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NO CURRENT WITHOUT HEAT

Christian Maes~ Frank Redigtand Michel Verschuere+

November 22, 2000

Abstract: We show for a large class of interacting particle systems that whenever the
stationary measure is not reversible for the dynamics, then the mean entropy produc
tion in the steady state is strictly positive. This extends to the thermodynamic limit
the equivalence between microscopic reversibility and zero mean entropy production:
time-reversal invarian£e cannot be spontaneously broken.

Keywords: stochastic interacting particle systems, entropy production, (generalized)
detailed balance.

Dedicated in honor of the 70th birthday of Joel L. Lebowitz

1 Introduction

Reversibility and entropy are words with many meanings. We are very much indebted
to Joel Lebowitz who has helped all of us in clarifying the various issues. One class
of models that Joel has often considered for learning about nonequilibrium behavior
is that of interacting particle systems. These are stochastic dynamics for spatially
extended systems in which particles locally interact. They are mostly toy-models
remaining far from realistic in their microscopic details. Yet, Joel has convincingly
argued that for some good purposes, the details do not matter so much and one
should be concerned more with the symmetries, possible conservation laws, locality
of the interaction etc. to hope to understand something about real nature.
This paper is about the relation between time-reversal invariance and the positivity
of entropy production. We do this in the context of interacting particle systems
following work by Joel and Herbert Spohn in [9].
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The physics background will be discussed in Section 3. To understand the math
ematical problem, let us look first at a finite Markov chain. Suppose that K is a
finite set on which we have an involution 1r : K ---+ K,1r2 = id, called time-reversal.
Let (Xt , t E [-T, T]) be a K -valued stationary Markov process (steady state) with
law IP'p' The subscript refers to the stationary probability measure p on K for which
we assume that p(a) = p1r(a) > 0, a E K. The rate to go from a to b is denoted by
k(a, b), a, bE K and we assume that k(1rb,1ra) = 0 iff k(a, b) = 0 (dynamic reversibil
ity). The generator is

Lf(a) = L k(a, b)[f(b) - f(a)] (1.1)
b

The time-reversed distribution of (Xt ) is the stationary process (}t, t E [-T, T]) with
}t = 1r X- t , t E [-T, T]. We denote its law by JPp (p = p1r is also stationary for (}t)).
(l't) is again a K -valued stationary Markov process on K but now with transition
rates

- _ p(b)
k(a, b) = k(1rb, 1ra) p(a) (1.2)

The corresponding generator for this time-reversed process is L = 1rL*1r w~ere the *
refers to the adjoint with respect to the stationary measure p. Of course, L = L.

We say that the process (Xt)~T is 1r-reversible if IP'p = JPp . This implies that the
stationary measure p satisfies

p(a)k(a, b) = k(1rb, 1ra)p(b), a, b E K (1.3)

(1.4)

or k = k, which is generalized (or extended) detailed balance (microscopic reversibil
ity). For the generators, we then have L* = 1rL1r which, in turn, implies the station
arity of p = p1r and the relation (1.3). Note however that (1.3) by itself (without
assuming stationarity of p7r) does not imply that L* = 1rL1r.
The difference ofleft and right hand side in (1.3), is called the current

Jab(p) =k(a, b)p(a) - k(1rb, 1ra)p(b)

between states a and b in the steady state IP'p'

The entropy production is the random variable obtained from taking the relative
action on pathspace with respect to time-reversal. Here we are only interested in its
expectation value, that is the mean entropy production

MEP7r(L, p) = lim 1TIEp[lOg ci!P]
TiCX' 2 dIP'p

The notation MEP7r (L, p) reminds us that this number depends on the transforma
tion 1r, the dynamics (generated via L) and the stationary measure p. The mean
entropy production thus measures the degree to which IP'p can be distinguished from
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IP'p' The main property of the mean entropy production is then:

Proposition 1: Consider the stationary process (Xt ) above with p = p7r. MEP'If(L, p) =
MEP'If (L, p) ~ 0 with equality if and only if the process (Xt ) is 7f-reversible.

This says that for finite systems there can be no current without heat, meaning
that detailed balance is equivalent with zero mean entropy production. The problem
we address here is whether the same remains true in the thermodynamic limit, that
is for spatially extended interacting particle systems. In this case we really should be
speaking about the mean entropy production density, Le., per unit volume, but we
will not use this extension.
We discuss the general physics set-up and further interpretations in Section 3, after
stating our mathematical results in Section 2. We start however with three examples
illustrating some aspects.

1.1 Examples

Example A: We consider particles hopping on the one-dimensional lattice with a
preferred direction that is itself subject to independent flips. The state space is
{ -1, +1} x {O, I} 7l and the process is determined by choosing a constant rate c(E, TJ) =
1 for changes from a configuration (E, TJ) to (-E, TJ) and taking rates

c(x, E, TJ) = eE TJx(1 - TJx+1) + e-E TJx+1(1- TJx)

for changes to (E,TJx,X+1) where (TJx,x+1)y = TJy if x =I- y =I- x + 1, and (TJx,x+1)y = TJx
when y = x + 1 and = TJx+1 when y = x. The resulting Markov process has generator

Lf(E, TJ)
x

+ f( - E, TJ) - f(E, TJ)

For invariant measure p we take

(1.5)

where lIu is the Bernoulli measure with specified density u E (0,1). For time-reversal
we take 7f(E, TJ) = (-E, TJ).
It is easy to see that the process satisfies generalized detailed balance, like (1.3), in
the sense that both

c(E, TJ) = c(-E, TJ) and c(x, E, TJ) = c(x, -E, TJx,X+1)

The last identity depends of course crucially on the fact that 7f is not the identity and
reverses left and right as preferred direction. At the same time, as can be computed
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explicitly, the mean entropy production is zero. The same remains true for 7r a
particle-hole transformation, (7r77)x = 1 - 'fJx, leaving the field E unchanged. Then,
p =1= p7r for u =1= 1/2 but still generalized detailed balance holds. Finally if, instead,
we were to take 7r = identity as time-reversal, then we break the detailed balance
condition and we obtain a strictly positive mean entropy production.
Example B: We take the simplest example of a spinflip dynamics for which the one
dimensional Ising model is stationary but not reversible (for 7r =id). Exactly the
same can be done in two dimensions, see [2]. Spinflips are transformations Ux : rJ ---+

Ux(rJ) = rJx, x E 7L, rJ E {+1, -1} 7L for rJX equal to rJ except at the site x.
Consider the one-dimensional spinflip dynamics with the following asymmetric rates:

c(x, rJ) = exp(-2,8rJxrJx+l) (1.6)

The invariant measure p is the one-dimensional Ising model at inverse temperature ,8.
The process starting from p is not time-reversal invariant and the entropy production
is equal to MEP(L,p) = 4,8tanh,8. (That is with time-reversal 7r =identity.) On
the other hand, this time-reversed process is easy to find; it is a spinfiip process with
generator

x

Let us now take for time-reversal 7r the reflection: (1rrJ)x = rJ-x which leaves p
invariant. Since

(1rrJ)X = 1r(rJ-X)

L* = 7rL1r and we have in fact generalized detailed balance (1.3):

The denominator in the left hand side is the rate in the original process by which
7rUxrJ = 7r(rJX

) = (1rrJ)-x is changed to 1rrJj to get used to the notation in the next
section: here,

c(-x, (7rrJ)-X) = C(1rU;l7r ,7rUxrJ)

As a result, MEP1T (L,p) =MEP1r (L*,p) = o.
Example C: Instead of driving the system in the bulk and breaking detailed balance
via some external fields that act on each component of the system, we may also
consider boundary driven processes. For this we need to start with finite volume.
The simplest interesting case is that of a symmetric exclusion process on a lattice
interval that is driven by independent birth and death processes at its boundaries
corresponding to different chemical potentials. Take An = { -n, -n + 1, ... , n - 1, n}

4



and f/ E {O, 1}An a particle configuration evolving with generator

n-l

~ [J(f/x,x+1) - f(f/)]
x=-n

The first term corresponds to symmetric hopping with exclusion; the two last terms
are giving birth and death to particles at the ends of the interval with parameters
hI, h2 · One can think here of particle reservoirs, to the left of the system with density
1/(1+eh1 ) and to the right with density 1/(1+eh2 ). For A = 0 the system is uncoupled
from the reservoirs and it has all uniform product measures as reversible measures
with vanishing mean entropy production. For A=/; 0, hI =1= h2 this detailed balance is
lost and we have positive mean entropy production. Yet, it remains of order unity,
uniformly in the size n meaning that the mean entropy production density vanishes
in the thermodynamic limit. This is an instance of a more general fact for interacting
particle systems that will also be treated in the next section: you cannot by driving
the system at its boundaries break the time-reversal invariance in the limiting infinite
volume process, see Proposition 2 below.

In this paper we show more generally how breaking of detailed balance is strictly
equivalent with non-zero mean entropy production. There is no way to get a current
and at the same time to have no dissipation (non zero mean entropy production).

In the next section we describe our class of models and we state our main result.
In section 3, we discuss this result and we give some more background information
concerning entropy production, reversibility and time-reversal. Section 4 is devoted
to the proofs.

2 Models and main result

2.1 Dynamics

This subsection describes the assumptions and introduces the necessary notation.
The configuration space is n = s tl

d

where S is a finite set and tld is the regular
d-dimensional lattice. Let 7r be an involution on n. A special but important case
is when 7r =identity. We assume here that 7r commutes with lattice translations
T x , X E 7ld .

Let Ao C tld be a finite cube containing the origin and write Po for any specific
non-empty set of transformations Uo satisfying, for every Uo E Po, and for every
a E 0:

i. Uoa E n, and (Uoa) (y) = a(y), for y E Ag,
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(2.8)

iii. 1rPo1r = Po,

iv. UOCl i- U~Cl for all Cl E 0 and Uo i- U~ E Po for which UOCl i- Cl and U~Cl i- Cl
(for convenience only.)

We consider the translations Ax _ {y + x : y E Ao} and Ux = TxUOLx to generate
a dynamics via local translation invariant rates c(Ux,Cl) for the transition Cl -+ UxCl.
We assume:

1. Positivity: c(Uo, Cl) = °when UOCl = a and if not, c(Uo, Cl) > 0,

ii. Finite range: there is a finite A C tld such that for all a, TJ E 0, and Uo E Po:
c(Uo,a) = c(Uo, afiJJXc) ,

iii. Translation invariance: for all x E 7ld , Ux E Px, a E 0: c(Ux,a) = c(Uo,TxCl)

The generator L corresponding to the given rates is now defined on local functions f
as

Lf(a) == L L c(Ux,a)[f(Uxa) - f(a)]
xE tld U",EP",

That is, a is changed to TJ at rate c(Ux,a) if TJ = Uxa. We will always write p for a
translation invariant stationary measure for this dynamics. It can be different from
p1r but we assume that also p1r is stationary. Finally, p gives positive weight to all
cylinders and writing pU = pU, we always assume that dpuo /dp(a) 2: c > 0, which,
even in the present rather general set-up, can be expected quite generally.

For Ao = {O} and S = {+I, -I}, the choice Uxa = aX corresponds to a spinfl.ip
process. Taking Ao = {O, el, e2, . .. ,ed} with eo the lattice unit vectors, we can make
a spin exchange process or hopping dynamics. We refer to [8] for further details on
constructing the infinite volume process.

2.2 Mean Entropy Production

Put An = [-n, n]d n tld for large n and define A~ as the maximal subset of An' such
that for all x E A~ and Ux E Px, c(Ux,a) depends only on coordinates inside A, and
Ax c A. Consider now the Markov chain on SAn with generator

Lnf(a) =L L c(Ux,Cl)[f(Uxa) - f(a)]
XEA~ U",EP",

(2.9)

and started at a fixed configuration w(-T) E SAn at time -T. Via a Girsanov
formula this dynamics gives rise to a Hamiltonian (or action functional) on space
time trajectories w (as in [4]), with corresponding relative energy with respect to
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time-reversal equal to

RT,n,7r(w) """ """ jT log C(UxlW(S-))) dNu"
LJ LJ c(7fU- l 7f 7fU w(s-) s

P U E'" -T x' xxEAn ., r.,

+ i:[C(Ux,7fW(S)) - c(Ux,w(s))]ds (2.10)

where NF" =E-T<s<t I (w(s) = Ux(w(s-)) #- w(s-)) is the number of times the
transformation Ux appeared in the realization w up to time t E [-T, T].
The mean entropy production for the interacting particle system is defined as

(2.11)

IE~,T denotes the expectation with respect to the path space measure, in the station
ary distribution p, restricted to trajectories within SAn. In other words, the mean
entropy production is the expectation of the time-reversal breaking part in the space
time action functional governing the dynamics. We refer to [4] for a mathematical
discussion on the existence of the limit (2.11) and for a proof of its non-negativity.
We refer to [3, 5] and Section 3 for further background.

2.3 Results

The main question is to see whether for a dynamics where the time-reversal symmetry
is explictly broken (in the sense that there is no detailed balance), there still can be
zero mean entropy production (dissipationless steady state). Our main result says
that this is impossible.
Main Theorem: Under the conditions above, MEP7r(L, p) = MEP7r (L, p7r) = 0
implies that the dynamics satisfies (generalized) detailed balance in the sense that for
all Uo

dpuo
c(7fUol 7f,7fUoa) dp (a) = c(Uo,a) p - a.s. (2.12)

Observe that (2.12) implies that the densities dpuo / dp are 7f-invariant.
Corollary 1: If MEP7r(L, p) = MEP7r(L, P7f) = 0 and if for all a, a' E n for which
a(x) = a'(x), for all x r;f. Ao, there exists a transformation Uo E Po such that a = Uoa',
and 7f is continuous, then p is a reversible Gibbs measure for the dynamics defined
above.

In [4] the converse to these results was already shown: Suppose that the rates
satisfy

(2.13)
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This is the analogue of (1.3). The energy difference in (2.13) should be interpreted
in terms of an absolutely convergent sum of potentials:

H((JA7]AC) - H(~A7]Ac) = L (V(A, (JA1]Ac) - V(A, ~A7]Ac)) , (2.14)
AnA#0

where (V(A,·): SA ----+ (-oo,+oo),A finite subsets of 7Ld ), is a translation invariant
(uniformly) absolutely summable potential:

Then,

'"""' max IV(A, (J)I < +00L...J crESA
A'30

(2.15)

L k~\(J, 1])[f((JA,1/) - f((J)]

1/ESA

MEP1I"(L,p) = MEP?r(L,p1r) = 0

When we combine the above we obtain a final

Corollary 2: Under the conditions of Corollary 1, if there is one translation in
variant stationary measure p for which p = p7r and MEP1I"(L, p) = 0, then also
MEP11" (L, II) = 0 for all translation invariant stationary measures II and they are all
Gibbsian for the same potential.

A caveat in the above main result is to understand better the relation between
MEP?r(L,p) and MEP1I"(L,p7r). To this we can only add that MEP1l"(nL1r,p) =
MEP1I"(L,p7r), as can be verified from a direct computation starting with (4.22).

The simplest illustration of all this was already obtained in [6] for a spinflip
process.

Finally, for completeness we come back to the situation of Example C in Section
1.1. For this we must leave the translation invariant infinite volume context and ask
whether boundary driven interacting particle systems can give rise to non-vanishing
mean entropy production density in the thermodynamic limit. The question can be
formalized as follows. We consider a process on SAn with generator Gn generalizing
(1.7)

L
A c An \A~
diamA ::; r

where (JA,1/ =(JAc1]A equals (J outside the set A which has a diameter (maximal lattice
distance within) less than a given constant r.
Here the generator Ln is given by (2.9) but with rates verifying condition (2.13) for a
finite range potential, and rates k~\(J, 7]) as in (1.1) inducing configurational changes
at the boundary of An- We further assume that the k~)((J, 1]) are uniformly bounded
from below and from above. In other words, we have a bulk dynamics generated
by Ln with rates satisfying (generalized) detailed balance, and at the boundary the
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configuration can change quite arbitrarily (but in a local and bounded way). We
suppose that Pn is the unique stationary measure of this dynamics and for simplicity
we only treat the case 1r = id. We are interested in the mean entropy production
MEP(Gn, Pn) defined in (1.4) (with 1r = id).

Proposition 2: There is a constant K so that MEP7r (Gn,Pn) ::; Knd- 1

The proofs of the above results are postponed to Section 4.

3 Discussion

We briefly discuss some concepts that are important for our result.

3 .1 Time-reversal

By this we usually mean a transformation on phase space n which, for a many-particle
system, is defined particle-wise or, for spatially extended systems, is sufficiently local.
Physically speaking, its precise nature follows from kinematical considerations on
the dynamical variables. In classical mechanics, it reverses the momenta of all the
particles but in the presence of sayan electromagnetic potential, considered part of
the system, one can add an extra transformation reversing also the magnetic field
and thus making the Lorentz force time-reversal invariant. In our case, we have

a configuration space n = s tl
d

with tld the d-dimensional lattice and S a finite
set. Time-reversal is an involution 1r on n, 1r2 = id. Time-reversal extends to
a transformation on path-space by reversing the trajectories. That is, if we have
a trajectory (wt, t E [-T, T]) then the time-reversed trajectory (}7r (w) is given by
(07r(w))t = 7fW_t·

3.2 Reversibility

Dynamic reversibility is a property of the dynamics itself under time-reversal. It says
that if one trajectory Wof the system is possible, so is its time-reversed (}7r(w), For a
deterministic system where Wt = ¢(t)wQ with ¢(t) an invertible flow on phase space,
it says that ¢(t)-l = 7f¢(t)7f, that is a symmetry that anticommutes with the time
evolution. For a stochastic dynamics this is implied by assuming that if a transition
a ---+ Ua is possible (positive transition rate), then also the same is true for its time
reversal1rUa ---+ 7fa.
Microscopic reversibility is a consequence of dynamic reversibility in case of an equi
librium dynamics. For our purposes here we do not make a distinction with the
condition of detailed balance. When the dynamics is driven away from equilibrium,
the resulting stochastic model will not satisfy detailed balance. Usually this produces
a current in the system (but that need not be true in general, see an example in [5]).
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On the other hand, a net current signifies the breaking of the detailed balance condi
tion. In general we like to distinguish between two classes of finite volume dynamics
where microscopic reversibility is explicitly broken. These are boundary driven ver
sus bulk driven dynamics depending on the extensivity of the perturbation from an
equilibrium dynamics. In the bulk driven case, one usually verifies so called local
detailed balance, i.e., (2.13) is changed into

c(Ux,a-) = C(7fU;l7f ,7fUxa-) exp(-H(Uxa-) + H(a-))eEif>(Uxcr,cr)

where E is some amplitude of an external field and cI> is antisymmetric, cI>(7f7],7fa-) =
-cI>(a-, 7]), see e.g. [9]. Note also that then, necessarily, the relative energies H(Uxa)
H(a-) are 7f-invariant.
In boundary driven systems, the process becomes non-translation invariant and the
rates remain of the form (2.13) in the bulk (that is for x well inside the considered
finite volume) while more or less arbitrary on the boundary. This was the case for
Example C in Section 1.1 and was formalized for Proposition 2. Note that there
is in fact an example of a boundary driven system where uniformly in the size of
the system a bulk current can be maintained. This is the nonequilibrium harmonic
crystal treated in [12, 7] where the heat flux is proportional to the boundary temper
ature difference rather than to the temperature gradient (infinite heat conductivity
in the thermodynamic limit). Such 'superconductors' do not exist in the context of
interacting particle systems as discussed in the present paper.

3.3 Entropy production

In phenomenological thermodynamics, entropy production appears in open driven
systems as the product of thermodynamic fluxes and forces. The forces are gradients
of intensive quantities (like chemical potential) generating the currents. The entropy
production is identified from a balance equation for the time-derivative of an entropy
density which is defined in systems close to equilibrium. The definition of entropy
production as we use it here in statistical mechanics comes from [3, 4, 5, 6, 10, 11, 13].
The mean entropy production appears there as a relative entropy (density) for the pro
cess with respect to its time-reversal. That immediately invites the following thought
(we are grateful to Senya Shlosman for pointing to this): In equilibrium statistical
mechanics, if two translation invariant Gibbs measures have zero relative entropy
density, then they must both be Gibbsian for the same interaction potential (but not
necessarily equal e.g. because of spontaneous symmetry breaking). Apply this to the
space-time measures obtained for the process and the time-reversed process. In some
sense, they are Gibbs measures. Thus, if the mean entropy production is zero, then
the process itself and its time-reversal have the same (space-time) action functional.
Because they also have the same marginals (i.e. the same invariant measure), they
must in fact coincide (hence no spontaneous time-reversal breaking). Hence, zero
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(4.16)

(4.17)

mean entropy production implies microscopic reversibility. While convincing on a su
perficiallevel, unfortunately the details of this argument are technically cumbersome
and a direct sufficiently general proof along this line has not been found.

The only more recent paper that we know of concerning time-reversal symmetry
and the relation with entropy production is [1]. The set-up there is however quite
different from ours. Time-reversal symmetry is there associated with the anticom
mutation of an involution with the time evolution, what we have called dynamic
reversibility in the above. In our discussions here, we deal with spatially extended
stochastic dynamics and the breaking of microscopic reversibility.

4 Proofs

Lemma 1: Under the conditions of Section 2.1, for a translation invariant stationary
measure v,

J ·dvuoL dV((J)c(Uo, (J) log ~((J) = 0
UoE'Po

Proof: Let :FA be the (J- field generated by (Jx, X E A. Denote by VA, respectively
l/fo the :FA- restrictions of V and vUo . Then we have

Since dvuo /dv E L 1(dv) for all Uo, we find using the martingale convergence theorem
that

dvUo dvuo
1· A1m -----,
Aj~d dVA dv

in Ll(dv). Let iJ be the product measure on n having as marginals the uniform
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measure on S. From stationarity applied to the local function fA = dlJA/dvA we find

The last equality uses translation invariance. We have used the notation A' == {x E

LZdlAx n A =I 0} and the expression

(
dlJu", dlJu", )

FU"'(a) == log_A -log-
A dlJA dlJ

We thus have

I~'I L L I!dlJ(a)c(Ux,a)FXx (a)1
xE LZd U",E'P",

< M I~'I L L ! dlJIFX~xl, (4.18)
xEN UoE'Po

by the translation invariance of lJ, and M bounds the rates. Now we use the general
fact that if in converges to f in L1(dlJ) and both in, f are bounded from below by
some constant c > 0, then log f n converges to log f in L1 (dlJ). This fact implies that
for any given c > 0, we can choose A C LZd such that for all .6:.' :J .6:.:

max !dlJ1FX?I::; MCN' with IPol =N
UoE'Po 2

Choose now A C LZd so large that

l{xEA':A+xnAC#0}1 < c _
IA'I - 2MNsupv,uo IIFgo Il£l(dv)
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We then conclude that

I L ! dv(a) e(O, a)
UoEPo

MN

<

(4.19)

(4.20)

(4.21)

-
Proof of Main Theorem: We first recall that the mean entropy production (2.11)
equals

MEP1r (L, p) ~ ! e(Uo,a)
L..J ( p(da) e(Uo,a) log (U.-1 U.)

TT '" e 1r ° 1r, 1r oavoE,-o

+ ! p(da) [e(Uo,1ra) - e(Uo,am (4.22)

This was derived from (2.10) in [4]. Using Lemma lone computes that

~ ! e(Uo,a)MEP7r(L, p) + MEP1r(L, p1r) = L..J dp(a)[e(Uo,a) - e(Uo, a)]log e(U
o
,a) (4.23)

UoEPo

where
d Uo

e(Uo,a) - e(1r, p; Uo,a) - c(1rUO-
l 1r, 1rUoa) ;p (a)

The left hand side is zero by assumption implying the statement of the Theorem. _

Proof of Corollary 1 Since the Radon-Nikodym derivative of pUo with respect to
p is a local function for all Uo and since by assumption, we can generate with the Uo
all local excitations at from a, it means that p has a continuous version for its local
conditional distributions. _

Proof of Corollary 2 From the main result and Corollary 1 it follows that p is
a translation invariant stationary Gibbs measure and (2.13) must be satisfied. All
other translation invariant stationary measures must be Gibbsian and for the same
potential, see e.g. [2]. From the results in [4] as cited above the statement of Corol
lary 2, it follows that every other stationary translation invariant measure must have
zero mean entropy production. _
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Proof of Proposition 2 From the definition (1.4) we must first compute the relative
action under time reversal, that is

dIPRn = log _Pn
dIPpn

This can be done via a Girsanov formula and we obtain the analogue of (2.10):

Rn(W) =

+

The first integral is really a sum over all the times when the trajectory makes a jump
from the action of one the Ux; the second integral is a sum over all times when a
configuration (J is replacing TJ in a set A on the boundary. In order to further clarify
this formula, let us first look at trajectories where no boundary transitions take place
(or, what amounts to the same, take k = 0 for the moment). Then, we only keep the
first term, that is just (2.10):

L L jT 10 c(Ux , w(s-» dNux
• U .., -T g C(U;I, Uxw(r) S

xEA:' xErx

But if we insert the detailed balance condition (2.13), the above expression telescopes
to

H(w(-T» - H(w(T»

and the mean entropy production is zero by stationarity.
Turning to the general case we let {sd1=1 be the set of times at which boundary
transitions occur in the sets Ai, i = 1, ... , q, for the trajectory w. These are random
but we fix them as -T ::; SI < S2 < .. < Sq ::; T. The important thing to realize now
is that while the perfect telescoping of above is broken at each of these times, it can
be restored by adding and subtracting. More precisely, we have

Rn(w) H(w(-T» - H(w(sl» + H(W(SI» - H(W(S2) + ...

+ H(w(sq» _ H(w(T») + log k~7:> (w(sl)' W(SI» +
k~: (W(SI)' w(sl»

k~;(W(S2)'W(S2» k::;(w(s;), w(s;»+ log () + ... + log --:-('-.,-)--=---~-
k~ (W(S2),W(S2» kA: (w(Sq,w(Sq»

14



But by the absolute convergence of the interaction potential we have

for some constant C, since w(si) and W(Si) only differ in the set Ai. Therefore the
telescoping of the terms involving energy differences can be restored upon inserting
q terms of order unity.
As for the other terms, we have assumed uniform boundedness so that we get

M
IRn(w) I ::;q(rC+log-)

€

where M and € are constant upper and lower bounds for the transition rates k(n). As
the expectation of q = q(w) under IEpn is proportional to TI8An l, the proposition is
proved. -

Acknowledgment: C.M. thanks Senya Shlosman for some very useful discussions.
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