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Preface 

A program is correct if it satisfies its specification. For sequentia! programs, 
the specification usuaJly captures data only: a program must produce output 
valnes that are in a specified relation to its input. In addition to the specifica
tion of data, there may he performance specifications, such as the spedfication 
of speed, size, and power-consumption of VLSI realizations. In this thesis we 
confine ourselves to reai-time behaviour. We distinguish two types of reai-time 
specifications. The first is the 'critical specification': such a specification states 
tbat output has to he produced within a restricted amount of time after the 
input. The second is the 'intentional specification', which is not really a speci
fication. In the case of an intentional specification, tbe quality of a program is 
expressed in terms of its speed: a fast program bas a high quality, a program 
without progress bas zero quality ( and is rejected ). 

For programs that cooperate with other programs by means of exchange of data 
( communications ), the reai-time aspect becomes more complicated. lt is not just 
a matter of being fast enough, the real-time behaviour of a program must also 
he in accordance with the behaviour of its environment: for example, a program 
and its environment should not impose conflicting restrictions on the order of 
their communications. Such behaviours are also called reactive systems [10, 22]. 
In contrast to [10, 22], however, we are especially interested in those memhers of 
this species that have a rather regular behaviour: we do not intend to describe 
the behaviours of micro-wave ovens, nuclear power plants, and TV-sets, nor the 
effect of power fa.ilure a.nd nuclear melt down. Furthermore, aga.in in contrast to 
(10, 22], we intend to describe the progress of implementations, and their speed 
relative to (real-time) specifications. 

In the sequel the term mechanism is used for programs, specifications, and imple
mentations. We assume that the mechanisms operate under true concurrency 
(also known as maximal parallelism), without synchronization upon a. global 
doek. Tbe only interaction between cooperating mechanisms is by means of 
synchronization upon sha.red actions via rendez vous communication. So, we 
have a.n asynchronous mode of operation, and synchronous communication. The 
described mechanisms may be VLSI programs (2], or their realizations on the 
level of ha.ndshake protoeals [3]. This is a higher level of abstraction than in 
(4], in which the performance of mechanisms is analysedon the level of individ
ual transitions. Furthermore, we are especially interested in external behaviour, 
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4 Preface 

whereas in [4] only closed mecha.nisms are analysed. 

Two aspects of the behaviour of mecha.nisms are safety and liveness properties: 
a mechanism is safe when it cannot get into a.n undesirable state; it is live 
when it will eventually perform some desired behaviour. By their nature, safety 
properties are easier to cope with tha.n liveness properties (it suffices to check 
all possiblè behaviours, whereas for liveness properties it is important in which 
way the 'actual' behaviour is selected from this set). Up toa reasonable extent, 
liveness properties can be formalized without the introduetion of a 'time-a.xis': 
for example with temporallogic [18, 22], or with a trace formalism [13, 16, 21]. 
We are interested in a more deta.iled a.nalysis of the behaviour of mecha.nisms: 
typical questions we want to a.nswer are: 'when is a mechanism at least as 
last as another mecbanism?' a.nd 'how much {aster (slower) is a mechanism 
than another one?'. In order to support such a.n analysis, a dense time-a.xis is 
indispensable. 

In -the enabling model, possible behaviours of mecha.nisms are given by sched-. 
ules. In contrast to traces, which give a.n ordering of actions only, schedules 
assign 'time-slots' to actions. Schedules are similar to the sequence functions 
that are used in [23, 27]. In these works, however, the underlying model is a 
trace-formalism, which is inadequate to support the use of schedules in a satis
factory way. Within the enabling model, we introduce a comparison relation for 
performance, such that parallel composition and alphabet restrietion are mono
tonic (with respect to this relation). Such arelation is suitable for compositional 
design of mecha.nisms, i.e. for design by means of 'di vide a.nd conquer'. 

The enabling model is a tooi for performance a.nalysis that is useful for (at least) 
a restricted class of mechanisms (see the characterization above). Intheuse of 
a time-a.xis a.nd time-slots, the model is similar to the reai-time extension of 
process algebra as given in [1]. In contrast to [1], our a.im is not to give a general 
theory covering all types of mecha.nisms, nor to support a specific programming 
la.nguage. 
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Chapter 1 

Introduetion 

1.1 Informal introduetion to the model 

The enabling model is a mathematica! model that can be nsed to analyze the 
reai-time behaviour of mechanisms. This can be done in abstract time-units, as 
well as in physical time units. Among others, it supports parallel composition 
and alphabet restriction. 

Enabling structures describe the real-time behaviour, to be called behaviour in 
the sequel, of mechanisms that cooperate in a truly concurrent way with synchro
nization upon shared actions only. The behaviour of a mechanism is described 
in terms of point actions: (atomie) actions of which the performance has zero 
duration. The enabling of an action depends on the moments that other actions 
have been performed in a deterministic way. Internal actions of a mechanism 
are performed as soon as they are enabled by this mechanism. External actions 
-commnnications- of a mechanism may be delayed by its environment: they 
are performed as soon as they are enabled by both, the mechanism and its en
vironment. Th ere is no disabling: once enabled, an ( external) action remains 
possible until it is performed. 

The set of the behaviours (schedules) in which a mechanism can be involved 
is called its process. A mechanism is deterministic, so it cannot choose which 
schedule of its process is performed; this depends entirely on the moments at 
which the environment enables the mutual communications. 

Evidently, not all 'real world' devices in the satisfy these conditions. However, 
some diserepan ei es between the model and the 'real world' can he bridged: 

• Events in devices, such as communications, usually have a non-zero duration. 
Within the model, such events can he modeled by an action for initiation 
and an action for completion. When the duration of an event is known, it 
suffices to use an action for completion only; this convention is used in this 
thesis. 

• In the model, timing of actions does depend on the scheduling of previous 
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8 Chapter 1: Introduetion 

actions in a deterministic way. In devices, timing may also depend on other 
influences such as temperature, complexity of data, and the like. This prob
lem can be solved by descrihing a device with a whole range of enabling 
structures, rather than with just one enabling structure. In some cases, such 
as the buffer with bypassing in Section 5.5, an analysis of the real-time be
haviour of the device requires an analysis over this whole range. For devices 
in which timing is bounded by fixed delays between actions, or combinations 
of actions, it suffices to consider the extreme delays only (Section 3.6). 

The informal programming notation we use has some resemblance with Pascal. 
It is akin to the language CP-0 in [2] and to the programming notation that 
is used in [23]. The use of question-marks for input, and exclamation-marks 
for output is as in [2, 11, 23]. The question-mark and the exclamation-mark 
give the direction of data only: communication with the environment happens 
simultaneously in the program and in the environment, as soon as both the 
program and its environment are ready for it. 

Consider for example the following, very simple, program that inputs one value 
and outputs the square of this value: 

Example 1.1 A disposable square element. 

program square (input in: integer, output out: integer) : 
var x : integer ; 
begin 

in? x ; out! x2 

end. 

This program perfarms three actions: 

• first a value is received along channel in, it is stored in variabie x , 

• second, the square of x is computed, 

• at last, the result of this computation, x2 , is sent along channel out. 

Assume that the program is initiated at moment zero, that a communication 
takes one time unit, and that the computation of x2 takes half a time unit. 
Let action a symbolize the completion of the input, b the completion of the 
computation, and · c the completion of the output. 

Obviously a and c are external actions, and b is an internal action. 

The behaviour of the program is given by: 

• a is enabled (by the program) at moment 1 , 

• b is enabled 0.5 time unit after performing a, 

• c is enabled one time unit after performing b • 

The program imposes restrictions on the moments that a , b , and c can be 
performed. A schedule s satisfies these restrictions if (and only if): 
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• s.a ~ 1 : a is external so it may be delayed by the environment, 

• s.b = s.a + 0.5 : b is internal soit cannot be delayed by the environment, 

• s.c ~ s.b + 1 : c is external. 

Whether a schedule s happens or not, does depend on the environment of 
the program; it depends in pa.rticular on the moments at which this envi
ronment enables the communications a and c . It may well he that the 
environment prohibits one of the actions a or c; in case it prohibits a, 
none of the actions a , b , and c will happen! 

When duration 0.5 is only an upper bound of the duration of the compu
ta.tion of x2 , the enabling as described a.bove gives an upper bound of the 
actual enabling. 

1.2 Overview 

In Chapter 2 we introduce the enabling model. In Section 2.1 we introduce 
among others the time-axis, schedules, and processes. In Section 2.2, enabling 
structures are introduced as a way to describe mechanisms; enabling functions 
describe the external behaviour of mechanisms. In the same section parallel 
composition is used to de:fine the processof enabling structures. Renaming and 
sealing are introduced in Section 2.3. In Section 2.4 we introduce choice-free 
commands as a way to descri he (a restricted type of) enabling functions. The 
behaviours of choice-free commands can be classi:fied as having :fixed delays, in 
Section 2.5 we discuss fixed delays in generaL Alphabet restrietion is introduced 
in Section 2.6. We consider enabling structures with the same behaviour to be 
equivalent ( Section 2. 7). 

In Chapter 3 we are in quest of a relation that can he used for comparing per
formance. First we discuss what type of relation we want to use to express that 
one enabling fundion implements another (Section 3.1), in partienlar when the 
correctness concern is speed (Section 3.2). In Section 3.3 we introduce the im
plementation relation that suits us most. Section 3.4 is an interlude in which we 
discuss the existence of 'most liberal implementations' and 'most severe speci
fications'. In Section 3.5, we introduce a quantitative way to compare enabling 
functions. In particular, we introduce the relative speed of an 'implementation' 
with respect toa 'speci:fication'. In Section 3.6 we discuss how variation of be
haviour of an implementation affects its speed wîth respect to îts specification. 
InSection 3.7 we conclude this chapter with some remarks on the utility of the 
introduced theory. 

In Chapter 4 we use systolic arrays to illustrate the use of 'di vide and conquer' 
during the computation, or estimation, of the external behaviour of mechanisms. 
Certain claims about in:finite arrays in Section 4.2 are supported by the theory 
in Appendix C that deals with metric spaces. In Section 4.3 we give some 



10 Chapter 1: Introduetion 

examples of the a.pplication of systolic arrays. All examples are based on the 
same problem: computing the maximum of a. fixed number of subsequent inputs. 

In Cha.pter 5 we perform a case·study on distributed implementa.tions of FIFO· 
buffers. In Section 5.2 we give theoretica.l bounds on the speed of such im
plementa.tions, dependent on their 'sha.pe'. In Sections 5.1 a.nd 5.4 we present 
implementa.tions tha.t meet these bounds. These implementations have (at least) 
one drawback in common: they have a poor performance when they are almost 
empty. In Section 5.5 we introduce implementa.tions that bypass empty pa.rts, in 
order to improve this performance. These implementa.tions are especially inter
esting beca.use ( drastic) choices about future behaviour are made dependent on 
the order in which communications happen. The chapter is concluded, in Sec
tion 5.6, with a brief discussion of computations in which 'buf-like' behaviour 
comes as a side.effect. 

In Chapter 6 we coneinde this thesis with a brief discussion on the scope of the 
enabling model, a.nd of the type of comparison that is introduced in Chapter 3. 
In Sections 6.1 a.nd 6.2 we discuss possible extensions of the expressive power and 
the ma.nipulative power of the model respectively. Among others, we introduce 
serlal composition of mechanisms. In Section 5.4 we metion some other points 
of interest. 

In Appendix A we explain some notational conventions. 

In Appendix B we discuss process description by mea.ns of {AND,OR.}-causal 
compositions of elementary dependencies. lt turns out that this gives equa.lly 
powerlul descriptions as are obtained by enabling structures. Some results of 
this appendix are used in Section 2.5. 

In Appendix C we briefly discuss metric spaces. We mention a generalized 
version of Ba.na.ch's contraction theorem. Furthermore, we apply the theory on 
some cases considering the enabling model. 



Chapter 2 

The Model 

We use enabling structures to describe mechanisms. In an enabling structure, 
the enabling of subsequent actions depends on actions that were performed in the 
past. In this dependenee relation we assume a positive delay between cause and 
effect. We distinguish between internal and external actions. Internal actions 
are strictly private, they cannot be shared with other mechanisms; we assume 
they are performed as soon as they are enabled. External actionscan be shared 
with other mechanisms, thus sched uling of these actions may be delayed by the 
environment of the mechanism. 

In Section 2.1 we introduce the time-domain, alphabets, schedules, and pro
cesses. For processes we define the operations of parallel composition and pro· 
jection, which are defined for enabling structures in Sections 2.2 and 2.6 respec
tively. 

In Section 2.2 we introduce dependenee functions to describe the dependenee 
of one action upon other actions; enabling structures to describe the behaviour 
of mechanisms; and enabling functions to describe the external behaviour of 
mechanisms. Furthermore we introduce the history of an enabling structure as 
its behaviour in a greedy environment, and the process of an enabling structure 
as the set of all behaviours it may exhibit, dependent of the environment. Par
allel composition is introduced to describe concurrent cooperation; masking is 
introduced to hide external actions from the environment. 

Renaming and sealing are introduced in Section 2.3. 

In Section 2.4 we introduce genede actions as a way to describe sequences of 
actions 'of the same type'; for example communications along the same chan
nel. Furthermore, choice-free commands are introducedas a way to describe (a 
certain type of) enabling functions over generic actions. A lot of programs have 
behaviours that can be described by choice-free commands. 

The behaviours that are described by choice-free commands exhibit fixed delays 
between cause and effect. In Section 2.5 we discuss behaviours with fixed delays 
in genera!. 

11 



12 Chapter 2: The Model 

InSection 2.6 we introduce projection of enabling structures as abstraction from 
intemal actions. Projection and masking are combined into restriction. 

In Section 2. 7 we discuss equivalence of enabling structures; enabling structures 
are considered equivalent when they exhibit the same behaviour. We introduce 
a normal form with respect to equivalence of extern al behaviour. 

2.1 Preliminaries 

An alpha.bet is a set of actions. In the sequel a through d range over actions, 
A, B, and C over alphabets. These are all 'variables', so it may well be 
that, for example, a = b. In concrete examples, actions with different narnes 
are implicitly assumed to be different. When no confusion is possible, we tend 
to abbreviate singleton alpbahets by using a rather than {a} . 

We use the real numbers as a reileetion of the 'real-world' time-a.xis. The time
doinain we use also captures the value oo (infinite); when an action is scheduled 
on moment oo this expresses that it is not scheduled. oo is chosen because 
oo > z for all real numbers z , so an expression like s.c ;;:: s.b + 1 ( see Exam
ple 1.1) also captures the possibility of s.c being infinite, which reilacts that c 
is not scheduled at all. 

Deftnition 2.1 The time-domain: T. 

T = ( -oo,oo] 
[] 

In the sequel M , N , and 0 range over the time-domain. 

An advantage of the choice for real numbers plus oo , above for example rational 
numbers, is the existence ofleast up per bounds of non-empty subsets of the time
domain and the existence ofgreatest lower bounds of a lot of sets. Furthermore, 
with the distance that is given in Appendix C, it is a complete metric space. The 
integers enjoy similar properties, but these are considered too course grained to 
reileet the 'real world' time a.xis: 

The arithmetic of the real numbers extended with oo and -oo is defined 
straightforward in the cases it is obvious: z + oo = oo for z > -oo, z * oo = oo 
for x > 0 , z * oo = -oo for z < 0 , etc .. 

A schedule is a mapping of actions in the time,.domain. The only restrietion 
we impose u pon such a mapping is that is bas a 'beginning', other than -oo : 
mapping s given by s."ï = i (for i ;;:: 0) is a schedule with base, bs, zero, but 
mapping t given by t.ai = -i (for i ;;:: 0) is not a schedule because it roodels 
an activity that bas been going on forever ( bt = -oo ). 

Deftnition 2.2 Schedule, base: b . 

For a fundion s in A -+ T we define its base bs by: 

bs = ( glb a : a e A : s.a ) 
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A schedule over A is a function s as above with bs > -oo. The set of 
schedules over alp ha bet A is denoted by S .A . 

In the sequel, s through v range over schedules. 

A schedule that models 'doing nothing' is called an empty schedule. 

Definition 2.3 Empty schedules: eA, e. 

0 

An empty schedule is a schedule that schedules all actions on oo. The 
empty schedule over alphabet A is denoted by eA. When alphabet A is 
understood we just write e instead of eA. 

Mechanisms impose restrictions upon the scheduling of the actions they are 
involved with; they can bedescribed by giving all schedules they allow to happen. 
As for schedules, wedemand that the activity of a mechanism has a beginning 
(other than -oo ): for example, the processof the square element in Example 1.1 
begins at 1 . The proper way to describe the mechanism with alphabet A that 
does not allow scheduling of any actions on its alphabet, is with process { eA}, 
and not with 0 . 

Definition 2.4 Schedule-set, process. 

0 

A schedule-set is a set of schedules over the same alphabet. The base of a 
schedule-set P, denoted by bP, is defined by: 

bP = ( glb 8 : 8 E P : b8 ) 

A process is a non-empty schedule-set P with base bP > -oo . 

In the sequel, P and Q range over processes, occasionally they are also used 
for schedule-sets. 

Example 2.5 Processes. 

0 

P = { { (a,2),(c,3) }, { (a,5),(c, 7) }, {(a, ll),(c, 13)}} 

Q {sets : s ES.{ a, b, c} A 8.a ~ 1 A s.b = s.a + 0.5 A 8.c ~ s.b + 1 
: s) 

Both P and Q are processes; bP = 2 and bQ = 1. Q is the processof 
the square element in Example 1.1. 

As a general concept we introduce the alphabet of . For any ' X ' it is denoted 
by aX and it is the set of actions X is involved in. For example aa = {a} , 
aA = A , and the alphabet of a process is the domain of its schedules. 

We define restrietion to actions as well as restrietion in the time-domain. 

Projection is just a domain-restriction of schedules and processes, it can be used 
to abstract from internal actions. 
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Definition 2.6 Projection: t, \. 

0 

For schedule s and alphabet A , the projection of s on A , s t A , is the 
domain restrietion of s to A: a(8 i A)= as nA and (8 t A).a = 8.a. 

Hiding is the complement of projection: s \A = 8 t(a8 \A) . 
For precess P and alphabet A , the process P t A is defined by: 

PjA = (set8:8EP:sjA) 

The convention for hiding is also used for projection of processes, and en
abling structures. 

Observe that alphabet restrietion of a schedule (process) yields a schedule (pro
cess) and that (for X a schedule or a process) b(X t A) ~ bX . 

In the time-domain we define a kind of prefixing. s until M, denoted by 
8 ~ M , is in a way the prefix of s until M : actions that are not scheduled by 
8 until moment M are scheduled on oo by 8 ~ M , and scheduling on oo has 
been introduced as a matbematkal trick to model 'not scheduling'. 

Definition 2.7 Until: ~. 

0 

M until N , denoted by M ~ N , is defined by: 

M ~ N = if M < N -+ M 
0 M~N-+ oo 
fi 

For schedules we define s ~ M as the schedule over as that satisfies 
(s ~ M).a = s.a ~ M (for a E as). For processes wedefine 

PlM = (sets:sEP:s~M) 

The choice of the alternatives M < N and M ~ N ( rather than M E:; N and 
M > N ), in the definition of l, is not immaterial: Propositions 2.9.2 (first 
line), 2.10.2, 2.16, and 2.24, depend critically on this choice. 

Example 2.8 

0 

For process Q in Example 2.5, Q t { a, c} ~ 2 is equal to 

(sets: as= { a,c} A (1 E:; s.a < 2 V s.a = oo) A s.c = oo : s) 

We mention the following (evident) properties of projection and prefixing: 

Proposition 2.9 (without proof) 

1 8 r 0 = el2l , p t 0 = { €12J } 

And for X a schedule or a process: 

X taX = X 
XtAtB = Xt(AnB) 
XtAlM = X~MtA 
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2 M ~ M = oo , 8 l bs = e , P ~ bP = { e} 

and for X a moment in time, or a schedule, or a process: 

X~oo X 
X ~ M ~ N = X ~ (M min N) 

0 

15 

Schedules over the same alphabet can be compared by using the partial order 
~ that is defined for functions. s ~ t states that 8 schedules all actions at 

least as early as t . Projection and prefixing are monotonic with respect to this 
relation. 

Proposition 2.10 (without proof) 

1 (monotonicity of t and ~) 

s~t:::? stA~qA, s~t:::? s~M~qM 

2 (generalization of 1 for ~ ) 

8~M~qM {:} (VN:N<M:stN~qN) 

3 M > (bs min bt) A s ~ M ~ t t M :::? bs ~ bt 

0 

We introduce parallel composition of processes as a way to model mechanisms 
that synchronize via. shared actions. Two mechanisms share an action when this 
action is a memher of the alphabet of both. 

In order to improve readability, we phrase most definitions, propositions, and 
proofs concerning parallel composition in termsof 11 as a binary operator. They 
can all he generalized to quantified expresslons over 11 in a straightforward way. 
This includes a. generalization to parallel composition of an infinite number of 
ohjects. 

Definition 2.11 Parallel composition of processes: 11 . 

0 

For processes P and Q wedefine their parallel composition P 11 Q by: 

P 11 Q = (set 8 : s E S(aP U aQ) A 8 taP EP A 8 t aQ E Q : s) 

P and Q are composable if P 11 Q is a process. 

The parallel composition of two processes is a. schedule-set. For processes P 
and Q we have 

b(P 11 Q) ~ bP min bQ 

(the composite cannot begin hefore one of the partleipants is ready to begin). 

We infer that processes P and Q are cornposable if ( and only if) P 11 Q f:. 0 . 
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Parallel composition is generalized to an infinite number of processes in a straight
forward way. However, when these processes are pairwise composable, this does 
not guarantee that they are composable as a set: the composite may be empty, 
or its base may be -oo . An example of the latter phenomenon is the parallel 
composition of the processes { { (Cli, -i)}} for i ;i!: 0. 

In the sequel when giving a parallel composition, composability is implicitly 
assumed. 

The unit element of parallel composition of processes is process { e0 } : for any 
process P, { e0 } 11 'P = 'P . If it were allowed as a process, 0 would be the 
zero element: 0 11 P = 0 for any process 'P . 

Example 2.12 Parallel composition of processes. 

Let P and Q be as in Example 2.5. Their parallel composition is given by: 

P 11 Q = {{ (a,5),(b,5.5),(c, 7)},{(a, ll),(b, 11.5),(c, 13)}} 
0 

Proposition 2.13 Parallel composition (without prq_of). 

1 (P 11 Q)t A = 'P t A 11 Q t A forA;;;? (a'P n aQ) 
('P 11 Q) ~ M Ç 'P ~ M 11 Q ~ M 

2 P 11 Q = 'P n Q , if a'P = aQ. 

0 

The Ç in the comparison of prefixes, in the previous proposition, should intu
itively be an equality. The following is a counter example: 

Example 2.14 

0 

Define processes 'P and Q by: 

'P = {{(a, 1),(b,3)},{(a,2),{b,3)}} 
Q = {{(a,1),(b,3)},{(a,2),(b,4)}} 

and observe that 

('P 11 Q) ~ 3 = {{(a, l),(b,oo)}} 
'P ~311 Q ~3 = { {(a,l),(b,oo)},{(a,2),(b,oo)}} 

However, when composing enabling structures in parallel, the process of the 
resulting ènabling structure does satisfy our intuition. 

2.2 Enabling structures 

Enabling structures descri he mechanisms in terros of cause and effect. Moreover, 
they discrlminate between external actions that can be shared with other mech
anisms and internal actions that cannot. Initiated enabling structures are used 
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to descrihe mecha.nisms relative to the moment of initiation, that is: the mo
ment of initiation is the moment zero on the time-axis. To keep the rnathematics 
simple, we assume a (universa!) positive delay between cause a.nd effect. When 
the environment of an enabling structure is greedy, each action is performed as 
soon as it is enabled; the schedule that is performed in this situation is called 
the history of the enahling structure. The process of an enabling structure is 
the set of schedules it may he engaged in when placed in a.ny environment. 

The concept of similarity is used to define the delay between cause and effect. 
The similarity of two ohjects (of the same type) is the maximal moment in time 
up to which they cannot he distinguished. 

Defi.nition 2.15 Similarity: sim . 

0 

For X and Y both in T, both schedules, or both processes (over the same 
alphabet) we define: 

sim( X, Y) = (lub M : X l M = Y l M : M) 
furthermore for schedule s and process P over the same alphabet: 

sim(s, P) = (lub M: s l MEP l M: M) 

In fact, the least upper bonnds in the previous definition are maxima: 

Proposition 2.16 (without proof) 

For X, Y, s, and P as in Definition 2.15 

X l sim( X, Y) Y L sim( X, Y) 

s l sim(s, P) E P l sim(s, P) 
D 

Other properties of similarity are given by: 

Proposition 2.17 (without proof) 

1 sim( N, 0) = if N 0 -+ oo U N f. 0 -+ N min 0 fi 

2 For X and Y hoth schedules, or hoth processes, or a schedule and a process 
over the same alphabet: 

sim(X,Y) ~ bX min bY 

3 For X and Y both schedules or both processes over the same alphabet with 
bX f. bY: 

sim( X, Y) = bX min bY 

4 sim(so lub to, s1 lub tt) ~ sim(so,sd min sim(to,tt) 

5 sim(s,t) = (glba: :sim(s.a,t.a)) 

D 
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Let us first observe the enabling of one action. Assume we have a mecha.nism 
that 'enables action b ha.lf a time unit after performing a (Example 1.1). Ap
pa.rently the enabling of b depends on a schedule. When function 4> gives thls 
dependenee we have tf>.s = s.a + ! for the enabling of b. After scheduling of 
the 'cause' a, there elapses a 'eaus~' delay of i before the 'effect' b is ena.bled. 
Since we assume a positive delay, the function tf>.s = s.a -} is obviously not 
allowed. But what about the delay of the following functions? 

tf>o.s = s.a + 1 max s.b + 1.5 min s.c + 3 

tf>t.S = if s.a < 1 -+ s.a + 1 
0 s.a = 1 -+ oo 
0 s.a > 1 -+ 2 
fi 

tf>2.s = s.a + s.b+ 1 
tf>a.s = s.a + s.a-2 

A function 4> has a. delay between cause a.nd effect of (at least) 6. , when for a.ny 
two schedules tha.t are identica.l until moment M , their 4> -image is identica.l 
until moment M + 6. . The ma.xima.l va.lue of 6. that satisfies for 4>o a.nd 4>t 
is 1; the ma.xima.l va.lues for eh a.nd 4>3 a.re -oo and zero respectively: t/>2 
and 4>3 a.re no dependenee functions. 

Definition 2.18 Dependenee function. 

0 

For functions 4> E S.A-+ T, for a.ny non-empty a.lphabet A, wedefine the 
delay, dtf> , of 4> as follows: 

dtf> = ( glb s, t : s,t E S.A 1\ s :f:. t : sim(t/>.s,t/>.t)- sim(s, t)) 

A dependenee lunetion is sueh a function 4> with dtf> > 0. 

A mecha.nism is described by giving its externa.l a.lphabet, its interna.l a.lpha
bet, and the dependenee functions for a.ll actions. We choose to eollect the 
dependenee relations in one function ( fE ). 

Definition 2.19 Strueture, eE , iE , fE . 

0 

A structure is a triple E = { Ae, Ai, X} with Ae n Ai = 0 and 
X E S.A-+ S.A, where A= Ae U Ai. The external alphabet, internal al
phabet, a.nd the (funetional) behaviour of a. structure E as above a.re defined 

respectively: eE = Ae , iE = Ai , fE = X . 

By eonvention, the a.lphabet of E is aE = eE U iE . Though structures 
are not funetions, in the sequel we will use them as such in two different 
ways. The first is with the convention E.s.a = fE.s.a, the second with 
E.a.s = fE.s.a (both for sE S.aE a.nd a E aE ). E.s is the function that 
gives the enabling of a.ll actions given a sehedule s , E.a gives the enabling 
of one action a- only, as a funetion of the schedule. 
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Example 2.20 The square element revisited. 

0 

The dependenee functions for a , b , and c for the square element of Exam
ple 1.1 are given by: 

</J4 .8 = 1 q,".s s.a + 0.5 </Jc.s = s.b + 1 . 

Structure E , with extern al alp ha bet {a, c} , intern al alphabet { b} , and 
funetional behaviour as given below, ean be used to deseribe the square ele
ment. 

E.s.a = 1 E.s.b = s.a + 0.5 E.s.c = s.b+ 1 . 

In the definition of this funetional behaviour, s is an arbitrary sehedule 
over { a,b,c}. E.s gives the moments at whieh aetions are enabled, pro
vided that the schedule is s . In Exarnple 1.1 we a.lready observed that 
not all schedules s ean be performed by the square element: sinee internal 
actions happen as soon as they are enabled, and external actions may be de
layed by the environment, only those sehedules s that satisfy s.b = E.s.b, 
s.a ~ E.s.a, and s.c ~ E.s.c, ean be performed. The process of the square 
element is the set of schedules that satisfy these restrietions ( see Proposi
tion 2.33). In the table below, we give three schedules, s, that are memher 
of this proeess, and three sehedules that are not. Which of the memhers 
of the process is actua.lly performed depends on the moments at which the 
environment enables a and c . 

8 E.s Memher of 

.a I .b .c .a .b .c Process 

1 1.5 2.5 1 1.5 2.5 
2 2.5 4 1 2.5 3.5 Yes 

00 00 00 1 00 00 

0 0.5 2 1 0.5 1.5 
1 1 4 1 1.5 2 No" - -
1 2 00 1 1.5 3 - -

Table Proeess of the square element. 

"The underlined val.ues are in conftict. 

We do not eonsider all struetures to be va.lid deseriptions of mechanisms. As 
for dependenee functions, we assume a positive delay between eause and effect 
(see also Proposition 2.22). Furthermore, we still assume that the activity of 
a mechanism has a beginning (other than -oo ). The aetua.l way in which we 
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define this beginning ( bE) is justified by Proposition 2.34.1 that states the 
equality of the base of au ena.bling structure aud the base of its process. 

Deflnition 2.21 Enabling structure, bE, dE. 

[J 

The base aud delay of a structure E are given by: 

bE :: b(E.e) 
dE = ( glb s, t : s,t E S.aE I\ s :f:. t : sim(fE.8, fE.t)- sim(s, t)) 

In case aE = 0 , its delay is oo • An enabling structure is a structure E 
with bE > -oo and dE > 0; a closed enabling structure is au enabling 
structure with an empty external alphabet. An ena.bling function, on the 
contrary, is au enabling structure with au empty internal alphabet. An 
initiated enabling structure (function), is au enabling structure (function) 
E with bE > 0. 

Thesetof enabling structures over (Ae, Ai) is denoted by t'S(Ae, Ai), the 
·set of all enabling structures is denoted by t'S. The set of enabling functions 
over A is denoted by t':F.A, the set of all enabling functions is denoted by 
t':F. 

In the sequel E , F , and G range over enabling structures and e through h 
over enabling functions. t' is used for sets of enabling structures, or enabling 
functions. 

Proposition 2.22 (without proof) 

For a structure E : 

[J 

bE = (glba: : E.a.e} and dE = (glba: : d(E.a)). 

So for au enabling structure E , the functions E.a are dependenee functions 
that satisfy d(E.a) ) dE. 

The definition of similarity is extended to enabling structures. 

Deflnition 2.23 Similarity of enabling structures. 

[J 

For E and F enabling structures over the same alpbahets we define: 

sim(E, F) = (lub M : (V 8: : E.s ~ M = F.s ~ M) : M) 

As for the similarity of other objects (see Definition 2.15), the least upper bound 
turns out to be a maximum ( compare to Proposition 2.16): 

Proposition 2.24 (without proof) 

For E and F as in Definition 2.23, and for 8 a schedule over their alphabet: 

E.s ~sim(E,F) = F.s ~sim(E,F) 
[J 
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The most elementary enabling structures are those in which the enabling is 
independent of what actually happens: the constant enabling structures. 

Definition 2.25 Constant, Gonst . 

0 

A function x is constant on X if ( and only if) 

(V s, t : s, t E X : x.s = x.t) 

A function is called constant if it is constant on its entire domain. The set 
of constant enabling functions is denoted by Gonst . 

A constant enabling function is fully described by a schedule s that gives the 
moments at which actions are enabled. We introduce the following notation for 
such enabling functions. 

Deftnition 2.26 Enabling function of a schedule: n. 

0 

The enabling function of schedule s , ns , is the enabling function over as 
defined by ns.t = s , for all t over as . 

For schedules over a singleton domain we use the shorthand n( a, M) rather 
than n{(a,M)}. 

The history of an enabling structure is the schedu]e that coincides with its 
enabling, it is the schedule performed by a mechanism that is not delayed by its 
environment. For example, the history of ns is s. The history of an enabling 
structure is uniquely defined because the behaviour of an enabling structure is a 
contraction on a complete metric space of schedules ( see Appendix C). From a 
more operationa.l point of view, the history is uniquely defined since enabling of 
actions does depend on the scheduling of actions in the past in a deterministic 
way. 

Definition 2.27 The history of an enabling structure: h. 

0 

For an enabling structure E , the history hE of E is defined as the unique 
schedule sE S.aE that satisfies the 'history equation' s = E.s. 

Proposition 2.28 

1 For sE S.aE: bs ~hE :::} b(E.s) = bE 

2 bhE = bE 

3 hns = s 

Proof of 1 and 2 (3 is evident). 
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1 Instead of 1 we prove, for s E S .aE : 

bs) bhE => b(E.s) = bhE 

Together with 2 this implies 1. 

Let sE S.aE with bs) b hE, we derive: 

true 

<:> { Proposition 2.17 .2, bs ) b hE } 

sim(hE, s) ) b hE 

=> { definition of d (2.21)} 

sim(E.hE,E.s) ) bhE+dE 

<:> { definition of h (2.27)} 

sim(hE,E.s) ) bhE+dE 

<:> { definition of sim (2.15)} 

hE ~ (b hE + dE) = E .s ~ (b hE + dE) 

=> { Proposition 2.10.3, dE> 0 } 

bhE = b(E.s) 

Cbapter 2: Tbe Model 

2 Use the previous result and bE = b(E.e) (see definition of b (2.21)). 

[J 

Befare we introduce processes of enabling structures, we define parallel composi
tion and masking of enabling structures. Parallel composition is used to describe 
concurrent mechanisms; masking is used to hide external actions from the envi
ronment. Masking is particularly useful when enabling structures are composed, 
and (shared) actions have to he bidden from the common environment. 

When mechanisms are composed in parallel, shared actions are enabled in the 
composition as soon as they are enabled by all mechanisms that share them. In 
order to hide the case-analysis in ·the definition of parallel composition, we first 
introduce a generalization of lub for schedules. 

Deftnition 2.29 Lub . 

[J 

For schedules s and t, schedule s Lub t is the schedule over as U at that 
is defined by: 

(s Lub t).a = if 
0 
0 
ft 

aeas\at-+ 
a e as nat ..... 
a E at\ as -+ 

s.a 
s.a max t.a 
t.a 
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Deftnition 2.30 Parallel composition of enahling structures: 11 . 

Two enabling structures E and F are composable if their internal alpba
hets are mutually private. That is, if iE n aF = 0 and iF n aE = 0 . For 
composable E and F the parallel composition E 11 F is the enabling struc
ture in CS( eE U eF, iE U iF) defined by: 

(E 11 F).s = E.(s taE) Lub F.(s taF) 
D 

Observe that parallel composition of two ( composahle) enabling structures in
deed yields an enabling structure and that 

b(E 11 F) ~ bE min bF and d(E 11 F) ~ dE min dF. 

Parallel composition of an infinite number of pairwise composahle enahling struc
tures (in a quantified expression) does not always yield an enabling structure: 
the resulting structure may have a base -oo or a delay of 0; this will also 
be treated as a case of non-composability. An example of both phenomena is 
the parallel composition of enabling functions e.; for i > 0 with ae; = {ai, bi} 
and: 

e;.s.ai = -i e;.s.b; = s.a; + 1/i (for i > 0 ). 

In the sequel, when performing parallel composition, composability is implicitly 
assumed. 

Masking is very easy to define: it simply consists of rnaving actions from the 
external alphahet of an enahling structure to its internat alphabet. 

Definition 2.31 Masking: 11. 

E 11 A = (eEn A, iE u ( eE \ A), fE) 
D 

The process P E of enabling structure E is the set of schedules it may engage 
in when placed in a closed conneetion to an environment: 

PE = (uF: : P((E 11 F)u0) taE) 

Because a closed enabling structure cannot be delayed hy its environment, this 
can he rephrased into: 

Definition 2.32 Processof an enahling structure: P. 

P E ( set F : : h( E 11 F) t aE ) 
D 

Memhers of the process of an enabling structure are also called the (possible) 
behaviours of this enahling structure. 

The process of an enabling structure is non-empty because hE E P E . Due to 
Proposition 2.34.1 the base of the process of an enabling structure is not -oo. 
We conclude that the process of an enabling structure is (indeed) a process. 

The following proposition refiects that the environment can delay the perfor
mance of external actions only. 
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Proposition 2.33 

PE = (sets: as= aE A s ~ E.s A s tiE= E.s tiE: s) 

Prooi We prove this proposition by mutual inclusion. 

0 

Ç indu~ion: 

Let s E P E and let F be composable with E such that s = h(E 11 F) I aE 
(see definition of P (2.32)). We derive: 

s = h(E 11 F)taE 

<=> { definitions of h (2.27) and 11 (2.30)} 

=> 

(Va:aEaE 
: s.a = ii a(/. aF ---? E.s.a 

) 

U a E aF ---? E.s.a max F(h(E 11 F) t aF).a 
ft 

s ~ E.s A 8 \aF = E.s \aF 

=> {aFniE=0} 

s ~ E.s A 8 tiE= E.s tiE 

2 inclusion: 

Let as= aE and s ~ E.s and s tiE= (E.8) tiE, define F = n(s teE). 

From the definitions of h (2.27) and 11 (2.30) we infer that h(E 11 F) is the 
unique schedule t satisfying (for all a E aE ): 

t.a = ii a E eE ---? s.a max E.t.a 
0 a E iE ---? E.t.a 
ft 

But 8 is also a solution of this equation. So s = h( E 11 F) . From s = s t aE 
and the definition of P (2.32) we infer s E P E. 

Some other properties of processes of enabling structures are given by: 

Proposition 2.34 

1 bPE = bE 

2 (Pe) ~ M Ç Pe 

· 3 P ns = ( set t : t ~ s : t ) 

Prooi of 1 and 2 (3 is evident). 

1 bPE ~ bE follows from Proposition 2.28.2 and hE EPE. 

Remains to prove the ~ part. Let s E P E; we derive: 
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true 

~ {dE> 0} 

sim( E.s, E.e) > sim( s, e) 
<*. 

stm(E.s,E.e) > bs 

~ { Proposition 2.17.3} 

b(E.s) = b(E.e) V b(E.s) min b(E.e) > bs 

<* { s E P E and Proposition 2.33 give bs ) b(E.s) } 

b(E.s) = b(E.e) 

~ { previous hint and definition of b (2.21)} 

bs) hE 

2 We derive: 

sE Pe 

D 

<* { Proposition 2.33} 

s) e.s 

=> { Proposition 2.10.1} 

s ~ M ) e.s ~ M 

* { sim(s,s ~ M)) M, de> 0 } 

s ~ M ) e( s ~ M) ~ M 

~ { definition of ~ (2.7)} 

s l M ) e.( s l M) 

* { Proposition 2.33 } 

s l ME Pe 

25 

The relation hetween parallel composition of enabling structures and parallel 
composition of processes is given in the following proposition: 

Proposition 2.35 

For composable enabling structures E and F : P( E 11 F) 

Proof 

PE 11 PF 

Let E and F as in the proposition, and let sE S(aE U aF). We derive: 

sE P(E 11 F) 

<* { Proposition 2.33} 

s) (E 11 F).s 1\ s ti(E 11 F) = (E 11 F).s ti(E 11 F) 

<* { definition of 11 (2.30)} 

siaE)E.(siaE)iaE 1\ sfiE=E.(siaE)!iE 1\ 

s I aF ) F.( s taF) taF 1\ s liF = F.( s taF) tiF 
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{:} { Proposition 2.33 } 

staEePE A staFePF 

{:} { definition of 11 (2.11)} 

sE (PE 11 PF) 
D 

Unlike para.llel composition, we have no direct relation between masking and an 
opera.tion on processes. We mention the following (evident) properties: 

Proposition 2.36 (without proof) 

P(E11A) Ç PE P(E110) = {hE} 
D 

The following exa.mple shows that when composing mechanisms, it is important 
tha,t their beha.viours fit. 

Example 2.37 Dea.dlock. 

In this exa.mple we compose the disposable square element of Exa.mple 2.20, 
with a disposable one-place buffer in a very inconvenient way. 

The beha.viour of the square element is given by enabling structure E in 
Exa.mple 2.20. The history of E is { (a, 1 ), (b, 1.5), ( c, 2.5)}, and its process 
is process Q of Exa.mple 2.5. There does not exist a.n enabling structure 
that bas process 'P of the sa.me example. 

Consider the following program for a. disposable one-place buffer: 

program buffer ( input in : integer , output out : integer) : 
var :c : integer 
begin 

in?:c i out!:c 
end. 

Name the input-action of this buffer c, a.nd the output-action a. Under the 
same a.ssumptions as in Exa.mple 1.1, enabling function e over { a,c} can 
he used to describe the real-time behaviour of this program. 

e.s.c = 1 e.s.a = s.c + 1 

The process and the history of this buffer are given by: 

Pe = (sets : as= {a, c} A s.c ~ 1 A s.a ~ s.c + 1 : s) 

he = {(c,l),(a,2)} 
We compose the buffer and the square element under hl ding of both commu
nications to the common environment: in the composition action a symbol
izes the output of a value from the buffer to the square element, and action 
c symbolizes the output of a value from the square element to the buffer. 
The composite is given by enabling structure ( e 11 E) 11 0 . 
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0 

((e 11 E) 110).s.a = 
((e 11 E)110).s.b 
((e 11 E) 11 0).s.c = 

s.c + 1 max. 1 
s.a + 0.5 
s.b+ 1 max. 1 

It is left as an exercise for the reader to verify tha.t P( ( e 11 E) 11 0) = { e } : 
though both the square element and the buffer are willing to perform actions, 
the composite is not capable of doing anything. In [13] this is called loek, in 
[27] deadlock. 

2.3 Renaming and sealing 

The actions that are used in the description of mechanisms are just arbitrary 
names; when mechanisms are composed in parallel, renaming may he neeessary 
to avoid name-clashes or to enforce name-clashes ( communications ). Where 
renaming is a transformation in the 'action domain', sealing is a linear trans
formation in the time domain. Sealing ean be applied for two reasons. The first 
is to rewrite mechanisms into descriptions in an other time unit; for example 
p. -seeonds instead of seconds. The other reasou is that it allows quantitative 
eomparison of meehanisms such as the statement 'this mechanism is twice as 
fast as that '. 

In general, when eomposing predefined mechanisms the narnes of actions have 
to be adjnsted in order to get the proper connections. Consider for example 
the square element and the buffer in Example 2.37. In order to avoid that the 
output of the buffer is fed back into the square element it suffices to replace all 
occurrences of a in the definition of e by d. A formal definition of renaming 
is given by: 

Definition 2.38 Renaming. 

0 

A renaming n of A in B is a bijeetion in A --.. B . 

Renaming is extended to alphabets, schedules, and processes in a straightfor
ward way: e.g. for 'R E A --.. B and as Ç A , renaming 'R.s is the schedule 
over n.as that satisfies: n.s.a = 'R(s.a). 

For a renaming n E A --.. B and an enabling structure E with aE Ç A , the 
renaming 'R.E of E is the enabling structure in CS('R.eE, R.iE) defined 
by 'R.E.s = 'R(E(R-1.s)) . 

In the sequel n is a renaming. We also denote renaming by a subscript that 
indicates the renaming of individual actions. All actions in the domain that are 
not mentioned in the subscript are left unchanged: for example a4 _.0 = b and 
Ca-+b = c for c ::f a . This notation leaves the domain of the renaming implicit. 

By the way, renaming of enabling structures is what one would expect from 
renaming: P('R.E) R.PE . 
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Example 2.39 Cascade of square element and buffer. 

D 

The square element and the one-place buffer of Example 2.37 can he com
posed by connecting the output of the square element to the input of the 
buffer. This conneetion can he described by renaming the output of the 
buffer from a into d . 

' 
The behaviour of the conneetion is described by F = ( E 11 e,. .... d) u {a, d} . 
It is left as an exercise to the reader to verify that 

F.s.a = 1 F.s.b = s.a + 0.5 
F.s.c = s.b + 1 max 1 F.s.d = s.c + 1 

We introduce sealing as a linear transformation of the time-domain. For the 
behaviours in the previous example it is very simple to apply a sealing with, say, 
a factor 2; such a sealing just consists of multiplying all delays with a factor 2. 
For e this gives (2 0 e).s.a = 2 and (2 0 e).s.b = s.a + 2. 

Thè formal definition of renaming seems not to contribute to the understanding 
of renaming (in practice, renaming simply consists of replacing occurrences of 
actions by occurrences of other actions ). With sealing things are more compli
cated. We invite the reader to verify the following 'counter intuitive' example 
of sealing without consulting the formal de:fi.nition of sealing. 

Example 2.40 'Reverse sealing'. 

D 

Let e he the enabling function over { a, b} , defined by: 

e.s.a = 1 e.s.b = 2 * s.a2 + 1 

Sealing of e with a factor 2 gives the following behaviour: 

(2 0 e).s.a = 2 (2 0 e).s.b = s.a2 + 2 

This seems odd: slowing down of e by a factor 2, gives an enabling function 
with smaller delays for b. Observe though, that e is 'growing old' in the 
sense that the later a happens, the longer the delay until b is enabled. Since 
2 0 e is half as fast as e , it does grow old at half speed. 

Defi.nition 2.41 Sealing. 

A scale p is a linear function in T -+ T . lt is given by its magnification 
À : 0 < À< oo and its translation p,: -oo < p, < oo as follows 

p.M = À*M + p, 

A scale p is called a speeding up from M when it has magnification at 
most 1 and p.M ~ M j it is called a slowing down from M when it has 
magnification at least 1 and p.M ;) M . 

Sealing is extended to scales, schedules, and processes by 

p.(f.M = p ( (f.M) 
p.s.a = p(s.a) 
p.P = (sets : s E P : p.s) 
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0 

For scale p and enabling structure E, the sealing p.E of E is the enabling 
structurein ES(eE,iE) defined by p.E.s=p(E(p-1.s)). 

For x a schedule, a process, or an enabling structure, a scale is called a 
speeding up (slowing down) of x if (and only if) it is a speeding up (slowing 
down) from its base bx. 

The set of scales is denoted by SC. The set of slowing downs of (from) x 
is denoted by SD.x , and its set of speeding ups by SU.x . 

We also denote sealing with the operators 0 and EB for magnification and 
translation respectively: e.g. À 0 s ffi J.L instead of p.s for scale p with 
magnification À and translation J.L • 

In the sequel p and u range over scales. 

SimHar to renaming, sealing of enabling structures is what one would expect 
from sealing: P(p.E) = p.P E . 

The following proposition states that speeding up a speeding up gives a speeding 
up, and that slowing down a slowing down gives a slowing down. 

Proposition 2.42 (without proof) 

0 

p E SU.x A u E SU(p.x) :::} (p.u) E SU.x 

p E SD.x A u E SD(p.x) :::} (p.u) E SD.x 

2.4 Generic actions and choice-free commands 

The programming notation we use is partly based on choice-free commands 
(similar to the restricted commands in [27]). The primitive operations are cate
nation ( ; ) , parallel composition ( , ) , and repetition ( * ) . For example, the 
formula (a ; b )* describes a mechanism that alternately perfarms a actions 
and b actions; a and b may for example be narnes of channels along which the 
mechanism communicates with its environment. Since in the enabling model 
actions may happen at most once, we have to describe such behaviours in terms 
of occurrences of the generic actions that occur in the choice-free commands. In 
the sequel we frequently use enabling structures over ( occurrences of) generic 
a.ctions. We introduce the following 

Convention 2.43 Enabling structures over gencric actions. 

• The set of occurrences of a generic action a is ( set i : i ~ 0 : ai ) . 

• An alphabet must contain all occurrences of a generic action or none. 

• An enabling structure must respect the order of occurrences of the same 
generic action. That is, for s E P E: s.ai+l > s.ai or s.ai+l oo . 
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• The notation of alpbahets is abbreviated by just mentioning the generic 
actions. For example, the notation { a, b} is used instead of 
(set i : i ) 0 : 4Zî ) u (set i : i ) 0 : bi) . 

D 

For the sake of completeness, we mention the 'independence condition': 

4Zi = bi <:> a = b A i = j 

In choice-free commands, S ; T stands for S followed by T , S, T for S 
parallel T, S* for an infinite repetition of S, and S"" for a repetition of n 
times S. 

Deftnition 2.44 Choice-free command. 

• e is a choice-free command. 

• . a is a choice-free command. 

• For S a choice-free command that bas no infinite repetition, and T a choice
free command: S ; T is a choice-free command. 

• For S and T choice-free commands that share no actions: S, T is a choice
free command. 

• For S a choice-free cammand that bas no infinite repetition: S* and S"' 
are choice-free commands, for any natura! n . 

D 

We assign the highest priority to the unary operators * and "" , and the lowest 
priority to the semi-colon. 

In the enabling fundion of a choice-free command we assume a unit delay of 
1 between consecutive causally dependent actions, and we assume the first ac
tions to be enabled at moment 1 on the time axis. This corresponds to the 
description of devices relative to the moment of initiation, where actions model 
the completion of events that have a duration of 1 time unit. Occasionally we 
assume deviating delays, instead of one time unit. Furthermore we sometimes 
use r to denote an internal action. We do not give a forma! definition of the 
enabling function n S of a choice-free command S , but we explain it informally 
by means of some examples. 

Example 2.45 Ena.bling fundions of choice-free oommands. 

• The enabling function of e is the enabling fundion over the empty alphabet, 
Dé:fZI • 

• na .s.ai if i = 0 -+ 1 0 i > 0 -+ oo ft 

• na*.s.4Zî = if i=O--+ 1 0 i>O--+ s.ai-t+1 ft 
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• n (a ; r )* .s .ai = if i = 0 --+ 1 U i > 0 --+ s .ai-1 + 2 ft 

• Under the assumption that a actions take p time units, the following en
abling function corresponds to a* : 

e.s.ai = if i = 0 --+ p U i > 0 --+ s.ai-1 + p ft 

• nan .s.ai if i=Ot\i<n --+ 1 

11 0 <i< n --+ s.ai-1 + 1 
u i~ n --+ 00 

ft 

• n(a; (a ,b)*) .s.ai = if i=O --+ 1 

D i= 1 --+ s.ao + 1 
u i> 1 --+ s.ai-1 ma.x s.bi-2 + 1 
ft 

n(a; (a,b)*).s.bi = n(a; (a,b)*).s.ai+l 
0 

2.5 Enabling with fixed delays 

The behaviours that are described by choice-free commands have fixed delays 
between cause and effect. In this section we discuss enabling with fixed delays in 
generaL At the end of the section we introduce eonservative enabling struetures. 
From the theory in Appendix B follows that these are exactly the enabling 
structures with fixed delays. 

The first generalization we discussis the description of mechanisms by means of 
dependenee relations. Partial orderscan he used to describe the 'trace processes' 
that are called eubie in [27], and {AND}-eausaJ in [8]. Mazurkiewicz traces, [20], 
are partial orders. We introduce a slightly more general description of enabling 
functions by using dependenee relations. 

Deftnition 2.46 Dependenee relations. 

0 

A binary relation R over an alphabet is the dependenee relation of an en
abling structure E over the same alphabet if 

E.s.a = (lub b: bRa : s.b + 1) ; where lub 0 = 1. 

Example 2.4 7 Two dependenee relations. 

Figure Graphical representations of relations R1 and R2 
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1 Relation R1 over { a, b, c, d} is given hy aRt a , b R 1 c , d Rt c , a.nd false 
otherwise. The corresponding enabling function is given hy 

e.s.b = 1 e.s.a = s.a + 1 
e.s.d = 1 e.s.c = s.b + 1 ma.x s.d + 1 

2 Relation R2 is given hy ai+t R2 ai for i ~ 0, a.nd false otherwise. The 
corresponding enahling function is given hy e.s.aj = s.ai+l + 1 . 

[J 

Both enahling functions use a rather ha.roque way to state that a actions 
ca.nnot happen. 

All hehaviours that ca.n he described with choice-free comma.nds ca.n also he de
scrihed with dependenee relations. However, even for arelation over occurrences 
of generic actions there does not always exist a choice-free cammand with the 
sa.me process. 

Example 2.48 Dependenee relations versus choice-free commands. 

Rt R2 
ai 6i+t 

x 
bi hï+t 

Figure Graphical representations of relations R1 a.nd R2 

1 Relation Rt over { a,b} is given hy: 

ai Rt ai+l bi Rt bi+l ai Rt hï+t hï Rt a,+l a.nd false otherwise. 

Rt descrihes the sa.me process a.s (a,b)*. 

2 Relation R2 over { a,b} is given hy: 

a, R2 ai+l bi R2 bi+t ai R2 bi+2 bi R2 ai+2 a.nd false otherwise. 

There is no choice-free command that descrihes the sa.me process as R2 . 
[J 

Simila.r to choice-free commands, dependenee relations can he generalized to 
descrihe behaviours with a.rhitrary (hut fixed) delays. These generalized de
pendence relations correspond to the event-rule systems of (4]. We use this 
generalization in graphical representations only. As an example we give the de
pendencies for the square element in Figure 2.49. In this figure, ..i symbolizes 
the moment zero on the time-axis. 

1 0.5 
b 

1 
..i a c 

Figure 2.49 Dependendes in the square element (see Exa.mple 2.20). 
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The behaviours that are described hy (generalized) dependenee relations are 
AND-causal behaviours: actions are enabled as soon as all preconditions are 
fulfilled. Take for example relation R1 of Example 2.47; action c is enabled 1 
time unit after both b and d are performed. In the dual type of dependency 
an action is enabled as soon as at least one precondition is fulfilled. Such an 
OR-causal dependency cannot be expressed with choice-free commands nor with 
dependenee relations. The merge is a typical example of a specification (of data) 
with OR-causal dependencies. 

Example 2.50 Synchronized merge of two input streams. 

Consider the following specification for a program with input channels a 
and b, and output channel c: 

{ c(2i),c(2i + 1)} = { a(i),b(i)} for all i~ 0, 

where a( i) is the value that is received during communication a, ( similar 
for b) and c(j) is the value that is sent to the environment during commu
nication c; . 

A possible implementation of this specification is given by the following pro
gram: 

program Merge1 (input a, output b) : 
var va,vb i 
begin 

(a?va,b?vb i c!va i c!vb)* 
end. 

where a?va denotes receipt of an input-value along channel a and storage of 
this value in variabie va, and c!va denotes output of the value of va along 
channel c (etc.). The program has communication behaviour (a, b ; c ; c )* . 

a, 
~ ----.,._ 

C2i-l C2i C2i+l ----.,._ 
b, 
~ 

Figure Dependendes in (a , b ; c ; c )* . 

In fact, the previous program implements the following more restrictive spec
ification: 

c(2i)=a(i) 1\ c(2i+l)=b(i). 

However, according to the original specification, c(2i) is allowed to be the 
first received of the values a( i) and b(i). This OR-causal dependenee is 
reflected in the following enabling function. 

e.s.a, if i= 0 --> 1 ~ i> 0 -+ s.c2i-1 + 1 fi 
e.s.bi = e.s.a, 
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e.s.c2i = S.l!i min s.bi 
e.s.c2i+t = s.ai max s.bi max s.c2i 

In the graphical representation below, the arrows that give OR-causa! de
pendence are labeled with a V . 

Figure Dependendes in e . 

The following program notation for this version of the synchronized merge 
somewhat obscures the fact that a and b happen independently. When the 
. a communication happens first, the first alternative is chosen; when the b 
communication happens first, the second alternative is chosen. When a and 
b happen simultaneously, either alternative can he chosen. 

program Merge2( input a, output b): 
var va,vb; 
begin 

( a?va --+ b?vb, c!va ; c!vb 
0 b?vb --+ a?va, c!vb ; c!va 
)* 

end. 

In its most general form, an enabling structure with fixed delays may capture 
AND-causal, as well as OR-causa! dependendes with arbitrary delays. The 
initia! delay may even he negative. 

Having fixed delays turns out to he equivalent with being eonservative (Defini
tion 2.53, Corollary 2.54). Before defining conservatism, we first consider the 
related, but simpler, notion of being aseending. 

Definition 2.51 Ascending, Ase. 

0 

For x an enabling structure or a dependenee function, and P a set of 
schedules over the same alphabet, x is aseending on P if (and only if) 

(V s, t : s, t E P A s ~ t : x .s ~ x .t) 

An enabling structure, or dependenee function, is called aseending if it is 
ascending on its entire domain. The set of ascending enabling functions is 
denoted by Ase . The set of enabling functions that are ascending on P is 
denoted by Ase.P. 

In the following example we show that not all enabling structures are ascending, 
and that not all ascending enabling functions have fixed delays. 
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Example 2.52 

0 

Enabling functions e and f are very similar. Since the delay between a 
and b may he 1 as well as 2, dependent on the moment at which a is 
performed, none of them has fixed delays. Enabling function e is not even 
ascending because postponing a may result in a faster enabling of b . 

e.s.a 1 f.s.a 1 

e.s.b if s.a < 2 _. s.a + 2 
0 s.a ~ 2 _. s.a + 1 
fi 

f.s.b = if s.a < 2 _. s.a + 1 
0 s.a ~ 2 _. s.a + 2 
fi 

Definition 2.53 Conservative, Con. 

0 

For x an enabling structure or a dependenee function, and P a set of 
schedules over the same alphabet, x is conservative on P if ( and only if) 

(Vs,t,J-L: s,t EP A 0:;;;; J-L < oo As:;;;; tffiJ-L: x.s:;;;; x.t ffiJ-L) 

An enabling structure, or dependenee function, is called conservative if it is 
conservative on its entire doma.in. The set of conservative enabling functions 
is denoted by Con . 

From the definition we infer that being conservative implies being ascending 
(take J-L = 0). 

From Theorem B.7.5 we infer the following corollary. 

Corollary 2.54 

An enabling structure has fixed delays if ( and only if) it is conservative. 
0 

Apart from being a nice theoretica! result, this corollary has also practical appli
cations. The behaviours of programs without choice, for example those that are 
described by choice-free commands, have fixed delays. Furthermore, it will turn 
out in the next chapter that conservatism is useful property when romparing 
performance. 

2.6 Alphabet restrietion 

Using parallel composition and masking, we are capable of descrihing parallel 
cooperation of mechanisms, including hiding of actions to the ( common) en
vironment. Every act of masking, however, adds new internal actions to the 
description of a mechanism. Since we are, usually, not interested in the internal 
behaviour of mechanisms, it is a good idea to have an operation that allows us 
to abstract from internal actions. For this purpose we introduce the projection 
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of enabling structures. We even tend to describe Ihechanisms by tbeir exter
nal behaviour only, by means of enabllng functions. In this case, every act of 
masking must immediately he foliowed by an act of projection. We introduce 
restrietion as the combination of bath operations. 

Removing internal actions from an enabling structure is possible because the 
environment has no direct intluence on their performance, the moments they 
are performed depend on the moments other actions are performed only: for 
A ;2 eE and 8 E P E t A there exists a unique t E P E with t t A = 8 . The 
projection (Et A).8 is defined in termsof this t by (Et A).8 = E.t t A. 

Let, for example, 8 be a schedule over the external alphabet of enabling struc-
. ture E of Example 2.37. The moment at which b is performed by E depends 
on the moment at which a is performed only: if schedule s is performed, then 
b is performed at moment 8.a + 0.5 . This knowledge can he used to compute 
the moment at which c is enabled, which is s.b + 1 = 8.a + 1.5 . 

In order to obtain schedule t we de:fine the extrapolation of s with E . 

Deftnition 2.55 Extrapatation of schedules: f . 

0 

For s and E such that as Ç aE, the extrapolation of s with E , s l E , 
is defined as the unique schedule t over aE that satisfies 

t.a = il a E as -+ s.a 0 a rJ. as -+ E.t.a ft 

The argument for uniqueness of the extrapolation of a schedule is similar to the 
argument for uniqueness of the history of an enabling structure. 

The first item of the following proposition states that s i E is indeed the in
tended extrapolation. The second item gives an alternative characterization. 

Proposition 2.56 

For E and A such that eE Ç A : 

1 sEPEtA * sfEEPE 

2 s E P E t A * s t E = h( n( s teE) 11 E) 

Pro of 

1 The {::: implication is evident. Remains to prove the => impllcation. 

When sE PEt A then there exists a v EPE such that v t A= s. This 
v satisfies trivially as a salution for t in the definition of t (for a E as 
holds v.a = s.a, and for a rJ. as· a is internal so v.a = E.v.a ). Since this 
equa.tion has a unique solution, this yields v = s iE, a.nd thus s iE E P E. 

2 The {:: follows from the previous item. Remains to prove the => implica.tion. 

h( n( s teE) 11 E) is the unique schedule u over aE satisfying: 
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0 

u.a = if a E eE -o E.u.a ma.x s.a D a E iE -o E.u.a fi 

Proceed with the same v as in the previous item. 

Definition 2.57 Projection of enabling structures: r . 

0 

For E and A such tha.t eE Ç A , the projection of E on A , E r A , is the 
enabling structure in ES(eE, iE nA) defined by: 

(Er A).s = E.(s i E)i A 

From Proposition 2.58 we conclude that b(E t A)~ bE and d(E rA)~ dE. 
Consequently, any projection of an enabling structure is indeed an enabling 
structure. 

Proposition 2.58 

For s , u , and e over A n aE : 

1 b(E.(e iE)) = bE 

2 sim(s i u iE) ~ sim(s,u) 

Proof of 1 (2 is evident). 

0 

Reeall that ae = A n aE . 

Let F (A n aE, iE \ A, tE} (a kind of inverse masking). We derive: 

b(e iE) 
= b(e i F) 
~ { e E PF teF so e: i FE PF, Proposition 2.34.1} 

bF 

= { Proposition 2.28.2, hE = hF } 
bE 

From Proposition 2.28.1 we infer b(E.(e iE)) = bE . 

The projection of enabling structures is closely related to the projection of pro
cesses: 

Proposition 2.59 

P(E t A) = PEr A (for A ;2 eE) 

Proof 

Let E and A as above, and let sE S.(A n aE), we derive: 

sE PEt A 
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<:> { Proposition 2.56.1} 

sf E EPE 

<:> { Proposition 2.33 } 

st E )' E.(sf E) A sf Et iE = E.(s tE) tiE 
<:> ,{ definition of 1 (2.55)} 

s )' E.(s 1 E) t(aE nA) A s tiE= E.(s 1 E)t(iE nA) 

<:> { definition of t (2.57)} 

s )'(Et A).s A s ti(E t A}= (Et A}.s ti(E t A} 
<:> { Proposition 2.33 } 

sE P(E t A) 
0 

In the following exa.mple we give a formal derivation ofthe projection of enabling 
structure E from Exa.mple 2.37 on its external alphabet. 

Example 2.60 External behaviour of the square element. 

0 

Let E he as in Example 2.20. For s E S.eE we derive: 

(E teE).s 
= { definition of t } 

E.(s tE) teE 
= { definitions of i and E } 

E.{ (a,s.a},(b,s.a + 0.5),(c,s.c)} teE 

= { definition of E } 

{(a, 1),(b,s.a + 0.5),(c,s.a + 0.5 + 1)} teE 
= {(a, I),(c,s.a + 1.5)} 

Masking and projection are combined in restriction. 

Definition 2.61 Restrietion of enabling structures: lt . 

0 

For enabling structure E and alphabet A , the restrietion of E to A , 
E lt A , is defined by E lt A = ( E nA) t A . 

We immediately draw the following condusion (see Definitions 2.31 and 2.57): 

Proposition 2.62 (without proof) 

0 

For any enabling structure E and alphabet A , E lt A , is the enabling 
structure in CS(eE nA, iE nA) given by: 

(E lt A).s = E.(s iE) t A 
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From Propositions 2.36 and 2.59 we infer 

Proposition 2.63 (without proof) 

P(E lt A) Ç PEt A 
0 

39 

The Ç in this property may, in general, not be replaced by an equality; this is 
shown in the example below. 

Example 2.64 

0 

Let enabling function e over {a, b} he defined by: 

e.s.a = 1 
e.s.b = if s.a < 2 -+ 4 0 s.a ~ 2 -+ 3 fi 

It is left as an exercise to the reader to verify that 

P(eltb) = (sets:s.b~4:s) 
Pe I b = (sets : s.b ~ 3 : s) 

In Proposition 2.65 we give some mutual relations between parallel composition, 
masking, and restriction. The relations for parallel composition and masking are 
evident. It turns out that restrietion behaves similar to masking. Keep in mind 
that the properties for 11 also hold for t . 

Proposition 2.65 

1 EnA11B 
En A lî B 
E lt Alt B 

E11(AnB) 
= EltB11A 

E lt (A n B) 

2 ( the history is a special case of masking) 

h(E 11 A) = hE 
h( E lt A) = hE t A 

3 For E and F composable, and for A 2 ( eE n eF) : 

(E 11 F) u A = E 11 A 11 F u A 
(E 11 F) lt A = E lt A 11 F lt A 

Proof 

1 The first equality follows from the definition of masking (Definition 2.31); the 
second equality follows from Proposition 2.62. The third equality is proven 
below. 

The alphabets of E 11 A lt B a.nd E 11 B n A are the same. Remains to prove 
equality of the behaviours. 

Let s be a schedule over aE n A n B . 
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First we derive s l ( E lt A) l E = s l E . 

Let t = s i( E lt A) and u = tl E . We derive for a E aE : 

(st (E lt A) t E).a 
= 

u.a 

= { definition of t (2.55)} 

if a E at -+ t.a 0 art at -+ E.u.a ft 
= {idem} 

if a E at -+ if a E as -+ s.a 0 art as -+ (E lt A).t.a ft 
0 artat -+ E.u.a 
ft 

= { Proposition 2.62 } 

if a E at - if a E as - s.a 0 art as - E.u.a fl 
IJ a ft at -E.u.a 
ft 

= 
if a E as --+ s.a IJ a ft as -E.u.a fl 

= { definition of l } 
(st E).a 

Next we derive: 

E lt (An B).s 

= . { Proposition 2.62 } 

E.(s tE) t{A n B) 

= { result of previous derivation } 

E.(s t (E lt A) tE) t A tB) 
= { Proposition 2.62 } 

(E ~ A).(s t (E lt A) tB) 
= {idem} 

(E lt A lt B).s 

2 The first equality is evident; the second follows from Propositions 2.36, 2.59, 
and the second formula in the previous item. 

3 The first formula is evident; the second one is proven helow. 

Let E, F, and A he as in the proposition. The alpbahets of (E 11 F) lt A 
and E lt A 11 F lt A are .the same. 
Remains to prove equality of the hehaviours. 

Let s he a schedule over A n (aE u aF). 

First we derive sl (E 11 F) t aE = s t aE l E . 

Let t = s l ( E 11 F) ; we derive for a E aE : 
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D 

t.a 

= { definition of i (2.55)} 

if a E as -+ s.a D a rJ. as -+ (E 11 F).t.a fi 

= {definitionof 11, (aE\as)naF= 0} 

if a E as -+ s.a D a rJ. as -+ E.(t i aE).a fi 

Coneinde (from the definition of i) that 

s i(E 11 F) t aE = st aE jE 
On account of symmetry the same condusion is drawn for F . 

Next we derive: 

((E 11 F) li A).s 

{ Proposition 2.62 } 

(E 11 F).(s i(E 11 F)) i A 

= { definition of of 11 } 

( E.(s i (E 11 F) jaE) Lub F.(s i (E 11 F) jaF)) i A 

= { see above } 

( E.(s taEj E) Lub F.(s taF i F)) jA 

E.(s jaEj E) t A Lub F.(s jaFj F) i A 

= { Proposition 2.62 } 

(Eli A).(s t aE) Lub (F lt A).(s i aF) 
= 

(E lî A).(s j a(E lt A)) Lub (F li A).(s t a(F lt A)) 

= { definition of 11 } 

(E lt A 11 F lt A).s 

41 

The projection of enabling structures does not always exactly yield the descrip
tion one expects. In particular, the projection of an enabling structure may 
contain dependendes that seem redundant. Apart from being an exercise in 
computing projections, the following example serves as an illustration for this 
phenomenon. The notion of equivalence, that is introduced in the next section, 
provides a way to prune such redundant dependencies. 
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Example 2.66 

Consider the dependenee relations that are given in Example 2.48. Let e 
he the enahling function of (a, c )* ( Rt ,. .... c ), and let f he the enahling 
function of ( c, b )* ( R1 o-+c ). 

In this,example we discuss the composition of e and f in which the commu
nications along c are bidden to the common environment. The hehaviour 
of this composition is given hy g = ( e 11 f) lt {a, b} . By intuition one can 
already tell that the hehaviour of g is simHar to R2 ( the difference hetween 
the number of a 's and the number of b's that is performed is at most 2). 
Computation of this behaviour, however, gives a far more complicated result. 

e 11 f is given hy: 

( e 11 f) .s.a. = if i= 0 --. 1 

0 i> 0 --. s.ai-t + 1 max S-Ci-t + 1 
fi 

(e 11 f).s.bï = if i= 0 --. 1 

0 i>O - s.b,_t + 1 max s.Ci-t + 1 
fi 

(e 11 f).s.q = if i= 0 - 1 
0 i>O - s.ai-t + 1 max s.b,_t + 1 

max 8-Ci-1 + 1 
fi 

For 8 a schedule over {a, b} , the extrapolation t = s l ( e 11 f) is given by: 

t.at, = s.ai 
t.b, = 8.b, 
t.c, = ( maxj: 0 ~ j <i: s.ai +i-j max s.bi +i-j) maxi+ 1 

Applying Proposition 2.62 results in 

g.s.a, = (maxj:O~j<i:s.ai+i-j) max 
( maxj: 0 ~ j <i- 1: s.bj +i-j) max i+ 1 

For b, the enabling is simHar (interchange a and b ). 

This is quite a baroque description of the behaviour of ( e 11 f) lt { a, b} . 
Carefut rewriting gives the following formula: 

g.s.a. = if i= 0 --. 1 
0 i= 1 --. s.a,_1 + 1 max 1 
0 i ~ 2 --. s.ai-1 + 1 max s.b,_z + 2 

ft 

max ( maxj : 0 ~ j < i- 1 : s.ai +i-j) 

max ( maxj : 0 ~ j < i- 2 : 8.bi +i-j) 

max i+ 1 
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0 

The dependency s.ai-1 + 1 in the enabling of ai imposes a delay of 1 time 
unit between successive a adions. Consequently, for a.ny schedule in the pro
cess of g the number of time units between aj a.nd a, , for j < i, is at least 
i-j. This observation makes the first underlined quantification redundant. 
For simHar reasons the other underlined dependendes are redundant. Prun
ing the redundant dependendes gives the following alternative description of 
the behaviour of ( e 11 f) lt { a, b } : 

h.s.a. = if i = 0 -+ 1 
U i = 1 -+ s.ao + 1 
0 i ~ 2 -+ s.ai-1 + 1 max s.bi-2 + 2 
fi 

( similar for b, ). 

Except for a 'latency' of 2 time units between a a.nd b actions and vice 
versa (instead of 1) this is the behaviour given by dependenee relation R 2 

(of Example 2.48). 

The composition that is given in this example is simHar to the cascade of FIFO 
buffers that is discussed in Chapter 5. 

2. 7 Equivalence of enabling structures 

We consider enabling structures to be equivalent when they exhibit the same 
behaviour, in a.ny environment. Equivalence is not only important because it 
allows to compare distinct mechanisms, it also allows to simplify descriptions of 
mechanisms. In Example 2.66, for example, we computed an enabling function 
with a lot of redundant dependendes, and mentioned the possibility of pruning 
them (without changing the actual behaviour). In the second part ofthis section 
we introduce a normal form with respect to equivalence of external behaviour. 

The behaviour of an enabling structure is given by its process; the external 
behaviour is given by its process projected on the external alphabet. We intro
duce equivalence relations that state the equality of behaviour, and of external 
behaviour, up toa moment in time. 

Definition 2.67 Equivalence of enabling structures: ""M and >::! M 

0 

For M ET, wedefine equiva1ence relations ""M and >::!M by: 

E "'M F * eE = eF A iE = iF A P E ~ M = P F ~ M 

E >::! M F * P E teE ~ M = P F t eF ~ M 
"' and >::! are abbreviations for "'oo and >::! 00 respectively. 

The following relations between these equivalences are evident. 
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Proposition 2.88 (without proof) 

E "'M F => E ~M F e "'M f {:> e ~M f 

and for M ~ N: 

E "'M F => E "'N F E~MF => E~NF 
0 

Enabling structures do nat have to be identical to be "' equivalent. Take for 
example enabllng structure E in Example 2.20. Because for all schedules s 
in its process s.b = s.a + 0.5 , it is rather evident that the term s.b + 1 in the 
enabling of c may be replaced by s.a + 1.5 . A generalization of this result 
is given in Corollary 2.71. This corollary is a consequence of the extension 
property. The extension property allows us to reason about the process of an 
enabling structure in termsof prefixes: the second part states when the prefix 
of a schedule is a memher of the prefix of the process, it is a generalization of 
Proposition 2.33. 

Proposition 2.89 Extension property. 

1 Let sE S.aE- and M such that: 

s ~ M ~ E.s ~ M A 8 tiE l M = E.s tiE ~ M 
Define t over alphabet aE as the unique salution of 

t.a = if s.a < M -+ s.a 0 s.a ~ M -+ M max E.t.a ft 

Then t satisfies t ~ M = s l M and t E P E. Furthermore t satisfies: 

t.a l (M +dE) = if s.a < M -+ s.a 
0 s.a ~ M -+ M max E.s.a l(M +dE) 
ft 

2 P E l M = (set 8 : 8 l M ~ E.8 l M A 8 tiE l M = E.s tiE l M 
:8 l M) 

Proof 

1 Let 8, E and M as in the proposition. 

In order to show uniqueness and existence of t we define e over aE by: 

e.u.a = if 8.a < M -+ s.a 
0 s.a ~ M -+ M max E.u.a 
ft 

e is an enabling function with be ~ bE and de ~ dE. Furthermore, t is 
the unique fixed point, he , of the history equation, e.u = u. 

t l M = 8 l M is evident. 

Furthermore we derive: 

t.a 

~ { s l M ~ E.s l M } 
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if s.a < M -+ E.s.a 0 s.a ) M -+ M ma.x E.t.a fi 

) { E .s ~ M = E .t ~ M } 

E.t.a 

a.nd for a E iE: 

t.a 

{ s tiE ~ M E.s îiE ~ M } 

if E.s.a < M -+ E.s.a 0 E.s.a ) M -+ M max E.t.a fi 

= { E .s ~ M = E .t ~ M } 

E.t.a 

From Proposition 2.33 we conclude t E P E . 

The formula for t ~ ( M + dE) is evident because s ~ M = t ~ M . 

2 The 2 inclusion is a direct result of 1. Remains to prove the Ç part. 

0 

Let s E P E ~ M , let t E P E with t ~ M = s ~ M , we derive: 

tE PE 

<:> { Proposition 2.33} 

t) E.t A t tiE E.t tiE 
=> { Proposition 2.10.1} 

t ~ M ) E.t ~ M A t tiE ~ M = E.t tiE L M 

<:> { dE > 0 , s ~ M = t ~ M } 

s ~ M ) E.s ~ M A s tiE ~ M = E.s tiE ~ M 
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In Corollary 2. 71 we use the following relations that compare the behaviours of 
enabling structures over a set of schedules. Relation ~1' is a generalization of 
relation ~ for functions. 

Definition 2.70 ~1' and =p. 

0 

For alpbahets A and B such that A n B = 0, and for P a set of schedules 
over A U B, wedefine relation ~P on fS(A, B) by: 

E ~1' F <:> (V s : s E P : E.s ~ F.s) 

=p is defined as ~P A )p. For P = S.(A U B) we write ~ instead of 
~1' , the corresponding =p is exactly the equality. 

Corollary 2. 71 

1 For E and F over the same alphabets: E "" F <:> E =p E F 

2 For e and f over the same alphabet: Pe 2 Pf <=> e ~PenPf f 

0 
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This corolla.ry follows from the extension property, via the following proposition. 

Proposition 2.72 Genera.lization of Corolla.ry 2.71. 

1 For E a.nd F over the sa.me a.lpha.bets: 

E "'1rf F <:> ( V 8 : s E P E : E .s ~ M = F.s ~ M ) 

2 Pe ~ M 2 Pf ~ M <:> (V 8 : s E (Pen Pf) : e.s ~ M ~ f.s ~ M ) 

Proof 

1 Let E a.nd F be ena.bling structures over the sa.me a.lpha.bets. 

1 sub => implication. 

lt suffices to prove: 

P E ~ N = P F ~ N => (V s : s ~ N E P E ~ N : E .s ~ N ~ F.s ~ N ) 
· Assume the left-ha.nd side, a.nd let s ~ N E P E ~ N a.nd b E as. 

If E.8.b ~ N, the right-hand side is evident. Assume E.s.b < N and let 
M = E.s.b. Observe that s a.nd M sa.tisfy in the premise in Proposi
tion 2.69.1. Let t be the 'unique schedule' as given in Proposition 2.69.1, 
we derive: 

tE PE 

=> { assumption} 

t l NE PF l N 

=> { Proposition 2.69.2} 

F.t.b l N ~ t.b l N 

<:> { t.b = M < N } 

F.t.b~ M 

<:> {s~M=t~M} 

F.s.b~ M 

<:> { M = E.s.b } 

F.s.b ~ E.8.b 

1 sub ç implication. We give a proof by induction. 

base For M ~ bE min bF the left-ha.nd side holds trivia.lly. 

step Let M < oo , assume the <= implica.tion holds for M . 

Let a : 0 < a ~ (dE min dF) , we prove the ç implica.tion for M + a. 
Assume the right-ha.nd side for M + a ; first observe: 

( V s : s E P E : E .s l ( M + a) = F.s l ( M + a) ) 
::::? 

(V s : s E P E : E.s l M = F.s ~ M) 

=> { assumption for M } 
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PEtM=PF~M 

For s : s ~ M E P E ~ M we derive E .s t ( M + 6.) F.s t ( M + 6.) . From 

Proposition 2.69.2 follows P E l ( M + 6.) = P F l ( M + 6.) . 

Let s as above, and let t E P E such that s l M = t l M , we derive: 

E.sl(M+ó.) 

= { s l M = t ~ M and dE ~ 6. } 

E.tl(M+ó.) 

= { tE P E, right-hand side for M + 6. } 

F.tl(M+ó.) 

= { s l M = t l M and dF ~ 6. } 

F.s l (M + 6.) 

2 Let e and f he enabling functions over the same alphabet, we derive: 

(V s : s E Pen Pf : e.s l M ~ f.s l M) 

0 

{:} { Proposition 2.13.2} 

(V s: sE Pe 11 Pf: e.s l M ~ f.s ~ M) 
{:} { Proposition 2.35 } 

(V 8 : 8 E P( e 11 f) : e.8 l M ~ f.s ~ M ) 

{:} { definition of 11 (2.30)} 

(V s : s E P( e 11 f) : ( e 11 f).s l M = f.s l M) 
{:} { previous item} 

P(e 11 EHM = PqM 

{:} { as above } 

(Pen Pf) l M = Pf l M 
{:} 

Pel M :::> Pf t M 

Corollary 2. 71 provides a way to prune redundant dependendes in enabling 
structures. Example 2.73 (see below) illustrates that notall dependendes that 
seem redundant may (formally) be pruned. In Section 6.1 we show that one 
should he careful, when formalizing liberal delay conditions that allow to prune 
such dependencies. In the mean time, we will occasionally use them in order to 
get more concise descriptions. 

Example 2.73 Adaptive ordering. 

We consider a program that communicates with the environment along chan
nels a and b. The first communications are performed independently; for 
all other communications the same order is enforced as for the first commu
nications: 
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a ,b; if ao before bo --!> (a; b)'" 
U •( ao before bo) --!> ( b ; a)* 
il 

Under the a.ssumption of unit delays, enabling function e describes the be
haviour of this program. 

e.s.ai = if i= 0 --!> 1 
0 i > 0 --!> if s.ao < s.bo --!> s.~-1 + 1 

0 s.ao ) s.bo - s.bi + 1 
il 

il max s.aa + 1 

e.s.bi = if i=O - 1 
D i>O - if s.ao < s.bo - s.a.; + 1 

0 s.ao) s.bo - s.ai-1 + 1 
il 

fi max s.~+ 1 

Except for the underlined dependencies, this enabling function follows from 
the program in a straightforward way. Without these redundant dependen
cies, however, e would not he an enabling function. This phenomenon is 
illustrated as follows: let f he the result of pruning the underlined depen
dendes in e , let M < oo , and let s and t be defined by: 

s.a1 = t.a1 = 1 
s.ao = t.bo = M 
s.b0 = t.a0 = M + 1 and all other actions scheduled on oo. 

The similarity of s and t is M. Since f.s.bt = 2 and f.t.bt = M + 2, 
the similarity of f.s and f.t is at most two. 

f , however, uniquely describes the behaviour of the program: for all sched
ules in Pe it is identical to e. f can he considered an enahling function 
under 'liheral delay conditions'. The advantage of f above e is the absence 
of redundant, and rather arbitrary, dependencies. 

Proposition 2.74 states that the equivalence relations behave as they should 
hebave with respect to the operations on enabling structures that are given in 
the previous sections. 

Proposition 2.74 

1 Relations ""'M are congruences with respect to 11 , 11 , t , and lt • 

2 Relations ~ M are congruences with respect to u , t , and lt . 

0 

The proof of this proposition is postponed until after Proposition 2.77. 
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The relation between :::lM and parallel composition is more subtle: for compos
able enabling structures E and F and enabling structures E1 and F' such 
that E ::::l E1 and F ::::l F 1 

, the latter two may share internal actions, in which 
case they are not composable. Observe though, that the narnes of internal ac
tions do not affect the external behaviour of an enabling structure. Therefore, 
a salution is to define parallel composition of equivalence classes. 

Deflnition 2.75 Equivalence class modulo internal renaming: [Ela. 
[ E ]R ( set R. : R. is an internal renaming of E : R..E) 

where an internal renaming of E is a renaming R. on aE such that 
R..a a for a E eE . 

0 

Definition 2.76 Parallel composition of [la classes. 

[E]R 11 (F]R = (R.E.E 11 'RF.F]R 

0 

for internal renamings R.x of X such that R.E.E and 'RF.F are compos
able. 

lt is easily verified that this is a proper definition ( that is: independent of which 
intern al renamings are chosen ). 

Proposition 2.74 can be extended with: 

Proposition 2.74.2a 

:::lM is a congruence with respect to parallel composition of [ ]R classes. 
0 

The proof of this proposition is postponed until after Proposition 2. 77. 

A consequence of "' and ::::l being congruences with respect to masking, is the 
following behaviour of the equivalences with respect to the history of enabling 
structures. 

Proposition 2.77 Equivalence and h (without proof). 

E "'M F :::> hE ~ M = hF ~ M 

E :::lM F :::> hE ~ M teE = hF ~ M teE 
0 

Proof of Proposition 2. 7 4, including 2. 7 4.2a . 

1 sub parallel composition. 

We derive for and Ei composable: 

Eo "'MEt A Fo "'M F1 

{:} { Proposition 2.72.1} 
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( V s : s E P Eo : Eo.s ~ M = Et.S ~ M } A 

( V s : s E P Fo : Fo.s ~ M = Ft.s ~ M } 

=> { ('P 11 Q)t a'P ç 'P } 

Chapter 2: The Model 

(V8: 8 E (PEo 11 PFo): Eo(s taEo) ~M = Et(s taEt) ~M A 

Fo(s taFo) ~M = Ft(s taFt) ~M) 

=> { Definition 2.30, Proposition 2.35} 

(V 8 :sE P(Eo 11 Fo}: (Eo 11 Fo}.s ~ M = (Et 11 Ft).s l M) 

<:> { Proposition 2.72.1} 

Eo 11 Fo ""'M Et 11 Ft 

1 sub masking. 

The proof is similar as for parallel composition, use P( E u A) Ç P E (Propo
sition 2.36). 

1 sub projection. 

Let E and F be enabling structures over the sante alphabets, let A be an 
alpha.bet such that eE Ç A . 

From "'M being a congruence for parallel composition and masking, and 
from Proposition 2.56.2, and Proposition 2.36 (second formula), we conclude 
the first step in the following derivation. 

E-MF 

<:> { see a.bove } 

E"'MF A (Vs:sEPEtA:stE~M=stF~M) 

=> { Propositions 2. 72.1 and 2.56.1 } 

(Vs:sEPEtA:E(stEHM = F(8tF)lM) 

=> { definition of t (2.57)} 

(V8:sEPEtA:(EtA).s~M = (FtA).s~M) 
<:> { Proposition 2. 72.1 } 

Et A "'M Ft A 

1 sub restriction: use ma.sking a.nd projection. 

2 We give the proof for parallel composition (2.74.2a.) only; the other proofs 
are similar. It suffices to give the proof for composable enabling structures 
E; and F;.. 
We derive: 

Eo ~ M Fo A Et ~ M Ft 

<:> { Definition 2.67, Proposition 2.59} 

Eo teEo "'M Fo teFo A Et teEt ""M Ft teFt 
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{:} { ,.... M is a congruence for parallel composition} 

( Eo I eEo 11 Et I eEt) ""M ( Fo I eFo 11 Ft I eFt) 
{:} { Proposition 2.65.3} 

(Eo 11 Et) te(Eo 11 Et) ""M (Fo 11 Ft) le(Fo 11 Ft) 
{:} { Definition 2.67, Proposition 2.59} 

(Eo 11 Et) ~M (Fo 11 Ft) 
0 

Normal form 

We introduce N as a normal form of enabling structures with respect to ~. 
The normal form of an enabling structure is an enabling function over its external 
alphabet that captures the 'unfolding' of all dependendes between actions. For 
example, the normal form of enabling structure E of Example 2.20, is given 
by N.E.s.a = 1 and N.E.s.c = s.a + 1.5 max 2.5. The term max2.5 in the 
enabling of c is an unfolding of s.a + 1.5 with the enabling of a . 

Definition 2.78 Normal form: N. 

D 

The normal form N.e of enabling function e is the enabling function over 
alphabet ae defined by N.e.s = e.h(ns 11 e) . The normal form is ex
tended to enabling structures in general by N.E = N(E I eE) , and to 
sets of enabling structures by N.E = (set E : E E f. : N.E) 

The set of normal enabling functions, N, is defined by 

N = ( set e : : N.e ) . 

Observe that the normal form of an enabling structure is an enabling function 
and that b(N'.e) =he and d(N.e);;::: de. 

Proposition 2.79 N is a normal form w.r.t. ~: 

1 E~N.E 

2 E ~ F {:} N.E N.F 

Proof 

1 Observe that for sE Pe, N.e.s e.s and coneinde from Corollary 2.71.1 
that P(N.e) = Pe. Observe furthermore (Proposition 2.59) that 
E teE~ E. 

2 The ç part of the impHeation follows from the previous item of this propo
sition. In order to prove the =? implication it suffices to abserve enabling 
functions only (see Proposition 2.59). 

For e ~ f we derive: 
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.A!.e.s 
= e.h(ns 11 e) 

= { e ~ f, h(ns 11 e) EPe, Corollary 2.71.1} 

f.h(ns 11 e) 

= '{ e ~ f , Proposition 2. 77 } 

f.h(ns 11 f) 
= .A!.f.s 

0 

Alternative chara.cterizations of .Af are given in the next proposition. 

Proposition 2.80 

1 e E .Af <:> (Vs: : e.s = e.h(nsll e)} 

2 e E .Af <:> {Vs: : e.s = e(s lub e.s)} 

3 e E .Af :::;. (Vs: : (slub e.s) EPe} 

Pro of 

1 Follows from the definition of .Af, and the previons proposition. 

2 sub :::;. implication. 

Assume e E .Af, due to the previous item, it suffices to establish that 

h(ns 11 e) = s lub e.s; we derive: 

h(ns 11 e) 

= { definition of h (2.27)} 

(ns 11 e).h(ns 11 e) 
= { ae = ans , definition of 11 (2.30)} 

ns.h(ns 11 e) lub e.h(ns 11 e) 

= { definition of n (2.26), e E .Af } 
s lub e.s 

2 sub -<= implication. 

Assume the right-hand side, again it suffices to estahlish that 

h(nsll e) = slub e.s. 
Due to the choice of e we infer for schedule s : 

s lub e.s = s lub e.(s lub e.s) 

So s lub e.s is a solution of t in the following equation: 

t = s lub e.t 

This equation, however, has as a unique solution h(ns 11 e). 
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3 We derive for e E N': 
e(s lub e.s) 

= { previous item, e E N' } 
e.s 

' s lub e.s 

On account of Proposition 2.33 we conclude s lub e.s E Pe. 
0 
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The interested reader is invited to verify that the normal form is preserved 
under restrietion ( e E N' '* e lt A E N') but in general not under parallel com
position. 

The presence of all unfoldings of dependendes in enabling functions that are 
in normal form, may result in rather cumhersome appea.rances. Campare for 
example enabling function g in Example 2.66, which is in normal form, with 
the equivalent enabling function h (in the same example). In turns out, though, 
that we have employment for the normal form: some properties of enabling func
tions that depend on the process of enabling functions only, are ea.sier proven 
( or phra.sed) in terms of their normal form. The proof of the first half of Propo
sition 2.82 (see below) is already an example of the usage of the normal form. 

In the next chapter we compa.re the behaviours of enahling functions. In fact, 
we compare the behaviours of equivalence classes over "" . In the sequel such 
classes are denoted with [ ] brackets: 

Definition 2.81 Equivalence class, dosure: [ ]. 

[ e ] = ( set f : f "" e : f ) 

0 

The notation is extended to a dosure operation on sets of enabling fundions 
as follows: 

[f] = (ue:eEf:[e]) 

We remind the reader that for enabling functions both relations ~ and '"" 
denote the same equiva.lence. 

For the three types of enabling functions we introduced thus far ( Const, Ase , 
and Con) the closures and an estimation of their normal forms are given by: 

Proposition 2.82 

1 [ Const] (set e : eis constant on Pe : e) 

[Ase] = (set e: eis ascending on Pe: e) 

[Con] (set e : e is conservative on P e : e) 
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2 ..V.[ Const] = Con st 

Af.[ Ase] c Ase 

..V.[ Con] c Con 

Proof 

1 Let Gonst', Ase' , and Con' be the sets at the right-hand sides. The 
equaUties are a direct consequence of the following observations, for t is 
Gonst , Ase , and Con respeetively: 

• t' = [ t'] 

• t ç t' 

• ..Vnt' ç t 
_The first observation follows from Corollary 2.71.1, the second one is evident. 
Consequently it suffices to prove the last observation. This last observation 
also implies the Ç inclusions in the second part of this proposition. 

1 sub t = Const 

Let e E N n Const1
, and let s be a sched~le over ae. We derive: 

e.s 

= { Proposition 2.80.2} 

e.(s lub e.s) 

= { Proposition 2.80.3, e is constant on Pe } 

e.e 

Which implies e E Gonst. 

1 sub t = Ase 

Let e E N n Ase' , we prove by induction tha.t e E Ase . 

Let s and t be schedules over ae such that s ~ t . 

base e.s ~ b( e.t) ~ e.t ~ b( e.t) 

step 

e.s ~ M ~ e.t ~ M 
:::? {s~t} 

(s lub e.s) l M ~ (t lub e.t) ~ M 
:::? { e E N n Ase' , Propositions 2.80.3, 2.34.2 } 

e((s lub e.s) l M) ~ e((t lub e.t) l M) 

:::? { definition of d (2.21)} 

e(s lub e.s) l (M +de) ~ e(t lub e.t) ~ (M +de) 

:::? { e E N, Proposition 2.80.2} 
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e.d(M+de)' e.t~(M+de) 

(end of step) 

1 sub C = Con (this proofis more of the sa.me) 

Let e E (N n Con') , we prove by induction tha.t e E Con . 

Let 8 , t (over ae ), a.nd tt : 0 ' tt < oo such that s ' te tt . 
base e.s ~ b(e.t e p.) ' (e.t e ttH b(e.t E9 p.) 

step 

e.8~M' (e.tEf)p,)~M 

:::} { s ~M' (t9p.) ~M} 

8 ~M lub (e.s) ~M ' (tfllp,) ~M lub (e.t Ef)p,) ~M 
{:} 

(8 lub e.s) ~ M ' (t lub e.t) ~ (M p,) Ef) ft 
:::} { e E N n Con' , Propositions 2.80.3, 2.34.2} 

e((s lub e.s) ~ M) ' e((t lub e.s) ~ (M- p.)) Ef) p. 

:::} { definition of d (2.21)} 

e(8 lub e.s) ~ (M +de) ' e(t lub e.s) ~ (M +de-p.) Ef) ft 
:::} { e E N, Proposition 2.80.2} 

e.s ~(M+de) ' e.t ~(M+de-p.) Ef)p, 
{:} 

e.s l (M +de) ' (e.t Ef) p,) ~ (M +de) 
(end of step) 
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2 The Ç indusions follow from the 'last observation' in the previous item. 
lt is evident that all constant enabling functions are normaL Finally, the 
inequalities for ascending and conservative enabling functions follow from 
the existence of enabling function e ( see below) that is a memher of Ase 
as well as Con, but that is not a memher of N: 
ae = {a,b} e.s = {(a,l),(b,s.a+l)} 

(the normal form of e enables b at 2 max s.a + 1) 
0 

In the sequel we refer to [ Gonst 1 , [ A.sc] , and [Con] as the dass of constant, 
ascending, and conservative enabling functions respectively. The behaviours 
of these enabling functions are the same as the behaviours of the constant, 
ascending, and conservative enabling functions; the behaviour of each enabling 
function being equivalent to the behaviour of its normal form in particular. 

In the next chapter we willencounter the three above-mentioned classes again: a 
lot of proofs for comparison rela.tions are based on their behaviours on [Con st] , 
and both [Ase] and [Con 1 turn out to he the reflexive domain of important 
comparison relations. 
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Comparing Performance 

The mechanisms we consider are designed to satisfy timing conditions on the 
external actions, where satisfaction means being 'fast enough'. Since we are 
interested in external behaviour only, both timing conditions (specifications) 
and mechanisms (implementations) are expressed with enabling functions, ratbey 
than with enabling structures in general. · 

In Section 3.2 we figure out for what relation imp between enahling functions, 
e imp f expresses that 'e is an implementation of f ', where the correctness 
concern is being 'fast enough'. In the search fora suitable rela.tion we distin~ish 
two prohlems: 

• what kind ofrela.tion do we aim at (Section 3.1), a.nd 

• what is being fast enou8h, or being at least as {ast as (Section 3.2). 

It turns out, in Section 3.3, tha.t after imposing some restrictions we are left 
with only one rela.tion, <11 , that is convenient for our purposes. Major choices 
that lead to this relation are the following: 

• The rela.tion has to imply heing 'at least as fast as' only. 

That is: e imp f ~ ' e is at least as fast as f ' . An extreme, and use
less, relation that satisfies this condition, is the relation tha.t does not allow 
any implementation of a specification: eimp f Ç} false. We strive for a. 
relation tha.t allows as many implementations as possihle. 

• The relation must he transitive, and parallel composition as well as restrie
tion must he monotonic with respect to it. 

This condition supports compositional design ofmechanisms (design hy means 
of 'divide and conquer'). Consider for example a specification e. The first 
step in the denvation of an implementation may be to implement e with 
two parallel components: ( f 11 8) lt A imp e . A second step may he to find 
(realizable) implementations for both f and 8. The only condition forthese 
implementations, f' and 8' , is that f' imp f and 8' imp 8 . Monotonicity 
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of parallel composition and restriction, and transitivity of imp , guaran
tee that the composition of f' and g' is an implementation of the original 
specification: (f' 11 g') lt A imp e. . 

• The relation does not have to be reflexive for all enabling functions. 

Reflexivity and monotonicity of 11 and lt are conflicting demands. This is 
due to the fact that there are enabling functions that have a 'speed twisting 
effect', for example enabling fundion e that is used in Examples 3.12 and 
3.16: 

e.s.a = 0.5 
e.s.b = if s.a < 1 -+ 100 

0 s.a) 1 -+ 3 
f1 

The usage of an implementation relation that is not reflexive on its entire 
domain may be surprising, it is not new. In [5], for example, DI decomposi
tion is an implementation relation that is reflexive for DI components only 
(Theorem 3.2.1.3, page 59 of [5]). 

• The relation should be robust. That is, when sealing up an allowed imple
mentation, the result must also be an implementation: 

for any speeding up p of e eimpf ::::;. p.eimpf 

Observe that we do not demand (for any speeding up p of e) p.e imp e. 
This demand would imply reflexivity because the identity is a speeding up. 

Given a specification, the question arises whether or not there exists a most lib
eral implementation that satisfies this specification. More general even, given a 
set of specifications the question arises whether or not there exists a most liberal 
implementation that satisfies all specifications. The dual problem is that of most 
severe specifications. In Section 3.4 we establish the existence of most liberal 
implementations and most severe specifications (under rather weak conditions). 

In Section 3.5 we introduce angelic and demonie response time as a first way 
to descri he the speed of mechanisms. We are, however, more interested in the 
speed of a mechanism (implementation) with respect to a specification. There
fore we use relation <ll to give the quality of an implementation relative to a 
specification. The idea is that the amount of sealing, p , that is necessary for 
an enabling function e in order to satisfy p.e <li f is a measure of the qual
ity of implementation e relative to specification f. As a derived concept we 
introduce relative response time. 

In Section 3.6 we discuss the description of devices in which timing may vary 
dependent on causes that are not captured in the enabling model; such as tem
perature, voltage, and complexity of data. The description of such a device may 
consist of a enabling structure in which all timing information is parameterized. 
The major result in this section, is that when the timing of a device can he de-
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scribed with -relatively- fixed dela.ys between ca.use a.nd effect, the influence 
of va.ria.tion of these dela.ys is no more tha.n proportional. 

We conclude this chapter, in Section 3. 7, with a brief discussion of what ( not) to 
expect from the type of performance a.nalysis tha.t is introduced in this chapter. 
It turns out that the way in which we compare beha.viours is not useful for 
specifica.tions with 'choice'. Furthermore it turns out that though we do not 
compare delays between individual actions, there is a simple way to keep a 
check on such delays. 

3.1 How to compare 

We introduce general implementation relations as the type of relation we use for 
romparing enabling functions. In Section 3.2 we tailor these to relations that 
compa.re speed. 

Deftnition 3.1 General implementation rela.tion. 

A general implementa.tion relation is a uniform, tra.nsitive relation. on en
abling fundions such that 11 a.nd lt are monotonic with respect to it, a.nd 
such that only enabling fundions over the sa.me alphabet are compara.ble. 

• A relation imp on enabling fundions is uniform if it is presérved under F:;:j 

equivalence, rena.ming, a.nd sealing. That is: for eo imp e,. and ti F:;:j ~ , or 
ti= 'R.~, or ti= p.~, also ~impti. 

• 11 is monotonic with respect to a rela.tion imp if for enabling fundions 
e." a.nd f., : ( V x : : e. imp 4 ) => ( 11 z : : e. ) imp ( 11 x : : f." ) • · 

• lt is monotonic with respect to imp if e imp f => e lt A imp f lt A . 

0 

Application of general implementa.tion rela.tions ca.n he extended to enabling 
structures by hiding the internal symbols first: 

E imp F <=> E t eE imp F t eF 

In the sequel, imp is .a general implementation relation. 

Exa.mples of general implementation relations are the relation that is identical 
false, equivalence relation F:;:j , a.nd the relation that is identical trué . 

Enabling functions for which a general implementation relation is reflexive, are 
considered to be 'smooth' with respect to this relation: they ca.n he used to 
implement themselves. 

Deftnition 3.2 The reflexive doma.in of a relation: 'RV . 

0 

The rellexive domain of a binary relation R , denoted by 'RV. R , is defined 
by: 'RV . R = (set x : x R x : x ) . 
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Deflnition 3.3 Smoothness-class. 

A smoothness-cla.ss, or dass for short, is a colleetion C of enabling funetions, 
sueh that there exists a general implementation rela.tion imp for whieh 
C = 'R1J . imp . 

A class C is called non-trivial if for some e E C , Pe ':f. { e} . 
0 

Another eharacteriza.tion of (smoothness) classes is given by: 

Proposition 3.4 (without proof) 

A dass is a uniform, compositional set of enabling funetions. 

• Set C of enabling functions is uniform when it is dosed under ~ equiva
lence, renaming, and sealing. That is: for e E C and f ~ e , or f = 'R.e , or 
f = p.e , also f E C . 

• Set C of enabling functions is compositiona.l when it is closedunder (possibly 
in:finite) parallel composition and restriction. 

0 

In the sequel, C ranges over classes. 

The empty set, and the set of all enabling functions are classes. Furthermore 
we have 

Proposition 3.5 (without proof) 

0 

[ Const J is a class, it is even the minimal non-trivia! class: 

(V C : C is non-trivial : [ Const] Ç C) 

Is is easily veri:fied that [Ase] and [Con] are also classes. In fact, this even 
follows from Propositions 3.30 and 3.40 respectively. 

In order to give the reader some feeling about general implementation relations 
and classes, we mention the following properties. 

Proposition 3.6 (without proof) 

1 For general implementation relations imp0 a.nd imp1 , the relation imp 
as de:fined below is also a general implementation relation. 

e imp f = e imp0 f 1\ e imp1 f 

The counterpart with V instead of 1\ does in general not hold. 

2 For classes Co and C1 , C0 n C1 is also a class. 
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3 For any general implementation relation imp0 , and class C, the relation 
imp1 as defined below is a general implementation relation. 

e imp1 f = if e E C A f E C -+ e imp0 f 
0 efi.Cvff/.C-+ false 
fl 

0 

We conclude this section with two interesting 'maximality' properties of [Ase] 
( compare Proposition 3. 7.2 with Proposition 2.63). 

Proposition 3. 7 

1 [Ase] is the maximal class C that satisfies 

(Ve,8: e E CA 8 EPe: s ~he) 

2 [Ase] is the maximal class C that satisfies 

(Ve,A: e E C: P(e lt A)= Pet A) 
0 

The following lemma is used in the proof of maximality of [Ase] in Propûsi
tion 3.7.1. 

Lemma 3.8 

For enabling structure E and schedule v over the same alphabet: 

(V s : 8 E P E : s ~ v) {:> (V s : s E P E : E.s ~ v) 

Proof 

0 

The <= impHeation is evident. Remains to prove the => part. 

Assume the left-hand side. Let sE PE, a E aE and let M = E.s.a. 

From Proposition 2.33 we infer that s and M satisfy the premise in Propo
sition 2.69.1. So there exists a t in PE with E.s.a = t.a ~ v.a. 

Proof of Proposition 3.7. 

1 : [Ase] satisfies (V e, s : e E [Ase] A s E Pe : s ~ he) . 

The reader is invited that for e and f in [Ase], e ' f => he i!:; hf (this 
is a special case of the first property that is proved in the proof of Theo
rem 3.28). 

Using this result, we derive for sE Pe: 

e E [Ase] 
=> { see above } 

he' h(e 11 ns) 

{:> { sE Pe } 

he' s 
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1 : [Ase] is maxi mal. 

Assume C satisfies in ( \f e, 8 : e E C 1\ 8 E Pe : s ;;l: he) . 

Let e E C , s, t E Pe , and a E ae such that s ~ t : to prove e.8.a ~ e.t.a. 

When e.t.a = oo , this is evident. 

Assume e.t.a < oo . Conclude that C is not trivia!, hence [Gonst] Ç C . 

Define e1 over alphabet ae by: 

e1.u.b = if b "1- a - s.b 0 b = a - e.t.a fi 

Because e' E [ Gonst] , we may conclude e1 E C and ( e 11 e') E C . 

We derive: 

e.t.a 
= 

( e 11 e').t.a 

$l: { (e 11 e') E C, tE P(e 11 e') so t ;;l: h(e 11 e1
), Lemma 3.8} 

h(e 11 e').a 

= e.s.a max e.t.a 

which implies e.s.a ~ e.t.a. 

2 : [Ase] satisfies (\fe,A: e E [Ase]: P(e li A)= Pe jA). 

Since P( e li A) Ç Pe jA, we only have to prove the 2 part. 

Let e E [Ase] , s E Pe, and A an alphabet. Let f E Ase such that e ~ f 
(for example f = .N.e) . 

By induction it is easily proven that s t A î f ~ s . Furthermore, we derive: 

(f li A)(s jA) 

= { Proposition 2.62} 

f(s jA Î f)t A 

~ { f E Ase , s t A i f ~ s } 

[.8 i A 

~ { 8 E Pf} 

st A 

So s jA E P(f lt A) = P(e li A). 

2 : [Ase] is maxim al. 

0 

Let C such that C \ [Ase] i- 0 . Choose e, s , and a such that e E C and 
sE Pe and he.a > s.a (see previous item). 

Observethat sjaEPeja but sja~P(elia). 



62 Chapter 3: Gomparing Performance 

3.2 How to compare speed 

In the previous section we discussed what kind of relation we want· to use to 
campare enabling functions. Remains the other question, what is fast enough 
or at least as {ast as. We discuss three points of view: 

• speed in a greedy environment, 

• speed in any possible situation, and 

• the effect on an 'observing' environment. 

Each of these points of view can be justified as a criterion for. comparing speed. In 
genera!, such -competing- criteria may lead to distinct 'types' of comparison 
relations. It turns out, however, that it is immaterial which of these criteria we 
use: they all give rise to the same type of camparisou relation. 

Speed in a greedy environment 

When a mechanism is composed with a greedy environment, all its actions are 
performed as soon as they are enabled. This gives rise to relation Çh for 
camparing enabling functions: 

De:finition 3.9 Çh . 

e Çh f <=> he ~ hf 
0 

This relation, however, is no general implementation relation: it satisfies all 
demands except for monotonicity of 11 • 

Example 3.10 Çh and 11 • 

0 

Consider the following enabling functions e and f over { a, b} : 

e.s.a = 1 f.s.a = 1 
e.s.b = s.a + 1 f.s.b = 2 

Observethat e Çh f and n(a,2) Çh n(a,2), 

but that •(e 11 n(a,2) Çh f 11 n(a,2)). 

Speed in any possible situation 

One obtains a more sophisticated camparisou relation by camparing the be
haviour of two enabling functions for all situations in which both can be en
gaged. With relation Çp we express that in any situation, the (intended) 
implementation is at least as fast as the specification. 
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Definition 3.11 Çp . 

e Çp f <=> ae = af A e ~PenPf f 
0 

From Corollary 2.71.2 we coneinde that this coincides with process indusion: 

e Çp f <=> Pe 2 Pf . 

Alas, relation Çp is nogeneral implementation relation: it satisfies all demands 
except for monotonicity of lt . 
Example 3.12 Speed Twisting by an internal trap: Çp & lt. 

0 

We compare two enabling functions over { a, b} : 

e.s.a = 0.5 f.s.a = 1 
e.s.b = if s.a < 1 -+ 100 f.s.b = e.s.b 

0 s.a;;;?: 1 -+ 3 
ft 

Observe that e is indeed an enabling function: for any s and t holds 
sim(e.s,e.t);;;?: 3, and if sim(s,t);;;?: 1 then sim(e.s,e.t) = oo (similar for 
f ). Observe furthermore that e Çp f, but that 

e lt b ~ n(b, 100) and f lt b ~ n(b, 3) , so -. ( e lt b Çp f lt b). 

This example also shows the relative merits of being at least as fast as at any 
moment: by being fast for one partienlar action, a mechanism can be 'trapped' 
because other actions suffer from ( excessive) delays. 

One may wonder, 'Why hother about those 'weird' enabling functions?' (like e 
in the previous example) They only cause problems. Can we not just discuss 
'smooth' enabling functions with process inclusion as a -reflexive-- comparison 
relation?'. The answer is, yes we could, but we have two critical observations to 
this approach. 

• Apart from the arbitrary choice of process indusion, the question remains: 
what is the (or a?) maximal class that can be given the predicate 'smooth'? 
This maximal class comes as a spin-offin the analysis of Section 3.2 (in the 
non-robust case it is [Ase] , in the robust case [Con] ). 

• More importantly still, what when someone comes up with a mechanism 
with a 'weird' external behaviour, for example enabling function e of Ex
ample 3.12? Then the comparison relation cannot he used to verify whether 
it may be plugged into some design, at some place where a behaviour is as
sumed at least a:s fast as n{ (a, 0.5), (b, 100)} , or perhaps n{ (a, 1 ), (b, 3)} . 
One may have some intuition about it, but a comparison relation that ex
eindes e is useless in this case. 

In fact, we use 'weird' enabling functions when analyzing distributed FIFO 
buffers with bypassing (Section 5.5). 
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Tbe effect on an 'observing' environment 

Finally we try an observational relation. We consider environments ( G ) that 
are interested in scheduling their own actions as fast as possible. 

Definition 3.13 ~ . 
' 

e ~ f <:> ae = af A ( V G : : h( G 11 e )t aG ' h( G 11 f) ~ aG ) 
0 

Other characterizations of ~ are given by: 

Proposition 3.14 (without proof) 

e ~ f <:> ae = af 1\ ( V g : : h(g 11 e) ' h(g 11 f) ) 

0 
<:> ae = af A ( V g : ag 2 ae : h(g 11 e) ' h(g 11 f) ) 

In Section 2.1 of [9], relations between mechanisms are expressed in terms of 
passing or fa.iling tests. Relation ~ can also he expressed in such a way. For en
abling functions over alphabet A we introduce tests T(s,g), with as= A U ag. 
An enabling function e passes test T(s,g) if (and only if) h(e 11 g) 's. Re
lation ~ can then he expressed as follows: 

e ~ f <:> ae = af A 

(V s,g :as= ae U ag A f passes T(s,g): e passes T(s,g)) 

The good news is that relation ~ is an implementation relation, it has, how
ever, one major drawback: 

Proposition 3.15 

e~f <:> e~f 
0 

This is not surprising, since an observing environment may conta.in a 'trap': 

Example 3.16 Speed Twisting by a trap in the environment: ~ and 11 • 

We campare two simple enabling functions, n( a, 1) and n( a, 0.5). Clearly 
the secoud is a speeding up of the first, it seems reasanabie to consider it as 
an implementation of the first. 

0 

Environment e of Example 3.12, however, is trapped when a is enabled 
before moment 1 . The histories of the compositions are given by: 

h(n(a,l) 11 e) = {(a,l),(b,3)} 
h(n(a,0.5) 11 e) = {(a,0.5),(b, 100)} 

Conclude that ., ( n( a, 0.5) ~ n( a, 1) ) . 
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Proof of Proposition 3.15 

The non-trivial part of this proposition is the => part of the equivalence. 
We subsequently prove e ::'5 f => Pe ~ Pf a.nd e ::'5 f => Pe Ç Pf . 

• e ::'5 f => Pe ~ Pf 

Assume e ::'5 f, we derive: 

sE Pf 
Ç} 

h(f 11 ns) = s 

=> { e ::'5 f , ns ::'5 ns } 

h(e 11 ns) :s;; s 
Ç} 

h(e 11 ns) = s 

* sE Pe 

• e ::'5 f => Pe Ç Pf 

0 

Let e and f he enabling functions over A . 

Assume the negation of the right-ha.nd side, we prove .., ( e ::'5 f). 

Let sE Pe \Pf, ~=de min df, and M = sim(s,Pf). 

Observe that .., ( f.s l (M + ~) :s;; s l (M + <l)) a.nd let b E A such that 
s.b < M + ~ a.nd s.b < f.s.b. 

Now define enabling function g over A U { c} , for some c, c ft A , by: 

g.t.a = s.a (a :f; c) 
g.t.c = if t.b :s;; s.b -+ oo 

0 t.b > s.b -> s.b + ~ 
fi 

Observe that hg = s U { (c, oo)} so hg I A EPe and conclude 

h(g 11 e) = s U { ( c, oo)} . 

Furthermore, h(g 11 f) l M I A s l M . 
Since f.s.b > s.b and s.b < M + df, we may conclude h(g 11 f).b > s.b, 
which implies h(f 11 g).c = s.b + ~. 
We have to conclude -, ( h(g 11 e) ( h(g 11 f) ) , and thus .., ( e ::'5 f ) . 

Apparently, we cannot make every environment happy; we have to consider a 
subset of 'smooth' environments only: 

Definition 3.17 -:Se . 

0 

For é a subset of the enabling functions, the relation -:Se is defined by: 

e -:Se f <=? ae = af A ( \:1 g : g E é : h(g 11 e) :s;; h(g 11 f)) 
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Relation ::5e can he expressed using tests T(s,g) with gE C. 

Remain the questions: what (kind of) C to choose, and is the resulting relation 
an implementation relation? The answers are: we suggest a smoothness-class, 
and in general not. 

All roads lead to Rome 

Instead of trying to find an implementation relation that exa.ctly captures some 
-intuitive- criterion for heing at least as fast as, we concentrate on finding 
implementation relations that imply being 'at least as fast as'. Theorem 3.19 
shows that it is immaterial which of the previously introduced criteria is chosen. 

Defi.nition 3.18 => e . 

0 

For C a set of enahling functions, the pre-order => e is defined hy: 

( Ro =>e Rt) <=> (V e,f : e,f E C 1\ eRof : eRtf) 

for relations Ro and R1 on enahling functions. ,Ç::.e and <=>e are ,used, 
with the obvious meaning, and when C is the class of all enahling functions 
it may he omitted as a subscript: e.g. => insteadof =>e:F. 

Theorem 3.19 

imp => bh 
<=> 

imp => bP 
<=> 

imp => :5'R.'P • imp 
0 

The proof of this theorem is postponed until after Definition 3.20. 

Defi.nition 3.20 Implementation relation, robustness: 

0 

An implementation relation, or IR for short, is a general implementation 
relation imp that satisfies imp => bh . 
An IR imp is robust if e imp f => (V p : p E SU.e : p.e imp f) . 

In the sequel imp ranges, by default, over implementation relations., 

Observe that the condition for robustness is equivalent with 

e imp f => (V p : p E SD.f : e imp p.f) 

A reason for demanding rohustness is that when -for example hy some new 
technique- an implementation is scaled up, it should still he fast enough. An
other reason is that in general the designer bas no exact knowledge of 'real world' 
delays: usually the order of magnitude is known only. 

The remainder of this sectionis used to prove Theorem 3.19 and some additional 
properties. For further use we mention the following 
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Remark 3.21 

In none of the proofs tha.t lead to Theorem 3.19 we use tra.nsitivity of general 
implementa.tion rela.tions, a.nd of implementa.tion relations in pa.rticular. 

0 

In the proof of Theorem 3.19 we use some knowledge about the beha.viour of 
implementation relations on [ Const 1· It turns out that in more proofs such 
knowledge is valuable. Therefore we first a.nalyze the behaviour of implementa
tion relations on [ Const 1· It turns out that only six beha.viours are possible, of 
which four are robust. 

Deflnition 3.22 Ri 
The relations Ri ( 1 ~ i ~ 6) are defined by: 

• e f/. [ Const 1 V f f/. [ Const] V ae -:/; af => -. ( e Ri f ) 

• otherwise ( e E [ Const 1 A f E [ Const] A ae = af): 

eR1 f {:} false 
eR2f {:} he== hf = e 
eR3f {:} hf= e 
eR..f {:} he~ hf 

eR5f {:} he= hf 
e~f {:} ( 3 A : he t A = hf f A : hf \ A = e ) 

0 

The mutual relationships between relations Ri are given in the following dia
gram: 

* Ra Rt => R2 :::::;\ ~ => R.. 
.::;. R5 * 

Figure 3.23 The partial ordering of relations Ri . 
Theorem 3.24 Behaviour of IR's over [ Const ]. 

1 For a.ny IR imp there is an i , 1 ~ i ~ 6 , such that imp {:} [ Const l Ri . 

2 For a.ny robust IR imp this i satisfies 1 ~ i ~ 4 . 

0 

In the proof of this theorem we use the following 

Lemma 3.25 

Let q he an action. 
For MET wedefine enabling function eM by eM n(q,M). 
Let furthermore t: be defined by t: = ( set M : : eM ) . 

For general implementation relations imp0 and imp1 holds: 

(impo =>1 ConstJ imp1) {:} ( impo =>t impl) 
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Proof 

0 

The => impikation is trivia! since [ Const] 2 t . Remains to prove the <= 
part. 

Assume imp0 =>e imp1 and let e and f he constant enabling functions 
over tqe same alphabet, say A , choose 8 and t over A such that e ~ ns 
and f ~ nt. 

We derive: 

{ the hints with uniformity and monotonicity refer to Defi.nition 3.1} 

eimp0 f 
{:} { uniformity sub ~,choke of s and t } 

nsimp0 nt 

=> { lt is monotonic } 

(V a : a E A : ns lt a imp0 nt lt a) 

{:} { ns lt a = n( s t a) } 

( V a : a E A : n( s t a) imp0 n( t t a)) 

{:} { uniformity sub renaming} 

(Va: a E A: n(,s ta)4 -qÎmp0 n(s ta)a-q) 

=> { rena.mings are memhers of C, assumption: imp0 =>e imp1 } 

( V a : a E A : n( 8 t a )4 -q imp1 n( 8 t a )a-q ) 
{:} { uniformity sub rena.ming} 

( V a : a E A : n( 8 t a) imp1 n( t t a) ) 

=> { 11 is monotonic } 

( 11 a: a E A : n(t t a)) imp1 ( 11 a: a E A: n(8 t a)) 

{:} { n8 = ( 11 a : a E 88 : n( 8 t a) ) } 

n8imp1 nt 

{:} { uniformity sub ~, choke of 8 and t } 

eimp1f 

Proof of Theorem 3.24 

We only show how to prove the first statement. Verifi.cation of the seoond 
one is left to the reader 

First we abserve that relations R; are general implementation relations. 
From Lemma 3.25 we infer that it suffices to prove that for any IR imp 
there is a i , 1 ~ i ~ 6 , such that imp {:} e R; . Let us fi.rst rewrite R; 
for memhers of e : 
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eMRteN <=> false 
eMR2eN <=> M=N A N = oo 
eMRaeN <=> N=oo 
eM R.eN <=> M(;,N 
eMR5eN <=> M=N 
eM~eN <=> M=N V N=oo 

In the rema.inder of this proof, imp is a.n implementation rela.tion. 

• Assume Rt =?e imp and ...,( Rt $e imp). We prove R2 =?e imp . 

Let M a.nd N such that eM imp eN , we derive: 

eMiropeN 

:::? { uniformity sub sealing} 

(V J.L : J.L ) 0 : eM ffi J.L imp eN ffi J.L ) 

:::? { 11 is monotonic } 

( 11 Jt : Jt ) 0 : eM ffi J.L ) imp ( 11 Jt : Jt ) 0 : eN ffi J.L ) 

<=> 
( 11 Jt : Jt) 0 : eM+,.) imp ( 11 Jt : Jt ) 0 : eN+,.) 

<=> 
e00 impe00 

Conclude R2 =?e imp. 

• Assume R2 =?e imp and --,( R2 $e irop). 

We prove (Ra =?e irop) V ( Rr. =?e irop). 

We distinguish three cases: 

69 

• ( 3 M, N : M > N : eMiropeN ) : since imp :::? Çh this case cannot 
happen. 

• { 3 M : M < oo : eM irop e00 ) : conclude, with sealing, that Ra =?e imp , 

• { 3 M,N: M (;, N < oo: eMiropeN) : see below. 

Let M and N as in the quantifica.tion and define for i : 1 (;, i < oo scale 
Pi by p,.O = N + 2::(1-
We derive: 

eMiropeN 

:::? 
( 11 i : : Pi·eM) irop ( 11 i : : Pi·eN) 

<::> { definition of Pi } 

{ 11 i : : eN+(M-N)/i) Îrop ( 11 i : : eN) 

<::> {M(;,N} 

eNiropeN 
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Conclude, with sealing, that R6 =:}e imp . 

• The remaining part is proven in the style of both previous items, this exercise 
is left to the reader. 

0 

The fol,owing lemma is used in the proof of the :} part of the first equivalence in 
Theorem 3.19. lt is also used in the proof ofTheorem 3.32.2 and Theorem 3.37. 

Lemma 3.26 Behaviour of IR's over [ Const] . 

For any IR imp 

(3e,f:eimpf:Pf:f{e}) :} (Rs :}(Const] imp) 

Proof 

0 

Assume the left-hand side and let e and f be as in the left-hand side. Ob
·serve that Pf :f { e} is equivalent with hf :f e .. Let a such that he.a < oo. 
Observe that e lt a and f lt a are constant enabling functions, that (since 
lt is monotonic) e 11 a imp f lt a ' and that h( f lt a) :f e . 

This rules out relations R1 , R2 , and Ra . Together with the mutual rela
tionships (Figure 3.23) and Theorem 3.24.1 this implies Rs '*[Const] imp . 

Proof of Theorem 3.19 

In this proof imp is a general implementation relation. 

• ( imp :::? Çh ) :} ( imp :} Çp ) . , 

Assume the left-hand side. Let e and f such that e imp f. 

When Pf = { e} , Pe ;;? Pf is obvious. 

Otherwise we conclude from Lemma 3.26 that Rs :}[Const] imp . Now we 
can proceed as in the first part of the proof of Proposition 3.15, with imp 
instead of ::1 • 

• ( imp :::? Çp ) :} ( imp :::? Çh ) . 

Assume the left-hand side; we derive: 

eimpf 

=? { lt is monotonic } 

( V a : : e lt a imp f lt a ) 
:} { imp =? Çp } 

(Va: : P(e lta);;? P(f lta)) 
{} { e lt a , f lt a E [ Con st] } 

(V a : : h( e lt a) ~ h( f lt a) ) 
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( V a : : he t a ~ hft a) ) 
{:} 

he~ hf 

{:} { Definition 3.9 } 

e Çh f 

• ( imp * Çh ) * ( imp * ~'7U>. imp ) · 
Assume the left-hand side; we derive: 

eimpf 

* { 11 is monotonic} 

(V g : g imp g : e 11 g imp f 11 g ) 

* { definition of 'RV (3.2), imp * Çh } 

(Vg :gE 'RV.imp: h(e 11 g) ~ h(f 11 g)) 

<* { Definition 3.17} 

e ~'R.V. imp f 

• ( imp * ~'R.V. imp ) ::::> ( imp * Çh ) . 

0 

Assume the left-hand side; we derive: 

eimpf 

* { lt is monotonic } 

e imp f 11. e lt 0 imp f lt 0 

* { assumption, e lt 0 = f lt 0 } 

h(e 11 e lî0) ~ h(f 11 f lî0) 

3.3 Maximal implementation relations 
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We are interested in those implementation relations that allow for as many 
implementations as possible; these turn out to be the non-robust relation <1 

and its robust derivative <11 • Though we are not particularly interested in 
non-robust IR's, we use <1 when defining and analyzing the robust IR <11 . 

The latter is used in the sequel for camparing enabling functions. Theorem 3.37 
states that it is the best robust implementation relation: when e imp f, for 
any robust implementation relation imp , then also e <11 f . At the end of this 
section we give properties that can be used to simplify the computation of <11 

in special cases. 
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A maximal (non-robust) implementation relation 

Before giving the definition of <l , we rewrite the definition of Çp (Defini
tion 3.11): 

e Çp I <:> {V s, t : s E Pe A t E PI A s = t : e.s ( l.t) 

e is only demanded to ena.ble a.t least as fast as I for identica.l schedules. In the 
definition of <l , e must a.lso ena.ble a.t least a.s fast a.s f for fa.ster schedules: 

Definition 3.27 <l • 

e <l I <:> (V s, t : s E Pe A t E PI A s ( t : e.s ( l.t) 
[J 

Theorem 3.28 

Rela.tion <l is an implementation relation. 
[J 

In the proof of transitivity of rela.tion <l we use the following lemma: 

Lemma 3.29 

e <l fA Pf ;d Pg => e <l g 

Proof 

[J 

We derive: 

e <l f A Pf ;d Pg 

<:> { definition of <l , Corollary 2. 71.2 } 

=> 

(V s,t :sE Pe A tE Pf A s ( t: e.s ( f.t) A 

(Vt: tE Pg: tE Pf A f.t ( g.t) 

(V s, t : 8 E Pe A tE Pg A 8 ( t : e.s ( f.t ( g.t) 

e <l g 

Proof of Theorem 3.28 

Let e a.nd f he enabling functions over the sa.me alpha.bet. 

• First we prove <l => Çh • That is: e <l f => he ( hf . 

The proof is by induction, assume e <l f. 

base he ~ bf ( hf ~ bf 

step 
hdM ( hf ~M 

=> { e <l f, Proposition 2.34.2} 

e(he ~ M) ( f(hf ~ ?J) 
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=> { definition of ~ } 

e.he ~ (M + ~) ~ f.hf ~ (M + ~) 
<=> { definition of h (2.27)} 

he ~ ( M + ~) ~ hf ~ ( M + ~) 
(end of step) 

Remains to prove that <I is a general implementation relation. 

• uniformity 
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Due to Corollary 2.71.1 it is evident that <I is uniform with respect to ~. 
Uniformity with respect to renaming and sealing is clearly perceptible. 

• monotonicity of 11 

Let A = ( U x : : A., ) and let e = ( 11 x : : e., ) and f = ( 11 x : : f., ) 
such that ae., = af., = A., , we derive: 

('v'x: :e.,<lf.,) 

<=> { definition of <1 (3.27)} 

('v'x,s1,t1
: s' EPe., 1\ t1 E Pf., 1\ s' ~ t': e.,.s1 ~ f.,.t') 

=> { s t ae., = s' , t t ae., = t' } 

('v's, t : as = A 1\ ( 'v' x : : s t A., E Pe.,) 1\ 

at = A 1\ ( 'v' x : : t t A., E Pf.,) 1\ 

( 'v' x : : s t A., ~ t t A., ) 

: ( 'v' x : : e.,( s t A.,) ~ f.,( t t A 11 ) ) 

=> { definition of 11 (2.30)} 

('v's, t : sE Pe 1\ t E Pf 1\ s ~ t : e.s ~ f.t) 

<=> 
e <1 f 

• monotonicity of lt 
Let e and f be enabling functions such that e <1 f , and let s E P( e lt A) 
and tE P(f lt A) such that s ~ t. We derive: 

true 

=> { e <I f, ns <I nt , 11 is monotonic} 

e 11 ns <1 f 11 nt 

=> { <I => çh } 
h(e 11 ns) ~ h(f 11 nt) 

<=> 
h((e 11 A) 11 ns) ~ h((f 11 A) 11 nt) 

<=> { Proposition 2.56.2} 

sj(e11A) ~ tj(f11A) 

=> { e <I f, Proposition 2.56.1, P(e 11 A) Ç Pe, P(f 11 A) Ç Pf } 
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e(si(euA)) ~ f(ti(fuA)) 

* e(s te) ~ f(tj f) 
=? { Proposition 2.62 } 

(e lt A).s ~ (f lt A).t) 
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• transitivity 

0 

Transitivity is the only property that is not yet proven. Tagether with Re
mark 3.21 and Theorem 3.19, this justifies the first step in the deriva.tion 
below. 

e<lf 1\ {<lg 

=? { see above } 

e <l f 1\ Pf 2 Pg 
=? {Lemma 3.29} 

e<lg 

It is rather evident that <l is reflexive for the enabling functions that are 
ascending on their processes. 

Proposition 3.30 (see Proposition 2.82.1) 

The reflexive domain of <l is [Ase] . 
0 

Theorem 3.32 states why <l is such a special implementation relation. In this 
theorem occurs the following -weird- relation on enabling functions: 

Deflnition 3.31 :;:500 
• 

e :;:500 f <=> ae =af 1\ (V s,a: sE Pf: e.s.a = f.s.a V f.s.a = oo) 
0 

The second item of the theorem can he read as 'when an implementation relation 
does not imply <l , it is almast as useless as ::::z '. 

Theorem 3.32 

1 ( imp *!Const] <l) =? ( imp =? <l) 

2 ( imp =? :;:500 
) V ( imp =? <l ) 

3 imp =?[Ase] <l 

Pro of 
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1 Assume the left-hand side. 

Coneinde that for e' and f' in [ Const] : e' imp f' = he' ' hf' . 

Now let e and f such that e imp f and let s E Pe, tE Pf with s ' t and 
let a be a memher of their alphabet. Define the constant enabling functions 
e' and f' over the same alphabet as e and f by: 

e'.u.b = if b =f. a -+ s.b U b = a --+ f.t.a ft 

f'.u.b = if b =f. a --+ t.b 0 b = a --+ f.t.a ft 

Observe he'' hf' and thus e' imp f'. 

Observe furthermore that: 

h( e 11 e').a = e.s.a lub f.t.a 

h(f 11 f').a = f.t.a 

Conclude from ( e 11 e') imp ( f 11 f') ( and <I => ç,. ) that e.s.a ' f.t.a . 

2 Due to the previous item, and to <I<*[ Gonst] R4 , it suffices to prove: 

•( imp =>~co) => imp *I Gonst] R4 (see Definition 3.22 for R4 ). 

Assume the left-hand side and let e and f such that e imp f but not 
e ~co f. 

Let s and a such that s E Pf and e.s.a =f. f.s.a and f.s.a < oo. 

Observe that Pf =f. { ê} and conclude from Lemma 3.26 that 
R5 =>1 Gonst] imp and thus that imp is reflexive on [ Const ]. 

We derive: 

eimpf 

=> { 11 is monotonie, imp is reflexive on [ Const] } 

e 11 n(s\a) imp f 11 n(s\a) 

=> { lî is monotonic } 

(e 11 n(s\a)) !ia imp (f 11 n(s\a)) lîa 
From Theorem 3.19 we infer sE Pe; we conclude that 

h((e 11 n(s \a)) lî a)= (a, e.s.a) and h((f 11 n(s \a)) lî a)= (a, f.s.a) . 

So, we have two constant enabling functions e' and f' such that e' imp f' 
and he1 < hf' and hf1 =I ê . 

From Theorem 3.24 we coneinde imp *[Gonst] R4 . 

3 Due to Theorem 3.19 it suffices to observe =>[Ase] <I · 

This follows from Lemma 3.29 and Proposition 3.30. 
0 

The following example shows that <1 is not robust. 
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Example 3.33 Speed Twisting by speeding up: <1 a.nd SU. 

0 

We exhibit an enabling function e and a speeding up p of e such that 
e <1 e but .., ( p.e <1 e) . 

Define enabling function e over { a, b} by: 

e.s.a, = 1 
e.s.b = if s.a ~ 2 --+ s.a + 1 

U s.a > 2 --+ s.a + 3 
fi 

Observe (with Definition 2.41) that the speeding up (Î 0 e) of e is given 
by: 

(Î 0 e).s.a = 0.5 

(Î 0 e).s.b = if s.a ~ 1 --+ s.a + 0.5 
0 s.a > 1 --+ s.a + 1.5 
fi 

We compose these enabling functions with n(a, 1.5). The histories of the 
compositions are given by: 

h(e 11 n(a,1.5)) = {(a,1.5),(b,2.5)} 
h((f0e) 11 n(a,1.5)) = {(a,1.5),(b,3)} 

Because n(a, 1.5) <I n(a, 1.5), we must conclude .., ( f0 e <I e). 

The maximal robust implementation relation 

Now it is time for the 'real thing', the maximal robust IR. 

Definition 3.34 <11 • 

e <11 f = (V p : p E SU.e : p.e <1 f) 

which is equivalent to e <11 f = (V p : p E SD.f : e <I p.f) . 
0 

Theorem 3.35 

Relation <11 is a robust implementation relation. 
0 

In the proof of tra.nsitivity of relation <11 we use the following lemma: 

Lemma 3.36 (compare with Lemma 3.29) 

e <11 fA Pf 2 Pg =? e <11 g 

Proof 

We derive: 

e <11 fA Pf 2 Pg 
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=> { definition of <11 (3.34)} 

(V p: p E SU.e : p.e <l f) A Pf ;2 Pg 

=> {Lemma 3.29} 

(V p : p E SU.e : p.e <l g ) 

e <11 g 

0 

Proof of Theorem 3.35 

0 

The implication <11 => Çh follows from <11 => <l • Uniformity holds triv
ially because of uniformity of <l , and so does monotonicity of 11 , and 
monotonicity of lt . 
For transitivity we derive: 

e<11fAf<ltg 

=> { Theorem 3.19, <11 => <1 } 

e <11 f 1\ Pf ] Pg 

=> { Lemma 3.36 } 

e <11 g 

Remains to prove robustness; we derive: 

e <11 f 
{::} 

(V p: p E SU.e: p.e <1 f) 

<=> { Proposition 2.42} 

(V p, a : p E SU.e A a E SU(p.e) : a.p.e <1 f) 

<=> { a.p.e = a(p.e) } 

(V p: p E SU.e: (V a: a E SU(p.e): cr(p.e) <1 f)) 

<=> { de:finition of <11 } 

(V p : p E SU.e : p.e <11 f ) 

Theorem 3.37 Maximality of <11 • 

For any robust implementation relation imp : imp => <11 • 

Proof 

Let imp be a robust IR. 

If, for all e and f, e imp f => Pf = { e } , imp => <11 trivially hol ds. 

Furthermore, we derive: 

( 3 e, f : e imp f : Pf I { e}) 

=> { Lemma 3.26 } 
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0 

Rs =>t ConsC] imp 
<:> { imp is robust, Theorem 3.24.2} 

R4. <:>[Const] imp 

<:> { <3 <:>1 Const] R4. , Theorem 3.32.1} 

imp => <3 

and under the assumption of imp => <3 we derive: 

eimpf 

=> { robustness } 

(V p: p E SU.e: p.eimpf) 

=> { imp => <3 } 

( V p : p E SU.e : p.e <3 f ) 

<:> { definition of <31 } 

e <31 f 

The definition of <31 is 'derived' from the definition of robustness (see Defi
nition 3.20), in that all possible speeding ups (respectively slowing downs) are 
considered. lt turns out to be suflident to consider translations only: 

Proposition 3.38 

e<hf <:> (V1J:1J~O:e<3f$1J) 

which can be rewritten into: 

e <3t f <:> (V 8, t, IJ : 8 EPe At E Pf A IJ~ 0 A 8' t $IJ : e.8 ' f.t ffi IJ) 

Proof 

The => part of the equivalence is evident. Remains to prove the {:: impli
cation. This impHeation can be rewritten into: 

(V 8, t, IJ : 8 E Pe A t E Pf A IJ ~ 0 A 8 ' t ffi IJ : e.8 ' f .t ffi IJ) => 
(V s,t,p: sE Pe At E Pf A p E SD.f As' p.t: e.s' p(f.t)) 

Assume the left-hand side. Let s E Pe, t E Pf, and p E SD.f. Let fur
thermore Ll = de min df . 

For M ~ bf we derive: 

s' p.t 
=> { p bas magnification at least one } 

s t (p.M) ' t t M $ (p.M - M) 
=> { left-hand si de, p.M ~ M } 

e(s L (p.M)) ' f(t ~ M) ffi (p.M- M) 
=> . 

e.s l (p.M + Ll) ~ f.t l (M + Ll) ffi (p.M- M) 
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0 

For all a in the alphahet of e we conclude, with M = f.t.a: 

s ~ p.t 

{:} 

{:} 

{ previous derivation} 

e.s.a ~ (p(f.t.a) + ~) ~ f.t.a ~ (f.t.a + ~) + (p(f.t.a)- f.t.a) 

~ p(f.t.a) e.s.a ~ (p(f.t.a) + ~) 
e.s.a ~ p(f.t.a) 

79 

By means of an example we show that it is not suflident to consider magnifica
tions only. 

Example 3.39 <ll and magnifications. 

0 

Let enahling function e he defined hy: 

e.s.a 1 and e.s.b = 2 * s.a max 1 

This function is not a memher of the reflexive domain of <ll hecause in 
general, for sE Pe and J.l ~ 0, e.(s $ J.L) ~ e.s $ J.l does not hold: 

e.(s$J.L).b = 2*s.a+2*J.l max 1 

( e.s $ J.l ).b = 2 * s.a + J.l max 1 + J.l 
However, the following formula, which is in terrus of magnifications only, 
does hold: 

(V s, t, À : s E Pe A t E Pe A À ~ 1 As ~ t 0 À : e.s ~ e.t 0 À} 
Verification of this result is left to the reader. 

The reflexive domain of <ll is thesetof enabling functions that are conservative 
on their processes: 

Proposition 3.40 (follows from Proposition 3.38 and Proposition 2.82) 

The reflexive domain of <J1 is [ Con] . 
0 

Computing <J and <11 

We give two propositions that help to simplify the computation of <l and 
<11 respectively. Several of the properties that are given have already been 

mentioned before. 
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Proposition 3.41 

1 e <I f => Pe ;::2 Pf 
e <1 f <:> Pe ;::2 Pf if e E [Ase]. 

(remark: Pe ;::2 Pf is equivalent to e ~Pf f) 

2 e <I f <= e ~Pe f if f E Asc.Pe, 
e <I f => e ~Pe f if fEN, and thus 
e <I f <=> e ~Pe f if f E N.Asc. 

3 e <I f <=> e~f if e, f E N and at least one of them in Ase. 

Pro of 

1 The first result is a part of Theorem 3.19; it implies the => implieation in . 
the seeond result. For the <= impHeation in the seeond result we refer to 
Lemma 3.29 and Proposition 3.30. 

2 First formula: 

Let f E Asc.Pe; we derive: 

e~Pe f 
<=> 

( \f 8 : 8 E Pe : e.8 ~ {.8) 

<:> { f E Ascpe and Pe ;::2 Pf (Corolla.ry 2.71.2)} 

( \f 8, t : 8 E Pe /1. t E Pf /1. 8 ~ t : e.8 ~ [.8 ~ f.t) 
=> 

e <1 f 

2 Seeond formula: 

Let f E N; we derive: 

e <1 f 
<=> 

( \f 8, t : 8 E Pe /1. t E Pf /1. 8 ~ t : e.8 ~ f.t) 

=> { Proposition 2.80.3 } 

(\f8: 8 EPe: e.8 ~ f(s lub f.8)) 

<:> { Proposition 2.80.2 } 

( \f 8 : 8 E Pe : e.8 ~ f.8 ) 

3 For the <= impHeation we refer to both previous items. Remains to prove 
the => impHeation. 

Assume e, f E N and e E [Ase] , and assume e <1 f . We derive: 

e.8 

= { Definition 2. 78} 

e(h(n8 11 e)) 
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D 

~ {eEAsc,nslle<Jnsllf} 

e(h(ns 11 f)) 

~ { e <J f, h(ns 11 f) E Pf, Proposition 3.41.1} 

f(h(ns 11 f)) 

{ Definition 2. 78} 

f.s 
For f E [Ase] , instead of e E [Ase] 1 the derivation is simHar ( with usage 
of Proposition 3.41.2 insteadof 3.41.1). 

Proposition 3.42 

<ll => <J 
e <11 f {:> e <J f if e E [ Con] or f E [ Con] . 

Proof 

D 

The first implication is evident; remains to prove the second one. 

Let e 1 f he enabling functions over the same alphabet 1 and let e E [Con] . 
We derive: 

e <11 f 

<:> { definition of <11 (3.34)} 

{V p : p E SU.e : p.e <J f) 

<:> { the identity is a speeding up} 

{V p : p E SU.e : p.e <J fA e <l f) 

<:> { p.e <J e 1 <l is transitive} 

e <J f 

For f E [Con] the derivation is si mil ar ( with a slowing down at the right
hand side insteadof a speeding up at the left-hand side). 

From these propositions, and from Lemmata 3.29, a.nd 3.36, we conclude tha.t 
process inclusion (the second criterion: speed in any possible situation) was not 
such a bad guess for camparing enabling functions. 

We conclude this section with an example of the usage of <11 • 

Example 3.43 Comparison of four enabling functions. 

We campare the following enabling functions over generic actions a and b. 

• e is the enabling function of (a, b )* : 

e.s.ai if i = 0 -+ 1 
0 i > 0 -+ s.ai-1 + 1 max s.bi-1 + 1 
ft 

e.s.bi e.s.ai 
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• g is similar to e , but with additional delay between occurrences of the same 
generic action: 

g.s.a, = if i= 0 -+ 1 

0 i> 0 ..... s.af.-1 + 2 max s.b;.-1 + 1 
fi 

g.s.b,' = if i=O-+ 1 

U i > 0 -+ s.ai-l + 1 max s.ht-t + 2 
fi 

• f is a hybrid of e and g: 

f .s .a;. = if i = 0 -+ 1 

f.s.b;. = 

U i > 0 -+ if s.ai-1 < s.bi-1 -+ s.at-1 + 2 
0 s.ai-1 ~ s.bï-1 -+ s.at-1 + 1 
fi max s.bi-1 + 1 

fi 
if i= 0 -+ 1 
u i> 0 -+ if s.bi-1 < s.at-1 -+ s.bi-1 + 2 

. u s.ba-1 ~ s.at-1 - s.bi-1 + 1 
fi max s.at-1 + 1 

fi 

• h is the enabling function of (a ; b )* : 

h.s.a;, = if i = 0 -+ 1 

0 

0 i > 0 -+ s.bi-1 + 1 

fi 
h.s.bï = s.at + 1 

All these enabling functions are conservative, except for f which is not even 
ascending. The mutual relations are given by e <11 f <11 g <11 h. 

Observe that g <11 h , but the histories of both are given by: 

hg.a, = 2i + 1 hh.a, = 2i + 1 
hg.b, = 2i + 1 hh.b;. = 2i + 2 

So when placed in a greedy environment, the delays between successive ac
tions are 2 for g and 1 for h . With scheduling, for example, bo at 1, 
g takes a.n advance with respect to h; this a.dvance is reclaimed by not 
enabling a1 until 3. This already illustra.tes the 'amortized' or 'linea.r time' 
aspect of <11 tha.t is discussed in the second part of Section 3.7. 

3.4 Liberal implementations and severe specifica
tions 

Given a specifica.tion f , it is an interesting question whether or not there exists 
a unique (modulo ~) most liberal implementa.tion of f. That is, an enabling 
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function ~ f that satisfies: 

~ f <11 f and e <11 ~ f <=> e <11 f . 

More general, when given a set of specifications, :F, the question arises whether 
or not there exists a unique most liberal implementation ~ :F that implements 
all these specifications: 

( V f : f E :F : ~ :F <11 f ) and e <11 ~ :F <=> ( V f : f E :F : e <11 f ) . 

Most liberal implementations are in fact greatest lower bounds with respect to 
<11 • 

The same questions arise considering the existence of most severe specifications 
(least upper bounds) of (sets of) implementations. 

In this section we show the existence of most liberal implementations and most 
severe specifications, under rather weak conditions. The results of this section 
are not used in the remainder of this thesis. 

Example 3.44 Most severe specifications and most liberal implementations. 

0 

Enabling function e is inspired on the behaviour of bypass buffers, as given 
in Section 5.5. 

e.s.a = 1 
e.s.b = 1 
e.s.c = if s.a < s.b --+ s.a+4 

u s.a ~ s.b --+ s.a + 2 
fi 

e implements bath f and g : 

f.s.a 1 
f.s.b = 1 
f.s.c = s.a + 4 

g.s.a = 1 
g.s.b = 1 
g.s.c = s.a + 2 max s.b + 4 

Enabling function h, as given below, is not only the most severe specification 
of e, it is also the most liberal implementation of { f,g}: 

h.s.a 1 
h.s.b = 1 
h.s.c s.a + 2 max (s.a + 4 min s.b + 4) 

In genera}, however, the most liberal implementations and the most severe spec
ifications nf sets of enabling functions do not exist: 

Example 3.45 

Consider the set of enabling functions ei : j ~ 0 for: 

e;.ai = if z 0 -+ 
U i> OAi =j -+ s.ai-1 + 1/j 
0 i>OAi:f.j-+ -J 

fi 



84 

D 

Chapter 3: Camparing Performance 

This set of enahling functions has no 'lower bounds', and thus no most liberal 
implementation. The most severe specification would he given by: 

e.a, = if i = 0 -+ 0 
0 i > 0 -+ s.ai-1 + 1/i 
1i 

which is no enabling function because it has delay (de) zero. 

Apart from boundary cases with problemaÜc delays or prohiernatic bases, as in 
the example, all sets of enabling functions over the same alphabet, have ( modulo 
~ ) a unique most liberal implementation and a unique most severe specification. 
For enabling functions, the most liberal implementations are given by: 

Definition 3.46 ê for enabling functions. 

ê f.s = ( glb t, J.L : t E Pf 1\ J.L ~ 0 1\ s ~ t Efl J.L : f.t Efl J.L} 
D· 

We leave it to the reader to verify that I} f is a conservative enabling function 
with b ê f = bf and d ê f ~ df . 

Proposition 3.47 

I} f is a most liberal implementation of f : 

I} f <J1 f and e <JI f Ç:> e <J1 é f 

Proof 

D 

Because é f is conservative, it suffices to prove the second formula only. 
We derive: 

e <J1 f 

Ç:> { Proposition 3.38 } 

(V s, t, J.L : s E Pe 1\ t E Pf 1\ J.L ~ 0 1\ s ~ t Efl J.L : e.s ~ f.t Efl J.L} 
Ç} 

(V s: sE Pe 
: e.s ~ ( glb t,p, : t E Pf 1\ J.L ~ 01\ s ~ t Efl J.L : f.t Efl J.L)) 

Ç} 
(V s : s E Pe : e.s ~ é f.s) 

Ç:> { Propositions 3.42 and 3.41.2, I} f E Ase } 

e<J1!}f 

The definition of I} can he extended to sets of enabling functions as follows: 

Definition 3.48 I} for sets. 

D 

For :F a set of enabling functions over the same·alphabet we define: 

ê :F.s = ( glb f, t, J.L : f E .1' 1\ t E Pf 1\ J.L ~ 0 A s ~ t Efl J.L 

: f.t Efl J.L ) 
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~ :F is a structure that satisfies: 

b ~ :F ~ ( glb f : f E :F : bf) and d ~ :F ~ ( glb f : f E :F : df) . 

In case b ~ :F > - oo and d ~ :F > 0 , ~ :F is an enabling function and it is 
the most liberal implementation of :F. The proof of this statement is similar 
to the proof of Proposition 3.47. From this result we infer that sets of enabling 
functions of which base and delay have uniform lower bounds ( > -oo and > 0 
respectively) have a most liber al implementation. 

For the dual concept of most strict specifications, we only give a definition. The 
details are left to the reader. 

Definition 3.49 V for sets. 

0 

For a non-empty set of enabling functions, [, over the same alphabet, we 
define: 

V [ .t = (lub e, s, Jl : e E [ A s E Pe A Jl ~ 0 A s EB Jl ~ t 
: e.s EB Jl) 

lub u" 
where u" is given by u".a = (lub e : e E [ : he) 

The additional term ' lub u"' in this definition is included to assure that V [ .t.a 
cannot become -oo (in case of a lub over an empty range). 

3.5 The quality of implementations 

In this section we assume mechanisms to be described by initiated enabling 
functions. The moment at which the first action is enabled is considered to be 
the initial delay of the mechanism, it is included in the performance analysis. 

We introduce angelic- and demonie response time, both giving an extreme view 
on the speed of mechanisms. Both give, however, very little information about 
the actual behaviours of mechanisms. We are more interested in camparing the 
behaviour of an implementation to that of a specification. Therefore we also 
introduce the quality of an implementation relative toa specification, as wellas 
the derived notion of relative response time. 

In [23, 27], constant response time is introduced as a characterization of the 
progress of cubic trace-theory systems; a system has constant response time, 
if there exists a possible behaviour for which there exists a finite upper bound 
of the elapsed time between consecutive external actions. In this definition of 
constant response time, sequence functions (schedules in the time-domain of 
natura! numbers) are used to describe possible behaviours. In terros of enabling 
functions wedefine the related concept of angelic response time. In the definition 
we use the response time of a schedule, which is the maximal delay between 
consecutive actions, including the initia! delay. The angelic response time of an 
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enahling function is the lower bound of the response time of all schedules in its 
process. 

Definition 3.50 Angelic response time: R•. 

0 

The response time R.8 of a schedule with b8 > 0 is defined by: 

R.8 = b8 max. (lub a : ( 3 b : : 8.b < 8.a) 
: ( glb b : s.b < 8.a : 8.a - s.b) ) 

where lub0 = 0 . 

The angelic response time of initiated enabling function e is defined by: 

R•.e = ( glb 8 : 8 E Pe : R•.s) 

Angelic response time may he extended to initiated enabling structures by 

R•.E = R•.(E teE) 
Similar extensions are implicitly assumed in subsequent definitions. 

A nice property of R• is that e <11 f => R•.e ~ R•.f. This follows from the 
observation that Pe 2 Pf => R•.e ~ R•.f. The prohlem, of course, is that 
there is no guarantee whatsoever that this response time will he met in a concrete 
situa.tion: the a.ctual time between consecutive external a.ctions depends on the 
environment (so the term angelic does not refer tosome 'angel' in the mechanism 
itself, but to the beha.viour of the environment). 

A solution seems to he the introduetion of demonie response time. Ohserve 
tha.t it does not make sense to take the upper bound of the response time of 
individual schedules in stead of the lower bound: e is a memher of the process, 
and the response time of e is oo ! We have to use a more sophisticated view 
on response time. Demonie response time is the maximum time an environment 
can he forced to wait until it can perform the next communication. For exa.mple, 
enahling function g of Example 3.43, has demonie response time 2: when tli 
and bi are performed simultaneously, the environment has to wait two time 
units before it can perform the next communication ( tli+t or bi+l ). Enabling 
function h of the same example, has demonie response time 1 . The demonie 
response time of an enabling function is the maximal delay between performing 
an action ( b) and enahling of the next action ( a ); when this next action is not 
scheduled at the moment of enabling, this is due to. the environment and the 
enabling function itself cannot he blamed for the a.dditional delay. 

Definition 3.51 Demonie response time: Rd. 

0 

The demonie response time of an initiated enabling function is defined by 

Rd.e =he max. (lubs,a:sePeA(3b: :s.b<e.s.a) 
: { glb b : 8.b < e.s.a : e.s.a - s.b) ) 
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For Rd, however, the nice property of Ra does not hold: there exist enabling 
functions g and h such that g <J1 h but Rd.g > Rd.h. Take for example 
enabling functions g and h from Example 3.43 (see also Table 3.55). 

The quality of an 'implementation' relative toa 'specification' is defined in terms 
of the robust implementation relation <JI and sealing. An implementation has 
high quality with respect to a specification if it is fast with respect to this 
specification. It has, on the other hand, zero quality if it has a totally unfit 
behaviour, or if it becomes unbounded slow (with respect to the specification). 

Definition 3.52 Quality, relative response time: Q , R. 

D 

For e and f initiated enabling functions over the same alphabet, the quality 
of e relative to f is given by: 

Q(e,f) = (lub À : À> 0 11. À 0 e <J1 f: À) where lub.0 = 0. 

The response time of e relative to f is defined as 

R( e,f) = 1 / Q( e,f) 

In genera!, the lub in the definition of quality is a maximum: 

Proposition 3.53 

If 0 < Q(e,f) < oo then Q(e,f) 0 e <J1 f . 

Proof 

It suffices to prove: 

( V À : 0 < À < 1 : À 0 e <J1 f ) => e <J1 f 

And in order to prove this, it suffices to prove: 

(VÀ:O<À<1:À0e<Jf) => e<Jf 

We derive: 

(VÀ:O<À<1:À0e <J f) 

{::} { definition of <J (3.27)} 

(V).., s, t: 0 <À< 1 11. sE P(;>.. 0 e) 11. tE Pf 11. s ~ t 
: (À0e).s ~ f.t) 

{::} { definition of sealing, (2.41)} 

(V À, s, t : 0 < À< 1 11. sE À 0 Pe 11. t E Pf 11. s ~ t 
: À 0 e.( ± 0 s) ~ f.t) 

{::} {dummy change } 

(V\ s, t : 0 < À < 1 11. s E Pe 11. t E Pf 1\ À 0 s ~ t : ).. 0 ( e.s) ~ f.t) 

=> 
(V À, s, t : 0 < À < 1 11. s E Pe 11. t E Pf 1\ s ~ t : À 0 ( e.s) ~ f.t) 

=> { lub over À, continuity of multiplication} 

(V s, t : sE Pe 11. tE Pf 11. s ~ t : e.s ~ f.t) 
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<:> { definition of <l } 

e <l f 
0 

In contrast with angelic and demonie response time, quality (and thus relative 
response time) does not deal with the delays between individual actions. An 
implementation, however, can be forced to exhibit delays as expected from its 
quality relative toa specification, just by adding a controller (see Section 3.7). 
Furthermore, quality can be used in compositional design: it has a kind of 
transitivity, in a way 11 and lt are monotonie, and it is robust: 

Proposition 3.54 (without proof) 

1 'transitivity': Q(e,g) ~ Q(e,f) * Q(f,g) 

2 'monotonicity of 11 

Q( eo 11 E!t ,fo 11 ft) 

Q(e lt A,f lt A) 

and lt ': 
~ Q(eo,IO) min Q(E!t,fi) 

~ Q(e, f) 

3 robustness: for any sealing up p of e: Q(p.e, f) ~ Q( e, f) 

4 'reflexive domain': 

Q(e,e)~ 1 V Pe= {e} 
Q(e,e) = 1 <:> e E [Con] 1\ Pe f. {e} 

0 

Ra. Rd. R(. ,e) R(. ,f) R(.,g) R( .,h) 

e 1 1 1 1 1 1 
f 1 2 2 2 1 1 
g 1 2 2 2 1 1 
h 1 1 00 00 00 1 

Table 3.55 Response times for Example 3.43. 
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3.6 Variation of delays 

Enahling structures can he used to descri he ( abstractions of) hehaviours of 'real 
world' devices. However, the timing in these devices may vary dependent on 
temperature, voltage, complexity of data to he processed, and the like. So 
when having calculated the speed of some device, under the assumption of some 
partienlar timing (enabling structure), it is important to know what happens if 
timing in the device deviates. 

The following example shows that a tiny deviation of timing may have a disas
trous impact on the behaviour. 

Example 3.56 Livelock. 

Assume someone has designed a device that shares a resource between com
munications over its a channel and communications over its b channel. The 
device enables a actions when during a sufficiently large interval of time no 
b actions have occurred; similar for b actions. The device is characterized 
hy delays a, , Öi, f3i , and {;, (for i ~ 0) as follows: 

e.s.a, if i = 0 -+ ai 
D i>O-+ .T(s.a;-t.b,{;,s)+ai 
fi 

e.s.b, if i = 0 -+ {J; 
0 i> 0 -+ .T(s.bi-l!a,ä,s) + /Ji 
fi 

where function .1" is given by: 

.T(M,c,"f,s) = (glbN:N~.MA-.(3i: :N-')'0 < s.c, < N):N) 

The designer claims it is a 'good' device in that it has a finite response time 
with respect to specification (a*, b*). This is due to the fact, he says, that 
all delays are equally ~: O:i = ö; fJï = {;, = ~ ( ~ > 0 ). 

And indeed, this assumption gives the following estimation of the behaviour 
of the device: 

e.s.ai ~ if i=O --+ ~ 

u i>O -+ .•J.ai-1 + 2~ 
fi 

e.s.b, ~ if i=O ~ 

u i> 0 -+ 8.bi-1 + 2~ 
fi 

for sE Pe. 

So the response time of the device with respect to (a*, b*) is at most 2~ . 

However, this result depends critically on the assumption that all delays are 
exactly the same. Assume for example that the delays ,13; are a tiny little bit 
more than ~: that is, a actions are enabled when during a time interval 
Jonger than ~ no b actions have occurred. In this case th<:' history of e is 
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0 

given by: 

he.ai = if i~l--+ (i+l)*a 
0 i>l-+oo 
ft 
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he.~ = (i+ 1) *a . 

This looks more like an implementation of (a2 ,b*); the response time with 
respect to (a* , b*) is oo . 

In genera.l, when the delays in the device vary around the intended va.lue a , 
it may postpone communication along the a channel unbounded by perform
ing communications a.long the b channel (and vice versa). This phenomenon 
is called liveloek in [13, 16]. We suggest as an exercise tothereader to verify 
the following response times: 

k =l= 0 k * l = 1 k~l<l k>1 

first version 0 a 2a 2a 
second version 0 a 2a 00 

Table R(e,n(a",b1)),for O~k,l~oo (where oo = *)· 

If the timing of a device is dependent on, or can he estimated with, -relatively
fixed delays (i' and fr in Appendix B), the intluence of varlation of these delays 
is no more than proportional. Forthermore it suffices to know an Upper bound 
(lower bound) of these delays in order to compute an upper bound (lower bound) 
ofthe performance ofthe device (with respecttoa specification). More precisely, 
if, apart from timing, E and F have the same dependendes then: 

1. if the delays in E are at most À times the delays in F : R( E, F) ~ À ; 

2. if the delays in E are at least À times the delays in F: R( E, F) ~ À • 

Both claims can be divided into two parts. The first parts are rather evident: 

1. if the delays in E are at most À times the delays in F : E ~ À 0 F ; 

2. if the delays in E are at least À times tbe delays in F : E ~ À 0 F . 

The second parts are stated in the following proposition. 

Proposition 3.57 

Let E and F be enabling structures over the same alphabet, such that at 
least one of them bas fixed delays. 

1 E ~ À 0 F :::} R(E, F) ~ À 

2 E ~À 0 F :::} R(E,F) ~À , if PF teF ~ { e}. 
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Proof 

Let e and f be the 'unmaskings' of E and F respectively: 
e = ( aE, 0, fE } and f = (aF, 0, fF } . 
Let A be the external alphabet ofboth enabling structures. The implications 
can be rewritten into: 

1 e ~ À 0 f ::} R( e Ir A, f Ir A) ~ À 
2 e~A0f =? R(elrAJirA)~A 

1 From Corollary 2.54 we infer that e or f is an element of Con . We derive: 

e~À0f 

=? { e or f in Ase, since Con Ç Ase, Proposition 3.41.1 & .2} 

e<JÀ0f 

=? { e or f in Con, Proposition 3.42} 

e <J1 À 0 f 
::} 

e Ir A <JI À 0 f Ir A 
::} 

R(e Ir A,f 1r A)~ A 

2 Assume e Ir A <J1 N 0 f Ir A. It sufRees to prove that the left-hand side 
implies À1 ~ À . We derive: 

e~À0f 
{::> 

f ~ ! 0 e 

=? { first impHeation } 

f Ir A <JI ! 0 e Ir A 

=? { assumption } 

f Ir A <JI î 0 e Ir A <ll 

=? { transitivity of <J1 } 

f 1r A <J1 t 0 f 1r A 

=? { P( f Ir A) =/: { E } , Proposition 3.54.4} 

D 

The following example illustrates that taking the upper (lower) bounds for in
dividual delays is a convenient way to determine an up per (lower) bound of the 
behaviour of a device ( which is described in terrus of fixed delays ). In case of 
coupled delays, however, tighter bounds eau he achieved by a more penetrating 
analysis. 

Example 3.58 Variation of delays. 

Consider a device with external alphabet a and internal alphabet b that 
behaves as: 
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if i=O ...... s.bi + é(ba, i) 
8 i> 0 ...... s.b, + é(ba, i) max s.ai-l + é(aa, i) 
fi 
if i=O ...... é( ab, i) 
D i>O ...... s.ai-l + é(ab, i) max s.bi-1 + é(bb, i) 
fi 

forsome -unknown- delays é(xy, i) of which.only an upper bound, ~,is 
known: t5( xy, i) ~ ~ . 

Figure Delays in E . 

We only have to fill in the upper bounds ~ instead of the real delays, in 
order to get an upper bound Et., Et. ~ E6, for any 6: 

E~::..s.a, = if i= 0 - s.bi + ~ 
0 i > 0 -+ s.bi + ~ max s.ai-l + ~ 
ft 

E~::..s.b, = if i= 0 -+ ~ 

0 i > 0 -+ s.a.-1 + ~ max s.bi-1 + ~ 
fi 

Consider furthermore the spedfication e = n( a*) for the extern al behaviour 
of the device. Since Et. ::::i 2~ 0 e, we condude R(E5,e) ~ 2~ for all t5; 
which is an upper bound for the external behaviour of the device that is 
proportional to the upper bound of the individual delays ( ~ ). In order to 
draw this condusion we did not need to analyze the general case E5 , we 
needed to observe the upper bound Et. only. 

The upper bound we gave for the external behaviour still holds when we 
assume a coupling of delays, for example: t5( ab, i) + ó(ba, i) ~ ~ . In this case 
a tight upper bound of the external behaviour is given by R(E5, e) ~ lf~. 
In order to observe that this is an upper bound, it suffices to observe 

E5 11 li~ 0 e ::::i li~ 0 e , which is leftas an exercise to the reader. 

If ~ is a lower bound of the individual delays, instead of an upper bound, 
we conclude R( E6, e) ~ 2~ ( for all t5 ). 
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3. 7 Condusion 

We have succeeded in finding a relation, <.11 , that can be used to compare 
the speed of mechanisms. The statement ' e <.11 f ' can he interpreted as ' e 
impiemeuts f ', or 'e is as least as fast as f '. The comparison is one of global 
behaviour, rather than a comparison of delays between individual actions. An 
important feature of relation <.11 is that it can be used in compositional design: 

<.11 is transitive, and parallel composition and restrietion are monotonic with 
respect to <.11 • The price that is paid to achieve this result, is that <.11 is 
reflexive on the class of conservative enabling functions only. In Chapters 4 and 
5 we illustrate the usage of <.11 in the design of linear systolic arrays, and of 
distributed FIFO buffers. 

In this section we explain why relation <.11 is not suitable for specifications of 
behaviours that capture 'choice'. Furthermore we show that <.11 can be used 
when the delays between individual actions are a correctness concern. 

Choice 

The approach we have chosen to campare behaviours is unfit for specifications 
(of extern al behaviour) in which choice is essen ti al. Such specifications do not 
fit in a philosophy in which [aster is better, simply because a faster environment 
may mess up the choice. 

Example 3.59 Adaptive ordering revisited. 

Consicier for example the adaptive ordering, specified by enabling func
tion e of Example 2.73. Observe that e is not conservative, consequently 
--. ( e <.11 e). This is due to the fact that the environment does not always 
enforce the 'proper' choice. Take for example environment f = n (a ; b)*. 
In cooperation with this environment the behaviour is given by e 11 f = f . 
But when the environment is implemented by g = n( a ,b; (a; b)*) (ver
ify that g <.11 f) , the cooperation perfarms e 11 g which is equivalent to: 

h.s.ai = if i = 0 -+ 1 

11 

fi 
h.s.bi if 

IJ 

fi 

i > 0 -+ if s.ao < s.bo 
U s.ao ~ s.bo 
fi 

i= 0 -+ 1 
i> 0 -+ if s.ao < s.bo 

0 s.ao ~ s.bo 
fi 

-+ s.bi-1 + 1 
00 

--;. s.ai + 1 
-+ 00 

( description under liber al delay conditions) 
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Consequently e 11 g cannot he considered an implementation of e 11 f . Be
cause g <11 f, e cannot he used to implement e. In fact, any implemen
tation of e must, for each i , allow ai and b, in any order. For example, 
n (a, b )* is an implementation of e . 

For simHar reasons it is (also) nota good idea to use the a.daptive ordering, 
e, as àn implementation of (a i b)* or (bi a)*: it implements neither of 
these hehaviours. 

This does not mean that prohlems in which 'choice' is essential are tahoo. Take 
for example the buffer with hypassing that is discussed in Section 5.5. By using 
other ct:iteria ( than <11 ) for heing 'an implementation of' on a local level, we 
are ahle to give estimations of the quality of such buffers. These local criteria 
capture, for example, the precision at which a (real world) device is ahle to 
perform a choice. 

Another prohlem with choice is meta-stability: if a device is not sure wha.t 
alternative to choose, it may take arhitrarily long hefore the decision is made. 
This is a phenomenon that cannot he described within the enahling model in a 
satisfactory ~ay. 

Delays between individual actions 

The way in which we compare hehaviours does not consider the delays hetween 
individual actions. It may well he that, in some environment, an implementa.
tion exhihits larger delays than its specification. H this is the case, however, 
it_is alwa.ys due tothefact that the implementa.tion has 'taken an a.dva.nce' on 
the specification. An example of this phenomenon is alrea.dy given in Exam
ple 3.43, where enabling function g implements h , in spite of the fact that h 
exhihits delays of one time unit only, while g also exhibita delays of two time 
units. However, a simple interference (a.ddition of a controller) can prevent an 
implementation from taking liherties. 

Example 3.60 A numher generator. 

In this example we aasurne that communications take one time unit. We 
consider a numher generator that is to produce results of computations that 
are increasingly complex, along channel a. The reai-time constraint is tha.t 
is produces at least one value every two time units. 

f.s.aj = if i = 0 -+ 1 
0 i > 0 -+ s.a,_t + 2 
fi 

A parallel implementation that takes i * "'• time units to compute the value 
that is send during communication ai is described by: 
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e.s.ai = if i = 0 -jo 1 
D i > 0 -jo s.~-l + 1 max i* Ki + 1 / 
ft 

The reader is invited to verify that e <11 f if (and only if) for all i ,,.i ~ 2. 
But, does this implementation indeed produce one value, every two time 
units? Assume some clever programmer finds a a way to output the first N 
values at double rate: 

e.s.~ = if i = 0 -jo 1 
0 0 < i < N -jo s.ai-l + 1 max i* K/2 + 1 
D N ~ i -jo s.ai-l + 1 max i* K. + 1 
ft 

for some K. , 1 < K. ~ 2 . 

In a greedy environment the outputs ai for i up to N - 1 are produced 
at a rate of 1 per time unit, at moments i+ 1. For i~ N the outputs 
are produced at a rate of 1 per ,. time units, at moments i* K. + 1. In 
particula.r, output aN-l is produced àt moment N and output aN at 
moment N * K. + 1. The delay between these outputs is N * (K- 1) + 1. 
This delay may exceed 2. In fact, the delay is proportional to N . It seems 
that the programmer should better not he too clever. 

Considering this example, one may a.rgue that <J1 has to do with delays since 
initiation, rather than with delays between individual actions. From this point 
of view ' e <J1 f ' means that the amortized time complexity of e is at most that 
of f, or that e is a linear time implementation of f (terminology of [25] and 
[6] respectively). 

However, when it is really important to control the delays between successive 
actions, there is a very simple solution. Just add a controller (timer) that 
behaves as f . Because e <J1 f implies e 11 f ::::: f , the combination e 11 f 
behaves exactly as specified. In the example, this controller gua.rantees that the 
environment is affered exactly one communication in every two time units, no 
more, no less. 
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Divide And Conquer 

Systolic arrays1 are, usually large, regular composites of, usually small, build
ing blocks, also called cells. Tbere are two ways to compute, or to estimate, 
tbe external bebaviour of sucb 'compound' structures. Consicier for example 
F = (Eo 11 Et 11 E2) 11 A. 

One metbod is to compute, or estimate, tbe behaviour of tbe entire structure 
F, and to usé this behaviour in order to compute, or estimate, the external be
haviour F t A . This metbod is not recommended for large structures, since this 
involves manipulation of complicated enabling structures with a large alphabet. 

Tbe other metbod consists of using a divide and conquer scbeme. For example 
for F as above: 

• compute enabling functions e; that satisfy: eo ~ Eo lt (eEt U eE2 u A) etc.; 

• compute f ~ (eo 11 et) lt (a~ u A); 

• compute g ~ (f 11 e2) lt A; 

and condude (from the tbeory of Section 2.7) that g ~ F. 

When an estimation of the external behaviour is required only, the following 
scbeme suflices: 

• determine enabling functions €i that satisfy: Eo lt (eEt U eE2 U A) <11 eo 
etc.; 

• determine f such that (eo 11 et) 11 (a~ U A) <11 f; 

• determine g such that ( f 11 ~) lt A <11 g ; 

and conclude (from the theory of Section 3.3) that F <11 g. A simHar scheme 
can be used for an estimation of the type g <11 F . 

1 In contrasttosome authors, we use the term 'systolic array' for implementations in which 
the cells are not synchronized by a global clock. 

96 
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In Section 4.1 we introduce linear systolic arrays, in Section 4.2 we discusshow 
to compute, or estimate, their external behaviour by means of divide and con
quer. In Section 4.3 we discuss systolic implementations of a 'segment problem': 
determining the maximum of successive input values. This problem is both sim
ple enough to go through the data-part relatively easily, and interesting enough 
to illustrate the effect of implementation decisions on the performance. 

4.1 Linear systolic arrays 

In this chapter we address linear systolic arrays that consist of identical cells, 
possibly with a deviating tail. We consider arrays with external communication 
at one side only. 

An infinite (direct recursive) array consists of a regular, one sided infinite, linear 
arrangement of identical cells: that is, identical modulo a renaming p. The 
general form of such an infinite array is given by: 

(4.1) F = (lln:O~n:pn.E)IIA 

In infinite arrays, cells may only communicate with cells in a bounded neigh
bourhood; consequently, sharing of actions between all cells (broadcast) is not 
allo wed. 

p.b 

b 

a 

c 

p.c 

Figure 4.2 Schematic representation of an infinite array F . 

In illustrations, such as Figure 4.2, shared actions are denoted by connections 
that are labeled with (generic) actions. The loose ends at the left-hand side are 
the external actions. 

The general form of a finite array is given by: 

(4.3) FN = (( 11 n: 0 ~ n < N: pn.E) 11 pN.lo) 11 A for N ~ 0 

where F0 is the tail. In finite arrays we do allow broadcast; for example channel 
c in Figure 4.4. Arrays with braadcast are also called semi-systolic. 

The following restrictions on renaming p, and on the naming of actions in the 
cells, are carefully chosen in order to avoid 'name clashes'. For other types of sys
tolic arrays, such as binary trees and linear arrays with external communication 
at both sides, other choices have to be made. 
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c 

Figure 4.4 Schematic representation of a finite array F4 . 

• We distinguish local actions ( p.a :f:. a ), and broadcasts ( p.a = a ). Let al
phabet B be the 'base' of the local actions: 

- for a, b E B : pn .a = pm .b Ç} n = m A a = b 

- for a t/. ( U n : 0 ~ n : pn .B ) : p.a = a . 

When using a renaming p in the description of a systolic array, the default 
is 'no broadcast', p.a :f:. a: that is, for any action a the equality p.a =a 
holds only when it is explicitly mentioned. 

• E must satisfy: 

- iEÇ B 

- for a E B : a E eE Ç? ( 3 n : n > 0 : vn .a E eE ) 

- in case of an infinite array: ( lub a, n : vn .a E eE : n ) < oo 

The left-hand si de of this formula is called the communication distance of 
E ( this condition implies that broadcast is not allowed in in fini te arrays). 

• In case of a finite array, F0 must satisfy 

iFo Ç ( U n : 0 ~ n : pn .B ) 

eFo =A (same external alphabet as FN) 

• Allloose ends at the left-hand side are communicated with the environment: 

A= (seta,m,n:m<nApn.aeeE:pm.a) 

In order tosave parentheses in expressions like s.(p.a)i and e.s.(p.a)i, these 
are abbreviated to s.pai and e.s.pai respectively (function application without 
a dot). 

Observe that Fn+l = (E 11 p.Fn) 11 A, and that F = (E 11 p.F) nA. 

4.2 Analyzing the behaviour of linear systolic arrays 

We define function ~ as the generating function for the external behaviour of 
systolic arrays. Given a mechanism with external behaviour e , the result of 
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placing cell E in front of it, is a mechanism with external behaviour +.e . For 
example, for E as in Figure 4.4, the generating function describes the external 
behaviour of a mechanism as given in Figure 4.5. 

c 

Figure 4.5 The generating function: +.e = (E 11 p.e) lî A . 

Definition 4.6 

0 

For E , p, and the corresponding alphabet A ( according to the conditions 
inSection 4.1), function +E,p: t::F.A--+ t:F.A is defined by: 

+E.v·e = (E 11 p.e) lt A . 

The subscripts of + are only used when they deviate from E and p respec
tively. Furthermore F and FN are by default arrays that satisfy Formulae 4.1 
and 4.3 respectively. 

We mention some elementary divide and conquer properties for finite arrays that 
follow from the theory of Chapter 2 and Chapter 3. 

• For en : n ~ 0 a sequence of enabling functions over A : 

if eo = Fo t A and for all n en+t = +.en, then for all n: en = Fn t A; 

if eo ~ Fo î A and for all n en+t ~ +.en , then for all n : en ~ Fn t A . 

• If E î eE E [Con J , we have also: 

if Fo t A <11 eo and for all n +.en <11 en+l , then for all n : Fn t A <11 en ; 
if eo <11 Po î A and for all n en+l <11 + .e., , then for all n : en <11 Fn î A . 

• Fn+t ~ Fn => (V m : m > n : Pm ~ Fn) 

• If E leE E [Con], we have also: 

Fn+t <11 Fn => (V m : m > n : Fm <11 F'n) 
Fn <11 Fn+t => (V m: m > n: Fn <11 Fm) 

The following theorem supports similar properties for infinite arrays. 
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Theorem 4.7 

If E has a finite communication distance k , then 

1 •" is a contraction (see Appendix C) 

2 d(•"·~)) dE 

Proof (Let F be as in Formula 4.1.) 

F can be rewritten into terms of an array with communication distance 1 
by clustering k cells into one: 

F = ( 11 n : 0 ~ n : qn .E,. ) 

where q=p11 and E~c = ( lli:O~j<k:p'Î.E)n(Auq.A). 
E~e and q satisfy the conditions for E and p in Section 4.1, and E,. has 

communication distance 1 . Furthermore, ·~.P = • E1c, q and 

· dE~c ) dE . So it suffices to prove the theorem for k = 1 . 

1 We prove that ~ is a contraction by proving that 

sim( • .e, ~ .f) ) dE + sim( e,f) 

for any e and f over A. (see Theorem C.4) 

Let e and f as above and let s E S .A . 

First observe that: 

sim(s t (E 11 p.e), st (E 11 p.f)) ) sim(e,f) 

Second observe that for t over a( E 11 p.e) : 

(E 11 p.e).t t A 

= { Anp.A = 0} 

E.(t t aE) t A 

Conclude from Proposition 2.62 that sim( ~.e.s, ~.f.s) ) sim( e, f) +dE. 

2 J'or s and s1 over A holds 

sim( s t( E 11 p.e ), s' t( E 11 p.e)) ) sim( s, s') 

Conclude, simHar to the previous item, sim(~ .e.s, ~ .e.s') ) sim( e, e') + dE . 

D 

The following are some consequences of this theorem and of the contraction 
theorem, Theorem C.l, and Proposition C.3.3. The last observation also uses 
the continuity of <11 , as given in Theorem C.5. 

If E has a finite communication distance: 

• limn ..... oo Fn t A = F t A 
(independent of the tail F0 that is used in the finite arrays) 
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• F ~A is the unique solution of e in the equation e = ~.e, and 

e ~ ~ .e => e ~ F I A 

• For E I eE E [ Con] : 

~ .e <ll e => F t A <ll e e <ll ~.e => e <ll F t A . 

The second property states that the behaviour of an infinite systolic array is the 
unique fixed point of the generating function. In [13, 27] the behaviour is the 
least fixed point of a generating function. This is due to the fad that the trace 
formalism does not give information about timing. 

Example 4.8 U nique fixed point versus least fixed point. 

D 

Consider cell E, with alphabet { a,p.a} (both external) that performa 
(a;p.a;p.a;a): 

E.s.a, if i= 0 ......,. 1 

E.s.pa, = 

U i = 1 -+ s.pa1 + 1 
n i>l-+oo 
fi 

if 0 ...... s.ao + 1 

u i 1 ....... s.pao + 1 

n i> 1 ...... 00 

fi 
Enabling fundion na is a fixed point ( and thus the unique fixed point) of 
equation <P .e = e . 

When the timing information is ignored (as in (13, 27]), the process that can 
perform two a actions is also a fixed point of the generating function. In 
terrus of enabling fundions this can be understood as follows. 

Let e = na2 • <P.e is given by: 

~.e.s.a, = if i= 0 -+ 1 
0 i = 1 ......,. s.ai-1 + 3 
U i>l-+oo 
fi 

Apart from the timing ( +3 instead of + 1 ) this is the same behaviour as 
e. 

4.3 The maximum of segments 

In this section we exhibit several strategiesin designing systolic arrays by means 
of a rather simple specification. Apart from the behavioural aspect, it also 
provides an example of 'dividing' a data-specification in order to obtain a parallel 
computation. More elaborate examples of this technique can for example be 
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found in [14, 23, 27]. In [14], a systolic array is derived that communicates to 
the environment at both sides. We brie:fl.y discuss the behaviour of such arrays 
in Section 5.6. 

For N : 0 ~ N , we specify program Max.N as follows: 

data: 

MaxN has input channel a and output channel b, both of type integer. 
The valnes to he output along b are given by: 

b(i) = ( maxj : 0 ~jA i N ~ j ~i : a(j)) 
where b(i) is the value that is output during communication bi, and a(j) 
is the value that is input during communication aj • 

( reai-time) behaviour: 

We are interested in the response time of the solution relative to (the enabling 
·function of) (a; b)*. In particular, this response time should he bounded 
by an upper bound independent of N . 

The first solution that we give for this problem is not satisfactory because it is 
slow, proportional to the size of the problem, N. In the second solution the 
speed is improved at the cost of one additional variabie per cell. As the first 
solution, however, the second solution is only semi-systolic, and a disadvanta.ge 
of braadcasts is that they tend to he slow, at least proportional to the logarithm 
of the length of the array. In the third salution the problem is solved without 
usage of a broadcast. As a variation on the third solution, we discuss the sharing 
of hardware between adjacent cells. 

First solution 

First we consider the simple case: N = 0 . 

For N = 0 the data part of the specification boils down to b( i) = a( i) , so this 
case can he implemented by the following program that describes a one-place 
buffer with input channel a and output channel b: 

program Maxo (input a: integer, output b: integer) : 
var va : integer ; 
begin 

( a?va ; b!va )* 
end. 

where a?va denotes receipt of an input value in variabie va, and b!va denotes 
output of the value of va . 

We use the following conventions when giving enabling structures to describe 
(real-time) behaviour: 

• A mechanism is described relative to the moment of initiation: 
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• The scheduling of actions within the model reflects the completion of these 
actions by the described mechanism. 

We assume that a communication takes p time, so the hehaviour of Maxo is 
given hy enahling function MA.0 : 

(4.9) MAo.s.ai if i=O--+ p 0 i>O .... s.bi-t+P fi 

MAo.s.b.; = s.a.; + p 

Next we consider the general case: N > 0. 

We derive: 

for i = 0 : b( i) a( i) , 

for i> 0: 

b(i) 

= { domain split} 

( maxj: 0 ~ j I\ i-N~ j <i: a(j)) max a( i) 
= ( max j : 0 ~ j I\ (i - 1) - ( N - 1) ~ j ~ (i - 1) : a(j) ) max a( i) 
In the quantified expression we recognize the output b( i - 1) of MaxN _1 . So, 
when using p.MaxN-l with p.a = a we get the following: 

b(i) = if i= 0 --+ a( i) 0 i> 0 --. p.b(i- 1) max a( i) fi 

We infer the following program for N > 0 : 

program MaxN (input a: integer, output b: integer) : 
uses p.MaxN _1 with p.a = a ; 
var va, vb : integer ; 
begin 

a?va; b!va; (a?va,p.b?vb; b!(va max vb))* 
end. 

The program text between begin and end is executed in the head cell. The 
hierarchical structure of this program ( uses p.MaxN-1 ) is similar totheuse of 
'sub components' in the 'com moe' programs in [13, 24, 27]. 

If we assume that the computation of the maximum of two integers takes K. 

time, the behaviour of the head cell of MaxN ( N > 0) is given by enabling 
function M: 

(4.10) M.s.ai 
M.s.bi 

= if i = 0 --+ p D i > 0 --+ s.bi-1 + p fi 
if i = 0 _,. s.ai + p 
0 i> 0 -+ s.a; + K. + p max s.pb;-1 + K. + p 
fi 

M.s.pbi = s.bi + p 

The behaviour of MaxN is given by array MAN : 

MAN = (M 11 p.MAN_t) 11 { a,b} for N > 0, with p.a a. 
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a 

l + l l + 
b ,M p.b p.M p2.b p2.M J}.b ps.M p4.b p4.MAo 

Figure 4.11 Schematic representation of array MA4 . 

In order to give an impression of what happens, we illustrate the parallel com
position of M and p.MAo by means of fragments of their dependenee relations: 

M 

M 11 p.MA0 

Figure 4.12 Dependendes in the composition of M and p.MAo • 

In M 11 p.MAo, action ai+l cannot be performed until 2p after b, is per
formed. In general, the problem is that ai+l must wa.it for pn .bi for all 
n : 0 ~ n ~ N , and that these b actions are ordered. This results in the fol
lowing external behaviour fN ::::: MAN of the systolic arrays: 

(4.13) fN.S.ai = if i= 0 -+ p 
fl i>O-+ s.bi-I+(N+l)p 
fi 

fN.s.bi = if i= 0 V N = 0 -+ s.~ + p 
D i>OAN>O-+ IJ.ai+K-+p 
fi 

A derivation of this external behaviour is given below. 

For N > 0 we conclude that the response time of MAN with respect to (a; b)* 
equals (N + l)p max K. + p. So MAN is slow proportional to N. When the 
values p and K. are lower bounds for the duration of communications and 
computations respectively, this negative result is still true (see Section 3.6). 
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Derivation of the external behaviour as given in Formula 4.13. 

0 

Observe that fo = MAo ; remains to prove ( M 11 p.fn) I~ {a, b} :::::: 1;.+1 . 

Let eo = M 11 p.fn: 

eo.s.ai if i=O --+ p 

11 i> 0 --+ s.bi-1 + p max s.pbi-1 +(n+1)p 
fi 

e0 .s.bi if i= 0 --+ s.ai + p 
11 i>O --+ s.ai + K + p max s.pbi-1 + K + p 
fi 

eo.s.pbi if i=OVn=O --+ s.b; + p max s.ai + p 
D i>OAn>O -+ s.bi + p max s.ai + K + p 
fi 

First we consider the underlined dependencies. Observe that the formula for 
eo.s.bi implies that for s E Peo: 

s.bi ~ if i = 0 -+ s.a; + p 
D i > 0 --+ s.a; + K + p 
fi 

This implies that the terms max s.ai + p and max s.ai + K + p in the en
abling of p.b; are redundant. In the sequel we make ahabit out of underlin
ing redundant dependencies that are to be pruned. Pruning the underlined 
dependendes in e0 yields enabling function e1 (which is equivalent to e0 : 

eo:::::: ~ ): 
e1.s.pb; = s.bi + p and e1.s.x = eo.s.x for x f pbi . 

Next ~ = e1 I~ {a, b} is computed by assuming that pbi happens as soon 
as it is enabled: s.pbi = s.bi + p: 

if i=O --+ p 

D i> 0 --+ s.bi-1 + p max s.bi-1 + (n + 2)p 
fi 
if i=O --+ p 

D i> 0 --+ s.bi-1 + (n + 2)p 
fi 
if i= 0 --+ s.ai + p 

D i > 0 --+ s.ai + K + p max s.b;-1 + K + 2p 
fi 

The underlined dependency is redundant; pruning yields fn+l . 

The problem that ai+l must wait for pn .bi for all n : 0 ~ n ~ N and that 
these b actions are ordered, can be solved in two entirely different ways: one is 
to remave the ordering between the b actions (second solution), the other is to 
avoid that a;+l must wait for all those b actions (third solution). 
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Second Solution 

In the first solution, action p.bi+t bas to wait for b, because the value of vari
abie vb may not be changed until the result of the computation va max vb 
bas been output along b . The introduetion of a.dditional buffering ca.n solve 
this dependency; in the program Max2N this is done by mea.ns of an internal 
cha.nnel c. 

For N = 0 we use the same program as in the first solution, Max2o = Maxo . 
For N > 0 we have: 

program Max2N {input a: integer, output b: integer) : 
uses p.Max2N-t with p.a = a ; 
var va, vb, vc: integer ; 
begin 

a?va ; b!va ; ( a?va ,c?vc ; b!( va max vc) )* 
11 

, (p.b?vb; c!vb )* 
end. 

The internal communication along c is a.n alternative for the statement vc := vb . 
Furthermore, the first part of the program is the program in the first solution, 
modulo a renaming of p.b in c; the second part describes a one-place buffer. 

The behaviour of the hea.d cellof Max2N is given by enabling structure M2 
with external alphabet { a,b,p.b} and internal alphabet c: 

(4.14) M2.s.ai = if i= 0 -+ p 

M2.s.". 

M2.s.~ 

M2.S.Cï 

The array MA2N 
instead of M . 

= 

= 

= 

0 i > 0 -+ s.b,_t + p 
fi 
if i= 0 -+ S.at + p 

u i> 0 -+ s.ai + "' + p max s.ct-t + "' + p 
fi 
if i= 0 ..... p 

u i>O -+ S.Ci-1 + p 
fi 
s.pbi + p max s.bi + p 

bas the same shape as MAN, but with cells of type 

Figure 4.15 Dependendes in celf M2. 

M2 

The reader is invited to verify that MA2N bas the following external behaviour: 



4.3 The maximum of segments: Second salution 

(4.16) fN.s.a, 
fN.S.bi 

if i 0 -+ p D i > 0 -+ s.bi-t + p fi 
= if i = 0 V N = 0 -+ s.a, + p 

U i > 0 A N > 0 -+ s.a, + K + p 
ft 
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For N > 0 we conclude a response time of K + p with respect to (a ; b)* ; when 
K and p are upper bounds, "'+ p is an upper bound for the response time (see 
Section 3.6). This response time is achieved at the costof one additional variabie 
per cell (with respect to the first solution). 

Second solution revisited 

A problem with the first two solutions is the broadcast along a: a broadcast to 
a lot of receivers tends to be slow, at least proportional to the logarithm of the 
number of receivers. 

Up to now, the solutions are described under the assumption of a universa! 
duration of communications ( p ). Therefore the scheduling of communications 
was completely described by the moment of their completion. Wh en the duration 
of communications is not universa!, one should be careful with using completion 
as a criterion. 

Let for example e describe a mechanism that needs p1 time to communicate 
b, and let f describe another mechanism that needs p2 : 

e.s.b; = s.ai + K + Pt f.s.bi = s.a, + P2 . 

Parallel composition gives: ( e 11 f).s.b, = s.ai + (K + Pt max P2) , 

though one would expect that the composition of both mechanisms needs 
Pt max P2 time units to communicate, and thus behaves according to: 

g.s.b, = s.a, + K + (Pt max P2) • 

In order to give a concise description, one has to describe communications with 
two actions each: an action of initiation and an action of completion. Otherwise, 
the results of parallel composition of mechanisms with distinct durations of 
communications may be too 'optimistic'. 

With this warning in mind, we give the external behaviour of MA2N under the 
assumption that a broadcast to n receivers takes Pn time: 

(4.17) fN.S.ai if i=O-+ PN+t 

U i> 0 --+ s.bi-1 + PN+l 
ft 
if i = 0 V N = 0 _. s.ai + p 
0 i > 0 A N > 0 --+ s.a; + r. + p 
ft 

The response time of [N relative to (a ; b)* is PN+t max K + p, which is at 
least proportional to the logarithm o(the number of cells. Therefore we prefer 
an approach in which no broadcast is used. 
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Third solution 

Both previous solutions are semi-systolic arrays: that is, arrays with a broa.dca.st. 
In both solutions Oi+t ha.s to wa.it for all actions pn .b, because all cells perform 
"i+t simultaneously. In this solution we consider a program witbout braadcast 
along ch~nel a • As a result, "i+t bas to wa.it fot p.a. and bi only. 

At the point in the denvation of the first solution where we recognized output 
b(i- 1) of MaxN-t, we mayalso use p.Maxk-t with p.a :f:. a, provided we 
assure p.a( i) = a( i) for all i~ This leads to the same obligation for b( i) , and 
an additional obligation for p.a( i) . For N = 0 we use the same program as in 
the first solution: Max3o = Maxo ; for N > 0 we use the following program: 

program Max3 N (input a: integer, output b: integer) : 
uses p.Max3N-t ; 
var va, vb: integer ; 
begin 

· ( a'lva ; p.a!va )* 
11 

a'lva ; b!va ; ( a'!va ,p.b'!vb; b!( va max vb) )* 
end. 

Under the same assumptions as in the previous solutions for the duration of a 
communication ( p) a.nd the duration of the computation of a maximum ( K. ), 

enabling structure M3 gives the behaviour of the hea.d cell of Max3N for 
N>O: 

(4.18) M3.s.aa = 

M3.s.bi = 

M3.s.pas = 
M3.s.pb,;: = 

if i= 0 -+ 
0 i>O-+ 
fi 
if i=O -+ 

0 i> 0 -+ 
fi 
s.a;. + p 
s.b;. + p 

p 
s.b;..-1 + P, max S.pGi-t + p 

s.a;. + p 
s.a, +,.. + p max s.pbi-1 +,.. + p 

Figure 4.19 Dependendes in cell M3. 

The behaviour of Max3 N is given by MA3o = MAo and 

MA3N = (M3 11 p.MA3N-t) 11 { a,b} for N > 0. 
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3 
y.M3 

p .b 

Figure 4.20 Schematic representation of array MA34 • 

The external behaviour of MA3N is the same as for MA2N, without consicl
ering the tardiness of broadcasts, as given in Formula 4.16. A derivation of this 
external behaviour is given below. Consequently, MA3N has the sameresponse 
time as MA2N, when the tardiness of broadcasts is ignored. This result, how
ever, is achieved without introduetion of additional variables (as in MA2N ), 
and without the usage of a broadcast. 

Derivation of the external behaviour for MA3N, as given in Formula 4.16. 

We derive (M3 11 p.fn) lt { a,b} :::i fn+l for n > 0. For n = 0 the derivation 
is similar. 

Let n > 0 and let eo = M3 11 p.f .. : 

eo.s.a, if i = 0 -+ p 

eo.s.bi 

eo.s.pai = 

eo.s.pb• 

U i> 0 -+ s.bi-1 + p max s.pai-1 + p 
fi 
if i=O -+ s.a, + p 

D i> 0 -+ s.~ + K + p max s.pbi-1 + K + p 
fi 
if i= 0 -+ s.ai + p max p 

0 i> 0 -+ s.ai + p max s.pbi-1 + p 
fi 
if i=O -+ s.bi + p max s.pai + p 

D i> 0 -+ s.bi + p max s.pai + K + p 
fi 

First we hide p.a by assuming that p.a, happens as soon as it is enabled. 

Let et = eo lt { a, b, p.b } : 

et.S.ai = if i=O 
D i=1 
D i> 1 

fi 
if i=O 
u i>O 
fi 

-+ 

-+ 

-+ 

-+ 

-+ 

max 

s.ai + p 

max s.ai-1 + 2p max 2p 
max s.ai-1 + 2p 

s.a, + K + p max s.pbi-1 + K + p 
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~.s.pb, = if i= 0 -+ s.~ + p max s.a, + 2p max 2p 
0 i > 0 -+ s.b, + p max s.at + ;;. + 2p 

max s.JJbi-t +;;. + 2p 
fi 

Next we prune the underlined (redundant) depèndendes, which results in 
e2, e,' ~ et : 

= if i= 0 - p 
0 i> 0 ....... s.b;.-1 + p 
fi 

= et.s.bs 

= if i = 0 -+ s.b;. + p max s.à;. + 2p 
0 i > 0 -+ s.~ + p max s.a;. + ;;. + 2p 
fi 

Now it is time to hide the p.b actions; let ~ = e2 lt { a,b}: 

~.s.a, = if i = 0 ....... p 
0 i > 0 ....... s.bf.-l + p 
fi 

~.s.b, = if i=O - s.a;. + p 
0 i= 1 - s.a, +;;. + p 

max s.bi-l + K + 2p max s.at-t + K + 3p 

D i> I - s.a;. +;;. + p 
max s.bi-1 +;;. + 2p max s.ai-1 + 2;;. + 3p 

fi 

When this enabling function is pruned properly, one obtains ~+t . 

Ohserve that this (the third) solution for computing the maximum of finite 
segments of the input can he generalized to N = oo • This results in the infinite 

array ( 11 n : n ;?l: 0 : pn .M3 ) 11 { a, b } , 

that computes: b( i) = ( max. j : 0 ~ j ~ i : a(j)) . 

This array ha.s the same external behaviour as MA3 N for N > 0, a.nd thus a 
response time of ;;. + p • 

However, it is far more convenient to use a one cell array that performs the 
following program: 

program Ma.x00 (input a: integer, output b: integer) : 
var va, vb: integer ; 
begin 

a?vb ; b!vb ; (a? va ; vb := va max vb ; b!vb )* 
end. 
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Third solution revisited 

When implementing the previous solutions in hardware, one needs a 'function 
block' that computes the maximum of two iutegers. In fact, such a function 
block is used in each cell of the array. It may he interesting to reduce the 
number of function-blocks in a hardware implementation, possibly at the costof 
some speed. We discuss sharing of the max-block between two neighbour cells 
in the third solution. 

When a cell M3 and its neighbour p.M3 share a max-block, this imposes 
restrictions on the moments that values b( i) and p.b( i) can be computed. We 
assume the max-block must be used under mutual exclusion and that: 

• a cell initiates a max-computation as soon as the inputs are available and 
the use of themax-blockis assigned to this cell, 

• the max-block is released by a cellas soon as the output of the computation 
bas been communicated along b ( or p.b ). 

Apart from the first outputs, bo and p.bo , for each output b, and p.b, the 
max-block is needed. Since b and p.b actions alternate, the usage of the max
block can he assigned to M3 and p.M3 in an alternating way; this results in 
the following additional restrictions on the communications along b and p.b : 

s.bi ~ s.pbi-1 + K, + P 
s.pb, ~ s.b, + K, + p for i > 0 

These restrictions can be captured in a modification of M3 : 

(4.21) M31.s.x = M3.s.x for x :f. p.b, 

M3'.s.pb, = if 
11 

fi 

z 0 -. s.b, + p 
i > 0 -. s.bi + K, + p 

The behaviour of an implementation in which max-blocks are shared by two 
cells each, can be described by an array, say MA3" N , in which cells of type 
M3 and M31 alternate: cell plc.M31 shares a max-block with cell plc+l.M3. 

Figure 4.22 Schematic representation of array MA3" 4 • 

In order to estimate the behaviour of such an array, we analyze the behaviour 
of arrays MA3iv in which all cells hebave as M31 

• The external behaviour of 
these arrays are given by: 
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(4.23) fj".s.llf. = if i= 0 - p 
0 i > 0 - s.bi-1 + p 
ft 

fj,.s.bs = if i = 0 V N = 0 - s.at + p 
D i > 0 A N > 0 - S.llj + " + p 

max s.bi-t + 2(" + p) 
ft 

The denvation of this behaviour is left as an exercise to the reader. 

For N > 0 the response time of MA3hr with respect to (a ; b )* is " + p , 
whlch is the same as the response time of MA3N. 

But what about the arrays we are interested in: MA3" N? Since MAo, M3, 
and M31 are conservative, a.nd M3 <11 M31 

, we can estimate the behaviour of 
these arrays by: 

MAN <ll MA" N <ll MAN . 

Consequently the response time of MAN is a. lower. bound for the response time 
of MA" N and the response time of MA$ is an upper bound. We conclude that 
for N > 0 the response time of MA3" N with respect to (a ; b )* is K + p . 

Though MA3N and MA3hr have the sa.me response time, they are not equaJly 
fast: the response time of MA3$ with respect to MA3N is 2{K + p) / (K + 2p) 
(for N > 0 ). The real implementation MA3"N does not do any better rela.tive 
to MA3N: for N ) 2 there is at least one sha.red max-block, whlch results in 
a. 'period' of at least 2(K + p) while the period of MA3N is "+ 2p. 

We did not need to compute the external behaviours of the arrays MA3" N in 
order to draw these conclusions about their speed. This should not prevent the 
interested reader from trying to compute these beha.viours ( observe that for odd 
values of N, the behaviour dependends on the position of the cell that does not 
share its max-block). 



Chapter 5 

Distributed lmplementations 
of FIFO buffers 

This thesis is not about data hut ahout real-time behaviour. Therefore it is 
convenient to perform a case-study on mechanisms that are especially designed 
for some specific reai-time hehaviour, under the restrietion of a simple relation 
between data; First In First Out buffers enjoy this property. In this chapter we 
discuss the performance of distributed implementations of FIFO buffers. The 
main difference in performance, of the implementations we discuss, is manifested 
in extreme situations: buffers that are almost full, and buffers that are almost 
empty. 

In this introduetion we give a way of reasoning about distributed implementa
tions of FIFO buffers. This reasoning in terros of packets and holes is used in 
Section 5.2. F'luthermore we exhibit 'the problem of full buffers' as well as 'the 
problem of empty buffers'. 

In Section 4.3 we already encountered the one-place buffer. A program for the 
one-place buffer with input channel a and output channel b is given by: 

program BUF1 (input a, output b): 
var x; 
begin 

(a? x ; b!x )* 
end. 

The buffer receives packets (in variabie x ) during communications along channel 
a , and it gives packets to the environment during communications along channel 
b. Observed from a dual point of view this can be phrased as: the buffer receives 
holes during b communications, and it gives holes to the environment during 
a communications. Initially, the one-place buffer contains a hole. The view of 
communications as exchanges of packets and holes is essential in our reasoning 
about implementations. 

In this chapter we assume delays of one time unit; this results in the following 
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description of the one-pla.ce buffer: 

(5.1) Bt.S.ai = if i= 0 -+ 1 
0 i > 0 -+ s.~-t + 1 
fi 

Bt.S·"' = s.a, + 1 
Figure 5.2'shows two statesof a cascade of five one-pla.ce buffers. The circles 
symbolize variables, the tokens symbolize pa.ckets. Packets can only move from 
the left to the right; they are obta.ined from the environment at the left-hand 
side, and are returned to the environment at the rlght-hand side. In [2] such 
implementations are eaJled 'rlpple' buffers. In one time unit the first state of 
Figure 5.2 develops into the second state; during thls time unit, two packets 
have changed pla.ces with holes. 

Figure 5.2 A cascade of five one-pla.ce buffers. 

Now consider, see Figure 5.3 (a), a cascade of one-place buffers that conta.ins 
no pa.ckets. When a pa.cket is obta.ined from the environment (in exchange for a 
hole), thls pa.cket has to travel through all variables befare it can be returned to 
the environment ( aga.in in exchange for a hole). So the response time of cascades 
that are almast empty is proportional to the number of variables they conta.in. 
By exchanging the dual concepts 'hole' and 'packet' in the previous observation, 
the same condusion is drawn for cascades that are almast full, see Figure 5.3 (b ). 

(a) a.lmost empty (b) almast full 

Figure 5.3 Successive statesof a cascade. 

<> 
<> 
<> 

.<> 
<> 

The performance of cascades is optimal when they are approximately half full. In 
thls case a continuons stream of packets moves in one direction, and a continuons 
stream of holes moves in the opposite direction (Figure 5.4). In this case the 
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number of variables that is used is about twice the number of packets that are 
in the buffer, which is a considerable overhead. In VLSI implementations such 
an overhead is un-desired because variables are -relatively- expensive. In 
software implementations, however, the casts of variables are usually relatively 
low. 

Figure 5.4 Optima! behaviour of a cascade. 

Overview 

In Section 5.1 we perform a more formal analysis of the behaviour of linear con
servative implementations. Furthermore we introduce the type of specification, 
Bq,p, we want to implement. Bq,p specifies the behaviour of a FIFO buffer that 
operates with delays of one time unit when the number of packets it contains 
lies within the capacity range from q - 1 up to p. 

In Section 5.2 we give theoretica} bounds for the overhead (in variables) that 
is needed to implement FIFO buffers of type Bp,p with a non-zero quality. 
These hounds are under the assumption that it takes a hole to move a packet. 
Furthermore, the hounds depend on the shape of the implementations. We dis
cuss implementations that are linear arrangementsof 'cells', implementations in 
which cells have a limited number of neighbours, and implementations in which 
variables have 'lilnited surroundings'; the latter rnadeling restrictions on the 
layout of implementations. The overhead that is needed turns out to he (respec
tively) linear in p, logarithmic in p, and proportional to the square root of p. 
The implementations in Section 5.1 meet the bound for linear implementations, 
in that the overhead is linear in p. In Section 5.4 we give hierarchical designs 
of conservative implementations that meet the hounds for hoth other types of 
implementations. 

The problem with these conservative implementations is that they are symmet
rical in packets and holes. Therefore they do not only have a poor performance 
when they are almost full, hut also when they are almost empty. In order to solve 
this prohlem, empty parts of a buffer can he bypassed. Buffers with bypassing 
are discussed in Section 5.5. 

The implementations in Sections 5.1 and 5.4 are special cases of the - hypo
thetical - implementations we analyze in Section 5.3. Iu Section 5.5 we use 
these hypothetical implementations to estimate the behaviour of bypass buffers. 

Usually, FIFO buffers are not implemented in a distrihuted way. The behaviour 
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of distributed implementa.tions of FIFO buffers, however, is typical for pipelines 
a.nd for systolic arrays that communicate to the environment at both sides. In 
Section 5.6 we brie:fiy discuss some general exa.mples. 

5.1 L~near conservative implementations 

Composing two one-pla.ce buffers in cascade gives a. buffer that ca.n contain two 
pa.ckets. 

~ 
Figure 5.5 A cascade of two one-pla.ce buffers. 

The extern al behaviour of this cascade is given by: 

(5.Q) CAS2.8.a, = if i = 0 -+ 1 
D i = 1 - 8.~-t + 2 
0 i~ 2 -+ 8.~-1 + 2 max s.bi-2 + 2 
ft 

CAS2.8.bi = if i = 0 · -+ s.~ + 2 
0 i ~ 1 -+ 8.~ + 2 max 8.b,_1 + 2 
ft 

A derivation of this behaviour is given below. 

In the cascade, the dela.y between a.n input a, a.nd output bi is two, instead 
of the one in a one-pla.ce buffer. This is not surprising, since the packets have 
to travel through two one-pla.ce buffers, instead of one. Similar for the delay 
between b, a.nd ~+2: the holes also have to travel through two one-pla.ce 
buffers, instead of one. 

Derivation of the beha.viour of two one-pla.ce buffers in cascade. 

The extern al beha.viour of a. cascade of two one pla.ce buffers ( see Figure 5.5) 
is eo lt { a,b}' where eo is given by eo = Bt b-oe 11 Bt G->C (see For
mula 5.1 for Bt ): 

eo.s.a, = if i= 0 -1 
0 i~ 1 -8.Ci-l + 1 
ft 

eo.s.b, = s.c, + 1 

eo.s.Cï = if i=O -8.~ + 1 max 11 

0 i~ 1 ...... 8.a, + 1 max s.bi-1 + 1 
:fi 

In order to compute et = eo lt {a, b} , we assume tha.t c a.ctions happen as 
soon as they are enabled: 

1 AB in the previous cha.pter, redundant dependencies are underlined. 
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et.s.a, if i = 0 -> 1 

D i= 1 __.. s.ai-l + 2 max 2 
u i> 1 -> s.ai-l + 2 max s.bi-2 + 2 
n 

e1.s.bi = et.S.ai+l 

Pruning the redundant term max2 in the enabling of s.a1 (and s.b0 ) gives 
CAS2. 

0 

In order to obtain bigger buffers, more one-place bufferscan he placed in cascade. 
CAS., gives the behaviour of a cascade of v one-place buffers: 

(5.7) CAS11 .s.ai = if i= 0 -> 1 
D 0 <i< v -+ s.ai-1 + 2 
D i:;::: v -+ s.~-1 + 2 max s.b,_., + v 
fi 
if i = 0 -+ s.a, + v 
IJ i :;::: 1 -+ s.a, + v max s.bi-1 + 2 
fi 

This formula is a generalization of Formula 5.6 for the cascade of two one place 
buffers. It is a consequence of Formula 5.32 for the cascade of FIFO buffers 
of type 'IH' with a one place buffer ( CAS" = IH( v, v, 2, v) ). Observe that 
though CAS1 has some redundant dependencies, it is equivalent to the one 
place buffer Bt . 

We are interested in buffers with a good performance over a given capacity 
range. First we consider specifications of type B9 , for p > 0 . These specify 
buffers that have a capacity range from p- 1 up to p: that is, apart from the 
initialization phase, they can contain p - 1 or p packets. 

(5.8) B9 .s.ai if i= 0 -+ 1 
0 0 < i < p -+ s.ai-1 + 2 
0 i ~ p --> s.b,_9 + 1 
n 

B9 .s.bi = s.ai+p-1 + 1 

In terms of choice-free commands, the behaviour is given by (a ; r) p-l ; (a ; b )* . 
The definition of B1 is in accordance with Formula 5.1 which gives the behaviour 
of an implementation of a one-place buffer. 

The quality of cascade CAS" with respect to specification B9 is given by: 

(5.9) Q(CAS.,,B9 ) = if 0<p~(v+1)/2 -+ (2p-l)fv 
D (v+l)/2~p<v+l-+ (2v-(2p 1))/v 
U p~v+1 --+ 0 
fi 

This is a special case of the quality of buffers of type IH , as given in For
mula 5.27. 
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Figure 5.10 gives the quality of CASv , dependent on which specification is to 
be implemented. 

1 ~AS,;llp) 
lv v 
2 p-l-

Figure 5.10 Performance of a CASv buffer. 

The more logica! approach is to state a specification B" and to consider the 
quality of several implementations; this is done in Figure 5.11. 

Q(CAS.,,Bp) 

-
v-

Figure 5.11 Performance of CAS., buffers. 

In both figures, we observe that quality 1 is obta.ined when the number of 
variables is approximately twice the number of packets: for implementing a 
buffer for p packets, a cascade buffer must have about 2p va.riahles; this is an 
overhead of p va.riables. From Formula 5.9 (second alternative) we infer the 
a.mount of overhead that is needed to ohta.in quality Q, 0 < Q ~ 1 : 

P*Q-1 
(5.12) V- p = 

2-Q 

This overhead is linea.r in p. 

B" buffers have a very small capacity range: from p- 1 up to p. We gener
alize the specification to buffers with capacity range from q - 1 up to p , for 
O<q~p: 

(5.13) B9.".s.ai = if 
u 
0 
fi. 

i=O ....... 1 
0 < i < p .....,. s.~-1 + 2 
i ~· p ...." s.ai-1 + 2 ma.x s.bt.-p + 1 

B9.".s.bi = if i= 0 ...." s.at.+q-1 + 1 
U i > 0 .....,. s.ai+q-t + 1 ma.x s.bi-1 + 2 
fi. 

B"." has some redundant dependencies; it is, however, equivalent to B" (see 
Formula 5.8). The quality of ~he cascade with respect to specifications of type 
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Bq.p is given by: 

(5.14) Q(CAS",B9.p) = Q(CAS",B9 ) min Q(CAS11 ,Bp) 

This is a ( again) a special case of the quality of buffers of type IH with respect 
to specifications of type Bq,p (see Formulae 5.27 and 5.29). 

In the cascade buffers, the delays between successive inputs and successive out
puts are (at least) two: only one of every two time units an input can be per
formed (similar for outputs). This restrietion is imposed by the building block 
B1 we used. Under the assumption of unit delays, an implementation can per
farm at most one input (output) per time unit. This result can be achieved by 
receiving successive 'input packets' in different variables, and sending successive 
'output packets' from different variables. The following 'wagging scheme'2 can 
be used to do so: 

program Wagging Buffer (input a, output b) : 
var x, y; 
begin 

a?x; (a?y,b!x; a?x,b!y)* 
end. 

Under the assumption of unit delays, the behaviour of this program is given by: 

(5.15) BW2.s.a, if i= 0 -+ 1 
~ i = 1 _... s.ai-1 + 1 
U i ;;:: 2 -+ s.ai-1 + 1 max s.bi-2 + 1 
fi 

BW z.s.bi = BW 2.s.ai+1 
Apart from the initial delay, this program is twice as fast as CAS2 : 

(5.16) BW2 = 1/20(CAS2EB1) 

(see Formula 5.6). Consequently, a cascade of k wagging buffers is (apart from 
the initia! delay) twice as fast as a cascade of 2k one-place buffers. 

Figure 5.17 Cascade of five wagging buffers. 

The comparison of cascades of one-place buffers and cascades of wagging buffers, 
is under the assumption of identical delays (one time unit). Wagging buffers, 
however, have a drawback: in hardware, the 'wagging' of an input stream to 
two variables (plus the merge to one output stream) tends to be more expensive 
and slower than sending ( and receiving) all val u es to ( from) the same variable. 

2 Terrninology frorn [2]. 
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These drawbacks can he considerably reduced by using one 'split cell' to split 
the input stream, two parallel cascades of one-place buffers, and one 'merge cell' 
to merge both packet streams into one output stream. 

Figure 5.18 Optimization of the cascade in figure 5.17. 

The programs of the wagging cells are given by: 

program Wagging Split (input a, output b1, b2) : 
var x, y i 
bègin 

a?x i (a?y ,bl!x i a?x ,b2!y )'" 
end. 

program Wagging Merge(inputa1,a2, outputb): 
var x, y i 
begin 

al?x i (a2?y,b!x i a1?x,b!y)'" 
end. 

Without proof we mention that, under the assumption of unit delays, such a 
construction has the same behaviour as a cascade of wagging buffers. 

The problem with the implementations we presented in this section, is that 
they have a poor performance when they are relatively full and when they are 
relatively empty. 

In order to implement B,. with quality Q , 0 < Q ::;; 1 , a linear overhead of 
variables is needed. The wagging scheme is twice as fast as the cascade of one
place buffers, but the overhead is stilllinear. In the next section we give lower 
bounds for the overhead that is neededi in Section 5.4 we give conservative 
implementations that meet these bounds. 

The fastest cascade implementation of Bq,p with one-place buffers is a CASp+q-l 
buffer; the quality of this implementation is (2q- 1)/(p + q- 1). When the 
specification has a relatively long capacity range ( p >> q) this gives a poor 
performance. Again, the wagging scheme is twice as fast, but this is only a 
constant factor. The implementations in Section 5.4 have a better performance 
for relatively empty buffers; if, however, an implementation must have a good 
performance when it is.even 'more empty', this does not suffice. The implemen
tations with bypassing in Section 5.5 are even good when they are empty. 
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5.2 Lower bounds for the overhead 

In this section we derive lower bounds for the overhead of implementations for 
Bp buffers. Rather than in the exact overhead for individual implementations, 
we are interested in the order of magnitude of the overhead for complete 'im
plementation schemes'. For example, in order to implement buffers of type Bp 
with cascades of one-place buffers, with a quality that does not tend to zero 
for large values of p, a linear overhead is required (see Formula 5.12). In the 
derivation of lower bounds, we assume that the external behaviours of imple
mentations can he described with enabling functions. Furthermore we assume 
that the implementations communicate with their environment by sending and 
receiving of packets only. Not all implementations of FIFO buffers enjoy these 
properties. For example, the programs that are given in [12, 15] intedeave their 
input and output actions (rather than performing them in a concurrent way), 
and within the enabling model this interleaving cannot he described without 
introduetion of additional channels, along which the environment requests for 
inputs and outputs. However, the results we achieve can be generalized to all 
kinds of implementations, as long as the communication of packets in these 
implementations is based on the principle of exchanging packets and holes. A 
similar derivation is given in [12]. 

The lower bounds we give depend critically on the assumption that it takes a hole 
to move a packet, and that moving a packet takes at least one time unit. The 
other cornerstone in the derivation of lower bounds is the FIFO strategy; this 
strategy ensures that the contents of a buffer that initially conta.ins p packets 
is completely refreshed after p outputs and p inputs. 

We distinguish three types of implementations. In the first two, we assume a 
partition of the implementation into building blocks that have a limited number 
of variables. These building blocks are called cells. The types of implementations 
are: 

• linear implementations ( cells have at most two neighbours ), 

• implementations in which cells have a limited number of neighbours ( > 2 ), 

• implementations in which variables have limited surroundings. 

First we discuss a general way to determine lower bounds. 

A general lower bound 

Alllower bounds we give are based on the fact that it takes a hole to move a 
packet, and that moving a packet takes at least one time unit. 

Consider the experiment of Figure 5.19, in which a distributed FIFO buffer with 
v variables, FIFO, is connected toa one place buffer that initially produces p 
packets: 
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program Bp (input b, output a) : 
varx; 
begin 

(a! any value ; r)~'- 1 ; a! any value ; ( b?x ; a!x )'" 
end.· 

where eveîy action, including the internal action T , takes 1 time unit. The 
external behaviour of this program is Bp . 

ÎJp 
~ 

FIFO r-;;-

Figure 6.19 The experiment. 

PaCkets move from Bp to FIFO along cha.nnel a ; along channel b they move 
back aga.in. Consider the situation a.fter communication of the p initia! packets 
from Bp to FIFO ; the rema.ining communication pattem is ( b ; a)* . 

The number of moves per time unit is at most the numher of holes: v + 1 - p . 
We conclude that, if M moves are required to perform (b ; a ).P , this takes at 
least MI ( v + 1 - p) time units. Si nee ( b ; a ).P comprises 2p communica.tions, 
the number of communications per time unit is at most 2p{ v + 1 - p) I M ; this 
observation is used in the first step of the following derivation. We derive a.n 
upper bound for the quality of FIFO with respect to Bp : 

2p{v + 1- p) 

M 

~ { see above} 

Q(FIFO 11 Bp, Bp) 
= 

Q(FIFO 11 Bp, Bp 11 Bp) 
~ 

Q(FIFO,Bp) min Q(Bp,Bp) 
= 

Q(FIFO,B9 ) min 1 

= { see below} 

Q(FIFO,Bp) 

Due to the assumption of unit delays, FIFO cannot perform its first action 
before moment one, whlch results in a quality of at most one.3 

Rema.ins to estimate the number of moves, M , that is needed to perform 
(b ; a )P. Due to the First In First Out strategy of FIFO , each packet vis-

3 1î we allow a longer initia.l delay, by uaing specification BP (lll , the term min 1 in the 
second laat formula of the derintion cannot be removed that easily. This does, however, not 
aft'ect the order of magnitude of the estimated overhead. 
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its Bp exactly once, during the performance of (b ; a)P. Consequently, M is 
the number of moves jt takes to get all packets out of their original position, via 
iJ,. , into their final positions. A lower bound, bout , for the number of moves 
towards B,. is obtained by assuming that all packets take the shortest path to 
iJ,., and that the initia! packing is such that the sum of these shortest paths is 
minima!. In a similar way, a lower bound, bfu , for the total number of moves 
from iJ,. to the final positions is obtained. Since M ~ bout+ bjn, we infer (see 
derivation above ): 

2p(v + 1 p) 

bout+ bjn 
(5.20) Q(FIFO,Bp) ~ 

This can be rewritten into the following lower bound for the overhead in vari
ables, v p , that is necessary in order to achieve a quality of at least Q : 

(5.21) v p ~ Q * Óout + Ójn 1 
2p 

When designing an implementation scheme for buffers of type Bp , the over
head v p must at least be proportional to ( Óout + óin) / p in order to obtain 
a performance that does not tend to zero for large buffers. 

Linear implementations 

If an implementation can he partitioned into cells, such that each cell has at most 
two neighbours, we call it Jinear. The neighbours of a cell are those cells with 
which it can communicate packets (in at least one direction ). Wh en a cell can 
communicate with the environment ( B,. ), the environment is also considered a 
neighbour of this cell. 

In this section we consider linear implementations with grain size g. That is, 
each cell in the partition contains at most g variables. lt turns out that under 
these conditions the overhead is at least linear in the number of packets. The 
cascades of one-place buffers, and those of wagging buffers (see the previous 
sec ti on) are examples of linear implementations; their grain si zes are one and 
two respectively, and both have a linear overhead. 

All we have to do, in order to obtain a lower bound for the overhead, is to give 
lower bounds for Óout and Óin . For reasons of symmetry, it suffices to consider 
60 ut only. 

In any implementation, there is exactly one cell with distance one to the output: 
the cell with b as an output channel. In a linear implementation, this cell has 
at most two neighbóurs, and the environment is one of them; so there is at most 
one cell with distance two to the output. In general, for each i : i > 0 there is 
at most one cell with distance i to the output. Since each cell contains at most 
g packets, an upper bound of the number of packets within distance d to the 
output is given by: 
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P.d 

(l:i:O<iE;d:g} 

d*g 
Let d a.nd g' such that p = P.d + g1 for 0 E; g' < g • A packet at dista.nce i 
has to mo~e at least, i times before it reaches iJ.,. This results in the following 
estimation for D0 ut: 

~ 
(Ei : o < i ' d : u* i}+ g'( d + 1) 

= { calculus } 

gd(d + 1)/2 + g'(d + 1) 

= (d + l)(gd + 2g')/2 
~-p2j2g 

The same lower bound holds for Dm • 

From Formula 5.21 we infer the following lower bound for the overhead: 

(5.22) V- p ~ Q * pj2g- 1 

As expected, the overhead for linear implementation schemes is at least linear 
in the number of packets. 

lmplementations with .limited neighbourhood 

We consider distributed FIFO implementations with grain size g, in which 
cells have at most F + 1 neighbours; F ~ 2 . lt turns out that under these 
conditions, the overhead is at least logarithmic in the number of packets. 

For li00t we take the sum of the distances of the packets to the output, under 
the assumption of a close packing to the output. At dista.nce one to the output, 
at most g packets ca.n be sited; at distance two, at most g * F packets. In 
general, at dista.nce i + 1 at most g * pi packets can be sited. Consequently, 
an upper bound for the number of packets within distance d to the output is 
given by: 

P.d 

= U*(Ei:OE;i<d:P) 
= { calculus} 

F-1 
9*--

F-1 

For reasons of simplicity we assume p = P.d (for some d ). Without proof we 
mention that the lower bound we derive for liout also holds for other values of 
p. 
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Óout 
~ . 

g * ( 2: i: 0 ~i <d: (i+ 1) * F') 
= {calculus} 

g * (d- Jb) * Fd + J6 
F-1 

1 
(d- *P 

F-1 

{ d = logF(F;l *P+ 1)} 

(logF .p- logF .g) * p 

Due to symmetry, the same lower bound holds for Óïn . 

From Formula 5.21 we infer the following lower bound for the overhead: 

(5.23) V p ~ Q * (logF .p logF .g)- 1 

This lower bound is logarithmic in the number of packets. 

Implementations with limited surroundings 
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In order to obtain the previous logarithmic lower bound for the overhead, the 
number of variables within a bounded 'moving' distance to the output must 
be exponential ( P.d is proportional to pd ). Due to physicallimitations, it is 
unlikely that this is possible for large buffers. In this section we assume that 
implementations must have a two dimensional layout, in which the distance 
between neighbour variables is bounded, and in which the number of variables 
per square unit is bounded. It turns out that under these restrictions, the 
overhead must be at least proportional to the square root of p in order to 
obtain qualities that do not tend to zero for large valnes of p. This lower bound 
is independent of grain size and number of neighbours. 

We choose the unit of (physical) length, such that the distance between neigh
bour variables is at most 1 . With v we denote the maximal number of variables 
per square unit of length. 

The number of moves it takes for a packet to move from one variable, via a 
number ofvariables, toanother variable, is at least the physical distance between 
the initial and the final position. A lower bound for Ó0 ut and Óin is thus 
obtained by assuming a physically close packing of packets to the output in the 
initial state and in the final state. 

For the sake of convenience we assume that the variables are continuously dis
tributed over the area, rather than occupying discrete positions. The number of 
variables within a cirde of radius d around the output (input) is then at most 
v1r d2 • Let d such that v1r d2 p. The total physical distance to the output 
of the p dosest variables is at least 
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Ir to 11 * r 2 dr dtJ 
= { calculus } 

211'11 * J: r 2 dr 

= { calculus } 

211'11/3-rP 

= 2/3 ( 11'11 )-1/2 ,S/2 

This is a lower bound for 600, as well as 6m • From Formula 5.21 we infer: 

(5.24) v-p ~ I•QVfi-1 
for some factor I : I > 0 that is independent of a partition in cells, and of the 
conesponding values of g and F (I= 2/3(11'11)-112 ). 

This lower bound is proportional to the square root of p • A similar lower bound 
is ohtained when instead of a bounded distance between neighbour variables, the 
duration of a move is assumed to he proportional to the physica.l distance to he 
bridged. 

ó.3 Performance of hypothetical implementations 

The hypothetica.l implementations we analyse in this section are used in the 
following sections to describe conserva.tive implementa.tions and to estima.te im
plementations with bypassing. They depend on four parameters: 

• the latency between input and output is a , a > 0 , 

• the latency between output and input is fJ, fJ > 0, 

• the throughput delay is 7 , 7 > 0, and 

• the capacity is v , v > 0 . 

Independent of the throughput delay, we assume an initial delay of one. 

The hypothetical implementation is given by: 

(5.25) IH(o:,/3,7,V).s.ai = if i= 0 ...... 1 
0 0 < i < v _.,. s.ai-1 + 7 
0 v ~ i _.,. s.ai-1 + 7 max s.bi.:-11 + fJ 
ft 

IH(o:,/3,7,v).s.bi = if i=O _.,. s.~+o: 
0 0 < i --+ s.ao + a max s.bi-1 + 7 
ft 

In all implementations we discuss, the capacity is equal to the number of vari
ables. Furthermore we assume the following relation between the parameters: 

(5.26) 1'V ~ 0: + {3 
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This relation assures that ai cannot he indirectly delayed by ai-u via bi-u 

(similar for bi by bi-v via a;). 
We introduce abbreviation IH({J, v) for the 'symmetrical' buffer IH({J,{J, 2, v). 
The cascades of one-place buffers are special cases of these implementa.tions: 
CAS., = IH(v,v) (see Formula 5.7). 

The quality of IH(a,{J, i, v), as implementation of a buffer with ca.pacity range 
from q- 1 up to p, Bq,p (see Formula. 5.13), is given by: 

(5.27) Q(IH(a,/l,i,v),Bq,p) = 

( 
2q 1 . 2v- (2p- 1) . 2 . ) 0 max -- mm _ ___;:...;;.. _ _;;,. mm - mm 1 

a fJ i 

The last term, min 1 , is due to the initial delay: for the quality with respect to 
Bq,p El) p it would be min 1 + p . 

A derivation of this quality is given helow. 

Figure 5.28 shows the quality with respect to buffers of type Bp in case i ~ 2; 
for i < 2 the quality is the same as for i = 2 . 

~ lzJ ~ Q(IH(a,~,1,v), B,) 

.!! V-~ V 1 
7 7 p-2-

Figure 5.28 Quality of an IH buffer with i ~ 2. 

The general case is expressed by: 

(5.29) Q(IH(a,/l,i, v),Bq,p) 

Q(IH(a,!J,i,v),Bq) min Q(IH(a,/J,i,v),Bp) 

Derivation of Formula 5.27. 

The enabling functions involved are conservative, so it suffices to consider 
process indusion. Let 

2q-1 2v-(2p-1) 2 
Ào = 0 max ( -- min min - min 1 ) 

0 {J i 
We subsequently prove: 

1 PBq,p Ç À 0 PIH(o,/J,i,v) => À~ Ào (for 0 <À< oo ). 

2 If 0 < Ào: PBq,p Ç >.o 0 PIH(o,/l,i, v). 

Bq,p is given in Formula 5.13, IH buffers are defined in Forrnula 5.25. 

1 Assume the left-hand side. For each term in the minimum of the forrnula for 
Ào , we have to prove that À is at most this term. 
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• À' 17 
Let s = hB11..p : s.~ = 2i + 1 s.~ = 2i + 2q • 

Since s.ao=1,and À0IH(a,{l,1,v).s.ao=À,weconclude À(1 . 

• À' 2(1? 
Let s = hB11..p • For i > 0 we derive: 

s E P(À 0IH(o:,{j,1,V)) 
::} 

s.ai;;?: (À01H(o:,p,1,v)).s.~ 

::;. { s.~ = 2i + 1, s.ai-1 = 2i- 1 } 

2i + 1 ~ 2i - 1 + À7 
{:} 

À(2/1 

• À <: (2q- 1)/a? 

Let a.gain s = hB11..p ; we derive: 

s E P(À 01H(a,{l, 1, v)) 
::} 

s.b, ~ (>.0IH(a,[l,1,v)).s.~ 

::;. { s.bi = 2i + 2q , s.~ = 2i + 1 } 

2i+2q ~ 2i+l+Àa 
{:} 

À<; {2q-1)/a 

• .\ <; (2v- (2p- 1))/P? 

Define schedule 8 by 8.~ = 2i + 1 s.bi = 2i + 2p . 

Observe that 8 E PB11..p. Furthermore we derive for i~ v: 

s EP(.\ 01H(a,{l,1,v)) 
::} 

s.ai ~ (>.0IH(o:,[l,1,v)).s.a, 

=> { s.a, = 2i + 1, s.b,_" = 2(i- v) + 2p} 

2i + 1 ~ 2( i - V) + 2p + .\P 
{:} 

À ( (2( V+ 1 - p) - 1 )/ {j 

2 Assume Ào > 0 . 

It suffices to prove (>.o0IH(o:,[l,1,v)).s <; B9..p.8 forsE PB11..p. 

Let s E P B9..p ; we derive: 

(.\o 0 IH(a,{l,-y,v)).8.a; 
= 

if i= 0 -+ .\o 
U O<i<v -+ 8.ai-1 + 7Ào 
U V (i -+ s.ai-1 + 7Ào max s.b;_" + P>.o 
ft 



5.4 Conservative implementations that meet lower bounds 129 

~ { .\0 > 0 so v ~ p , ,\0 ~ 1 , Ào ~ 2h } 
if i 0 -+ 1 

u O<i<p -+ s.ai-1 + 2 
u p~i<v -+ s.ai-1 + 2 
u v~i -+ s.~-l + 2 max s.b,_., + f3>.o 
fi 

~ { 8.bi-u ~ 8.bi-p- 2( V p) } 

if 0 -+ 1 
D 0 < i < p -+ s.ai-1 + 2 
U p ~i -+ s.ai-l + 2 max s.bi-p + f3>.o- (2v 2p) 
fi 

~ { f3.\o ~ 2v- 2p + 1 } 

Bq,p·s.a, 

The derivation of (.\0 0 IH(a,/3,1,v)).s.bi ~ Bq,p·s·bi is similar. 
0 

5.4 Conservative implementations that meet lower 
bounds 

In Section 5.1 we did already give linear implementations with a linear over
head. In this section we give a hierarchical design of implementations with lim
ited neighbourhood that have a loga.rithmic overhead. We use the most severe 
restrictions: a. grain size of one, and at most three neighbours per cell. Under 
the same restrictions we also give implementations with bounded surroundings 
that have an overhead proportional to the square root of the number of packets. 
Before giving these implementations we first introduce the constructions we use. 

Hierarchical design of buffers 

We discuss three ways toenlarge existing FIFO buffers. All extensions (trivially) 
exhibita FIFO behaviour, b(i) a( i); we focus our attention on the reai-time 
behaviour. We a.nalyze the real time behaviour of the constructionsin case they 
are applied to IH buffers. lt turns out tha.t the behaviour of these construc
tions can he obtained by counting variables and adding latencies. We do not 
prove all statements we make about the behaviour of these constructions. The 
missing proofs, however, can he produced straightforwardly, in the style of the 
other proofs. At the end we mention better estimations of the behaviour of 
constructions, by using descriptions that are 'similar' to IH buffers. 

The first, and most simple, of the constructions is the cascade of a FIFO buffer 
with a one-place buffer. 

(5.30) C.FIFO = (Ba_,c 11 'FIF'Oa-.e) lî {a, b} 
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'R.FIFO 
b 

Figure 5.31 Cascade with a one-place buffer: C.FIFO. 
' 

Counting variables and adding latendes already suggests the following result for 
application of this construction on IH buffers: 

(5.32) C.IH(a,IJ,2,v) ~ m(a+1,1J+1,2,v+1) 

For m buffers with delay 1 , in general, we mention the following estimation: 

{5.33) C.IH(a,IJ,1, v) <ll IH(a + 1,IJ + 1,1 max: 2, v + 1) 

Derivation of Formula.e 5.32 and 5.33. 

The composition Blb-+c 11 IH(a,IJ,1,v)a-+c is given by (see Formula.e 5.1 
·and 5.25): / 

eo.s.a.a = if i= 0 -4 1 
0 i> 0 -8-Ci-l + 1 
fi. 

eo.s.ct = if i= 0 - s.a.a + 1 max: 1 
0 O<i<v -4 s.a, + 1 max: s.ct-t + 1 
0 v~i - s.a;. + 1 max: s.Ci-1 + 1 max: s.b;.-v + IJ 
fi. 

eo.s.b; = if i=O - s.ct +a 
u O<i - s.ct + a max: s.b;.-1 + 1 
fi 

Let 1' = 1 max: 2. In case 1 = 2, enabling function et, as given below, is 
equivalent to eo . This case serves to derive Formu)a 5.32. In case 1 :# 2 , et 
is an upper bound of eo : eo <J1 et . This case serves to derive Formula 5.33. 

et.s.a; = if i= 0 --+ 1 
11 i> 0 - S.Ci-1 + 1 max: S.a.&-1 + 11 

fi 
if i =0 - s.a.a + 1 
u O<i<v - s.a.a + 1 max: s.ct-1 + 11 

0 v~i --+ s.a.a + 1 max: s.ci..:t + 1' max: s.bi-" +IJ 
fi. 
if i=O - s.ct +a 
0 O<i --+ s.ct +a max: s.~-1 + 11 

fi 
Let E!2 hetheresult of pruning the redundant (underlined) dependendes in 
the enabling of c actions. The external behaviour ea ~ lt {a, b} is given 
by: 
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if i=O --+ 1 

D 0 <i~ V --+ s.ai-1 + 11 

D V< i --+ s.ai-1 + 1' max s.bi-(v+l) + /3 + 1 
ft 

= if i=O --+ s.a, +a+ 1 
D O<i<v --+ s.a, +a+ 1 max s.bi-1 + 1' 
D V~ i --+ s.a, +a+ 1 max s.bi-1 + 1' 

max s.bi-v +a+ /3 
ft 

The underlined term is redundant because /V ~ a + f3 (Formula 5.26) and 
1' ~ 1. Pruning the redundant term results in IH(a + 1,/3 + 1,/',v + 1). 

0 

The second construction we discuss consistsof placing one-place buffers at both 
sides of the existing implementation. 

(5.34) B.FIFO = (B1 b-->p.a 11 p.FIFO 11 B1 a-->p.b) ~~ {a, b} 

p.a 
p.FIFO 

p.b 

Figure 5.35 FIFO between two one-place buffers: B.FIFO. 

The result of applying this construction on an IH buffer with 1 ~ 2 is again an 
IH buffer with the expected latencies, and the expected number of variables: 

(5.36) 1 ~ 2 => B.IH(a,/3,/,v) ~ IH(a + 2,/3 + 2,2,v + 2) 
The derivation of this behaviour is omitted. Without derivation we also mention 
the following estimation for the case 1 > 2 : 

(5.37) 1>2 => B.IH(a,/3,/,v) <11 IH(a+2,/3+2,/,v+2) 

So far, the constructions are not very spectacular: the increase of the latendes 
is proportional to the increase of v. The parallel construction exhibits a better 
behaviour with respect to these latencies. The parallel construction is similar 
to the wagging construction in Figure 5.18. 

Figure 5.38 The parallel construction: P.FIFO. 

The programs for the split and the merge cell are given by: 
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program Split (input a, output q.a, r.a) : 
var x 
begin 

(a? x; q.a!x; a? x-; r.a!x )* 
end. 

program Merge( inputq.b,r.b, outputb): 
var x 
begin 

(q.b?x; b!x; r.b?x-; b!x )* 
end. 

Let BS a.nd BM he the enabling functions of the split program and the merge 
program respectively: 

(5.39) BS.s.a0 = 1 
BS.s.a2i+l = s.qGï + 1 
BS.s.a2H2 = s.ra, + 1 

BS.s.qa;, = s.a21 + 1 
BS.s.ra, = s.a2t+1 + 1 

The parallel construction is given by: 

BM.s.qbo 
BM.s.rb, 

= 1 
= s .. b2i + 1 

8.~+1 + 1 BM .s.qbi+t = 

BM .s.b2i = s.qb, + 1 
BM.s.b2i+l = s.rb, + 1 

(5.40) 'P.FIFO = (BS 11 q.FIFO 11 r.FIFO 11 BM) lt { a,b} 

The behaviour ofthe parallel construction on IH(a:,/3,/,v) (see Formulae 5.42 
a.nd 5.43) can already he guessed by intuition: the number of variables in the 
composite is 2v + 2; the latendes increase by two; and two buffers in parallel 
ca.n handle twice as much throughput as one. By renaming of internal a.ctions 
( q.a, q.b, r.a, and r.b ), the parallel construction ca.n even he expressed in 
terros of cascade construction 8 : 

(5.41) 'P.FIFO = 8.('Rx,-+ x 21 .FIFO 11 'Rx,-+ X2i+t .FIFO) 

In case FIFO = IH (a:, f3, "Y, v) , the argument of 8 can be rewritten into: 

IH'.s.Gï = if i~ 1 -+ 1 
0 1 < i < 2v -+ s.Gi-2 + "Y 
0 2v ~ i -+ S.Gï-2 + "Y max s.bi-2v + /3 
fi 

IH1.S.bi = if i~ 1 -+ S.Gï + 0: 

0 1 < i -+ s.a, + a: max s.bi-2 + "Y 
fi 

With this enabling function we (tempora.rily) violate the convention for occur
rences of generic actions: a.s far as IH' is concerned, these occurrences may he 
out of order; for example, al may be scheduled before ao . However, the delays 
in IH1 look very much like those in a IH(o:,/3,"Y/2,2v) buffer, so the following 
results should not come as a surprise ( compa.re with Formulae 5.36 a.nd 5.37): 

(5.42) 1 ~ 4 => 'P.IH(a:,/3,/, v) ~ IH(o: + 2,/3 + 2, 2, 2v + 2) 

and the estimation for "Y > 4 : 
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(5.43) 1 > 4 => P.IH(a,/3,/,v) <11 IH(a + 2,(3 + 2,î/2,2v + 2) 

This is a proruising result: the latendes increase linearly, the capacity exponen
tially. 

Formulae 5.33, 5.37, and 5.43, give estimations of behaviours only. In fact, these 
estimations are 'sharp', in that the left-hand sides have the same qualities with 
respect to spedfications of type Bq,p as the right-hand sides. Moreover, it is 
even possible to define a relation i:: that satisfies the following 

Conditions 5.44 

Relation i:: is reflexive for IH buffers: IH(a,/3,/,v) i:: IH(a,/3,/,v) 

Furthermore, for e i:: IH (a, f3, 1, v) , the following observations hold: 

• e <11 IH(a, (3, /, v) 

• Q(e,Bq,p) = Q(IH(a,/3,/,v),Bq,p) (for allpand q) 

• C.e ~ IH(a + 1,/3 + 1,2 max /,V+ 1) 
B.e ~ IH(a+2,/3+2,2max/,v+2) 
P.e ~ IH(a+2,/3+2,2maxî/2,2v+2) 

• B.e ~ IH(a+2,/3+2,2,v+2) 
P.e ~ IH(a+2,(3+2,2,2v+2) 

0 

if Î ~ 2 
if Î ~ 4 

Although intuitively appealing, a formal characterization of relation i:: is not 
trivia!. The crux is to consider the throughput over the entire schedule, rather 
than consiclering the delays between successive inputs, or outputs. The details 
are left to the interested reader. 

lmplementations with limited neighbourhood 

The parallel construction is the most important ingredient in achieving imple
mentations that have a logarithmic overhead. By repeating this construction, 
starting with B1 , one obtains implementations with grain size one, in which 
each cell has at most three neighbours. From Formula 5.42 ( or by counting 
variables and ad ding latendes) we infer that the extern al behaviours of these 
implementations are given by: 

(5.45) pn.B1 ~ IH(2n + 1, 3 * 2n- 2) 

For these implementations, the latendes are logarithmic in the number of vari
ables. From Figure 5.28 we conclude that the number of holes that is needed in 
order to obtain a quality of one is also logarithmic in the number of variables. 
To be more precise, pn.B1 can be used to implement Bp (with quality one) for 
p = v - n , where v is the number of variables (of pn .B1 ). The overhead n is 
logarithmic in v as well as in p. In genera!, when the overhead is logarithmic 
in v, it is also logarithmic in p. 
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With sequence pn .B1 , however, we do not have a complete implementation 
scheme with logarithmic overhead for all specifications of type Bp . Take for 
example p = 3 * 2n - 1 ; the first buffer in the sequence with a non-zero quality 
with respect to Bp is pn+1.B1, which has 3 * 2n+1 - 2 variables: this is about 
twice the number of packets. 

In order to show the existence of an implementation scheme with logarithmic 
overhead, it suffices to give implementations for each number of variables v , 
such that the latency of these buffers is logarithmic in v . This result can he 
achieved by usil).g the parallel construction, as well as cascade construction C • 
We define the following scheme (for v ~ 1 ): 

(5.46) Ilog1 = B1 Ilog2v+l = C.flog2v 
Ilog2 = C.Ilog1 Ilog2v+2 = P.Ilogv 

The behaviour of Ilogv is IH({3, v) for a latency {3 that is logarithmic in v: 

(5.47) {3 ~ if vis even -+ 3 log2 ~ + 2 

0 v is odd -+ 3 log2 .!!fl + 3 
:ft 

This upper bound is easily verified (by induction). 

We have achieved a logarithmic overhead in variables. This result, however, is 
achieved at the cost of using a number of split cells and a number of merge cells 
proportional to v . The overhead in costs due to to the wagging of packets in 
the split and merge cells is thus linear in p. 

lmplementations with limited surroundings 

The idea of these implementations, is to place buffers in parallel only when there 
is enough room to do so. At any distance from the input (output) the number of 
variables that is 'used in parallel' is no more than proportional to this distance. 
We give implementations with a layout that is symmetrical with respect to input 
and output. In the layout scheme in Figure 5.50, each dot represents a variabie 
and each line represents a channel along which packets can move to the right. 
When a variabie has two outgoing channels, packets alternately take the upper 
and the lower one. The packet stream is split at distances 2, 22 , 23 , etc. 
from the input. Later on it is merged at the same distances to the output. At 
tlt;ü stage, when a variabie has two incoming channels, packets are alternately 
received from the upper and the lower one. 

In order to describe these implementations we use cascade construction B and 
the parallel construction. As an abbreviation we introduce the combined con
struction B'Pm that doubles a buffer (in parallel) and adds 2m variables at the 
input side and 2m variables at the output side: 

2m-1 (5.48) B'Pm. FIFO = B . P. FIFO 

In Formulae 5.48 and 5.49 we use the dot for function application in a right 
associative way. 
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For any positive integer f3 there exists a unique pa.ir n ~ 0 and 0 < k ~ rH 
such tha.t f3 = 2 ( 2n - 1) + k . We define implementa.tions I.j ~ in terms of such 

pa.irs by: 

(5.49) I"jf3 = BPo. BPt. BP2 ... BPn-2. BPn-t. CAS• 

For n = 0, this formula is interpreted a.s I"JIJ = CASIJ. 

a 

Figure 5.50 Layout for I.j implementations. 

Counting of variables and adding of latendes gives the following result for the 
behaviour of I"j f3 buffers: 

(5.51) I"Jp ~ IH(/3, 2/3(22n- 1) + 2nk) 

Let v be the number of variables of I.j/J . From this formula, and from the 

definition of n and k , we infer that f3 ~ v'6V, and that the number of variables 

of I.j/3+1 is no more than v + .J3V. The first observation implies that I.j13 
implementations can be used to implement Bp buffers with an overhead that 
is proportional to the square root of the number of packets ( with a quality that 
does not tend to zero for large buffers). Due to the second observation, all Bp 
buffers can he implemented in such a way. 

An advantage of these implementations, above those that we constructed under 
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limited neighbourhood, is that the number of split and merge cells is propor
tional to the square root of p. Consequently, the 'wagging overhead' due to 
splitting and merging of the packet stream is proportional to the square root of 
p, and not lineà.r in p as in the implementations we constructed under limited 
neighbourhood. 

5.5 Buffers with bypassing 

In case one is interested in imptementing FIFO buffers in a distributed way, the 
overhead of variables that is needed is not an insurmountable difliculty: just 
plug in some more variables. A more serious problem is that all implementa
tions we have given so far, also have a poor performance when they are almost 
empty: they cannot be used to implement B11", buffers for which q is less than 
proportional to the logarithm or (in case of limited surroundings) the square 
root of p. This is due to the symmetry of these implementations in packets and 
holes: not only the packets but aJso the holes are routedunder a FIFO strategy. 

In this section we introduce implementations that exhibit a better behaviour 
when they are almost empty. The crux of these implementations is that-empty 
parts of the buffer can be bypassed. As in the previous section, we build b~ffers 
in a hierarchical way. Similar implementations are given in [12, 15] and suggested 
in [7]. In contrast to the implementations in: [12, 15], the implementation we 
give does not synchronize external inputs and outputs. We do not claim this 
to be the optimal way to do things, but it is a nice example of the use of the 
enabling model for performance analysis of behaviours with choice. The main 
differences with the performance analysis of cubic behaviours are: 

• When the timing in a device deviates only a little from the analyzed enabling 
structure, this may result in a dramatic deviation of its behaviour. Therefore, 
the performance must be analyzed over a whole range of enabling structures, 
rather than for just one (see Section 3.6, in partienlar Example 3.56). 

• Because a behaviour with bypassing is not conservative, the strategy of divide 
and conquer must he used very carefully: if e is not conservative, f <11 g 
does in general not imply e 11 f <11 e 11 g . 

• In enabling structures with choice, unexpected dependendes may pop up: 
dependendes that seem redundant, but -formally- may not be pruned. 
This phenomenon is already illustrated in Example 2. 73. 

The bypass extension is simHar to cascade construction 8 (Figure 5.35), in 
which one variabie is placed before, and one after the existing buffer. In the 
bypass extension (Figure 5.52), however, there is an additional bypass channel 
( c ). Packets that arrive in an empty buffer take the bypass channel. 
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a p.a 

p.FIFO 
b p.b 

Figure 5.52 FIFO with bypass interface: ~Byp·FIFO . 

In contrast to cascade construction 8, the added variables are not used inde
pendent of each other. Both variables are part of the same program that keeps 
track of the number of packets in the buffer, in order to decide whether or not 
to a.llow a bypass. This beha.viour is captured in the (pseudo) program below. 

program Bypass Buffer (input a, output b) : 
uses p.FIFO 
var va, vb ; i,j: index 
begin 

11 

a?va, i:= 0; c!va; 
( a?va, i := i+ 1 ; 
if a, before bi-l -+ p.a!va 
U •(a, befare bi-t) -+ c!va 
fl )* 

c?vb; b!vb, j := 0; 
( if ai+l before bi -+ p.b?vb 
0 •( ai+l before bi) -+ c? vb 
fl 
b!vb, j := j + 1 )* 

end. 

At two places in this program a choke is made. The choice in the first sub
program (between p.a! and c! ) decides whether or not a packet takes the bypass 
channel. The choke in the second sub-program (between p.b? and c? ) depends 
on whether the packet has taken the bypass or not. In order to implement the 
latter choice, it is not necessa.ry to keep track of bypasses and non-bypasses: at 
any moment at most one of the inputs is affered by the environment (of the sec
oud sub-program).4 It suffices to make an environment driven (passive) choice, 
for example by using a probe ([19]). Within the enabling model, however, a 
description of such a choice is rather baroque. Therefore we use the program 'as 
is' in the analysis of the behaviour. 

We do not discuss efficient ways to implement the program, we just analyze 
its behaviour. First we introduce enabling structure BYP as a reflection of 
the behaviour of this program under the assumption of delays of one time unit, 
and under the assumption that the choice between a bypass and no bypass 

• under the assumption that FIFO is a buffer 
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is performed exactly as prescribed by the program. Later on we adapt this 
description to devices that do not opera.te that accurately. 

The packet that is received during communication a, , is bypassed if ( and only 
if) it a.rrives in an empty buffer. This results in the following definition for a 
bypass at i: 

(5.53) BP( s, i) = if i = 0 -+ true 0 i > 0 -+ s.tlj > s."._1 ft 

If there is a bypass at i , the index of the performed communication along the 
internal channel c depends on the number of bypasses that happened before; it 
is given by: 

(5.54) JL(s,i) = I ( setj: 0 ~ j <i A BP(s,j): j) I 
When, on the other hand, there is no bypass at i , the index of the correspond
ing p.a and p.b communications depends on the number of 'no-bypasses' that 
happened before; it is given by: 

(5.55) 1r{s,i) = !(setj:O~j<iA-,BP(s,j):j)l 

In the sequel, when using functions like BP, JL , and 1r , we tend to leave the 
schedule implicit. 

The enabling of the external actions is defined as follows: 

(5.56) BYP.s.ao = 1 
BYP.s.ai+t = if BP.i -+ s.c"..i + 1 

0 •BP.i -+ s.pa •. i + 1 
ft max ( max j : j ~ i : s.a; + 1 ) 

BYP.s.b, = if BP.i -+ s.c"..i + 1 
0 ·BP.i -+ s.pb •. i + 1 
ft max ( max j : j < i : s.b; + 1 ) 

The underlined dependendes are of no importance, except that they assure 
BYP to be an enabling structure. 

When defining the enabling of c actions, we need to know the indices of the 
conesponding a and b actions. Therefore we introduce j1 as the 'inverse' of 
JL . For natural numbers i we define: 

(5.57) jl(s,j) =i .ç;. BP(s,i) A JL(s,i) = j 
However, when there is only a fini te number of bypasses, say Nb , such · an i 
does not exist for j ~Nb; for these values of j wedefine jl(s,j) =.oo. The 
enabling of communications over c is given by: 

(5.58) BYP.s.Cï = if jl.i = 0 -+ s.ap.i + 1 
D 0 < jl.i < oo -+ s.ap.i + 1 max s.bp.i-1 + 1 
D p.i = oo - oo 
ft max ( maxj: j < jl.i: s.a; + 1) 

In order to define the enabling of p.a and p.b actions, we use the inverse 1t of 
1r , which satisfies 
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(5.59) 1f(s,j)=i <:> -.BP(s,i)l\7r(s,i)=j 

and 'if(s,j) = oo if no such i exists. 

(5.60) BYP.s.pai = if 'ïf.i < oo -+ s.a •. i + 1 
D 'ïf.i=oo-+ oo 
fi max (maxj:j<7f.i:s.aj+1) 

BYP .s.pbi = if :;r .i < oo -+ s.b'f.i-1 + 1 
D 1r.i = oo -+ oo 
fi max (maxj: j < 1f.i: s.b; + 1) 
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In the sequel we forget about the (semi) redundant underlined dependendes in 
Formulae 5.56, 5.58, and 5.60. 

Enabling structure BYP gives the behaviour of the program under the assump
tion of delays of exactly one time unit, and under assumption that the choice 
between taking a bypass or not, is implemented with absolute precision. When 
the delays vary, and the choice is not so precise, this results in a deviating 
behaviour. For example, when communication ai is performed a little after 
communication b,_1 , the arriving packet should be bypassed along channel c 
to be offered back to the environment aftera delay of two time units. However, if 
the device, that is used to implement the program, decides that ai and bi-l oc
curred simultaneously, the packet misses the bypass within an ace, and is routed 
via p.FIFO, which may take considerably longer. In order to describe a device 
that operates within tolerabie deviations 6 and e: , both at least zero and less 
than one, we make the following assumption about bypasses: BP(s,O) = true 
and for i> 0: 

(5.61) BP(s,i) ::} s.ai ~ s.bi-1- 6 -,BP(s,i) ::} s.ai ~ s.bi-l + e: 

Let BYPnp he the enabling structure that corresponds to a bypass function 
BP that satisfies these conditions. The unit delays in this enabling structure are 
assumed to be upper bounds for the delays in the device; consequently the device 
can be described by an enabling structure Byp that satisfies Byp ~ BYPnp 
(for some bypass function BP ). 

The composition of a head cell with behaviour Byp with a FIFO buffer F I FO 
is described by: 

( 5.62) iP Byp·FIFO = ( Byp 11 p.FlFO) lt {a, b} 

We intend to analyze the behaviour of this bypass construction when it is applied 
to IH buffers. More precisely, when FIFO <11 IH(a,/3,Î,v), we want to know 
which IH buffers are implemented by iP Brp·FIFO , for all possible behaviours 
Byp . These are the solutions IH ( a 1

, /31
, Î , v1

) of the following equation: 

(5.63) (VBP,Byp,FIFO: Byp~ BYPnp 1\ FIFO <11 IH(a,/3,Î,v) 

: iPByp·FIFO <11 IH(ci,/31,Î1,v1
)) 

We are in partienlar interested in upper bounds with capacity v1 = v + 2 , that 
have a small latency a' . 
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In order to avoid the computation of <11 in the quantification over FIFO , we 
rewrite Formula 5.63 into: 

(5.64) {V BP,Byp,FIFO: Byp ( BYPBP 1\ FIFO ( N.IH(a,/3,'Y,v) 

: ëtByp·FIFO <11 IH(a',/3','Y',v')) 

The following lemma implies that Formulae 5.63 and 5.64 are equivalent. 

Lemma 

For f E [Con] : e <11 f <* ( 3 g : g R$ e : g ( N.f) 

Proof 

0 

Due to Proposition 3.42, it suffices to prove for f E [Ase] : 

e <1 f <* ( 3 g : g R$ e : g ( N.f) 
The ::::? implication follows from Proposition 3.41.3 (let g = N.e ). The <;:: 

-implication follows from Proposition 3.41.2. 

On the following pages, we derive an upper bound for the behaviour of the 
extended FIFO buffer, iJByp·FIFO. This is a tedious exercise, but the enabling 
model allows us to give a forma! proof of this up per bound. Before doing so, we 
give an intuitive way to obtain an upper bound IH(ci,f3','Y',v' ). 

Forget about tolerances 6 and e and assume FIFO = IH(a,/3,'Y,v). As men
tioned before, the bypass extension is similar to cascade extension 8 (see Fig
ure 5.35). In case the buffer is not (almost) empty, the behaviour is even exactly 
the same as the behaviour of this cascade extension. Therefore it is reasonable 
to conclude f3' = f3 + 2 , and v = v + 2 ( see Formulae 5.36 and 5.37). Fur
thermore, it is obvious that "'(1 > 'Y max 2. Whether or not we may coneinde 
equality, depends on the behaviour when the buffer is almost empty. 

When a packet arrives in an empty buffer, it takes the bypass and it is avail
able as an output after two time units. This results in the restrietion a1 ~ 2 . 
When, on the other hand, a packet arrives in a non-empty buffer, it is routed 
via p.FIFO • At first glance, one may conetude that nothing is gained with 
respect to the 8 construction, and that the latency is a' = a + 2 , which is 
by no means the result we are striving for. However, assume there is no by
pass at i , that is s.a, ( s.bi-l , then also s.a; + 2 + a ( s.bi-l + 2 + a . So, 
when accepting a throughput delay of (at least) 2 +.a , the dependenee of b; 
on ai is redundant. A valid upper bound of the behaviour is thus given by 
IH(2,/3 + 2,'Y max 2 +a, v + 2). This is exactly the result we give in the sec
ond part of Formula 5.82. 

Back to the formal derivation again. First we hide the internal channel c of the 
bypass cell. This results in the following upper bound for the external behaviour 
byp = Byp lt { a,b,p.a,p.b}. 
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(5.65) byp.s.ao ~ 1 
byp.s.ai+I ~ if BP.i ---+ s.a, + 2 + 6 

u -.BP.i ---+ s.pa".i + 1 
fi 

byp.s.bi ~ if BP.i !\i= 0 ---+ s.ai + 2 
n BP.i !\i> 0 ---+ s.ai + 2 ma.x s.bi-1 + 2 
n ..,BP.i ---+ s.pb".i + 1 
fi 

byp.s.pa;. ~ if 1i'.i < 00 ---+ s.a.",i + 1 n 1ï'.i = 00 ---+ 00 

byp.s.pbi ~ if 'ff.i < 00 ---+ s.b-~t.i-1 + 1 n 1t.i = 00 -+ 00 
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fi 
fi 

In the sequel we consider the enabling of p.a, and p.b, for 1i' .i < oo only. 
Furthermore, we don't bother about the enabling of a0 any more. 

The upper bound for the enabling of ai+1 in case of a bypass at i is derived 
below; for bi the derivation is even simpler. 

Derivation of first alternative for ai+1 in Formula 5.65. 

byp.s.ai+t 

~ { BP.i, Formulae 5.56 and 5.58} 

if p, J.Li = 0 -+ s.ap.p.i + 1 + 1 
U 0 < P, JlÎ < oo -+ s.ap.p.i + 1 + 1 ma.x s.bpp.i-1 + 1 + 1 
u JiJ.Li = 00 ---+ 00 + 1 
fi 

{ p, is the inverse of Jl, Formula 5.57} 

if i= 0 -+ s.a;. + 2 U i > 0 -+ s.a;. + 2 max s.bi-l + 2 fi 

~ { BP.i, Formula 5.61} 

s.a, + 2 + ó 
0 

The enabling of a actions and b actionsin case of a bypass imposes the following 
restrictions upon ei and 7' : 

(5.66) a' ~ 2 71 ~ 2 + 6 

From Formula 5.65 we learn that the enabling of ai+I and bi in case of a bypass 
at i does not depend on the scheduling of' p. ' actions. Remains to analyze the 
enabling of ai+I and bi in case there is no bypass at i . 

In Formula 5.64, FIFO has as a.n upper bound the normal form of an IH buffer. 
The normal form of IH buffers is given by: 

(5.67) N.IH(a,/3,')',v).s.ai max i-y + 1 
( maxj : j <i: s.a; +(i- j)r) 
(maxj:j~i-v:s.bj+(i v j)r+/3) 

N.III(a,/3,7,v).s.b;. = max ir + 1 +a 
( maxj: j ~i: s.aj +(i- j)r +a) 
( maxj: j <i: s.b; +(i- j)r) 
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where max is used as a prefix operator that takes the maximum of the expres
sions on subsequent lines. 

The reader is invited to verify this result. 

Now that we have the upper bound .N.IH(a,/3,'Y,v) for FIFO, we can derive 
an upper ,bound f ~ ~Byp·FIFO. For ao, and in case of a bypass at i, we 
already have an upper bound (Formula 5.65): 

(5.68) f.s.ao = 1 f.s.b, = s.a, + 2 max s.bi-l + 2 
f.s.ai+1 = s.a, + 2 + 6 

\ 

In case of no bypass at i , an upper bound is given by: 

(5.69) f.s.ai+1 = max 1r.i * 'Y + 2 
( maxj : j ~ 1r.i : s.a •. j + 2 + (1r.i- j)'Y) 
( maxj: j ~ 1r.i- v: s.b•.j-1 + (1r.i- v- j)'Y + {3 + 2) 

f.s.b, = max. 1r.i * 'Y + 2 +a 
( maxj: j ~ 1r.i: s.a •. j + 2 + (1r.i- j)'Y +a) 
( maxj : j ~ 1r.i: s.b •. j-1 + 2 + (1r.i- j)'Y) 

Derivation of Formula 5.69. 

From Formulae 5.65 and 5.67 and from FIFO ~ .N.IH(a,/3, 7, v) we infer 
for eo = byp 11 p.FIFO : 

eo.s.ai+1 ~ s.pa.r.i + 1 and eo.s.b, ~ s.pb.r.i + 1 

in case of no bypass at i , and 

eo.s.pa, ~ max. Ï"f + 1 max s.a •. i + 1 
( maxj: j <i: s.paj +(i- j)'Y) 
( maxj : j ~i- v : s.pbj +(i- v- j)'Y + {3) 

eo.s.pb, ~ max. Ï"f + 1 +a max s.b •. i-1 + 1 
( maxj: j ~i: s.paj +(i- j)'Y +a) 
( max j : j < i : s.pbj + (i - j)'Y ) 

We are interested in the behaviour of eo I~ { a, b} . First we hide p.a . If 
p.a actions happen as soon as they are enabled, this results in the following 
upper bound for s.pa, : 

s.pa, 

~ 
max Ï"f + 1 
s.a •. i + 1 
( maxj: j <i: s.paj +(i- j)'Y) 
( max j : j ~ i - v : s.pbj + (i - v - j)'Y + {3 ) 

~ { unfold dependendes of paj on a* .j } 

max Ï"f + 1 
( maxj: j ~i: s.alt.j + 1 +(i- j)'Y) 
( maxj: j <i: s.paj +(i- j)'Y) 
( maxj: j ~i- v: s.pbj +(i- v- j)'Y + {3) 
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0 

= { induction} 

max h·+1 
( maxj: j ~i: s.a.,.j + 1 +(i- Jh) 
( maxj : j ~i- v: s.pb; +(i- v- j)'r + f3) 

Let ~ = eo lt {a, b,pb}. Using the derived upper bound, we conclude: 

~.s.ai+1 ~ max 'll'.i * 7 + 2 
( max j : j ~ 11' .i : s.a •. ; + 2 + ( 11' .i - j)-y ) 
( maxj: j ~ 1r.i v: s.pb; + (7r.i- v- J)'Y + f3 + 1) 

e1.s .bi ~ s .pb,.,i + 1 

For the enabling of p.bi we derive: 

~.s.pbi 

~ { upper bound for s.pa; } 

max i"! + 1 + a max s.blt.i-1 + 1 

( max j : j ~ i : h + 1 + (i - j)'r + a) 
(maxj,k:j~il\k~j :s.a.,.~e+1+(j k)l +(i-j)'r+a) 
(maxj,k:j~il\k~j-v:s.pb~o+(j v-k)l+,6+(i-j)-r+a) 

(maxj :j <i: s.pb;+(i-j)-y) 

max i"!+ 1 + a max s.b'it.i-l + 1 
( maxj : j ~ i : i;+ 1 +a) 
( max k : k ~ i : s .au + 1 + (i - k ); + a ) 
( max k : k ~ i - v : s.pb1e + (i - k); - v; + a + ,6 ) 
( maxj: j <i: s.pbi +(i-j);) 

{a+,6~v1} 

max i')' + 1 + a max s.b'ft.i-1 + 1 
( max j : j ~ i : s.a.,.j + 1 + (i - j)l + a ) 
( max j : j < i : s.pb; + (i - j); ) 

Using this upper bound for e1 , it can be established that f is an upper 
bound of ~ lt {a, b} = eo lî {a, b} . This derivation similar to the deriva
tion above. 

Remains to find an IH buffer that is an upper bound for f. The idea bebind 
bypa.ssing is that we strive for an upper bound with a smalllatency, a', between 
input and output. 

In order to campare f with an IH buffer we have to rule out the use of 11' and 
1f in Formula 5.69. We use the following implications in order to do so. 

(5.70) ·BP.i '* 7r.i<i j~i '* 7r.i-7r.j<i-j 

In case of no bypass at i , we infer the following upper bounds for the enabling 
of ai+l and bi : 
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(5.71) f.s.ai+l ~ max (i+ 1) * (1' ma.x t) + 1 
( maxj : j <i+ 1 : S.C&j +(i+ 1- j)(1' ma.x 2)) 
( maxj : j ~ i+ 1- ( v + 2) 

: s.b; + (i+ 1- ( v + 2)- j) 1' + ,8 + 2) 

(5.72) f.~.bi ~ max i(1 ma.x 1) + 1 +a 
( maxj: j ~i: s.a; +(i- in+ a+ 2) 
( maxj: j <i: s.b; +(i-j)* (1' ma.x 2)) 

We give a derivation of the upper bound for f.s.~+l . The derivation for f.s.bi 
is similar. 

Derivation of Formula 5. 71. 

f.s.ai+l 

= { Formula 5.69, dummy transformation j := ?t.j } 

max 1f'.Î*1'+2 
( maxj: j ~i A -.BP.j: s.a; + 2 + (1r.i- 1r.j)1') 
( maxj: 1r.j ~ 1r.i- vA -.BP.j: s.b;-1 + (1r.i- v- 1r.j)1' + ,8 + 2) 

~ { Formula 5. 70 } 

max (i-1)1'+2 
( maxj: j ~i A -.BP.j: s.a; + 2 +(i- ih) 
( maxj: j ~i-vA -.BP.j: s.b;-t +(i- v- j)1' + ,8 + 2) 

~ { extension of range for j , dummy transformation} 

max (i-1)1'+2 
( max j : j ~ i : s.ai + 2 + (i - ih ) 
( maxj: j ~i- v- 1: s.bi +(i- v- 1- ih + ,8 + 2) 

~ 1 max (i+1)*(1'max 2)+1 
( maxj: j ~i : s.a; +(i+ 1- j) * (1' ma.x 2)) 

0 
( maxj : j ~(i+ 1)- (v + 2): s.bi +(i+ 1- (v + 2)- j)1' + ,8 + 2) 

From Formula 5.71, and under the assumption v' = v + 2, we conclude the 
following restrictions: 

(5.73) 1' ~ 1' max 2 ,81 ~ ,8 + 2 
From Formula 5. 72, we coneinde the following additional lower bound: 

(5.74) a' ~ a+ 2 

Together with the results in case of a bypass (Formula 5.66), this gives the 
following result for the composition Cfi Byp : 

(5.75) FIFO <11 IH(a,,8,1;v) => 

CfiByp·FIFO <11 IH(a + 2, ,8 + 2, 1' ma.x 2 + 6, v + 2) 
This is a disappointing result, the upper bound for the behaviour is no better 
than the result for cascade construction 8: the delay between input and output 
increases by two! (see Formulae 5.36 and 5.37). It is certainly not the result 
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we want to achieve with bypa.ssing. In order to improve the upper bound for 
the delay between input and output we reconsider the estimation of f.s.b,. The 
idea is that (in case of no bypass) the dependenee on a actions can be bidden 
by assuming longer delays between subsequent b actions. 

(5.76) f.s.bi ~ max i("yma.x2+a+e)+2+1 
( maxj : j < i : s.b; + (i - j)( 1 ma.x 2 +a+ e)) 

Derivation of Formula 5.76. 

0 

f.s.bi 

{ Formula 5.69} 

max 1r .i * 1 + 2 + a 
( maxj: j::;;; 1r.i: s.a..-.; + 2 + (1r.i- j)J +a} 
( maxj : j::;;; 1r.i: s.b;t.j-1 + 2 + (1r.i- j)'y) 

::;;; { •BP( 1f .j), Formula 5.61} 

max ?r.i*'Y+2+a 
( maxj : j ~ 1r.i: s.b;t.j-1 + 2 + (1r.i- j)'y +a+ e) 

= {dummy transformation j := 1f .j ....: 1 } 

max 1r.i * 1 + 2 +a 
( maxj: j <i 1\ •BP(j + 1): s.b; + 2 + (1r.i 1r.(j + 1))7 +a+ e} 

::;;; { Formula 5. 70, extension of range for j } 

max (i 1)7+2+a 
( max j : j < i : s.bj + (i j - 1 h + 2 + a + ê ) 

::;;; 
max i( 1 max 2 + a + ê) + 2 + 1 
( max j : j < i : s.b; + (i j)( 1 max 2 + a + e) ) 

From Formula 5. 76 we infer the following restrictions, in ad dition on Formulae 
5.66 and 5. 73: 

(5.77) a' ~ 2 1' ~ 2 +a+ e 

This results in the following up per bound for c) Byp : 

(5.78) FIFO <11 IH(a,J3,1,v) =} 

c)Byp·FIFO <ll IH(2, j3 + 2, 1 max 2 +a+ ê, v + 2) 

At the cost of a -relatively- high throughput delay, we have achieved an 
estimation with a latency between input and output of two time units. 

The bypass construction can be used to define systolic arrays of bypass cells, 
simHar as in Chapter 4. In order to ohtain implementations for any number 
of variables, we use two different tails: B1 for odd v and CAS2 for even v . 
Since bypass cells are not conservative, we have to consider the behaviour of 
tails that implement B1 and CAS2 also. The behaviour of a systolk array 
with v variables is given by Ibyp" as follows: 

(5.79) Ibyp1 <l1 Bt , Ibyp2 <11 CAS2 , and Ibyp.,+2 c)Byp.".Ibyp" , 
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for bypass cells Byp.v that operate within tolerances 6 and e. A schematic 
representation of an Ibypv array is given in Figure 5.80. 

Figure 5.80 A schematic representation of Ibyp2• 7 • 

From Formulae 5.75 and 5.78, we infer the following upper bounds: 

(5.81) Ibypv <ll IH( v, v, 2 + 6, v) lbypv <ll IH(2; v, 4 + e, v) 

An important result, for both upper bounds, is that apparently the decision 
whether to perform a bypass or not, is not critica!: when the bypass cells operate 
within tolerances 6 and e , the influence on the upper bounds is no more than 
proportional to 6 and e • For 6 = e = 0 we obtain: 

(5.82) FIFO <ll IH( a, /3, "(, v) =? 

+Byp·FIFO <ll IH(a + 2, 13 + 2, 'Y max 2, v + 2) A 

+Byp·FIFO <ll IH(2, 13 + 2, 'Y max 2 + a, v + 2) 
and for the systolic arrays: 

(5.83) Ibypv <ll CASv Ibypv <ll IH(2,v,4,v) 

1 

l 
2 

Q(IH(2,v,4,v), B") 

!v v 
4 p-l-

Figure 5.84 A lower bound for Q(Ibypv, B"). 

The quality of CASv with respect to specifications of type B" is given in 
Figure 5.10; the quality of IH(2, v, 4, v) is given in Figure 5.84. Both qualities 
are combined into lower bound QL(Byp.,, Bp) for the quality of systolic bypass 
buffers. This lower bound is given in Figure 5.86. The quality of systolic bypass 
buffers with respect to specifications of type Bq,p has lower bound: 

(5.85) Q(Ibyp.,,B11,p) ~ QL(lbyp.,,B9 ) min QL(lbypv,B") 

So, under the assumption of unit delays, each specification of type B 9 ,p can be 
implemented with a quality of at least a half. When leaving the assumption 
of unit delays, there still is a (uniform) positive lower bound for the achievable 
quality with which specifications of type B11,p can be implemented. 
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lv !v v 1 4 2 p-2-

Figure 5.86 A hybrid lower bound for Q(Ibyp11 , Bp). 

The main drawback of the bypass scheme is that, in hardware, the implementa
tions of bypass cells are expensive and slow with respect to implementations of 
B1 , and also with respect to implementations of split and merge cells. When 

one is satisfied with slower implementations, in partienlar with a slower through
put, it suffices to use fewer bypass cells. A throughput delay of 2n + 2 can he 
achieved with linear arrays in which the number of bypasses is reduced by a 
factor n with respect to Ibyp buffers (under the assumption 6 = e 0 ). Con
sider for example the array in Figure 5.87, in which the number of bypasses is 
reduced by a factor two. This array implements JH(2,14,6,14), whereas array 
Jbyp14 of Figure 5.80 implements IH(2, 14,4, 14). 

Figure 5.87 An implementation with a reduced number of bypasses. 

However, after such a reduction, the number of bypasses is still linear in the 
number of variables. From Formula 5.43 we learn that the parallel construction 
can be used to compensate the increase of the throughput delay: it reduces 
the throughput delay by a factor two. Using this property, it turns out that 
under limited neighbourhood a logarithmic (in v) number of bypasses suffices; 
and that under limited surroundings it suffices to use a number of bypasses 
proportional to the square root of v. The implementations that meet these 
bounds are similar to the !log , and IJ implementations in the previous section 
(Formulae 5.46 and 5.49). It is left as achallenge tothereader to construct such 
implementations. 

5.6 Buf-like behaviour as a side-effect 

The most simpte form of a 'buf-like' behaviour, is the behaviour of a one-place 
buffer. This behaviour is very common for systolic arrays that communicate to 
the environment via one cell. For example, the solutions of the 'max' problem 
in Section 4.3. A more general buf-like behaviour is exhibited by systolic arrays 
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with the input at one side, and the output at the opposite side. In such arrays, 
the latency between input and output is (at least) proportional to the length 
of the array ( the distance between input and output). In general, concurrent 
programscan he used to decrease the latendes and the throughput delay (with 
respect to sequential programs). It is clear that arrays with input and output 
at opposite sides are not particularly suitable to obtain smalllatencies. In this 
section we informally discuss three (general) examples implementations that 
are especially designed to obtain small throughput delays. The first, 'parallel 
computation' is a blunt approach in which sequential programs are placed in 
parallel, in a similar way as we did for FIFO buffers with limited neighbourhood 
(Figure 5.38, Formula 5.45). The second, 'pipeline computation', consists of 
dividing a computation over a number ofcells that are placed in cascade, similar 
to the cascade buffers (as given in Section 5.1 ). Fina.lly, we discuss linear systolic 
arrays that communicate to the environment at both sides. 

Parallel computation 

Consider the data-specifica.tion b(i) = C.a(i), forsome function C. A straight
forward implementation of this specification is given by 

program CO MP ( input a, output b) : 
varx; 
begin 

(a? x ; b!C.x )" 
end. 

For C the identity, this would yield a one-place buffer. We assume, however, 
that C is a complicated function that takes ~>. time units (relative to the du
ration of a communication, which is normalized at 1), for some ~>. >> 1. The 
behaviour of the program is given by: 

(5.88) Comp = IH(1 + "'• 1, 2 + "'• 1) 
The duration of a computation, K, does not only result in a large latency be
tween input and output ( 1 + ~>. ), but also in a large throughput delay ( 2 + K ). 

Without using specHic properties of function C , it is not possible to reduce the 
latency. By placing programs in parallel, however, it is possible to reduce the 
throughput delay. We exhibit such a parallel construction under the condition 
of limited neighbourhood. 

Assume, for the sake of simplicity, that K + 2 = 2n+1 for some natural n. Ap
plying the parallel construction (Figure 5.38) n times results in the following 
behaviour (see Conditions 5.44, compa.re to Formula 5.45): 

(5.89) pn,Comp ~ IH(2n + K + 1, 2n + 1, 2, 3 * 2n- 2) 

The right-hand side of this formula is roughly equal to 

IH(K + 2log K, 2log ~>., 2, 3/2 ~>.) 

Figure 5.90 gives the speed of this construction, relative to Bp buffers. This 
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result is achieved at the cost of a.pproxima.tely 3/2"' varia.hles, and K./2 (ex
pensive) function hlocks for program COMP. In addition tothese casts, there 
is also the overhead (of control) in the implementation of the split and merge 
cells that are used in the parallel construction P . 

~ Q(P"-1
.Comp, B,) 

~K.-log2"' J~~: p-!
Figure 5.90 Approximate performance of parallel computation. 

Pipeline computation 

Consider the same specification as in the previous paragraph. Assume that 
the computation of C can be distributed over N computations of more simple 
functions Cn as follows: 

(5.91) C.x = CN-t·CN-2 ... Cl.Co.x 

where the function application is right associative. 

Let Comp .. describe the behaviour of the program for c ... The duration of the 
computation is 11:n: 

(5.92) Comp .. = IH(l+ti. .. ,l,2+~~:n,l) 

The pipcline that computes C is a cascade of the programs for Co, C1 , up to 
CN-1 . lts behaviour is given by: 

(5.93) Pipe = 
{ 11 n: 0 ~ n < N: pn.IH(1 + Kn, 1,2 + Kn, 1)&->p.a) 11 { a,b} 

for a renaming p with pH .a = b . 

In contrast to the cascades for FIFO buffers, we have ohtained a cascade in which 
the cells have other than unit delays. Without proof we mention the behaviour 
of such cascades. Computing such hehaviours simply consists of adding laten
des, ad ding the number of variables, and taking the maximum of the throughput 
delays. 

(5.94) (IH(a,/3, 1, v )&-.c 11 IH( ä, iJ, 1, v)a_,c) lt {a, b} 

~ IH(a + ä, {3 + jJ, 1, v + v) 

Furthermore, the conditions on ~ (Conditions 5.44) can be extended with: 

(5.95) e ~ IH(a,f3,1,v) A f ~ IH(ä,iJ,1,v) ::? 

(e"-+c 11 fa-+c) lt { a,b} ~ IH(a + ä, {3 +iJ, 1 max 1, v + v) 
This allows us to rewrite the behaviour of Pipe into 

(5.96) Pipe ~ IH( (1 + R) * N, N, 2 + k, N) 
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where R is the average of ~en and K. is the maximum of ~n (for 0 ~ n < N ). 
The performance of this pipeline is given in Figure 5.97. It resembles the exper
imental results, as well as the results of logic simula.tion, that are given in [17] 
(Figures 9 and 10 respectively). 

_2_ ~--------------~~ 2+1l 

_2_ -t--------~~----~, 2+1\ 

1±! N N 
2+1l * p-l-

Figure 6.97 Performance of Pipe, relative to B" buffers. 

The effect of the duration of computations is illustrated in Figure 5.104. In 
this figure, III corresponds to the case that all computations are equally fast, 
K. = R • Case I in the picture corresponds to K. = K. + 1 . 

Pipeline implementations cannot achieve throughput delays smaller than two 
times the duration of a communication. FUrthermore, an e:lficient pipeline im
plementation can only he achieved if a computation can he distributed, as in 
Formula 5.91, over su:lficiently small sub-computations. The casts of pipeline 
implementations, however, are usually considerably leas than for parallel com
putations. Apart from the overhead, due to distribution of the computa.tion, 
only one realization (implementation) offunction C is used, whereas in parallel 
computations, the number of functions blocks that compute C is proportional 
to the speeding-up that has to he achieved. 

Systolic computation 

In genera!, data specifications are of a. less trivia.l form than b(i) = C.a(i). 
Take for example the specification of the maximum of segments that is given in 
Section 4.3. In this section we discuss implementations with systolic arrays that 
communicate with the environment at both sides. 

A basic technique in designing systolic implementations is the introduetion of 
additiona.l cha.nnels, see for example [14]. We discuss arrays PipN in which 
only one additional channel ( c) is introduced. The arrays consist of N cells 
and a one-pla.ce buffer, as given in Figure 5.98. At the left-hand side, values 
are received from the environment along channel a. At the right-hand side 
the results are sent to the environment a.long cha.nnel b = ~.a • Within the 
array there is an additional 'counter stream' along which old results are sent 
from the right to the left. The outputs that result from the counter strea.m 
are not ava.ilable to the environment (in contrast to for exa.mple the array"s in 
Section 4.3), in the picture this is symbolized by receiving them in a sink. 
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a 

Figure 6.98 Schematic representation of Pip6 • 

We assume that the cells meet the following (data) specification: 

c(i) = p.c(i-1) p.a(i) = C'(a(i),p.c(i-1}) 
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p6 .a = b 

where p.c( -1) is some predefined constant ( and not a communication along 
channel p.c ). In the following program we deliberately separate the computation 
of va and the communication of va along channel p.a . This allows us to 
investigate the effect of alternative orderings for these actions. 

program Pip-cell (input a,p.c, output p.a, c) : 
var va, vc; 
begin { vc = p.c ( -1) } 

( c! vc ; p.c? vc )* 
11 

a?va; (va:=C'(va,vc); (p.a!va; a?va),p.c?vc)* 
end. 

Let R be the duration of a computation (plus an assignment) and let K = N * R . 
Enabling structure pc gives the behaviour of the program: 

(5.99) pc.s.ao = if i = 0 -+ 1 0 i > 0 -+ s.pa.-1 + 1 fi 
pc.s.pai = S.Ti + 1 
pc.S.Ti if i= 0 -+ s.a, + R 

0 i> 0 -+ s.ai + R max s.pct-t + R 
fi 

pc.s.ct = if i=O -+ 1 0 i> 0 -+ S.PCi-1 + 1 fi 
pc .. s.pc; = s.Tt, + 1 ma.x s.q + 1 

where T actions symbolize the ( completion) of the computations of C'. 

Figure 5.100 Dependendes in pc. 

The external behaviour of the array is the same as for a pipeline with a uniform 
distribution, without overhead: k = R and K = R * N . This behaviour is given 
by 

(5.101) PipN :::i IH(N + "'• N, 2 + R, N) 

Usually, constructions like 11 in the program-text of Pip-cell, that are freely 
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used in this thesis, are not allowed in programming languages. In partienlar, 
the appearance of pc?vc in both partsof the parallel composition may he a prob
lem. A solution is to describe the program with one choice-free command. This 
means, however, that the behaviour bas to he restricted: there is no choice-free 
command that describes the behaviour of pc. We briefty discuss three alterna
tives: 

(5.102) I : (a, c ; T ; p.a,p.c )* 
II: a;(r; p.a,c; a,p.c)* 

III : a; ( ( T ; p.a ), c ; a, p.c )* 
The first behaviour is almost perfect. The only problem is the delay that is im-

. posed by the one-place buffer between ']I' .a and ']I' .c. Apart from a relatively 
small increase of the latency from b to a , this results in a more significant in
crease ofthe throughput delay (see Formula 5.103). In the second behaviour, the 
combination of restrictions imposed by two adjacent cells results in a through
put delay of 2 + 2~ ( dependendes P·Ci-1 _,. Ti _,. p.a, and p.a, _,. p.Ti _,. p.ca ). 
Only the third behaviour results in the same external behaviour as the original 
array with cells of type pc. Verification of these results is left to the interested 
reader. 

(5.103) I : ~ IH(N + ~;, N + 1, 3 + ~ , N) 
II : ~ IH(N + ~;, N + ~;, 2 + 2~, N) 

III : Ri IH(N + ~;, N , 2 + ~ , N) 
The performance of these three alternatives, as illustrated in Figure 5.104, illus
trates that one should he careful when restricting the behaviour of a program. 
It is advisable to analyze the un-restricted behaviour first in order to obtain an 
upper bound for the performance. In this case, only the third alternative meets 
this upper bound. 

1 

N N Q(III, Bp) N 

Figure 5.104 Performance of the three alternatives, for ~ = 0, 1,3, 7.4 

"As usual, p - f is along ~he horizontàl axis. 



Chapter 6 

Conclusion 

In this thesis we introduced a model that allows us to express, manipulate, 
and compare (a certain type of) real-time behaviours. The first two topics are 
discussed in Chapter 2, the third in Chapter 3. 

The manipulations concern the parallel composition of mechanisms ( 11 ), and 
hiding of actions from the environment, called masking ( u ). Another important 
manipulation is the abstraction from internal actions, called projection ( t ). 
Masking and projection are completely different operations: masking describes 
modifications of mechanisms that change external actions into internal actions, 
projection is used to make the description of mechanisms more abstract, with
out modifying the described mechanisms. When reasoning in terms of external 
behaviours only, every act of masking should be foliowed by an act of projection. 
The combination of both operations is called restrietion ( lt ). 
The comparison concerns the speed of the external behaviour of mechanisms. 
Both relations, <I and <11 , that have been introduced to campare speed, are 
suitable for compositional design, in that parallel composition as well as re
striction are monotonic (with respect to them). A remarkable feature of both 
relations is that they are neither reflexive, nor anti-reflexive. The reflexive do
mains of these relations are considered to be the 'smooth' behaviours. For <1 
these are the ascending behaviours, for <11 the conservative behaviours. 

In this chapter we discuss some extensions of the expressive power, Section 6.1, 
and the manipula.tive power, Section 6.2, of the model. These include the us
age of zero delays and the introduetion of serial composition ( catenation ). In 
Section 6.3 we conclude this thesis with some final remarks. 

6.1 Expressive Power 

Liberal delay conditions 

In Example 2.73 we illustrated the phenomenon of dependendes that seem re
dundant, but formally may not be pruned. Though the necessity of such re-
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dundant dependencies does not affect the expressiveness of the model, they are 
'unnatural' and may confuse the understanding of a behaviour. In concrete 
examples, intuition tells us that these dependencies are redundant. In this sec
tion we show that one should he careful when trying to formalize 'liberal delay 
conditions' that would allow such a pruning. 

Using Corollary 2. 71.1, we can give the following -indirect- definition of 'lib
eral' enabling structures. 

Deftnition 6.1 Liberal enabling structures. 

0 

A structure F is a liberal enabling structure if ( and only if) there exists an 
enabling structure E over the same alpbahets as F that satisfies E =pE F 
(that is, the behaviour on P E is identical). 

It is, however, far more convenient to have a direct characteriza.tion of libera.l 
delay conditions. Since, for any enabling structure, only the behaviour on its 
process really counts (see Corollary 2.71.1), one may he tempted to give the 
following qualification of liberal enabling structures, using the 'liberal delay' 
dr E of enabling structures ( rompare with Definition 2.21 ): 

A structure E is a liberal enabling structure if (and only if) bE > -oo and 
drE > 0, where: 

drE = ( glb s, t : s, tE P E As '::/: t : sim(fE.s, fE.t)- sim(s, t)) 
for P E as in Proposition 2.33: 

P E = ( set s : as = aE A s ~ E .s A s tiE = E .s t iE : s ) 
By means of an example, we show that this is not a satisfactory qualification. 

Example 6.2 Prohlems with liberal delays. 

0 

Let e have external alphabet {a, b} and an empty internal alphabet. Let 
furthermore the behaviour of e he defined by: 

e.s.a = if s.a ~ 2 - oo 0 s.a > 2 - 1 ft 
e.s.b = s.a + 1 

From the formula for P E we infer Pe = (sets : s.a > 2 A s.b ~ s.a + 1 : s) . 
From the formula for drE we infer dre = 1. However, e doesnothave 
a history; the process of e n b is even empty! In general, each structure E 
with an empty process has liberal delay drE equal oo (which is more than 
zero). 

Partial enabling structures 

In this thesis we assumed that enabling structures must have a 'beginning', 
in that the behaviour that is described may not begin at - oo . For initiated 
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enabling structures we even assume a beginning after moment zero on the time
a.xis. Once in a whlle, however, it may he useful to have partial definitions, or 
partial estimations, of behaviours, that do not necessarily have such a beginning. 

Example 6.3 U sage of partial ena.bling structures. 

0 

Consider the estimation of the behaviour of' IH ' buffers in Section 5.3. Any 
enabling e function over {a, b} that satisfies: 

e.s.b;. ~ s.a;. +a 
has a quality with respect to Bq,p of at most (2q- 1)/a. 

Another way of expressing this, is by using partial enabling functions fa on 
{a, b} that state latency restrictions as follows: 

fa.s.a;. = -oo fa.s.b;. = s.a;. +a 
From the fact that the quality of fa with respect to Bq,p is (2q- 1)/a, 
and fa <11 e, can be concluded that the quality of e is at most (2q- 1)/a 
( under the assumption that the comparison of enabling functions is extended 
to partial enabling functions ). In this way, the effect of pa.rtial behaviour on 
the total behaviour can be estimated in a compositional way. For example, 
the 'cascade' of fa and fa, is fa+a': 

(fa b-+c 11 fa• a-+ c) lt { a,b} ~ fa+a' 

This knowledge can be used to estima.te the latency of a cascade of the buffers 
e and e' , of which the first has latency at least a , fa <11 e , and the second 
has latency at least a 1 

, fa• <J1 e1 
• Because parallel composition is monotonic 

with respect to <JI , we can immediately conclude that the cascade of both 
buffers has at least latency a + a' : 

fa+a' <J1 ('Rr.--+c·e 11 'Ra-+c·e') Ir {a, b} . 

Partial enabling structures can be defined as structures1 E such that for all s 
over the external alphabet of E, E 11 ns is a (non-partial) enabling structure. 
For partial enabling structures, masking is not always allowed; take for example 
fa as in the example above: fa n b is not a partial enabling structure. 

Zero delays and almost zero delays 

In the enabling model, we assumed a universa}, positive lower bound for the 
delay between cause and effect. This clearly rules out delays of zero time units. 
Though such zero delays may not be realistic, they can he useful when reasoning 
'in abstracta' about the behaviour of some programming constructs. 

Example 6.4 U sage of zero delays in rnadeling intericaving of events. 

Consider a device with internal events of type a and b , that share a re
source under mutual exclusion. This 'sharing' enforces an interleaving of 

1 In fa.ct as generalizations of structures, for which E.s.a ma.y he -oo. 
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0 

occurrences of a and b. In order to give an estimation of the (additional) 
delays that are imposed on the completion of these events, due to inter
leaving, we first have to give a formal description of this interleaving. We 
distinguish three stages in the usage of the shared resource: 

• the,request for the resource: actions 'äi and 'b,, 
• the assignment of the resource, which coincides with the initiation of the 

event: actions ia, and ib, , 

• the release of the resource, which coincides with the completion of the 
event: actions a, and bi. 

Under the assumption that a actions take a time, and b actions take {3 
time, the enabling of completions is given by: 

E.s.ai = s.iai + a E.s.bi = s.ib, + {3 

.We assume a 'first requested, first served' regime, in which the causal delays 
between request and assignment, and between release and next assignment 
are zero. Furthermore, we assume a slight preferenee for a actions; that is, 
when a request for an a action and for a b action occur simultaneously, 
the resource is assigned to the a action first. This results in the following 
enabling for actions ia, and ibi : 

E.s.ia, = s.ä, max (lub j : s.b; < s.äi : s.b;) 

E.s.ibi = s.bi max (lub j : s.ä; ~ s.b, : s.a;) 
which is a description with zero delays, under liberal delay conditions. 

Finally we assume that the request for ai+l cannot he performed before the 
completion of ai ; similarly for b events: 

E.s.äi+l ;;ll: s.ai E.s.bi+l ;;ll: s.b, 

Under these conditions, the following bounds for s.a, and s.b, can he de
rived: 

s.ä, +a ~ s.ai ~ s.ä, +a + {3 

s.bi + {3 ~ s.b, ~ s.bi + a + {3 

Consequently, the 'effective duration' (between request and completion) of 
a events and b events is at most a + {3 • 

In the above example we used zero delays in a way that can, obviously, he 
incorporated in the enabling model. In general, however, the usage of zero 
delays may cause problems. One problem is 'productivity'. A lot of reasoning 
about enabling structures is based on the fact that, if we know something about 
schedule s up to moment M, we can conclude something about schedule E.s 
up to moment M +dE. Unfortunately, an enabling structure E with zero 
delays has dE= 0. Apart from probieros with productivity, there are probieros 
with 'feedback'. 
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In [10], three important features of 'real-time' semantics are postulated: respon
siveness, modularity, and causality. Responsiveness means a reaction delay 
of zero; modularity states that the behaviour of a composite follows from the 
behaviours of the participants; causality states that 'for every event that is gen
erated, there is a causal chain of events that leads to this event'. Furthermore, 
the negative condusion is drawn that these three features are in conflict: no 
semantics can exhihit all three of them. The following example, with 'positive 
feedback' shows a similar result for the enabling model. 

Example 6.5 Positive feedback. 

0 

Assume that we allow enabling functions with zero delays. Let enabling 
functions e and f, both over {a, b} , model mechanisms in which b has to 
wait for a , and in which a has to wait for b respectively: 

e.s.a = 1 e.s.b = s.a f.s.a = s.b f.s.b = 1 

The parallel composition of e and f is given by: 

( e 11 f).s.a = 1 max s.b ( e 11 f).s.b = 1 max s.a 

Let us first consider what happens when actions are performed as soon as 
they are enabled. That is, let us consider the solutions s of the history 
equation ( e 11 f).s s ( see Definition 2.27). For each M : M ~ 1 , schedule 
{ (a, M), ( b, M)} is a solution of this equation. In contrast to enabling 

functions with positive delays, the history equation for e 11 f has no unique 
solution. Under the assumption of 'causality', however, the positive feedback 
'a implies b implies a' is no justification of the occurrence of a. This 
interpretation corresponds to the 'least' solution of the history equation: é. 

The same assumption of causality corresponds toa process P( e 11 f) { é} . 
However, schedules of type { (a,M),(b,M)}, for 1 ~ M, are all memhers 
of the processes of both e and f , but only e is a memher of { e } . This 
does not stroke with compositionality: when a schedule is allowed by e as 
well as f , it should also he allowed by e 11 f . 

Summarizing, responsiveness, causality, and modularity are conflicting demands. 
In the enabling model we have chosen for causality and modularity. 

An even more exotic example of abusing zero delays is 'negative feedback': action 
a triggers the enabling of b , but when b happens instantaneously it disables 
a. 

Example 6.6 Negative feedback. 

Let enabling function g describe a mechanism that prevents a when b is 
performed before ( or at) a critical moment ( 2 ): 

g.s.a = if s.b~2--... oo 

U s.b > 2 --+ 2 
fi 

g.s.b = 1 
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0 

The history equation of e 11 g has no solutions at all (see the previous ex
ample for e ). When a happens at 2 , b is enabled at 2 . Assuming that b 
happens at soon as it is enabled, it also happens at 2 and consequently pre
vents a from being performed. When on the other hand, a happens after 2 , 
b also happens after 2 , and consequently a is enabled at 2 . Apparently, 
a and, b cannot both he performed as soon as they are enabled. 

Both exarnples illustrate that one should he careful when using ena.bling func
tions with zero dela.ys. As soon as delays are non-zero, feedback cannot occur 
any more. In the model, we even assumed a positive lower bound for all delays . 

. This positive lower bound allows to prove several properties by induction, or by 
referring to Banach's contraction theorem. A -restricted- way to allow arbi
trary small delays is by inserting the following productivity demand, insteadof 
the demand for a positive dela.y, in the definition of enabling structures (Defini
tioD 2.21): 

s =/= t => sim(E.s,E.t) > sim(s,t)) 

The productivity lies in the ' > ' in this formula.. 

Example 6. 7 Arbitrary small delays. 

0 

We present a function e that is allowed by the productivity demand, a.nd a 
function f that is not. e bas a positive 'global dela.y', whereas for f only 
the individual delays are positive. 

e.s.a; = if i = 0 -+ 1 
D i > 0 -+ s.ai-1 + 2-i 
ft 

e.s.bi = if i= 0 -+ {lub i: : s.ai)+ 1 
D i>O -+ s.bi-1 + 1/i 
ft 

f.s.a, = if i=O -+ 1 

D i>O -+ s.ao + 1/i 
ft 

If s.ao ;:/: t.ao , and for all i s.ai ~ s.ao and t.ai ~ t.ao, 
sim(f.s,f.t) = sim(s,t). 

Most propositions remain valid when enabling structures may have arbitrary 
small delays. The proofs, however, cannot rely on 'simple' induction, or on 
Banach's theorem any more. For example, it is evident that the history equation 
bas at most one solution, but we won 't bother the reader with the proof that 
it has at least one solution. Things get even worse when using the following 
definition of arbitrary smal! delays, that conaiders delays for individual actions: 

s ;:/: t => ('I! a: : sim(E.s.a,E.t.a) > sim(s,t))) 

This constraint also allows enabling function f of the previous example. 
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Since we could not think of 'practical applications' for arbitrary small delays, 
we took the easy way by forbidding them. 

6.2 Manipulative Power 

ldentification 

Identification is a generalization of renaming. Where renaming can he used to 
conneet mechanisms to each other via the proper actions, identification can he 
used to conneet meehanisms to themselves. 

Consider, for example, a systolic array such as given in Figure 5.98. The output 
p5 .a is fed back into the array via a one-plaee buffer, 'R.B1 , to input p5 .c. 
Another possibility to establish a feedback, is to conneet the output directly 
to the input, without delay. Such a loop can he described by identifying p6 .c 
and p5 .a: p5 .c = p5 .a = b (see Figure 6.8). Such an identification is explicitly 
prohibited in the definition of renaming. 

Figure 6.8 Array with instantaneous feedback. 

Another way to describe a direct feedback is by using a deviating tail-cell in 
the first place. The usage of identification on the general cell has the advantage 
that in this case the array consists of identical cells. It already suggests that the 
tail-cell can be implemented (in VLSI) in the same way as the other cells: the 
identification can be established by the surrounding wiring. 

Identification of p.a and p.c with b in cell pc (see Formula 5.99) results in the 
following behaviour: 

(6.9) pc1.s.ai = if t 0 --> 1 
U i> 0 --> s.bi-l + 1 
:fi 

pc'.s.11 = if i= 0 --> s.ai + K 1 

0 i> 0 --> s.ai + K1 max s.bi-1 + K1 

:fi 
pc1

.S.Ci if i=O --> 1 
u i> 0 --> s.bi-l + 1 
fi 

pc'.s.bi s.Ti + 1 max s.c, + 1 

Identifieation may, however, lead to anomalies. Consider for example the alter
natives for pc that are given in Formula 5.102. Only the first one gives rise to 
an aeeeptable behaviour (in faet to an array that is equally fast as an array with 
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cells of type pc). ldentifica.tion of p.a a.nd p.c in both other alternatives results 
in 'loek', beca.use they do not allow p.a a.nd p.c to occur simulta.neously. The 
identifica.tions a.re given by: 

(6.10) I., ...... r.,p.h-+b: (a,c; T; b)* 
11 p ...... r.,.,.h-+r. : a ; T ; c ; b0 

lU p ....... r.,p.h-+b : a ; T , c ; b0 

The reader is invited to give a. formal definition of identifica.tion. 

The introduetion of identifica.tion a.s a.n a.dditional opera.tion on ena.bling struc
tures ca.uses us to reconsider the way in which we compare ena.bling structures. 
We are plea.sed to inform the reader tha.t identifica.tion is not only monotonic 
with respect to process inclusion, but also with respect to the compa.rison re
la.tions <l a.nd <ll • Therefore, both rela.tions ca.n he used for compositional 
design tha.t includes the possibility of identifica.tion. 

Sequential composition 

In this thesis we introduced parallel composition a.s a. wa.y to compose mech
a.nisms. An opera.tion with which most programmers are more fa.miliar is se
quential composition, or catenation. The ca.tena.tion of two mecha.nisms, E; F , 
ca.n he defined as a. mecha.nism tha.t first perfarms E , and initiatea F at the 
moment that all external a.ctivities of E are completed. Under the a.ssumption 
that F describes a. mechanism rela.tive to its moment of initia.tion, the initiation 
of this mecha.nism at moment M results in behaviour F EEl M ( the translation 
of F over M, see Definition 2.41). 

Example 6.11 Catenation. 

0 

Let ena.bling structure E over extemal alphabet { a, b} a.nd internal alpha
bet c he given by: 

E .. s.a = 1 
E.s.b = s.a + 1 min 3 
E.s.c = s.b + 5 

Let furthermore ena.bling function f over d be given by: 

f.s.d = 2 

The catenation E; f ha.s external alphahet {a, b, d} . a.nd intemal alphabet 
c , a.nd its behaviour is given by: 

(E;f).s.a = 1 
(E; f).s.b = s.a + 1 min 3 
(E; f).s.c = s.b + 5 
(E;f).s.d = (s.ama.xs.b)+2 

A formal definition of ca.tenation can be given a.s follows: 
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Deftnition 6.12 Gatenation of enabling structures. 

0 

For E and F such that eE f:: 0, bF > 0, and aE n aF= 0, the catena
tion E ; F is an enabling structure with external alphabet eE U eF, internal 
alphabet iE U iF , with the following behaviour: 

(E; F).s.a = if a E aE -+ E.(s t aE).a 
U a E aF -+ if C .s = oo -+ oo 

fi 

0 C.s < oo __. (F$C.s).(s taF).a 
ft 

where C .s gives the moment that the external activity of E is completed: 
C.s (lub a: a E eE: s.a) . 

In contrast to identification, catenation affects the way we compare enahling 
structures: catenation is not monotonic with respect to <l • 

Example 6.13 Gatenation and <l . 

0 

Let e and f he defined by: 

e.s.a 1 

f.s.b 1 
f.s.c if s.b < 1.5 -+ 

D s.b ~ 1.5 -+ 

fi 

2 
s.b+ 2 

Both e and f are ascending, consequently e <l e and f <l f . The cate
nation of e and f has the following behaviour: 

(e;f).s.a = 1 
(e;f).s.b s.a+ 1 

(e; f).s.c = if s.b- s.a < 1.5 __. s.a + 2 
n s.b- s.a ~ 1.5 -+ s.b + 2 
ft 

This catenation, however, is not ascending, it is not even a memher of [Ase] . 
Letforexample s={(a,l),(b,3),(c,5)} and t={(a,2),(b,3),(c,5)}. 
Though s ~ t , and both s and t are memhers of the process of the cate
nation, (e; f).s.c = 5 and (e; f).t.c = 3. 
We have to conclude that ..., ( ( e; f) <l ( e; f) ) . 

Fortunately, catenation is monotonic with respect to the robust implementation 
relation <ll . In fact, <ll is a maximal implementation relation under the condi
tion of monotonicity of catenation. Therefore, <ll can he used for compositional 
design that includes catenation of mechanisms, while <l cannot. 

Another way to incorporate catenation in the model, is hy enhancing enabling 
structures with explicit external actions for initiation, .1., and completion, T . A 
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convenient way to do this, is to define E.J. = -oo (partial ena.bling structures ), 
or E.J. = 0, a.nd to allow zero delays in tbe enabling of T. Catena.tion of 
enabling structures witb disjunct alpbahets ( except for J. a.nd T ) ca.n now he 
defined as a parallel composition in wbich tbe completion of tbe first a.nd the 
initiation of tbe second are identified, and subsequently bidden. 

Example '6.14 'J.- T 'enabling structures a.nd tbeir catenation. 

0 

We rewrite the enabling functions of Example 6.13 into 'J. T' enabling 
functions. 

e'.s.J. = 0 
e'.s.a = s.J. + 1 
e'.s.T = s.a 

f'.s.J. = 0 
f 1.s.b = s.J. + 1 
f 1.s.c = if s.b- s.J. < 1.5 - s.J. + 2 

0 s.b - s.J. ~ 1.5 -s.b+ 2 
fi. 

f'.s.T = s.c 

Observe that f' is not ascending, in contrast to f. In fact, a 'J.- T' en
ahling structure E' is ascending, if ( a.nd only if) tbe corresponding 'normal' 
ena.bling structure, E , is conservative. Tbe catenation of e' and f' is given 
by: 

(el ;I f').J. = 0 
( e1 

;
1 f').s.a = S.J.+ 1 

( e1 
;
1 f').s.b = s.a+ 1 

( e1 
;
1 f').s.c = if s.b - s.a < 1.5 - s.a+2 

n s.b - s.a ~ 1.5 - s.b+2 
fi. 

(e' ;' f').T = s.c 

We leave formal definitions of this type of enahling structure, a.nd this type of 
catenation, to the imagination of the reader. 

The introduetion of catenation, with either definition, is not suflident to deal 
properly with enabling structures over generic actions; this is already clear from 
tbe convention that alpbahets must contain all occurrences of generic actions, 
or none: the behaviour of a.n enabling structure over at least one generic action 
is not completed untll oo . So, a first requirement is to allow enabling struc
tures over the first occurrences of generic actions. Gatenation involves tben a 
renurnbering of occurrences. Consider for example the enabling function tbat 
can perform one occurrence of a : ë.s.ao = 1 . An enabling function tbat ca.n 
perform two occurrences of a is given by f = ë ; ë ao - a1 • It is clear that 
for enahling structures over generic actions the renurnbering should he incorpo
rated in the definition of catenation, as is done in Table 6.15. From this table we 
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also learn that, where the old description fails to model catenation properly, the 
new description fails to model parallel composition properly. Apparently, both 
operations impose conflicting demands on the way in which enabling structures 
are used to describe mechanisms over generic actions. 

cammand old description new description 

a e.s.ai if i=O ---+ 1 ë.s.ao 1 

0 i>O ---+ 00 

fi aë - { ao} -

a2 f.s.ai = if i=O ---+ 1 Ï'.s.ao - 1 -
0 i= 1 ---+ s.ao + 1 f.s.a1 = s.ao + 1 

D i> 1 ---+ 00 

fi af { ao,ad 

compo- e;e = e ë;ë = Ï' 
si ti ons e 11 f e e 11 l' - Ï' -

Table 6.15 Comparison between 'old descriptions' and 'new descriptions'. 

We mention two solutions for the incompatibility of catenation and parallel 
composition for mechanisms over generic actions. The first imposes restrictions 
u pon hierarchical design, the second yields a redefinition of parallel composition. 

• Hierarchical descriptions of mechanisms must start with a phase of com
positions that are similar to those in choice-free commands (Section 2.4): 
catenation and parallel composition without shared actions. Both are de
scribed properly with the 'new description'. This phase must be followed 
by 'blowing up' the use of generic actions to all occurrences of these actions 
(the added occurrences must be enabled on oo ). This blowingup results in 
building blocks according to the 'old description' that can be composed in 
parallel. 

• Another solution is to use the 'new description' and to add m1ssmg oc
currences before computing parallel composition. For exfLmple, ë (see Ta
bie 6.15) has one occurrence of a less than f. Before performing the paral
lel composition of both, e should be blown up to enabling function g over 
{ ao, a1 } that is defined by: 

g.s.ao 1 (as for ë) 
g.s.a1 = oo (to prohibit a1 ) 

The parallel composition of g and f trivially is g . A disadvantage of this 
blowing up method, is that one obtains whole ranges of enabling structures 
over distinct alphabets that are equivalent. For example, g is equivalent to 
e. 
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An essential remark about blowing up, for both solutions, is that it is monotonic 
with respect to <J1 • 

The problems with catenation become even more interesting, when the number 
of occurrences can depend on the schedule. For example as in the bypass cell 
(Section 5.5) in which c actions happen in case of a bypass only (Formula 5.58). 

6.3 Miscellaneous 

The enabling model provides a means to analyze, and compare, the real-time 
behaviour of a variety of mechanisms. It supports parallel composition of mech
anisms, abstraction from internal actions (projection), and hiding of external 
actions (masking). In this chapter we showed that the model also supports 
identification of actions and sequentia! composition of mechanisms. The speed 
of behaviours is compared by means of a relation ' <J1 ' that can he used in com
positional design. The analysis of conserva.tive behaviours, is straightforward 
and relatively easy. For example, process inclusion su:ffices to conclude tha.t a 
conservative implementation is at least as fast as a. specification. Furthermore, 
varia.tion of dela.ys in conserva.tive implementations bas at most a proportional 
effect on their speed. 

The computa.tion ofbeha.viours, in this thesis, is done by hand. The computation 
of parallel composition is rather easy; the computa.tion of restrietion is usually fa.r 
more laborious. An interesting topic of research is the a.ntomated computation 
of these opera.tions. For enabling structures in genera!, this ca.n he considered 
Utopian. A lot of mechanisms, however, exhibit a kind of 'repetitive' beha.viour; 
for example, of the form S; T"'. For repetitive mechanisms tha.t have fixed 
dela.ys automated computation, or estimation, appears to he a realistic option. 
In [4], the 'timing simulation' (history) of 'psendorepetitive systems', which have 
AND-causal dependendes with fixed delays only, is approximated by means of 
linear programming. We are, however, more interested in e:fficient computation, 
or estima.tion, of the complete external behaviour of mechanisms. 

For non-conservative beha.viours the analysis becomes less a.ttractive. Take for 
exa.mple the bypass cell, as given in Section 5.5. In contrast to conserva.tive 
behaviours, there is no -predefined- rela.tion between the index of an action, 
and the indices of the actions it depends on. This gives rise to delicate manip
ula.tions with 'index transformations' (and their inverses), dependent on choices 
that are made in the past. Furthermore, the beha.viour critically depends on 
the accuracy with which these choices are implemented in 'real world' devices. 
A suitable way to specify ( or describe) such a device is by means of a set of 
enabling functions tha.t gives all allowed ( or possible) functional behaviours of 
the device. This is a genera.lization of specifica.tions by means of relation <31 , 

in which specification { in fact specifies the set of enabling functions e that 
sa.tisfy e <J1 {. A typica.l way to analyze mecha.nisms that have to meet a con
servative specification, but consist of such non-conservative building blocks, is 
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to use comparison relation <11 on a globallevel only, and to use other criteria 
on a local level. 

The model is developed to describe true concurrency: it does not enforce arti
ficial interleaving of actions in the description of concurrency. A drawback of 
the model is the effort that is required to descri he intended interleaving (e.g. 
Example 6.4). Another problem is that the way in which we compare the speed 
of mechanisms, is not really fit for mechanisms that intedeave (extern al) actions. 

In this thesis we concentrated on real-time behaviour, neglecting the data. This 
separation of concerns is only possible when the real-time behaviour is data 
independent. In some cases of data dependency it suffices to decouple the reai
time behaviour by introducing non-determinism. This is done by descrihing a 
device with a set of the enabling structures that correspond to the real-time 
behaviours of the device for each possible (input) data. This leads, however, 
to loss of information that may be crudal to prove correctness of the real-time 
behaviour. For a concise description of devices that exhibit data-dependence, 
the enabling of actions must be given dependent on values that are received ( or 
sent). 

In the enabling model, we have chosen to describe the real-time behaviour of 
a wide class of deterministic, non-disabling mechanisms, rather than to restriet 
the modeltoa subclass of these behaviours. If only the conservative behaviours 
are considered, one obtains a relatively simple model in which process inclusion 
suillees to compare speed. It may be worthwhile to study properties of even 
more restricted subclasses of behaviours, such as the possibility for automated 
computation of operations, which is mentioned before. In the opposite direc
tion, it is interesting to study generalizations, such as behaviours that may be 
non-deterministic, possibly probabilistic. Another generalization is the above
mentioned inclusion of the description of data. It needs no argument that such 
modifications require other ways to compare and specify behaviours - instead 
of the relation <11 and the induced notion of quality, which are used in this 
thesis. Even for the model as is, it is interesting to consider other types of 
comparison and speci:fication. 



Appendix A 

N otational Conventions 

Functions 

A function in A -+ B is a function with domain A and range B ; we use this 
notation rather than the notation BA . For function application we use the nota
tion with a dot, as wellas anotation without a dot: f.x = f.(x) = f(x) = f x . 

For functions with a totally ordered range, lub ( glb ) is defined as the point
wise maximum (minimum), where ~ is defined as the related partial order. 
That is, for f and g functions of the same type: 

(J lub g).a = f.a max g.a (for all a in the domain of these functions) 

and f ( g <* (f lub g) = g . 

For functions we also use a set-notation. For example, {(a,3),(b,l)} is used 
to denote the function with domain {a, b} that maps a on 3 and b on 1 . 

Miscellaneous 

The number of elements of a set X is denoted by I X I· 
For the sake of convenience, we frequently use a bidden and. For example, we 
write a = b = c insteadof (a::: b) A (b = c) and a,b E A insteadof 
(a E A) A (b E A). The way we formulate derivations is also based on this 
bidden and. For example the following derivation of (f lub g).a ~ f.a: 

(f lub g).a 

= { definition of lub } 

f.a max g.a 

~ { de:finition of max} 

f.a 

The (optional) remarks between braces are called hints; they are inserted to 
clarify the individual steps of the derivation. 
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QuanUfled expressions 

The general pattern we use for quantification is: 

( quantifter dummies : range of the dummies : quantified expression) 

Restrictions in the range that are evident from the context are usually omitted. 
Quantification over an empty range gives the unit element of the quantifier. 

Below an example of quantified expressions, under the convention that x and 
y are reals. 

( 3 x, y : : x 2 = -(1 + y2)) false 
(lubx,y: x2 = -(1+y2): x) -oo 
(setx:xE{ 1,0,1}:x2 ) {0,1} 
{ glb x : x E { -1, 0, 1} : x 2

) = 0 

The quantifiers we use are: 

quantifier meaning unit element 

V universa.l quantification true 
3 existentia.l quantification false 

glb greatest lower bound dependent on type of expression 
lub least upper bound idem 
max maximum idem 
set set constructor 0 

E summation 0 
u union of sets 0 
n intersection of sets dependent on type of expression 

11 parallel composition idem 

Binding power 

In order to save parentheses we attach different binding powers to several op
erators. The lowest binding power is given to binary relations, then follow the 
other binary operations and then the unary operations. A refinement of this 
tri-partition is given in the table below. 
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~.<=,<=> 

A.,V 
other binary relations 

11' max , min , lub , glb 
t.t. lt.\, u, ~ 

+,Ea,-
*• 0 

function application with a dot 
function application without a dot 

unary operations 

.... = n 

i ... = OQ 

1:1:1 ... 
= Q. ... 
= OQ 

ä' 
~ .., 

In order to save even more parentheses, binary operations with the same binding 
power are (mutually) left associative; except for function application without 
a dot, which is right associative. For example: 5 - 2 + 3 = (5 - 2) + 3 and 
e.s.a = (e.s).a, but b PE = b(PE). 
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Appendix B 

{AND,OR} Causality 1 

In Section 2.2 we used dependenee functions to introduce the basic concept 
of enabling. Dependenee functions state the dependenee of one action on an 
arbitrary number of (other) actions. In this appendix we introduce two types 
of eomposition on the level of dependenee funetions: AND-causal composition 
and OR-causal composition. The first is similar to parallel eomposition ( 11 ): 

an action is enabled as soon as all preeonditions are satisfied. In the latter, an 
action is enabled by a eomposition as soon as at least one of the preeonditions 
is satisfied. Furthermore we introduce 1-dependence functions as dependenee 
functions that deseribe dependenee on at most one action. 

This appendix is devoted to the eomposition of dependenee functions out of 
1-dependence functions by means of AND- and OR-composition. Theorem B.7 
states that by {AND,OR} composition of 1-dependenee functions, one can ob
tain all dependenee functions, and thus the behaviour of all enabling structures. 
Using ascending 1-dependence fundions one ean even ohtain all ascending de
pendenee functions. Conservative dependenee functions ean he described in 
terms of {AND,OR} composition of 1-dependence fundions with fixed delays 
(between cause and effect). The latter result is used in Seetions 2.5 and 3.6. 

We only eompose dependenee fundions over the same alphabet by means of 
AND- and OR-eomposition; we leave this alphabet implicit. Furthermore we 
adopt the eonventions oo oo = 0 and 0 * oo = 0 . The symbols <P and 'Ij; 
denote dependenee functions, <I> and iJf denote sets of dependenee fundions. 

The AND-composition of dependenee functions <P and 'Ij; is given by <P lub 'Ij; ; 
their OR-composition is given by <P glb 'Ij;. Both, AND- and OR-eomposition, 
are generalized to eomposition over sets of dependenee functions. AND- and 
OR-composition of dependenee functions may result in functions that are no 
dependenee funetions. Apart from a step that may heeome 0 (as for enahling 
struetures ), the function value may become -oo , which is not a memher of the 
time domain. For example: 

1 The terminology of '{AND,OR} causality' is borrowed from [8]. 
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( lub</> : </> E 0 : </> ).s = -oo 

( glb i : i > 0 A </>i.s = -i : </>i ).s = -oo 

In the sequel when referring to AND (OR) -composition, we implicitly assume 
that the result is a dependenee function. 

A composition class is a set of depèndence functions that is closed under AND
composition as well as OR-composition. ~ is a base of composition class 'iJ 
if cp Ç 'iJ and if all elements of 'iJ can he composed out of elements of ~ (by 
means of AND-composition and OR-composition). 

A 1-dependence function is a dependenee function that depends on the schedul
ing of at most one action. For example, s.a + 1 and the function identical 1 are 
1-dependence functions, but s.a + 1 max s.b + 3 is no 1-dependence function 
(it depends on both a and b ). 

Defi.nition B.l 1-dependence function. 

0 

·nependence function </> is a 1-dependence function if there exists an action 
a such that: 

(V s, t : s.a = t.a : </>.s = </>.t ) 

The variation of a dependenee function gives a kind of 'smoothness criterlon'; 
dependenee functions with low varlation are not sensitive for small deviations of 
the schedule. 

Defi.nition B.2 Distance, variation: dis, v. 

0 

The distance ' dis ' between two schedules is given by: 

dis(s,t) = (luba: :ls.a-t.al) 

The variation of dependenee function </> , v<J> , is defined by: 

v<J> = (lub s, t : s I t : I ~:s~,t)t I ) 

Proposition B.3 (without proof) 

0 

A dependenee function is conservative if (and only if) it is ascending and has 
varlation at most 1 . 

The monus is used in Definition B.5. 

Defi.nition B.4 (monus) -=-. 

M -=- N = M - N max 0 
0 

The following dependenee functions are used as 1-dependent building blocks in 
the {AND,OR} construction of dependenee functions. 



171 

Definition B.5 ff' , i , 1r , and 1r • 

0 

We define the 1-dependence functions ff'(N), 11-(8, a), ir(x, M,8, a), and 
ir(x,M,8,a) by: 

ff'(N).s N for NET 

i(8,a).s 

ir(x,M,N,a).s 

s.a + 8 

x* (s.a..:.. M) + N 

ir(x,M,N,a).s = x*(M-'-s.a)+N 

1~x~oo, M<N<oo 

O<x~oo, M<N<oo 

These functions are 1-dependence functions, some of their charaderistics are 
given in Table B.6. Dependenee functions of type ff' and k are also called the 
1-dependence functions with fi.xed delays. The delay of i( 8, a) is 8. In case 
of the description of a mechanism relative to the moment of initiation, ff'( N) is 
only used with N > 0; in this case N is the (initia!) delay of ff'(N). 

ff'(N) i(8,a) ir(x,M,N,a) ir(x,M,N,a) 

delay 00 8 N-M N-M 
variation 0 1 x x 

type constant conservative ascending 

shape 11 

/ _/ \_ 

Table B.6 Some charaderistics of the building blocks. 

a 6.a along the horizontal axis, '~~"·-' along the vertical axis. 

Theorem B.7 (see below) gives a nice theoretica! result about the expressiveness 
of 1-dependence functions and {AND,OR} composition. Since the reai-time 
behaviour of a lot of programs can be described in terms of fixed delays and 
{AND,OR} composition, and because the conservative enabling functions are 
the reflexive domain of comparison relation <J1 , we consider the last item of 
partienlar interest. 

Theorem B.7 

1 Let V' : 1 ~ V' ~ oo and Do : 0 < Do < oo . 
The fundions of type ir(V',M,N,a) and ir(V',M,N,a) with N M;;:: Do 
are a base of the composition class of dependenee functions with variation 
at most \7 and delay at least Do • 

2 The functions of type ir(oo,M,N,a) and ir(oo,M,N,a) are a base ofthe 
composition dassof all dependenee functions. 
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3 Let V : 1 ' V ' oo and a : 0 < a < oo . 
Thefunctionsoftype ft(V,M,N,a) with N- M ~a and 1t(N) are a base 
of the composition class of ascending dependenee functions with variation at 
most V and delay at least A . 

4 Thefunctionsoftype ft(oo,M,N,a) and 1t(N) areabaseofthecomposition 
class of all ascending enabling functions. 

5 The functions of type 1t( N) and i( 6, a) are a base of the composition class 
of all conservative dependenee functions. 

Proof 

It is left to the reader to verify that all suggested composition classes are 
in deed composition classes, and that the suggested bases are subsets of these 
classes. Rema.ins to prove that allelementsof the classes can he composed 
.out of elementsof the suggested bases. 

1 Let V : 1 ' V ' 00 and a : 0 < A < 00 I and let 4> he a dependenee func
tion with varlation vif> ' V and delay d4> ~ A . 

We exhibit dependenee functions if>.(t, M) that are AND-causal composi
tions of elements of the suggested base, and that can be OR-causally com
posed into 4> • 

Define for t and M : M < oo such that <f>.t < M + A the function if>.( t, M) 
by: 2 

if>(t,M) = (lubb:t.b<M:ir(V,t.b,M+A,b)) ma.x 

( lubb: t.b < M: t(V,t.b, M + a,b)) ma.x 

( lubb: t.b ~ M: ir(V,M,M + A,b)) 

Rema.ins to prove: 4> = ( glb t, M : if>.t < M +A AM< oo : if>(t,M)) 

The proof of this decomposition is divided in two parts: 

• For any s: if>.s = (glbM: if>.s < M +A AM< oo: 4>(s,M).s) • 

In case if>.s = oo this is evident; for the case <f>.s < oo we derive: 

4>(s,M).s 

= { definitions of 4>( t, M) and of ft and ir } 

(lub b: s.b < M :V* (s.b..:. s.b) + M +A) ma.x 

(lub b : s.b < M : V * ( s.b-'- s.b) + M + A ) ma.x 

(lub b : s.b ~ M : V* (M-'- s.b) + M +A) 

{ definition of -'- , a.lphabet non-empty } 

M+A 
2 Ii d; > .41 , it auftices to observe the cases ;.t = M + .41 ; 'but we alao want to capture the 

case d;= 4. 



Because Ll < oo , this establishes the equality. 

• For any s, t, and M < oo such that 1'/>.t < M + Ll : 1'/>.s ~ 4>( t, M).s . 

Let s , t , and M as in the precondition. Define u by: 

u.b if t.b < M -+ t.b 
0 t.b ~ M 1\ s.b < M -+ M 
~ t.b ~ M 1\ s.b ~ M -+ s.b 
fi 
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Observe that u ~ M = t ~ M; since 1'/>.t < M + Ll ~ M + dl'/>, we conclude: 
I'/>. u= 1'/>.t. 

We derive: 

4>( t, M).s 

{ definitions of 4>( t, M) and of ir and t } 

(lub b: t.b < M :V* (t.b-'- s.b) + M + Ll) rnax 

(lub b : t.b < M : V* (s.b..:.. t.b) + M + Ll) rnax: 

(lub b : t.b;;:: M : V* (M..:.. s.b) + M + Ll) 

= { definition of ..:.. } 

(lub b: t.b < M :V* (t.b-'- s.b) + M + 6.) max: 

(lub b: t.b < M : V* (s.b-'- t.b) + M + 6.) max: 

(lub b: t.b ~ M 1\ s.b < M :V* (M-'- s.b) + M + Ll) rnax 

(lub b : t.b;;:: M 1\ s.b < M :V* (s.b..:.. M) + M + Ll) rnax: 

(lub b: t.b ~ M 1\ s.b ~ M :V* (s.b-'- s.b) + M + 6.) rnax: 

(lub b : t.b;;:: M 1\ s.b;;:: M :V* (s.b s.b) + M + Ll) 

= { definition of u } 

(Iubb: :V*(u.b-'-s.b)+M+Ll) rnax: 

(Iubb: :V*(s.b..:..u.b)+M+Ll) 

{ definition of ..:.. } 

( lub b : : V * I s.b- u.b I + M + 6. ) 

= { definition of dis } 

V* dis(s, u)+ M + Ll 

~ { V'~ v4>} 

I 1'/>.s- 4>.u I + M + Ll 

;;:: { 1'/>.u 1'/>.t and 4>.t < M + Ll } 

I 1'/>.s- 1'/>.u I + 4>.u 

2 Follows frorn 1. 
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3 This proof is similar to the proof of 1. 

Let V : 1 ( V ( oo and d : 0 < d < oo , and let 4> he a.n ascending de
pendence function with varlation vtf> ( V and dela.y dt/> ~ d . 

Define for t a.nd M : M < oo such that t/>.t < M + d the function tf>.(t, M) 
by: 

t/>(t,M) = ( lubb: t.b < M: 1î'(V,t.b,M + d,b)) 

where lub 0 = 1t(M + d). 

Rema.ins to prove: 4> = ( glb t, M : tf>.t < M + A /1. M < oo : 4>( t, M)) 

The proof of this decomposition is divided in two parts: 

• For any 8 : t/>.8 = ( glb M : t/>.8 < M + A 11. M < oo : 4>( 8, M).8) . 

This is proven simHar to the proof of the sa.me property in 1. 

• _For any 8, t, and M < oo such tha.t tf>.t < M +A: t/>.8 ( t/>(t,M).s . 

Let s , t , and M as in the precondition. Define u by: 

u.b = if t.b < M /1. s.b ~ t.b -+ t.b 
0 t.b ~ M V 8.b < t.b -+ s.b 
ti 

Observe tha.t u ~ M ( t ~ M; since tf>.t < M +A ( M + dtf> and 4> is as
cending, we conclude: tf>.u ( tf>.t. 

Observe a.lso that u ( 8 and consequently tf>.u ( tf>.s. 

We derive: 

tf>(t,M).s 

= { definitions of tf>(t,M), 1i', and 1i' } 

M + d max (lub b: t.b < M :V* (s.b.:. t.b) + M +A) 

= { definition of .:. } 

(lub b : t.b < M /1. s.b < t.b : V* ( s.b.:. s.b) + M + d} max 

(lub b: t.b < M 11. s.b ~ t.b: V* (s.b.:. t.b) + M +A} max 

{lubb: t.b~ M: V*(8.b..:..s.b)+M +A} 

= { definition of u } 

(lub b: :V* (s.b.:. u.b) + M +A} 

= { definition .:. , s ~ u } 

( lub b : : V * I s.b - u.b I + M + A ) 

= { definition of dis } 

V * dis( 8, u) + M + A 

~ {V~ vtf>} 

lt/>.s- tf>.u I+ M +A 

= { tf>.s ~ tf>.u } 
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(</>.s </>.u)+ M + ~ 
;l!: {</>.u~ <J>.t and <J>.t < M + ~ } 

<J>.s 

4 Follows from 3. 

5 A dependenee function 4> is conservative if it is a.scending and has variation 
at most one (Proposition B.3). Consequently, the claim in the theorem 
follows from 3, with V= 1, and from the following 'decomposition': 

1Î'(1,M,N,a) = 1t(N) max fr(N- M,a) 
0 



Appendix C 

Metric Spaces 

First we give a brief introduetion to {ultra-) metric spaces, including a gener
allzation of Banach's contraction theorem. Furthermore we introduce metric 
spaces of schedules, processes, and enabling structures. In order to support the 
theory about infinite systolic arrays in Chapter 4, we prove the continuity of 

<11. in the metric spaces of enabling functions. 

For set X, and function d: X* X--+ the real numbers, the pair (X,d) is a 
metric space if for all x , y , and z in X : 1 

d(x,y) ~ 0 
d( x' y) = 0 {::} x = y 
d(x,y) = d(y,x) 
d(x,z) ~ d(x,y) + d(y,z) 

It is called an ultra-metric space if the following -stronger- triangle inequality 
holds: 

d(x,z) ~ d(x,y) max d(y,z) 

A metric space is complete if each Cauchy sequence has a limit;"where a Cauchy 
sequence is a sequence x, : i ~ 0 such that 

(V e : e > 0 : ( 3 k : : (V 1; m : I, m ~ k : d(x~a, xz) ~ e))) 
A function ~ in X --+ X is a contraction if there exists a real number <P : 0 ~ <P < 1 
such that for all x and y : 

d(~.x.~.y) ~ <P* d(x,y) 

Theorem C.l Generalized contraction theorem. 

For ~ a function in a complete metric space, such that for forsome k : k > 0 , 
~Ie is a contraction: c 

• ~ has a unique fixed-point, say x , and 

• any sequence Xn: n ~ 0 such that Xn+t = ~.Xn has limit x. 

D 
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The original theorem of Banach is for k = 1 . 

To apply the theory of metric spaces we have to introduce a concept of distance; 
we use the concept of similarity in order to do so. 

Definition C.2 Metric d. 

0 

Let X and Y such that sim(X,Y) is defined (see Definitions 2.15 and 
2.23). The distance d(X, Y) of X and Y is defined by: 

d(X, Y) = 2 -sim( X, Y) 

A similar distance is used in [26] between sets of traces. The metric for processes 
is also called the Hausdocff distance. 

Without proof we mention: 

Proposition C.3 

1 For any alphabet A, (S.A,d) is a complete ultra-metric space. 

2 For any alphabet A , the set of processes over A is, with metric d , a com
plete ultra-metric space. 

3 For A,B: A n B = 0, (tS(A,B),d) is an ultra-metric space;' 

0 

for any .ó. : .ó. > 0, the subset of enabling structures with delay at least .ó. 
is a complete ultra-metric space. 

Theorem C.4 Contractions in terms of similarity. 

Function .P, in one of the metric spaces as given in the previous proposition, 
is a contraction if and only if for some .ó., .ó. > 0: 

(Yx,y: : sim(.P.x,.P.y) ~ sim(x,y)+.ó.) 

Proof 

0 

sim(.P.x, .P.y) ~ 

* 2 -sim( .P.x, .P.y) 

* 2 -sim(.P.x, .P.y) 

sim(x,y) + .ó. 

~ 2 -(sim(x,y) + .ó.) 

~ 2 -sim(x,y) *2 -.ó. 

# { defini ti on of d } 

d(.P.x,.P.y) ~ 2-.ó. *d(x,y) 

From this theorem we immediately infer that ( the behaviour) of an enabling 
strncture is a contraction. Consequently the history (see Definition 2.27) of an 
enabling structure exists, and is uniquely defined. 

We conclude this appendix with a theorem that is used in Section 4.2, in order 
to estimate the external behaviour of infinite linear systolic arrays. 



178 Appendix C: Metric Spaces 

Theorem C.5 Continuity of <1 and <11 • 

For sequences e,. : n ~ 0 and 1;. : n ~ 0 with Jimits e a.nd f respectively: 

1 (Vn::e,.<l/;.) => e<lf 

2 (Vn\:e,.<11/;.) => e<11f 

Proof 

Define Mn = sim(e,.,e) min sim(t;.,f). 

1 Let sE Pe and tE Pf such tha.t s ~ t. We derive for all n: 

e,.<l/;. 

=> { definition of <I (3.27), s ~ Mn E Pe,., simila.r for t } 

e,..(s ~ Mn) ~ l;..(t ~ Mn) 
=> 

e,..s ~ Mn ~ l;..t ~ Mn 
{:} 

e.s ~ Mn ~ f .t ~ Mn 
I 

Since limn-+oo Mn = oo we coneinde e.s ~ f.t . From Definition 3.27 we 
conclude e <I f . 

2 We derive: 

(Vn: :e,.<11/;.) 

{:} { Proposition 3.38} 

( V n, Jl. : Jl. ~ 0 : e,. <1 1;. f.D 1t ) 

=> { previous item } 

(VJJ:JJ~O:e <1 ff.DJJ) 

{:} { Proposition 3.38} 

e <11 f 
D 
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Samenvatting 

Het enahling model kan worden gebruikt voor het analyseren en vergelijken 
van het reai-time gedrag van een ruime klasse mechanismen. Het ondersteunt 
parallelle compositie, abstractie van interne acties en het afschermen van externe 
acties voor de omgeving. Ook 'identificatie' van acties en catenatie kunnen 
binnen het model beschreven worden. 

Het model beschrijft mechanismen die parallel samenwerken met synchrone 
communicatie, maar zonder synchronisatie door middel van een globale klok. 
Gedacht kan worden aan VLSI programma's of realisaties hiervan op het niveau 
van 'handshake protocols'. De beschrijving van mechanismen is gebaseerd op 
het 'enahling concept': afhankelijk van het verleden verklaart een mechanisme 
zich bereid om acties uit te voeren; voor zover dit interne acties betreft worden 
ze uitgevoerd zodra het mechanisme bereid is, externe acties (communicaties) 
worden uitgevoerd zodra zowel het mechanisme als zijn omgeving beide bereid 
zijn tot uitvoering. We beperken ons tot deterministische mechanismen die niet 
'disahelen', d.w.z. de bereidheid van een mechanisme om acties uit te voeren 
volgt eenduidig uit het 'verleden' en zodra een mechanisme bereid is om een 
(externe) actie uit te voeren, zal het mechanisme bereid blijven om deze ac
tie uit te voeren totdat de actie daadwerkelijk is gebeurd. Binnen het model 
definiëren we parallelle compositie, abstractie van interne acties (projecteren) 
en het afschermen van externe acties voor de omgeving (maskeren). 

Het model kan worden gebruikt voor het vergelijken van performance. Hierhij 
moet worden gedacht aan vragen als 'Is het ene mechanisme (een implementatie) 
tenminste zo snel als het andere (de specificatie)?' en, meer algemeen, 'Wat is de 
snelheid van dit mechanisme ten opzichte van dat mechanisme?'. In hoofdstuk 
3 introduceren we een relatie, voor het vergelijken van performance, die geschikt 
is voor het compositioneel ontwerpen van mechanismen. Dat wil ondermeer 
zeggen dat deze relatie transitief is, en dat parallelle samenstelling monotoon is 
ten opzichte van deze relatie. Een opmerkelijk detail is dat de relatie slechts op 
de klasse der conservatieve gedragingen reflexief is. Een gevolg hiervan is dat de 
relatie slechts voor conservatieve specificaties zinvol is. 

We illustreren het gebruik van het model aan de hand van twee case-studies. 
De eerste, in hoofdstuk 4, betreft het uitrekenen van een 'segment som' met 
behulp van een systolisch array. We bespreken verschillende aspecten van zo'n 
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implementatie. De tweede, in hoofdstuk 5, betreft het gedistribueerd imple
menteren va.n FIFO (First In First Out) buffers. We leiden, onder verschillen.de 
condities, ondergrenzeit af voor het a.a.ntal (extra) variabelen dat nodig is om 
FIFO buffers met een gegeven capaciteit te implementeren. Bovendien geven we 
implementaties die deze grenzen benaderen. Bij het implementeren va.n buffers 
met 'bypa.ssing' maken we gebruik van niet-conservatieve 'cellen'. Dit leidt ertoe 
dat we -op lokaal niveau- andere correctheidscriteria, dan die va.n hoofdstuk 
3, gebruiken. 
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1. In [1] worden sequence functies gebruikt voor de performance analyse van 
cubische processen. Met de theorie in dit proefschrift kan worden aange
toond dat sequence functies betrouwbaar zijn bij het geven van mogelijke 
externe gedragingen van mechanismen die worden beschreven met conserva
tieve (trace-theorie) processen. (De cubische processen vormen hiervan een 
echte subset.) Sequence functies blijven echter een primitief hulpmiddel bij 
het bepalen van de performance. 

[1] G. Zwaan, Parallel Computations, proefschrift, januari 1989, TUE. 

2. Voor een conservatief trace-theorie proces P (zie [2], confluent in de termi
nologie van [1]) geldt, voor alle s en t in P: 

s ~ t => ( V u : us E P A ut E P : us ~ ut ) 

waar s ~ t <:? {V v : : sv E P <=> tv E P) . 

Deze implicatie bevestigt nog eens dat conservatieve processen 'behoudend' 
zijn. 

[1] J. Gunawa.rdena, 
Ca.usa.l Automata. 1: Confluence = {AND,OR} Ca.usa.lity, 
Sema.ntics for Concurrency, Proceedings of the international BCS-FACS 
Workshop, July 1990, University of Leicester UK, Springer 1990: pp 137-
156. . 

[2] G. Zwaan, Parallel Computa.tions, proefschrift, januari 1989, TUE. 

3. Bij de beschrijving van mechanismen dient, naast kostenaspecten, het gedrag 
ten opzichte van de omgeving centraal te staan. In dit opzicht is het onge
wenst om een onderscheid te maken tussen het uitsluiten van communicaties 
met de omgeving door 'activiteit' (livelock) enerzijds en door 'het ontbreken 
van activiteit' ( refusals) anderzijds. . 

4. Systolische arrays waarin de cellen worden gesynchroniseerd door een globale 
klok, zijn per definitie slechts 'semi-systolisch '. 
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5. De 'elastic pipelines' in [1) zijn slechts in beperkte mate 'elastisch' te noemen. 
De timing is namelijk onafhankelijk van de complexiteit van de berekeningen 
die worden uitgevoerd. Hierdoor duren eenvoudige berekeningen even lang 
als meer ingewikkelde berekeningen. 

[1] Shinji Komori, et al., 
An Elastic Pipeline Mecha.nîsm by Self-Timed Circuits, 
IEEE Joumal of Solid-State Circuits, voL 23. no. 1, February 1988: 
pp 111-117. 

6. Het enabling concept kan worden uitgebreid door aan elke actie een deelver
zameling van de tijd-as toe te kennen waarin de actie kan gebeuren (i.p.v. 
deelverzamelingen van de vorm [M,oo] als in dit proefschrift). Bij paral
lelle compositie moet dan de doorsnede van deze deelverzamelingen genomen 
worden. Deze benadering vindt zijn tegenhanger in de beschrijving van data
communicatie in [1] en (2] (Sectie 2.3, communicatie in TNP). 

[1] M. Rem, Trace theory and systolic computa.tions, 
Proceedings, Parallel Architectures and Languages Europe, June 1987, 
volume I, J.W. de Bakker, A.J. Nijman, and P.C. Treleaven editors, Lec
ture Notes in Computer Science 258, Springer 1987: pp 14-33. 

[2] J. Zwiers, Compositiona.lity, Concurrency and PartiaJ Correctness, 
proefschrift, februari 1988, TUE, of 
Lecture Notes in Computer Science 321, Springer 1989. 

7. Voor een relatie die de snelheid van programma's vergelijkt is transitiviteit 
een handige eigenschap. Hoewel transitiviteit 'intuïtief' voor de hand ligt, 
mag ze niet als vanzelfsprekend worden aangenomen. 

Definieer bijvoorbeeld dat een programma P sneller is dan een programma 
Q, notatie P < Q, als P met een kans groter dan 1/2 eerder termineert dan 
Q (onder bepaalde aannamen over de input). Mits de verzameling mogelijke 
gedragingen van programma's ruim genoeg gekozen wordt, is deze 'sneller 
dan' relatie niet transitief. Het is zelfs mogelijk een drietal gedragingen voor 
programma's P, Q en R te geven zodanig dat P < Q , Q < R èn R < P . 
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8. Het alfabet van een proces is de verzameling van acties waarin het proces kan 
participeren. Een fundamentele eis die aan acties moet worden gesteld, is dat 
we er vrijelijk over kUnnen beschikken. Dit wil ondermeer zeggen dat alfabet
ten vrijelijk kunnen worden hernoemd en dat er altijd 'verse' (ongebruikte) 
acties zijn. Indien alfabetten oneindig groot mogen zijn, kan de vereiste uit
gebreidheid van het universum van acties, n , worden gerealiseerd door de 
maximale cardinaliteit van alfabetten N, te kiezen, en de cardinaliteit van 
n Nt+t. Doorgaans zal i= 0 volstaan. 

[1] G. Cantor, Beiträge zur Begriindung der tranfiniten Mengenlehre, 
Georg Cantor, Gesammelte Abhandlungen Mathematischen und Philo
sophischen Inhalts, 1962, Georg Olms Verlagsbuchhandlung, Hildesheim: 
pp 282-356. 

9. Er zijn precies tien gedragingen van 'general implementation relations' (de
finitie 3.1 in dit proefschrift) op de klasse der constante enabling functies. 

10. De kwalificaties vermomd plagiaat (Rhapsodie in blue) en melodisch leen
tjebuur (pianoconcert in F) zeggen meer over de kwaliteiten va.n de criticus, 
[1], dan over de kwaliteiten van de bekritiseerde, George Gershwin. 

[1] Casper Höweler, XYZ der Muziek, 2'r druk, 1987, Unieboek Houten. 

11. 'Mensenrechten' zijn voor ons erg belangrijk. Zo weegt ons recht op een 
goedkoop bakje koffie en op goedkope textiel nog steeds zwaarder dan het 
recht van een koffieplukker of textielarbeider op een menswaardig bestaan, 

[1] Max. Havelaar: Koffie met toekomst, 
december 1989, Stichting Max Ha.velaar, Utrecht. 

[2] STOF TOT NADENKEN: van wever tot keuken, eerlijke handel?, 
1990, S.O.S. Wereldhandel. 


