CFP4_switchProce
ssRequest/client:input®))">
<assign name="Assign_3"">
<Copy>
<from expression="""cde"""/>
<to variable="outputVariable' part="payload"”
query="/client:CFP4_switchProcessResponse/client:result'/>
</copy>
</assign>
</case>
<case condition="contains("abc",
bpws:getVariableData("inputVariable®, "payload”,"/client:CFP4_switchProce
ssRequest/client:input™))">
<assignh name="Assign_1">
<copy>
<from expression=""abc""/>
<to variable="outputVariable' part="payload"
query=""/client:CFP4_switchProcessResponse/client:result'/>
</copy>
</assign>
</case>
<otherwise>
<assign name='"Assign_2"">
<copy>
<from variable="inputVariable" part="payload"
query="/client:CFP4_switchProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"”
query="/client:CFP4_switchProcessResponse/client:result'/>
</copy>
</assign>
</otherwise>
</switch>
<reply name="replyOutput"’” partnerLink="client"
portType="client:CFP4_switch" operation="process"
variable="outputVariable"/>
</sequence>
</process>

An audit trail visualizing the execution history of the considered example is shown below:
New instance of BPEL process "CFP4_switch" initiated (# "206").

o

receivelnput
Received "inputVariable" call from partner "client" less

<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessRequest xmlns="http://xmins.oracle.com/CFP4_switch">
<input>a</input>

</CFP4_switchProcessRequest>

</part>

</inputVariable>

20

E<switch>

Ij'ElAssign_l

[2005/08/10 11:00:55] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessResponse xmlns="http://xmlins.oracle.com/CFP4_switch">
<result>abc</result>

</CFP4_switchProcessResponse>

</part>

</outputVariable>

</switch>

qﬁreplyOutput

[2005/08/10 11:00:55] Reply to partner "client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessResponse xmlns="http://xmlins.oracle.com/CFP4_switch">
<result>abc</result>

</CFP4_switchProcessResponse>

</part>

</outputVariable>

</sequence=>

[2005/08/10 11:00:55] BPEL process instance "206" completed
</process>

[2005/08/10 11:00:47] New instance of BPEL process "CFP4_switch" initiated (# "207").

E<process>

E<sequence>

r'ﬁreceivelnput
[2005/08/10 11:00:47] Received "inputVariable™ call from partner "client” less
<inputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessRequest xmlIns="http://xmins.oracle.com/CFP4_switch">
<input>c</input>

</CFP4_switchProcessRequest>

</part>
</inputVariable>
E<switch>
|:1'|:|Assign_3

[2005/08/10 11:00:47] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessResponse xmIns="http://xmlins.oracle.com/CFP4_switch">
<result>cde</result>

</CFP4_switchProcessResponse>

</part>

21

</outputVariable>
</switch>

E:’ﬁreplyOutput
[2005/08/10 11:00:47] Reply to partner "client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP4_switchProcessResponse xmIns="http://xmlins.oracle.com/CFP4_switch">
<result>cde</result>

</CFP4_switchProcessResponse>
</part>

</outputVariable>

</sequence=>

[2005/08/10 11:00:47] BPEL process instance "207" completed
</process>

[2005/08/10 11:11:41] New instance of BPEL process "CFP4_switch" initiated (# "208").
E<process>

E<sequence>

t""ﬁreceivelnput

[2005/08/10 11:11:41] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP4_switchProcessRequest xmlns="http://xmlns.oracle.com/CFP4_switch">
<input>f</input>

</CFP4_switchProcessRequest>

</part>

</inputVariable>

E<switch>

|:1'|:|Assign_2

[2005/08/10 11:11:41] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP4_switchProcessResponse xmlns="http://xmlins.oracle.com/CFP4_switch">
<result>f</result>

</CFP4_switchProcessResponse>
</part>
</outputVariable>

</switch>

“Freplyoutput
[2005/08/10 11:11:41] Reply to partner "client". less
<outputVariable>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP4_switchProcessResponse xmIns="http://xmlins.oracle.com/CFP4_switch">
<result>f</result>

</CFP4_switchProcessResponse>
</part>

22

</outputVariable>

BPEL process instance "208" completed

Another possibility to realize the Exclusive Choice pattern is to use links with disjoint
conditions within the <flow> construct (see Figure 5).

I .

process (client)

flow

= =)
B N
L It |_Jt=
empty assign assign

ExclChaoice assignBri assignBrz

o

process (client)

Figure 5 Exclusive choice by means of links and <flow>

The source links associated with activities assignBrl and assignBr2 are supplied with the
transitionCondition based on which the status of the link is defined. If both links are set to
negative, then the corresponding activities are skipped. All available branches are
synchronized by the <flow> construct after statuses of all available links have been
determined.

The source code corresponding to Figure 5 is shown below:

<sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/" name="main"'>
<I-- Receive input from requester.
Note: This maps to operation defined in
TestExclusiveChoice3.wsdl
-——>
<receive name="‘receivelnput” partnerLink="client"
portType="tns:TestExclusiveChoice3" operation="process" variable="input"
createlnstance="yes"/>
<I-- Generate reply to synchronous request -->
<fFlow xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/"
name=""flow">

23

<links>
<link name="L1"/>
<link name="L2"/>

<I-- <link name="L1s"/>
<link name="L2s"/> -->
</links>
<I-- <sequence name="flow-sequence-1'"> -->

<empty xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/' name="ExclChoice">
<source linkName="L1"

transitionCondition="bpws:getVariableData(" input",b"payloa

d" ,"/tns:TestExclusiveChoice3Request/tns: input")=
"Caré" ;" />
<source linkName="L2"

transitionCondition="bpws:getVariableData(" input" ,hb"payloa

d" ,"/tns:TestExclusiveChoice3Request/tns: input")=
"Hotel" ;' />
</empty>
<I-- </sequence>-->
<I-- <sequence name="flow-sequence-2"> -->
<assignh name="‘assignBrl'>
<target linkName="L1"/>
<I-- <source linkName="L1s"/>-->
<copy>
<from expression="'"bl" ;" ></from>
<to variable="output" part="payload"
query=""/tns:TestExclusiveChoice3Response/tns:result2'/>
</copy>
<copy>
<from variable=""input"” part="payload"
query=""/tns:TestExclusiveChoice3Request/tns: input'></from>
<to variable="output" part="payload"
query="/tns:TestExclusiveChoice3Response/tns:resultl'/>
</copy>
</assign>
<I-- </sequence>-->
<I-- <sequence name="flow-sequence-3"">-->
<assign name="assignBr2'>
<target linkName="L2"/>
<i_- <source linkName="L2s"/> -->
<Copy>
<from variable="input"” part="payload"
query="/tns:TestExclusiveChoice3Request/tns: input'></from>
<to variable="output' part="payload"”
query="/tns:TestExclusiveChoice3Response/tns:result2'/>
</copy>
<copy>
<from expression="'"B2" ;" ></from>
<to variable="output' part="payload"”
query="/tns:TestExclusiveChoice3Response/tns:resultl'/>

</copy>
</assign>
<I-- </sequence> -->
<I-- <sequence name=""flow-sequence-4" joinCondition="L1ls OR

<target linkName="L1s"/>
<target linkName="L2s"/>
<empty name="'simpleMerge'>

L2s"">

24

</empty>
<assign name='assign-1'"">
<copy>
<from variable=""input"” part="payload"
query=""/tns:TestExclusiveChoice3Request/tns: input'></from>
<to variable="output" part="payload"
query="/tns:TestExclusiveChoice3Response/tns:resultl"/>
</copy>
</assign>
</sequence> -->
</Flow>
<reply name="replyOutput" partnerLink="client"
portType="tns:TestExclusiveChoice3" operation="process"
variable="output"/>
</sequence>

An audit trail visualizing the execution history of the considered process is shown below:

[2005/07/11 16:43:49] New instance of BPEL process "TestExclusiveChoice3" initiated (#

"1220").
E<process>

FE<sequence>

“Belient (process)

[2005/07/11 16:43:49] Received "input" call from partner “client" Less

<input>

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<TestExclusiveChoice3Request xmIns="http://acm.org/samples">
<input>Car</input>

</TestExclusiveChoice3Request>

</part>

</input>

E<flow>

EﬁErnpty
[2005/07/11 16:43:49] BPEL "empty" activity is executed.

IZHQassignBrZ
[2005/07/11 16:43:49] Activity skipped

DDassignBrl

[2005/07/11 16:43:49] Updated variable "output"” Less

<output>

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<TestExclusiveChoice3Response xmIns="http://acm.org/samples">

<resultl />

<result2>bl</result2>

</TestExclusiveChoice3Response>

</part>

</output>

[2005/07/11 16:43:49] Updated variable "output" Less

<output>

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<TestExclusiveChoice3Response xmIns="http://acm.org/samples">

25

<resultl>Car</resultl>
<result2>bl</result2>
</TestExclusiveChoice3Response>
</part>

</output>

"’@client

Reply to partner “client”. More...

CFP5 Simple Merge

Description: A point in the workflow process where two or more alternative branches
come together without synchronization. It is an assumption of this pattern that none of
the alternative branches is ever executed in parallel (if it is not the case, then see the
patterns Multi-Merge and Discriminator).

Oracle BPEL PM supports this pattern directly by means of the <switch> construct or
links incorporated in the <flow> activity as it has been described for CFP4. By default the
functionality associated with the <switch> construct is a combination of a CFP4 Exclusive
Choice and CFP5 Simple Merge. Note that <switch> allows only one branch to be
selected, thus none of the alternative branches is ever executed in parallel. As soon as
the selected branch finished the execution, the <switch> normally terminates.

Usage of links with disjoint conditions within the <flow> construct permits only one
branch to be selected. As soon as the selected branch finished the execution, the <flow>
terminates.

CFP6 Multi-Choice
Description: A point in the process, where, based on a decision or control data, a number
of branches are chosen and executed as parallel threads.

This pattern can be realized by means of links embedded into the <flow> construct,
where activities Assign-2, Assign-3, Assign-4 are related to each other via links, the
source of which is an activity Assign_1. The synchronization of multiple branches is done
automatically by the <flow> construct, which terminates after the statuses of all links
have been determined and no activities that could execute are left. The process model
created for this pattern is shown in Figure 6. Based on the string input provided by the
client the transitionConditions associated with <assign> activities are evaluated. Thus, if
several conditions are satisfied, the correspondent branches become enabled and the
<assign> activities execute in parallel. If the client provided an input other than specified
in the transitionConditions, all branches are skipped.

26

Partner Links . Partner Links

2 fclv] J=3el

2

receivel nput

".‘:J D
client

Azzign_1 Azzign_4 Aszszign_3 Aszszign_2

« B

replyCutput

=

Figure 6 Multi-choice by means of <flow> and links

The source code corresponding to Figure 6 is given below:

<process name=""CFP67_flow_links" suppressJoinFailure="yes"
targetNamespace=""http://xmlns.oracle.com/CFP67_flow_links"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns: ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:client="http://xmlns.oracle.com/CFP67_flow_links"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension™
xmlns:ora="http://schemas.oracle.com/xpath/extension’
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc''><l--

__><!_
- PARTNERLINKS -
><I-- List of services participating in this BPEL process
——><l
-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.

27

-——>
<partnerLink name="client" partnerLinkType=""client:CFP67_ flow_links"
myRole=""CFP67_flow_linksProvider'/>
</partnerLinks><I--

——><I-
- VARIABLES --

><Il-- List of messages and XML documents used within this BPEL process
——><l

-—>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP67_flow_linksRequestMessage'/><!--
Reference to the message that will be returned to the requester
-—>
<variable name="outputVariable"
messageType=""client:CFP67_flow_linksResponseMessage'/>
</variables><Il--

——><I-
- ORCHESTRATION LOGIC -
><I1-- Set of activities coordinating the flow of messages across the
--><I-- services iIntegrated within this business process

——><l

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP67_Fflow_links.wsdl
—_—>
<receive name="receivelnput” partnerLink="client”
portType="client:CFP67_flow_links"™ operation="process"
variable="inputVariable" createlnstance="yes"/><!-- Generate reply to
synchronous request -->
<flow name="Flow_1'">
<links>
<link name="Link14"/>
<link name="Link13"/>
<link name="Link12"/>
</links>
<sequence name="'Sequence_4'">
<assign name="Assign_1">
<source linkName="Link12"
transitionCondition="contains("abc",bpws:getVariableData("outputVariable
", "payload”,"/client:CFP67_flow_linksProcessResponse/client:result®))"/>
<source linkName="Link13"
transitionCondition="contains("bcd",bpws:getVariableData("outputVariable
", "payload®, "/client:CFP67_flow_linksProcessResponse/client:result®))"/>
<source linkName="Link14"
transitionCondition="contains("cde",bpws:getVariableData("outputVariable
", "payload®,"/client:CFP67_flow_linksProcessResponse/client:result®))"/>
<copy>
<from variable="inputVariable'" part="payload"
query=""/client:CFP67_flow_linksProcessRequest/client:input'/>
<to variable="outputVariable" part="payload"
query="/client:CFP67_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<seguence nhame=''Sequence_3"">

28

<target linkName="Link13"/>
<assign name="Assign_4">
<copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload”,"/cli
ent:CFP67_Fflow_linksProcessResponse/client:result®),"4")"/>
<to variable="outputVariable" part="payload"
query="/client:CFP67_flow_linksProcessResponse/client:result"'/>
</copy>
</assign>
</sequence>
<sequence name='"Sequence_2">
<target linkName="Link12"/>
<assign name="Assign_3"">
<copy>
<from
expression="concat(bpws:getVariableData("outputVvVariable”, "payload”,"/cli
ent:CFP67_flow_linksProcessResponse/client:result®),*3%)"/>
<to variable="outputVariable' part="payload"
query="/client:CFP67_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
<sequence name="'Sequence_1'">
<target linkName="Link14"/>
<assignh name="Assign_2">
<COpy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli
ent:CFP67_flow_linksProcessResponse/client:result®),"2")"/>
<to variable="outputVariable'" part="payload"
query="/client:CFP67_flow_linksProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</Flow>
<reply name="replyOutput” partnerLink="client"”
portType="client:CFP67_flow_links"™ operation="process"
variable="outputVariable"/>
</sequence>
</process>

The audit trail reflecting the execution of the considered process is shown below:

New instance of BPEL process "CFP67_flow_links" initiated (# "211").

' @}receivelnput

Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP67_flow_linksProcessRequest xmlns="http://xmins.oracle.com/CFP67_flow_links">
<input>a</input>
</CFP67_flow_linksProcessRequest>

29

</part>
</inputVariable>
E<flow>

E<sequence>

IZI'ElAssign_l

[2005/08/10 11:31:19] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP67_flow_linksProcessResponse xmlns="http://xmins.oracle.com/CFP67_flow_links">
<result>a</result>

</CFP67_flow_linksProcessResponse>

</part>

</outputVariable>

</sequence=>

[E<sequence>

- Skipping
[2005/08/10 11:31:19] Block skipped
</sequence=>

[E<sequence>

|:1'|:|Assign_3

[2005/08/10 11:31:19] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP67_flow_linksProcessResponse xmlns="http://xmins.oracle.com/CFP67_flow_links">
<result>a3</result>

</CFP67_flow_linksProcessResponse>

</part>

</outputVariable>

</sequence=>

E<sequence>

- Skipping
[2005/08/10 11:31:19] Block skipped
</sequence=>

</flow=>

E:"ﬁreplyOutput

[2005/08/10 11:31:19] Reply to partner "client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP67_flow_linksProcessResponse xmlns="http://xmins.oracle.com/CFP67_flow_links">
<result>a3</result>

</CFP67_flow_linksProcessResponse>

</part>

</outputVariable>
</sequence=>

[2005/08/10 11:31:19] BPEL process instance "211" completed
</process>

30

CFP7 Synchronizing Merge

Description: A point in the process where multiple paths converge into one single thread.
Some of these paths are active (i.e. they are being executed) and some are not. If only
one path is active, the activity after the merge is triggered as soon as this path
completes. If more than one path is active, synchronization of all active paths needs to
take place.

Oracle BPEL PM supports this pattern by means of links as it has been described for the
CFP6 Multiple Choice. Links with transition conditions are used to define which
branches within the <flow> construct are to be selected. The synchronization of branches
is done by the <flow> activity. The <flow> activity will only complete when each of its sub-
activities has either completed or has been skipped. The continuation of the process after
the synchronizing merge can be placed after the <flow> activity. Alternatively, the
continuation of the process can be placed in a separate branch of the <flow>, and the
joinCondition can be attached to the activity directly following the synchronizing merge.

CFP8 Multi-Merge

Description: A point in a process where two or more branches re-converge without
synchronization. If more than one branch gets activated, possibly concurrently, the
activity following the merge is started for every action of every incoming branch.

This pattern in Oracle BPEL PM can be implemented by means of an event handler
attached to the scope in which multiple branches reside. In every branch enclosed in the
<flow> construct, an <invoke> activity should be placed to invoke a synchronous dummy
service (denoted by PartnerLink_1 in Figure 7). The response message produced by this
dummy service needs to be processed by an event handler attached to the scope outer
of the <flow> construct. As the result, as many branches complete, as many times an
activity associated with the event handler will be executed. For some reason, the event
handlers attached to the process scope seem to be unable to respond on messages,
while the alternative onMessage handler within the <pick> construct does this properly.
Since the desired behavior hasn't been achieved by means of event handlers, this
pattern is considered to be not supported.

31

Partner Links

Juaaa adoos 8449 f-’ :t @ @ b D EJ m

8 K

Partrnerlink_1 K
@ p
client K

Figure 7 Multi-merge

uew | @M fiz

®
s &

receivelnput

|

Agzsign_1

bos | @ i

7 =auan

l
2 s

Agsign_3 Aszsign_2

l l
<« « BF

Irvoke 2 Invoke 1

l

]
g
Q@ —
5 bas | @ fE

| aauEn

|
T

=&
Empty_1 wiait_1
« BF
repldutput

B

Assign_4

|
S

Partner Links

32

The code snippets corresponding to Figure 7 are shown below:

<process name="'CFP8_scope_event"
targetNamespace=""http://xmlns.oracle.com/CFP8_scope_event"
xmlns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:nsl="http://xmlns._oracle.com/dummy"

xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmlns:ns2="http://xmlns.oracle.com/AsyncDummy"
xmIns:client="http://xmlns.oracle.com/CFP8_ scope_event"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmlns:ora="http://schemas.oracle.com/xpath/extension’
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc''><l--

__><!_
- PARTNERLINKS --
><I-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
—_—>
<partnerLink name="client" partnerLinkType="client:CFP8_scope_ event"
myRole=""CFP8_scope_eventProvider'/>
<partnerLink myRole="AsyncDummyRequester' name="'PartnerLink_1"
partnerRole=""AsyncDummyProvider" partnerLinkType=""ns2:AsyncDummy"'/>
</partnerLinks><!l--

——><I
- VARIABLES -

><I-- List of messages and XML documents used within this BPEL process
——>< -

-—>

<variables><!-- Reference to the message passed as input during
initiation --><Il--
Reference to the message that will be returned to the requester
-——>
<variable name="inputVariable"
messageType=""client:CFP8_scope_eventRequestMessage' />
<variable name="outputVariable™
messageType=""client:CFP8_scope_eventResponseMessage'/>
<variable name=""OnMessage_ process_DummyVariable"
messageType=""client:CFP8 scope_eventRequestMessage' />
<variable name="StringVariable"
messageType=""ns2:AsyncDummyRequestMessage" />
<variable name="OnMessage_onResult_InputVariable"
messageType=""'ns2:AsyncDummyResponseMessage'' />
</variables>
<eventHandlers>
<onMessage portType=""ns2:AsyncDummyCal lback" operation="onResult"
variable="0nMessage_onResult_InputVariable"™ partnerLink="PartnerLink 1'>

33

<assign name="Assign_4">
<Copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,*/cli
ent:CFP8_scope_eventProcessResponse/client:result®),"4")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP8 scope_eventProcessResponse/client:result'/>
</copy>
</assign>
</onMessage>
</eventHandlers><I--

——><I-
- ORCHESTRATION LOGIC --
><I1-- Set of activities coordinating the flow of messages across the

--><I-- services integrated within this business process
——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP8_scope_event.wsdl
-—>
<receive name="'receivelnput" partnerLink="client"
portType="client:CFP8_scope event' operation='"process"
variable=""inputVariable" createlnstance="yes"/><l-- Generate reply to
synchronous request -->
<assign name="Assign_1"">
<copy>
<from variable="inputVariable" part="payload"
query="/client:CFP8_scope_eventProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"”
query="/client:CFP8 scope_eventProcessResponse/client:result'/>
</copy>
</assign>
<flow name="Flow_1"">
<sequence name="''Sequence_2'">
<assign name='"Assign_3"">
<Copy>
<from
expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli
ent:CFP8_scope_eventProcessResponse/client:result®),*3%)"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP8 scope_eventProcessResponse/client:result'/>
</copy>
<copy>
<from expression="""3"""/>
<to variable="StringVariable' part="payload"
query=""/ns2:AsyncDummyProcessRequest/ns2: input"/>
</copy>
</assign>
<invoke name="Invoke_ 2" partnerLink="PartnerLink_ 1"
portType=""ns2:AsyncDummy' operation="initiate"
inputVariable="StringVariable"/>
</sequence>
<sequence name="'Sequence_1'">
<assign name='"Assign_2"">
<Copy>

34

<from
expression="concat(bpws:getVariableData("outputVvVariable”, "payload”,"/cli
ent:CFP8_scope_eventProcessResponse/client:result®),"2")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP8_ scope_eventProcessResponse/client:result'/>
</copy>
<copy>
<from expression="""2""/>
<to variable="StringVariable' part="payload"
query=""/ns2:AsyncDummyProcessRequest/ns2: input"/>
</copy>
</assign>
<invoke name="Invoke_1" partnerLink="PartnerLink_ 1"
portType="ns2:AsyncDummy' operation="initiate"
inputVariable="StringVariable"/>
</sequence>
</Flow>
<pick name="Pick_1'">
<onMessage portType=""ns2:AsyncDummyCal lback™ operation="onResult"
variable="0nMessage_onResult_InputVariable"™ partnerLink="PartnerLink 1'>
<empty name="Empty 1"/>
</onMessage>
<onAlarm for=""PT10S"">
<wait name="Wait_1" for=""PT30S""/>
</onAlarm>
</pick>
<reply name="replyOutput"” partnerLink="client"”
portType="client:CFP8_scope_event" operation="process"
variable="outputVariable"/>
</sequence>
</process>

The content of the wsdl file is shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP8_scope_event"
targetNamespace="http://xmlns.oracle.com/CFP8_scope_event"
xmlns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmIns.oracle.com/CFP8_ scope_event"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

<types>
<schema attributeFormDefault="qualified"
elementFormbDefault="qualified"
targetNamespace="http://xmlns.oracle.com/CFP8_scope_event"
xmIns=""http://www_w3.0rg/2001/XMLSchema'*>

35

<element name="'CFP8_ scope_eventProcessRequest''>
<complexType>
<seguence>
<element name="input' type="'string'/>
</sequence>
</complexType>
</element>
<element name="'CFP8_scope_eventProcessResponse’>
<complexType>
<seguence>
<element name="'result" type="'string'/>
</sequence>
</complexType>
</element>
</schema>
</types>

<l_—

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

<message name="'CFP8_scope_eventRequestMessage''>
<part name="payload"
element="client:CFP8_scope_eventProcessRequest'/>
</message>
<message name="'CFP8_scope_eventResponseMessage'>
<part name="payload"
element="client:CFP8_scope_eventProcessResponse'/>
</message>

<l_—

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

>
<I-- portType implemented by the CFP8 scope_event BPEL process -->
<portType name="'CFP8_ scope_event'>
<operation name='process'>
<input message=""client:CFP8_scope_eventRequestMessage"' />
<output message=''client:CFP8_scope_ eventResponseMessage'/>
</operation>
</portType>
<l--
PARTNER LINK TYPE DEFINITION
>

<pInk:partnerLinkType name="'CFP8_scope_event'>
<pInk:role name="CFP8_scope_eventProvider'>

36

<pInk:portType name="client:CFP8 scope_event'/>
</plnk:role>
</plInk:partnerLinkType>
</definitions>

An audit trail demonstrating the execution history of the considered process model
(based on <pick> construct) is shown below:

[2005/08/10 14:40:27] New instance of BPEL process "CFP8_scope_event" initiated (# "231").
[E<process>

E<sequence>

C"@receivelnput

[2005/08/10 14:40:27] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP8_scope_eventProcessRequest xmins="http://xmlins.oracle.com/CFP8_scope_event">
<input>a</input>

</CFP8_scope_eventProcessRequest>

</part>
</inputVariable>
Ij'QAssign_l

[2005/08/10 14:40:27] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP8_scope_eventProcessResponse xmlns="http://xmlins.oracle.com/CFP8_scope_event">
<result>a</result>

</CFP8_scope_eventProcessResponse=>

</part>

</outputVariable>

E<flow>

[E<sequence>

Ij'QAssign_Z

[2005/08/10 14:40:27] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP8_scope_eventProcessResponse xmlns="http://xmlins.oracle.com/CFP8_scope_event">
<result>a2</result>

</CFP8_scope_eventProcessResponse>

</part>

</outputVariable>

[2005/08/10 14:40:27] Updated variable "StringVariable" less
<StringVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmins="http://xmins.oracle.com/AsyncDummy">
<input>2</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

37

‘:@I nvoke 1

[2005/08/10 14:40:27] Invoked 1-way operation "initiate"” on partner "PartnerLink_1".

less
<StringVariable>
<part xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmIns="http://xmins.oracle.com/AsyncDummy">
<input>3</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

</sequence>

[F<sequence>

DElAssign_S

[2005/08/10 14:40:27] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP8_scope_eventProcessResponse xmins="http://xmlins.oracle.com/CFP8_scope_event">
<result>a23</result>

</CFP8_scope_eventProcessResponse>

</part>

</outputVariable>

[2005/08/10 14:40:27] Updated variable "StringVariable" less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmIns="http://xmins.oracle.com/AsyncDummy">
<input>3</input>

</AsyncDummyProcessRequest>

</part>
</StringVariable>
‘:’@I nvoke 2

[2005/08/10 14:40:27] Invoked 1-way operation "initiate” on partner "PartnerLink_1".

less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmins.oracle.com/AsyncDummy"'>
<input>3</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

</sequence=>

</flow>
E<pick>
“'@onMessage (77)

[2005/08/10 14:40:27] Waiting for message from "PartnerLink_1", operation is
"onResult".

[2005/08/10 14:40:29] Received "onResult" callback from partner "PartnerLink_1" less

<OnMessage_onResult_InputVariable>
<part xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance" name="payload">

38

<AsyncDummyProcessResponse xmlns="http://xmlins.oracle.com/AsyncDummy">
<result>3</result>

</AsyncDummyProcessResponse>

</part>

</OnMessage_onResult_InputVariable>

I@'onAlarm (80) (cancelled)

[2005/08/10 14:40:27] Alarm started. Alarm will go off at time "2005/08/10
14:40:37".

[2005/08/10 14:40:29] BPEL "onAlarm" cancelled before being triggered.
[E<onMessage>

@ Empty
[2005/08/10 14:40:29] BPEL "empty" activity is executed.
</onMessage>

</pick>

':’%replyOutput

[2005/08/10 14:40:29] Reply to partner "client”. less
<outputVariable>
<part xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance" name="payload">
<CFP8_scope_eventProcessResponse xmins="http://xmlins.oracle.com/CFP8_scope_event">
<result>a23</result>

</CFP8_scope_eventProcessResponse>

</part>

</outputVariable>

</sequence=>

[2005/08/10 14:40:29] BPEL process instance "231" completed
</process>

An audit trail of the invoked dummy service is shown below:

[2005/08/10 14:40:30] New instance of BPEL process "AsyncDummy" initiated (# "233").
E<process>

E<sequence>

C"@receivelnput

[2005/08/10 14:40:30] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmlns.oracle.com/AsyncDummy">
<input>3</input>

</AsyncDummyProcessRequest>

</part>
</inputVariable>
Ij'QAssign_l

[2005/08/10 14:40:30] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessResponse xmlns="http://xmlins.oracle.com/AsyncDummy">
<result>3</result>

39

</AsyncDummyProcessResponse>
</part>
</outputVariable>

""ﬁ'callbackCIient
Invoked 1-way operation "onResult" on partner "client”. less

<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessResponse xmins="http://xmlins.oracle.com/AsyncDummy">
<result>3</result>

</AsyncDummyProcessResponse=>

</part>

</outputVariable>

BPEL process instance "233" completed

CFP9 Discriminator

Description: A point in the workflow process that waits for one of the incoming branches
to complete before activating the subsequent activity. From that moment on it waits for all
remaining branches to complete and 'ignores' them. Once all incoming branches have
been triggered, it resets itself so that it can be triggered again (which is important
otherwise it could not really be used in the context of a loop).

Oracle BPEL PM does not support this pattern directly since according to the BPEL
specification joinCondition is evaluated after all branches were triggered, but not after the
first branch has completed.

CFP10 Arbitrary Cycles

Description: A point where a portion of the process (including one or more activities and
connectors) needs to be visited repeatedly without imposing restrictions on the number,
location, and nesting of these points.

Oracle BPEL PM does not support this pattern directly. The only possibility to define
loops offered by Oracle BPEL PM is by using the <while> construct (see Figure 8),
however it allows only one input and output end-points, and does not permit arbitrary
jumps into the body of a loop.

40

Partner Links Partner Links

PEGBPPD o

receivelnput

Azzign_1

clistt

4
K

Aizzign_2

« BN

reply0utput

Figure 8 The <while> construct

The code snippets corresponding to Figure 8 are shown below:

<process name=""CFP10_while"
targetNamespace=""http://xmlns.oracle.com/CFP10_while"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"’
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20" xmlns:nsl="http://www.w3.0rg/2001/XMLSchema"
xmlIns: ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension™
xmIns:client="http://xmIns.oracle.com/CFP10_while"
xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc'><l--

——><I-
- PARTNERLINKS

><I-- List of services participating in this BPEL process

41

——>< -

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client" partnerLinkType="client:CFP10_while"
myRole=""CFP10_whileProvider'/>
</partnerLinks><!l--

——><I-
- VARIABLES -—

><I-- List of messages and XML documents used within this BPEL process
——><l

-——>
<variables><!-- Reference to the message passed as input during
initiation --><Il--
Reference to the message that will be returned to the requester
-—>
<variable name="inputVariable"
messageType=""client:CFP10_whileRequestMessage' />
<variable name="outputVariable"
messageType=""client:CFP10_whileResponseMessage"/>
<variable name="LoopCounter" type="nsl:integer'/>
</variables><I--
__><!_

- ORCHESTRATION LOGIC -
><I-- Set of activities coordinating the flow of messages across the
--><I-- services integrated within this business process

——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP10_while.wsdl
-—>
<receive name="'receivelnput" partnerLink="client"
portType="client:CFP10 _while"™ operation="process"
variable=""inputVariable” createlnstance="yes"/><I-- Generate reply to
synchronous request -->
<assign name="Assign_1"">
<Copy>
<from expression="'3"/>
<to variable="LoopCounter"/>
</copy>
<copy>
<from variable="inputVariable'" part="payload"
query="/client:CFP10_whileProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"
query="/client:CFP10_whileProcessResponse/client:result'/>
</copy>
</assign>
<while name="While_1" condition="bpws:getVariableData("LoopCounter"®)
> 0>
<assign name="Assign_2"">
<COpy>
<from
expression="concat(bpws:getVariableData("outputvVariable®, "payload”,"/cli

42

ent:CFP10_whileProcessResponse/client:result®),string(bpws:getVariableDa
ta("LoopCounter®)))"/>
<to variable="outputVariable' part="payload"
query="/client:CFP10_whileProcessResponse/client:result'/>
</copy>
<Copy>
<from expression="bpws:getVariableData("LoopCounter®) - 1'/>
<to variable="LoopCounter"/>
</copy>
</assign>
</while>
<reply name="replyOutput” partnerLink="client"”
portType="client:CFP10_while"™ operation="process"
variable="outputVariable'/>
</sequence>
</process>

The wsdl code is shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP10_while"
targetNamespace="http://xmlns.oracle.com/CFP10_while"
xmlns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmIns.oracle.com/CFP10_while"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

<types>
<schema attributeFormDefault="qualified"
elementFormbDefault="qualified"
targetNamespace="http://xmlns.oracle.com/CFP10_while"
xmIns=""http://www_w3.0rg/2001/XMLSchema'*>
<element name="'CFP10_whileProcessRequest'>
<complexType>
<seguence>
<element name="input" type="'string'/>
</sequence>
</complexType>
</element>
<element name="CFP10_whileProcessResponse''>
<complexType>
<seguence>
<element name="'result" type="'string'/>
</sequence>
</complexType>
</element>
</schema>

43

</types>
<l--

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

—_—>
<message nhame="'CFP10_whileRequestMessage'>
<part name="payload"
element="client:CFP10_whileProcessRequest'/>
</message>
<message name="'CFP10_whileResponseMessage''>
<part name="payload"
element=""client:CFP10_whileProcessResponse'/>
</message>
<l--

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

-——>
<I-- portType implemented by the CFP10 while BPEL process -->
<portType name="CFP10_while'>

<operation name='process'>
<input message="client:CFP10_whileRequestMessage"' />
<output message="'client:CFP10_whileResponseMessage' />
</operation>
</portType>
<!—-
PARTNER LINK TYPE DEFINITION

-——>

<pInk:partnerLinkType name="CFP10_while'>
<pInk:role name="CFP10_whileProvider'>
<pInk:portType name="client:CFP10_while"/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

The audit trail reflecting the execution of the considered process is shown below:

New instance of BPEL process "CFP10_while" initiated (# "215").

“Breceivelnput
Received "inputVariable" call from partner "client" less

<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessRequest xmIns="http://xmins.oracle.com/CFP10_while">
<input>a</input>

</CFP10_whileProcessRequest>

</part>

</inputVariable>

44

Ij'ElAssign_l

[2005/08/10 13:45:03] Updated variable "LoopCounter" less
<LoopCounter>3</LoopCounter=>

[2005/08/10 13:45:03] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessResponse xmlns="http://xmlins.oracle.com/CFP10_while">
<result>a</result>

</CFP10_whileProcessResponse>

</part>

</outputVariable>

E<while>

Ij'l;lAssign_Z

[2005/08/10 13:45:03] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessResponse xmins="http://xmlins.oracle.com/CFP10_while">
<result>a3</result>

</CFP10_whileProcessResponse>

</part>

</outputVariable>

[2005/08/10 13:45:03] Updated variable "LoopCounter” less
<LoopCounter>2</LoopCounter>

Ij'|:|Assign_2

[2005/08/10 13:45:03] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessResponse xmins="http://xmlins.oracle.com/CFP10_while">
<result>a32</result>

</CFP10_whileProcessResponse=>

</part>

</outputVariable>

[2005/08/10 13:45:03] Updated variable "LoopCounter" less
<LoopCounter>1</LoopCounter=>

Ij'l;lAssign_Z

[2005/08/10 13:45:03] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessResponse xmins="http://xmlins.oracle.com/CFP10_while">
<result>a321</result>

</CFP10_whileProcessResponse>

</part>

</outputVariable>

[2005/08/10 13:45:03] Updated variable "LoopCounter” less
<LoopCounter>0</LoopCounter>

</while>

“Freplyoutput
[2005/08/10 13:45:03] Reply to partner "client”. less

45

<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP10_whileProcessResponse xmlns="http://xmins.oracle.com/CFP10_while">
<result>a321</result>

</CFP10_whileProcessResponse>

</part>

</outputVariable>

BPEL process instance 215" completed

CFP11 Implicit Termination
Description: A given sub-process is terminated when there is nothing left to do, i.e.,
termination does not require an explicit termination activity.

Oracle BPEL PM supports this pattern directly by the <flow> construct, which terminates
when no activities within its body can be triggered and executed any more.

CFP12 MI without Synchronization

Description: Within the context of a single case multiple instances of an activity may be
created, i.e. there is a facility for spawning of new threads of control, all of them
independent of each other. The instances might be created consecutively, but they will
be able to run in parallel, which distinguishes this pattern from the pattern for Arbitrary
Cycles.

Oracle BPEL PM supports this pattern by placing an <invoke> construct within the body
of a <while> loop (see Figure 9).

46

Partner Links Partner Links

receivelnput

& 1c1:1 J=3=k

Agzzign_1

Rk
client K

Azzign_2

el
AzyncService <:| @

replyDdutput

=

Figure 9 Ml instances without synchronization

The code snippets corresponding to Figure 9 are shown below:

<process name="CFP12_while_invoke"
targetNamespace="http://xmlns.oracle.com/CFP12_while_invoke"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:nsl=""http://www.w3.0rg/2001/XMLSchema"

xmlIns: ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmlns:ns2="http://xmlns.oracle.com/AsyncDummy"
xmIns:client="http://xmIns.oracle.com/CFP12_while_invoke"

47

xmIns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions._ExtFunc'><Il--

——><I-
- PARTNERLINKS --
><Il-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client"
partnerLinkType="client:CFP12_while_invoke"
myRole=""CFP12_while_invokeProvider'/>
<partnerLink myRole=""AsyncDummyRequester' name="AsyncService"
partnerRole=""AsyncDummyProvider" partnerLinkType="ns2:AsyncDummy" />
</partnerLinks><l--

——><I-
- VARIABLES -—

><I-- List of messages and XML documents used within this BPEL process
——><l

-—>
<variables><!-- Reference to the message passed as input during
initiation --><Il--
Reference to the message that will be returned to the requester
-—>
<variable name="inputVariable"
messageType=""client:CFP12_while_invokeRequestMessage"' />
<variable name="outputVariable"
messageType="client:CFP12_while_invokeResponseMessage' />
<variable name="LoopCounter' type="nsl:integer"/>
<variable name="'StringVariable"
messageType=""ns2:AsyncDummyRequestMessage'' />
</variables><Il--
——><I-

- ORCHESTRATION LOGIC --
><1-- Set of activities coordinating the flow of messages across the
--><I-- services iIntegrated within this business process

——><l

-—>

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP12_while_invoke.wsdl
-—>
<receive name="receivelnput” partnerLink="client”
portType="client:CFP12_while_invoke'" operation=""process"
variable="inputVariable" createlnstance="yes"/><!-- Generate reply to
synchronous request -->
<assign name="Assign_1">
<copy>
<from expression="'3"/>
<to variable="LoopCounter"/>
</copy>
<copy>

48

<from variable="inputVariable'" part="payload"
query="/client:CFP12_while_invokeProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"
query="/client:CFP12_while_invokeProcessResponse/client:result'/>
</copy>
<Copy>
<from variable="inputVariable" part="payload"
query="/client:CFP12_while_invokeProcessRequest/client:input'/>
<to variable="StringVariable' part="payload"
query=""/ns2:AsyncDummyProcessRequest/ns2: input"/>
</copy>
</assign>
<while name="While_1" condition="bpws:getVariableData("LoopCounter®)
> 0>
<sequence name="'Sequence_1'"">
<assignh name="Assign_2">
<copy>
<from expression="bpws:getVariableData("LoopCounter®) - 1"/>
<to variable="LoopCounter"/>
</copy>
<copy>
<from
expression="concat(bpws:getVariableData("StringVariable®, "payload”, "/ns2
AsyncDummyProcessRequest/ns2:input®), ".")"/>
<to variable="StringVariable' part="payload"
query=""/ns2:AsyncDummyProcessRequest/ns2: input"/>
</copy>
</assign>
<invoke name="Invoke_1" partnerLink="AsyncService"
portType="ns2:AsyncDummy' operation="initiate"
inputVariable="StringVariable'/>
</sequence>
</while>
<reply name="replyOutput’” partnerLink="client"
portType="client:CFP12_while_invoke'" operation=""process"
variable=""outputVariable"/>
</sequence>
</process>

The audit trail reflecting the execution of the considered process is shown below:

New instance of BPEL process "CFP12_while_invoke" initiated (#
"221").

' @}receivelnput

Received "inputVariable" call from partner "client" less

<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP12_while_invokeProcessRequest xmlns="http://xmlins.oracle.com/CFP12_while_invoke">
<input>a</input>

</CFP12_while_invokeProcessRequest>

</part>

</inputVariable>

49

Ij'ElAssign_l
[2005/08/10 14:17:12] Updated variable "LoopCounter" less
<LoopCounter>3</LoopCounter=>

[2005/08/10 14:17:12] Updated variable "outputVariable" less
<outputVariable>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP12_while_invokeProcessResponse xmlns="http://xmins.oracle.com/CFP12_while_invoke">

<result>a</result>

</CFP12_while_invokeProcessResponse>

</part>

</outputVariable>

[2005/08/10 14:17:12] Updated variable "StringVariable" less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmIns="http://xmins.oracle.com/AsyncDummy">
<input>a</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

E<while>

[E<sequence>

Ij'l;lAssign_Z

[2005/08/10 14:17:12] Updated variable "LoopCounter” less
<LoopCounter>2</LoopCounter>

[2005/08/10 14:17:12] Updated variable "StringVariable" less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmins.oracle.com/AsyncDummy">
<input>a.</input>

</AsyncDummyProcessRequest>

</part>
</StringVariable>
‘jﬂl nvoke 1

[2005/08/10 14:17:13] Invoked 1-way operation "initiate" on partner "AsyncService".

less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmIns="http://xmins.oracle.com/AsyncDummy">
<input>a.</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

</sequence=>

E<sequence>

DE'Assign_Z

[2005/08/10 14:17:13] Updated variable "LoopCounter” less
<LoopCounter>1</LoopCounter=>

[2005/08/10 14:17:13] Updated variable "StringVariable" less

50

<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmins.oracle.com/AsyncDummy">
<input>a..</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

‘jﬂlnvoke_l

[2005/08/10 14:17:13] Invoked 1-way operation "initiate" on partner "AsyncService".

less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmlns.oracle.com/AsyncDummy">
<input>a..</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

</sequence=>

E<sequence>

IZI'ElAssign_Z

[2005/08/10 14:17:13] Updated variable "LoopCounter” less
<LoopCounter>0</LoopCounter=>

[2005/08/10 14:17:13] Updated variable "StringVariable" less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmins.oracle.com/AsyncDummy"'>
<input>a...</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

‘:’@Invoke_l

[2005/08/10 14:17:13] Invoked 1-way operation "initiate" on partner "AsyncService".

less
<StringVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmlns="http://xmlns.oracle.com/AsyncDummy">
<input>a...</input>

</AsyncDummyProcessRequest>

</part>

</StringVariable>

</sequence=>

</while>

E:@'replyOutput

[2005/08/10 14:17:13] Reply to partner “client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP12_while_invokeProcessResponse xmlns="http://xmins.oracle.com/CFP12_while_invoke">
<result>a</result>

51

</CFP12_while_invokeProcessResponse>
</part>

</outputVariable>

</sequence>

[2005/08/10 14:17:13] BPEL process instance "221" completed
</process>

In the <while> loop an asynchronous AsyncDummy service is invoked, the execution
history of which is shown below:

[2005/08/10 14:17:15] New instance of BPEL process "AsyncDummy" initiated (# "224").
E<process>

E<sequence>

("@receivelnput

[2005/08/10 14:17:15] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessRequest xmIns="http://xmlins.oracle.com/AsyncDummy">
<input>a..</input>

</AsyncDummyProcessRequest>

</part>
</inputVariable>
DQAssign_l

[2005/08/10 14:17:15] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessResponse xmins="http://xmins.oracle.com/AsyncDummy">
<result>a..</result>

</AsyncDummyProcessResponse>

</part>

</outputVariable>

':’%callbackCIient
[2005/08/10 14:17:15] Invoked 1-way operation "onResult" on partner "client". les
<outputVariable>

(%]

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<AsyncDummyProcessResponse xmins="http://xmins.oracle.com/AsyncDummy">
<result>a..</result>

</AsyncDummyProcessResponse>

</part>

</outputVariable>

</sequence=>

[2005/08/10 14:17:15] BPEL process instance "224" completed

</process>

The wsdl code associated with the considered process is shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP12_while_invoke"

targetNamespace="http://xmIns.oracle.com/CFP12_while_invoke"
xmlns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmIns.oracle.com/CFP12_while_invoke"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

>
<types>
<schema attributeFormDefault=""qualified"
elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/CFP12_while_invoke"
xmlns=""http://www.w3.0rg/2001/XMLSchema''>
<element name="'CFP12_while_invokeProcessRequest'>
<complexType>
<seguence>
<element name="input" type="string"/>
</sequence>
</complexType>
</element>
<element name=""CFP12_while_invokeProcessResponse'>
<complexType>
<seguence>
<element name="'result"” type="'string'/>
</sequence>
</complexType>
</element>
</schema>
</types>
<l--
MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions
>

<message nhame="'CFP12_while_invokeRequestMessage' >
<part name="payload"
element="client:CFP12_while_invokeProcessRequest'/>
</message>
<message name=""CFP12_while_invokeResponseMessage'>
<part name="payload"
element="client:CFP12_while_invokeProcessResponse'/>
</message>
<l--

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

53

<I-- portType implemented by the CFP12 while_invoke BPEL process -->
<portType name="CFP12_while_invoke">
<operation name=''process''>
<input message="client:CFP12 while_invokeRequestMessage" />
<output message="client:CFP12_while_invokeResponseMessage'/>
</operation>
</portType>
<l--

PARTNER LINK TYPE DEFINITION

>
<pInk:partnerLinkType name="CFP12_while_invoke">
<pInk:role name="CFP12 while_invokeProvider'>
<pInk:portType name="client:CFP12_while_invoke"/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

The invoked AsyncDummy process must have an attribute createlnstance set to "yes".

CFP13-CFP15 MI with Synchronization

Description: A point in a workflow where a number of instances of a given activity is
initiated and these instances are later synchronized, before proceeding with the rest of
the process.

In CFP13 the number of instances to be started/ synchronized is known at the design
time.

Oracle BPEL PM supports this pattern by placing replicas of an activity on the separate
branches of the <flow> activity. There should be so many branches as many instances
are required. For the details of the <flow> construct see the pattern Parallel Split.

An alternative implementation is to use the <flowN> construct offered by Oracle BPEL

PM for creating the specified number of instances of the activities placed in the branch of
<flowN> (see Figure 10).

54

Partner Links Partner Links

receivelnput

Y] I

Azzign_1

ata

Ln[n)

L]

Flowwi_1

ey
client

4
¢

Azzign_2

Wait_1

« B

reply0utput

=

Figure 10 M1 task with a-priori design-time knowledge

The code snippets corresponding to Figure 10 are shown below:

<process name="'CFP13_flown"
targetNamespace="http://xmlns.oracle.com/CFP13_flown"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema"
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20*

xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:client="http://xmIns.oracle.com/CFP13_flown"
xmlns:ora="http://schemas.oracle.com/xpath/extension"

55

xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc''><I--

——><I-
- PARTNERLINKS -—
><Il-- List of services participating in this BPEL process
——>< -

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client" partnerLinkType="client:CFP13_flown""
myRole=""CFP13_flownProvider'/>
</partnerLinks><l--

__><!_
- VARIABLES --
><I-- List of messages and XML documents used within this BPEL process
——><l

-——>
<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP13_flownRequestMessage'/><!--
Reference to the message that will be returned to the requester
——
<variable name="outputVariable"
messageType=""client:CFP13_flownResponseMessage"/>
<variable name="FlowN_1_Variable" type="xsd:int"'/>
</variables><I--
——><I-

- ORCHESTRATION LOGIC -
><I-- Set of activities coordinating the flow of messages across the
--><I-- services integrated within this business process

——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP13_flown.wsdl
-—>
<receive name="'receivelnput" partnerLink="client"
portType="client:CFP13 flown"™ operation="process"
variable=""inputVariable" createlnstance="yes"/><l-- Generate reply to
synchronous request -->
<assign name="Assign_1"">
<Copy>
<from variable="inputVariable" part="payload"
query="/client:CFP13_flownProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"
query=""/client:CFP13_flownProcessResponse/client:result'/>
</copy>
</assign>
<bpelx:flowN name="FlowN_1" N="3" indexVariable="FlowN_1 Variable'>
<sequence name="'Sequence_1'">
<assign name='"Assign_2"">
<Copy>

56

<from
expression="concat(bpws:getVariableData("outputVvVariable”, "payload”,"/cli
ent:CFP13_flownProcessResponse/client:result®), *.")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP13_flownProcessResponse/client:result'/>
</copy>
</assign>
<wait name="Wait_1" for=""PT10S"'/>
</sequence>
</bpelx:flowN>
<reply name="'replyOutput"” partnerLink="client"
portType="client:CFP13 flown"™ operation="process"
variable="outputVariable'/>
</sequence>
</process>

The audit trail reflecting the execution of the considered process is shown below:

[2005/08/10 14:57:15] New instance of BPEL process "CFP13_flown" initiated (# "234").
E<process>

E<sequence>

c’ﬁ}receivelnput

[2005/08/10 14:57:16] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP13_flownProcessRequest xmiIns="http://xmlins.oracle.com/CFP13_flown">
<input>a</input>

</CFP13_flownProcessRequest>

</part>
</inputVariable>
DQAssign_l

[2005/08/10 14:57:16] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP13_flownProcessResponse xmlns="http://xmlns.oracle.com/CFP13_flown">
<result>a</result>

</CFP13_flownProcessResponse>

</part>

</outputVariable>

E<flowN>

E<FlowN_1 Variable=0>

[F<sequence>

DQAssign_Z

[2005/08/10 14:57:16] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP13_flownProcessResponse xmlns="http://xmlns.oracle.com/CFP13_flown">
<result>a...</result>

</CFP13_flownProcessResponse>
</part>

57

</outputVariable>
I@'Wait_l

[2005/08/10 14:57:16] Waiting for the expiry time "2005/08/10 14:57:26".
[2005/08/10 14:57:28] Wait has finished.
</sequence>

</FlowN_1_Variable=0>
[E<FlowN_1_Variable=1>

E<sequence>

Ij'l;lAssign_Z
[2005/08/10 14:57:16] Updated variable "outputVariable" less
<outputVariable>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP13_flownProcessResponse xmlns="http://xmlins.oracle.com/CFP13_flown">
<result>a..</result>

</CFP13_flownProcessResponse>
</part>

</outputVariable>

'@' Wait_1

[2005/08/10 14:57:16] Waiting for the expiry time "2005/08/10 14:57:26".
[2005/08/10 14:57:27] Wait has finished.
</sequence=>

</FlowN_1 Variable=1>
[E<FlowN_1 Variable=2>

E<sequence>

Ij'|:|Assign_2
[2005/08/10 14:57:16] Updated variable "outputVariable" less
<outputVariable>

<part xmins:xsi="http://www.w3.0org/2001/XMLSchema-instance" name="payload">

<CFP13_flownProcessResponse xmins="http://xmins.oracle.com/CFP13_flown">
<result>a.</result>

</CFP13_flownProcessResponse>
</part>
</outputVariable>

I@'Wait_l

[2005/08/10 14:57:16] Waiting for the expiry time "2005/08/10 14:57:26".
[2005/08/10 14:57:26] Wait has finished.

</sequence=>

</FlowN_1_ Variable=2>

</flowN>

':"@replyOutput
[2005/08/10 14:57:28] Reply to partner "client". less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

<CFP13_flownProcessResponse xmlns="http://xmlins.oracle.com/CFP13_flown">
<result>a...</result>

</CFP13_flownProcessResponse>

58

</part>
</outputVariable>

BPEL process instance "234" completed

Partner Links

B

receivelnput

»2GBPDOD

Agzzign_1

= Mﬂ_
i T
ap -
S Flanatd_1
Agzign_2

replhy0utput

=

In CFP14 the number of instances is known at some stage during run time, but before
the initiation of the instances has started.

Standard BPEL does not support this pattern, however Oracle BPEL PM has
implemented the <flowN> construct which supports it. The <flowN> on the moment of
initiation of the process instance requests the number of task instances that should be
created, and creates the specified number of instances at run-time. An example of

creating multiple instances of an activity Assign_2 with run-time a-priori knowledge is
shown in Figure 11.

Partner Links

59

Figure 11 M1 with synchronization a-priori run-time

The code snippets corresponding to the considered process model are shown below:

<process name="'CFP14_flown"
targetNamespace=""http://xmlns.oracle.com/CFP14_ flown"
xmlns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20" xmlns:nsl="http://www.w3.0rg/2001/XMLSchema"
xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:client="http://xmlns.oracle.com/CFP14_flown"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/Zoracle.tip.pc.servi
ces.functions._ExtFunc'><l--

——><1I-
- PARTNERLINKS --
><Il-- List of services participating in this BPEL process
——>< -

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-—>
<partnerLink name="client"” partnerLinkType="client:CFP14_flown"
myRole=""CFP14_ flownProvider"/>
</partnerLinks><!l--

——><I-
- VARIABLES --

><I-- List of messages and XML documents used within this BPEL process
——>< -

-—>
<variables><!-- Reference to the message passed as input during
initiation --><l--
Reference to the message that will be returned to the requester
-——>
<variable name="inputVariable"
messageType="client:CFP14_flownRequestMessage' />
<variable name="outputVariable"
messageType="client:CFP14_ flownResponseMessage"/>
<variable name="FlowN_1 Variable" type="xsd:int'/>
<variable name="Counter" type='"'nsl:integer'/>
</variables><Il--
——><1I-

- ORCHESTRATION LOGIC --
><I1-- Set of activities coordinating the flow of messages across the
--><I-- services integrated within this business process

——><l

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP14_ flown.wsdl
-—>

60

<receive name="‘receivelnput" partnerLink="client"
portType="client:CFP14 flown"™ operation='"process"
variable=""inputVariable” createlnstance="yes"/><I-- Generate reply to
synchronous request -->
<assign name="Assign_1"">
<Copy>
<from variable="inputVariable" part="payload"
query="/client:CFP14_flownProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"”
query=""/client:CFP14_flownProcessResponse/client:result'/>
</copy>
<copy>
<from

expression="number(bpws:getVariableData(" inputVariable”, "payload®,"/clie

nt:CFP14_flownProcessRequest/client:input®))"/>
<to variable="Counter'/>
</copy>
</assign>
<bpelx:flowN name="FlowN_1" N="bpws:getVariableData("Counter®)""
indexVariable="FlowN_1 Variable'>
<assignh name="Assign_2">
<COpy>
<from

expression="concat(bpws:getVariableData("outputVariable®, "payload®,"/cli

ent:CFP14_ flownProcessResponse/client:result®), ".")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP14_flownProcessResponse/client:result'/>
</copy>
</assign>
</bpelx:flowN>
<reply name="'replyOutput"” partnerLink="client"
portType="client:CFP14 flown"™ operation="process"
variable="outputVariable"/>
</sequence>
</process>

An audit trail visualizing the execution history of the considered example is shown below:

New instance of BPEL process "CFP14_flown" initiated (# "235").

“Breceivelnput
Received "inputVariable" call from partner “client" less

<inputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP14_flownProcessRequest xmiIns="http://xmlins.oracle.com/CFP14_flown">
<input>3</input>

</CFP14_flownProcessRequest>

</part>

</inputVariable>
DDAssign_l
Updated variable "outputVariable" less

<outputVariable>

61

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance

" name="payload">

<CFP14_flownProcessResponse xmlns="http://xmlins.oracle.com/CFP14_flown">

<result>3</result>

</CFP14_flownProcessResponse>

</part>

</outputVariable>

[2005/08/10 15:00:38] Updated variable "Counter" less
<Counter=>3</Counter>

B<flowN>

[E<FlowN_1 Variable=0>

Ij'ElAssig n_2

[2005/08/10 15:00:38] Updated variable "outputVariable" less

<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance

" name="payload">

<CFP14_flownProcessResponse xmlns="http://xmlins.oracle.com/CFP14_flown">

<result>3.</result>
</CFP14_flownProcessResponse>
</part>
</outputVariable>
</FlowN_1_ Variable=0>

[F<FlowN_1 Variable=1>

Ij'ElAssig n_2

[2005/08/10 15:00:38] Updated variable "outputVariable" less

<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance

" name="payload">

<CFP14_flownProcessResponse xmIns="http://xmins.oracle.com/CFP14_flown">

<result>3..</result>
</CFP14_flownProcessResponse>
</part>
</outputVariable>
</FlowN_1 Variable=1>

E<FlowN_1 Variable=2>

IZIEIAssig n_2

[2005/08/10 15:00:38] Updated variable "outputVariable" less

<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance

" name="payload">

<CFP14_flownProcessResponse xmlns="http://xmlins.oracle.com/CFP14_flown">

<result>3...</result>
</CFP14_flownProcessResponse>
</part>
</outputVariable>
</FlowN_1_Variable=2>

</flowN>

':’@replyOutput

[2005/08/10 15:00:38] Reply to partner "client”. less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance

" name="payload">

62

<CFP14_flownProcessResponse xmins="http://xmins.oracle.com/CFP14_flown">
<result>3...</result>

</CFP14_flownProcessResponse>

</part>

</outputVariable>

</sequence>

[2005/08/10 15:00:38] BPEL process instance "235" completed
</process=>

[2005/08/10 15:10:00] New instance of BPEL process "CFP14_flown" initiated (# "236").

[E<process>

E<sequence>

k";ﬁ}receivelnput

[2005/08/10 15:10:00] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP14_flownProcessRequest xmIns="http://xmlins.oracle.com/CFP14_flown">
<input>0</input>

</CFP14_flownProcessRequest>

</part>

</inputVariable>

D'QAssign_l

[2005/08/10 15:10:00] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP14_flownProcessResponse xmlns="http://xmlns.oracle.com/CFP14_flown">
<result=>0</result>

</CFP14_flownProcessResponse>

</part>

</outputVariable>

[2005/08/10 15:10:00] Updated variable "Counter" less
<Counter>0</Counter>

E<flowN>

The following inputs caused unhandled exceptions to be thrown:

Input = -3:
Your test request generated the following exception/fault:
Java.lang.NegativeArraySizeException

Input = 1000:
Your test request generated the following exception/fault:
Java.rmi.RemoteException: No Exception - originate
from: java.lang.Exception: No Exception - originate from:; nested
exception 1is:

jJava.lang.Exception: No Exception - originate from:

In CFP15 the number of instances to be created is not known in advance: new instances
are created on demand, until no more instances are required.

Oracle BPEL PM offers no direct support for this pattern, however the workaround can
be found by means of placing the <pick> construct within the <while> loop. The <pick>
should be configured to react on three types of messages: the first message Start
corresponds to the creation of an activity; the second message Finish corresponds to the
completion of the started activity; the third message NoMore notifies that no more
instances of the activity will be created any more. Thus the logic of this pattern is based
on the logical expression evaluating the value of a counter i, which is increased and
decreased if a new task instance is created and finished respectively, and the status of
the Boolean variable morelnstances indicating whether new instances are still to be
created. The process model incorporating this pattern is shown in Figure 12.

64

Partner Links

- &

O

&

A . a.

)

“ 5]

3 receivelnput
Azzign_2

i3

s

clistt s
Azsign_1 Assign_3 Agsign_4
Agzign B

a B

reply0utput

Figure 12 M1 with synchronization (run-time)

Partner Links

The source code corresponding to the considered process model is shown below:

<process name="'CFP15 while_ pick"
targetNamespace=""http://xmlns.oracle.com/CFP15 while pick"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""

65

xmIns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.Xpath20"
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:nsl="http://www.w3.0rg/2001/XMLSchema""
xmIns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:client="http://xmlns.oracle.com/CFP15 while_ pick"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmlns:ora="http://schemas.oracle.com/xpath/extension’
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions.ExtFunc'><I--

__><!_
- PARTNERLINKS --
><I-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
—_—>
<partnerLink name="client” partnerLinkType="client:CFP15 while_pick"
myRole=""CFP15_while_pickProvider'/>
</partnerLinks><I--

——><I-
- VARIABLES -

><I-- List of messages and XML documents used within this BPEL process
——><l

-—>
<variables><!-- Reference to the message passed as input during
initiation —--><I--
Reference to the message that will be returned to the requester
-—>
<variable name="inputVariable"
messageType=""client:CFP15 while_pickRequestMessage' />
<variable name="outputVariable"
messageType=""client:CFP15 while_pickResponseMessage'/>
<variable name=""OnMessage_start_InputVariable"
messageType=""client:CFP15 while_ pickStartMessage'/>
<variable name="Counter' type='"'nsl:integer'/>
<variable name="Morelnstances'" type=''nsl:integer'/>
<variable name="OnMessage_finish_InputVariable"
messageType=""client:CFP15_while_pickFinishMessage'/>
<variable name="OnMessage_noMore_ InputVariable"
messageType=""client:CFP15 while_pickNoMoreMessage'/>
</variables><I--
——><-

- ORCHESTRATION LOGIC --
><I1-- Set of activities coordinating the flow of messages across the

-—><I-- services integrated within this business process
——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP15 while_pick.wsdl
—-—>

66

<receive name="‘receivelnput" partnerLink="client"
portType="client:CFP15 while_pick" operation="process"
variable=""inputVariable” createlnstance="yes"/><I-- Generate reply to
synchronous request -->
<assign name='"Assign_2"">
<Copy>
<from variable="inputVariable" part="payload"
query="/client:CFP15_while_pickProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"”
query="/client:CFP15 while_pickProcessResponse/client:result'/>
</copy>
<copy>
<from expression="0"/>
<to variable="Counter'/>
</copy>
<Copy>
<from expression="1"/>
<to variable="Morelnstances"/>
</copy>
</assign>
<while name="While_ 1"
condition="bpws:getVariableData("Morelnstances") +
bpws:getVariableData("Counter®) > 0>
<pick name="Pick_1'">
<onMessage portType="client:CFP15 while_pick" operation="start"
variable=""OnMessage_start_InputVariable'" partnerLink="client'>
<sequence name='"Sequence_1">
<assign name="Assign_1">
<copy>
<from expression="bpws:getVariableData("Counter®) + 1'/>
<to variable="Counter'/>
</copy>
</assign>
<assign name="Assign_5"">
<copy>
<from
expression="concat(bpws:getVariableData("outputVvVariable”, "payload”,"/cli
ent:CFP15 while_pickProcessResponse/client:result®), ".")"/>
<to variable="outputVariable' part="payload"”
query="/client:CFP15 while_pickProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</onMessage>
<onMessage portType="client:CFP15 while_pick'" operation="finish"
variable="0OnMessage_finish_InputVariable" partnerLink="client">
<assign name="Assign_3">
<copy>
<from expression="bpws:getVariableData("Counter®) - 1'/>
<to variable="Counter'/>
</copy>
</assign>
</onMessage>
<onMessage portType="client:CFP15 while_pick'" operation='"noMore"
variable="0OnMessage noMore_IlnputVariable"™ partnerLink="client">
<assign name='"Assign_4"">
<copy>

67

<from expression="'0"/>
<to variable="Morelnstances'/>
</copy>
</assign>
</onMessage>
</pick>
</while>
<reply name="replyOutput” partnerLink="client"
portType="client:CFP15 while_pick™ operation="process"
variable="outputVariable"/>
</sequence>
</process>

The semantics of “OR” when it is used in the condition of the <while> loop differs from
expected if a single identifier used in a Boolean Expression. As such, an expression
containing the variable Morelnstances of the Boolean type in the condition of the <while>
is not evaluated properly. According to the syntax of XPath a single identifier cannot be
taken as a Boolean expression. Therefore, the variable of an integer type or an
expression containing a relational operator should be used.

To make this example operational several types, messages, operations and partner links
were defined in the wsdl file as shown below:

<?xml version="1.0" encoding="UTF-8"7>

<definitions name="CFP15 while_pick"
targetNamespace=""http://xmlns.oracle.com/CFP15 while_ pick"
xmIns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmlns.oracle.com/CFP15 while_pick"
xmIns:pInk="http://schemas.xmlsoap.org/ws/2003/05/partner-

link/"">

<l_—

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

<types>
<schema attributeFormDefault=""qualified"
elementFormbDefault="qualified"
targetNamespace=""http://xmlns.oracle.com/CFP15 while pick"
xmlns=""http://www.w3.0rg/2001/XMLSchema''>
<element name="'CFP15 while_pickProcessRequest'>
<complexType>
<seguence>
<element name="input" type="'string"/>
</sequence>
</complexType>
</element>
<element name="'CFP15 while_ pickProcessStart'>
<complexType>
<seguence>

68

<element name="input" type='"'string'/>
</sequence>
</complexType>
</element>
<element name="CFP15_while_pickProcessFinish'>
<complexType>
<seguence>
<element name="input' type="'string'/>
</sequence>
</complexType>
</element>
<element name="'CFP15 while_pickProcessNoMore'>
<complexType>
<seguence>
<element name="input" type="'string"/>
</sequence>
</complexType>
</element>
<element name="CFP15 while_pickProcessResponse>
<complexType>
<seguence>
<element name="'result"” type="'string'/>
</sequence>
</complexType>
</element>
</schema>
</types>

<I--

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

<message nhame="'CFP15 while_pickRequestMessage''>
<part name="payload"
element="client:CFP15 while_pickProcessRequest/>
</message>
<message name="'CFP15 while_pickStartMessage'>
<part name="payload"
element="client:CFP15 while_ pickProcessStart'/>
</message>
<message name="'CFP15_while_pickFinishMessage'>
<part name="payload"
element="client:CFP15 while_pickProcessFinish'/>
</message>
<message name="'CFP15_while_pickNoMoreMessage''>
<part name="payload"
element="client:CFP15 while_pickProcessNoMore'/>
</message>
<message name="'CFP15 while_pickResponseMessage''>
<part name="payload"
element="client:CFP15 while_pickProcessResponse'/>
</message>

69

<l__

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

>
<I-- portType implemented by the CFP15 while_pick BPEL process -->
<portType name=""CFP15 while_pick'>
<operation name=''process''>
<input message="client:CFP15 while_pickRequestMessage" />
<output message="client:CFP15 while_pickResponseMessage'/>
</operation>
<operation name='start">
<input message=""client:CFP15 while_ pickStartMessage' />
</operation>
<operation name="finish">
<input message="client:CFP15 while_pickFinishMessage" />
</operation>
<operation name='noMore'>
<input message="client:CFP15 while_pickNoMoreMessage" />
</operation>
</portType>
<l--
PARTNER LINK TYPE DEFINITION
>
<plInk:partnerLinkType name="CFP15 while pick'>
<pInk:role name="CFP15 while_pickProvider">
<pInk:portType name="client:CFP15 while_pick'/>
</plnk:role>
<pInk:role name="CFP15 while_pickSender'>
<pInk:portType name="client:CFP15 while_ pick'/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

An audit trail corresponding visualizing the execution history of the considered process
model is shown below:

New instance of BPEL process "CFP15_while_pick" initiated (# "241").

' @}receivelnput

Received "inputVariable" call from partner "client” More...
DQAsggn_Z

Updated variable "outputVariable" less
<outputVariable>
<part xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP15_while_pickProcessResponse xmIns="http://xmins.oracle.com/CFP15_while_pick">

70

<result>a</result>

</CFP15_while_pickProcessResponse>

</part>

</outputVariable>

[2005/08/10 15:58:00] Updated variable "Counter" More...
[2005/08/10 15:58:00] Updated variable "Morelnstances" More...
E<while>

E<pick>

Uﬁ}onMessage (73) (cancelled)
[2005/08/10 15:58:00] Waiting for message from "client"”, operation is "noMore".
[2005/08/10 15:59:31] Receive activity has been cancelled.

“'ﬁ}onMessage (65) (cancelled)

[2005/08/10 15:58:00] Waiting for message from "client"”, operation is "finish".
[2005/08/10 15:59:31] Receive activity has been cancelled.

k"ﬁ}onMessage (49)

[2005/08/10 15:58:00] Waiting for message from "client"”, operation is "start".
[2005/08/10 15:59:31] Received "start" callback from partner "client" More...

E<onMessage>

E<sequence>

Ij'QAssign_l

[2005/08/10 15:59:31] Updated variable "Counter" More...

Ij'QAssign_S

[2005/08/10 15:59:31] Updated variable "outputVariable" less

<outputVariable>

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP15_while_pickProcessResponse xmlns="http://xmins.oracle.com/CFP15_while_pick">
<result>a.</result>

</CFP15_while_pickProcessResponse>

</part>

</outputVariable>

</sequence=>

</onMessage>
</pick>
E<pick>
o
onMessage (73)
[2005/08/10 15:59:31] Waiting for message from “client”, operation is "noMore".
[2005/08/10 15:59:58] Received "noMore" callback from partner "client" More...

Uﬁ}onMessage (65) (cancelled)
[2005/08/10 15:59:31] Waiting for message from "client", operation is "finish".
[2005/08/10 15:59:58] Receive activity has been cancelled.

k"ﬁ}onMessage (49) (cancelled)

[2005/08/10 15:59:31] Waiting for message from “client"”, operation is "start".
[2005/08/10 15:59:58] Receive activity has been cancelled.

E<onMessage>

Ij'QAssig n_4

71

Updated variable "Morelnstances" More...

: ﬁ}onMessage (73) (cancelled)

Waiting for message from "client"”, operation is "noMore".

Receive activity has been cancelled.
“onMessage (65)
Waiting for message from "client"”, operation is "finish".
Received "finish" callback from partner "client" More...
: ﬁ}onMessage (49) (cancelled)
Waiting for message from "client"”, operation is "start".

Receive activity has been cancelled.

DQAssign_’s
Updated variable "Counter" More...

'D@replyOutput (faulted)

"NullPointerException™ has been thrown. less
jJava.lang.NullPointerException

"NullPointerException™ has not been caught by a catch block.

BPEL process instance "241" cancelled

72

New instance of BPEL process "CFP15_while_pick" initiated (# "242").

' iﬁ’}receivelnput

Received "inputVariable" call from partner "client” More...
DQAssign_Z

Updated variable "outputVariable" More...

Updated variable "Counter" More...

Updated variable "Morelnstances" More...
o

onMessage (73)
Waiting for message from "client”, operation is "noMore".
Received "noMore" callback from partner "client" More...

'{ﬁ}onMessage (65) (cancelled)
Waiting for message from "client”, operation is "finish".
Receive activity has been cancelled.

'iﬁ}onMessage (49) (cancelled)
Waiting for message from "client”, operation is "start".
Receive activity has been cancelled.

DQAssign_4
Updated variable "Morelnstances" More...

'r"@replyOutput (faulted)

"NullPointerException™ has been thrown. More...

"NullPointerException™ has not been caught by a catch block.
BPEL process instance 242" cancelled

CFP16 Deferred Choice

Description: A point in a process where one among several alternative branches is
chosen based on information which is not necessarily available when this point is
reached. This differs from the normal exclusive choice, in that the choice is not made
immediately when the point is reached, but instead several alternatives are offered, and
the choice between them is delayed until the occurrence of some event.

Oracle BPEL PM supports this pattern directly by the <pick> construct, which allows only
one of several possible activities or (a set of activities) to be executed based on the type
of the message received. Alternatively, <pick> allows the time trigger to be specified for
the timeouts discarding all other alternative tasks. Figure 13 shows an example of a

73

process model with the deferred choice. Activities Assign_2 or Assign_3 are enabled if
the client provided a message "left" or "right" respectively. If none of these messages
had been received before the time alarm set for the third branch has expired, an activity
Assign_4 is executed.

Partner Links _ Partner Links
2 o
&
B | o
-9
“ 2

receivelnput

| 4, | 4, 5 B
4 4 b

g r"'_o} B
Agzign_2 Agzign_3 Azzign_4

« BF

callbackClient

Figure 13 Deferred choice

The source code corresponding to the considered process model is shown below:

<process nhame=""CFP16_pick_async"
targetNamespace=""http://xmlns.oracle.com/CFP16_pick_async"
xmIns="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.Xpath20*

xmIns: ldap="http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension"
xmIns:client="http://xmlns.oracle.com/CFP16_ pick_async"
xmlns:ora="http://schemas.oracle.com/xpath/extension’

xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.ExtFunc'><I--

74

- PARTNERLINKS -
><I-- List of services participating in this BPEL process
——><l

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-——>
<partnerLink name="client" partnerLinkType=""client:CFP16 pick async
myRole=""CFP16_pick_asyncProvider"
partnerRole="CFP16_pick_asyncRequester'/>
</partnerLinks><I--

__><!_
- VARIABLES -
><I-- List of messages and XML documents used within this BPEL process
——><l

-—>

<variables><!-- Reference to the message passed as input during
initiation -->
<variable name="inputVariable"
messageType=""client:CFP16_pick asyncRequestMessage'/><!-- Reference to
the message that will be sent back to the
requester during callback
—_—>
<variable name="outputVariable"
messageType=""client:CFP16_pick_asyncResponseMessage'/>
<variable name="OnMessage_left_ InputVariable"
messageType=""client:CFP16_pick_asyncLeftMessage'/>
<variable name=""OnMessage_right_InputvVariable"
messageType=""client:CFP16_pick_asyncRightMessage'/>
</variables><Il--

—-—><1I-
- ORCHESTRATION LOGIC --
><l-- Set of activities coordinating the flow of messages across the
-—><I-- services integrated within this business process

——><I-—

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP16 pick async.wsdl
-—>
<receive name="receivelnput” partnerLink="client”
portType="client:CFP16 pick async" operation="initiate"
variable=""inputVariable" createlnstance="yes"/><I-- Asynchronous
callback to the requester.
Note: the callback location and correlation id is transparently
handled
using WS-addressing.
-——>
<pick name="Pick 1'>
<onMessage portType=""client:CFP16_pick_async" operation="left"
variable="0OnMessage left_InputVariable'" partnerLink="client'>
<assign name='"Assign_2"">
<Copy>

75

<from
expression="concat(bpws:getVariableData("inputVariable”, "payload”,"/clie
nt:CFP16_pick_asyncProcessRequest/client:input®), "Left")"/>
<to variable="outputVariable' part="payload"
query="/client:CFP16_pick_asyncProcessResponse/client:result'/>
</copy>
</assign>
</onMessage>
<onMessage portType=""client:CFP16_pick_async'" operation="right"
variable="0OnMessage right_InputVariable' partnerLink="client'>
<assignh name="Assign_3">
<copy>
<from
expression="concat(bpws:getVariableData(" inputVariable”, "payload®,"/clie
nt:CFP16_pick _asyncProcessRequest/client:input®), "Right")"/>
<to variable="outputVariable' part="payload"
query=""/client:CFP16_pick_asyncProcessResponse/client:result'/>
</copy>
</assign>
</onMessage>
<onAlarm for=""PT2M"'>
<assign name="Assign_4">
<copy>
<from
expression="concat(bpws:getVariableData("inputVariable”, "payload®,"/clie
nt:CFP16_pick_asyncProcessRequest/client:input®), "Alarm®)"/>
<to variable="outputVariable" part="payload"
query="/client:CFP16_pick_asyncProcessResponse/client:result'/>
</copy>
</assign>
</onAlarm>
</pick>
<invoke name="callbackClient" partnerLink="client"
portType="client:CFP16_pick asyncCallback™ operation="onResult"
inputVariable="outputVariable"/>
</sequence>
</process>

The declarations of data types, messages, operations, and port types specified in the
WP16.wsdl file are shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP16 pick async"
targetNamespace="http://xmlns._oracle.com/CFP16_pick_async"
xmIns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmlns.oracle.com/CFP16_ pick_async"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

76

<types>
<schema attributeFormDefault="qualified"
elementFormbDefault=""qualified"
targetNamespace=""http://xmlns.oracle.com/CFP16 pick _async"
xmlns="http://www.w3.0rg/2001/XMLSchema’>
<element name=""CFP16_pick_asyncProcessRequest'>
<complexType>
<seguence>
<element name="input" type="'string'/>
</sequence>
</complexType>
</element>
<element name="'CFP16_pick_asyncProcessLeft'>
<complexType>
<seguence>
<element name="input"” type="'string'/>
</sequence>
</complexType>
</element>
<element name=""CFP16_pick_asyncProcessRight">
<complexType>
<seguence>
<element name="input' type='"'string'/>
</sequence>
</complexType>
</element>
<element name="'CFP16_pick_asyncProcessResponse'>
<complexType>
<seguence>
<element name="result"” type="string'/>
</sequence>
</complexType>
</element>
</schema>
</types>

<l__

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

<message hame="'CFP16_pick_asyncRequestMessage''>
<part name="payload"
element="client:CFP16_pick _asyncProcessRequest'/>
</message>

<message name="'CFP16_pick_asynclLeftMessage''>
<part name="payload"
element=""client:CFP16_pick asyncProcessLeft"/>
</message>

<message name="'CFP16_pick_asyncRightMessage'>

77

<part name="payload"

element="client:CFP16_pick asyncProcessRight'/>

</message>

<message hame="'CFP16_pick_asyncResponseMessage''>
<part name="payload"

element="client:CFP16 _pick asyncProcessResponse'/>

</message>

<l

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

<I-- portType implemented by the CFP16_ pick async BPEL process -->
<portType name="'CFP16_ pick async'>
<operation name="initiate'>
<input message="'client:CFP16_pick_asyncRequestMessage'/>
</operation>
<operation name="left'">
<input message="'client:CFP16_pick_asynclLeftMessage'/>
</operation>
<operation name="right''>
<input message="'client:CFP16_pick_asyncRightMessage"/>
</operation>
</portType>

<I-- portType implemented by the requester of CFP16_pick async BPEL

process

for asynchronous callback purposes
—_—>
<portType name=""CFP16_pick_ asyncCallback'>
<operation name="onResult'>
<input message="'client:CFP16_pick_asyncResponseMessage' />
</operation>
</portType>

<l_—

PARTNER LINK TYPE DEFINITION
the CFP16_pick_async partnerLinkType binds the provider and
requester portType into an asynchronous conversation.

<plInk:partnerLinkType name="'CFP16_ pick_async'>
<pInk:role name="CFP16 pick asyncProvider'>
<pInk:portType name="client:CFP16_pick_async'/>
</plnk:role>
<pInk:role name="CFP16 pick asyncSender'>
<pInk:portType name="client:CFP16_pick_async'/>
</plnk:role>
<pInk:role name="CFP16_pick_asyncRequester'>
<pInk:portType name="client:CFP16_pick asyncCallback'/>
</plnk:role>
</plInk:partnerLinkType>

</definitions>

78

An audit trail visualizing the execution history of the considered process is shown below.
This audit trail shows how the <pick> construct reacts on the message "right" received
from the client.

[2005/08/10 16:29:01] New instance of BPEL process "CFP16_pick_async" initiated (# "245").
E<process>

E<sequence>

("ﬁ}receivelnput
[2005/08/10 16:29:01] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessRequest xmIns="http://xmlns.oracle.com/CFP16_pick_async">
<input>a</input>

</CFP16_pick_asyncProcessRequest>

</part>

</inputVariable>

E<pick>

(‘"ﬁ}onMessage 42)

[2005/08/10 16:29:01] Waiting for message from “client"”, operation is "right".

[2005/08/10 16:29:22] Received "right” callback from partner "client” less
<OnMessage_right_InputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessRight xmlIns="http://xmins.oracle.com/CFP16_pick_async'">
<input>1</input>

</CFP16_pick_asyncProcessRight>

</part>

</OnMessage_right_InputVariable>

("ﬁ}onMessage (34) (cancelled)
[2005/08/10 16:29:01] Waiting for message from "client"”, operation is "left".
[2005/08/10 16:29:22] Receive activity has been cancelled.

IE?“J}'onAlarm (50) (cancelled)

[2005/08/10 16:29:01] Alarm started. Alarm will go off at time "2005/08/10 16:31:01".
[2005/08/10 16:29:22] BPEL "onAlarm™ cancelled before being triggered.
[E<onMessage>

Ij'QAssign_3

[2005/08/10 16:29:22] Updated variable "outputVariable" less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick_ async">
<result>aRight</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

</onMessage>

</pick>

':’%callbackCIient

79

[2005/08/10 16:29:22] Skipped callback "onResult" on partner "client". less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick_ async">
<result>aRight</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

</sequence>

[2005/08/10 16:29:22] BPEL process instance "245" completed
</process>

This audit trail shows how the <pick> construct reacts on the message "left" received

from the client.

[2005/08/10 16:30:00] New instance of BPEL process "CFP16_pick_async" initiated (# "246").
[E<process>

E<sequence>

("@receivelnput

[2005/08/10 16:30:00] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessRequest xmlns="http://xmlins.oracle.com/CFP16_pick_async">
<input>b</input>

</CFP16_pick_asyncProcessRequest>

</part>

</inputVariable>

[E<pick>

(‘"@onMessage (42) (cancelled)
[2005/08/10 16:30:00] Waiting for message from “client"”, operation is "right".
[2005/08/10 16:30:19] Receive activity has been cancelled.

(‘"@onMessage (34)

[2005/08/10 16:30:00] Waiting for message from "client"”, operation is "left".

[2005/08/10 16:30:19] Received "left" callback from partner "client" less
<OnMessage_left_InputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessLeft xmins="http://xmlins.oracle.com/CFP16_pick async">
<input>2</input>

</CFP16_pick_asyncProcesslLeft>

</part>

</OnMessage_left_InputVariable>

I@'onAlarm (50) (cancelled)

[2005/08/10 16:30:00] Alarm started. Alarm will go off at time "2005/08/10 16:32:08".

[2005/08/10 16:30:20] BPEL "onAlarm" cancelled before being triggered.
E<onMessage>

Ij'DAssign_Z
[2005/08/10 16:30:20] Updated variable "outputVariable" |less
<outputVariable>

80

<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick_ async">
<result>bLeft</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

</onMessage>

</pick>

':’%callbackCIient

[2005/08/10 16:30:20] Skipped callback "onResult" on partner "client". less
<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick_async">
<result>bLeft</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

</sequence>

[2005/08/10 16:30:20] BPEL process instance "246" completed
</process>

This audit trail shows how the <pick> construct behaves if no messages have been

provided by the client and the time alarm has expired.

[2005/08/10 16:31:29] New instance of BPEL process "CFP16_pick_async" initiated (# "247").
[E<process>

E<sequence>

("@receivelnput

[2005/08/10 16:31:29] Received "inputVariable" call from partner "client" less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessRequest xmlns="http://xmlins.oracle.com/CFP16_pick_async">
<input>c</input>

</CFP16_pick_asyncProcessRequest>

</part>

</inputVariable>

E<pick>

(‘"@onMessage (42) (cancelled)
[2005/08/10 16:31:29] Waiting for message from "client"”, operation is "right".
[2005/08/10 16:33:29] Receive activity has been cancelled.

(‘"@onMessage (34) (cancelled)

[2005/08/10 16:31:29] Waiting for message from "client"”, operation is "left".
[2005/08/10 16:33:29] Receive activity has been cancelled.

I@\'onAlarm (50)

[2005/08/10 16:31:29] Alarm started. Alarm will go off at time "2005/08/10 16:33:29".
[2005/08/10 16:33:29] BPEL "onAlarm™ triggered.
E<onAlarm=>

81

|_—'.}ElAs;sign_4
Updated variable "outputVariable" less

<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick async">
<result>cAlarm</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

“#callbackClient

Skipped callback "onResult" on partner "client". less

<outputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP16_pick_asyncProcessResponse xmlns="http://xmlins.oracle.com/CFP16_pick async">
<result>cAlarm</result>

</CFP16_pick_asyncProcessResponse>

</part>

</outputVariable>

BPEL process instance "247" completed

CFP17 Interleaved Parallel Routing

Description: A set of activities is executed in an arbitrary order. Each activity in the set is
executed exactly once. The order between the activities is decided at run-time: it is not
until one activity is completed that the decision on what to do next is taken. In any case,
no two activities in the set can be active at the same time.

Although BPEL specification supports this pattern by means of the serializable scopes,
Oracle BPEL PM doesn’t seem to support it. Having two scopes placed on the
independent branches of the <flow> (see Figure 14) and setting in both scopes
variableAccessSerializable="yes", an access to the input variable should be exclusive.
However, as it is visualized in the audit trail, after one branch modified the value of the
input variable, the other branch is propagated the initial value of the input variable, but
not the newly assigned one, which is against the BPEL specification.

82

process (client)

O

flow-1
& 8
= | = |
scope- scope-
‘- ! > & |
<scope <scope
assiT-l assigln-3
'PT3fS' 'PTBI)S'
assig|n-2 assig|n-4
0 0 0 0 0 0
A /- T d

Figure 14 Interleaved parallel routing

!

process (client)

The source code corresponding to the Figure 14 is shown below:

<sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/' name="main">
<I-- Receive input from requester.
Note: This maps to operation defined in WP17_wsdl
-——>
<receive name="‘receivelnput” partnerLink="client" portType=""tns:WP17"
operation=""process" variable="input” createlnstance=""yes"/>
<I-- Generate reply to synchronous request -->
<flow name="flow-1"">
<sequence name=""flow-sequence-1'"><scope name=''scope-1"
variableAccessSerializable="yes"'><sequence name="'sequence-1'"><assign
name="‘assign-1'">
<copy>
<from expression=""Start left"'></from>
<to variable="input" part="payload"
query=""/tns:WP17Request' />
</copy>
</assign>
<wait for=""PT30S"" name="wait-1'/>
<assignh name="assign-2">
<copy>
<from expression=""End left""></from>
<to variable="input" part="payload"
query="/tns:WP17Request"' />
</copy>
</assign>
</sequence>
</scope>
</sequence>
<sequence name=""flow-sequence-2''"><scope name=''scope-2"
variableAccessSerializable="yes""><sequence><assign name="assign-3"">
<copy>
<from expression=""Start right""'></from>
<to variable="input" part="payload"
query=""/tns:WP17Request"' />
</copy>
</assign>
<wait for=""PT30S"" name="wait-2'/>
<assign name='assign-4"">
<copy>
<from expression=""End right""'></from>
<to variable="input" part="payload"
query="/tns:WP17Request'/>
</copy>
</assign>
</sequence>
</scope>
</sequence>
</flow>
<reply name="'replyOutput"” partnerLink="client" portType=""tns:WP17"
operation=""process" variable="output'/>
</sequence>

84

An audit trail showing the execution history of the considered process is given below:

[2005/07/13 17:31:28] New instance of BPEL process "WP17" initiated (# "1304").

E<process>

E<sequence>

“Belient (process)
[2005/07/13 17:31:28] Received "input” call from partner "client" More...
E<flow>

E<sequence>
E<scope name="scope-1">

E<sequence>

|_—"'fgassign—s

[2005/07/13 17:31:28] Updated variable "input" Less

<input>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<WP17Request xmlIns="http://acm.org/samples">

<input>start</input>

Start right

</WP17Request>

</part>

</input>

IEBI2005.07.13 05:31
[2005/07/13 17:31:28] Waiting for the expiry time "7/13/05 5:31 PM".
[2005/07/13 17:31:58] Wait has finished.

Ij'Dassign—4

[2005/07/13 17:31:58] Updated variable "input" Less
<input>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<WP17Request xmlIns="http://acm.org/samples">
<input>start</input>

End right

</WP17Request>

</part>

</input>

</sequence>

<scope>

</sequence=>

E<sequence>

E<scope name="scope-1">

E<sequence>

|_—"'fgassign—l

[2005/07/13 17:31:28] Updated variable "input" Less

<input>

<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<WP17Request xmlIns="http://acm.org/samples">

<input>start</input>

85

Start left
</WP17Request>
</part>
</input>

I":-—?‘:’2005.07.13 05:31
Waiting for the expiry time "7/13/05 5:31 PM".
Wait has finished.
IjQassign—z
Updated variable "input" Less
<input>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<WP17Request xmlns="http://acm.org/samples">
<input>start</input>
End left
</WP17Request>
</part>
</input>

“"%client
Reply to partner "client". Less
<output>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<WP17Response xmlns="http://acm.org/samples" />
</part>
</output>

BPEL process instance "1304" completed

CFP18 Milestone

Description: A given activity E can only be enabled if a certain milestone has been
reached which has not yet expired. A milestone is defined as a point in the process
where a given activity A has finished and an activity B following it has not yet started.

Oracle BPEL PM does not offer a direct support for this pattern in terms of the single
activity, but the workaround can be found by means of the <pick> construct placed in the
<while> loop, which can be executed only once (see Figure 15). When executing this
process model, the client specifies whether the activity E or an activity B is to be
executed. If the message onE has been received, then the activity E, i.e. actg, followed
by the activity B, i.e. <reply>, is executed. Otherwise, if the message onB has been
received, the activity B (<reply>) will be executed and the activity E won't be able to
execute any more. Each of the branches in the <pick> construct contains the assignment
activity, which is needed for updating the loop counter.

86

s
1
| assign |

acts

| |
v v

Gl

onk (élient) onb (é:lient)

(PR
| assign |

\assign | assign-2

Figure 15 Milestone
The source code corresponding to the process visualized in Figure 15 is given below:

<sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/" name="main"'>
<I-- Receive input from requester.
Note: This maps to operation defined in Milestone.wsdl
-——>
<receive name="‘receivelnput" partnerLink="client"
portType="tns:Milestone" operation="process" variable="input"
createlnstance="yes"/>
<I-- Generate reply to synchronous request -->
<assignh name="‘actA''>
<Copy>
<from expression=""false()"></from>
<to variable="B_chosen"/>

87

</copy>
</assign>
<while name="while-1"
condition="not(bpws:getVariableData("B_chosen®))"><pick name="pick-1">
<onMessage partnerLink="client" portType=""tns:Milestone"
operation=""onE" variable="E var'>
<sequence><assign name="‘assign-3'">
<copy>
<from expression="true()"></from>
<to variable="B_chosen"/>
</copy>
</assign>
<empty name="‘actE"/>
</sequence>
</onMessage>
<onMessage partnerLink="client" portType=""tns:Milestone"
operation="onB" variable="B var'>
<assign name='assign-2'">
<copy>
<from expression="true()"></from>
<to variable="B_chosen"/>
</copy>
</assign>
</onMessage>
</pick>
</while>
<reply name="replyOutput” partnerLink="client"”
portType="tns:Milestone"™ operation="process' variable="output'/>
</sequence

The declaration of data types, messages, port types and partner links are shown below:

<?xml version="1.0"7?>

<definitions name="Milestone"
targetNamespace="http://acm.org/samples"
xmlns:tns="http://acm.org/samples"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/"

xmIns=""http://schemas.xmlsoap.org/wsdl/"
><I--—

TYPE DEFINITION - List of types participating in this BPEL process

The BPEL Designer will generate default request and response types

but you can define or import any XML Schema type and use them as
part

of the message types.

<types>
<schema attributeFormDefault="qualified"
elementFormbDefault="qualified"
targetNamespace="http://acm.org/samples”
xmIns=""http://www_w3.0rg/2001/XMLSchema'*>

<element name=""MilestoneRequest'>

<complexType>
<sequence>

88

<element name="input" type='"'string'/>
</sequence>
</complexType>
</element>

<element name=""MilestoneResponse''>
<complexType>
<seguence>
<element name="result” type="'string"/>
</sequence>
</complexType>
</element>

<element name="'MilestoneSend">
<complexType>
<seguence>
<element name="‘result"” type="'string'/>
</sequence>
</complexType>
</element>

</schema>
</types>
<l_—

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type definitions

<message hame="'"MilestoneRequestMessage"'>

<part name="payload'" element=""tns:MilestoneRequest'/>
</message>
<message nhame="'MilestoneResponseMessage''>

<part name="payload"” element="tns:MilestoneResponse/>
</message>
<message name="'"MilestoneEMessage''>

<part name="payload" element="tns:MilestoneSend'/>
</message>

<message hame="‘MilestoneBMessage''>

<part name="payload" element="tns:MilestoneSend'/>

</message>
<l--
PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.
>

<I-- portType implemented by the Milestone BPEL process -->
<portType name="Milestone">
<operation name='process''>
<input message=""tns:MilestoneRequestMessage"' />
<output message=""tns:MilestoneResponseMessage' />
</operation>
<operation name="onE">
<input message=""tns:MilestoneEMessage' />
</operation>
<operation name='"onB">

89

<input message="'tns:MilestoneBMessage'' />

</operation>
</portType>
<i_-
PARTNER LINK TYPE DEFINITION
>
<pInk:partnerLinkType name="Milestone'>
<pInk:role name="MilestoneProvider'>
<pInk:portType name=""tns:Milestone'/>
</plInk:role>
<pInk:role name="MilestoneSender'>
<pInk:portType name="tns:MilestoneSend"/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

An audit trail visualizing the execution history of the considered process is shown below:

New instance of BPEL process "Milestone" initiated (# "1209").

“Hclient (process)

Received "input” call from partner "client” More...

[anCtA
Updated variable "B_chosen" More...

“Eclient (onB) (cancelled)
Waiting for message from "client"”, operation is "onB".

Receive activity has been cancelled.

“Eclient (onE)
Waiting for message from "client”, operation is "onE".
Received "onE" callback from partner "client" Less
<E_var>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<MilestoneSend xmiIns="http://acm.org/samples">
<result>10</result>
</MilestoneSend>
</part>
</E_var>

DQassign—?,
Updated variable "B_chosen" More...

90

7]
@ Empty
BPEL "empty" activity is executed.

"’@client

Reply to partner "client". More...

BPEL process instance "1209" completed

Not that the offered solution is very specific and does not allow other types of the
milestone to be supported.

Another possibility to implement the Milestone is by means of <while>, <wait> and
<flow>, as it is shown in Figure 16. An activity placed in the <while> may execute
multiple times after an activity Assign_2 has been executed but before an activity
Assign_3 has been executed. The status of the activity Assign_3 is modeled by means of
a Boolean variable Milestone, which is set to true after this activity has been executed.
Thus, while Milestone=false the activities places in the <while> loop may be executed.

91

Partner Links

T
s B

receivel nput

|

Aszszign_1

A R2GHBPPDD
wew| @ fio

BRI T P

m
b
& —

l
o

Agzign_2

/

@ % i ait_2

client l
..misl'!]

Agzign_3

|"=ausnbag | @ fiE
¢ =ouznbag | @M fiE
m

Flowek_1

bas | @

£ aauanl

al
&
(O

Lassign

Assign_4

l
« &

callbackClient

Figure 16 Milestone- the alternative implementation

Partner Links

92

<process name="'CFP18 while wait"
targetNamespace=""http://xmlns.oracle.com/CFP18 while_ wait"
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servi
ces.functions._Xpath20" xmlIns:nsl="http://www.w3.0rg/2001/XMLSchema"
xmlns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:client="http://xmlns.oracle.com/CFP18 while_ wait"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.ExtFunc'><l--

——><1I-
- PARTNERLINKS --
><Il-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--
The "client” role represents the requester of this service. It is
used for callback. The location and correlation information
associated
with the client role are automatically set using WS-Addressing.
-2
<partnerLink name="client" partnerLinkType="'client:CFP18 while_wait"
myRole=""CFP18 while_waitProvider"
partnerRole="CFP18 while_waitRequester'/>
</partnerLinks><I--

——><1I-
- VARIABLES --

><Il-- List of messages and XML documents used within this BPEL process
——><l

-—>

<variables><!-- Reference to the message passed as input during
initiation --><!-- Reference to the message that will be sent back to
the
requester during callback
-—>
<variable name="inputVariable"
messageType=""client:CFP18 while_waitRequestMessage' />
<variable name="outputVariable"
messageType=""client:CFP18_while_waitResponseMessage'/>
<variable name="Milestone"™ type='"nsl:boolean'/>
<variable name="FlowN_1_Variable" type="xsd:int"'/>
</variables><I--

——><I-
- ORCHESTRATION LOGIC --
><I1-- Set of activities coordinating the flow of messages across the

--><I-- services integrated within this business process
——>< -

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in CFP18 while_wait.wsdl
-——>
<receive name="'receivelnput" partnerLink="client"
portType="client:CFP18 while_wait" operation="initiate"

93

variable="inputVariable" createlnstance="yes"/><I1-- Asynchronous
callback to the requester.

Note: the callback location and correlation id is transparently

handled
using WS-addressing.
-——>
<assign name="Assign_1">

<copy>
<from expression="false()"/>
<to variable="Milestone"/>

</copy>

<copy>

<from variable=""inputVariable" part="payload"
query="/client:CFP18_while_waitProcessRequest/client:input'/>
<to variable="outputVariable' part="payload"
query=""/client:CFP18 while_waitProcessResponse/client:result'/>
</copy>
</assign>
<flow name="Flow_1"">
<sequence name="''Sequence_2'">
<bpelx:flowN name="FlowN_1" N="'3"
indexVariable="FlowN_1 Variable'>
<sequence name="'Sequence_3'">
<while name="While 1"
condition="bpws:getVariableData("Milestone®) = false()">
<wait name="Wait 1" for=""PT1S""'/>
</while>
<assign name="Assign_4"">
<copy>
<from

expression="concat(bpws:getVariableData("outputvariable®, "payload”, "/cli

ent:CFP18 while_waitProcessResponse/client:result®), ".")"/>
<to variable="outputVariable' part="payload"”
query="/client:CFP18_while_waitProcessResponse/client:result"'/>
</copy>
</assign>
</sequence>
</bpelx:flowN>
</sequence>
<sequence name="'Sequence_1'">
<assignh name="Assign_2">
<Copy>
<from expression="true()"/>
<to variable="Milestone"/>
</copy>
</assign>
<wait name="Wait 2" for=""PT10S"'/>
<assign name="Assign_3"">
<copy>
<from expression=""false()"/>
<to variable="Milestone"/>
</copy>
</assign>
</sequence>
</flow>

94

<invoke name="'callbackClient" partnerLink="client"
portType="client:CFP18 while_waitCallback'™ operation="onResult"
inputVariable=""outputVariable"/>
</sequence>
</process>

The wsdl code associated with the considered process model is given below:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="CFP18 while_wait"
targetNamespace="http://xmlns.oracle.com/CFP18 while_wait"
xmIns=""http://schemas.xmlsoap.org/wsdl/"
xmIns:client="http://xmlns.oracle.com/CFP18 while_ wait"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

-——>
<types>
<schema attributeFormDefault="qualified"
elementFormbDefault="qualified"
targetNamespace=""http://xmlns.oracle.com/CFP18 while wait"
xmlns=""http://www.w3.0rg/2001/XMLSchema'">
<element name="'CFP18 while_waitProcessRequest'>
<complexType>
<sequence>
<element name="input' type='"'string'/>
</sequence>
</complexType>
</element>
<element name="'CFP18 while_waitProcessResponse">
<complexType>
<seguence>
<element name="‘result"” type="'string'/>
</sequence>
</complexType>
</element>
</schema>
</types>
<l--
MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions
-—>

<message name="'CFP18 while_waitRequestMessage''>
<part name="payload"
element="client:CFP18 while_ waitProcessRequest'/>
</message>

95

<message name="'CFP18 while_waitResponseMessage''>
<part name="payload"
element=""client:CFP18 while_waitProcessResponse'/>
</message>
<l--

PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.

-——>
<I-- portType implemented by the CFP18 while wait BPEL process -->
<portType name="CFP18 while_wait'>

<operation name="initiate'>
<input message="'client:CFP18 while_waitRequestMessage' />
</operation>
</portType>
<I-- portType implemented by the requester of CFP18 while_wait BPEL
process
for asynchronous callback purposes
-—>
<portType name=""CFP18 while_waitCallback'>
<operation name="onResult'>
<input message="'client:CFP18 while_wailtResponseMessage' />
</operation>
</portType>
<I--
PARTNER LINK TYPE DEFINITION
the CFP18 while_wait partnerLinkType binds the provider and
requester portType into an asynchronous conversation.

-——>

<pInk:partnerLinkType name="CFP18 while_wait'>
<pInk:role name="CFP18 while_waitProvider'>
<pInk:portType name="client:CFP18 while wait"'/>
</plInk:role>
<pInk:role name="CFP18 while_waitRequester'>
<pInk:portType name="client:CFP18 while_waitCallback"/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

An audit trail demonstrating the execution history of the considered process is shown
below:

New instance of BPEL process "CFP18_while_wait" initiated (# 249"

' @}receivelnput

Received "inputVariable" call from partner “client” less
<inputVariable>
<part xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">

).

96

<CFP18_while_waitProcessRequest xmlns="http://xmins.oracle.com/CFP18_while_wait">
<input>a</input>
</CFP18_while_waitProcessRequest>

</part>
</inputVariable>
|:EAssig n_1

[2005/08/10 16:49:50] Updated variable "Milestone™ less
<Milestone>false</Milestone>

[2005/08/10 16:49:50] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP18_while_waitProcessResponse xmlns="http://xmins.oracle.com/CFP18_ while_wait">
<result>a</result>

</CFP18_while_waitProcessResponse>

</part>

</outputVariable>

E<flow>

[E<sequence>

Ij'|:|Assign_2

[2005/08/10 16:49:50] Updated variable "Milestone" less
<Milestone>true</Milestone>

IEE‘}Wait_z

[2005/08/10 16:49:50] Waiting for the expiry time "2005/08/10 16:50:00".

[2005/08/10 16:50:00] Wait has finished.

|3'|:|Assign_3

[2005/08/10 16:50:00] Updated variable "Milestone" less
<Milestone>false</Milestone>

</sequence=>

E<sequence>

E<flowN=>

[E<FlowN_1_ Variable=0>

E<sequence>

E<while>

</while>

IZIEIAssign_4

[2005/08/10 16:49:50] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP18_while_waitProcessResponse xmlns="http://xmins.oracle.com/CFP18_while_wait">
<result>a..</result>

</CFP18_while_waitProcessResponse>

</part>

</outputVariable>

</sequence>

</FlowN_1_Variable=0>
E<FlowN_1_ Variable=1>

97

[E<sequence>
E<while>

</while>

Ij'|:|Assign_4

[2005/08/10 16:49:50] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP18_while_waitProcessResponse xmlns="http://xmins.oracle.com/CFP18_ while_wait">
<result>a...</result>

</CFP18_while_waitProcessResponse>

</part>

</outputVariable>

</sequence=>

</FlowN_1 Variable=1>
E<FlowN_1 Variable=2>
E<sequence>

E<while>

</while>

Ij'|:|Assign_4

[2005/08/10 16:49:50] Updated variable "outputVariable" less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP18_while_waitProcessResponse xmlns="http://xmins.oracle.com/CFP18_ while_wait">
<result>a.</result>

</CFP18_while_waitProcessResponse>

</part>

</outputVariable>

</sequence=>

</FlowN_1_ Variable=2>
</flowN=>
</sequence=>

</flow>

“#callbackClient

[2005/08/10 16:50:00] Skipped callback "onResult" on partner “client"”. less
<outputVariable>
<part xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" name="payload">
<CFP18_while_waitProcessResponse xmlns="http://xmins.oracle.com/CFP18_while_wait">
<result>a...</result>

</CFP18_while_waitProcessResponse>

</part>

</outputVariable>

</sequence=>

[2005/08/10 16:50:00] BPEL process instance 249" completed
</process=>

98

CFP19 Cancel Activity

Description: A cancel activity terminates a running instance of an activity.

An Oracle BPEL PM provides support for this pattern by means of using a scope as

wrapper for an activity that should be canceled (see Figure 17), defining a fault that must

be thrown when the client cancels the activity (see Figure 19) and the fault handler to
catch this fault message (see Figure 18).

2

initiate (client)

Figure 17 Cancel activity

onResult {client)

cmth

empty-1

s

Figure 18 Catch fault

99

wrongWalue

Figure 19 Throw fault

The process model of the canceling a wait activity PT1H is shown in Figure 17, while the
corresponding source code is shown below:

<I-- TestCancelActivity BPEL Process [Generated by the Oracle BPEL
Designer] -->

<process nhame="'"TestCancelActivity"
targetNamespace="http://acm.org/samples"” suppressJoinFailure="yes"
xmIns:tns=""http://acm.org/samples”
xmlns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns:ora="http://schemas.oracle.com/xpath/extension'>

<l--
-
<I-- PARTNERLINKS
-2
<I-- List of services participating in this BPEL process
—_——>
<r--
-
<partnerLinks>
<r--
The “client” role represents the requester of this service. It
is

used for callback. The location and correlation information
associated

with the client role are automatically set using WS-Addressing.

-—>

<partnerLink name="client"”

partnerLinkType=""tns:TestCancelActivity"
myRole=""TestCancelActivityProvider"
partnerRole="TestCancelActivityRequester'/>

</partnerLinks>
<r--
-——>
<!-- VARIABLES
—-——>
<I-- List of messages and XML documents used within this BPEL
process -->
<r--
-——>
<variables>

100

<I-- Reference to the message passed as input during
initiation --—>
<variable name="input”
messageType=""tns:TestCancelActivityRequestMessage' />
<I-- Reference to the message that will be sent back to the
requester during callback
-—>
<variable name="output”
messageType=""tns:TestCancelActivityResponseMessage'/>
<variable name="ca"
messageType=""tns:TestCancelActivityCAMessage' />
</variables>
<i—-

<I-— ORCHESTRATION LOGIC
<I-- Set of activities coordinating the flow of messages across

<I-- services integrated within this business process

<seguence name="'main’>
<I-- Receive input from requestor.
Note: This maps to operation defined in
TestCancelActivity.wsdl
—_—>
<receive name="receivelnput”™ partnerLink="client”
portType="tns:TestCancelActivity"” operation="initiate” variable="input”
createlnstance="yes"/>
<I-- Asynchronous callback to the requester.
Note: the callback location and correlation id is
transparently handled
using WS-addressing.
-——>
<flow name=""flow-1"">
<sequence name=""flow-sequence-1""><scope nhame='‘scope-
1"><faultHandlers>
<catch faultName="wrongValue''><empty
name=""empty-1"/>
</catch>
</faultHandlers>
<eventHandlers>
<onMessage partnerLink="client”
portType="tns:TestCancelActivity" operation="onCA"™ variable=""ca'>
<throw name="throw-1"
faultName="wrongValue'"/>
</onMessage>
</eventHandlers>
<wait for="PT1H" name="wait-2"/>
</scope>
</sequence>
<sequence name=""flow-sequence-2"><wait for=""PT10M""
name="wait-1"/>
</sequence>
</Flow>

101

<invoke name="callbackClient" partnerLink="client"
portType="tns:TestCancelActivityCallback”™ operation="onResult"”
inputVariable="output”/>
</sequence>
</process>

Declarations of the data types, messages, partner links and port types are shown below:

<?xml version="1.0"?>

<definitions name="TestCancelActivity"
targetNamespace="http://acm.org/samples"
xmlns:tns="http://acm.org/samples"
xmIns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/*
xmlns=""http://schemas.xmlsoap.org/wsdl/*

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

<types>
<schema attributeFormDefault=""qualified"
elementFormDefault="qualified"
targetNamespace=""http://acm.org/samples"
xmlns="http://www.w3.0rg/2001/XMLSchema"
>

<element name="TestCancelActivityRequest'>
<complexType>
<sequence>
<element name="input" type="'string" />
</sequence>
</complexType>
</element>

<element name="TestCancelActivityResponse'>
<complexType>
<seguence>
<element name="result"” type="string'/>
</sequence>
</complexType>
</element>

<element name="'"TestCancelActivityCA">
<complexType>
<seguence>
<element name="ca" type="string'/>
</sequence>
</complexType>
</element>

102

</schema>

</types>
<I--
MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions
>
<message name="'TestCancelActivityRequestMessage''>
<part name="payload"” element="tns:TestCancelActivityRequest'/>
</message>
<message name="'‘TestCancelActivityResponseMessage'>
<part name="payload" element="tns:TestCancelActivityResponse'/>
</message>
<message name="'TestCancelActivityCAMessage''>
<part name="payload" element=""tns:TestCancelActivityCA"/>
</message>
<I--
PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.
>

<I-- portType implemented by the TestCancelActivity BPEL process -->
<portType name="TestCancelActivity''>
<operation name="initiate'>
<input message=""tns:TestCancelActivityRequestMessage'/>
</operation>
</portType>

<I-- portType implemented by the requester of TestCancelActivity
BPEL process
for asynchronous callback purposes
—_—>
<portType name=""TestCancelActivityCallback'>
<operation name='onResult'>
<input message=""tns:TestCancelActivityResponseMessage' />
</operation>
</portType>

<portType name=""TestCancelActivity'>
<operation name="onCA">
<input message="'tns:TestCancelActivityCAMessage' />
</operation>
</portType>

103

PARTNER LINK TYPE DEFINITION
the TestCancelActivity partnerLinkType binds the provider and
requester portType into an asynchronous conversation.

-—>
<pInk:partnerLinkType name="TestCancelActivity"'>
<pInk:role name="TestCancelActivityProvider'>
<pInk:portType name=""tns:TestCancelActivity"'/>
</plInk:role>
<pInk:role name="TestCancelActivityRequester'>
<pInk:portType name=""tns:TestCancelActivityCallback"/>
</plnk:role>
<pInk:role name="TestCancelActivityCAer'>
<pInk:portType name=""tns:TestCancelActivityCAPT"/>
</plnk:role>
</plInk:partnerLinkType>
</definitions>

An audit trail visualizing the execution history of the considered
process is shown below:

New instance of BPEL process "TestCancelActivity" initiated (#
"1503").

“Belient (initiate)

Received "input” call from partner "client" More...

=
HQ2005.07.15 11:14 - pending
Waiting for the expiry time "7/15/05 11:14 AM".

® client (onCA) (cancelled)
Waiting for message from "client”, operation is "onCA".
Received "onCA" callback from partner "client" More...
Receive activity has been cancelled.

if&Throvv(fauhed)
"{http://acm.org/samples}wrongValue" has been thrown. Less
<wrongValue xmIns="http://acm.org/samples" />

e
92005.07.15 12:04 (cancelled)
Waiting for the expiry time "7/15/05 12:04 PM".

2
ﬁiEnﬁpty

104

BPEL "empty" activity is executed.

CFP20 Cancel Case
Description: A cancel case activity leads to removal of the whole workflow instance

Oracle BPEL PM supports this pattern directly by means of the <terminate> construct.
The execution of the <terminate> activity leads to canceling of the whole process
instance.

%

initiate {client)

flow-1

SR terminate-1
FTLH

Actd

o

anResult {client)

Figure 20 Cancel case

The source code corresponding to Figure 20 is shown below:

<sequence xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/" name="main">

<I-- Receive input from requestor.
Note: This maps to operation defined in WP20.wsdl
-—>

<receive name="receivelnput” partnerLink="client”
portType="tns:WP20" operation="initiate" variable="input"
createlnstance="yes"/>

<I-- Asynchronous callback to the requester.

105

Note: the callback location and correlation id is
transparently handled
using WS-addressing.
-—>
<fFlow name="flow-1"">
<sequence name=""flow-sequence-1"><wait for="PT1H"
name="wait-1"/>
<empty name="ActA"/>
</sequence>
<sequence name=""flow-sequence-2""><terminate name=""terminate-
1"/>
</sequence>
</flow>
<invoke name="callbackClient" partnerLink="client"
portType=""tns:WP20Cal lback' operation=""onResult"
inputVariable="output'/>
</sequence>

An audit trail visualizing the execution history of the considered process is shown below:

New instance of BPEL process "WP20" initiated (# "1305").

“Belient (initiate)

Received "input” call from partner "client" More...

:ﬂTernﬂnate
Instance terminated.

o
9 2005.07.13 06:47 (aborted)
Waiting for the expiry time "7/13/05 6:47 PM".
Activity "2005.07.13 06:47" aborted
BPEL process instance "1305" aborted

106

2. Evaluation of Oracle BPEL PM from the data

perspective
Data visibility

DP 1 (Task Data)

Description: Data elements can be defined by tasks which are accessible only within the

context of individual execution instances of that task.

Oracle BPEL PM offers no direct support for this pattern. However, it can be
accomplished through the <scope> construct. The <scope> is a collection of activities
that can have its own local variables. The number of nested activities into a scope

defines the visibility of data, i.e. if a scope contains only one task, then a variable defined

within this scope will be visible only to this task but not to the higher levels.

Figure 21, Figure 22 and Figure 23 show how to declare variables local to a task via the

properties of the <scope>.

Y RGHRPDD

client

Figure 21 The <scope> construct

: 8

receivelnput

Variables]

SRGD

« B

callbackClient

107

f_'i: Create Yanahle ﬂ

General l Senzorz]

M arre: |"v"aria|:||e_'|

~Tupe

=] & Simple Type | o)

_—__] " Meszage Type |

<ex " Element |

Help | | Cancel |

Figure 22 <scope>: create variables

& Scope Variables x|
Yariables: o Create 70 ¥
M ame | Type | AMame
D |R-’aria|:ule_1 |Simple Type |ns'| Jinteger
1] |ﬂ

[Show Mamespace LURIs
oK

Cancel |

Figure 23 Scope variables

The source code associated with a process definition contains the section for declaration
of variables, as it is shown below. Note that on the process scope level, any variable is

treated as global, i.e. it is visible to all process components.

108

<variables>

<I-- Reference to the message passed as input during initiation -->
<variable name="input’” messageType=""tns:TestDataRequestMessage' />
<l--

Reference to the message that will be returned to the requester-->
<variable name="output’ messageType=""tns:TestDataResponseMessage"/>
<variable name=""testlocalvar' type="'xsd:date'/>
<variable name=""testglobalvar™ type=''xsd:dateTime"/>
</variables>

To define a variable local to a scope, the declaration of the data variable should be
performed in the boundaries of the <scope>.

Definition of scope variable:
<scope name="'scope-1'">
<variables>
<variable name=""testscopevar' type="'xsd:boolean'/>
</variables>
<assign name="assign-1">
<copy>
<from expression=""True;"></from>
<to variable=""testscopevar'/>
</copy>
</assign>
</scope>

DP 2 (Block Data)

Description: Block tasks (i.e. tasks which can be described in terms of a corresponding
sub-workflow) are able to define data elements which are accessible by each of the
components of the corresponding sub-workflow.

Oracle BPEL PM: does not have a notion of a sub-workflow, it does not allow unfolding a
block task to another process model, but is oriented towards web services. Therefore this
pattern is not supported.

DP 3 (Scope Data)
Description: Data elements can be defined which are accessible by a subset of the tasks
in a case.

Oracle BPEL PM supports this pattern directly. The process designer offers the <scope>
construct which encompasses several tasks in the hierarchical manner. The data
variables declared within the <scope> are visible and shared between all scope
components.

DP 4 (Multiple Instance Data)
Description: Tasks which are able to execute multiple times within a single workflow case
can define data elements which are specific to an individual execution instance.

Oracle BPEL PM supports this pattern partially. Ml task without synchronization, when
the number of instances is known at the design time, may have data variables associated
with every separate task instance. Every task instance the parameter createlnstance of
which is set to yes has a distinct se of data elements. Every activity instantiated in this

109

way operates in its own address space. MI with synchronization, the number of instances
of which is known at the design time, also may have data variables local to every
instance. However this imposes the constraint that every task instance must be wrapped
into the <scope>. Ml task with synchronization, the number of instances of which is
known at the run-time, is realized in Oracle BPEL PM by means of the <flowN>
construct. On the one hand, the semantics of <flowN> is not specified and this construct
is Oracle-specific. On the other hand the result of testing showed that all instances of the
task that were created run-time share all data variables, thus are not instance-specific.

DP 5 (Case Data)

Description: Data elements are supported which are specific to a process instance or a
workflow case. They can be accessed by all components of the workflow during the
execution of the case.

Oracle BPEL PM supports this pattern by means of declaring data variables in the
uppermost (process) scope. The declaration can be done directly in the source code of
the process bpel source, as it is shown in Figure 24, or with the help of the graphical
interface in the designer editor as it is shown in Figure 25.

B L<i-— DYNCHRELlONDI LG SPLL PLOCESS |GENSLATEN DY LNE UTSCLE BPLL UESIQNer] -—-» =
& Credtfion 2<process name="SyncHellolior 1d"”
B8 CreditFlonz 3 targetNamespace="http://tutorial.oracle.com"
= Fiow 4 suppressdoinfailure="yes"
& LoanFlowPlus = xwlns:tns="hrep://tutorial.oracle. com”
EHE8 SyncHeloWarld 3 xwlns="http://schemas , xmlsoap . ory/ ws/2003/03 /business-process/ "
L2 project 7 stlnshpelx="hetp://schenas. oracle . com/bpel/ extension®
bpel. zml] xmlns:ora="htp://schemas.oracle. comd xpach/extension”
-2 build.xml a >
fa SyncHelloworld.bpel 10
i 5 syncHelloworld.wsdl 11 P .
128 TCreditRatingService 12 <!-— DARTHNERLINKS .
13 <!--— List of services participating in this EPEL process —3
14 <l== -
15 <partnerLinks>
16 <!-- The 'client' role represents the requester of this service. -->
17 <partnerlink name="clisnt”
18 partnerlinkType="tns: SyncHslloWor Ld"
19 myRole="SyneBelloVor ldProvider”
z0 s
21 </partnerLinks>
2z
23 <= -
24 <!-— VARIAELES -
25 - List of messages and ZML docuwents used within this BPEL process --»
o EPEL Palette 52 & =0 26 = -
2| B assign
® | o invoks
? 4 reply
2 | 8 receive
- @ wait
é 3] terminate
E| A throw
“| @ compensate el < .
@ empty 40 <!-- ORCHESTRATION LOGIC -—>
41 <!-- Sst of activities coordinaving the £low of messages across the -
£ 3 ern 42 <!-- services integrated within this business process -
. 43 <l-- -
®5W‘t‘:h 44 <sequence name="main">
&) while 45
46 <!-— Regeive input from reguester. -
S i . .-

Figure 24 Defining global variables directly in the bpel source

110

|3 Oracle BPEL Designer -- Web Page Dialog x|
Nevy variable Wizard
Use this form to configure the attributes of the element to be created

Yariable Mame:

~ Wariable Type

BPEL variables may acquire the type of an ¥ML Element, or a WSDL message part, or
a simple XML type. Choose one type for the XMi varisble.

Message Type:

®ML Element Mode:

Simple xML Type:

[ane Cancel
Figure 25 Data declaration wizard

DP 6 (Folder Data)
Description: Data elements can be defined which are accessible by multiple cases on a
selective basis.

Oracle BPEL PM offers no support for this pattern.

DP 7 (Workflow Data)
Description: Data elements are supported which are accessible to all components in
each and every case of the workflow and are within the control of the workflow system.

Oracle BPEL PM supports this pattern by means of preference properties that are
defined in the deployment descriptor. Preferences are name-value properties that are
accessed at run time by BPEL process. It allows changing the value of preferences
without having to redeploy the BPEL process.

111

E_'i: Deployment Dezcriptor Properties ﬂ

Preferences l Configurations |

Froperty Mames: m Create g Delete

ok flowD ata

Froperty Y alue:

'"Thiz is the walue of WorkflowData'

Erneryptian: |N|:| Meed to Specify j

[Store as CDATASection in deployment file

Help ak | Cancel |

Figure 26 Deployment descriptor properties

An access to the preference property set in Figure 26 and its value are shown in the audit
trail below.

112

Zj Oracle BPEL Console v10.1.2.0.0 - Microsoft Internet Explorer _[&]x]
I
L

Fle Edt Yiew Favoites Iook Help

@k - () - (%] (2] |) sewch 57 Favaites £2) o O - LR S

Agdress [hitp:Alocalhos 9700/ FE L Console/default/displaylinstance.sp fieferenceld=537c38eE07d0eB4c. 21482, 105303645, Tfebtmode=audt | Go | Links »
|
ORACLE" BPEL Console Manage BPEL Domain | Logout | Support
[Dashboard I BPEL Processes T Instances Activities
Title: Instance #903 of DP7_pref Last Modified: 8/16/05 2:24:00 PM
Reference Id: 903 © Tree Finder State: closed.completed
BPEL Process: DP? pref (v, 1.0 Priority: 3 more
Manage Flow Audit Debug Interactions Sensor Walues
Audit trail of this BPEL instance | Yiew Raw =ML [As of 8/16/05 2:24:02 PM] Refresh View

MNew instance of BPEL process "DP7_pref” initiated (# "903").

& receivelnput
Received "inputvariable” call from partner "client” less

payload

[Assign_1
Updated variable "outputvariable” |sss

payload

*This is the value of WorkflowData"

=4 callbackClient
Skipped callback "anResult” an partner “client”. less

payload

“This is the value of WorkflowData"

BPEL process instance "903" completed

Logged to domain: default Qracle BPEL Console v10.1.2.0.0

&] Done. 10 entries rendered. . Local intianet

DP 8 (Environment Data)
Description: Data elements which exist in the external operating environment are able to
be accessed by components of the workflow during execution.

Oracle BPEL PM allows accessing data provided by external operating environment by
means of synchronous invocation of an external service. In particular, by means of
<invoke> an external service can be invoked, and the data wrapped into messages is
sent by the invoked service back to the requester. The initiator of the request receives
the message through <receive>.

BPEL code snippet illustrating the use of <invoke> is shown below:

<variable name="inputToCr"
messageType=""nsxml0:CreditRatingServiceRequestMessage' />

<variable name="outputFromCr"
messageType=""nsxml0:CreditRatingServiceResponseMessage"' />

<invoke name="invoke-1" operation="process" inputVariable="inputToCr"
outputVariable="outputFromCr" partnerLink="CreditRatingService"
portType="nsxmlO:CreditRatingService"/>

Note that the data types, message types and port types need to be defined in the wsdl
format:

113

<?xml version="1.0"?>

<definitions name="TestMlwithoutSync"
targetNamespace=""http://acm.org/samples"
xmlns:tns="http://acm.org/samples"
xmIns:plnk=""http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/"
xmIns="http://schemas.xmlsoap.org/wsdl/"

TYPE DEFINITION - List of types participating in this BPEL process
The BPEL Designer will generate default request and response types
but you can define or import any XML Schema type and use them as

part
of the

message types.

—-—>
<types>

<schema attributeFormDefault="qualified"

elementFormbDefault="qualified"
targetNamespace="http://acm.org/samples”
xmIns=""http://www_w3.0rg/2001/XMLSchema'*>

<element name="'"TestMlwithoutSyncRequest'>
<complexType>
<seguence>
<element name="input" type="'string"/>
</sequence>
</complexType>
</element>

<element name="'TestMlwithoutSyncResponse'>
<complexType>
<seguence>
<element name="'result" type=""integer'/>
</sequence>
</complexType>
</element>

</schema>

</types>

<l

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

<message hame="'"TestMlwithoutSyncRequestMessage"'>

<part name="payload" element="tns:TestMlwithoutSyncRequest'/>
</message>
<message hame="'"TestMlwithoutSyncResponseMessage' >

<part name="payload" element="tns:TestMlwithoutSyncResponse"/>
</message>

PORT TYPE DEFINITION - A port type groups a set of operations into

114

a logical service unit.

<I-- portType implemented by the TestMlwithoutSync BPEL process -->
<portType name=""TestMlwithoutSync">
<operation name=''process''>
<input message=""tns:TestMlwithoutSyncRequestMessage"' />
<output message=""tns:TestMlwithoutSyncResponseMessage' />
</operation>
</portType>

PARTNER LINK TYPE DEFINITION

<pInk:partnerLinkType name="'TestMIlwithoutSync'>
<pInk:role name="TestMlwithoutSyncProvider'>
<pInk:portType name=""tns:TestMlwithoutSync'/>
</plInk:role>
</plInk:partnerLinkType>

</definitions>

Internal data interaction

DP 9 (Data Interaction- Task to Task)
Description: The ability to communicate data elements between one task instance and
another within the same case.

Oracle BPEL PM adopts “no data passing” strategy, i.e. the flow of control is passed from
one task to another, but the control-flow channel is not integrated with a data channel,
nor there is a private data channel connecting tasks. Data within the same case are not
passed between tasks but are made available via access to globally shared data.

An access to the data variables is accomplished via the <assign> activity. The <assign>
activity allows the definition of Copy Rules based on the XPATH Query in order to assign
a value of a variable, a part or a query (see Figure 27).

115

& Create Copy Rule x|

From To
Type: |\-’aliable j Type: |\r"ariah|e j
a Warable

J.—] W ___;l Expression j_] Variables
EFIQH-E, #ML Fragment ==& Process

it Partrier Link E|LJ Yariables

. =-L] input¥ariable a;j input¥ariable

E|?j payload Eﬂ outputyfanable
E|""<f-‘> client:DP1_scopeProcessRequest = :_:I payload
gy clientinput [l-¢e clientDF1_scopeProcessResporse

;:] output¥ ariable Lo ¢od | clientregult

-8 Scope - Scope_1 {3 Scope - Scope_1
I [Show Detailed MNode Information

5F'ath:| client:DP]1 scopeProcessBesponse client.l

Help ok ‘ Cancel ‘

Figure 27 Assign activity

DP 10 (Data Interaction - Block Task to Sub-Workflow Decomposition)
Description: The ability to pass data elements from a block task instance to the
corresponding sub-workflow that defines its implementation.

Not applicable, since the concept of the Block task, which can be unfolded to a sub-
workflow, is not supported.

DP 11 (Data Interaction- Sub-Workflow Decomposition to Block

Task)

Description: The ability to pass data elements from the underlying sub-workflow back to
the corresponding block task instance.

Not applicable, since the concept of the Block task, which can be unfolded to a sub-
workflow, is not supported.

DP 12 (Data Interaction- to Multiple Instance Task)

Description: The ability to pass data elements from a preceding task instance to a
subsequent task which is able to support multiple execution instances. This may involve
passing the data elements to all instances of the multiple instance task or distributing
them on a selective basis.

116

Since not all variants of Ml task are supported by Oracle BPEL PM, this patterns is
respectively not supported directly. It is possible to pass data to all instances or to a
specific instance of the MI task without synchronization. The same is valid for multiple
instances task with synchronization created at the design-time. In addition, arrays of data
can be used for passing data to specific task instances.

DP 13 (Data Interaction- from Multiple Instance Task)
Description: The ability to pass data elements from a task which supports multiple
execution instances to a subsequent task.

Since multiple instances are not supported directly, this pattern is also not directly
supported. However for the existing workarounds to implement Ml task, the specified
number of instances must complete before data can be passed to the subsequent task
by means of the <assign> construct. In order to keep track of data associated with task
instances created run-time (with or without a-priori knowledge) the array structure can be
used. Any of the array elements can be passed to the subsequent task.

DP 14 (Data Interaction- Case to Case)
Description: The passing of data elements from one case of a workflow during its
execution to another case that is executing concurrently.

Oracle BPEL PM does not support this pattern.

External data passing

DP 15 (Data Interaction- Task to Environment - Push-Oriented)
Description: The ability of a task to initiate the passing of data elements to a resource or
service in the operating environment.

Oracle BPEL PM supports this pattern directly by via the <invoke> construct, which
allows passing data by means of the referencing to the variable name in the
inputVariable attribute on an asynchronous basis.

<invoke name="callbackClient" partnerLink="client"
portType=""tns:TestMultiChoiceCal lback" operation="onResult"
inputVariable="output"/>

where input variable output is defined as:

<variable name="output”
messageType=""tns:TestMultiChoiceResponseMessage' />

The corresponding message type, operation, and port type are defined in the wsdl as
follows:

<?xml version="1.0"7?>

<definitions name="TestMultiChoice"
targetNamespace="http://acm.org/samples”
xmlns:tns="http://acm.org/samples"
xmIns:pInk="http://schemas.xmlsoap.org/ws/2003/05/partner-1ink/"
xmIns=""http://schemas.xmlsoap.org/wsdl/"

117

TYPE DEFINITION - List of services participating in this BPEL
process

The default output of the BPEL designer uses strings as input and

output to the BPEL Process. But you can define or import any XML

Schema type and us them as part of the message types.

<types>
<schema attributeFormDefault=""qualified"
elementFormDefault="qualified"
targetNamespace=""http://acm.org/samples"
xmIns="http://www.w3.0rg/2001/XMLSchema"
>

<element name="TestMultiChoiceRequest'>
<complexType>
<sequence>
<element name="input" type="'string" />
</sequence>
</complexType>
</element>

<element name="'TestMultiChoiceResponse'>
<complexType>
<seguence>
<element name="resultl"” type='string'/>
<element name="result2"
type="string"/>
<element name="result3"

type="'string'/>

</sequence>
</complexType>
</element>
</schema>
</types>
<l--
MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions
>
<message name="'"TestMultiChoiceRequestMessage' >
<part name="payload" element="tns:TestMultiChoiceRequest'/>
</message>
<message name="'"TestMultiChoiceResponseMessage'>
<part name="payload"” element="tns:TestMultiChoiceResponse'/>
</message>
<l

PORT TYPE DEFINITION - A port type groups a set of operations into

118

a logical service unit.

<I-- portType implemented by the TestMultiChoice BPEL process -->
<portType name="TestMultiChoice'>
<operation name="initiate">
<input message=""tns:TestMultiChoiceRequestMessage' />
</operation>
</portType>

<I-- portType implemented by the requester of TestMultiChoice BPEL
process
for asynchronous callback purposes
-—>
<portType name="TestMultiChoiceCallback"'>
<operation name='"onResult">
<input message=""tns:TestMultiChoiceResponseMessage' />
</operation>
</portType>
<l

PARTNER LINK TYPE DEFINITION
the TestMultiChoice partnerLinkType binds the provider and
requester portType into an asynchronous conversation.

-——>
<plInk:partnerLinkType name="TestMultiChoice">
<pInk:role name="TestMultiChoiceProvider'>
<pInk:portType name="tns:TestMultiChoice'/>
</plnk:role>
<pInk:role name="TestMultiChoiceRequester">
<pInk:portType name=""tns:TestMultiChoiceCallback"/>
</plInk:role>
</plInk:partnerLinkType>
</definitions>

DP 16 (Data Interaction- Environment to Task - Pull-Oriented)
Description: The ability of a workflow task to request data elements from resources or
services in the operational environment.

Oracle BPEL PM supports this pattern directly by means of <invoke> and <receive>
synchronously. The <invoke> activity invokes an external service, and waits for its reply
via <receive>. The invoked service must have <reply> implemented in order to send the
requested data back.

For instance, the code below shows the invocation of an external service
CreditRatingService. The crinput variable provides an input data needed for the service
invocation, the result provided by the service is associated with the output variable
respectively.

<invoke name="invoke-1" partnerLink="partnerLinkl1"

portType="nsxml0O:CreditRatingService" operation="process"
inputVariable="crinput"” outputVariable="crOutput'/>

119

Where an external service has been declared by means of the partner link:
<partnerLink name="CreditRatingService"
partnerLinkType="nsxml0:CreditRatingService"
partnerRole=""CreditRatingServiceProvider'/>

DP 17 (Data Interaction- Environment to Task- Push-Oriented)
Description: The ability for a workflow task to receive and utilize data elements passed to
it from services and resources in the operating environment on an unscheduled basis.

Oracle BPEL PM supports this pattern directly by means of <receive> and event
handlers (onMessage within the <pick> construct) as it is shown below in the code
shippets.

<receive name="‘receivelnput” partnerLink="client”
portType="tns:CreditFlow"” operation="initiate"” variable="input”
createlnstance="yes"/>

<onMessage partnerLink="client” portType="tns:WP" operation="onStart"
variable="start'>
<sequence>

</sequence>
</onMessage>

DP 18 (Data Interaction- Task to Environment- Pull-Oriented)
Description: The ability of a workflow task to receive and respond to requests for data
elements from services and resources in the operational environment.

Oracle BPEL PM supports this pattern directly by means of <receive> and <reply>

constructs.

DP 19 (Data Interaction- Case to Environment- Push-Oriented)

Description: The ability of a workflow case to initiate the passing of data elements to a
resource or service in the operational environment.

Oracle BPEL PM offers no support for this pattern.

DP 20 (Data Interaction- Environment to Case- Pull-Oriented)

Description: The ability of a workflow case to request data from services or resources in
the operational environment.

Oracle BPEL PM offers no support for this pattern.

DP 21 (Data Interaction- Environment to Case- Push-Oriented

Description: The ability of a workflow case to accept data elements from services or
resources in the operating environment.

Oracle BPEL PM offers no support for this pattern.

120

DP 22 (Data Interaction- Case to Environment- Pull-Oriented)
Description: The ability of a workflow case to respond to requests for data elements from
a service or resource in the operating environment.

Oracle BPEL PM offers no support for this pattern.

DP 23 (Data Interaction- Workflow to Environment- Push-Oriented)

Description: The ability of a workflow engine to pass data elements to resources or
services in the operational environment.

Oracle BPEL PM offers no support for this pattern.

DP 24 (Data Interaction- Environment to Workflow- Pull-Oriented)

Description: The ability of a workflow to request workflow-level data elements from
external applications.

Oracle BPEL PM offers no support for this pattern.

DP 25 (Data Interaction- Environment to Workflow- Push-Oriented)

Description: The ability of services or resources in the operating environment to pass
workflow-level data to a workflow process.

Oracle BPEL PM offers no support for this pattern.

DP 26 (Data Interaction- Workflow to Environment- Pull-Oriented)

Description: The ability of a workflow engine to handle requests for workflow-level data

from external applications.

Oracle BPEL PM offers no support for this pattern.

Data Transfer Mechanisms

DP 27 (Data Transfer by Value- Incoming)

Description: The ability of a workflow component to receive incoming data elements by
value relieving it from the need to have shared names or common address space with
the component(s) from which it receives them.

Oracle BPEL PM supports this pattern directly by means of the <assign> activity.

DP 28 (Data Transfer by Value- Outgoing)

Description: The ability of a workflow component to pass data elements to subsequent
components as values relieving it from the need to have shared names or common
address space with the component(s) to which it is passing them.

Oracle BPEL PM supports this pattern directly by means of the <assign> activity.

121

DP 29 (Data Transfer- Copy In/Copy Out)

Description: The ability of a workflow component to copy the values of a set of data
elements into its address space at the commencement of execution and to copy their
final values back at completion.

This pattern assumes that the entire data needs to migrate from one task to another.
Oracle BPEL PM offers no support for this pattern, since it allows only copying data from
one task to another by means of an <assign> activity, which is not applicable for data
migration.

DP 30 (Data Transfer by Reference- Unlocked)

Description: The ability to communicate data elements between workflow components by
utilizing a reference to the location of the data element in some mutually accessible
location. No concurrency restrictions apply to the shared data element.

Oracle BPEL PM supports this pattern directly. No concurrency restrictions apply to the
shared data.

DP 31 (Data Transfer by Reference- With Lock)

Description: The ability to communicate data elements between workflow components by
passing a reference to the location of the data element in some mutually accessible
location. Concurrency restrictions are implied with the receiving component receiving the
privilege of read-only or dedicated access to the data element.

Although Oracle BPEL PM can indirectly support this pattern by means of serializable
scopes, the tested version of Oracle BPEL PM does not seem to work according to the
semantics of the serializable scopes.

DP 32 (Data Transformation- Input)
Description: The ability to apply a transformation function to a data element prior to it
being passed to a workflow component.

Although Oracle BPEL PM allows the usage of the transformation functions within the
<assign> activity, this pattern understands the transformations as inline functions which
must occur at the time the task initiated. Therefore, this pattern is not supported.

DP 33 (Data Transformation- Output)
Description: The ability to apply a transformation function to a data element immediately
prior to it being passed out of a workflow component.

Oracle BPEL PM does not support this pattern since it is not possible to specify

transformation function inline with the task, which would be applied on the task
completion.

122

Data-based Routing

DP 34 (Task Precondition- Data Existence)
Description: Data-based preconditions can be specified for tasks based on the presence
of data elements at the time of execution.

Oracle BPEL PM does not support for this pattern.

DP 35 (Task Precondition- Data Value)
Description: Data-based preconditions can be specified for tasks based on the value of
specific parameters at the time of execution.

Oracle BPEL PM supports this pattern by means of links and conditions evaluating the
status of the links, i.e. joinCondition. For instance, assuming that sources of links L1 and
L2 have been defined, an empty activity will be executed after the status of the links has
been evaluated and joinCondition satisfied.

<empty name="‘empty' joinCondition="L1 OR L2">
<target linkName="L1"/>
<target linkName="L2"/>

DP 36 (Task Post-condition- Data Existence)
Description: Data-based post-conditions can be specified for tasks based on the
existence of specific parameters at the time of execution.

Oracle BPEL PM offers no support for this pattern.

DP 37 (Task Postcondition- Data Value)

Description: Data-based postconditions can be specified for tasks based on the value of
specific parameters at the time of execution.

Oracle BPEL PM offers no support for this pattern.

DP 38 (Event-based Task Trigger)
Description: The ability for an external event to initiate a task.

Oracle BPEL PM supports this pattern directly by means of <receive> and event
handlers onMessage. In addition, there is also support for the time events via onAlarm.

DP 39 (Data-based Task Trigger)

Description: The ability to trigger a specific task when an expression based on workflow
data elements evaluates to true.

Oracle BPEL PM offers not direct support for this pattern.

DP 40 (Data-based Routing)

Description: The ability to alter the control flow within a workflow case as a consequence
of the value of data-based expressions.

123

Oracle BPEL PM offers direct support for this pattern via links and the <switch>
construct. Every link can have a data-based transition condition associated with it, and
thus be selected if the given transition condition has been satisfied. The <switch>
construct allows creating multiple branches and their association with the data
conditions. The first branch specified in the lexical order, for which the data conditions
holds, is to be selected. An example of the <switch> construct with two predefined and
one default conditions is shown below:

<switch name="switch-1">

<case

condition="bpws:getVariableData(" input","payload" ,&q
uot;/tns:TestExclusiveChoiceRequest/tns: input")<5;">

<sequence>
<assignh name="‘actA''>
<Copy>
<from variable="input"” part="payload"
query="/tns:TestExclusiveChoiceRequest/tns: input'>
</from>
<to variable="output' part="payload”
query=""/tns:TestExclusiveChoiceResponse/tns:result'/>
</copy>
</assign>
</sequence>
</case>
<otherwise>
<seguence>
<assign name="actB''>
<copy>
<from variable="input"” part="payload"
query="/tns:TestExclusiveChoiceRequest/tns: input'>
</from>
<to variable="output" part="payload”
query="/tns:TestExclusiveChoiceResponse/tns:result'/>
</copy>
</assign>
</sequence>
</otherwise>
</switch>

124

3. Evaluation of Oracle BPEL PM from the resource
perspective

The evaluation of Oracle BPEL PM from the resource perspective is based on the
features of the Workflow Service offered by Oracle BPEL PM to model user interactions.
The user task can be added in the process model by means of the user task macro
block, which allows the given task to be configured and the functionality of which
depends on the set of services, namely Task Management Service, Task Action Handler,
Idenitity Service, Worklist Service, Task Routing Service and Natification Service. The
main purpose of the user task service is to enable the integration of people and manual
tasks into bpel flows.

A user task is a service that assists with modeling processes that require user input in
order to complete. It is accessible externally through a Java APl upon which custom
interfaces may be developed. Typically in a process that requires user input, an
upstream process element creates a User Task and associates a payload of data with it;
subsequently suspending downstream process nodes. That task and its associated data
may then be accessed through an external application's user interface. Once the user
has completed the required external process, the User Task API is called to assign a
status of complete (or any other appropriate value). This in turn activates the remaining
downstream processes. User tasks are special instances of activities where the
performer of the activity is manual rather than automated. Tasks may be assigned to
particular assignees and may have expiration times associated with them [13].

A task may be routed through multiple users via a sequential flow, a parallel flow, or an
adhoc flow. Oracle BPEL PM integrated these routing variants into a set of "workflow
patterns” (see Figure 28) consisting of
- Simple workflow (single-user task) — used for a business process that required a
user's action. Based on the user's action or inaction, the business process
modeler defines what the business process has to do.
- Simple workflow with escalation (extension of a single-user task) — used to
escalate the task, if the user does not respond within the allotted time.
- Simple workflow with renewal (extension of a single-user task) — used to extend
the expiration period id the user doe not respond within the allotted time.
- Sequential workflow — used to route tasks to multiple users in sequence.
- Sequential workflow with escalation (extension of a sequential workflow) — used
to escalate the task if a user does not take an action within the allotted time.
- Parallel workflow — used when multiple users, working in parallel, must take
action, such as in a hiring situation when multiple users vote to hire or reject an
applicant. The voting percentage is needed for specifying the outcome.
- Parallel workflow with final reviewer (extension of parallel workflow) — used
when a task is first sent to multiple users in parallel and then sent to a final
reviewer for a decision.
- Adhoc (or dynamic) workflow — used to assign a task to one user first, who then
decides where the task goes next. The task is routed until one of the assignees
completes it.
- FYI task — used when a task is sent to the user, but the business process does
not wait for the user response.
- User task 2.0. Macro — supports user tasks from Oracle BPEL PM release 2.0.

125

- Task continuation — used to build complex workflow patterns, i.e. it allows one

workflow to be continued with another workflow.

e‘p Workflow Wizard - Workflow Pattern

Fleaze select a Woarkflow Pattern. The subsequent pages will collect information based
an the Pattern you have chosen.

\wiorkflow Pattems: | -]

Simple “work flow =
Specify the Workfow Simple work flow \with Automatic E scalation

workflow. The global Sirnple work o ‘with Automatic Renewal

achvitiez bazed on th S equential Workflow

Sequential Work flow With Automatic E zcalation

Whorkflow Name: | ghoc workflaw

Parallel 'Wark flow

Parallel \Warkow wWith Final R eviewer -

W ariable Mame:

Descriptior:

Help < Back ‘ | | Cancel

X

Figure 28 Wokflow patterns

Each of the workflow patterns can be easily configured with help of the workflow wizard.

Figures below show an example of configuring the Simple workflow pattern.

@a Workflow Wizard - 5tep 1 of 1: Welcome ﬂ

Vvelcome to the YWorkflow Wizard.
Thig wizard will help you easily model comples Workflow scenarios by uzing a et of

patterns. Tou may chooze to create a new workflow or extend previously created
wiorkflows.,

f« LCreate Mew Wwiorkfow

[v Lheck to use Advanced Ophiong

Advanced optionz let you zpecity optional T azk Details, Flex Fields, Restricted
Actions and Werzion Tracking attributes.

If thiz iz an extenzion of a previous Workflow, please check the button below and
zelect the Workflow to extend.

e | I

Help | Met | ‘ Cancel |

Figure 29 Workflow wizard - Step 1

126

%'u Workflow Wizard - Step 3 of 11: Task Details

Task Titl: [Tasy]

~Specify the ML element and display format for the task payload

Payload: Ihnws:uetVariahleData['outputVariahle!', 'pavloa ‘b

Fayload is displayed in the “Worklist &pplication. Chooze formatting option. [f
zelected ©5L file iz nat in the project directary, then it will be copied there.

= Auto generate JSP form

© XSLFie: | J
£ JSPURAL: |
T ask Creator: I]

Eupiration Duration Daps: I 3: Hours: I 3: Minutes: 3=

Help | ¢ Back | Mext » I Eiriish | Cancel |

Figure 30 Workflow wizard - Step 3

%‘n Workflow Wizard - Step 4 of 10: Dptional Task Details

- Mormal ;I

3

1 - Highest
Task Qwner: |5, High

£

4

T ask Priority:

- Mormal
-Low

|dentification K

Help | < Back | Meut > I Firish Cancel

Figure 31 Workflow wizard - Step 4

127

;"_‘ia Workflow Wizard - Step 5 of 10: Tazk Dutcomes

Pleaze specify the set of autcomes for the tazk,

W Sdd

w Delete

M ame

Dizplay walue

ACCEPT Accept

REJECT

| <]

DOME
WO

ES
DEFER
DECLIME
&PPROVE

Reject

Help |

< Back | Menit > I

Firizh

| Cancel |

Figure 32 Workflow wizard - Step 5

f_‘ia Workflow Wizard - Step b of 10: Task Motifications

Pleaze specify the types of Mobfication(z) you would like to send for thiz task. The
natificationz will be sent bazed on the status of the tazk and user preferences.

" &dd

i Delete

Tazk Statuz Recipient

Errored

Euxpired

Suzpend

Request Information
Completed
Withdrawn

M otification

Help |

< Back | et > I

Firisty

Cancel

Figure 33 Workflow wizard - Step 6

128

& Workflow Wizard - Step 7 of 10: Task Flex Fields

each flex field.

Specify the flex fields pou would like to use. Y'ou can associate a display value with

W Add | & Delete
Mame I Dizplay value

|
flexStringd
flexString2
flexString3
flexStringd | |
flexLongl
flexlong2
flexDoublel -

Help | < Back | Meut > I Firizh | Cancel |

Figure 34 Workflow wizard - Step 7
& Workflow Wizard - Step 8 of 10: Restricted Task Actions

Select actions which should not be permitted on thiz tazk.

Ayailable actions Festricted actions

Auto Release Feazzign
Ezcalate

=

Request Information
Suzpend

Help | < Back | Mext » |

Firishy

Cancel

Figure 35 Workflow wizard- Step 8

129

%a Workflow Wizard - Step 9 of WYersion Tracking Attributes

Select tazk attributes which when changed, will create a new task version.

Awailable versionable attibutes Selected attributes
comments attachments
payload
b
3
<
L

Help | < Back Firish | Cancel |
Figure 36 Workflow wizard - Step 9
%ﬂ Workflow Wizard - Step 10 of 10: Assignees X|

Fleaze specify the assignee(z) for the task using one of the options below. IF the tazk
were aszigned to multiple uzers, ohe of those uzers may acquire the tazk and act on it.
If the tazk were assigned to one or mare groups, any member of the group(z) may
acquire the tazk and act on it

& fAssign to Uszer a € Azsign to Group £8

& Users):
| ©

For mare than one users, separate entries wzing comma.E.q. john, jane

¢ Dynamic azsignment uging #Fath expression:

Help | < Back | et > | Einish

Figure 37 Workflow wizard - Step 10

130

%‘u Workflow Wizard - S5tep 11 of 11: Dutcome determination policy ﬂ

The final outzome of the task iz the outcome that has at least the specified percentage
of outcomes of all the parallel tazks. If no outcome has the specified percentage, the
default outcome is the final outcome,

If early corpletion iz chosen, when there are enough responzes to conpute the
outcome of the task, all the pending tasks will be withdrawn, Othenwize the process will
wait for responzes fram all the azsignees.

Percentage [0-100) far final outcone: |ED

Default oubecome: | ﬂ

ACCERPT
REJECT

Early completion configuration:

Early completion:

" Mo early completion;

Help < Back | | Cancel

Figure 38 Workflow wizard - Step 11

Each task has the following set of the attributes:

- title: the name of the activity;

- creationDate: the date of the task creation;

- creator: an identifier of the process initiated the task;

- modifyDate: the last modification date of the task;

- modifier: an id of a user or a role performing the updating or completion of the
task;

- assignee: id of a user, role, or group responsible for completing the task;

- status: the active or completed status of the task;

- expired: Boolean status indicating whether the task expired or not;

- expirationDate: an optional field indicating the time of the task expiration;

- duration: an optional field indicating the duration after which the task should
expire;

- priority: an optional field indicating the priority of the task;

- customKey: an optional field specifying an alternative to the task identifier key
that can be used for referring to the task;

- conclusion: an optional field indicating how the task has completed, i.e. whether it
was Approved, Refused or Canceled.

- attachment: an optional field containing any type of information that might be
required for the task execution.

Users access tasks assigned to them via the Worklist Application, which displays tasks
assigned to the user, the group the user belongs to, and allows including additional
information such as history, comment, etc. Any user may adjust the format of a work list
in order to display the work items allocated to this user, to the group the user belongs to,
or other users. By selecting a work item allocated to a user, the user may commence
execution on it. An example of work list is shown in Figure 39.

131

2} Oracle BPEL Worklist - Microsoft Internet Explores

Fle Edt View Favoites Took Help o

Qe -) - %] (8]) search <7 Favoites 47 - :; | Il 3

Address |@ hitp: £ Aocalhost 3700/ integ T askssignee’ ion=Lookupttaskld=E37c38e607d0eB4c: 2148d2:105bSee052b:-7i8: j Go | Links ™
E|
ORACLE User: jstein | Home | Logout
BPEL Worklist Search: [[an =] [any =] [Assianed = 5ol

Advanced Search

Home > Task Details (Task) > Assignees

Emai
w.v.d.aslst@tm. tue.nl

M rsteven (U} userd@dlsun4 254 us .oracle .com

F' jcooper (U} usera@dlsun4254.us oradle.com
MV mtwain (U) user3@dlsun4254 .us.oracle .com

Reassign | Chedk all Uncheck all

Figure 39 The worklist application

The evaluation of Oracle BPEL PM from the resource perspective is done by means of
the resource patterns [10]. The pattern can be directly or partially supported or not
supported at all. The criteria for the evaluation are taken from [10].

RP1 (Direct Allocation)
Description: The ability to specify at design time the identity of the resource that will
execute a task.

Oracle BPEL PM supports this pattern directly. The resources can be specified statically
or dynamically. The organization structure, together with resources, their identities, and
other characteristics can be specified via JAZN admintool. When adding a task to the
process model, the workflow wizard allows specifying a single user, a set of the users, or
a group as it shown in Figure 41. Each of the task parameters specified by means of the
wizard can be modified later in the designer view (SimpleUserActivityl in Figure 40) or in
the corresponding BPEL code.

132

Partner Links

=]
TaskManagerService O
-
ST E | =
i}
- P Fl
TaskActionHandler # 5 %,
b b |
e -
T 3 receivelnput
bu} 3
TaskRoutingService LE l
IdentiyService Simplelserbctivig]
=B
- | | |
Q‘{S B <nase Task outcome is ACCERT= [B | <case Task outcome is REECT= [@] B | «otherwises =
K

client

| 5

copyPaploadFramT ask copyPaploadFramT ask copyPaploadFramT ask

a ¥

callbackClient

Figure 40 A user task (Simple Workflow pattern)

E_‘p WorkfHow Wizard - Step 10 of 10: Azsignees

Pleaze zpecify the azsignee(s] for the tazk uzing one of the optionz below. If the tazk
were asgighed to multiple users, one of thoze uzers may acquire the tazk and act on it
If the task were azsigned to one or more groups, any member of the group(z) may
acquire the tagk and act on it

& Assignto User ™ Assignto Group £

& Users):
| ©

For more than one uzers, separate entries uzing comma.E.g. johh, jane

" Dynamic aszignment using XPath expression;

Help | <Back [Hea> | [Finish

Partner Links

Figure 41 Task assignees

133

An identity look-up dialog by role and user is shown in Figure 42 and respectively.

& Identity lookup dialog |
EFEL Connection |LocaIBF'ELS erver ﬂ = Create
Search Pattern |" Group name ﬂ Lookup

Search group

LoandgentGroup =
LoandgentFale

LoandnalyticGroup

Supervizor

administrators
defaultB P Diomainddriin
fullpras

Select Members Dretail

Selected group

Supervizor

Remove | Dretail |

ak Cancel

Figure 42 The identity lookup dialog (role)

é“y Identity lookup dialog il

EFEL Connection |L0c:aIBF'ELSewer ﬂ o Create
Search Pattern |" User Mame ﬂ Lookup

Search user

TITTICTT LI

mbwain
nrmnulyar
rsteven
sfitzger
s2Eg

wifaulk
wihake
wvdaalst -

e Hierarchy Beportess Detail | |

Selected user

rrnulyar

Remove | Dretail |

Ok Cancel

Figure 43 The identity lookup dialog (user)

The code snippets corresponding to the process model in Figure 40 are shown below:

134

<process name="RP1_jazn"
targetNamespace=""http://xmlns.oracle.com/RP1_jazn"
xmlns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:xp20=""http://www.oracle.com/XSL/Transform/java/oracle._tip.pc.servi
ces.functions.Xpath20"
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlIns: ldap=""http://schemas.oracle.com/xpath/extension/ldap"
xmlns:xsd="http://www._w3.0org/2001/XMLSchema""
xmIns:client="http://xmlns.oracle.com/RP1_jazn"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:identityservice="http://xmlns.oracle.com/pcbpel/identityservice/lo
cal”
xmlns:taskmngr="http://xmlns._oracle.com/pcbpel/taskservice/taskmanager"
xmlns:taskroutingservice="http://xmlns.oracle.com/pcbpel/taskservice/tas
kroutingservice”™ xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
xmlns:task="http://xmlns.oracle.com/pcbpel/taskservice/task"
xmIns:orcl="http://www.oracle.com/XSL/Transform/java/Zoracle.tip.pc.servi
ces.functions.ExtFunc"
xmlns:taskactionhandler="http://xmlns.oracle.com/pcbpel/taskservice/task
ActionHandler'><!--

——><I-
- PARTNERLINKS -
><I-- List of services participating in this BPEL process
——><l

-—>

<partnerLinks><!--

The "client” role represents the requester of this service. It is

used for callback. The location and correlation information
associated

with the client role are automatically set using WS-Addressing.

-——>

<partnerLink name="client" partnerLinkType=""client:RP1_jazn"
myRole=""RP1_jaznProvider" partnerRole="RP1_jaznRequester'/>

<partnerLink myRole="TaskManagerCal lbackListener"
name=""TaskManagerService" partnerRole="TaskManager""
partnerLinkType=""taskmngr:TaskManager"'/>

<partnerLink name="TaskRoutingService"
partnerRole="TaskRoutingService"
partnerLinkType=""taskroutingservice:TaskRoutingService"/>

<partnerLink myRole=""HandleTaskActionRequester"
name=""TaskActionHandler" partnerRole="HandleTaskActionProvider"
partnerLinkType=""taskactionhandler:TaskActionHandler"/>

<partnerLink name="ldentityService"
partnerRole="ldentityServiceProvider"
partnerLinkType="i1dentityservice: ldentityService'/>

</partnerLinks><l--

——><I-
- VARIABLES -—

><I-- List of messages and XML documents used within this BPEL process
——><l-—

-—>

<variables><!-- Reference to the message passed as input during
initiation --—>
<variable name="inputVariable"
messageType=""client:RP1_jaznRequestMessage''/><!-- Reference to the
message that will be sent back to the
requester during callback

135

-—>
<variable name="outputVariable"
messageType=""client:RP1_jaznResponseMessage'/>
<variable name="SimpleUserActivityVarl" element="task:task'/>
</variables><I--

__><!_
— ORCHESTRATION LOGIC -
><Il-- Set of activities coordinating the flow of messages across the
-—><I-- services integrated within this business process

——><l-—

<sequence name=""main''><!-- Receive input from requestor.
Note: This maps to operation defined in RP1_jazn.wsdl
-—>
<receive name="‘receivelnput"” partnerLink="client"
portType="client:RP1_jazn" operation="initiate" variable="inputVariable"
createlnstance="yes"/><!-- Asynchronous callback to the requester.
Note: the callback location and correlation id is transparently
handled
using WS-addressing.
-——>
<scope name="'SimpleUserActivityl" variableAccessSerializable="no"
xmlns:taskactionhandler="http://xmlns.oracle.com/pcbpel/taskservice/task
ActionHandler™ xmlns:bpelx="http://schemas.oracle.com/bpel/extension™
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmlns:taskmngr="http://xmlns._oracle.com/pcbpel/taskservice/taskmanager"
xmlns:task="http://xmlIns.oracle.com/pcbpel/taskservice/task"
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema""
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmIns:wf=""http://schemas.oracle.com/bpel/extension/workflow"
wf:key="SimpleUserActivityVarl;taskConfigSimpleUserActivityl._xml;SimpleU
serActivity;Task4Eric;bpws:getVariableData(outputVariable®, “payload-”,

<variables>
<variable name="oraBPMTaskMessage"
messageType=""taskmngr :taskMessage"/>
<variable name="‘oraBPMTaskErroredFaul tMessage"
messageType=""taskmngr:taskErroredMessage' />
<variable name="'oraBPMTemporaryVariable" type="'xsd:string'/>
</variables>
<correlationSets>
<correlationSet name="oraBPMTaskldCor"
properties="taskmngr:taskld'/>

</correlationSets>
<sequence>
<assign name="'setUserDefinedAttributes">
<copy>

<from expression="""Task4Eric""'/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:title"/>
</copy>
<copy>
<from expression="bpws:getVariableData("outputVariable”,
"payload®, "/client:RP1_jaznProcessResponse/client:result™)'/>

136

<to variable="SimpleUserActivityVarl"
query=""/task:task/task:payload"/>
</copy>
<copy>
<from expression="string("hverbeek")"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:assigneeUsers[1]" />
</copy>
<copy>
<from expression=""concat(ora:getProcessURL(),
string("/taskConfigSimpleUserActivityl.xml"))"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:taskType'/>
</copy>
</assign>
<assignh name="'setSystemDefinedAttributes'>
<copy>
<from expression="ora:getlnstanceld()"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:instanceld"'/>
</copy>
<copy>
<from expression="ora:getProcesslid()"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:processName'/>
</copy>
<COpy>
<from expression="ora:getProcessid()"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:processid'/>
</copy>
<COpy>
<from expression="ora:getProcessVersion()'/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:processVersion'/>
</copy>
<COpy>
<from expression="ora:getDomainld()"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:domainld"/>
</copy>
<COpy>
<from expression="ora:getProcessOwnerld()"/>
<to variable="SimpleUserActivityVarl"
query=""/task:task/task:processOwner"/>
</copy>
<copy>
<from expression=""string("SINGLE_APPROVAL")"/>
<to variable="SimpleUserActivityVvarl"
query=""/task:task/task:pattern"/>
</copy>
<copy>
<from expression="false()"/>
<to variable="SimpleUserActivityVvarl"
query=""/task:task/task:hasSubTasks"/>
</copy>
<copy>

137

<from variable="SimpleUserActivityvarl'/>
<to variable="oraBPMTaskMessage" part="payload"/>

</copy>

</assign>

<scope name="initiateTask">
<faultHandlers>

<catch FaultName=""taskmngr:taskErroredFault"
faultVariable="oraBPMTaskErroredFaul tMessage'>
<assign name="readErroredTask'>
<C0py>
<from variable="oraBPMTaskErroredFaul tMessage"
part=""payload"/>
<to variable="oraBPMTaskMessage' part="payload"/>
</copy>
</assign>
</catch>
</faultHandlers>
<seguence>
<invoke name="initiateTask" partnerLink="TaskManagerService"
portType=""taskmngr:TaskManager' operation="initiateTask"
inputVariable="oraBPMTaskMessage' outputVariable="oraBPMTaskMessage' />
</sequence>
</scope>
<seqguence>
<invoke name="initiateTaskActionHandler"
partnerLink="TaskActionHandler"
portType="taskactionhandler:TaskActionHandler' operation="initiate"
inputVariable="oraBPMTaskMessage''>
<correlations>
<correlation set="oraBPMTaskldCor' initiate=""yes"
pattern=""out"/>
</correlations>
</invoke>
<receive name="receiveUpdatedTask"
partnerLink="TaskActionHandler"
portType="taskactionhandler:TaskActionHandlerCal lback"
operation="onTaskCompleted" variable="oraBPMTaskMessage"
createlnstance="'"no"">

<correlations>
<correlation set="oraBPMTaskldCor" initiate="no"/>
</correlations>
</receive>
</sequence>
<assign name="readUpdatedTask'>
<COpy>

<from variable="oraBPMTaskMessage"' part="‘payload"/>
<to variable="SimpleUserActivityVvarl'/>
</copy>
</assign>
</sequence>
</scope>
<switch name='"taskSwitch"
xmIns:bpelx="http://schemas.oracle.com/bpel/extension”
xmIns=""http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/""
xmIns:tt=""http://xmIns.oracle.com/pcbpel/taskservice/tasktype"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema'*>

138

<case condition="bpws:getVariableData("SimpleUserActivityVvarl"®,

"/task:task/task:state") = "COMPLETED" and
bpws:getVariableData("SimpleUserActivityVarl®,
"/task:task/task:conclusion®) = "ACCEPT"'>
<bpelx:annotation>
<bpelx:pattern>Task outcome is ACCEPT
</bpelx:pattern>
</bpelx:annotation>
<seguence>
<assign name="'copyPayloadFromTask">
<Copy>
<from variable=""SimpleUserActivityvarl"
query=""/task:task/task:payload"/>
<to variable="outputVariable' part="payload"”
query=""/client:RP1_jaznProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</case>

<case condition="bpws:getVariableData("SimpleUserActivityVarl-,

"/task:task/task:state") = "COMPLETED" and
bpws:getVariableData("SimpleUserActivityVvarl”,
"/task:task/task:conclusion®) = "REJECT"'>
<bpelx:annotation>
<bpelx:pattern>Task outcome is REJECT
</bpelx:pattern>
</bpelx:annotation>
<seguence>
<assign name="copyPayloadFromTask">
<Copy>
<from variable="SimpleUserActivityvarl"
query=""/task:task/task:payload"/>
<to variable="outputVariable' part="payload"
query="/client:RP1_jaznProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</case>
<otherwise>
<bpelx:annotation>
<bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
</bpelx:pattern>
</bpelx:annotation>
<seguence>
<assign name="'copyPayloadFromTask">
<Copy>
<from variable=""SimpleUserActivityvarl"
query=""/task:task/task:payload"/>
<to variable="outputVariable' part="payload"
query=""/client:RP1_jaznProcessResponse/client:result'/>
</copy>
</assign>
</sequence>
</otherwise>
</switch>

139

<invoke name="'callbackClient" partnerLink="client"
portType="client:RP1_jaznCallback™ operation="onResult"
inputVariable=""outputVariable"/>
</sequence>
</process>

RP2 (Role-Based Allocation)
Description: The ability to specify at the design time that a task can only be executed by
resources which correspond to a given role.

Oracle BPEL PM supports this pattern directly. The organizational structure, including the
roles assigned to the users, can be specified in the jazn-data.xml and user-
properties.xml, the content of which is vizible for the designer creating a process model.
Specifying one of the existing roles as a task assignee (Figure 41) would make a work
item visible in the worklists of users with the corresponding role. Note that Oracle BPEL
PM makes no distinction between groups and roles.

RP3 (Deferred Allocation)
Description: The ability to defer specifying the identity of the resource that will execute a
task until runtime.

Oracle BPEL PM supports this pattern directly. It allows specifying a task assignee by
means of an XPath expression which is evaluated at run-time.

RP4 (Authorization)
Description: The ability to specify the range of resources that are authorized to execute a
task.

This pattern is not supported by Oracle BPEL. It is possible to assign a work item to a
specified role, and this work item can be reassigned to any other user/role. However, it is
not possible to (re-)assign a task based on the condition, i.e. to a user having a certain
authority.

RP5 (Separation of Duties)
Description: The ability to specify that two tasks must be allocated to different resources
in a given workflow case.

Oracle BPEL PM does not allow specifying the separation of duties in terms of
relationships between tasks, nor it allows the separation of duties based on security
mechanisms. Thus this pattern is not supported by Oracle BPEL PM.

RP6 (Case Handling)
Description: The ability to allocate the work items within a given workflow case to the
same resource.

Oracle BPEL PM supports this pattern directly. The feature of dynamic assignment using
an XPath expression allows specifying that a next task must be assigned to the resource
who executed the previous (first) task. In particular, the function
ora:getPreviousTaskApprover() can be used for this purposes.

RP7 (Retain Familiar)

140

Description: Where several resources are available to undertake a work item, the ability
to allocate a work item within a given workflow case to the same resource that undertook
a preceding work item.

Oracle BPEL PM supports this pattern by means of the ora:getPreviousTaskApprover()
function during the dynamic assignment an assignee to a task.

RP8 (Capability-based Allocation)
Description: The ability to offer or allocate instances of a task to resources based on
specific capabilities that they possess.

Oracle BPEL PM supports this pattern directly. It allows defining user properties and
store them in user-propoerties.xml file, which become accessible via the function
ora:getUserProperty(). This function can be used in the condition associated with the
dynamic assignment feature.

RP9 (History-based Allocation)
Description: The ability to offer or allocate work items to resources on the basis of their
previous execution history.

Oracle BPEL PM does not offer the direct support for this pattern, but it allows
implementing this feature and accessing it via the properties of the dynamic assignment.

RP10 (Organizational Allocation)
Description: The ability to offer or allocate instances of a task to resources based their
position within the organization and their relationship with other resources.

Oracle BPEL PM offers an indirect support for this pattern. The organizational structure is
stored in the xml format in the jazn-data.xml file, and it can be modified and extended.
The relationships between roles are specified via the role-hierarchy tree. The roles
defined become accessible via the look-up wizard.

RP11 (Automatic Execution)
Description: The ability for an instance of a task to execute without needing to utilize the
services of a resource.

Oracle BPEL PM allows specifying tasks which involving the user, but also the tasks
which are to be performed automatically. Any of the basic or structured activities offered
by Oracle BPEL PM in the BPEL palette are executed automatically. Thus this pattern is
directly supported.

RP12 (Distribution by Offer — Single Resource)
Description: The ability to offer a work item to a selected individual resource.

Oracle BPEL PM supports this pattern by offering work item to members of a group. A
group containing one user allows this user to "acquire" the offered work item.

RP13 (Distribution by Offer — Multiple Resources)
Description: The ability to offer a work item to a group of selected resources.

141

Oracle BPEL PM supports this pattern directly by specifying the name of a group as an
assignee of the task. As a result, the task will be offered to all members of a group, and
any of the members may acquire it. After the work item has been acquired, no other
users may acquire this work item any more.

RP14 (Distribution by Allocation — Single Resource)
Description: The ability to directly allocate a work item to a specific resource for
execution.

Oracle BPEL PM supports this pattern directly. Assigning a user with a given identity
statically or dynamically, automatically allocates the work item to this user. This differs
from the pattern RP12 where the work item is offered to the user.

RP15 (Random Allocation)
Description: The ability to offer or allocate work items to suitable resources on a random
basis.

Oracle BPEL PM offers no direct support for this pattern. However, the feature of
assigning a work item dynamically can be used to support this pattern. For example, a
service can be implemented to retrieve resource on the random basis.

RP16 (Round Robin Allocation)
Description: The ability to allocate a work item to available resources on a cyclic basis.

Oracle BPEL PM offers no direct support for this pattern. However, the feature of
assigning a work item dynamically can be used to support this pattern. For example, a
service can be implemented to retrieve resource based on the round-robin algorithm.

RP17 (Shortest Queue)
Description: The ability to allocate a work item to the resource that has the least number
of work items allocated to it.

Oracle BPEL PM offers no direct support for this pattern. However, the feature of
assigning a work item dynamically can be used to support this pattern. For example, a
service can be implemented to retrieve resource based on the shortest queue algorithm.

RP18 (Early Distribution)
Description: The ability to advertise and potentially allocate work items to resources
ahead of the moment at which the work item is actually enabled for execution.

Oracle BPEL PM offers no support for this pattern.
RP19 (Distribution on Enablement)
Description: The ability to advertise and allocate work items to resources at the moment

they are enabled for execution.

Oracle BPEL PM supports this pattern directly: as soon as a work item becomes
available, it appears in the work list of the assigned resource.

142

RP20 (Late Distribution)
Description: The ability to advertise and allocate work items to resources after the work
item has been enabled.

Oracle BPEL PM does not support this pattern since by any work item requires to have
an assignee. Since the work item has to be allocated or offered to a user/role from the
moment of creation, the late distribution is not possible.

RP21 (Resource-Initiated Allocation)
Description: The ability for a resource to commit to undertake a work item without
needing to commence working on it immediately.

Oracle BPEL PM does not support this pattern directly. If a work item is assigned to a set
of users or a group, one of the users in the list can "acquire” the task. However, this
corresponds to the commence working on it immediately.

RP22 (Resource-Initiated Execution — Allocated Work Item)
Description: The ability for a resource to commence work on a work item that is allocated
to it.

In Oracle BPEL PM resources are able to commence the execution of a work time
available at their own worklists at a time of their own choosing, but before the task has
expired. Therefore this pattern is supported directly.

RP23 (Resource-Initiated Execution — Offered Work Item)
Description: The ability for a resource to select a work item offered to it and commence
work on it immediately.

Oracle BPEL PM supports this pattern directly. When a user is offered a work item, and
the user "acquires" it, he commences work on it immediately.

RP24 (System-Determined Work Queue Content)
Description: The ability of the workflow engine to order the content and sequence in
which work items are presented to a resource for execution.

Oracle BPEL PM does not impose a default ordering of the work items in the resources
work queue, thus offering no support for this pattern.

RP25 (Resource-Determined Work Queue Content)
Description: The ability for resources to specify the format and content of work items
listed in the work queue for execution.

Oracle BPEL PM supports this pattern directly. The user is able to format the work items
listed in his worklist based on the task id, priority and other parameters. In addition,
Oracle ships a JSP based sampe worklist application that can be customized to list
specific content on the worklist application.

RP26 (Selection Autonomy)

Description: The ability for resources to select a work item for execution based on its
characteristics and their own preferences.

143

Oracle BPEL PM supports this pattern directly. The user can select and act on any of the
task displayed in his work list.

RP27 (Delegation)

Description: The ability for a resource to allocate a work item previously allocated to it to
another resource.

Oracle BPEL PM supports this pattern directly by means of "reassign" action. As such, a
manager can delegate a task to reportees. Similarly, the process owner or a user with
BPMWorkflowReassign privileges can delegate a specific task to any other person in the
organization. Figure 44 - Figure 47 illustrate how a work item can be reassigned via the
work list application.

3 Oracle BPEL Worklist - Microsoft Internet Explorer (& x]
Fle Edt View Favoites Took Help \]

@Eackva lx] (2] @ pﬁ&amh 1'% Favoites @‘B-; o - JEE 3

Address [hitpfacalhost: 3700/ integration/work istapp/ T askList

o B oo | Like »

ORACLE

User: jcooper | Home | Logout
BPEL Worklist

Search: [[an =l [any =] [Any = o

Advanced Search

Home (All Tasks)

Hide Chart

Status Count
Aug 15, 2005 lﬁ
100458 Task 3 Assigned wudaalst (U) e Select an Action Go - N
Completed a
Suspended a
Expired a
Withdrawn [
Errored [
Info Reguested o
Total I
3 Oracle BPEL Worklist - Microsolt Internet Explorer [&]x]
Fle Edt View Favortes ILods Help | &
- | S : iyt B
Qe - O 1) (2] O] Lo e @3- 3 M- JEE B
Address [hitp:localhost 70/ ntegiati T askhssignee ion=Lookupttaskld=E37c3BeE07d0EE4c. 214342 105bSee52b: 7i3c - B Ge |Lmks »

ORACLE

User: istein | Home | Logout
BPEL Worklist

search: [[an =1 [any = [Assigned =l 5ol

Advanced Search

Home > Task Details (Task) > Assignees

Current Assignees
45signes [ehone
wvdaalst (U}

|Email
wow.d.aalst@m tue.nl

T Reportee =] Go

rsteven (U} user4@dlsund 254 us oracle.com

M icooper (L) user3@dlsun4 254 us oracle.com

W mtwain (U) user3@dlsun4 254 us oracle.com

Reassign | Check all Uncheck Al

Figure 45 Reassign-2

144

/3 Oracle BPEL Worklist - Microsoft Internet Explorer

Fle Edt View Favoites Toos Help -
Qrock -) - (%] (&) (D] O somch g Fuoies €2 2~ 12 9] - | JERD B
Address [] hitp:Alocalhost 3700integrati T askD 4=637c90eB07d0eB4CY3A2IA2 %341 05b 3520724 Tedd -l B 6o | Links »
|
ORACLE User: jcooper | Home | Logout
BPEL Worklist Search: | My & Group =] [Any =] [any K| g

Advanced search

Home > Task Details (Task)

Task Action: [-- Select an Action - =] Go View History
State: Assigned Priority: 3 Assignees: jcooper (U) | Reassign...
Sub State: Assigned Creator: boeladmin Process: RPZ7_jazn
Conclusion: Created: Aug 15, 2005 7:11 AM Dwner: bpeladrmin
Expiration: Modified: Aug 15, 2005 7:11 AM Task Key:
Acquirer: Modifier: boeladmin Task Number: 10046

Pattern: Simple Warkflow Update Fislds...

Payload -
Update

Comments: _Add... Attachments: _ Changs..

= No attachments ta display.

Figure 46 Reassign-3

/3 Oracle BPEL Worklist - Microsoft Internet Explorer

Fle Edt View Favortes Tods Help i
@k -) - (%] [B] (|) sewch ¢ Favoites €2) (- 1L L JER i 3
Aderess [bt/ Aosalhost ST ntegyati - ior=Lonkuphtash|d-6 T7c38eR7de0 214342 1 DBbSeenit:-Ted3 s Lk
=
ORACLE User: joooper | Home | Logout
BPEL Worklist Search: | [ty & Group = [any = [any =l 5ol

Advanced Search

Home > Task Details (Task) > Assignees

|4ssignes | =hone it
jcooper (U} User3@dlsun4#54 us.oracle .com
Lonkup T e

wydaalst (U} w.v d.aalst@tr tue.nl

Reassign

Figure 47 Reassign-4

RP28 (Escalation)

Description: The ability of the workflow system to offer or allocate a work item to a
resource or group of resources other than those it has previously been offered or
allocated to in an attempt to expedite the completion of the work item.

Oracle BPEL PM supports this pattern directly by allowing escalation of a task to the
manager for further action. The escalation continues until a certain user, a certain level
(number of escalations to a 'manager’), or a certain title is reached. The escalation
feature works correctly if a task has been assigned to a specific user, however if a task
has been assigned to a role or a group, Oracle BPEL PM does not seem to know an
upper level where a task should be escalated to. Figure 48 shows the setting of the
escalation in the workflow wizard.

145

%'u Workflow Wizard - S5tep 11 of 11: Escalation policy

Specify the maximum number of times the task can be escalated and the title of a uzer
up toowhon the tagk can be ezcalated to. When either of the conditions is met, the
task will not be escalated further and will be marked as expired.

M awirmurn nurmber of escalations: |3

Title of last uzer: | j

Chief Executive Officer

CED

Chief Financial Officer

CFO

'ice President

P ey
Director -

Help < Back | et | Cancel

Figure 48 Escalation settings

RP29 (Deallocation)

Description: The ability of a resource (or group of resources) to relinquish a work item
which is allocated to it and make it available for allocation to another resource or group of
resources.

Oracle BPEL PM supports this pattern directly. If a work item has been assigned to a set
of users of a group, one of the users in the list can "acquire” the task. At anytime before
the task expires or before a user has updated the task, the user can "release” the task to
the set of users/group the task was originally assigned to. Figure 49 - Figure
51ldemonstrate how a work item can be released via the work list application.

2} Oracle BPEL Worklist - Microsoft Internet Explores

Fle Edit Wiew Favoites Tools Help &
Qo= - @ - [x] B 0| P semcn Flrraois) -l 0] - E B3
Agdress [hitp:localhos 700/ ntegration./worklistapp/T askList | Go | Links »
|
ORACLE User: joooper | Home | Lagaut

BPEL Worklist

Search: | [an =] [any =] [any El ﬂ

Advanced Search
+ Your request was processed suceessfully.

Home (All Tasks)

Hide Chart
m modiedvate | acuons | A Tocke chos
Status Count
AUQ 15, 2005 [oot an Acten — =
10048 Tasl 3 assigned wvdaalst (U) 7114 M Select an Action o Assigned 2
Aug 15,2005 Aug 15, 2005 Completed o
10049 Task 3 nssigned Supervisor (6) SR e - Select an Action -- E omplete:
— Select an Action - SRRk 0
Acquire
Expired [
Withdrawn [
Errored [
Infg Requested 0
Total I -

Figure 49 Release-1

146

2} Oracle BPEL Worklist - Microsoft Internet Explores

Fle Edit Wiew Favoites Tools Help &
Qo= - © - [x] (2] (0| P semcn Joraois €| -l 0] - R B
Agdress [] hitp-//localhost S700/integ T askDitalk Ytaskl d=637 80607 d0eB4c. 214842 105bdeal52b: Teof -] B G | Links ?
=
ORACLE User: joooper | Home | Logout
BPEL Worklist search: [[an = [amy =] [any = ﬂ

Advanced Search
7 Your request was processed successfully,

Home > Task Details (Task)

Task Action: [~ Select an Action - ~ View History
— Select an Action -
Eilcz';tt Priority: 3 Assignees: Supervisar (G) Reassign...
LT P ——— creator: boeladmin Process: RPZE_SWWAE
concl{iieleass Created: Aug 15, 2005 7:17 AM Owner: bpeladmin
Expir| Sfﬂl‘ffﬁ A Modified: Aug 15, 2005 7:17 AM Task Key:
Acquirer: lcooper Modifier: jcooper Task Number: 10049

Pattern: Simple Workflow with Auto Escalation Update Fislds...

payload -
Update

Comments: _Add... Attachments: _ Change.

= | No attachments to display.

Figure 50 Release-2

/3 Oracle BPEL Worklist - Microsoft Internet Explorer

Fle Edt View Favoites Toos Help -
Qo - © - [*] (2] (0| O seacn et &) 2 9] - JEHE B
Address [hitp:osalhost 3700/ integration/worklistappeT askList | Go | Links
|
ORACLE User: joooper | Home | Logaut

BPEL Worklist

Search: 2l = [any =] [any =l saf

Advanced Search
X Your reguest was not successful,

Home (All Tasks}

Hide Chart |
[vumber 4] we [erorwy | status | mssnce [EvEeten [vodfiedpate] mcuns | S Tasks chon
Status Count
hug 15, 2005 [goiact on Acton 2]
10048 Task 3 Assigned wvdaalst (U) v Select an Action Go Assianed 2
Aug 15, 2005 Aug 15, 2005 [ooic an Adien) e ®
10045 Task 3 wssigned Supervisor (6) SR — Select an Action omplete
— Select an Action Suspendsd ®
Reject
Accept Expired o
i — Withdrawn o
Escalate Errored o
Renew
Info Requested o
Total I -

Figure 51 Release-3

RP30 (Stateful Reallocation)

Description: The ability of a resource to allocate a work item to another resource without
loss of state data.

Any work item can be "reassigned” to a new set of users/group. If the user has updated a
task, after the reassignment the data provided by this user is visible to the new assignee,
i.e. the state data is not lost.

RP31 (Stateless Reallocation)
Description: The ability for a resource to reallocate a work item currently being executed
to another resource without retention of state.

147

Oracle BPEL PM does not allow task rollback, thus offering no support for this pattern.

RP32 (Suspension/Resumption)
Description: The ability for a resource to suspend and resume execution of a work item.

Oracle BPEL PM supports this pattern directly. "suspend" and "resume" are available
actions in the worklist application.

RP33 (Skip)

Description: The ability for a resource to skip a work item allocated to it and mark the
work item as complete.

Oracle BPEL PM supports this pattern directly. As such any work item can be
"withdrawn" by the task creator or the administrator. However, there is also possibility to
model a user-action "skip", which marks a work item as completed and passes the flow
of control to the subsequent task. Figure 52- Figure 54 visualize the "skip" and "withdraw"
actions.

@ switch
[Terminate

Please specify the set of oulcomes for the task Thiow

egda|, Qe\etel 7 Transtom

Name Display value | O User Task

DONE Done

Wit
sKp ﬂ Skip & whie L

| 5y Propenty Inspector ax

B E ™ S ()=

Help <gack [Hed> Cancel

Figure 52 Skip in workflow wizard

Zj Oracle BPEL Worklist - Microsoft Internet Explorer =[]
Fle Edit Wiew Favoites Tools Help &
@k~ () ﬂ E’I ;J /;]EEarch \;:/ Favores 4£7) - iz 8l - | I B3
Agdress [hitp:localhos 700/ ntegration./worklistapp/T askList | Go | Links »
|
ORACLE User: joooper | Home | Lagaut
BPEL Worklist Search: | [ty & Group = [any = [any = o

Advanced Search

Home (My & Group Tasks)

Show Chart
10049 Task 3 Expired Supervisor (5} Aug 15, 2005 7:20 AW Aug 15, 2005 7:20 AM Hone
10051 adhoc 3 Completed cooper (L) Aug 16, 2005 5:17 &AM None
10052 Taski 3 Completed cooper (L) Aug 16, 2005 5:4d &AM None
10053 Taskz 3 Completed cooper (L) Aug 16, 2005 5:46 &AM None
10054 Taski 3 Assigned jconper (U} Aug 16, 2005 5:58 &M [skip -

-~ Select an Action --
Le]

Figure 53 Skip in the work list application

148

2 Oracle BPEL Worklist - Miciosoft Internet Explorer _[&]x]

Fle Edit Wiew Favoites Tools Help o
N O T =
@k - () - (%] (2] |) sewch 57 Favaites) - d-UEE 3
Agdress [hitp:localhos 700/ ntegration./worklistapp/T askList | Go | Links »
|
ORACLE User: joooper | Home | Lagaut
BPEL Worklist search: | [My & Group =] [Anv =] [Assianed =] o
Advanced Search
Home (My & Group Tasks)
Hide chart
[umber +] wite | prioriey | status | nssignee [Eeiration nodifieapate] actons I orue tee chert]
Status Count
Aug 16, 2005
10056 Taskd 3 Assigned cooper (U) s — Select an Action - 7.
6110 AM Assigned 1
-- Select an Action -- Assianed
Completed . -
,,,,,,,,,,,,,,,,,,,,,, Suspended o
Expired H:
Withdrawn o
Errored o
Infg Requested 0
Total I

RP34 (Redo)
Description: The ability for a resource to redo a work item that has previously been
completed in a case.

Oracle BPEL PM offers no support for this pattern.

RP35 (Pre-Do)

Description: The ability for a resource to execute a work item ahead of the time that it has
been offered or allocated to resources working on a given case.

Oracle BPEL PM offers no support for this pattern.

RP36 (Commencement on Creation)

Description: The ability for a resource to commence execution on a work item as soon as

it is created.

Oracle BPEL PM offers no support for this pattern since a resource needs to "accept” or
"acquire" a work item from the worklist in order to start the execution.

RP37 (Commencement on Allocation)
Description: The ability to commence execution on a work item as soon as it is allocated
to a resource.

Oracle BPEL PM offers no support for this pattern since a resource needs to "accept” or
"acquire" a work item from the worklist in order to start the execution.

RP38 (Piled Execution)
Description: The ability of the workflow system to initiate the next instance of a workflow
task (perhaps in a different case) once the previous one has completed.

Oracle BPEL PM offers no support for this pattern.

RP39 (Chained Execution)

149

Description: The ability of the workflow engine to automatically start the next work item in
a case once the previous one has completed.

Although Oracle BPEL PM offers the "continue task" pattern which allows one workflow
to be continued with another workflow, the transition between the workflows is not
automatic and requires a work item to be selected from the worklist. Therefore, Oracle
BPEL PM offers no support for this pattern.

RP40 (Configurable Unallocated Work Item Visibility)
Description: The ability to configure the visibility of unallocated work items by workflow
participants.

Oracle BPEL PM offers no support for this pattern, since any user can see all unallocated
work items and there is no option to limit the visibility of unallocated items.

RP41 (Configurable Allocated Work Item Visibility)
Description: The ability to configure the visibility of allocated work items by work-flow
participants.

Oracle BPEL PM offers no support for this pattern, since any user can see all allocated
work items and there is no option to limit the visibility of allocated items.

RP42 (Simultaneous Execution)
Description: The ability for a resource to execute more than one work item
simultaneously.

Oracle BPEL PM supports this pattern partially by allowing a resource to work with
multiple browsers related to a single worklist, and thus enabling and executing several
work items simultaneously.

RP43 (Additional Resources)
Description: The ability for a given resource to request additional resources to assist in
the execution of a work item that they are currently undertaking.

Oracle BPEL PM supports this pattern directly. It offers an "adhoc" pattern which allows
assigning the task to any other user run-time and "request for more information” from
other users and have them submit information for tasks. Figure 55 - Figure 59 visualize
the rerouting of a task and the request for more information.

150

Oracle BPEL Worklist - Mi

soft Internet Explore:

Fle Edt Yiew Favoites Iook Help

=] x]

Qe=k - Q) - %] 2] ~(h|pﬁearch ¢ Favoites @‘@-i} o - JEE 3

Address [hitprAncalhost 5700 nteg T askDetalk

| &

kld=B37 8807 d0e84c7 30 2f 480 2% 341 06bf 303667238 Frad

ORACLE

BPEL Worklist

Home > Task Details {Adhoc)

S B e [Liks »

User: joooper | Home | Logout
search: | [Wy & Group =] [#ny] [Assigned =l 5ol

Advanced Search

Task Actio

: |-- Select an Action -- ~| Go

Sub State: Assigned
conclusion:
Expiration:
Acquirer:
Pattern: Adhoc Warkflow

Creator: bpeladmin
Created: Aug 16, 2005 6:16 AM
Modified: Aug 16, 2005 6:16 Ak
Modifier: bpeladmin

Route... View History

Process: RPA3_AW

Owner: bpeladmin
Task Key:
Task Number: 10056

Update Fislds...

Payload - [Hello, World!
Update

Comments: _Add.. Attachments: Change.

= | No attachments to display.

4
Figure 55 Reroute
% Oracle BPEL Worklist - Microsoft Internet Explorer —[a]x]
Ele B Yem Fowies Ik B ‘ [
Qo= - © - (%] B -{h|p5earch 5% Favares @‘ Rl LEd 3

Address IE hitp:Aocalhost 9700/ integrationworklistapp/ T ackRoutingProute T ask =lookupF outedtask|d=637c 982607 d0e84c: 214842, 105bf303645: -7fad

ORACLE

BPEL Worklist

Home > Task Details {Adhoc) > Routing

S e |l >

User: jcooper | Home | Logout
search; | [my & Group =] [any =] [Assigned | gl

Advanced Search

Route Task Lookup: TS|

W hverbeek (U)

Conclusion; [Accept -

No comments

Cormments;

Route

h.m.w verbesk@tm.tue.nl

Figure 56 Reroute -2

3 Oracle BPEL Worklist - Microsoft Internet Explorer

Fle Edt View Favoiss Toos Help

Address [hitp://lacalhost 700/ ntegration/worklistapp/ T askListTrul

Qoack - () - BRE) “d]|/o55arch <% Favaies @‘ - 2} o] -

S

ORACLE

BPEL Worklist

Home (My & Group Tasks)

Go | Links >

User: hverbeek | Home | Logout
search: [[my & Group =] [any =] [assigned & El

Advanced Search

Show Chart
|_jumber &1 mitle | Priority | status | ___ Assignee] Expiration Date Modified Date
10058 Adhoc 3 Assigned hverbeek (U}

Aug 16, 2005 6:22 AM [SEERR AN AR =]

Figure 57 Reroute-3

151

cle BPEL

Fle Edt Yiew Favoites Iook Help

Qe=k - Q) - %] 2] (b|pﬁearch ¢ Favoites @‘8-1}, o - JEE 3

Address [hitp:/ocalhost S700/inteqy T askDietals7task|d=637 0882607 d0s840%3A24Bd 2734 1 05bI 30365234 Tlad | Go |Lmks >
ORACLE User: hverbeek | Home | Logout
BPEL Worklist Search: | [ty & Group =] [any] [Assigned =] Go

Advanced Search

Home > Task Details {Adhoc)

Task Action: | -- Select an action -- ~| Go Route... | Request More Info... | View History |

Sub State: Creator: bpeladmin Process: RF43_AW
conclusion: Created: Aug 16, 2005 6:16 AM Owner: bpeladmin
Expiration: Modified: Aug 16, 2005 6:22 AM Task Key:

Acquirer: Modifier: bpeladrin Task Number: 10056

Pattern: Adhoc Workflow Update Fields...

Payload - [Hello, World!
Update

Comments: _Add... Attachments: _ Change.

[icooper] Mo comment = No attachments to display.

Figure 58 Request for more information 1

Oracle BPEL Wi

asoft Internet Explor

Fle Edt View Favoiss Toos Help

@Eazkvo- %] (2] (b|p95arch <7 Favoites @‘B-i}, m- B3

Address [hitpeAocalhost 5700 nteg questirfo?requestinfodotio 098e607d0eB4c: 248421 06bI20365: Trad | Go | Links »
ORACLE User: hverbeek | Harne | Logout
BPEL worklist search; | [my & Group =] [any =] [Assigned -] Go

Advanced Search

Home > Task Details {Adhoc) > Request More Information

Request More Information
From User: jcoope

Reapproval Needed:

[Tl me more [

Comments:

Request Info

Figure 59 Request for more information -2

152

Conclusions

The evaluation of Oracle BPEL PM from the control-flow, data and resource perspectives
is summarized in Table 1, Table 2 and Table 3 respectively. The evaluation shows that
Oracle BPEL PM supports the majority of control patterns, data patterns and resource

patterns.

Table 1 Support of Control-flow patterns in Oracle BPEL PM

Pattern Name Supported Remarks
(+: directly,
+/-: workaround;
-: not supported)
CFP1 | Sequence + by <sequence> or links
within <flow>
CFP2 | Parallel Split + by <flow>
CFP3 | Synchronization + by <flow>
CFP4 | Exclusive Choice + by <switch> or links
within <flow>
CFP5 | Simple Merge + by <switch> or links
within <flow>
CFP6 | Multi-Choice + by links within <flow>
CFP7 | Synchronizing Merge + by links within <flow>
CFP8 | Multi-Merge - not supported
CFP9 | Discriminator - not supported
CFP10 | Arbitrary Cycles - supports only structured
loop <while>
CFP11 | Implicit Termination + by default
CFP12 | MI without Synchronization + by <invoke> within
<while> loop
CFP13 | MI with a priori known design time + replication of activities
knowledge within <flow>
CFP14 | Ml with a priori known runtime + <flowN>
knowledge
CFP15 | MI with no a priori runtime knowledge +/- by <pick> in the <while>
loop
CFP16 | Deferred Choice + by <pick> construct
CFP17 | Interleaved Parallel Routing - supported by BPEL
spec, but not by
investigated version of
Oracle BPEL PM
CFP18 | Milestone +/- by <pick> in the <while>
loop
CFP19 | Cancel Activity +/- by messaging and fault
handlers
CFP20 | Cancel Case + by <terminate>

153

Table 2 Support for Data Patterns in Oracle BPEL PM

Nr Pattern name Support: Remarks
direct (+);
partial (+/-);
no support (-)
Data visibility
DP1 | Task Data +/- A task must be wrapped
into a scope
DP2 | Block Data - Not supported
DP3 | Scope Data + Directly supported by
<scope>
DP4 | Multiple Instance Data +/- Partial support dependents
on the type of the Ml task
DP5 | Case Data + Bound to outermost scope
in the process definition
DP6 | Folder Data - Not supported
DP7 | Workflow Data + Supported via deployment
descriptor properties
DP8 | Environment Data + Synchronous message
interaction <invoke>,
<receive>
Internal data interaction
DP9 | Data interaction — Task to Task + No data passing; data
elements shared between
tasks via access to globally
shared data
DP10 | Data interaction — Block Task to Sub- - Not supported
Workflow Decomposition
DP11 | Data interaction — Data interaction to - Not supported
Multiple Instance Task
DP12 | Data interaction — to Multiple Instance | +/- Not supported by all
Task variants of Ml tasks
DP13 | Data interaction — from Multiple +/- For non-directly supported
Instance Task MI task, a certain number
of instances should
complete before the data is
passed to the next task
DP14 | Data Interaction — Case to Case - Not supported
External data passing
DP15 | Data interaction — Task to Environment | + Directly supported by
— Push-oriented means inputVariable of
<invoke>
DP16 | Data interaction- Environment to Task | + Direct support via <invoke>
— Pull —=Oriented and <receive>
DP17 | Data interaction — Environment to Task | + Direct support via
— Push-Oriented <receive> and event
handlers
DP18 | Data interaction — Task to Environment | + Directly supported through
— Pull-oriented <receive> and <reply>
DP19 | Data interaction — Case to environment | - Not supported
— Push-oriented
DP20 | Data interaction — Environment to - Not supported

Case — Pull-oriented

154

DP21 | Data interaction — Environment to Not supported
Case- Push-oriented
DP22 | Data interaction — Case to Not supported
Environment — Pull-oriented
DP23 | Data interaction- Workflow to Not supported
Environment — Push-oriented
DP24 | Data interaction- Environment to Not supported
Workflow — Pull-oriented
DP25 | Data interaction — Environment to Not supported
Workflow — Push-Oriented
DP26 | Data interaction — Workflow to Not supported
Environment — Pull-oriented
Data transfers mechanisms
DP27 | Data passing by Value - Incoming Directly supported by the
attributes of <assign>
wizard
DP28 | Data passing by Value- Outgoing Directly supported by the
attributes of <assign>
wizard
DP29 | Data passing — Copy In/Copy Out Directly supported by
means of two <assign>
constructs
DP30 | Data passing by Reference - Unlocked No concurrency restrictions
for accessing global data
DP31 | Data passing by Reference- Locked The serializable scope
feature does not work
according to its semantics
DP32 | Data transformation - Input Directly supported by the
attributes of <assign>
wizard
DP33 | Data transformation - Output Directly supported by the
attributes of <assign>
wizard
Data-based routing
DP34 | Task precondition — Data existence Not supported
DP35 | Task Precondition — Data value Directly supported via
joinCondition evaluation
the status of links
DP36 | Task Postcondition — Data existence Not supported
DP37 | Task Postcondition — Data value Not supported
DP38 | Event-based Task Trigger Directly supported via
<receive> and event
handlers
DP39 | Data-based Task Trigger Not supported
DP40 | Data-based Routing Directly supported via links

and <switch>

155

Table 3 Support of Resource Patterns in Oracle BPEL PM

Nr Pattern name Support (+:direct; +/-:
partial; -: no support)

RP1 | Direct allocation +
RP2 | Role-based Allocation +
RP3 | Deferred Allocation +
RP4 | Authorization -
RP5 | Separation of Duties -
RP6 | Case Handling +
RP7 | Retain Familiar +
RP8 | Capability-based Allocation +
RP9 | History-based Allocation +/-
RP10 | Organizational Allocation +/-
RP11 | Automatic Execution +
RP12 | Distribution by Offer- Single Resource +
RP13 | Distribution by Offer- Multiple Resource +
RP14 | Distribution by Allocation- Single Resource +
RP15 | Random Allocation +/-
RP16 | Round Robin Allocation +/-
RP17 | Shortest Queue +/-
RP18 | Early Distribution -
RP19 | Distribution by Enablement +
RP20 | Late Distribution -
RP21 | Resource-Initiated Allocation -
RP22 | Resource-Initiated Execution — Allocated Work Item +
RP23 | Resource-Initiated Execution — Offered Work Item +
RP24 | System-Determined Work List Management -
RP25 | Resource-Determined Work List Management +
RP26 | Selection Autonomy +
RP27 | Delegation +
RP28 | Escalation +
RP29 | Deallocation +
RP30 | Stateful Reallocation +
RP31 | Stateless Reallocation -
RP32 | Suspension/ Resumption +
RP33 | Skip +
RP34 | Redo -
RP35 | Pre-do -
RP36 | Commencement on Creation -
RP37 | Commencement on Allocation -
RP38 | Piled Execution -
RP39 | Chained Execution -
RP40 | Configurable Unallocated Work Item Visibility -
RP41 | Configurable Allocated Work Item Visibility -
RP42 | Simultaneous Execution +
RP43 | Additional Resources +

156

Standardness and Completeness of Oracle BPEL PM

In addition to the availability of BPEL implementation, Oracle offers a set of additional
tool-specific features that allow more patterns to be supported than the original
BPEL4WS specification does. Among them the <flowN> construct allowing the creation
of multiple instances of a task at the run-time. Unfortunately, the semantics of this
construct is not clear. From the data perspective, Oracle allows performing basic
transformation on data and supporting data patterns 31 and 32. Originally, these patterns
are not supported by BPEL [1].

There are some inconsistencies in the implementation which were revealed during the
evaluation of Oracle BPEL PM:
- The specification of the seriazable scopes (variableAccessSerializable="yes")
does not ensure the exclusive access to the shared data.

157

Related work

In [11] Martin Vasko and Schahram Dustdar offer the results of evaluation of web
services workflow patterns in Collaxa. The majority of their results coincide with the ones
reported in this document. However, several remarks can be made:

- The authors claim the direct support for the workflow pattern Ml with
synchronization (all three variants, i.e. with a-priori design-time knowledge, a-
priori run-time knowledge, and no a-priori run-time knowledge), while offering the
solution only for the MI with synchronization with a-priori design-time knowledge.

- The canceling patterns (Cancel Activity and Cancel Case) are claimed to be
directly supported, while only the solution for the case cancellation is provided.

In [1] Petia Wohed, Wil van der Aalst, Marlon Dumas, and Artur ter Hofstede offer the
results of the evaluation of the BPEL4WS based on the workflow control and
communication patterns. Relating to the evaluation from the control-flow perspective, the
majority of the results of their evaluation coincide with the results reported in this
document. However, several remarks can be made:

- In[1] the pattern MI with a-priori run-time knowledge is not supported by BPEL,
while Oracle BPEL PM supports it directly by the Oracle specific <flowN>
construct;

- In[1] the pattern Interleaved Parallel Routing is partially supported, while the
suggested solution implemented in Oracle BPEL PM does not seem to work.

In contrast to the evaluations documented in [1] and [11], which focused only on the
control-flow perspective, the scope of this work has been extended also by the data and
resource perspectives. The work reported in this document is part of the Workflow
Pattern Initiative (cf. www.workflowpatterns.com). In the context of this initiative the
workflow control, data and resource patterns have been developed that concentrate on
the different perspectives of Process-Aware Information Systems [14].

158

Acknowledgements

The evaluation of Oracle BPEL PM has been performed with involvement of several
parties. | would like to thank Eric Verbeek for the direct involvement in the evaluation; Wil
van der Aalst, Marlon Dumas, Nick Russels, and Schahram Dustdar for the constructive
feedbacks they provided. Finally, | would like to thank Oracle-representatives David
Shaffer, Ravi Rangaswami and Bhagat Nainani for the provided information, their support
and collaboration in the evaluation of Oracle BPEL PM.

159

References

[1] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-Based
Analysis of BPELAWS. QUT Technical report, FIT-TR-2002-04, Queensland
University of Technology, Brisbane, 2002.

[2] M. Bernauer, G. Kramler, G. Kappel, W. Retschitzegger: Specification of
Interorganizational Workflows - A Comparison of Approaches. Proceeding of the 7th
World Multiconference on Systemics, Cybernetics and Informatics (SCI), Orlando,
USA, 2003.

[3] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Analysis of Web Services Composition Languages: The Case of BPEL4WS.
In I.Y. Song, S.W. Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International
Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes in
Computer Science, pages 200-215. Springer-Verlag, Berlin, 2003.

[4] W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Web Service Composition Languages: Old Wine in New Bottles?
In G. Chroust and C. Hofer, editors, Proceeding of the 29th EUROMICRO
Conference: New Waves in System Architecture, pages 298-305. IEEE Computer
Society, Los Alamitos, CA, 2003.

[5] J. Mendling, M. zur Muehlen, A. Price: Standards for Workflow Definition and
Execution. In: M. Dumas, A. ter Hofstede, W.M.P. van der Aalst: Process Aware
Information Systems, Wiley Publishing, to appear 2005.

[6] J. Mendling, J. Ziemann: EPK-Visualisierung von BPEL4AWS Prozessdefinitionen.
Accepted for the 7th Workshop Software-Reengineering (WSR 2005), Bad Honnef,
Germany, May 2005.

[7] 3. Mendling, M. Strembeck, G. Neumann: Extending BPEL4WS for Multiple
Instantiation. In: P. Dadam, M. Reichert (eds.): INFORMATIK 2004, Band 2,
Proceedings of the 34th Annual Meeting of German Informatics Society (Gl),
Workshop "Geschéftsprozessorientierte Architekturen" (GPA 2004), Ulm, Germany.
Vol. 51 of Lecture Notes in Informatics (LNI), pages 524-529, September 2004.

[8] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

[9] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns. Queensland University of Technology, Brisbane, December, 2004.
http://www.bpm.fit.qut.edu.au/projects/babel/docs/DataPatternsRevised.pdf

[10] N. Russell, A.H.M. ter Hofstede, D. Edmond, W.M.P. van der Aalst. Workflow
Resource Patterns, 2004, BETA Working Paper Series, WP 127, Eindhoven
University of Technology, Eindhoven.

160

[11] Vasko, M., Dustdar, S. An Analysis of Web services Workflow Patterns in Collaxa.
European Conference on Web services (ECOWS) 2004, 27 - 30 September 2004,
Erfurt, Germany, Springer LNCS.

[12] Oracle BPEL Process Manager provides SOA and Integration Support. Cover
pages hosted by OASIS. http://xml.coverpages.org/ni2004-06-30-a.html

[13] Oracle BPEL Process Manager (10.1.2) developers guide, appeared in June 29,
2005 http://download-uk.oracle.com/otndocs/products/bpel/bpeldev.pdf

[14] M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede. Process-Aware Information
Systems, 2005, Wiley.

[15] R. Shapiro. A comparison of XPDL, BPML and BPEL4WS (Version 1.4), 2002,
http://xml.coverpages.org/Shapiro-XPDL.pdf

161

