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I. Introduction to logistic systems 

In each economical system goods are moved from one place to another, sometimes 

with a break in a depot. These movements are triggered by a process of supply 

and demand. We call the physical movements, their monitoring and control: 

logistic processes. In each factory we find such processes but also between 

companies there are physical movements, sometimes over long distances. We 

call the logistic processes within companies internal logistic processes and 

between companies external logistic processes. The latter processes are often 

executed by specialized transport companies. We will emphasize in this paper 

the external logistic processes and therefore we will omit the adjective 

"external". 

There are several ways to describe logistic processes. First we consider them 

from the point of view of the shipments. A shipment is a sequence of transport 

actions on a lot of goods from its origin to its destination. We call it an 

atomic shipment if the lot may be considered as one parcel during the whole 

transport. In practise a shipment may consist of several different atomic 

shipments. To describe the transport actions we use a graph. Each node 

represents a state in the transport process of a shipment and each arc 

represents a state-transition. The graph may have cycles. We illustrate 

this for an atomic shipment: 

shipper 

t--E~-t inland 
'-----...---' 

terminal 

consignee 

t---3I-+ train I-~""'-+ terminal 

I-ofro .. i n 1a n d 

navigation 



-2-

The cycles in depot and terminal indicate that the lot may be removed. There 

may be more ship and terminal states of the lot is unloaded and reloaded during 

the voyage. In the example we only considered physical transport actions, how

ever there may also be non-physical actions like transfer of ownership of the 

lot. In principle each arc is triggered by some information and is producing 

some information. The triggering information is the control information and 

the produced information is an update of the status of the lot. 

The cargo may be of different types: 

- Bulk cargo, which may be divided into dry bulk like grains, ore or coal; 

liquids like oil and chemicals, and gases. Bulk cargo is not packed. 

- Break bulk cargo, which may be grouped by packing-form: bags, boxes, drums, 

pallets or specialities like cars. 

- Containers, which are packed in standard boxes, sometimes on a chassis. 

The equipment for external transports are trucks, trains, airplanes, deep 

sea vessels, coasters and vessels for inland navigation. For short distances 

on termimals and in depots one uses cranes, forklift trucks and special 

equipment like straddle carriers and conveyer belts. 

The activities of equipment may also be described by state-transition graphs. 

The performances of these types of equipment are very different. They are 

designed for efficient performing their own tasks, however due to their diffe

rences in spead and loading capacities, they cause queueing. Therefore 

transshipment points fulfil the role of buffers. The arrivals of means of 

transport at transshipment points may be considered very often as a pure 

random (Poisson) process. This causes large fluctuations in the need for 

equipment, personnel and storage capacities. 

Sometimes the destination of a lot is not known at the moment of departure. 

Then the lot will be stored somewhere in the transport chain until the owner 

or a new owner determines a destination. Inventory control is therefore one 

of the subprocesses in logistic processes. 
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If we consider logistic systems as a network of transport companies then 

we distinguish several flows. The main flow is the cargo flow. Connected to 

the flow we see a financial flow of payments for services of the transport 

companies as well as sales transactions. Another flow we may distinguish is 

the transfer of responsibility for the cargo. We will be interested in the 

information flow. As said above, each change of status is coupled with some 

information. The transport companies may be divided into the following 

categories: shippers, shipagents, forwarders, shipowners, stevedores, 

wharfinsers, brokers, trucking companies, depot-keepers, airline operators 

etc. The shipagents, forwarders and brokers are only dealing with information. 

Other organisations involved in the logistic processes are customs, banks, 

insurance companies and trade companies. They exchange information between 

each other. Besides the physical activities in logistic processes there is 

an operations management,which includes the control of the physical activities 

as well as the maintenance of transport equipment and information flows, and 

the tactical and strategic management. The first group includes: 

- Selection of the route of a lot by the shipper. (he takes into account the 

cost, the time and the reliability) 

- Clustering of lots over carriers (ships, trucks etc.) by forwarders and 

shipagents. 

Arranging of lots in a carrier or in a buffer (shed, yard etc.) by shipowner, 

trucker etc. or terminal operator. 

- Simultaneous moves of homogeneous objects, for instance empty containers or 

bulk cargo to match geographically distributed supply and demand. This is 

done by shipowners but also by shippers and brokers. 

- Routing of carriers that visit several locations to bring or fetch lots to 

a depot. 
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The last group includes the planning of capacities such as 

- size and composition of fleets of carriers 

- volume and location of sheds, yards and berths 

- manpower and terminal equipment 

and policies such as 

- route schemes 

- reorder schedules for inventories. 

For all of these managerial processes information from the physical processes 

are needed. 

In section 2 we give a survey of the theory of information systems. In section 

3 we sketch some examples of information systems for logistic processes. In 

section 4 we consider some combinatorial models for logistic decision problems. 

Section 5 is devoted to design theory for decision support systems. Finally in 

section 6 we consider a case of an inland navigation company where we illustrate 

the theory of section 6. 
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2. Survey of information systems theory 

Information systems are developed to play a role in some other system, 

sometimes called object system. 

We first describe formally what a system is. 

A system can be defined by a 4-tuple: 

<S, A, a, P > 

where 

s: state space, set of possible states of the system 

A: action space, set of possible actions excercised on the system from its 

environment 

R: response space, set of possible reactions of the system to its environment 

P: transition mechanism, the law of motion, according to which the system 

walks through its state space. 

We consider only discrete systems, which means that we assume that the number 

of state transitions in a finite time interval is finite. In the most general 

case the transition mechanism of a discrete system is given by a conditional 

probability: 

where 

- S is the state of n the system after the n-th transition 

- A is n the action after the n-th transition 

- T is the n time at which the n-th transition occurred. 

The function P expresses the probability the system state belongs to set 

BI , the respons to set B2 and the transition time to set B3 after the 

(n+l)-th transition given the state, action and transition time after the n-th 

transition. Note that a deterministic system is a special case where for some 

St r, t 

-P(Sn+l = s A Rn+J = r A Tn+l = t s = S A A - a A Tat) - I n n n 
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Hence for these systems we usually define the transition mechanism by a function 

P : S x A xlR" S x R x lR such that P(s, a, t) .. <s, r, t>. Often we are not 

interested in the transition times and then we may omit 

expressions above. 

T resp. in the 
n 

The walk through the state space of the system according to the excercised 

actions and transition mechanisme is called the process of the system. 

Such a description of a system as a (probabilistic) automaton is only con-

ceptually of interest, because in practise we cannot describe the 4 elements 

of a system. 

Both the object system and its information system can be defined by such 

4-tuples. 

object 
system 

The object system: <S) , 

with Al .. E) x II and 

the information system: 

AI' 

R ... 

information 
system 

R), p» 

E2 x 12 and 

<S2' A2, R2, P2> 

with A = 2 12 and R2 = II' Hence the interaction between both systems is given 

by the two sets II and 12 , 

Note that E) is the set impulses form the "outside world" of the object 

system and E2 its reactions to the outside world. Therefore the object 

system communicates both with an environment and its information system, 

which is expressed by the product forms for AI and RJ . 
An information system can be described from several view points. One way is 

to describe its tasks for the object system, i.e. a description of the 

functions it fulfils for the object system. Such a view of a system is called 

a functional or external specification. Another way is to describe the 
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internal structure of the information system, i.e. its architecture. We start 

with the first approach. 

The functions an information system fulfils for its object system are 

1. registration of relevant aspects of state transitions of its object system 

2. control of the state transitions of its object system. 

The registered information is stored into a database. This is the kernel 

of the information system. The database may be considered as a variable. 

A value of the variable at some moment is called a database state. The set 

of all possible values of the variable is called the database state space. 

In practise it is impossible to define this set by enumeration and therefore 

we define it intensionally by a database schema. There are several ways to 

define databases. A famous one is called the relational data model. A slightly 

different approach is given by so called semantic data models to which class 

the entity-relationship model belongs (cf. 5.3). 

The information system must record relevant aspects of the states of the 

object system. Therefore the database state space contains a "projection" 

of the state space of the object system, beside other information. By the 

design of an information system one of the main decisions is the choice of 

the relevant aspects of the states of the object system. For an existing 

object system there are already measurements defined, so there are "natural" 

sources of information. It is important to get the information as pure as 

possible, i.e. without aggregation or other non bijective transformations. 

From the natural sources one may try to extend the registration. A criterion 

is the amount of effort it costs to register the additional information. 

A complementary approach is to inventory the needs of information to control 

the object system. It is clear that only registration of aspects is useful 

if this information is used. 

Very often human beings take care of a large part of the control of the object 

system so they are part of the information system. The way they use information 
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to take decisions is often very difficult to find out and therefore designers 

of information systems try to define the aspects to register from the object 

system by means of interviewing personnel that belong or will belong to the 

information system. A better method is to design a model for the control 

of the object system and derive from this model the needed aspects of the 

state (transitions) of the object system. In practise one will use both 

methods. 

An other aspect of the registration-function of the information system is the 

way the information of the object system is obtained and manipulated. In 

principle there are two ways to get information from the object system: 

1. after each transition a complete new state (projection) is send to the 

information system 

2. after each transition only the changes in the state are send to the infor-

mation system. 

The first approach, which may be compared to making a movie of the process 

of the object system is sometimes used in situations where the (projected) 

state space of the object system is rather small, for instance where the 

object system is a machine. The information system is sampling the states 

of the object system usually at equidistant moments. This sampling is inde

pendent of the state transitions. This approach is in principle rather simple, 

however the amount of information to store may grow very rapidly and to such 

an extent that there is a need to an aggregation method to update some fixed 

set of variables that can be kept in the database and the source information must 

be deleted. One may consider this as a queue: the latest sample of the state 

space of the object system is the head of the queue and the oldest sample 

the tail. The queue has finite capacity and when it is full it will store 

a new sample after it has deleted the oldest one. The aggregate variables 

must be updated before the oldest sample is deleted. 

The second approach is the usual one in large information systems where the 
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object system is an organisation, i.e. a company, part of a company or group 

of companies. Of course this approach is more efficiently, both in transmission 

and storage of information. In principle there are three ways to register this 

data in the information system: 

1. Update the old image of the state of the object system, i.e. update the 

database state. Now only the image of the actual state of the object system 

is stored. 

2. Create a new database as a copy of the old one and the received 

transition information. Now the database is growing: as in the first 

approach. The only dif~erence is that the transmission of information 

is reduced. An aggregation technique is required. 

3. Keep an image of a complete old state of the object system and register 

only the state changes of the object system. Now the information system 

may reconstruct the actual state of the object system, so the system keeps 

the same information as with the second method, however it takes less 

storage capacity but more time to produce information. Because the set 

of updates is growing one need also a policy to reorganise the database. 

Usually one creates from time to time a new complete image and deletes 

the old one and all updates from the period before the new image of the 

object system state. 

There is a way to organize the second method with almost the same storage 

needs as the third method (cf. 5.3). 

A last aspect of the registration function of an information system we will 

consider are inconsistencies between the actual state of the object system 

and the most recent image in the database. One of the differences is caused 

by a possible time lag between the moment of a state transition in the object 

system and the moment of registration. Usually the registration takes place 

after the transition and the timelag may vary from hours to months. It some

times happens that a transition is registered before it happens: an example 
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is the registration of a job before the job is finished. A good solution 

to these problems is to register two moments: the time of state transition 

and the time of the registration. Another source of difference is the occur

rence of observation and transmission errors. Sometimes these errors may 

be discovered at the moment of registration, because one of the database con

straints would be offended if the update would be accepted, however in a lot 

of situations erroneous information is accepted and registered. Sometimes 

the errors are discovered later. Because control decisions may have been 

executed on basis of wrong information it is necessary to keep in the data 

base both the erroneous and assumed correct images of the states of the object 

system. In accounting systems this problem is "solved" by assuming the informa

tion systems records are a correct image of the object system process upto some 

moment in the history and all error corrections concerning the period before 

this moment that arrive after it, are considered as changes of the state of 

the object system at the moment of the arrival of the correction. Because 

in accounting systems all updates concern additions and subtractions and 

these operations commute this approach is feasible. However in other appli

cations this is not possible. 

Before we will consider the control function of an information system in 

more detail we will have a look inside it. 

automated 

Il'---~~-------------91 information 

system (a. 1. s.) 

(1) (2) 

human 

12'-------------~----~information 

system (h.i.s.) 
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The information system may be split up into an automated part (a.i.s.) and 

a human part (h.i.s.). The probabilistic behaviour of the information system 

as a whole is mainly due to the human part: (including the decision makers). 

The a.i.s. fulfils the following functions for the h.i.s.: 

1. registration of information of state transitions in the object system 

that is not received in computer readable form, 

2. reporting over the stored information, i.e. over the actual state and 

the history of the object system, 

3. analysis of the process of the object system to obtain information for 

the construction of (mathematical) models for the object system, 

4. decision support to personnel in the h.i.s. with the control the object 

system. 

The first two functions of the a.i.s. are classic. The reporting side contains 

all kind of operational reports like invoices, instructions etc. and general 

data base queries. The last two functions are more advanced. To control a 

system one has to know the set of feasible actions and the effect each action 

has. In a lot of decision situations (cf. 5.2) one needs a mathematical model 

to describe this action-effect relationship. The analysis-function is directed 

towards 

- identification of the mOdel, i.e. which model-structure can be used 

- determination of the parameters of the model, i.e. determination of the 

model-instance. 

The identification function is nowadays seldom incorporated in the a.i.s., 

although we may expect it will be in future. In a lot of situations the deter

mination function is incorporated. The decision support function of an a.i.s. 

fulfils the follOWing tasks: 

1. the decision maker is offering a proposal for a decision to the a.i.s. 

and the a.i.s. is calculating the consequences or effects of the deCision, 

2. the decision maker offers constraints and a criterion to the a.i.s. and 
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the system is generating optimal decisions, i.e. decisions that are feasible 

with respect to the constraints and with maximal criterion value, and 

as in 1 the effects of the decisions. 

Systems or subsystems that fulfil the decision support functions are called 

decision support systems (d.s.s.). Decision support systems are useful in 

case 

the decision situation occurs rather frequently i.e. from several times 

a day to several times a year, 

- the decision situation can he modelled and the parameters can be obtained 

from the registration part of the information system or from external 

sources. 

there are several constraints and criterions for the choice of a decision; 

tllese criterions may be conflicting and the decision maker needs to consider 

several alternatives. 

We conclude this section with some remarks on the architecture of automated 

information systems. The term architecture means both the structure of a 

system and the art of building it. We only touch the first point here. 

A.i.s. consist of hardware and software. Usually a.i.s. are constructed 

from existing hardware and software components. The hardware components are 

general purpose computers (micro, mini and mainframes), periferals like termi

nals, printers and disc drives, and communication equipment like local- and 

wide-area-networks. There is a trend to specialize the computers: large computers 

as database machines or file servers, and also large computers for number 

crunching, micro- and mini-computers for local data processing. Terminals 

are equipped with more intelligence to do a part of the work of the computer 

and they are often replaced by micro computers. The wide area communication 

networks are becoming very important. We may di.stinguish two different types: 

- circuit switching: between to points temporarily a connection is created 
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- packet switching: a message from one point to another is split up into 

small parcels and each parcel is individually routed through the network 

of nodes and at the end again assembled to the original message. 

Computers that are connected to each other by a network may be coupled directly 

or indirectly. A direct or real-time coupling means that the application 

on both computers are exchanging data at run time. Direct couplings can be 

realized by circuit switching and packet switching both. It depends on the 

frequences and volumes what method is to be prefered. In general communica

tion networks may use both methods in combination: between some nodes circuits 

are created and between others packets are switched. 

Indirect coupling is called message switching or electronic mail. One computer 

is preparing a file or message and send it to the mailbox of the other com

puter. This mailbox is part of the network. The other computer is reading 

its mailbox at a moment it is ready to do this. 

The software components of a.i.s. are standard components like operating 

systems, editors, dialog monitors and program generators (that generate code 

in high level programming languages like Cobol, Fortran and Pascal). 

To build on a.i.s. one has to develop programs using these software compo

nents. These programs are called application software; because it makes the 

components applicable to the special tasks of the information system. 
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3. Examples of functions of information systems 

The object systems for logistic systems are usually split up by the companies 

that act in these processes. Some companies, such as forwarders and brokers 

do not participate in the physcial handling of cargo. They only process infor

mation. In fact they only have an information system, controlling object 

systems outside their own company. 

3. 1. Registration and reporting 

In logistic systems we see several autonomous information systems that monitor 

and control only parts of the total logistic systems. Hence there i.s a lot 

of communication between these systems. In many situations the companies that 

participate in logistic systems have sophisticated a.i.s. for their own 

partial logistic systems. However the communications between these companies 

proceeds in primitive ways: often one computer is producing a listing that 

is sent by post to another company where it is manually re-entered into an 

a.i.s. In more "advanced" situations the sending computer is automatically 

generating a telex that is entered automatically into the receiving computer 

as a text file. Then personnel on the receiving side has only to correct 

or reformat the file with an editor. Better solutions are only possible if 

all parties in logistic processes accept standards for message exchange on 

the highest level of thp OSI-model (cf. Tanenbaum, (1981) ). Even if these 

standards would be available there will be a lot of work in adapting existing 

information systems to those standards. It would be very helpful if software 

tools were available with which database administrators or end-users could 

define communication between their database and the one from another company. 

Such communications are now organized by application software programmed 

with tools mentioned in section 2. 

What is needed is a facility to define the creation of a message if the data

base state satisfies a certain condition. The message will contain an update 
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of the database of the receiving information system. The condition may be 

defined by a view and the message as well. The condition may be translated 

as: the condition does not hold if the view is empty. 

We do not go into more detail on these tools here. The reason we spend some 

attention to it is because the registration function of a logistic information 

system needs it. Registration of the status of cargo and carriers is the 

primary function of these systems. 

The company or department that is handling the cargo is controlling and 

recording the status changes. Other companies often need this information also. 

Then the communication sketched above is needed. Often several companies are 

interested in the same status change. An electronic mail facility is very 

useful in such situations because setting up direct connections with a lot 

of different parties simultaneously is difficult in general and seldom 

necessary. What is said for the cargo holds more or less also for the carriers: 

stevedoring companies are interested to know the departure date of ships 

that will arrive at their terminals because they may use this information 

for their planning. 

Beside the monitoring of the cargo and the carriers the information systems 

exchange: orders, instructions and invoices for the handling of cargo or the 

use of carriers. These are produced by the reporting functions of the 

information systems. 

These two classes of functions belong to the registration and reporting 

functions of information systems. In the rest of this section we will 

give examples of the analysis and decision support functions. We remark 

that the most existing automated information systems nowadays are concerned 

with the first two functions only. 

From the analysis functions we consider only one example. 
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3. 2. Analysis of production norms for break bulk. 

During a (4 hour) shift a gang is handling several types of commodities. It 

is not registered how many time is spent to each commody type. How to obtain 

production norms from the total gang-time spent on the ships and the total 

tonnage per commodity type per ship? 

The model that may be used is a simple regression model: 

Yi: random variable indicating the total number of gang-hours spent on ship i 

Xij: total tonnage of commodity type j on ship i 

Aij: the production-time for one ton of type j on ship i, a random variable. 

In the model identification phase it was decided that we could express: 

A·· = n' (I + S·) 
1J J 1 

where 

nj: the norm for commodity type j per ton 

Si: random disturbance due to factors like the weather and the storage of the 

ship. 

These variables satisfy 

It is assumed that E(Si} , the mean of Si satisfies E(S.) = 0 and 
1 

the variance 02(Si) = c > 0 for all ships i. If X is the matrix with 

entries x .. then the estimate for production norms 
1J 

n = (XTX)-I XTy 

(n and yare vectors with components 

transpose of X). 

n. and 
1 

An (biased) estimate for 02 is: E{(Y. - ra.)2 I (E x .. fi.)2}/ k 
i 1 j J i 1J J 

where k is the number of ships in the database. 

is the 

If the parameter estimation is incorporated in the a.i.s. we have to 

avoid that xTx is singular. In practise this can only be the case if 

one ship has two or more commodity types on board that do not occur on 

any other registered ship. 
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We continue with two other examples of functions of information systems, 

namely decision support functions. The first example concerns the determination 

of shortest routes. It is usefull for forwarders to compute a route for a 

parcel but also for shipowners or trucking companies. 

3. 3. Decision support 

Suppose we want to compute the best routes between any pair of a finite 

set of nodes (subset of ')I). The "distance" between two nodes i and j 

is the cost, the time or the probability of failure of moving directly from 

i to j • If there does not exist such a direct link we assume the distance 

to be infinite in the first two cases or in the third case. It is of 

importance to incorporate this decision support function in an information 

system if the "distances" are changing from time to time. 

Let d(i,j) be the distance from i to J • Note that we do not assume 

d(i,j) = d(j,i). 

The algorithm is due to Floyd (cf. [Aho, Hopcroft and Ullman (1983)]) and 

is based on the dynamic programming technique. Let {J.2 •••• ,n} be the set 

of nodes. 

Let wO(i,j) := d(i,j) , which is ~ (or I in the third case) 

if there is no direct link from L to J • 

Define 

wk(i,j) - minimal route length to go from i to j without passing 

any node with node number greater than k. 

Clearly: w is the wanted function. 
n 

It is easy to verify by induction on k that wk satisfies the following 

functional equation: 

wk(i,j) = min {wk_1(i,j), wk_1(i,k) + wk_1(k.j)} 

in the first two cases. In the last case we have to replace + by 

multiplication. 
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The complexity of the algorithm is 0(n3). If we are only interested in the 

shortest distance between two points there is another algorithm due to 

Dijkstra (cf. Aho, Hopcroft & Ullman 1983) with complexity 0(n2
). 

The second example concerns the determination of the capacity of a buffer 

for objects, for instance containers, that arrive according to a Poisson 

process. 

Assume that the analysis function of an information system bas determined 

that the arrival rate of objects per time unit is A , and tbat the average 

residence time of the object in the buffer equals ~ • If two arrivals in 

disjoint time intervals are stochastically independent and if the probability 

of an arrival in an interval is 0(1) then we have Poisson arrivals and the 

probability p 
n 

of having (in the stationary phase of the system) 

objects in the buffer is: (cf. [Kleinrock (1975)J) 

_ pn 
P - =-r e-P 
n n. 

Hence we may compute 

where p 

- mean utilisation p 

- standard deviation of the utilisation Ip 

and we may choose a buffer capacity of 

p + zip 

n 

if we require the buffer can store objects in 95% of the arrivals. If we 

have chosen the buffer capacity to be b, we get: 
n _\ b 

P = c P e-P where c = L n • n! n=O Pn 

These examples show that building of automated information systems for 

logistic systems requires: 
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- Database theory to design the registration and report subsystem 

- Statistical theory to design the analysis subsystem 

- Operations research to design the decision support functions. Here we may 

distinguish combinatorial models as used in the shortest routes case and 

stochastic models as used in the last case. 
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4. Some combinatorial models for logistics 

In this section we consider some well+known combinatorial models and their 

algorithms, that are useful in decision support systems for logistics. 

We start with some general remarks. A combinatorial model is the translation 

of a decision situation into the optimization of some function f over a 

finite set S. So we are interested in 

v(f,S) := min {f(x) I x € S} 

and in some x* such that f(x*) = v(f,S). 

The models we will consider have very large sets S and therefore we need 

'good' algorithms to determine v(f,S) and x*. A 'good' algorithm is one 

that determines an optimal solution in polynomial time i.e. the computation 

time is O(p(n» if n is the size of the model-instance and p a poly-

nomial. Unfortunately for many combinatorial models that are relevant in 

practise no good algorithms are known and probably they do not exist. (These 

are the so called NP-complete problems (cf. Garey and Johnson (1979». For 

such problems one sometimes develops heuristics i.e. approximations that are 

often good, but not in general, that require only polynomial computation time. 

Another approach is to relax the problem by extending the set S such that 

the minimum in the relaxed problem is the same as in the original one and 

the computation is easier. This is sometimes done by dropping the restriction 

that S only contains integer points (i.e. points with integer coordinates). 

In this case a problem is often relaxed to a linear program. Therefore we 

will consider linear programs briefly. 

A lineair program is an optimization problem of the following form: 
n 

find the minimum of L 
j=l 

vectors x = (x 1' ••• xn) 

c.x. over all 
J J 

€ S where S is defined 
n 

by: S ={x I (V j E {J,2, •••• n} : x. ~ 0) A (Vi€{I, ••• m} L a .. x. • b.)} 
1. J j"l l.J J 

An element x of S is called extremal if and only if there do not exist 

y, z € Sand A E (0.1) such that 

x = A y + (l-A)Z 
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The properties we need are: 

a. the set S is convex, 

b. the minimum is attained in an extremal point of s, 

c. each extremal point x of S has at most m components that differ from 

zero. An extremal point is usually called a basic solution. 

There are several algorithms to solve linear programs, even in polynomial 

time. The most used algorithms are based on the simplex algorithm (not poly-

nomial), for which there are very fast and reliable implementations. They 

all search only basic solutions (cf. Gass (1969». 

Many combinatorial models can be formulated as integer linear programs, i.e. 

linear programs with as extra constraint on S 

4.1. Simultaneous transports 

x. is integer for all i. 
~ 

Consider a set of sources I - {I ••••• m} and a set of sinks J a {I, ••• , n} • 

They may represent sites on earth. At each source ~ there is a supply of 

cargo a. 
~ 

and at each sink j there is a demand for cargo b .• Further 
J 

there is a real valued cost function c over I x J ,where c(i,j) expresses 

the cost of shipping one unit of cargo from i to j . The problem is to 

decide on the cargo movements. 

First we consider the model: 

Let x .. be the amount of units to be shipped from i to j . Then the 
~J 

problem is 
m n 

minimize 2: 2: c .. x .. 
i-I j=l ~J ~J 

over the set S , defined by 

s = {x I (x .. ~ 0 V i € I A j € J)A 
~J 

(2: x.. ca. V i € I) A (l: x.. - b. V j € J)} 
j 1J ~ i 1J J 

This fits perfectly into the framework of a linear program. However the 

solution will be an integer solution. This is due to the fact that each 
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extremal solution of the problem correspondents to a bipartite graph without 

cycles. This graph is built from two sets of nodes: I and J and there 

is an arc between i E I and j E J if and only if x .. > O. To see that 
lJ 

an extremal solution does not allow cycles consider an example: 

Clearly there is a cycle (if we 
I J 

a 
1 

1 forget the directions). Hence we 

may change the solution 

2 
2 

xII" a - £ x23 .. d - e: 

3 3 x l2 
.. b + £ x32 .. e - £ 

x21 "c + £ x33 .. f + £ 

to obtain a new solution that satisfies the constraint, if 

< !min {a, b, ... , f} • However then 

x + s and x - e: are both solutions and 

x = !(x+s) + !(x-s) and is therefore not extremal. 

So each extremal solution corresponds to an undirected, a cyclic graph, which 

is a tree. This s a spanning forest of the (bipartite) graph. Hence the values 

x.. of a basic solution can be computed by additions and subtractions only. 
l) 

To verify this note that each node in a tree determines the value of the 

arc to its father-node given its own a or b value and the values of the 

arc's to its sons. So the terminal nodes determine directly their arc's 

and the other arc's are computed recursively. We will illustrate this by the 

example with x
32 

deleted. 

Hence x33 == a 3 

x 23 b) - a3 

x 21 == a2 - x23 

XII = b I - x21 

Hence we may use any linear programming algorithm to solve this problem with 

an integer solution. 
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The form of the matrix is I - {1,2} J = {I, 2, 3} 

4. 2. Transshipment 

.. b 
I 

Consider a set of locations each may have a demand or a supply of uniform 

objects. The decision to be made is to ship objects from one location to 

another to balance the differences. An important example is the transport 

planning for empty containers. Formally: 

minimize I: c .. x .. 
i,j 1J 1J 

over 5 {x I x .. ~ 0 A I: x' k - r~. - t. \'i,j E t} 
1J kEI 1 kEI 1 1 

where I lS the set of locations, c .. the cost of the movement of one 
1J 

object from i to j and t. the net stock (positive or negative). We 
1 

want a transshipment such that all resulting stocks are zero. Hence we assume 

r 
iEI 

t. - 0 • This problem can be transformed into the transportmodel dis-
1 

cussed above. This implies that if all t. are integers then the x .. are also 
1 1J 

integers. 

We show this transformation. 

Consider the transportmodel with I = J defined by 

minimize r c .. x .. 
. . lJ 1J 
1,J 

over 5'= {x I x .. ~ 0 A r x' k = t. + BAr Xkl.'· B Vi,j} 
1J kEI 1 1 kEI 

let B be sufficiently large to ensure that t. + B ~ 0 for all i E I 
1 

Hence we may take B .. I: max {O,t.}. 
iE! 1 

It is clear that xES' implies xES and therefore 

the solution of the transport problem is at least the solution of the trans-
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shipment problem. Also the opposite is true. To verify this note that in the 

transshipment problem we may choose x .. arbitrarily and therefore we may 
11 

choose x .. := 
1.1. B + k~I,k"i ~i 

Hence k~I ~i = B for all i and 

therefore 

So any xEs implies xEs' and therefore the solution of the transshipment 

model is at least the solution of the transport model. So they are the same. 

For transport and transshipment models there exist algorithms that are more 

efficient than the general linear programming algorithms. These algorithms 

exploit the special structure of these models {cf. Magnanti & Golden (1978». 

Note that these models require a distance function as parameter. Hence first 

we have to solve a shortest route problem. We note that there is a large 

class of combinatorial optimization models that can be approximated very 

well by linear programming. 

Models of the form 

minimize 

over S '" 

m n 
. Ll . i.. 1 

c .• x .• 
1.= J'" 1.J 1.J 

{x 

A ~ a .• 
J 1.J 

x .. E {O, J} A ~ x .. '" 
1J 1. 1J 

x .. ~ b.} 
1.J 1 

are called generalized linear assignment problems. Models of this form can 

be interpreted as: given m machines and n jobs, production capacity re-

quired by job J on machine i is a .. , the cost of production is c .. 
1.J 1.J 

and the total capacity of machine i is b. . It turns out that the relax-
1 

ation of this problem, obtained by deleting the restriction x •. E {O, I} has 
1J 

only few non-integer value in its solution. It holds that the number x •. 
1J 

of non-integer value x •. 
1J 

is less than or equal to m (see Benders & Van Nunen 

(1983». Often m is small compared to n and therefore livery small" 

compared to m. n, the number of variables. 

The next combinatorial models are solved by dynamic programming techniques. 
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4. 3. Lot size scheduling 

Suppose we have to deliver at equidistant moments in time a lot in some place 

over seas. We can of course ship each lot such that it is just in time for the 

delivery, however this might be very costly if the lots are small. Therefore 

it might be better to hire a depot over seas and ship large amounts from time 

to time to the depot. Of course now we have inventory cost, but the cost of 

shipping can be reduced. We assume inventory cost to be proportional to the 

inventory and each shipment has constant cost: K. 

There are of course several variations of this model, most of them can be 

treated in the same way. This model formulation is due to Wagner and Whiten 

(cf. Wagner 1975). 

Let ai' a2 ••. , an be the lots to deliver at moments 1,2, .•• , n. We make 

two important observations 

a. if there is enough in the depot to deliver for the next moment we do not 

ship cargo, because we may postpone this to the following moment and so 

we save at least the inventory cost of the planned shipment. 

b. it is only useful to ship partial sums of {ai' a
2

, •.. , an} 

i.e. ship for time point n: an or an + an+ 1 or an + an+! + an+2 etc. 

because other quantities make extra shipments necessary and therefore only 

create inventory cost. 

Let: So := 0, sn := S + a for n = I, 2, "', n n-! n 

and let S := {51' 52' "', snl. Note that S represents all the interesting 

inventory levels of the depot (according to b.) • 

Let v(s,n) be the minimal cost of operation if we have at moment n a 

cumulative inventory of s in the depot. (i.e. the sum of the shipments to 

the depot is s). It is required that s ~ sn-l (i.e. in the former 

periods we delivered the demands). 

According to observation a we get: (v(s,N+I) = 0 Ys E S 

v(s, n) h.(s-sn_l) + v(s, n+1), if 

= K + min 
9,~n 

v(s9,' n+l), if 

s ~ s n 

s .. s n-1 
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here h represents the inventory cost per unit. We assume inventory cost 

are paid over each period the cargo was totally or partially available in 

the depot. We give a numerical example: 

Let K = 100, h = I, N = 4 and 

a = ) 

s -

0 100 + 140 

20 100 + 60 

50 110 100 + IOl 
90 70 + 140 40 + 100 100 

100 80 + 60 50 + 10 10 

The arrows indicate the optimal decisions. 

4. 4. Optimal loading (knapsack problem) 

This model is a simple example of a loading problem however there is no poly-

nominal-time algorithm known to find an optimal solution. 

Suppose we have cargo units I, 2, ... , n • Each unit i needs storage 

capacity: a. and has a value: w. (~O), This value can be the selling price 
1 1 

of the cargo unit but also the penalty to pay if it is delivered too late. 

The decision to be made is which units will be shipped if the total shipping 

capacity equals b. 

Formally: 
n 

maximize .L
t 

x. 
J= J 

over S == { x I x. 
J 

w. 
J 

n 
€ {O, J} /I. j~1 x. a. ~ b } 

J J 

A useful algorithmisbased on dynamic programming: 

let 

v(i, z) be the maximal value we may ship if the free space left equals 

z and we may only consider i, i + I, ••• , n (because over the other units 
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we have already made a decision). 

Then we are interested in: v ( I. b) 

Note that v satisfies v (n+l, z) = 0 for all z 

v (i, z ) - max {v ( i + I. z), w. + v(i + I, z - a.)} 
1 1 

where the first term on the right side corresponds wit the decision not to 

ship unit i and the second term with the decision to ship it. 

If we assume a. to be integer than the parameter z may range over 
1 

{o, 1, 2, ••• n} • 

The computation time is 0 ( n b) • 

4. 5. Routing one carrier 

This model is known as the traveling salesman problem, There are locations 

1, 2, "" n and the distance to go from i to j is c ..• The decision to 
1J 

be made is the order in which the locations are visited, starting from and 

returning in location I. 

Formally the problem can be stated as: 

over 

minimize . 4EI x .. c .. 
10J 1J 1J 

the set: 

s = { x I x .. E {O,I} A ~ 
1J J 

VVc I A V ... 0 : r 
iEv 

(c .. = ~ if there is no direct link from i 
1J 

to j . 

x .. = 1 A r x .. .. I A 
1J i 1J 

.r x .. > I } 
JEr-v 1J , 

The last restriction says that no sub-tours are allowed: for all subsets V 

of I there must be at least one way out. If we would drop this last require-

ment we would have a special transportation problem! In fact this relaxation 

of the travelling salesman problem is often used in branch and bound 

algorithms. We will not describe an algorithm for this model because we 

consider a more general problem below. However we note that a good heuristic 

for the traveling salesman is obtained by starting with some route and then 

applying K opting (cf. Aho, Hofcroft & Ullman 1983). This technique is to 
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delete k connections of a route and trie to reconnect the loose ends to 

get a better tour. 

4.6. Simultaneous routing carriers from one depot 

This problem is well-known as the vehicle routing problem (cf. Christofides 

(1985)). It generalizes the problem mentioned in section 4.5. 

There is one depot and we have a set of m carriers each with its own 

capacity. Further we have a set of locations I - {I, 2, ••. f n}. At 

each location we have to pick up or to bring some cargo. 

The distance from location i to j is: d ..• The decisions to be made are the 
1J 

route of the carriers such that all locations are visited and the carriers return 

to the depot (code=o) where the criterion is to minimize the total travel distance. 

There may be difficult additional constraints like so called time windows: 

a site may be visited only within these windows. However if we assume at all 

sites cargo must be delivered or at all sites it must be picked up and we 

omit other constraints, than we may formulate this model as: 

Xijk if carrier k visits site J directly after site i 

o othen<lise 

Yik if site i is visited by carrier k 

:: 0 otherwise' 

bk = is the total capacity of carrier k 

a. >= 
1 

the amount of cargo at site i 

minimize r r xijk i,jEI c ij k=1 

over the set S where 

S =: {<x,y> I r y'k "" for i E I 
k 1. 

A r YOk :: mAt a. Yik ~ bk for all k 
k 1. 

A r x •• = r :: Yik for all i and k 
j 1Jk j X jik 

A V VelA V * 0: r j~I-V xijk ;ill. 1 for all k } iEV 

There is of cour3e no polynomial-time algorithm to compute the optimal 
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solution known. As mentioned above there are in practise several constraints 

that cannot be dealt with easily. There exists a simple algorithm due to 

Clark and Wright (cf. Magnanti & Golden (1978» which allows all kinds of 

constraints. Beside that it has a rather good performance, i.e. "often" a 

few parcels worse than an optimal solution. 

The algorithm is based on so called savings. 

We define 

S(i,j) = c(O,i) + c(O,j) - c(i,j) i,j locations 

These quantities give the saving of visiting i and j after each other 

in one tour instead of two: 

visiting i and j from ° and 
j i 

returning gives: 

2 c (O,i) + 2 c (O,j) 

o Combining gives: 

c (O,i) + c (i,j) + c (O,j) 

The difference is S(i,j). Now suppose we have already formed a route ending 

in ~ and another one ending in J . Let the length be respectively a and 

Then a combination of routes may be 

considered: 

not combining costs: a + b 

combination costs: a-c(O, J) + b-c(O,j) 

The difference is again S(i,j). Note that we must check the constraints 

verify if two routes can be combined for one carrier. A sketch of the 

algorithm: 

- create an empty list of route lists T. 

- compute all savings, put them on a list L. 

- while L not exhausted do 

- take the greatest element of L , let the points be (i, j) 

to 

look for routes in T that have i or j as one of their endpoints: 

+ 

b. 

c(i,j 
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- case 1: no such routes, then create a new route in T , consisting of 

(i,j) and delete it from L • 

- case 2: one route ends in, say i and no other ends in j ; then add 

j to the route of i if the capacity constraint allows this. 

Delete the pair (i,j) from L and in case j is added to the 

route delete all pairs on L with i and all pairs (k,j) 

where k is out route of i. If the capacity constraint is 

forced then start a new route as in case 1. 

- case 3: there are 2 routes; one ending in i. the other in j ; combine 

these two routes if the constraints allow this. Delete (i,j) from 

L • In case the combination is made, delete all pairs in L which 

involve i or j . If the constraint is forced. create a new 

route. 

{end} 

Note that it may occur that we get more tours than we have carriers. 

The combinatorial optimization models presented here are classic. In a 

real-world decision situation it seldom occurs that one of these models 

gives a good description of the decision situation. Usually there are 

more constraints on the solution and mostly the models presented here 

describe only a part of the situaion. Therefore in decision support systems 

we have to integrate several models, each describing only a part of the 

decision situation. Further we need more "robust" models, i.e. models that 

can handle many constraints of different forms. Finally we note that in 

decision support systems stochastic models play an important role too. 
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5. Design theory for decision support systems 

S. I. Introduction 

We use the term decision support system for a subsystem of an information system 

which task it is, to support decision makers. As an information system keeps track of 

the process of its object system a decision support system records information 

of possible futures of the object system. Usually the process history is 

recorded in more detail than the possible futures. As remarked in section 3 

a decision support system may assist the decision maker by calculating: 

- the effects of decisions or a decision rule (i.e. a function from state 

or state history to actions) generated by the decision maker 

- generate optimal decisions or rules and their effects with respect to a 

criterion given by the decision maker. 

In theory this can be done by simulating the process of the object system 

under various different policies, and then choosing the best one. 

In practise it is only necessary to simulate some aspects of the object 

system, because many facets of the process of the object system are not 

under influence of the decisions and have no influence on the effects of 

decisions. Simulation as a technique for decision support has some draw

backs: 

- It may require very much computing time to obtain the effects of only 

one decision (rule). 

It requires very detailed information of external influences in the 

future and also of internal mechanisms in the object system. 

The first point implies that simulation is seldom a feasible technique to 

generate optimal solutions and the second point indicates that the data 

obtained by simulations may be unreliable. Note that we do not reject 

simulation techniques for decision support systems. Sometimes it is the 

only available possibility, sometimes it may be used in combination with 
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other mathematical models. A decision support system is based on one or 

several models that represent aspects of the object system. We discuss them 

in section 5.2. In S.J we consider data modelling. Here we introduce a data 

model and a way to implement databases for decision support efficiently. In 

section 5.4 we consider the functions a decision support system has to ful

fil. Finally in section 5.5, we consider the design process for decision 

support systems. 

5.2. Decision models 

As the schema of a database, for registration of the process of an object 

system,represents the relevant aspects of the state space of the object 

system, so the decision model represents aspects of the whole object system 

that are relevant for the determination of the control. We note that the 

latter representation is usually less detailed and less self-evident than 

the first one. The decision model can be considered as a 4-tuple 

(cf. section 2) 

< S, A, R, P > 

where S represents the state space of the object system, A - E) x II 

where E represents the set of possible external influences, II the input 

of the decision makers, R - E2 x 12 the external and internal responses 

and P the transition mechanism of the object system. For simplicity we 

assume the time to be discrete, i.e. there is a time unit and all changes 

are considered to occur at these discrete moments only. 

Sometimes the decision model does not represent the dynamics of the object 

system explicitely. This is the case when the decision model describes: 

I. only one period for which decisions have to be taken, 

2. the stationary case, in which the "behaviour" of the object system is 

the same in each period. 

Sometimes these cases coincide because after one period the start-position 
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for the next period is the same as in the former 1n spite of the decisions 

made. 

When we speak of decision model we must distinguish model structur~,i.e. 

a description in terms of constants and variables or parameters, and model 

instance, a set of pairs: for each parameter a value. We note that parameters 

may have complex data structures; for instance a road network may be one 

parameter. We distinguish two types of parameters: 

- uncontrollable parameters, partly determined by external factors, such as 

the arrival rate of customers, partly determined by internal factors, such 

as production speed of a machine, 

- controllable parameters or decision variables. 

Given the model structure the model is determined by the parameter sets. The 

uncontrollable parameters are obtained from several resources: partly from 

the registration database by an analysis function, partly from external sources 

like statistical surveys and partly by guesses from the decision makers. 

Therefore there will be several different model instances that describe the 

object system under different assumptions. 

A decision rule or strategy assigns to an observed process-history of the 

object system an action. 

The set of observable process-histories 

HI = S x(II x 12)* 

(the set of all finite sequences of pairs of an action i) on the object 

system and an observation i2 of the object system starting with the begin 

state of the system). A decision rule d is a function: d € HI + I) • The 

set of all feasible decision rules is: D • The transition mechanism P may 

be deterministic or stochastic. Since the first one is a speciale case of the 

latter we only consider the latter. P assigns to each process-history a 

probability over S x R . When the system is at some moment in a state s € S , 
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it receives an action a E A and then it moves to some state Sl E Sand 

emits a response r E R • 

The set of process-histories is: 

H2 = S x (A x R x S )* 

(note that HI is a projection of HZ)' 

So P is a function: P E H
2

'" Q(S x R) where Q(S x R) is the set of 

probability distributions over S x R • So given a decision rule d and a 

starting state in S the system will "move" from one state to another. 

To compare different decision rules, the decision maker has a set F of 

evaluation functions. 

An evaluation function assigns to each observed process-history a real 

number, i.e. for all f E F : f E HI ... m 

In case of a stochastic transition mechanism the value of a evaluation 

function is computed as the mean-value of the evaluation function over H2 , 

Note that the transition mechanism P induces a probability measure over 

HZ and each hZ E HZ determines a hi E HI ' We denote this mean-value by 

:IE (f I d,u) 

where d is a decision rule and u a function that assigns to each un-

controllable parameter a value. 

A typical example of an evaluation function f is: 
N-I 

f(h) = n~O Sn gl(in,jn) + SNg2 (jn) 

where h = (s, ii' jl' "" jN) E HI ' in Ell' jn E l Z 

Here gl(in,jn) is the cost of excercising action in and observing jn in 

stage nand gZ(jn) the final return. and B a discount factor. Hence 

fen) represents the present value of the cash flow. 
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Usually evaluation functions are "easy" to compute. 

In most practical cases there are several different evaluation functions that 

oppose each other, i.e. 

f, g E F oppose each other if there exist d I , d2 E D 

such that E(f I d l , u) < E(f I d2 , u) and E(g 1: dl,u) ~E(g I d2, u) 

for some parameter function u. 

The decision maker is confronted with a multicriteria decision problem. This 

kind of problems is usually solved by chosing a linear combination of evaluation 

functions and consider this as criterion function which has to be optimized. 

Often we consider several linear combinations to define restrictions. Then we 

are looking for a decision rule d* E D such that 

E (~a. f. I d*. u) ~E(+a. f. I d, u) 
11111 1 

for all d E D satisfying 

E (~b .. f. I d, u) ~ c. where j E J and J some finite set 
1 J 1 1 J 

Here a., b .• and c. are real-valued coefficients and i is an index over F. 
1 J1. J 

The decision maker is usually "playing" with the coefficients. 

We call a combination of a decision rule d, a parameter function u, a set 

of evaluation function (mean-) values and a set of coefficients a scenario. 

Decision makers will design. compute and compare several scenario's. 

We reconsider two examples. 

In the simultaneous routing problem (cf. section 4) the state space is 

determined by 

- set of carriers, each with its capacity 

- set of sites, and their volume to receive or to ship 

- road network with the distances 

The state at some moment D the position of the carriers on the road network 

and their contents, and the positions of sites. The actions from the in forma-

tion system or decision maker are the assignments of successive locations for 

the carriers. They may be given in advance or during the trips. The reponse 
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to the information system may be a signal from each carrier if a location 

is reached or just one signal if the carrier has returned to the depot. 

The transition mechanism may be considered deterministic and is determined 

by parameters as the speed of each carrier and the loading times at each 

location. It might be more realistic to assume probability distributions as 

parameter values however they may be difficult to obtain. Replacing random 

variables by their mean-value is a standard way of modelling. For the computa

tion of the decision rule one may use these mean-values, to evaluate the 

effect of a decision rule one may simulate the process using the probability 

distributions. 

In the buffer capacity example there is only one decision to make the volume 

of the buffer. It is determined at the beginning of the process-history 

and kept fixed. The state space is described by the set of objects in the 

buffer and the time they stayed already in the buffer. The transition 

mechanisme is described by the Poisson parameter of the arrival process, the 

residence time distribution of the objects in the buffer. Instead of simulating 

the buffer process one could compute directly the (mean-)values of some impor

tant evaluation functions, such as the probability to have n objects in the 

buffer (provided n is not greater than the capacity). However the decision 

maker could be interested in other characteristics which cannot be computed 

analytically. 

In general we may state that a combination of simulation and analytical 

optimization models is a good approach: 

- a simulation model is used to evaluate (by means of evaluation functions) 

a decision rule. 

- an analytical optimization model, which might be a further simplification 

of the object system is used to determine a decision rule. 
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A more sophisticated coupling between a simulation and an optimization model 

arises when the simulation model computes parameter values that are used in 

the optimization model. This occurs when we have networksofsubmodels each 

representing some aspects of the object system. 

For example consider the routing problem again. Suppose that we have non-

deterministic loading times at the sites. 

The loading times at the sites are determined by the process at the site. 

This process is influenced by other carriers that need service at this site 

and by the number of equipment and staff available at the arrival time of 

the carrier. On the other hand if more carriers are sent to the same site 

because the capacity-demand of that site is large then the routing decision 

rule is influencing the handling at the site. (The routing may be arranged 

such that the carriers arrive at the same time or more spread over the 

planning period). 

Often it is impossible to take into account all these aspects in one model 

and therefore one decomposes the total object system in a network of sub-

models. 

Each submodel may require parameters from one or more submodels and may 

deliver parameters to other submodels. In fig. 5.1 there is a strong inter-

action between the submodels. Of course 

each model may have several evaluation 

functions that are not considered in 

the diagram. With these models we may 

fig. S. I 
associate functioBs f} for MI ' f2 

and f3 for M2 and f4 for M3 such that given the incoming parameters these 

functions compute the outgoing parameters. We are looking for parameter values 

such that 

Written in vector notation: we are looking for p = (PI' •.. , P4) such that 

f(p) = p (where F is a vector-valued function such that FJ(P) - f
J

(P2' P4) etc.). 
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Hence we are looking for a fixed point of F. Often the computations to 

evaluate the function F are very time consuming and therefore we can only 

compute these values for a few parameter vectors. (Note that in our example 

of carrier routing one of these models is a complicated optimization model). 

In practise we "solve" this problem by starting with a parameter vector pO) 

based on historical data and then we iterate a few times, i.e. we compute 

It is seldom possible to derive properties of the function F such as a 

contraction property that would imply convergence. However in practise we 

encounter often stable systems, i.e. for relatively small n: p(n) and 

(n-l ) 
p do not differ much. We will consider two special cases of these 

model networks: 

1. Detail hierarchy. Here a hierarchy of models is considered in which 

models at a higher level use parameters that are obtained from lower 

level models by some aggregation procedure. For instance a model at 

some level is using a probability distribution for a service time and 

~n a lower level model this distribution is computed with some parameters 

of the higher level, for instance the number of service units. It is 

usual that models at a lower level have a smaller time unit than models 

on higher levels. 

2. Decision hierarchy. Here we have different decision situations. For 

instance at the top level we have to decide on the capacities of equip-

ment or buffers and at the lower level we have to decide how to assign 

these capacities to the different tasks. To make the first decision we 

have to know the effects on the lower level. So we have to optimize the 

operations on the lowest level under the capacity conditions determined 

on the highest level. Another example of this situation is that at the 

highest level a price is fixed for some service and that in the lower 

level model the use of the service at this price is computed such that 
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at th~ highes~ level the service demand can be used to adapt the price to 

reach some goal. 

In many cases we use optimization models to determine some decision rule and 

simulation models to compute the effects of these decision rules. If it turns 

out that the rules obtained by the optimization models are acceptable after 

some experimentation, then one may restrict the use of the simulation models 

for incidental verifications. 

The approach sketched above is used frequently, usually without explicitly 

following the next steps: 

J. Describe in as much detail as possible the object systems model 1n terms 

of the 4-tuple <S, A, R, P> and a set of evaluation functions. 

2. Design for parts of this model submodels in the same terms in such a way 

that the evaluation functions and decision rules can be computed in 

acceptable time. 

3. Design or select algorithms for the computations of step 2. 

4. If the submodels have parameter dependencies such that they form a network 

of models,design an iteration algorithm to determine acceptable parameter 

values. 

Example of step 4: 

d := dO {dO is the start decision rule} 

sim (d, p, r) 

Po := inf ; {inf is some "verly large" value} 

while IIPo - p II >E.II P II do 

begin 

p = p o 
optim (p, d) ; 

sim (d, p, r) ; 

end 
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Here s~m is simulation algorithm that computes a parameter p and an effect 

r , given a decision rule r. This parameter p is used in an optimization 

algorithm 'optim' to determine a new decision rule d. 

This approach results in a decision support system that may compute very 

good decision rules under the assumptions of all the submodels. In practise 

it frequently occurs that the environment of a decision support system, i.e. 

the object system is changing. In such a case there is a chance that the 

model assumptions do not hold anymore. Then one may adapt the models which 

means that the algorithm and therefore the programs have to be adapted, which 

may be costly (time and money) and dangerous. There are examples where the 

system is not adapted but where a shell is built around the system to translate 

the advised decision rules of the decision support system into feasible 

actions for the object system. 

Another approach is to disregard the optimality of decision rules to gain 

robustness for changes in the object system. In this case the only goal is 

to let the system consider more alternatives than the decision maker itself 

could consider in the same time. In section 5.4 we return to this subject. 

5.3. Databases for decision support 

In this section we consider a functional datamodel to describe object 

systems and the parameters of decision models. The choice for a functional 

data model is based on the experience that it is very adequate to model 

real-world systems and it has a nice graphical representation. On the 

other hand it can be implemented like a network database which can be 

very efficient. Our choice is not very important because it is easy to 

transform a functional database schema into a relational database schema 

and vice versa. (cf. Tsichritsiz and Lochovsky (1984». 
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In decision support systems we need to store several different scenario's. 

We will consider each scenario as a database state and this means that we 

have to store several different database states. However these states do not 

differ very much and therefore we are looking for an efficient implementation. 

We start with some formal definitions. 

def. J. A functional database schema is a 5-tuple 

< C , F, D • R. v> 

Example 

where: 

- C is a finite set of category indices 

- F is a finite set of function class indices 

- D is a function, D E F ..... C and it determines for each function 

class a category called the domain category 

- R is a function, REF..... C • it determines for each function 

class a category, called the range category 

- V is a set-valued function, with domain C • For each c E C 

V(c) is the set of representations of all possible objects that 

belong to category c. 

Consider the transport company with the simultaneous routing problem 

1 13 

capacity distance 

quantity 

5 

fig. 5.2 
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All the category indices are written in a rectangle, all function class indices 

are written along the directed arcs. The functions D and R are represented 

by the arcs: the origin is the D-value, the destination the R-value. The 

function V is not defined yet, however it is easy to define some coding for 

the objects belonging to some category, for instance capacity, distance. and . 
quantity may be coded by positive reals, carrier, driver and site by character 

strings, routes by a positive integer or by the combination of the codes of 

carrier, driver and day if this combination uniquely determines the route. 

(Note that we have in the latter case a constraint that says that the value 

of the function with index 2 is equal to the first element of the code for 

the route. Constraints will be discussed below). 

A functional data model is related to an entity-relationship model, however 

in the functional data model we do not distinguish entitie~ relationships and 

attributes: we call them all categories. 

A functional data model can be considered as a semantic data model if we use 

verbs as names for function classes. 

If we call, for instance, functions and 2: tlhas" and "is made by" 

respectively, then we may read this part of the diagram as tlroute ••• is made 

by carrier ••• that has capacity ••• ". 

We continue the definition of the data base state space: 

def. 2. For data base schema < C, F. D, R, V > we define 

- e := {c 1 c 18 a set-valued function A dom(c) = C A 

Ir/ i € C c(i) c V(i)} 

Ii {f I f is a function-valued function A dom(f) = F A 

Ir/ j € F f(j) € V(D(j» ~ V(R(j»} 

- the database state space is called S, 

S := {<c, f> I c € C A f € r A Ir/j € F 

dom(f(j» c c(D(j» A 

rng(f(jj' c c(R(j)}} 
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the elements of S are called database states. 

(Note that X ~ Y 1S the set of all possibly partial functions. whose 

range is subset of Y. Note further that dom and rng assign to a 

function its domain or its range). 

Returning to our example we may interpret the diagram also as a representation 

of a database state: each rectangle represents the set of objects that belong 

to that category in that state and each arc represents a function between two 

of these sets. The function classes 11 and 12 represent the begin and end 

site of a road respectively. 13 the distance of the road. The function class 

5 indicates the order in which the sites are visited. The other function 

classes are self-evident. 

Now we have defined the unrestriced state space. However there may be several 

restrictions a correct database state has to fulfil, such as 

- a function from one category to another must be total 

- a function must be a surjection 

- a function must be an injection 

- for a category one or more total functions with this category as domain 

determine uniquely the objects of the category, i.e. if two objects in the 

category state have under these functions the same images then they are 

identical (This is a key-constraint). 

In general we may define restrictions with expressions that represent pre

dicates such as in our example: 

V <c, f> E S: V t E c (route) 

(L r E c (route segment): f 4 (r) = l - f IO ·f6 (r» ~ fl .f2 (£» 

(Note that f4 means the function f(4) and f 10 .f
6 

means function compo

sition). 
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This restriction says that for each (partial) route the total load does not 

exceed the capacity of the carrier. 

In general we define: 

def. 3. Let < C, F, D, R, V> be a database schema with state space S. 

Further let P be a predicate over S. Then the feasible 

state space FS is: 

FS := {s e: s pes) } 

Note that P is the conjunct of all constraints on the database states. 

To implement a database according to a functional database schema there are 

several possibilities: 

I. one may transform it to a relation database schema: 

- for each category that is the domain of some function class define a 

relation scheme (with the same name); 

- for each function class with this category as domain define an attribute, 

with name equal to the range category of the function class; 

- define one key-attribute to represent the element of the category itself; 

if there is a key-constraint then we may skip this attribute. 

2. one may implement it as a network directly: 

- for each category we define a file with: a field to represent the 

objects of the category (the type is given by the function V), and 

for each function for which is a domain category we define a pointer 

to the corresponding file of the range category. 

- one may add indices like b-trees on the category files to get fast 

access to the categories 

- one may add per function class two pointers, one in the range-category 

file and one in the domain-category file to implement the inverse 

functions. Consider a function class with domain category A and 

range category B. Then we have for A and B a file with the 

structure of fig. 5.3. 
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Note that we assume an ordering ~n the inverse image of each element of 

B • This ordering may coincide with the order in which they were created. 

A B 

key pointer pointer key pointer 

for to to next A for to first A 

object B with same B object pointing to it 

hg. 5.3 

3. one may transform the functional database schema into DBTG-schema. 

We choose the second option to continue our discussion. As stated before 

in decision support systems we have to store several "images" of the object 

systems future each of which can be considered as a database state. Often 

these images do not differ very much, i. e. given two database states 

s = < c,f > f H = < e,f > their difference, defined by 

des,s) : == .. r 
~€C. 

1 
l: 

j€F. 
~ 

* (c(i) ~ c(i» + 

# (f (j) ~ t (j » , 
1S small compared to c~c. # (c(i» • 

1 

(Note that A ~ B = (A"'" B) U (B"'" A) and a function like f (j) can be 

considered as a set of pairs). 

This situation does not only arise in decision support systems but also in 

databases for process registration where not only the actual state of the 

object system but also the history of the process must be stored. 

There are at least two methods to deal with this problem. First of all we may 

consider the different states at the level of the schema. This means that we 

bring "version" or "time" as category into the schema. We call the schema 

we obtain in this way, the historical schema with respect to the original 

one. We consider one way to create such a historical schema. Consider a part 

of a schema, consisting of categories A and B and a function class j 

from A to B. We add to the scheme for each function class j a new 
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category J and one for all, called Time. We define function classes as 

indicated in fig. 5.4. 

(part of) original schema 

(part of) its transformation into the 

historical schema 

For the representation of Time we may use nonnegative integers and we have to 

require 

V jl' j2 € c(J) 

( f 3 (j I) = f 3 (j 2) 1\ f I (j I) = f J (j 2»" f 2 (j I) - f 2 (j 2) 

The relationship between the two schemas is expressed by: 

if for the original schema in the state at time t holds 

f.(a) = b for some a E c(A) and b € c(B) 
J 

then we have for the state of the historical database at some time larger 

or equal to t: 

3 i E c(J) : fl(i) = a 1\ f 2(i) = b 1\ f 3(i) ~ t 

1\ (Vi I E c (J) : (f I (i ') D a 1\ f 2 (i ') ,. b)

«3(i') < f 3(i) v f 3(i') > t» 

Note that we do not express in this way if an object insome category is in a 

state or not. We consider an object "inactive" at some moment if it is not 

connected to other objects, i.e. is not occuring in the domain or range of 

some function at that moment. (There are other solutions too). 

Note further that def. 2 implies that no deletion of category elements that 

were active at some moment are allowed. For retrieval purposes it is 

attractive to implement the inverse of function I, in the example of fig. 5.4, 

since then we can retrieve the element of B by giving an element of a and 

the time and we only have to follow pointer chains. 
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The second method we will consider is to implement the versions only on the 

level of the database state space, which means that we do not introduce 

special categories and function classes but that we extend the state space 

by a time set: 

def. 4. (Recall the notations of def. 2) 

- He :- {c I c ~s a set-valued function A 

dam (c) = exT 1\ 'I i € CAt € T 

- HF := {f I f is a function-valued function A 

dom (f) - F x T A ('I <j, t> € F x T 

f(j.t) € V(D(;) -t V(R(j»} 

- the process-space of the database PS is: 

PS : = {<c. f> I c € HC A f ( HF" ('I <j ,t> € F x T : 

c(i,t) C V(i)} 

dam (f(j,t) c c(D(j),t) 1\ rng(f(j,t»c c(R(j),t) 1\ 

('I i E C V t 1 ' t 2 € T: t I < t 2 -t C (i , t 1) c: c (i , t 2 )} } 

- the space of histories upto t HS(t) is: 

HS (t) := {<~,f> I 3<c,f> € PS c and f are the 

restrictions of c and f to the domains 

C x {O, I, ••• , d and F x {O, 1, ••• , t} re sp } 

(Note that we assume here T = :N). 

In an implementation we have to implement elements of HS(t) efficiently: 

For each category we define a file with a field for the key and for each 

function for which the category is the domain. we have a pointer to a 

file per function. Each of these function files has three fields: one 

for the time or version, one for a pointer to the range cateBory and 

one to a next record in the "history chain" of the same file. This last 

pointer points to the record which 'contains' the time of the next 

change and the pointer to the new value in the range category file. 

Note that this construction is implemented in principle in the same way as 
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the one obtained by the historical schema approach, if backpointering is 

applied there. 

Note that we store a function of time by only storing the jumps of its 

graph. 

If a function is at some time not defined then the pointer to the range 

category file is nil. 

We illustrate this with an example, see figs. 5.3 and 5.4: 

A J B 

key t1me p01nter time pointer pointer ~ey time 

al 10 10 I' bl 9 

~ 
~ 

a2 1 1 1 1 

;2 
.b2 12 

a3 ...... 15 -" 12 " ....... .b3 12 

13 I ..-
~b4 10 L 

15 \. i ~b5 17 

"-- litiS '\ / V 
17 cl <' 

fig. 5.5 

Note that we include in each category file a field for the time the record 

was created. 

We conclude with some remarks: 

- the term'pointer'may refer to a physical pointer, indicating an address, 

but to a logical pointer, indicating a key value as well. 

- it would be desirable if database management systems would have one of the 

following facilities to maintain several versions: or a facility to create 

from a given schema its historical schema, or to create from a given schema 

directly the datastructure for history tracking. 

- instead of one "version" for the whole database schema one could consider 

given parts of the schema its own "version" administration. An advantage is 
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that these versions are smaller which may save space. 

5.4. Functions of decision support systems 

In a decision support system we have one decision model structure with 

several instances. Each instance is part of a scenario. We describe the 

structure of the scenario's by a database schema and so each scenario is 

represented by a database state. A scenario consists of 4 groups of data: 

- uncontrollable parameter values 

- decision rules 

- (mean-)values of evaluation functions 

- coefficients (to construct restrictions and a criterion from evaluation 

functions) 

One group of functions of a decision support system is meant for handling these 

data. We call them the manipulator functions. 

Manipulator functions. 

These functions allow the decision maker to: 

- Update manually uncontrollable parameters-

- Load automatically uncontrollable parameters from other databases; 

- Update manually decision rules (including the insertion of a decision rule 

created by the decision maker and the changing of a decision rule generated 

by the system); 

- Update of coefficients; 

- Report data from one or several different scenario's. The report functions 

must include general retrieval as simple, user defined computations. It is 

important that several scenario's can be compared. If scenario's are only 

partly defined. because some evaluations are not computed or a decision rule 

is not even defined, the report function must allow to report over the 

defined parts. 

Graphical representation of reports is very desirable. 
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So the manipulator contains all functions to update and retrieve the 

problem data. 

The second group of functions is concerned with the computation of 

evaluations • 

Evaluator functions 

Given the uncontrollable parameters and a decision rule the effects 

are calculated. Sometimes these evaluations are very Simple, for instance 

the length of a route in a vehicle routing model, but they may be very 

time consuming, for instance in case of a process simulation in a queuing 

model. Often there are several different evaluation functions defined. 

The third group of functions is concerned with the automatic generation 

of decision rules or actions. 

Generator functions 

Given the uncontrollable parameters and eventually a part of decision 

parameters. and a criterion function (defined by evaluation functions) 

the system must determine actions or decision rules that are "good" 

with respect to the criterion. Optimization is often intractable and 

therefore one may choose one of two ways: 

a. An approximation of the model by a model that is tractable. The 

optimal actions for the approximated model are translated to actions 

for the original model and may loose their optimality property. 

b. A brute force enumeration method is used to generate some decisions. 

In general we are not conSidering all possibilities and therefore 

we many not find optimal decision rules. Often heuristics are used 

to control the generation process, i.e. to reduce the number of 
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decisions to be considered. 

Depth first and breadth first search methodes belong to this class. 

The fourth group of functions is concerned with learning aspects. 

}daptor functions 

These functions are used to derive knowledge from scenario's. The comparisons 

between scenario's and their realization, which is also a form pf learning, 

is in our set-up a part of the analysis function of an information system. 

The knowledge that can be obtained is: 

- Quality characteristics: by evaluation of a set of scenario's that 

are accepted by the decision makers, characteristics may be computed 

and may be used to update distributions of these characteristics. 

For instance in route planning we may compute the integral of the 

tonnage over de route or the ratio of the total tonnage to be shipped 

and the number of carriers we need to do it. 

Such characteristics may be used by the generator to accept or reject 

an alternative. 

- Rules of thumb for the searching of alternatives, such as "the farest 

locations first". Such rules may be found in accepted scenario's 

and used afterwards by the generator. 

Finally there is a group of functions to control the des. 

Control fUnctions 

This group consists of functions for the creating and updating of the 

meta data: 

- database schema 

- evaluation fUnctions 

- generator. 
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And further it contains the dialog-functions to activate the functions 

of the other groups. 

A large class of dss for planning purposes can be formulated as a dynamic 

programming model. In the next section we will see an example of this 

formulation. Here we give a general formulation and sketch possibilities 

for the generator. (cf. Denardo (1982». 

<S, A, C, e, T> 

S (free) database state space (cf. 6.3) 

A action space, set of possible updates 

C set of constraints over S 

e evaluation function, used as criterion 

T state transisiton mechanism 

TESxA-+S 

so T describes the possible updates 

The optimal value function v satisfies the following equation: 

v(s, B) = max {e(s). max {v(T(s, a), S-....{a}) 

'<Ie EC: dT(s, a» AaE a}}, s E S, BcA. 

Hence if we stop we get e(s) and if we continue we get the best value 

that belongs to an updated state. Note that the evaluation function e 

must be defined for all states. This means for route planning that we have 

to evaluate unfinished routes also, for instance by a penalty. 

If A is finite then the recursion terminates, however in general it is 

not feasible to use a straight forward dynamic programming algorithm because 

the size of s is too large. 

Then we may base our generator on a relaxed dynamic programming model by 
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mapping the state and action spaces to sets with lower cardinality. 

Or we may use a tree search method that searches a tree that starts in 

(sO, A), the starting state and the whole action space. 

An example of such a tree search method is the following: 

- reserve space for k + 21 states; the k places are to store the best 

states so far and the 21 places are to store two levels of the tree. 

- Start with the root (sQ, A) and generate sons. Keep the best , sons 

(so we need only 1 places). 

For each t states on a level i we search sons and we keep the best 

1 sons of all 1 states stored in level i 

- Each time we find a record, i.e. a state s with value e(s) higher 

than all the state values in the k-state places then we replace a state 

with lowest e(s) by this state. 

As long as improvements are found the generator continues, and if no improve

ment is possible it stops. Then the decision maker may decide how to proceed 

for instance by starting in one of the "record" states or by continuation 

with a state with a lower value. 

- In the search process rules may be used; they can be of the form: 

if <some condition> then update <some action>. 

Generators of this kind are very robust, which means that they can be used 

in a wide class of decision situations so if the object system changes we 

do not have to change our generator but only some constraints in C or 

the database schema. Robustness conflicts sometimes with efficiency. How

ever dss that only searches more alternatives than a decision maker in 

the same time are already helpfull. For this kind of heuristic approaches 

we refer to Pearl (198 ). 
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5. 5. Development of decision support systems 

Traditionally decision support systems were developed by operations research 

specialists, who were focussed on mathematial models and optimization. 

Because the decision situation is often too complex to describe in one 

mathematical model these specialists were inclined to neglect all kind of 

details to fit reality into their models. Therefore decision support systems 

were often not used in the way they were designed for. Often decision support 

systems were only used as games to be played by decision makers to learn 

about the decision process. 

The development of a decision support system has to start with a very detailed 

analysis of the decision situation. In this phase the analyst has to look for 

all the information from the registration subsystem that can be useful for the 

decision making and he has to define the set of possible actions and decision 

rules, without bothering about the way these decision (rule)s are obtained. 

The structure of scenario's has to be defined in this phase. We call it the 

decision analysis phase. Then two different activities may be started in 

parallel: 

- design of the manipulator functions 

- development of mathematical models. 

The manipulator can be designed along the usual lines of information system 

development. It can be tested by the decision makers even if no part of the 

generator is implemented. 

The parallel process of construction of mathematical models is in fact the 

development of the analysis function of the information system. The algorithms 

for the models have to be tested by real-world data or simulations. If the 

manipulator is available at the time of testing of the models it can be used 

as a prototype vehicle. 
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If the models are accepted the generator can be implemented in the decision 

support system. If the system is in the phase of user-tests the development 

of the adaptor can be started. 

In fig. 6.6 we summarize the phases: 

decision analysis 

deSi~del 
manipulator development 

testing of algorithms 

+ design of 

g':rat~r 
user f..sung 

deS1gn of 
adaptor 

fig. 5.6 
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6. Case: Inland navigation companies 

6.1 Company 

The dss we shall i~scuss is a concise version of a really existing system. 

The dss is in the first place an instrument of the operational management 

not of the strategic management. 

This dss has been developed for an inland navigation company that is trans

porting bulk cargo by means of a combination of floating carriers pushed 

by a so called pusher tug. The company owns ca. eighty carriers, four great 

pusher tugs and some special pusher tubs meant for use in the ports only. 

Each great pusher tug is allowed to handle at most four carriers (nowadays 

the official number is six). 

The working area of the company covers the Rhine and its branches, the water

routes to Antwerpen and Amsterdam and the port of Rotterdam. 

For each tranport the company receives a separate order not long before 

the starting time. This means that the planning of the shiproutes has to 

be realised in a short time. The dss which we shall discuss is specially 

meant to this type of planning. 

6.2 Information system 

The information system of the company has four main functions: the registration 

and reporting of all relevant data related to the business process itself. 

The discussed decision supporting facilities are part of the control function 

of the information system. In this case these facilities have a strong relation

ship with the other functions. 

The registration function stores (among others) 

- not-position related data of boats and carriers i.e. technical specifications; 
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position related data of boats and carriers, historical and actual both; 

- already planned shiproutes; 

- geographical data on waterroutes and ports; 

- data on the water levels and streamspeeds of the waterroutes; 

- contracts; 

- prices for each type of activity; 

- damage-messages. 

The reporting function delivers (among others) 

- summaries of available carriers; 

- invoices (these may require complicated calculations); 

- statistics of the use of equipment. 

The analysis function of the information system produces 

- patterns of: supply of cargo; 

model of the behaviour of a ship in the river; 

- model of the fuel consumption. 

The control function has two goals: 

- the planning of the transport capacity (boats and carriers can be hired 

or rented, mostly over long periods); 

- the planning of the use of transport capacity: the shiproute planning. 

In the next paragraph we restrict ourselves to the shiproute planning. 

6.3 Route planning 

The firstpart of the route planning consists of the assignments of carriers 

to transport orders, and subsequently to the pusher tugs. The result is 
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a schema of loading and discharging ports for each pusher tug. Travelling 

along these ports the pusher tug will pass points with time constraints, 

such as ports with restricted arrival and/or departure times, bridges and 

sluices. 

So the second part of the route planning c~ncerns the determination of 

the departure times and the velocities in the passing points for each ship

route. 

From now on in this case we only consider the second planning problem. The 

goal of this planning problem is to meet the commercial commitments with 

as less as possible fuelcost or traveltime. The fuelcost form a substantial 

part of the costprice and a shorter traveltime means a better utilisation 

of the transportcapacity. However these goals may be conflicting. The 

restrictions of this optimization problem consist of the commercial commit

ments. Just the former restriction can not be defined hard, so the planner 

will try to manipulate them. 

After inputting the ship, its route, the time limits of concern and the 

cargo, the planner may perform several optimizations with help of the dss 

- minimalization of the traveltime given the departure time in the starting 

point 

minimalization of the traveltime given the arrival time in the end-point; 

- minimalization of the fuel consumption with a free arrival time but a 

given departure time; 

- minimalization of the fuelconsumption with a free departure time but a 

given last arrival time, related to the effect of the tide on the water 

height of the rivers down stream; 

minimalization of the fuelconsumption with a given departure time and 

a last allowed arrival time. 
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The optimization model is a dynamic programma, see figure 1. 

last allowed 

earliest 
possible 

o~--------~---------' 
L-________ L-______ ~ ______________________ ~end 

start p p + 1 

points along waterroute 

fig. 6.1 

The dicision variables of the model are the departure time t in point 

p and the number of revolutions of the propeller per minute r, which 

is held constant between the subsequent points of the shiproute. With the 

waterbehaviour model, the velocity model and the fuelconsumption model, 

coming from the analysts functlon of the information system the fuelcon

sumption and traveltime can be determined. The waterlevel and stream velo

city in traject from p to p+l can be composed with a model of the water 

behaviour on the waterroute. Together with the choosen number of propeller 

revolvings per minute the speed of the boat can be determined by the velocity 

model and subsequently the duration of the traject from p to p+l and gi.ven 

the departure time in p the arrivaltime in p+l. 

From the duration and the choosen rpm the fuelconsumption can be composed 

by the fuel consumption model. 

With a standard technique to solve dynamic programs each above-mentioned 

optimum can be determined (see (Denardo, 1982J), 
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In the next paragraphs we deal with the datamodel of this decision problem, 

the behaviour model, the optimization model and a generalization of the 

used solution method. 

6.4 Data model 

The data relevant to the dss can be clustered into four groups: waterroutes, 

equipment, orders and shiproutes. 

Firstly, we shall explain the used notions, secondl~ we shall describe the 

data in a functional data model and, thirdly, we shall work out some restriction 

belonging to the data model. 

Waterroutes 

The rivers and canals used by the pusher tugs form a network of waterroutes. 

A waterroute consists of several segments and a segment in turn is a sequence 

of checkpoints. In a checkpoint the waterheight and streamingspeed is known 

and in such a point the captain may adjust the number of revolvings per 

minute. 

Some of the checkpoints have time-windows: for instance, ports with pre

determined time slots for arrivals or departures. We call these checkpoints 

nodes and a segment is a sequence of checkpoints enclosed by a starting 

and an ending node. 

Equipment 

The only relevant data of the equipment to the dss are the push boats, 

the carriers and their restpoints and restperiods. The restpoints are always 

nodes. Equipment not involved in a trip is in a restpoint. 

Orders 

An order is an instruction to transport a certain amount of tons of a 

commodity from place A to place B. 
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Shiproute 

A shiproute 1s a sequence of sh1proute segments and each of these segments 

is referring to a waterroute segment. A shiproute may be cyclical. 

Functional data schema: 

The formal definition of the functional database schema is, sketched as follows! 

C {Level, time, waterlevel, ... } 

Set of category indices; 

F {l, 2, 3, ... , 41} 

Set of functionclass indices; 

D {(I, waterlevel), (2, waterlevel), 3, waterlevel) (4, rpm setting) •.. } 

This function determines for each functionclass a category called the 

domain category; 

R {(I, level), (2, time), (3, checkpoint), ... } 

This function determines for each functionclass a category named range 

category; 

V {(I, {O, 1,2, •.• }), (2, {<m, h, d> I m€{d, 1, ... , 59}, h € {O, I, 

•.. 23}, d € {I, 2, ...• 36S}), •.. } 

This set valued function V assigns to each category the set of 

representations of all possible objects that belong to this category. 

For a graphical representation of the data model we refer to figure 6.2. 



Data schema 

level time* 
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level route 
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S"IV segment 

distance 
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carrier 
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b 

b time-
window 

e 

waterroute 

point 

pushboat 

shiproute carrier 

node * equipment 

S: successor 

i rest
point 

~ time* 
I 

*: several instances 

b: begin 

e: end 

JItl: several atrributes 

note that we did not named 

the functionclasses. 
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Some examples of restrictions in natural language 

a. If a carrier or a push boat participates to a shiroute then they are 

not allowed to be in a restpoint. 

b. The time of departure of a shiproute segment is not allowed to fall 

within the time-window belonging to the node of the corresponding water

route segment. 

c. The waterroute segments have to follow up each other: i.e. endnode of 

a segment = beginnode of the following segment. 

d. The time intervals of the shiproute segments are not allowed to overlap 

each other, must have the same order as the corresponding shiproute 

segments and must suit within the total shiproute times lots. 

e. The tonnages of the carriers belonging to one order have to sum up to 

the tonnage of the order. 

f. The distance from checkpoint to checkpoint, divided through the velocity, 

summed over a waterroute segment has to fall within the corresponding 

shiproute times lot. 

Restriction f. can be formalized as follows: 

(A srs E Shiproute segments 

) 

Note: 

f25 (srs) + (~cp E checkpOints 

velocity (cp, srs) 

~ f24 (srs» 

I (f9(cp) = fll(srs» • f7(cp)/ 

Velocity (cp, srs) is a function that composes the absolute velocity of 

the pushing boat in checkpoint cp, belonging to shiproute segment srs. 

This function is based on the speed model of a push boat, which we shall 

discuss in next paragraph. ! denotes the universal quantor, ! the .summation 

quantor; ! denotes the characteristic function that assigns 1 to true 

and 0 to false. 
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With these restrictions we describe infact the feasible process-path~ of 

the objectsystem, i.e. the relevant part of the company. 

6.5 The behaviour models 

In this paragraph we shall discuss three models: the water behaviour model. 

the velocity model and the fuelconsumption model. These models enable us 

to compose criterion functions in the optimization model, the total travel-

time and the fuelconsumption. 

Water behaviour model 

The behaviour of the water in the rivers and canals has two features: water-

level and streaming velocity. Predictions on the waterlevel are computed 

with a regression model applied on measurements of the waterlevel upstream 

and the volume of the rainfall. 

river level --r--] ----..----,------
i 

p + 1 p + 2 checkpoint s-l p 

fig. 6.3 

A simplified version of the regression equation of the water level Wp,t 

in checkpoint p on time t is: 
'i 

W t = l: l: a W p, q>p k=l q,k q,t-k 

where a k 
q. are the regression coefficients and W 

q.s 
the measurements 

of waterheight at time s. 

So, waterlevel W 
P. t 

is supposed to be dependent on the waterlevels upstream 

in the five periods preceding t. With this equation the waterlevel can 

be predicted in every checkpoint and time-point within the planning horizon. 

Note that the predictions for longer periods become worse because they are 
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based on less observations. 

This model concerns the upstream area's of the rivers and canals. However 

in the downstream area of the rivers is the effect of the tide present. 

So, the model has to be adjusted. 

Both the regression coefficients a as the measured waterlevels W q,k q,t-k 

are issued by a government agency, charged with the management of the public 

waterarea's in the Netherlands. 

Every day the company receives the measured waterlevels of the relevant 

waterroutes and stores these data in the database. 

The stream velocity at some moment in checkpoint p is determined by the 

waterlevel w~ at that moment and the form characteristics. (see figure 

6.4) This function is tabulated. 

Cross section in 

checkpoint p 

figure 6.4 

The velocity model 

The absolute speed of a push boat is determined by the next equation: 

vs(p,t,r) = ss(p,t) + f(cr(p,t), w(p,t). r) 

where vs absolute velocity of the boat 

ss stream velocity of the river 

cr charging rate 

r revolvings per minute 

w! water level 

p checkpoint 

t time 
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The function f determines the velocity of the ship related to the river. 

This function has some properties in connection with the hydrodynamics of 

a ship travelling on a river (see figure 6.5). 

fig. 6.5 
77777 /71l1 ml 1117701 1/111/7/11/777/ 

The function f is increasing in wt and r. and decreasing in cr. 

Intuitively one may consider the dependency in wl as follows: the less 

water there is under the ship the more difficult it is to "pump" the water 

under the ship backwards. 

The fuelconsumption model 

The fuelconsumption of a pushing boat can be conposed with the next formula. 

fc 

where fc fuel consumption in a time unit 

r number of revolvings in a time unit 

constant 

c2 constant: 3 

Note only the last two models are produced by the analysisfunction of the 

informationsystem of the company. Periodically these models have to 

be adjusted. 

6.6 The optimization model 

In the optimization model we distinguish a statespace S, an actionspace 

A and a transition mechanism T. 
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We define the state as the trajectory of a shiproute until some moment i.e. 

a sequence <checkpoint, time, rpm> (see figure 6.6). We consider the rpm 

as the rpm on arrival in a checkpoint. 

1 

8 

(cp, t,rpm> 

figure 6.6 

The actionspace A has been defined as the cartesian product of the set 

of all checkpoints of the concerning shiproute and the set of all possible 

rpm on arrival in the next checkpoint. 

We represent the transmission mechanism as a function T 

s <PI' t l , r l > ... (Pn' 

B : <Pn+l' r n+1> 

t , 
n 

r > 
n 

T( ) « t + distance (Pn' Pn+ 1 ) » 
s , a : s • Pn+ 1 ' ( ) • r 1 n vs Pn. tn' r n+1 n+ 

S x A -+ S , with 

where vs(p,t) the velocity of the boat is (see last paragraph). 

Remark that only actions with Pn+l are allowed; a part of a shiproute has 

to be linked as well. 

For optimization we do not need the whole states. 

This optimization model is a dynamic program with as optimality equations 

= min {clrC2 . dist.(p. S(p» + 
r vs(p, t, r) 

v (S() t + dist.(p. S(p» )} 
I P. vs (P. t, r) 

related to the fuelcost.where S(p) is the successor of p on the route 

(cf. figure 6.1). 
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Note that in the optimality equation we only use the last checkpoint and 

time of the state (this is a trivial case of state space relaxation). 

6.7 Concluding remarks 

1. There is a considerable interaction between the dss and the registration 

function of the information system: 

- producing a shiproute; 

selection of push boats and carriers; 

- record the results of the planning. 

2. There is a considerable interaction between the "behaviour" models and 

the optimization model. 

3. The dss performs only a few functions in the decisionprocess. Not prese~t 

are: 

- linking shiproutes; 

- production of parameters intended to the capacity planning. 

4. From the analysis of the decisionmodel it turned out which supplemental 

information had to be recorded in order to determine function f. 
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