EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The enabling model : a tool for performance analysis of
concurrent mechanisms

Citation for published version (APA):

Kloosterhuis, W. E. H. (1991). The enabling model : a tool for performance analysis of concurrent mechanisms.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR360645

DOI:
10.6100/IR360645

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR360645
https://doi.org/10.6100/IR360645
https://research.tue.nl/en/publications/06d7c6f1-efdd-4bb7-a452-66c076f7e19a

The Enabling Model

A Tool for Performance Analysis

of Concurrent Mechanisms

Wim Kloosterhuis

The Enabling Model

A Tool for Performance Analysis

of Concurrent Mechanisms

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint,
vOOr een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen
op maandag 18 november 1991 om 16.00 uur

door

Willem Egbert Hendrik Kloosterhuis
geboren te Onstwedde

druk: wikro dissertatiedrukkerij, helmond.

Dit proefschrift is goedgekeurd door

de promotor

prof.dr. M. Rem

en

de copromotor
dr. P.A.J. Hilbers.

Preface

A program is correct if it satisfies its specification. For sequential programs,
the specification usually captures data only: a program must produce output
values that are in a specified relation to its input. In addition to the specifica-
tion of data, there may be performance specifications, such as the specification
of speed, size, and power-consumption of VLSI realizations. In this thesis we
confine ourselves to real-time behaviour. We distinguish two types of real-time
specifications. The first is the ‘critical specification’; such a specification states
that output has to be produced within a restricted amount of time after the
input. The second is the ‘intentional specification’, which is not really a speci-
fication. In the case of an intentional specification, the guality of a program is
expressed in terms of its speed: a fast program has a high quality, a program
without progress has zero quality (and is rejected).

For programs that cooperate with other programs by means of exchange of data
(communications), the real-time aspect becomes more complicated. It is not just
a matter of being fast enough, the real-time behaviour of a program must also
be in accordance with the behaviour of its environment: for example, a program
and its environment should not impose conflicting restrictions on the order of
their communications. Such behaviours are also called reactive systems [10, 22].
In contrast to [10, 22], however, we are especially interested in those members of
this species that have a rather regular behaviour: we do not intend to describe
the behaviours of micro-wave ovens, nuclear power plants, and TV-sets, nor the
effect of power failure and nuclear melt down. Furthermore, again in contrast to
[10, 22], we intend to describe the progress of implementations, and their speed
relative to (real-time) specifications.

In the sequel the term mechanism is used for programs, specifications, and imple-
mentations. We assume that the mechanisms operate under true concurrency
(also known as maximal parallelism), without synchronization upon a global
clock. The only interaction between cooperating mechanisms is by means of
synchronization upon shared actions via rendez vous communication. So, we
have an asynchronous mode of operation, and synchronous communication. The
described mechanisms may be VLSI programs [2], or their realizations on the
level of handshake protocols [3]. This is a higher level of abstraction than in
[4], in which the performance of mechanisms is analysed on the level of individ-
ual transitions. Furthermore, we are especially interested in external behaviour,

4 Preface

whereas in [4] only closed mechanisms are analysed.

Two aspects of the behaviour of mechanisms are safety and liveness properties:
a mechanism is safe when it cannot get into an undesirable state; it is live
when it will eventually perform some desired behaviour. By their nature, safety
properties are easier to cope with than liveness properties (it suffices to check
all possible behaviours, whereas for liveness properties it is important in which
way the ‘actual’ behaviour is selected from this set). Up to a reasonable extent,
liveness properties can be formalized without the introduction of a ‘time-axis’:
for example with temporal logic [18, 22], or with a trace formalism [13, 16, 21].
We are interested in a more detailed analysis of the behaviour of mechanisms:
typical questions we want to answer are: ‘when is a mechanism at least as
fast as another mechanism?’ and ‘how much faster (slower) is a mechanism
than another one?’. In order to support such an analysis, a dense time-axis is
indispensable.

In the enabling model, possible behaviours of mechanisms are given by sched-
ules. In contrast to traces, which give an ordering of actions only, schedules
assign ‘time-slots’ to actions. Schedules are similar to the sequence functions
that are used in [23, 27]. In these works, however, the underlying model is a
trace-formalism, which is inadequate to support the use of schedules in a satis-
factory way. Within the enabling model, we introduce a comparison relation for
performance, such that parallel composition and alphabet restriction are mono-
tonic (with respect to this relation). Such a relation is suitable for compositional
design of mechanisms, i.e. for design by means of ‘divide and conquer’.

The enabling model is a tool for performance analysis that is useful for (at least)
a restricted class of mechanisms (see the characterization above). In the use of
a time-axis and time-slots, the model is similar to the real-time extension of
process algebra as given in [1]. In contrast to [1], our aim is not to give a general
theory covering all types of mechanisms, nor to support a specific programming
language.

Contents

Preface
Contents
1 Introduction
1.1 Informal introduction tothemodel
1.2 Overview e e e e e
2 The Model
2.1 Preliminaries e
2.2 Enablingstructures o,
23 Renamingandscaling
2.4 Generic actions and choice-free commands
2.5 Epablingwithfixeddelays
2.6 Alphabet resfriction
2.7 Equivalence of enabling structures
3 Comparing Performance
31 Howtocompare vnnuueninn..
3.2 Howtocomparespeedo v i v,
3.3 Maximal implementation relations,
3.4 Liberal implementations and severe specifications
3.5 The quality of implementations
36 Variationofdelays L.
37 Conclusion e e e
4 Divide And Conquer
4.1 Linear systolicarrays.
4.2 Analyzing the behaviour of linear systolic arrays
4.3 The maximumofsegments
Distributed Implementations of FIFO buffers
5.1 Linear conservative implementations

52 Lower bounds for theoverhead

-3

11
12
16
27
29
31
35
43

56
58
62
71
82
85
89
93

5.3 Performance of hypothetical implementations
5.4 Conservative implementations that meet lower bounds
55 Bufferswithbypassing
5.6 Buf-like behaviour asasideeffect

6 Conclusion
6.1 Expressive Power s
6.2 Manipulative Power,
6.3 Miscellaneousttt

Appendices
A Notational Conventions
B {AND,OR} Causality

C Metric Spaces

Bibliography
Glossary of Symbols of Chapter 2

Index

Samenvatting

Curriculum Vitae

166

169

176

179

182

184

187

188

Chapter 1

Introduction

1.1 Informal introduction to the model

The enabling model is a mathematical model that can be used to analyze the
real-time behaviour of mechanisms. This can be done in abstract time-units, as
well as in physical time units. Among others, it supports parallel composition
and alphabet restriction.

Enabling structures describe the real-time behaviour, to be called behaviour in
the sequel, of mechanisms that cooperate in a truly concurrent way with synchro-
nization upon shared actions only. The behaviour of a mechanism is described
in terms of point actions: (atomic) actions of which the performance has zero
duration. The enabling of an action depends on the moments that other actions
have been performed in a deterministic way. Internal actions of a mechanism
are performed as soon as they are enabled by this mechanism. External actions
—communications— of a mechanism may be delayed by its environment: they
are performed as soon as they are enabled by both, the mechanism and its en-
vironment. There is no disabling: once enabled, an (external) action remains
possible until it is performed.

The set of the behaviours (schedules) in which a mechanism can be involved
is called its process. A mechanism is deterministic, so it cannot choose which
schedule of its process is performed; this depends entirely on the moments at
which the environment enables the mutual communications.

Evidently, not all ‘real world” devices in the satisfy these conditions. However,
some discrepancies between the model and the ‘real world’ can be bridged:

e Events in devices, such as communications, usually have a non-zero duration.
Within the model, such events can be modeled by an action for initiation
and an action for completion. When the duration of an event is known, it
suffices to use an action for completion only; this convention is used in this
thesis.

s In the model, timing of actions does depend on the scheduling of previous

8 Chapter 1: Imtroduction

actions in a deterministic way. In devices, timing may also depend on other
influences such as temperature, complexity of data, and the like. This prob-
lem can be solved by describing a device with a whole range of enabling
structures, rather than with just one enabling structure. In some cases, such
as the buffer with bypassing in Section 5.5, an analysis of the real-time be-
haviour of the device requires an analysis over this whole range. For devices
in which timing is bounded by fixed delays between actions, or combinations
of actions, it suffices to consider the extreme delays only (Section 3.6).

The informal programming notation we use has some resemblance with Pascal.
It is akin to the language CP-0 in [2] and to the programming notation that
is used in [23]. The use of question-marks for input, and exclamation-marks
for output is as in [2, 11, 23]. The question-mark and the exclamation-mark
give the direction of data only: communication with the environment happens
simultaneously in the program and in the environment, as soon as both the
program and its environment are ready for it.

Consider for example the following, very simple, program that inputs one value
and outputs the square of this value:
Example 1.1 A disposable square element.

program square{inputin: integer, output out: integer):
var z: integer ;
begin
in?z ; out!x?
end.
This program performs three actions:

o first a value is received along channel in, it is stored in variable z,

o second, the square of z is computed,

e at last, the result of this computation, #?, is sent along channel out.
Assume that the program is initiated at moment zero, that a communication
takes one time unit, and that the computation of z? takes half a time unit.

Let action a symbolize the completion of the input, & the completion of the
computation, and ¢ the completion of the output.

Obviously & and ¢ are external actions, and b is an internal action.

The behaviour of the program is given by:

¢ a is enabled (by the program) at moment 1,
s b is enabled 0.5 time unit after performing a,
e ¢ is enabled one time unit after performing b.

The program imposes restrictions on the moments that a, b, and ¢ can be
performed. A schedule s satisfies these restrictions if (and only if):

1.2 Overview 9

¢ s.a 2 1: a is external so it may be delayed by the environment,
e 3.b=sa+0.5: bisinternal soit cannot be delayed by the environment,

o s.c2s8b+1: ¢ isexternal.

Whether a schedule s happens or not, does depend on the environment of
the program; it depends in particular on the moments at which this envi-
ronment enables the communications a and ¢. It may well be that the
environment prohibits one of the actions ¢ or ¢; in case it prohibits a,
none of the actions a, &, and ¢ will happen!

When duration 0.5 is only an upper bound of the duration of the compu-
tation of z2, the enabling as described above gives an upper bound of the
actual enabling.

a

1.2 Overview

In Chapter 2 we introduce the enabling model. In Section 2.1 we introduce
among others the time-axis, schedules, and processes. In Section 2.2, enabling
structures are introduced as a way to describe mechanisms; enabling functions
describe the external behaviour of mechanisms. In the same section parallel
composition is used to define the process of enabling structures. Renaming and
scaling are introduced in Section 2.3. In Section 2.4 we introduce choice-free
commands as a way to describe {a restricted type of) enabling functions. The
behaviours of choice-free commands can be classified as having fixed delays, in
Section 2.5 we discuss fixed delays in general. Alphabet restriction is introduced
in Section 2.6. We consider enabling structures with the same behaviour to be
equivalent (Section 2.7).

In Chapter 3 we are in quest of a relation that can be used for comparing per-
formance. First we discuss what type of relation we want to use to express that
one enabling function implements another (Section 3.1), in particular when the
correctness concern is speed {Section 3.2). In Section 3.3 we introduce the im-
plementation relation that suits us most. Section 3.4 is an interlude in which we
discuss the existence of ‘most liberal implementations’ and ‘most severe speci-
fications’. In Section 3.5, we introduce a guantitative way to compare enabling
functions. In particular, we introduce the relative speed of an ‘implementation’
with respect to a ‘specification’. In Section 3.6 we discuss how variation of be-
haviour of an implementation affects its speed with respect to its specification.
In Section 3.7 we conclude this chapter with some remarks on the utility of the
~ introduced theory.

In Chapter 4 we use systolic arrays to illustrate the use of ‘divide and conquer’
during the computation, or estimation, of the external behaviour of mechanisms.
Certain claims about infinite arrays in Section 4.2 are supported by the theory
in Appendix C that deals with metric spaces. In Section 4.3 we give some

10 : Chapter 1: Introduction

examples of the application of systolic arrays. All examples are based on the
same problem: computing the maximum of a fixed number of subsequent inputs.

In Chapter 5 we perform a case-study on distributed implementations of FIFO-
buffers. In Section 5.2 we give theoretical bounds on the speed of such im-
plementations, dependent on their ‘shape’. In Sections 5.1 and 5.4 we present
implementations that meet these bounds. These implementations have (at least)
one drawback in common: they have 2 poor performance when they are almost
empty. In Section 5.5 we introduce implementations that bypass empty parts, in
order to improve this performance. These implementations are especially inter-
esting because (drastic) choices about future behaviour are made dependent on
the order in which communications happen. The chapter is concluded, in Sec-
tion 5.6, with a brief discussion of computations in which ‘buf-like’ behaviour
comes as a side-effect.

In Chapter 6 we conclude this thesis with a brief discussion on the scope of the
enabling model, and of the type of comparison that is introduced in Chapter 3.
~ In Sections 6.1 and 6.2 we discuss possible extensions of the expressive power and
the manipulative power of the model respectively. Among others, we introduce
serial composition of mechanisms. In Section 5.4 we metion some other points
of interest.

In Appendix A we explain some notational conventions.

In Appendix B we discuss process description by means of {AND,OR}-causal
compositions of elementary dependencies. It turns out that this gives equally
powerful descriptions as are obtained by enabling structures. Some results of
this appendix are used in Section 2.5.

In Appendix C we briefly discuss metric spaces. We mention a generalized
version of Banach’s contraction theorem. Furthermore, we apply the theory on
some cases considering the enabling model.

Chapter 2

The Model

We use enabling structures to describe mechanisms. In an enabling structure,
the enabling of subsequent actions depends on actions that were performed in the
past. In this dependence relation we assume a positive delay between cause and
effect. We distinguish between internal and external actions. Internal actions
are strictly private, they cannot be shared with other mechanisms; we assume
they are performed as soon as they are enabled. External actions can be shared
with other mechanisms, thus scheduling of these actions may be delayed by the
environment of the mechanism.

In Section 2.1 we introduce the time-domain, alphabets, schedules, and pro-
cesses. For processes we define the operations of parallel composition and pro-
Jection, which are defined for enabling structures in Sections 2.2 and 2.6 respec-
tively.

In Section 2.2 we introduce dependence functions to describe the dependence
of one action upon other actions; enabling structures to describe the behaviour
of mechanisms; and enabling functions to describe the external behaviour of
mechanisms. Furthermore we introduce the history of an enabling structure as
its behaviour in a greedy environment, and the process of an enabling structure
as the set of all behaviours it may exhibit, dependent of the environment. Par-
allel composition is introduced to describe concurrent cooperation; masking is
introduced to hide external actions from the environment.

Renaming and scaling are introduced in Section 2.3.

In Section 2.4 we introduce generic actions as a way to describe sequences of
actions ‘of the same type’; for example communications along the same chan-
nel. Furthermore, choice-free commands are introduced as a way to describe (a
certain type of) enabling funetions over generic actions. A lot of programs have
behaviours that can be described by choice-free commands.

The behaviours that are described by choice-free commands exhibit fixed delays
between cause and effect. In Section 2.5 we discuss behaviours with fixed delays
in general.

11

12 Chapter 2: The Model

In Section 2.6 we introduce projection of enabling structures as abstraction from
internal actions. Projection and masking are combined into restriction.

In Section 2.7 we discuss equivalence of enabling structures; enabling structures
are considered equivalent when they exhibit the same behaviour. We introduce
a normal form with respect to equivalence of external behaviour,

| 2.1 Preliminaries

An alphabet is a set of actions. In the sequel a through d range over actions,
A, B, and C over alphabets. These are all ‘variables’, so it may well be
that, for example, ¢ = b. In concrete examples, actions with different names
are implicitly assumed to be different. When no confusion is possible, we tend
to abbreviate singleton alphabets by using @ rather than {a}.

We use the real numbers as a reflection of the ‘real-world’ time-axis. The time-
dormain we use also captures the value oo (infinite); when an action is scheduled
on moment oo this expresses that it is not scheduled. oo is chosen because
oo > ¢ for all real numbers z, so an expression like s.c > s.b+ 1 (see Exam-
ple 1.1) also captures the possibility of s.c being infinite, which reflects that ¢
is not scheduled at all.

Definition 2.1 The time-domain: T.

T = (-00,00]
0

In the sequel M, N, and O range over the time-domain.

An advantage of the choice for real numbers plus oo, above for example rational
numbers, is the existence of least upper bounds of non-empty subsets of the time-
domain and the existence of greatest lower bounds of a lot of sets. Furthermore,
with the distance that is given in Appendix C, it is a complete metric space. The
integers enjoy similar propertles, but these are consxdered too course grained to
reflect the ‘real world’ time axis.

The arithmetic of the real numbers extended with oo and —oco is defined
straightforward in the cases it is obvious: = + 00 = 00 for z > ~00, 2400 = ®
for >0, z%00=—00 for z <0, etc. .

A schedule is a mapping of actions in the time-domain. The only restriction
we impose upon such a mapping is that is has a ‘beginning’, other than ~oo:
mapping s given by s.a; = i (for i > 0) is a schedule with base, bs, zero, but
mapping t given by t.a; = —i (for ¢ 2> 0) is not a schedule because it models
an activity that has been going on forever (bt = —o0).

Definition 2.2 Schedule, base: b.
For a function s in A — T we define its base bs by:
bs = (glba:a€ A:s.a)

2.1 Preliminaries 13

A schedule over A is a function s as above with bs > —oc. The set of
schedules over alphabet A is denoted by S.4.
W]

In the sequel, s through v range over schedules.
A schedule that models ‘doing nothing’ is called an empty schedule,

Definition 2.3 Empty schedules: €4, ¢.

An empty schedule is a schedule that schedules all actions on oo. The
empty schedule over alphabet A is denoted by £4. When alphabet A is
understood we just write ¢ instead of e4 .

a

Mechanisms impose restrictions upon the scheduling of the actions they are
involved with; they can be described by giving all schedules they allow to happen.
As for schedules, we demand that the activity of a mechanism has a beginning
(other than --00): for example, the process of the square element in Example 1.1
begins at 1. The proper way to describe the mechanism with alphabet A that
does not allow scheduling of any actions on its alphabet, is with process {e4 },
and not with @& .

Definition 2.4 Schedule-set, process.

A schedule-set is a set of schedules over the same alphabet. The base of a
schedule-set P, denoted by bP, is defined by:

bP = (glbs:seP:bs)
A process is a non-empty schedule-set P with base bP > —c0 .
]

In the sequel, P and Q range over processes, occasionally they are also used
for schedule-sets.

Example 2.5 Processes.

P = {{(a,?),(c,3)},{(a,S),(c,?)},{{a,11},((:,13)}}
Q = (sets:s€S8.{a,bc}Asa>21Asb=35a+05Asc23b+1
1 8) .
Both P and Q are processes; bP =2 and b@ =1. @ is the process of

the square element in Example 1.1.
O

As a general concept we introduce the alphabet of . For any ‘ X 7 it is denoted
by aX and it is the set of actions X is involved in. For example aa = {a},
aA = A, and the alphabet of a process is the domain of its schedules.

We define restriction to actions as well as restriction in the time-domain.

Projection is just a domain-restriction of schedules and processes, it can be used
to abstract from internal actions.

14 Chapter 2: The Model

Definition 2.8 Projection: |, \.

For schedule s and alphabet A, the projection of s on A, sl A4, is the
domain restriction of s to A: a(s[A)=asN A and (s|A).a=sa.

Hiding is the complement of projection: s\ A = s [(as\ 4).
For process P and alphabet A, the process P [A is defined by:
PtA = (sets:seP:sl4d)
The convention for hiding is also used for projection of processes, and en-

abling structures.
0

Observe that alphabet restriction of a schedule (process) yields a schedule {pro-
cess) and that (for X a schedule or a process) b(X [A) 2 bX .

In the time-domain we define a kind of prefixing. s until M, denoted by
8| M, isin a way the prefix of 3 until M : actions that are not scheduled by
s until moment M are scheduled on oo by s | M, and scheduling on oo has
been introduced as a mathematical trick to model ‘not scheduling’.

Definition 2.7 Until: |.
M until N, denoted by M | N, is defined by:
M|N = if M<N - M
Il M>2N - »
fi

For schedules we define s | M as the schedule over as that satisfies
(3l M).a=s.a| M (for a € as). For processes we define

PIM = (sets:seP:s|M)
0

The choice of the alternatives M < N and M 2 N (rather than M < N and
M > N), in the definition of |, is not immaterial: Propositions 2.9.2 (first
line), 2.10.2, 2.16, and 2.24, depend critically on this choice.

Example 2.8
For process Q in Example 2.5, Q@ | {a,¢} | 2 is equal to

(sets:as={a,c} A(1€3a<2Vsa=0)Asc=00:8)
0

We mention the following (evident) properties of projection and prefixing:
Proposition 2.9 (without proof)

1 s{@ = eg , PID = {ea}
And for X a schedule or a process:

XlaX = X
X}AlB = XNAnB)
XIAIM = X|MLA

2.1 Preliminaries 15

2 M|M = o, slbs = ¢, P|bP = {¢}
and for X a moment in time, or a schedule, or a process:
X | oo = X
X|M|N X | (M min N)

Schedules over the same alphabet can be compared by using the partial order
€ that is defined for functions. s €t states that s schedules all actions at
least as early as ¢. Projection and prefixing are monotonic with respect to this
relation.

Proposition 2.10 (without proof)

1 {monotonicity of | and |)
s<t = sJAKtIA , st = s| MLt M

2 (generalization of 1 for |)
sIM<St|M & (YN N<M:s|N<t|N)

3 M>(bsminbi)As|M<Lt|M = bsg<bt
g

We introduce parallel composition of processes as a way to model mechanisms
that synchronize via shared actions. Two mechanisms share an action when this
action is a member of the alphabet of both.

In order to improve readability, we phrase most definitions, propositions, and
proofs concerning parallel composition in terms of || as a binary operator. They
can all be generalized to quantified expressions over || in a straightforward way.
This includes a generalization to parallel composition of an infinite number of
objects.

Definition 2.11 Parallel composition of processes: || .
For processes P and Q we define their parallel composition P || Q@ by:

PllQ = (sets:seS(aPuaQ)AslaPeP AsfaQeQ:s)

P and Q are composable if P || Q is a process.
O

The parallel composition of two processes is a schedule-set. For processes P
and ¢ we have

b(P || @) > bP min bQ
(the composite cannot begin before one of the participants is ready to begin).
We infer that processes P and @ are composable if (and only if} P || Q # @.

16 Chapter 2: The Model

Parailel composition is generalized to an infinite number of processes in a straight-
forward way. However, when these processes are pairwise composable, this does
not guarantee that they are composable as a set: the composite may be empty,
or its base may be —o0. An example of the latter phenomenon is the parallel
composition of the processes { {(a;,~i)}} for i 2 0.

In the sequel when giving a parallel composition, composability is implicitly
assumed.

The unit element of parallel composition of processes is process {eg }: for any
process P, {eg} || P=P. If it were allowed as a process, & would be the
zero element: @ || P = @ for any process P.

Example 2.12 Parallel composition of processes.
Let P and @ be as in Example 2.5. Their parallel composition is given by:
Ple = {{(a5),(b55),(c,7)},{(a,11),(5,11.5),(c,13)} }
W)

Proposition 2.13 Parallel composition (without proof).

1 (PlQtA = PlA||QlA for AD(aPnaQ)
PlAIM C PIM||QIM

2 Pl@ = PngQ,if aP=aQ.

0

The C in the comparison of prefixes, in the previous proposition, should intu-

itively be an equality. The following is a counter example:

Example 2.14
Define processes P and @ by:
P {{(a,1),(6,3)},{(a,2),(b,3) } }
Q {{(a,1),(5,3)}, {(a,2) (5,4)}}
and observe that

Plels
Pl3llels

0o

o

{{(a,1),(b,00) } }
{{(a,1),(b,0) },{(a,2), (b %) }}

However, when composing enabling structures in parallel, the process of the
resulting enabling structure does satisfy our intuition.

2.2 Enabling structures

Enabling structures describe mechanisms in terms of cause and effect. Moreover,
they discriminate between external actions that can be shared with other mech-
anisms and internal actions that cannot. Initiated enabling structures are used

2.2 Enabling structures 17

to describe mechanisms relative to the moment of initiation, that is: the mo-
ment of initiation is the moment zero on the time-axis. To keep the mathematics
simple, we assume a (universal) positive delay between cause and effect. When
the environment of an enabling structure is greedy, each action is performed as
soon as it is enabled; the schedule that is performed in this situation is called
the history of the enabling structure. The process of an enabling structure is
the set of schedules it may be engaged in when placed in any environment.

The concept of similarity is used to define the delay between cause and effect.
The similarity of two objects (of the same type) is the maximal moment in time
up to which they cannot be distinguished.

Definition 2.18 Similarity: sim.

For X and Y bothin T, both schedules, or both processes (over the same
alphabet) we define:

sim(X,Y) = (lmWbM : X | M=Y | M: M)
furthermore for schedule s and process P over the same alphabet:

sim(s,P) = (lubM:s|MeP|M: M)
0

In fact, the least upper bounds in the previous definition are maxima:

Proposition 2.16 (without proof)
For X, Y, s,and P asin Definition 2.15
X |sim(X,Y) = Y |sim(X,Y)
s |sim(s,P) € P |sim(s,P)

Other properties of similarity are given by:
Proposition 2.17 (without proof)
1 sim(N,0) = if N=0 - o0 | N#0 —» NminO fi

2 For X and Y both schedules, or both processes, or a schedule and a process
over the same alphabet:

sim(X,Y) 2 bX min bY

3 For X and Y both schedules or both processes over the same alphabet with
bX # bY:

sim{X,Y) = bX min bY
4 sim{sp lub tp, sy lub t;) 2> sim(so,sy) min sim(g,)

5 sim(s,t) = {(glba: :sim(s.a,t.a))

18 Chapter 2: The Model

Let us first observe the enabling of one action. Assume we have a mechanism
that ‘enables action b half a time unit after performing ¢ (Example 1.1). Ap-
parently the enabling of b depends on a schedule. When function ¢ gives this
dependence we have ¢.s = sa+ % for the enabling of b. After scheduling of
the ‘cause’ a, there elapses a ‘causal’ delay of -% before the ‘effect’ b is enabled.
Since we assume a positive delay, the function ¢.s = s.a — % is obviously not

allowed. But what about the delay of the following functions?
$9.3 = s.a+1max s.b+ 1.5 min s.c+ 3
s = if sa<l — sa+l
I sa=1 - o
f sa>1 - 2

fi
¢2.8 = sa+sb+1
¢3.s = s.a+s.a?

A function ¢ has a delay between cause and effect of (at least) A, when for any
two schedules that are identical until moment M , their ¢-image is identical
until moment M + A. The maximal value of A that satisfies for ¢p and ¢
is 1; the maximal values for ¢, and ¢3 are —oc and zero respectively: ¢
and ¢3 are no dependence functions. }

Definition 2.18 Dependence function.

For functions ¢ € S.A — T, for any non-empty alphabet A, we define the
delay, d¢, of ¢ as follows:

d¢ = (glbs,t:s8,t€S8 AN s#t:sim(¢.s,¢.t)—sim(s,t))

A dependence function is such a function ¢ with d¢ > 0.
o

A mechanism is described by giving its external alphabet, its internal alpha-
bet, and the dependence functions for all actions. We choose to collect the
dependence relations in one function (fE).

Definition 2.18 Structure, eF, iE, fE.

A structure is a triple E = (A, A;, X) with A,N A; =@ and
X € S.A— 8. A, where A = A, U A;. The external alphabet, internal al-
phabet, and the (functional) behaviour of a structure E as above are defined

respectively: eE = A., IE = A;, fE = X .

By convention, the alphabet of E is aF = eEUiFE. Though structures
are not functions, in the sequel we will use them as such in two different
ways. The first is with the convention E.s.a = fE.s.a, the second with
E.a.s =fE.s.a (bothfor s € S.aF and a € aE). E.s is the function that

gives the enabling of all actions given a schedule s, E.a gives the enabling
of one action — a — only, as a function of the schedule.

2.2 Enabling structures ‘ 19

Example 2.20 The square element revisited.

The dependence functions for a, b, and ¢ for the square element of Exam-
ple 1.1 are given by:

Pa8 = 1 P8 = sa+05 ¢o.8 = sbh+1

Structure E, with external alphabet {a,c}, internal alphabet {b}, and
functional behaviour as given below, can be used to describe the square ele-
ment.

Esa = 1 Esb = sa+405 Esc = sb+41

In the definition of this functional behaviour, s is an arbitrary schedule
over {a,b,c}. E.s gives the moments at which actions are enabled, pro-
vided that the schedule is s. In Example 1.1 we already observed that
not all schedules s can be performed by the square element: since internal
actions happen as soon as they are enabled, and external actions may be de-
layed by the environment, only those schedules s that satisfy s.b = F.s.b,
s.a 2 E.s.a,and s.c 2 E.s.c, can be performed. The process of the square
element is the set of schedules that satisfy these restrictions (see Proposi-
tion 2.33). In the table below, we give three schedules, s, that are member
of this process, and three schedules that are not. Which of the members
of the process is actually performed depends on the moments at which the
environment enables ¢ and c.

8 E.s Member of
.a b .¢ .a b .c Process
1 1.5 2.5 1 1.5 2.5
2 2.5 4 1 2.5 3.5 Yes
00 00 o0 1 00 o0
o | o5 | 2 1 |05 | 15
1 1 4 1 | 15| 2 No ®
1 2 o 1 1.5 | 3

Table Process of the square element.

% The underlined values are in conflict.
]

We do not consider all structures to be valid descriptions of mechanisms. As
for dependence functions, we assume a positive delay between cause and effect
(see also Proposition 2.22). Furthermore, we still assume that the activity of
a mechanism has a beginning (other than —o0). The actual way in which we

20 Chapter 2: The Model

define this beginning (bE) is justified by Proposition 2.34.1 that states the
equality of the base of an enabling structure and the base of its process.

Definition 2.21 Enabling structure, bE, dE.
The base and delay of a structure E are given by:

bE b(E.£)

dE (glbs,t:s,teS.af A s#t:sim(fE.s,fE.t) — sim(s,t))

In case aF = @, its delay is- o0 . An enabling structure is a structure FE
with bE > —o0 and dE > 0; a closed enabling structure is an enabling
structure with an empty external alphabet. An enabling function, on the
contrary, is an enabling structure with an empty internal alphabet. An
initiated enabling structure (function), is an enabling structure (function)
E with bE > 0.

The set of enabling structures over (Ae, Ai) is denoted by £S(A., A;), the
get of all enabling structures is denoted by £5 . The set of enabling functions
over A is denoted by £F.A, the set of all enabling functions is denoted by
EF.

now

0

In the sequel E, F, and G range over enabling structures and e through h
over enabling functions. £ is used for sets of enabling structures, or enabling
functions.

Proposition 2.22 (without proof)
For a structure E:
bE = (glba: : Eae) and dE = (glba: :d(E.a)) .

So for an enabling structure E, the functions E.z are dependence functions

that satisfy d(E.e) 2 dE.
]

The definition of similarity is extended to enabling structures.

Definition 2.23 Similarity of enabling structures.
For E and F enabling structures over the same alphabets we define:
sim(E,F) = (lubM:(Vs: :Es|M=Fs|M): M)
g ,

As for the similarity of other objects (see Definition 2.15), the least upper bound
turns out to be a maximum (compare to Proposition 2.16):

Proposition 2.24 (without proof)
For E and F asin Definition 2.23, and for s a schedule over their alphabet:

E.s|sim(E,F) = F.s|sim(E,F)
0

2.2 Enabling structures 21

The most elementary enabling structures are those in which the enabling is
independent of what actually happens: the constant enabling structures.

Definition 2.25 Constant, Const.
A function z is constant on X if (and only if)
(Vs,t:8t€eX:zs=2xt)
A function is called constant if it is constant on its entire domain. The set

of constant enabling functions is denoted by Const.
O

A constant enabling function is fully described by a schedule s that gives the
moments at which actions are enabled. We introduce the following notation for
such enabling functions.

Definition 2.28 Enabling function of a schedule: n.

The enabling function of schedule s, ns, is the enabling function over as
defined by nst = s ,forall t over as.

For schedules over a singleton domain we use the shorthand n(a, M) rather
than n{{(e,M)}.
0

The history of an enabling structure is the schedule that coincides with its
enabling, it is the schedule performed by a mechanism that is not delayed by its
environment. For example, the history of ns is s. The history of an enabling
structure is uniquely defined because the behaviour of an enabling structure is a
contraction on a complete metric space of schedules (see Appendix C). From a
more operational point of view, the history is uniquely defined since enabling of
actions does depend on the scheduling of actions in the past in a deterministic
way.

Definition 2.27 The history of an enabling structure: h.

For an enabling structure F , the history hE of E is defined as the unique
schedule s € S.aF that satisfies the ‘history equation’ s = E.s.
0

Proposition 2.28

1 For s€ SaF: bs2bE = b(Es)=bE
2 bhE = bE

3 hns = s

Proof of 1 and 2 (3 is evident).

22

1

Instead of 1 we prove, for s € S.aF:
bs > bhE = b(E.3)=bhE

Together with 2 this implies 1.

Let s € S.aF with bs 2 bhE, we derive:
true

& { Proposition 2.17.2, bs 2 bhE }
sim(hE,s) > bhE

= {definition of d (2.21)}
sim(EhE,E.s) > bhE4dE

& { definition of h (2.27) }
sim(hE,E.s) 2> bhE+dE

& {definition of sim (2.15) }
hE |(bhE+dE) = Es}(bhE+dE)

= { Proposition 2.10.3, dE >0 }
bhE = b(E.s)

Chapter 2: The Model

2 Use the previous result and bE = b(E.€) (see definition of b (2.21)).

0

Before we introduce processes of enabling structures, we define parallel composi-
tion and masking of enabling structures. Parallel composition is used to describe
concurrent mechanisms; masking is used to hide external actions from the envi-
ronment. Masking is particularly useful when enabling structures are composed,
and (shared) actions have to be hidden from the common environment.

When mechanisms are composed in parallel, shared actions are enabled in the
composition as soon as they are enabled by all mechanisms that share them. In

introduce a generalization of lub for schedules.

Definition 2.28 Lub .
For schedules s and ¢, schedule s Lub ¢ is the schedule over as U at that

is defined by:
(sLubt)a = if acas\at — sa

I eacasnat - s.a maxta

| acat\as — ta
fi

order to hide the case-analysis inthe definition of parallel composition, we first

2.2 Enabling structures 23

Definition 2.30 Parallel composition of enabling structures: || .

Two enabling structures F and F are composable if their internal alpha-
bets are mutually private. That is, if iENaF =@ and iFnaE =, For
composable E and F the parallel composition E || F' is the enabling struc-
ture in £S{eE UeF,iE UiF) defined by:

(E|| F)s = E.(s}aE)Lub F(slaF)

Observe that parallel composition of two {composable) enabling structures in-
deed yields an enabling structure and that

b(E || F) > bE min bF and d(E || F) > dE min dF.

Parallel composition of an infinite number of pairwise composable enabling struc-
tures (in a guantified expression) does not always yield an enabling structure:
the resulting structure may have a base —oo or a delay of 0; this will also
be treated as a case of non-composability. An example of both phenomena is
the parallel composition of enabling functions e; for i > 0 with ae; = {a;,b;}
and:

€.8.8; = —1i e.8b; = sa;+1/i (for i > 0).

In the sequel, when performing parallel composition, composability is implicitly
assumed.

Masking is very easy to define: it simply consists of moving actions from the
external alphabet of an enabling structure to its internal alphabet.

Definition 2.31 Masking: ».
EvA = (eEnA,iEU(eE\ A)IE)

a
The process PE of enabling structure E is the set of schedules it may engage
in when placed in a closed connection to an environment:

PE = (UF: :PHE|| F)un@)laFE)
Because a closed enabling structure cannot be delayed by its environment, this
can be rephrased into:

Definition 2.32 Process of an enabling structure: P .

PE = (setF: :h(E]| F)laFE)
O

Members of the process of an enabling structure are also called the (possible)
behaviours of this enabling structure.

The process of an enabling structure is non-empty because hE € PE . Due to
Proposition 2.34.1 the base of the process of an enabling structure is not —oc.
We conclude that the process of an enabling structure is {indeed) a process.

The following proposition reflects that the environment can delay the perfor-
mance of external actions only.

24 Chapter 2: The Model

Proposition 2.33
PE = (sets:as=aF A s2Es A sliE=EsliE:3)

Proof We prove this proposition by mutual inclusion.

C inclusion:
Let s € PE andlet F be composable with E suchthat s = h(E || F) [aE
(see definition of P (2.32)). We derive:

s=h(E | F)laE
& {definitions of h {2.27) and || (2.30)}

(Va:a€aE
i 8a = if agaF — Esa
| acaF — E.s.amax F(h(E || F)|aF).a
fi
)
=
s2Es A s\aF =Es\aF
=> {aFNniE=9}
sz2Es A s[iE= EsliE
2 inclusion:
Let as=aF and s 2 E.s and s [iF = (E.s) [iE, define F = n(slek).

From the definitions of h (2.27) and || (2.30) we infer that h(E || F) is the
unique schedule t satisfying (for all a € aF):

ta = if a€ceF — samax Eta
I e€iE — E.ta
fi

But s is also a solution of this equation. So s = h(E || F). From s = s [aF
and the definition of P (2.32) we infer s € PE.
0

Some other properties of processes of enabling structures are given by:
Proposition 2.34

1 bPE = DbE

2 (Pe)lM ¢ Pe

"3 Pns = (sett:t2s:t)

Proof of 1 and 2 (3 is evident).

1 bPE < bF f{ollows from Proposition 2.28.2 and hE € PE.
Remains to prove the > part. Let s € PE; we derive:

2.2 Enabling structures 25

true
=> {dE>0}
sim(E.s, E.c) > sim(s,¢)

® sim(E.s, E.c) > bs

= {Proposition 2.17.3}
b(E.s)=b(Ee) v b(E.s) min b{E.e) > bs

& { s € PE and Proposition 2.33 give bs > b(E.s) }
b(E.s) = b(E.¢)

= { previous hint and definition of b (2.21) }
bs > bE

2 We derive:

s € Pe

& { Proposition 2.33 }
sz e.s

= { Proposition 2.10.1}
sl M 2 es| M

& {sim{s,s | M)2 M, de>0}
s|M 2 es|M)| M

= { definition of | (2.7) }
sIM 2 e(slM)

¢ {Proposition 2.33}

s|MePe
O

The relation between parallel composition of enabling structures and parallel
composition of processes is given in the following proposition:

Proposition 2.35
For composable enabling structures £ and F: P(E || F) = PE | PF

Proof

Let E and F asin the proposition, and let s € S(aF UaF). We derive:
seP(E| F)

= { Proposition 2.33 }
s3(E | F)s A sH(E| F)=(E | F)sli(E || F)

= { definition of || (2.30)}
stak z E{slaE)laF A s[iE=E(slaE}[iE A
staF 2 F(slaF)taF A sliF = F{(slaF)[iF

26 | Chapter 2: The Model

& {Proposition 2.33}
staEePE A slaFePF
& {definition of || (2.11)}

se (PE || PF)
u] .

Unlike parallel composition, we have no direct relation between masking and an
operation on processes. We mention the following (evident) properties:

Proposition 2.36 (without proof)

P(EvA) C PE P(Eu@) = {hE}
]

The following example shows that when composing mechanisms, it is important
that their behaviours fit.

Example 2.37 Deadlock.

In this example we compose the disposable square element of Example 2.20,
with a disposable one-place buffer in a very inconvenient way.

The behaviour of the square element is given by enabling structure F in
Example 2.20. The history of E is {(a,1),(b,1.5),(¢,2.5)}, and its process
is process @ of Example 2.5. There does not exist an enabling structure
that has process P of the same example.)
Consider the following program for a disposable one-place buffer:

program buffer {input in: integer, output out: integer):

var z: integer

begin

inlz; outly

end.
Name the input-action of this buffer ¢, and the output-action a. Under the
same assumptions as in Example 1.1, enabling function e over {a,c} can
be used to describe the real-time behaviour of this program.

es.c = 1 esad = s.c+1

The process and the history of this buffer are given by:
Pe = (sets:as={a,c}Asc21Asa2sc+l:8)
he = {(e1),(e,2)}

We compose the buffer and the square element under hiding of both commu-
nications to the common environment: in the composition action a symbol-
izes the output of a value from the buffer to the square element, and action
¢ symbolizes the output of a value from the square element to the buffer.
The composite is given by enabling structure (e || E)u @ .

2.3 Renaming and scaling 27

!

((e]| EYnD).s.a sc+1 max 1

((e]| EYn@).3.b s.a+ 0.5

((e]| EYnD).s.c = sb+1max1
It is left as an exercise for the reader to verify that P((e || E)u @)= {c}:
though both the square element and the buffer are willing to perform actions,

the composite is not capable of doing anything. In [13] this is called lock, in
[27] deadlock.

0

2.3 Renaming and scaling

The actions that are used in the description of mechanisms are just arbitrary
names; when mechanisms are composed in parallel, renaming may be necessary
to avoid name-clashes or to enforce name-clashes (communications). Where
renaming is a transformation in the ‘action domain’, scaling is a linear trans-
formation in the time domain. Scaling can be applied for two reasons. The first
is to rewrite mechanisms into descriptions in an other time unit; for example
-seconds instead of seconds. The other reason is that it allows quantitative
comparison of mechanisms such as the statement ‘this mechanism is twice as
fast as that’.

In general, when composing predefined mechanisms the names of actions have
to be adjusted in order to get the proper connections. Consider for example
the square element and the buffer in Example 2.37. In order to avoid that the
output of the buffer is fed back into the square element it suffices to replace all
occurrences of a in the definition of e by d. A formal definition of renaming
is given by:

Definition 2.38 Renaming.
A renaming R of A in B is a bijectionin A — B.

Renaming is extended to alphabets, schedules, and processes in a straightfor-
ward way: e.g. for R € A — B and as C A, renaming R.s is the schedule
over R.as that satisfies: R.s.0 = R(s.a).

For arenaming R € A — B and an enabling structure E with aF C A, the
renaming R.E of E is the enabling structure in £S(R.eE,R.1E) defined
by R.Es = R(E(Rls)).

a

In the sequel R is a renaming. We also denote renaming by a subscript that
indicates the renaming of individual actions. All actions in the domain that are
not mentioned in the subscript are left unchanged: for example a,..; = b and
ca—b = ¢ for ¢ # a. This notation leaves the domain of the renaming implicit.

By the way, renaming of enabling structures is what one would expect from
renaming: P(R.E) = R.PE.

28 | Chapter 2: The Model

Example 2.39 Cascade of square element and buffer.

The square element and the one-place buffer of Example 2.37 can be com-
posed by connecting the output of the square element to the input of the
buffer. This connection can be described by renaming the output of the
buffer from a into d.

The behaviour of the connection is described by F = (E || eag)u {a,d}.
It is left as an exercise to the reader to verify that

Fsa = 1 Fsb = sa+05
Fsec = sb+1 max1 Fsd = sce+1

We introduce scaling as a linear transformation of the time-domain. For the
behaviours in the previous example it is very simple to apply a scaling with, say,
a factor 2; such a scaling just consists of multiplying all delays with a factor 2.
For e this gives (20 e)s.a = 2 and (20 e).s.b = s.a+ 2.

The formal definition of renaming seems not to contribute to the understanding
of renaming (in practice, renaming simply consists of replacing occurrences of
actions by occurrences of other actions). With scaling things are more compli-
cated. We invite the reader to verify the following ‘counter intuitive’ example
of scaling without consulting the formal definition of scaling.

Example 2.40 ‘Reverse scaling’.
Let e be the enabling function over {a,b}, defined by:
esa = 1 esh = 2xs.a’+1
Scaling of e with a factor 2 gives the following behaviour:
(20e)sa = 2 (20e)sd = sa®+2
This seems odd: slowing down of e by a factor 2, gives an enabling function
with smaller delays for b. Observe though, that e is ‘growing old’ in the
sense that the later a happens, the longer the delay until b is enabled. Since
2 ©® e is half as fast as e, it does grow old at half speed.
u]
Definition 2.41 Scaling.

A scale p is a linear function in T — T. It is given by its magnification
A: 0 < A< oo and its translation p: —o0o < p < oo as follows

pM = AxM + '

A scale p is called a speeding up from M when it has magnification at

most 1 and p.M < M ; it is called a slowing down from M when it has
magnification at least 1 and p. M 2 M.

Scaling is extended to scales, schedules, and processes by

poM = p(oM)
p.sa = p(sa)
p.P =

(sets:seP:ps)

2.4 Generic actions and choice-free commands 29

For scale p and enabling structure E, the scaling p.E of E is the enabling
structure in £S(eE,iE) defined by p.E.s = p(E(p~1.8)).

For z a schedule, a process, or an enabling structure, a scale is called a
speeding up (slowing down) of z if (and only if) it is a speeding up (slowing
down) from its base bz .

The set of scales is denoted by SC. The set of slowing downs of (from) z
is denoted by SD.z, and its set of speeding ups by SU.z.

We also denote scaling with the operators © and & for magnification and
translation respectively: eg. A® s@ u instead of p.s for scale p with
magnification A and translation p.

]

In the sequel p and o range over scales.

Similar to renaming, scaling of enabling structures is what one would expect
from scaling: P(p.E) = p.PE .

The following proposition states that speeding up a speeding up gives a speeding
up, and that slowing down a slowing down gives a slowing down.

Proposition 2.42 (without proof)
pESUz Ao eSU(pz) = (po)eSUz

peESDz A aeSD(pz) = (po)eSDx
0

2.4 Generic actions and choice-free commands

The programming notation we use is partly based on choice-free commands
(similar to the restricted commands in [27]). The primitive operations are cate-
nation (;), parallel composition (,), and repetition { *). For example, the
formula (a ; b)* describes a mechanism that alternately performs e actions
and & actions; e and b may for example be names of channels along which the
mechanism communicates with its environment. Since in the enabling model
actions may happen at most once, we have to describe such behaviours in terms
of occurrences of the generic actions that occur in the choice-free commands. In
the sequel we frequently use enabling structures over (occurrences of) generic
actions. We introduce the following

Convention 2.43 Enabling structures over generic actions.
o The set of occurrences of a generic action a is (seti:7120:4q;).
o An alphabet must contain all occurrences of a generic action or none.

e An enabling structure must respect the order of occurrences of the same
generic action. That is, for s € PE: s.aiy1 > 8.0 of 8.0i41 = 00.

30 Chapter 2: The Model

e The notation of alphabets is abbreviated by just mentioning the generic
actions. For example, the notation {a,b} is used instead of
(seti:i20:aq;)U(seti:i20:5;).

]

For the sake of completeness, we mention the ‘independence condition”:
a;=b; & a=bAi=j
In choice-free commands, S ; T stands for S followed by T, §,T for §

parallel T, §* for an infinite repetition of S, and §™ for a repetition of n
times S.

Definition 2.44 Choice-free command.
e ¢ is a choice-free command.
s a is a choice-free command.

¢ For S achoice-free command that has no infinite repetition, and T a choice-
free command: § ; T is a choice-free command.

e For § and T choice-free commands that share no actions: §,T is a choice-
free command.

o For S a choice-free command that has no infinite repetition: S* and S
are choice-free commands, for any natural n.
o

We assign the highest priority to the unary operators * and *, and the lowest
priority to the semi-colon.

In the enabling function of a choice-free command we assume a unit delay of
1 between consecutive causally dependent actions, and we assume the first ac-
tions to be enabled at moment 1 on the time axis. This corresponds to the
description of devices relative to the moment of initiation, where actions model
the completion of events that have a duration of 1 time unit. Qccasionally we
assume deviating delays, instead of one time unit. Furthermore we sometimes
use 7 to denote an internal action. We do not give a formal definition of the
enabling function n S of a choice-free command §, but we explain it informally
by means of some examples. -

Example 2.45 Enabling functions of choice-free commands.

~® The enabling function of ¢ is the enabling function over the empty alphabet,
neg.

¢ nasa = if i=0 - 1] i>0 — oo #

e na*sa; = if i=0 — 1] i>0 — sa;_1+1 #

2.5 Enabling with fixed delays 31

e n(a;r)se = if i=0 > 1] i>0 - sa;1+2 fi

e Under the assumption that a actions take p time units, the following en-
abling function corresponds to a*:

esa; = if i=0 - p] i>0 - sai_1+p fi

e na".sa; = if i=0Ai<n — 1
[o<i<n — s.a;_1+1
I i>n — o0
fi

na; (a,b)).s.¢; = if i=0 — 1
l i=1 - sap+1
0 i>1 — s.a;-; max s.bj_s+1
fi

n(a; (a,b)*).sb; = n(e; (a,b)*).s.ai41

a

2.5 Enabling with fixed delays

The behaviours that are described by choice-free commands have fixed delays
between cause and effect. In this section we discuss enabling with fixed delays in
general. At the end of the section we introduce conservative enabling structures.
From the theory in Appendix B follows that these are exactly the enabling
structures with fixed delays.

The first generalization we discuss is the description of mechanisms by means of
dependence relations. Partial orders can be used to describe the ‘trace processes’
that are called cubic in [27], and {AND}-causal in [8]. Mazurkiewicz traces, [20],
are partial orders. We introduce a slightly more general description of enabling
functions by using dependence relations.

Definition 2.48 Dependence relations.

A binary relation R over an alphabet is the dependence relation of an en-
abling structure E over the same alphabet if

Esa = (lubb:bRa:8b+1) ;where lub@=1.
O

Example 2.47 Two dependence relations.

Rl b R2
\

O c Qi1 ——> 04
d —/

a

Figure Graphical representations of relations R; and R»

32 Chapter 2: The Model

1 Relation R; over {a,b,c,d} isgiven by a Rya, bR ¢, d Ry ¢, and false
otherwise. The corresponding enabling function is given by

esh = 1 esa = s.a+l
esd = 1 es.c = s$b+1maxsd+1

2 Relation R; is given by a;41 Raq; for i 2 0, and false otherwise. The
corresponding enabling function is given by e.s.e; = s.ai41+1 .
Both enabling functions use a rather baroque way to state that a actions

cannot happen.
0

- All behaviours that can be described with choice-free commands can also be de-
scribed with dependence relations. However, even for a relation over occurrences
of generic actions there does not always exist a choice-free command with the
same process. '

Example 2.48 Dependence relations versus choice-free commands.

R, R, ,
a; —» Q341 a; ——— Q41— 0342

by —— b b; > bit1 » bir2

Figure Graphical representations of relations B; and R,

1 Relation R; over {a,b} is given by:
a; Ry aipr biRybipr ai Ribiyr b Ryaia and false otherwise.

Ry describes the same process as (a,b)*.

2 Relation Ry over {a,b} is given by:
ai Raaipr b;Rabiyq1 a;Rabiys b; Rpaiyn and false otherwise.

There is no choice-free command that describes the same process as Ry .
0

Similar to choice-free commands, dependence relations can be generalized to
describe behaviours with arbitrary (but fixed) delays. These generalized de-
pendence relations correspond to the event-rule systems of [4]. We use this
generalization in graphical representations only. As an example we give the de-
pendencies for the square element in Figure 2.49. In this figure, L symbolizes
the moment zero on the time-axis.

1 0.5 1
1l ——— > » C

Figure 2.49 Dependencies in the square element (see Example 2.20).

2.5 Enabling with fixed delays 33

The behaviours that are described by (generalized) dependence relations are
AND-causal behaviours: actions are enabled as soon as all preconditions are
fulfilled. Take for example relation R; of Example 2.47; action ¢ is enabled 1
time unit after both b and d are performed. In the dual type of dependency
an action is enabled as soon as at least one precondition is fulfilled. Such an
OR-causal dependency cannot be expressed with choice-free commands nor with
dependence relations. The merge is a typical example of a specification {of data)
with OR-causal dependencies.

Example 2.50 Synchronized merge of two input streams.

Consider the following specification for a program with input channels a
and b, and output channel ¢:

{e(2),e(2i+ 1)} = {a{i),b(i)} forall i20,
where a(?) is the value that is received during communication a; (similar
for &) and ¢(j) is the value that is sent to the environment during commu-
nication c;.
A possible implementation of this specification is given by the following pro-
gram:

program Merge,{input e, outputd):

var va, vh ;

begin

(a?va ,b?vb ; clva ; clob)*

end.

where a?va denotes receipt of an input-value along channel a and storage of
this value in variable va, and clva denotes output of the value of va along
channel ¢ (etc.). The program has communication behaviour (a,b; ¢; ¢)*.

€241 C3i ————»=C2i41

/ " \
Figure Dependenciesin (a,b; ¢; ¢)*.

In fact, the previous program implements the following more restrictive spec-

ification:

e2) = a(d) A c(2i4+1) = bi).

However, according to the original specification, ¢{2i) is allowed to be the

first received of the values (¢} and b(i}). This OR-causal dependence is

reflected in the following enabling function.

esa; = if i=0 — 1 [i>0 — sc1+1 £

esb; = es.q

34 Chapter 2: The Model

e.8.02; = 8.a¢; min 8.b;
e.8.62i41 = 8.a; maX 8.b; max s.cy

In the graphical representation below, the arrows that give OR-causal de-
pendence are labeled with a v .

~

a;
\
czi-l/ ?‘ C2i ——» C2i41
\ . /

A

Figure Dependencies in e.

T

The following program notation for this version of the synchronized merge
somewhat obscures the fact that a and b happen independently. When the
_a communication happens first, the first alternative is chosen; when the &
communication happens first, the second alternative is chosen. When a and
b happen simultaneously, either alternative can be chosen.
program Merge,(input ¢, output b) :
var va,vb ;
begin
(alva — blvb,clva; clvb
I 6?7vb — alva,clvb; clva
)*

end.

In its most general form, an enabling structure with fixed delays may capture
AND-causal, as well as OR-causal dependencies with arbitrary delays. The
initial delay may even be negative.

Having fixed delays turns out to be equivalent with being conservative (Defini-
tion 2.53, Corollary 2.54). Before defining conservatism, we first consider the
related, but simpler, notion of being ascending.

Definition 2.51 Ascending, Asc.

For z an enabling structure or a dependence function, and P a set of
schedules over the same alphabet, z is ascending on P if (and only if)

(Vs,t:8tePAs<St:zsat)
An enabling structure, or dependence function, is called ascending if it is
ascending on its entire domain. The set of ascending enabling functions is

denoted by Asc. The set of enabling functions that are ascending on P is

denoted by Asc.P.
a

In the following example we show that not all enabling structures are ascending,
and that not all ascending enabling functions have fixed delays.

2.6 Alphabet restriction 35

Example 2.52

Enabling functions e and f are very similar. Since the delay between a
and b may be 1 as well as 2, dependent on the moment at which a is
performed, none of them has fixed delays. Enabling function e is not even
ascending because postponing a may result in a faster enabling of b.

esa = 1 fsa = 1

eshb = if sa<2 — sa+2 fsb = if sa<2 - sa+1
I sae>2 - sa+1] sa>2 — sa+2
fi fi

O

Definition 2.63 Conservative, Con.

For z an enabling structure or a dependence function, and P a set of
schedules over the same alphabet, z is conservative on P if (and only if)

(Vs,t,u:8,tEPAOSU<c0AsStOu:zs<atdp)
An enabling structure, or dependence function, is called conservative if it is
conservative on its entire domain. The set of conservative enabling functions

is denoted by Con.
a

From the definition we infer that being conservative implies being ascending
(take £ =10).
From Theorem B.7.5 we infer the following corollary.

Corollary 2.54

An enabling structure has fixed delays if (and only if) it is conservative.
o :

Apart from being a nice theoretical result, this corollary has also practical appli-
cations. The behaviours of programs without choice, for example those that are
described by choice-free commands, have fixed delays. Furthermore, it will turn
out in the next chapter that conservatism is useful property when comparing
performance.

2.6 Alphabet restriction

Using parallel composition and masking, we are capable of describing parallel
cooperation of mechanisms, including hiding of actions to the (common) en-
vironment. Every act of masking, however, adds new internal actions to the
description of a mechanism. Since we are, usually, not interested in the internal
behaviour of mechanisms, it is a good idea to have an operation that allows us
to abstract from internal actions. For this purpose we introduce the projection

36 Chapter 2: The Model

of enabling structures. We even tend to describe mechanisms by their exter-
nal behaviour only, by means of enabling functions. In this case, every act of
masking must immediately be followed by an act of projection. We introduce
restriction as the combination of both operations.

Removing internal actions from an enabling structure is possible because the
environment has no direct influence on their performance, the moments they
are performed depend on the moments other actions are performed only: for
ADeFE and s€ PE | A there exists a unique t € PE with t[A=3s. The
projection (E | A).s is defined in terms of this ¢ by (E[A).s = EtlA.

Let, for example, s be a schedule over the external alphabet of enabling struc-

-ture E of Example 2.37. The moment at which b is performed by E depends
on the moment at which e is performed only: if schedule s i8 performed, then
b is performed at moment s.a + 0.5. This knowledge can be used to compute
the moment at which ¢ is enabled, which is sb+1=8.a+41.5.

In order to obtain schedule ¢t we define the extrapolation of 3 with E .

Definition 2.55 Extrapolation of schedules: f.

For s and E such that as C aF, the extrapolation of s with E, sTE,
is defined as the unique schedule ¢ over aE that satisfies

ta = if acas — sa || agas — Eta fi
O

The argument for uniqueness of the extrapolation of a schedule is similar to the
argument for uniqueness of the history of an enabling structure.

The first item of the following proposition states that s E is indeed the in-
tended extrapolation. The second item gives an alternative characterization.
Proposition 2.56

For F and A such that eEC A:

1 sePEJA & s1E€PE
2 sePEIA & stE=h(n(sleE)| E)
Proof »

1 The < implication is evident. Remains to prove the = implication.

When s € PE | A then there exists a v € PE such that v} A =s. This
v satisfies trivially as a solution for ¢ in the definition of T (for a € as
holds v.a = s.a, and for a #as a is internal so v.a = E.v.a). Since this
equation has a unique solution, this yields v = s T E/, and thus s T EF € PE.

2 The <« follows from the previous item. Remains to prove the = implication.
h(n(sleFE) || E) is the unique schedule u over aE satisfying:

2.6 Alphabet restriction 37

g = if a€cef — Euamaxsa | a€iE — Eua fi

Proceed with the same v as in the previous item.
[}

Definition 2.57 Projection of enabling structures: | .

For F and A such that eE C A, the projection of £ on A, E| A, is the
enabling structure in £5(eE,1E N A) defined by:

(ElA).s = E(stE)lA
O

From Proposition 2.58 we conclude that b(E | A) > bE and d(E | A) > dF.
Consequently, any projection of an enabling structure is indeed an enabling
structure.

Proposition 2.58

For s, u,and ¢ over ANnakFE:
1 b(E(e1E)) = bE
2 sim{s{E,ulF) 2 sim(s,u)

Proof of 1 (2 is evident).
Recall that ac = Anak.
Let F = {AnaE,iE\ A, fE) (a kind of inverse masking). We derive:

b(e T E)

T b(e1F)

> {c€PFleF so el FePF, Proposition 2.34.1 }
bF

= { Proposition 2.28.2, hE = hF }
bE

From Proposition 2.28.1 we infer b(E.(¢1E)) = bE .

0

The projection of enabling structures is closely related to the projection of pro-
cesses:
Proposition 2.59
P(EIA) = PE}A (for ADeF)
Proof

Let E and A as above, and let s € S.(Anak), we derive:
sePETA

38 Chapter 2: The Model

& {Proposition 2.56.1} -
s1EePE
& { Proposition 2.33}
s1E 2 E(s1E) A s1ElIE = E(stE)[iE
& {definition of 1 (2.55)}
s2E(sTE)[(aENA) A sliE=E.(s]1E)I(G(En A)
& { definition of | (2.57)}
s2(ETA)s A sti(ETA)=(ElA).sli(E}A)
@ { Proposition 2.33 }
seP(ETA)
(m}

In the following example we give a formal derivation of the projection of enabling
striucture E from Example 2.37 on its external alphabet.
Example 2.80 External behaviour of the square element.
Let E be as in Example 2.20, For s € S.eF we derive:
(E leE).s
{ definition of | }
E(s1E)leE
{ definitions of 1 and E }
E{(a,s.a),(b,s.a +0.5),(c,s.¢)} | eE
{ definition of E }
{(a,1),(b,s.a + 0.5),(¢c,8.a + 05+ 1)} | eE

{(a,1),(c,s8.a + 1.5) }

1

]
Masking and projection are combined in restriction.

Definition 2.61 Restriction of enabling structures: | .

For enabling structure E and alphabet A, the restriction of E to A,
El A,isdefinedby ElA = (EnA)lA.
O

We immediately draw the following conclusion (see Definitions 2.31 and 2.57):

Proposition 2.62 (without proof)

For any enabling structure E and alphabet A, E || A, is the enabling
structure in £S8(eF N A,iE N A) given by:
(EJTA).s = E(sTE)IA

m}

2.6 Alphabet restriction 39

From Propositions 2.36 and 2.59 we infer

Proposition 2.63 (without proof)

P(E|4) C PEfA
O

The C in this property may, in general, not be replaced by an equality; this is
shown in the example below.

Example 2.64
Let enabling function e over {a,b} be defined by:
esa = 1
esb = if sa<2 - 4] saz22 - 3 fi

It is left as an exercise to the reader to verify that
Plelld) = (sets:sb24:3)
Pelb = (sets:sb23:s8)

In Proposition 2.65 we give some mutual relations between parallel composition,
masking, and restriction. The relations for parallel composition and masking are
evident. It turns out that restriction behaves similar to masking. Keep in mind
that the properties for || also hold for .

Proposition 2.85

1 EwAvB = En(ANB)
EvAllB = E|BuvA
EAIB = E[(ANnB)

2 (the history is a special case of masking)
h(EwA) = hE

h(E[A) = hEJA

3 For £ and F composable, and for A D (eEneF):
(E|| F)nA = EuwA| FirA
(E[|F)FA = EJTA|FITA

Proof

1 The first equality follows from the definition of masking (Definition 2.31); the
second equality follows from Proposition 2.62. The third equality is proven
below.

The alphabetsof Ew A} B and E || Bu A are the same. Remains to prove
equality of the behaviours.

Let s be a schedule over aENANB.

40

Chapter 2: The Model

First we derive s{(EJA)1E = s1E. -

let t=s{(E|A) and u=t] E. We derivefor acak:
(stT(EA)TE)a
u.a

= { definition of 1 (2.55)}
if acat — ta || a¢dat - Fua fi

= {idem }

if acat —» if acas — sa || agas —» (E|A)te £

| agat — F.ua
fi

= { Proposition 2.62}
if acat — if acas — sa || a¢as — Ewa £
af¢at — E.ua

-y

[
fi
if acas - sa || agas — FEua £
= { definition of T}
(81 E)a
Next we derive:
E | (AN B).s
{Proposition 2.62}
E(s1E)NAN B)
= { result of previous derivation }
E{(s1(E | A)1E)I A|B)
{ Proposition 2.62 }
(ETA)(sT(E]A)IB)
= {idem }
(EIt AT B).s

The first equality is evident; the second follows from Propositions 2.36, 2.59,
and the second formula in the previous item.
The first formula is evident; the second one is proven below.

Let E, F,and A be as in the proposition. The alphabetsof (E || F) [A
and EJA | F || A are the same.
Remains to prove equality of the behaviours.

Let s be a schedule over AN(aEUaF).
First we derive s{(E || F)laE = slaElFE.
Let t =s1(F || F); we derive for a € aE:

2.6 Alphabet restriction 41

t.a
= { definition of T {2.55) }
if acas - sa [| afas — (E|| F)ta fi
{definition of ||, (aF\as)naF =@}
if acas — sa [| agas — Ef(tlaF)a fi
Conclude (from the definition of 1) that
sT(E|| F)taE = sfaEtE

On account of symmetry the same conclusion is drawn for F.

il

Next we derive:
(B F) I A)s
= { Proposition 2.62 }
(E|F)sT(ENF)TA
= { definition of of || }
(E(sT(E| F)laE) Lub F(sT(E| F)taF))[A
= { see above }

(E(staE1E) Lub F(staF1F))lA

E(slaETE)|A Lub F(slaF1F)lA
= { Proposition 2.62}
(E | A).(slaE) Lub (F | A).(slaF)
(EA)(sta(E [A)) Lub (F | A).(sTa(F [4))
{ definition of || }
(EFA|FA)s

O

The projection of enabling structures does not always exactly yield the descrip-
tion one expects. In particular, the projection of an enabling structure may
contain dependencies that seem redundant. Apart from being an exercise in
computing projections, the following example serves as an illustration for this
phenomenon. The notion of equivalence, that is introduced in the next section,
provides a way to prune such redundant dependencies.

42 Chapter 2: The Model

Example 2.66

Consider the dependence relations that are given in Example 2.48. Let e
be the enabling function of (a,¢)* (Ry y—e), and let f be the enabling
function of (¢,8)* (By qe).

In this example we discuss the composition of e and { in which the commu-
nications along ¢ are hidden to the common environment. The behaviour
of this composition is given by g = (e || f) || {a,b}. By intuition one can
already tell that the behaviour of g is similar to R, (the difference between
the number of a’s and the number of b’s that is performed is at most 2).
Computation of this behaviour, however, gives a far more complicated result.

‘e || f is given by:

(e||)sa; = if i=0 - 1
J ¢>0 - s.0-1+1 max s.g_;+1
fi

(e]l by = if i=0 — 1
b i>0 - sb;1+1 max s.czq+1
fi

(el fse = if i=0 — 1
I i>0 — s.-1+1 max sy +1

max 8.¢i-1+1

fi
For s ascheduleover {a,b}, the extrapolation ¢ = s 7 (e || f) is given by:
ta; = 8.a
th; = s.b
te; = (maxj:0<j<i:saj+i-jmaxsbj+i—j)maxitl

Applying Proposition 2.62 results in
gsa; = (maxj:0<j<i:8a;+i—j) max
(maxj:0<j<i-1:8bj+i~j) max i+1
For b; the enabling is similar (interchange ¢ and b).
This is quite a baroque description of the behaviour of (e || f) [[{e,b}.
Careful rewriting gives the following formula:
gsa; = if i=0 — 1
] z_l — 8.4;_1+1 max 1
l i>2 — sai;+1 max sbi_z+2
max (maxj:0<j<i—1:8a;+i-j)
max {maxj:0<j<i—-2:8bj+i~j)
max ¢+1

2.7 Equivalence of enabling structures 43

The dependency s.a;—y + 1 in the enabling of a; imposes a delay of 1 time
unit between successive ¢ actions. Consequently, for any schedule in the pro-
cess of g the number of time units between a; and a;, for j < ¢, is at least
i — 7. This observation makes the first underlined quantification redundant.
For similar reasons the other underlined dependencies are redundant. Prun-
ing the redundant dependencies gives the following alternative description of
the behaviour of (e || f) |} {a,b}:
hsa; = if 1=0 — 1

[i=1 — saap+1

I i22 — sa;-1+1 max sbjq+2

fi
(similar for &).
Except for a ‘latency’ of 2 time units between a and b actions and vice
versa (instead of 1) this is the behaviour given by dependence relation R»
{of Example 2.48).

a

The composition that is given in this example is similar to the cascade of FIFO
buffers that is discussed in Chapter 5.

2.7 Equivalence of enabling structures

We consider enabling structures to be equivalent when they exhibit the same
behaviour, in any environment. Equivalence is not only important because it
allows to compare distinct mechanisms, it also allows to simplify descriptions of
mechanisms. In Example 2.66, for example, we computed an enabling function
with a lot of redundant dependencies, and mentioned the possibility of pruning
them (without changing the actual behaviour). In the second part of this section
we introduce a normal form with respect to equivalence of external behaviour.

The behaviour of an enabling structure is given by its process; the external
behaviour is given by its process projected on the external alphabet. We intro-
duce equivalence relations that state the equality of behaviour, and of external
behaviour, up to a moment in time.
Definition 2.67 Equivalence of enabling structures: ~ps and =y .
For M € T, we define equivalence relations ~» and =~y by:
ErnyF © eE=zeFAIE=IFAPE|M=PF|M
Ex=yF & PEleE|M=PFleF | M
~ and = are abbreviations for ~,, and =, respectively.
O

The following relations between these equivalences are evident.

44 Chapter 2: The Model

Proposition 2.68 (without proof)
Erny FF =» ExyF e~yf & empyf
and for M 2 N:
ENMF = E~ygF Exy F = Exy F
] N

Enabling structures do not have to be identical to be ~ equivalent. Take for
example enabling structure £ in Example 2.20. Because for all schedules s
in its process 3.b = s.a + 0.5, it is rather evident that the term s.b+ 1 in the
enabling of ¢ may be replaced by s.a+1.5. A generalization of this result
is given in Corollary 2.71. This corollary is a consequence of the extension
property. The extension property allows us to reason about the process of an
enabling structure in terms of prefixes: the second part states when the prefix
of a schedule is a member of the prefix of the process, it is a generalization of
Proposition 2.33.

Proposition 2.69 Extension property.

1 Let s € S.aF-and M such that:
8|M 2 Es|MASHE|M=FEsliE|M
Define t over alphabet aF as the unique solution of
ta = if sa<M — sall sa2M — Mmax Eta fi
Then ¢ satisfies t | M = s | M and ¢t € PE. Furthermore t satisfies:

tal(M+dE) = if sa<M — sa
l sa>M — M max E.sal(M+dE)
fi

2 PE|M = (sets:s|M2Es|MASHE|M=Es[iE|M
s M)

Proof

1 Let s, £ and M asin the proposition.
In order to show uniqueness and existence of t we define e over aF by:

eve = if sa<M — sa
I sez2M — M max Eu.a
fi

e is an enabling function with be 2 bE and de 2 dE. Furthermore, ¢ is
the unique fixed point, he, of the history equation, e.u = .

t| M=s}| M is evident.
Furthermore we derive:

t.a
2 {s|M2Es|M}

2.7 Equivalence of enabling structures 45

if sa<M — Esa] sa2>M — M max E.ta fi
> ({Es\M=Et|M}
Ela
and for a € iE:
t.a
= {sliE|M = EsliE| M}
if Esa<M — Esa || Esa>2M — Mmax Eta fi
= {Es|M=Et|M}
Eta
From Proposition 2.33 we conclude ¢t € PE.
The formula for t | (M + dE) is evident because s | M =t | M.

2 The 2 inclusion is a direct result of 1. Remains to prove the C part.
Let se PE| M, let te PE with t | M = s | M, we derive:
te PE
& { Proposition 2.33 }
tz2Et A t}iE = Et]iE
= {Proposition 2.10.1}
tIMZ2Et | M A tliE|M=FEt}iE| M
& {dE>0,s|M=t| M}
s|M2Es|M A sIE|M=EsliE|M
8]

In Corollary 2.71 we use the following relations that compare the behaviours of
enabling structures over a set of schedules. Relation <p is a generalization of
relation < for functions.

Definition 2.70 <p and =p.

For alphabets A and B such that AN B =@, and for P a set of schedules
over AU B, we define relation <p on £8(4, B) by:

E<pF & (Vs:s€eP:EsgFs)

=p is defined as €p A 2p. For P =S4 U B) we write < instead of
<p , the corresponding =p is exactly the equality.
)

Corollary 2.71
1 For E and F over the same alphabets: E~F & FE=pgF

2 For e and f over the same alphabet: Pe D Pf & e<penpr !
i

46 Chapter 2: The Model

This corollary follows from the extension property, via the following proposition.
Proposition 2.72 Generalization of Corollary 2.71.

1 For E and F over the same alphabets:
E~yF & (Vs:3€PE:Es|M=Fs|M)

2 PelMDODPI|M & (Vs:se(PenPf):es| MKfs| M)
Proof

1 Let F and F be enabling structures over the same alphabets.

1 sub = implication.
It suffices to prove:
PE|N=PF|N = (Vs:s|NePE|N:Es|N<Fs|N)
" Assume the left-hand side, andlet s [N e PE| N and b€ as.

If E.s.b> N, the right-hand side is evident. Assume E.s.b < N and let
M = E.s.b, Observe that s and M satisfy in the premise in Proposi-
tion 2.69.1. Let ¢ be the ‘unique schedule’ as given in Proposition 2.69.1,
we derive:

te PE

=> { assumption }
ti{NePF|N

= { Proposition 2.69.2}
Fib|N<tb|N

& {tb=M< N}
Ftbs M

& {sIM=t|M}
Fsbs M

& {M=Esb}
Fsbg E.sb

1 sub <« implication. We give a proof by induction.
base For M < bE min bF the left-hand side holds trivially.
step Let M < oo, assume the < implication holds for M .
Let A: 0< A £ (dE min dF), we prove the < implication for M + A.
Assume the right-hand side for M + A ; first observe:
(Vs:3€PE:Es|(M+A)=Fs|(M+A4))

=
(Vs:sePE:Es|M=Fs|M)
= { assumption for M }

2.7 Equivalence of enabling structures 47

PE|M=PF\M
Fors: s | MePE| M wederive Es|(M+A) = Fs|(M+A). From
Proposition 2.69.2 follows PE [(M + A)=PF | (M + A).
Let s as above, and let t € PE such that s | M =t | M, we derive:
Es|{M+A)
{s|M=t|Mand dE2>2 A}
Et|(M+A)
{ t € PE, right-hand side for M + A }
Fti{(M+A)
{s|M=t|Mand dF 2 A}
Fs | (M+A4A)

1l

2 Let e and f be enabling functions over the same alphabet, we derive:

(Vs:sePenPf:es|M<fs| M)

& { Proposition 2.13.2 }
(Vs:sePe||Pfies| M<fs| M)

& { Proposition 2.35}
(Vs:sePlell Nies|Mfs| M)

& { definition of || {2.30)}
(Vs:seP(e|f:(e] H)s|M=1fs| M)

& { previous item }
Ple||f)|M = Pf|M

& {asabove}

(PenPf)|M = Pf|M

® PelM D PIIM

0

Corollary 2.71 provides a way to prune redundant dependencies in enabling
structures. Example 2.73 (see below) illustrates that not all dependencies that
seem redundant may (formally) be pruned. In Section 6.1 we show that omne
should be careful, when formalizing liberal delay conditions that allow to prune
such dependencies. In the mean time, we will occasionally use them in order to
get more concise descriptions.

Example 2.73 Adaptive ordering.

We consider a program that communicates with the environment along chan-
nels ¢ and b. The first communications are performed independently; for
all other communications the same order is enforced as for the first commu-
nications:

48

]

Chapter 2: The Model

a,b;if ag before by — (a; b)*
I -(ap before bg) ~ (b; a)*
fi

Under the assumption of unit delays, enabling function e describes the be-
haviour of this program.
esa; = if i=0 — 1
I i>0 — if s.ag<sby — sbi-1+1
I sag2sby — sbi+1
fi

fi max s.eg+1
esd; = if i=0 — 1
I i>0 — if sap<sby — sa;+1
I sao>sby — sai1+1

fi
i max sby+1
Except for the underlined dependencies, this enabling function follows from
the program in a straightforward way. Without these redundant dependen-
cies, however; e would not be an enabling function. This phenomenon is
illustrated as follows: let f be the result of pruning the underlined depen-
dencies in e, let M < o, and let s and £ be defined by:

a3 = tay = 1
S84 = i.bo = M
sby = tag = M+ 1 and all other actions scheduled on oo.

The similarity of s and ¢ is M. Since f.8.0y = 2 and fit.by = M+ 2,
the similarity of f.s and f.t is at most two.

', however, uniquely describes the behaviour of the program: for all sched-
ules in Pe it is identical to e. f can be considered an enabling function
under ‘liberal delay conditions’. The advantage of f above e is the absence
of redundant, and rather arbitrary, dependencies.

Proposition 2.74 states that the equivalence relations behave as they should
behave with respect to the operations on enabling structures that are given in
the previous sections.

Proposition 2.74

1 Relations ~ps are congruences with respect to ||, u, |, and |.

2 Relations =~y are congruences with respect to v, |, and |.

0

The proof of this proposition is postponed until after Proposition 2.77,

2.7 Equivalence of enabling structures 49

The relation between =jps and parallel composition is more subtle: for compos-
able enabling structures E and F and enabling structures E’ and F’ such
that E =~ E' and F =~ F', the latter two may share internal actions, in which
case they are not composable. Observe though, that the names of internal ac-
tions do not affect the external behaviour of an enabling structure. Therefore,
a solution is to define parallel composition of equivalence classes.

Definition 2.75 Equivalence class modulo internal renaming: [E]g.
[Elg = (setR:Ris an internal renaming of E : R.E)

where an internal renaming of F is a renaming R on aF such that
R.a=a for acek.
0

Definition 2.768 Parallel composition of [|5 classes.
[E]R ” {F}R = [Re.E | 72l°‘~F]R
for internal renamings Ry of X such that Rg.F and Rp.F are compos-

able.
0

It is easily verified that this is a proper definition (that is: independent of which
internal renamings are chosen).

Proposition 2.74 can be extended with:

Proposition 2.74.2a

~pm is a congruence with respect to parallel composition of [] classes.
o

The proof of this proposition is postponed until after Proposition 2.77.

A consequence of ~ and =& being congruences with respect to masking, is the
following behaviour of the equivalences with respect to the history of enabling
structures.

Proposition 2.77 Equivalence and h {without proof).
E~ryF = hE|M=hF|M
Exy F = hE|MleE=hF|MleE

]

Proof of Proposition 2.74, including 2.74.2a .

1 sub parallel composition.
We derive for E; and F; composable:
Eo~y Ev A By~ By
& { Proposition 2.72.1}

50

1

Chapter 2: The Model

(Vs:s€PEy: Eys | M = Eys| M) A
(Vs:3€PFy: Fos| M = FLs| M)
= {(PlQraPcP}
(Vs:s€(PEy || PFo): Eo(staFg) | M = Es(sfaEy) | M A
X F(stak) | M = Fi(staFy) | M)
= { Definition 2.30, Proposition 2.35}
(Va:seP(Boll Fo):(Eo || Ro).s | M = (By || F).s L M)
= { Proposition 2.72.1}
E|FR ~v E| A
sub masking.

The proof is similar as for parallel composition, use P(Eu A) C PE (Propo-

sition 2.36).

sub projection.

Let E and F be enabling structures over the same alphabets, let A be an
alphabet such that eEC A.

From ~p being a congruenée for parallel composit.idn and masking, and
from Proposition 2.56.2, and Proposition 2.36 (second formula}, we conclude
the first step in the following derivation.

E~pyg F
& {see above},
E~yF AN (Vs:3€cPETA:s1E|M =3{F|M)
= {Propositions 2.72.1 and 2.56.1 }
(Vs:8SeEPEJA:E(STE)|M =F(sTF)| M)
= { definition of | (2.57)}
(Vs:3€ePEJA:(EJA)s|M = (FlA)s|M)
& { Proposition 2.72.1}
ElA~y FIA

sub restriction: use masking and projection.

We give the proof for parallel composition (2.74.2a) only; the other proofs
are similar. It suffices to give the proof for composable enabling structures
E; and F;.

We derive:
Eom~pyFg AN Ey=py Py
& { Definition 2.67, Proposition 2.59 }
EoleEg ~m FoleFo AN EyleE, ~y FileR

2.7 Equivalence of enabling structures: Normal form 51

& { ~m is a congruence for parallel composition }
(EoleEq || EyleE1) ~m (FoleFo || FileF)
& { Proposition 2.65.3 }
(Bo | E)le(Eo || 1) ~m (Fo || Fi)le(Fo || Fy)
& {Definition 2.67, Proposition 2.59 }

(Eo || E1) =M (Fo | F1)
o

Normal form

We introduce A as a normal form of enabling structures with respect to =~ .
The normal form of an enabling structure is an enabling function over its external
alphabet that captures the ‘unfolding’ of all dependencies between actions. For
example, the normal form of enabling structure £ of Example 2.20, is given
by N.E.s.a = 1 and N.E.s.c = s.a+ 1.5 max 2.5. The term max2.5 in the
enabling of ¢ is an unfolding of s.¢ + 1.5 with the enabling of «a.

Definition 2.78 Normal form: A .

The normal form N.e of enabling function e is the enabling function over
alphabet ae defined by AN.e.s = e.h(ns || e) . The normal form is ex-
tended to enabling structures in general by N.E = N(F |eE) , and to
sets of enabling structures by N.£ = (setE:E€£:N.E) .

The set of normal enabling functions, A, is defined by

N = (sete: :N.e).
O

Observe that the normal form of an enabling structure is an enabling function
and that b(A.e) = be and d(N.e) > de.

Proposition 2.79 A is a normal form w.r.t. ~:
1 ExN.E

2 ExF & NE=N.F

Proof

1 Observe that for s € Pe, A .e.s = e.s and conclude from Corollary 2.71.1
that P(N.e) = Pe. Observe furthermore (Proposition 2.59) that
EleEx E.

2 The <« part of the implication follows from the previous item of this propo-
sition. In order to prove the => implication it suffices to observe enabling
functions only {see Proposition 2.59).

For e =~ { we derive:

52 Chapter 2: The Mode!

Ne.s

= eh(ns || e)

= {e=xf,h(ns || e) € Pe, Corollary 2.71.1}
f.hins || e)

= {e={f, Proposition 2.77 }
f.h(ns || 1)

T Nfs

]

Alternative characterizations of N are given in the next proposition.
Proposition 2.80

1 eeN & (Vs::es=eh(ns|e))

2 e€N & (Vs: :es=e(slubes))

3 eeN = (Vs: :(slubes)ePe)

Proof -

1 Follows from the definition of A/, and the previous proposition.

2 sub = implication.
Assume e € N, due to the previous item, it suffices to establish that
h(ns ||) = s lub e.s; we derive:
h(ns || ¢)
{ definition of h (2.27) }
(ns || e).h(ns || e)
= { ae = ans, definition of || (2.30)}
ns.h(ns || e) lub e.h(ns || e)
{ definition of n (2.26), e€ N }
s lub e.s

2 sub < implication. A
Assume the right-hand side, again it suffices to establish that
h(ns || e) = s lub e.s.
Due to the choice of e we infer for schedule s:
slubes = slubefslube.s)
So s lub e.s is a solution of ¢ in the following equation:
t = shibedt
This equation, however, has as a unique solution h(ns || e).

2.7 Equivalence of enabling structures: Normal form 53

3 We derive for e € N':
e(s lub e.s)
= { previous item, e € V' }
e.s

= slub es

On account of Proposition 2.33 we conclude s lub e.s € Pe.
0

The interested reader is invited to verify that the normal form is preserved
under restriction (e € A' = e || A € N} but in general not under parallel com-
position. ‘

The presence of all unfoldings of dependencies in enabling functions that are
in normal form, may result in rather cumbersome appearances. Compare for
example enabling function g in Example 2.66, which is in normal form, with
the equivalent enabling function h (in the same example). In turns out, though,
that we have employment for the normal form: some properties of enabling func-
tions that depend on the process of enabling functions only, are easier proven
(or phrased) in terms of their normal form. The proof of the first half of Propo-
sition 2.82 (see below) is already an example of the usage of the normal form.

In the next chapter we compare the behaviours of enabling functions. In fact,
we compare the behaviours of equivalence classes over ~ . In the sequel such
classes are denoted with [] brackets:

Definition 2.81 Equivalence class, closure: [].
[e] = (setf:f~e:f)
The notation is extended to a closure operation on sets of enabling functions
as follows:
(€] = (Ue:e€e&:[e])
0

We remind the reader that for enabling functions both relations ~ and ~
denote the same equivalence.

For the three types of enabling functions we introduced thus far (Const, Asc,
and Con) the closures and an estimation of their normal forms are given by:

Proposition 2.82

1 [Const]

[Asc] = (sete:eisascendingon Pe:e)

{sete: eis constant on Pe : ¢e)

[Con] = (sete:eis conservative on Pe:e)

54 Chapter 2: The Model

2 N[Const] = Const
NJ[Asc] € Asc
N[Con] C Con

Proof

1 Let Const’, Asc', and Con’ be the sets at the right-hand sides. The
equalities are a direct consequence of the following observations, for £ is
Const, Asc,and Con respectively:

e & = [£&]
e £ C &
» Nné& ¢ ¢

‘The first observation follows from Corollary 2.71.1, the second one is evident.
Consequently it suffices to prove the last observation. This last observation
also implies the C inclusions in the second part of this proposition.
1 sub &= Const)
Let e € NN Const’,and let s bea schedule over ae. We derive:
e.s ,
{ Proposition 2.80.2}
e(s lub e.s) -
{ Proposition 2.80.3, e is constant on Pe }

I

e.s
Which implies e € Const.
1 sub £ = Asc

Let e € NN Asc’, we prove by induction that e € Asc.
Let s and t be schedules over ae such that s < t.
base e.s|b(et) < et|b(et)
step ‘
es|M < et| M
= {s<gt}
(slubes)| M £ (tlubet)| M
= {e€Nn Asc', Propositions 2.80.3, 2.34.2}
e((slubes) | M) < e((tlubet)| M)
= { definition of d (2.21) }
e(slub e.s) | (M +de) < et lub et) | (M + de)
= {e€ N, Proposition 2.80.2 }

2.7 Equivalence of enabling structures: Normal form 55

1

mi

es|(M+de) € et|(M+de)
(end of step)

sub £ = Con (this proof is more of the same)
Let e € (M N Con'), we prove by induction that e € Con.
Let s, t (over ae),and p: 0§ < oo suchthat s < tPp.

base es|bletdp) € {et dpu)lbletdp)
step
es|M < (etdp)|M
> {sIM<(tou) M)
s|Mlub(es) | M < (tdu)lM lub (et ®u)| M

© (slubes)| M < (tlubet) | (M —p)@u
{ e €e N n Con’, Propositions 2.80.3, 2.34.2 }
e((slubes) | M) € e{(tlubes) | (M —p)) du
= { definition of d (2.21) }
e(slubes)|(M+de) £ eltlubes)|(M+de—p)dpu
= { e €N, Proposition 2.80.2 }

es|l(M+de) € et|{(M+de—p)dyu

® es|(M+de) < (el ®pu)| (M +de)

(end of step)

The € inclusions follow from the ‘last observation’ in the previous item.
It is evident that all constant enabling functions are normal. Finally, the
inequalities for ascending and conservative enabling functions follow from
the existence of enabling function e (see below) that is a member of Asc
as well as Con, but that is not a member of N :

ae = {avb} es = {(aal)a(b9s~a+ 1)}
(the normal form of e enables b at 2 max s.a+1)

In the sequel we refer to [Const], [Asc], and [Con] as the class of constant,
ascending, and conservative enabling functions respectively. The behaviours
of these enabling functions are the same as the behaviours of the constant,
ascending, and conservative enabling functions; the behaviour of each enabling
function being equivalent to the behaviour of its normal form in particular.

In the next chapter we will encounter the three above-mentioned classes again: a
lot of proofs for comparison relations are based on their behaviours on | Const],
and both [Asc] and [Con] turn out to be the reflexive domain of important
comparison relations.

Chapter 3

Comparing Performance

The mechanisms we consider are designed to satisfy timing conditions on the
external actions, where satisfaction means being ‘fast enough’. Since we are
interested in external behaviour only, both timing conditions (specifications)
and mechanisms (implementations) are expressed with enabling functions, rather
than with enabling structures in general.

In Section 3.2 we figure out for what relation imp between enabling fnnctxons,
eimp{ expresses that ‘e is an implementation of f’, where the correctness
concern is being ‘fast enough’. In the search for a smta.ble relation we dxstmgulsh
two problems:

¢ what kind of relation do we aim at (Section 3.1), and
e what is being fast enough, or being at least as fast as (Section 3.2).

It turns out, in Section 3.3, that after imposing some restrictions we are left
with only one relation, <, that is convenient for our purposes. Major choices
that lead to this relation are the following:

¢ The relation has to imply being ‘at least as fast as’ only.

That is: eimpf = ‘e is at least as fast as I’ . An extreme, and use-
less, relation that satisfies this condition, is the relation that does not allow
any implementation of a specification: eimpf ¢ false. We strive for a
relation that allows as many implementations as possible.

o The relation must be transitive, and parallel composition as we]l as restnc—
tion must be monotonic with respect to it.

This condition supports compositional design of mechanisms (design by means
of ‘divide and conquer’}). Consider for example a specification e. The first
step in the derivation of an implementation may be to implement e with
two parallel components: (f || g) | A imp e. A second step may be to find
(realizable) implementations for both f and g . The only condition for these
implementations, ' and g’, is that {impf and g'impg. Monotonicity

56

57

of parallel composition and restriction, and transitivity of imp , guaran-
tee that the composition of ' and g’ is an implementation of the original
specification: (f' | g)[[A impe.

o The relation does not have to be reflexive for all enabling functions.

Reflexivity and monotonicity of || and || are conflicting demands. This is
due to the fact that there are enabling functions that have a ‘speed twisting
effect’, for example enabling function e that is used in Examples 3.12 and
3.16:

esa = 05

esh = if sa<l — 100
J saz21 — 3
fi

The usage of an implementation relation that is not reflexive on its entire
domain may be surprising, it is not new. In [5], for example, DI decomposi-
tion is an implementation relation that is reflexive for DI components only
(Theorem 3.2.1.3, page 59 of [5]).

o The relation should be robust. That is, when scaling up an allowed imple-
mentation, the result must also be an implementation:

for any speeding up p of ¢ eimpf = peimpf

Observe that we do not demand (for any speeding up p of e) p.eimpe.
This demand would imply reflexivity because the identity is a speeding up.

Given a specification, the question arises whether or not there exists a most lib-
eral implementation that satisfies this specification. More general even, given a
set of specifications the question arises whether or not there exists a most liberal
implementation that satisfies all specifications. The dual problem is that of most
severe specifications. In Section 3.4 we establish the existence of most liberal
implementations and most severe specifications {under rather weak conditions).

In Section 3.5 we introduce angelic and demonic response time as a first way
to describe the speed of mechanisms. We are, however, more interested in the
speed of a mechanism (implementation) with respect to a specification. There-
fore we use relation < to give the gquality of an implementation relative to a
specification. The idea is that the amount of scaling, p, that is necessary for
an enabling function e in order to satisfy p.e < f is a measure of the qual-
ity of implementation e relative to specification f. As a derived concept we
introduce relative response time.

In Section 3.6 we discuss the description of devices in which timing may vary
dependent on causes that are not captured in the enabling model; such as tem-
perature, voltage, and complexity of data. The description of such a device may
consist of a enabling structure in which all timing information is parameterized.
The major result in this section, is that when the timing of a device can be de-

58 Chapter 3: Comparing Performance

scribed with —relatively— fixed delays between cause and effect, the influence
of variation of these delays is no more than proportional.

We conclude this chapter, in Section 3.7, with a brief discussion of what (not) to
expect from the type of performance analysis that is introduced in this chapter.
It turns out that the way in which we compare behaviours is not useful for
specifications with ‘choice’. Furthermore it turns out that though we do not
compare delays between individual actions, there is a simple way to keep a
check on such delays.

3.1 How to compare

We introduce general implementation relations as the type of relation we use for
comparing enabling functions. In Section 3.2 we tailor these to relations that
compare speed.

Definition 3.1 General implementation relation. ; ,
A general implementation relation is a uniform, transitive relation on en-

abling functions such that || and || are monotonic with respect to it, and
such that only enabling functions over the same alphabet are comparable.

s A relation imp on enabling functions is uniform if it is presérved under =
equivalence, renaming, and scaling. That is: for egimpe; and L~ ¢, or
f;=R.,or f; = pe;, also Limpf .

s || is monotonic with respect to a relation imp if for enabling functions
e; and fp: (Vz: :eimpfy) = (| z: :e)imp(|z: :).

¢ | is monotonic with respect to imp if eimpf = e[[AimpfjA.
Application of general implementation relations can be extended to enabling
structures by hiding the internal symbols first:
EimpF & EleE imp FleF
a
In the sequel, imp is a general implementation relation.

Examples of general implementation relations are the relation that is identical
false, equivalence relation =, and the relation that-is identical true.

Enabling functions for which a general implementation relation is reflexive, are
considered to be ‘smooth’ with respect to this relation: they can be used to
implement themselves.

Definition 3.2 The reflexive domain of a relation: RD .

The reflexive domain of a binary relation R, denoted by RD. R, is defined
by: RD.R = (setz:zRz:z).
m}

3.1 How to compare 59

Definition 3.3 Smoothness-class.

A smoothness-class, or class for short, is a collection € of enabling functions,
such that there exists a general implementation relation imp for which
C=RD.imp .

A class C is called non-trivial if for some e €C, Pe# {e}.
0

Another characterization of (smoothness) classes is given by:

~ Proposition 3.4 (without proof)

A class is a uniform, compositional set of enabling functions.

s Set C of enabling functions is uniform when it is closed under = equiva-
lence, renaming, and scaling. That is: for e € C and f = e,or f = R.e,0r
f=pe,also f€C.

» Set C of enabling functions is compositional when it is closed under (possibly
infinite) parallel composition and restriction.
0

In the sequel, C ranges over classes.
The empty set, and the set of all enabling functions are classes. Furthermore
we have
Proposition 3.5 (without proof)
[Const] is a class, it is even the minimal non-trivial class:
(VC : C is non-trivial : [Const] C C)
m}

Is is easily verified that [Asc] and [Con] are also classes. In fact, this even
follows from Propositions 3.30 and 3.40 respectively.

In order to give the reader some feeling about general implementation relations
and classes, we mention the following properties.

Proposition 3.6 (without proof)

1 For general implementation relations imp, and imp, , the relation imp
as defined below is also a general implementation relation.
eimpf = eimpyf A eimp,f

The counterpart with v instead of A does in general not hold.

2 For classes Cp and Cp, CoN <y is also a class.

60 Chapter 3: Comparing Performance

3 For any general implementation relation impg , and class C, the relation
imp; as defined below is a general implementation relation.

eimp,f = if ecCAfeC — eimpyf
[egCcvrigC — false
fi
u) .

We conclude this section with two interesting ‘maximality’ propemes of [Asc]
(compare Proposition 3.7.2 with Proposition 2.63).

Proposition 3.7

1 [Asc] is the maximal class C that satisfies
(Ve,s:e€CAsePe:s2zhe)

2 [Asc] is the maximal class C that satisfies
-(Ve,A:e€C:Ple| A) = PelA)
[}

The following lemma is used in the proof of maximality of [Asb] in Proposi-
tion 3.7.1. ’

Lemma 3.8

For enabling structure E and schedule v over the same alphabet:
(Vs:8€PE:s2v) & (Vs:sePE:Es2v)

Proof
The <= implication is evident. Remains to prove the => part.
Assume the left-hand side. Let s€ PE, acaF andlet M = E.s.a.

From Proposition 2.33 we infer that s and M satisfy the premise in Propo-

sition 2.69.1, So there exists a ¢ in PE with E.s.a = t.a 2 v.a.
]

Proof of Proposition 3.7.

1 : [Asc] satisfies (Ve,s:e€[Asc]As€Pe:s>he).

The reader is invited that for e and f in [Asc], e € f = he < hf (this
is a special case of the first property that is proved in the proof of Theo-
rem 3.28).

Using this result, we derive for s € Pe:
e € [Asc]

=> { see above }
he < h{e || ns)

& {s€ePe}
he < s

3.1 How to compare 61

1 : [Asc] is maximal.
Assume C satisfiesin (Ve,s:e€C As€Pe:s2he).
Let e€C, s,t € Pe,and a € ae such that s < ¢: to prove e.s.a € ed.a.
When e.t.a = oo, this is evident.
Assume e.t.a < oo . Conclude that C is not trivial, hence [Const] C C.
Define ¢’ over alphabet ae by:
eub = if b#a — sb || b=a — eta fi
Because ¢’ € [Const], we may conclude ¢/ €C and (e || ¢) € C.
We derive:

eta
(e]| ')t
{(e]leyeC,teP(e]| e)sot2h(e]| e), Lemma3.8}
h(e || €').a

A\

e.s.a max e.l.a

which implies e.s.a € et.a.

2 : [Asc] satisfies (Ve,A:e€[Asc]:Ple|fA) = PelA).
Since P(e [A) C Pe | A, we only have to prove the D part.

Let e € [Asc], s € Pe,and A an alphabet. Let f € Asc such that e =~ f
(for example f = N.e).

By induction it is easily proven that s1 A 1f £ s . Furthermore, we derive:

(£ | A)(s 1 4)
{ Proposition 2.62 }
f(sfATf) 1A
< {f€ Asc, stA17<s}
fslA
< {sePf}
slA
So sfAe P(fLA)=Ple| A).

i

2 : [Asc] is maximal.

Let C such that C\[Asc]# @. Choose e, s,and a such that e € C and
s € Pe and he.a > s.a (see previous item).

Observe that sta€ Pela but sfagPle| a).

62 ~ Chapter 3: Comparing Performance

3.2 How'to compare speed

In the previous section we discussed what kind of relation we want to use to
compare enabling functions. Remains the other question, what is fast enough
or at least as fast as. We discuss three points of view:

e speed in a greedy environment,
e speed in any possible situation, and
o the effect on an ‘observing’ environment.

Each of these points of view can be justified as a criterion for comparing speed. In
general, such —competing— criteria may lead to distinct ‘types’ of comparison
relations. It turns out, however, that it is immaterial which of these criteria we
use: they all give rise to the same type of comparison relation.

Speed in a greedy environment

When a mechanism is composed with a greedy environment, all its actions are
performed as soon as they are enabled. This gives rise to relation LT, for
comparing enabling functions: :

Definition 3.9 L[, .
eChf & heghf
a

This relation, however, is no general implementation relation: it satisfies all
demands except for monotonicity of || .

Example 3.10 Cj and ||.

Consider the following enabling functions e and f over {a,b}:

esa = 1 fsa = 1
eshb = sa + 1 f.s.b 2

Observe that e Cp, f and n(a,2) Cy n(e,2),
but that - (e || n(a,2) Cp || n(a,2)).

a

Speed in any possible situation

One obtains a more sophisticated comparison relation by comparing the be-
haviour of two enabling functions for all situations in which both can be en-
gaged. With relation Cp we express that in any situation, the (intended)
implementation is at least as fast as the specification.

3.2 How to compare speed 63

Definition 3.11 LCp.

0

eCpf & ae=afl Ae<ppsf

From Corollary 2.71.2 we conclude that this coincides with process inclusion:
eCpf & PeDPf.

Alas, relation Cp is no general implementation relation: it satisfies all demands
except for monotonicity of |f.

Example 3.12 Speed Twisting by an internal trap: Cp & .

0

We compare two enabling functions over {a,b}:

esa = 05 fsa = 1
esdh = if sa<l — 100 f.sb = esb
[sez21l — 3
fi

Observe that e is indeed an enabling function: for any s and ¢ holds
sim(e.s,e.t) 2 3, and if sim(s,t) > 1 then sim(e.s,e.t) = oo (similar for
f). Observe furthermore that e Cp f, but that

e|tb ~ n(b,100) and f || b ~ n(b,3) ,s0 ~(e|tb Cp £ |}b).

This example also shows the relative merits of being at least as fast as at any
moment: by being fast for one particalar action, a mechanism can be ‘trapped’
because other actions suffer from (excessive} delays.

One may wonder, ‘Why bother about those ‘weird’ enabling functions?’ (like e
in the previous example) They only cause problems. Can we not just discuss
‘smooth’ enabling functions with process inclusion as a ——reflexive-— comparison
relation?’. The answer is, yes we could, but we have two critical observations to
this approach.

s Apart from the arbitrary choice of process inclusion, the question remains:

what is the {or a?) maximal class that can be given the predicate ‘smooth’?
This maximal class comes as a spin-off in the analysis of Section 3.2 (in the
non-robust case it is {Asc], in the robust case [Con}).

More importantly still, what when someone comes up with a mechanism
with a ‘weird’ external behaviour, for example enabling function e of Ex-
ample 3.127 Then the comparison relation cannot be used to verify whether
it may be plugged into some design, at some place where a behaviour is as-
sumed at least as fast as n{(a,0.5),(b,100)}, or perhaps n{(a,1),(b,3)}.
One may have some intuition about it, but a comparison relation that ex-
cludes e is useless in this case.

In fact, we use ‘weird’ enabling functions when analyzing distributed FIFO
buffers with bypassing (Section 5.5).

64 Chapter 3: Comparing Performance

The effect on an ‘observing’ environment

Finally we try an observational relation. We consider environments (G) that
are interested in scheduling their own actions as fast as possible.

Definition 3.18 <.

e<f & ae=af A(YG: : h(G || e)]aG < h(G || f)laG)
]

Other characterizations of < are given by:

Proposition 3.14 (without proof)
eXf & ae=af A(Vg: :hig|le)<h{g] f))
a & ae=af A(Vg:agDae:h(g|le)sh(g]))

In Section 2.1 of [9], relations between mechanisms are expressed in terms of
passing or failing tests. Relation < can also be expressed in such a way. For en-
abling functions over alphabet A we introduce tests T(s,g), with as = AU ag.
An enabling function e passes test T(s,g) if (and only if) h(e || g) < s. Re-
lation < can then be expressed as follows:

e~<f & ae=afA v
(Vs,g :as = aeUag A f passes T(s,g) : e passes T(s,g))

The good news is that relation < is an implementation relation, it has, how-
ever, one major drawback:

Proposition 3.15

e<f & e=xf
]

This is not surprising, since an observing environment may contain a ‘trap”

Example 3.16 Speed Twisting by a trap in the environment: < and | .

We compare two simple enabling functions, n(a,1) and n{a,0.5). Clearly
the second is a speeding up of the first, it seems reasonable to consider it as
an implementation of the first.

Environment e of Example 3.12, however, is trapped when a is enabled
before moment 1. The histories of the compositions are given by:

h(n(a,1) || €) {(a,1),(b,3)}
h(n(e,0.5) || €) {(a,0.5),(b,100) }
Conclude that - (n(a,0.5) X n{a,1)).

3.2 How to compare speed » 65

Proof of Proposition 3.15

0

The non-trivial part of this proposition is the = part of the equivalence.
We subsequently prove e X = PeDPfand e <f = PeCPf.
eXf = PeDPf

Assume e < f, we derive:

sePf

® h(f || ns) = s

= {e<Xf,ns XA mns}
h(e || ns) < s

@ hie || ns)=s
s € Pe

e<f = PeCPf

Let e and f be enabling functions over A.

Assume the negation of the right-hand side, we prove - (e <).

Let se Pe\Pf, A = de min df , and M = sim(s,Pf).

Observe that -~ (f.s| (M +A) € s | (M+A)) and let b€ A such that
s$b< M+ A and sb< fsb.

Now define enabling function g over AU {c}, for some ¢, cg 4, by:

gta = sa (a#c)

gte = if thg<sb — oo
1 th>sb — sbhb+A
fi

Observe that hg = sU {(c,o¢)} so hg | A € Pe and conclude
hig || e) = su{{e,c0)} .
Furthermore, h(g || f) | M A =3 | M.

Since f.s.b> s.b and s.b < M +df, we may conclude h(g || £).b > s.b,
which implies h(f || g)e=sb+ A.

We have to conclude ~(h(g || e) <h(g || f)), and thus ~(e < f).

Apparently, we cannot make every environment happy; we have to consider a
subset of ‘smooth’ environments only:

Definition 3.17 =<¢ .

]

For £ a subset of the enabling functions, the relation <g is defined by:
eXefl & ae=af A(Vg:ge&:hig|e)<h(g] 1))

66 Chapter 3: Comparing Performance

Relation =<¢ can be expressed using tests T(s,g) with g€ €.

Remain the questions: what (kind of) € to choose, and is the resulting relation
an implementation relation? The answers are: we suggest a smoothness-class,
and in general not,

All roads lead to Rome

Instead of trying to find an implementation relation that exactly captures some
-—intuitive— criterion for being at least as fast as, we concentrate on finding
implementation relations that imply being ‘at least as fast as’. Theorem 3.19
shows that it is immaterial which of the previously introduced criteria is chosen.

Definition 3.18 =¢.
For £ a set of enabling functions, the pre-order =>¢ is defined by:
(Ro=>¢ Ry) & (Ve,f:e,f €ENeRof :eRyf) .
for relations Re and R; on enabling functions. <¢ a,nd &g are used,
with the obvious meaning, and when & is the class of all enabling functions
it may be omitted as a subscript: e.g. = instead of =gr.
o :
Theorem 3.19
imp = s

imp = LCp
&

imp = Zzp imp

0

The proof of this theorem is postponed until after Definition 3.20.

Definition 3.20 Implementation relation, robustness:
An implementation relation, or IR for short, is a general implementation
relation imp that satisfies imp =LC, .

An IR imp is robustif eimpf = (Vp:peSU.e:peimpf).
(]
In the sequel imp ranges, by default, over implementation relations.
Observe that the condition for robustness is equivalent with
eimpf = (Vp:peSD.f:eimpp.f)
A reason for demanding robustness is that when —for example by some new
technique— an implementation is scaled up, it should still be fast enough. An-

other reason is that in general the designer has no exact knowledge of ‘real world’
delays: usually the order of magnitude is known only.

The remainder of this section is used to prove Theorem 3.19 and some additional
properties. For further use we mention the following

3.2 How to compare speed 67

Remark 3.21

In none of the proofs that lead to Theorem 3.19 we use transitivity of general

implementation relations, and of implementation relations in particular.
0

In the proof of Theorem 3.19 we use some knowledge about the behaviour of
implementation relations on [Const]. It turns out that in more proofs such
knowledge is valuable. Therefore we first analyze the behaviour of implementa-
tion relations on [Const]. It turns out that only six behaviours are possible, of
which four are robust.

Definition 3.22 R;
The relations RB; (1< i< 6} are defined by:

o e¢f[Const]Vv f¢[Const]Vae#al = -(eR;f)
o otherwise (e € [Const] A f € [Const] A ae = af):

eRif & ({false

eRyf & he=hf=c¢

eRsf & hi=c¢

eRsf & he<g hf

eRgf < he=hf

eRgf & (3A:helA=hf[A:hf\A=¢)

"]

The mutual relationships between relations R; are given in the following dia-
gram: ‘
R
= o3
R, = R =
v R DD R w R

Figure 3.23 The partial ordering of relations R; .
Theorem 3.24 Behaviour of IR’s over [Const].
1 For any IR imp thereisan i, 1< i< 6,suchthat imp < copgt) Bi -
2 For any robust IR imp this 7 satisfies 1 <1< 4.
)
In the proof of this theorem we use the following

Lemma 3.25

Let q be an action.
For M € T we define enabling function ep by ep = n{q, M).
Let furthermore £ be defined by £ = (set M : :epn).

For general implementation relations impgy and imp,; holds:

(impy ={Const] imp;)} ¢ (impg =¢ imp,)

68 Chapter 3: Comparing Performance

Proof

The = implication is trivial since [Const] D £. Remains to prove the «
part. '

Assume impg, =g imp, and let e and f be constant enabling functions
over the same alphabet, say A, choose s and ¢ over A such that e ~ ns
and f =~ nt.

We derive:
{ the hints with uniformity and monotonicity refer to Definition 3.1 }4
eimpg f
& {uniformity sub =, choice of s and ¢ }
ns impgy nt ' '
= { II is monotonic } '
(Va:a€ A:ns[aimpgnt |[a)
¢ {nsfae=n(sla)}
(Va:a€ A:n(s]a)impgn(t|a))
& { uniformity sub renaming }
(Va:a€A:n(s [aJamqimpon(s [aag)
= {renamings are members of £, assumption: impg =>¢ imp, }
(Va:a€ A:n(s|a)gngimp; n(s|a)aq) '
& { uniformity sub renaming }
(Va:a€ A:n(sla)imp,n(t}a))
= { || is monotonic}
(lla:acA:n(tla))imp,;(|[a:a€ A:n(s|a))
& {ns=(lla:acas:n(sla))}
nsimp, nt
& {uniformity sub =, choice of s and ¢}

eimp,
(8]

Proof of Theorem 3.24

We only show how to prove the first statement. Verification of the second
one is left to the reader

First we observe that relations R; are general implementation relations.
From Lemma 3.25 we infer that it suffices to prove that for any IR imp
there is a ¢, 1 €17 < 6, such that imp &g R; . Let us first rewrite R;
for members of £:

3.2 How to compare speed 69

e Rieny & false

emBien & M=NAN=w
emMRsen & N=o00

emRsen & MSKN

emMBsen & M=N

emBeey © M=N Vv N=o0

In the remainder of this proof, imp is an implementation relation.

o Assume R; =>¢ imp and -~(R; <¢ imp). We prove R, =¢ imp .
Let M and N such that exy imp ey, we derive:
ey imp ey
= { uniformity sub scaling }
(Vu:p20:ep®pimpendp)
= { || is monotonic}

(llu p20:em@®p)imp (|p:p20:endp)
(l!fa‘: p20:emyu)imp ([p:pn20:eny,)

€oo 1P €og
Conclude Ry =>¢ imp .
o Assume R, =g imp and —~(R; <¢ imp).
We prove (Ry =>¢ imp)V (Rs =>¢ imp).
We distinguish three cases:
s (IM,N:M>N:eyimpey) : since imp =L, this case cannot
happen.
o (IM:M<o0:eyimpey) : conclude, with scaling, that Ry =¢ imp ,
e (IM,N: M N<x:eyimpey) : see below.
Let M and N as in the quantification and define for i: 1 €1 < 0o scale
pi by p O = N+9_:1’l .
We derive:
ey imp ey
= . .
(Vi: :piemimpp.en)
= . . .
(li: : pienimp (|60 : prew)
{ definition of p; }

(ll%: - enpm-my)imp(|l 2 en)
& {M<N}

ey imp ey

70 Chapter 3: Comparing Performance

Conclude, with scaling, that Ry =>¢ imp .

¢ The remaining part is proven in the style of both previous items, this exercise
is left to the reader.
(m}

The follo\&;ing lemma is used in the proofof the = part of the first equivalence in
Theorem 3.19. 1t is also used in the proof of Theorem 3.32.2 and Theorem 3.37.
Lemma 3.28 Behaviour of IR’s over [Const].
~ Forany IR imp
(e,f:eimpf : Pl # {e}) = (Rs =[Const) imP)

Proof

Assume the left-hand side and let e and f be as in the left-hand side. Ob-

‘serve that Pf # {¢} isequivalent with hf # ¢. Let @ such that he.a < 00.
Observe that e [fa and f || a are constant enabling functions, that (since
|| is monotonic) e || aimp{ |} a, and that h(f |l a) #¢.

This rules out relations B; , Ry ,and Rj3 . Together with the mutual rela-
tionships (Figure 3.23) and Theorem 3.24.1 this implies Rs = conss) imp .
&)

Proof of Theorem 3.19

In this proof imp is a general implementation relation.

s (imp =Li) = (imp =LCp). .
* Assume the left-hand side. Let e and f such that eimpf.
When Pf = {e}, Pe D Pf is obvious.

Otherwise we conclude from Lemma 3.26 that Rs =[const) imp . Now we
can proceed as in the first part of the proof of Proposition 3.15, with imp
instead of <.

e (imp=Cp) = (imp=Cy).

Assume the left-hand side; we derive:
eimpf

= { II is monotonic }
(Va: :effaimpf |a)

= {imp =Cp }
(Va: :Plefa) 2 P(f [[a))

& {ela, f|a €[Const]}

(Va: :h(e[fa)<h(f|a))
&

3.3 Maximal implementation relations 71

(VYa: :hela<g hffa))

“ he < hf
& { Definition 3.9}
el

o (imp =LC,) = (imp = j‘RD.imp) .

Assume the left-hand side; we derive:
eimpf

= { || is monotonic}
(Vg:gimpg:el|lgimpf | g)

= {definition of RD (3.2), imp =L, }
(Vg:g€RD.imp :hie || g) <h(f || g))

¢ {Definition 3.17}

€ 2zp.imp f

o (imp = Xzp jmp) = (imp =GC,).
Assume the left-hand side; we derive:
eimpf
= { |l is monotonic}
eimpf A el@impf|D
= { assumption, e [@ = || D }
hie e 1@) < h(f | {)

“ he < hf

ey f
0

3.3 Maximal implementation relations

We are interested in those implementation relations that allow for as many
implementations as possible; these turn out to be the non-robust relation <«
and its robust derivative <t . Though we are not particularly interested in
non-robust IR’s, we use < when defining and analyzing the robust IR <.
The latter is used in the sequel for comparing enabling functions. Theorem 3.37
states that it is the best robust implementation relation: when eimpf, for
any robust implementation relation imp , then also e < . At the end of this
section we give properties that can be used to simplify the computation of <
in special cases.

72 ‘ Chapter 3: Comparing Performance

A maximal (non-robust) implementation relation

Before giving the definition of < , we rewrite the definition of Cp (Defini-
tion 3.11):

eCpf & (Vs,t:35€PeAtePfAs=t:es<t)

e is only demanded to enable at least as fast as f for identical schedules. In the
definition of <, e must also enable at least as fast as f for faster schedules:
Definition 3.27 <. |

eadf & (Vs,t:5€ePeAtePfAsg g ft)
0

Theorem 3.28
Relation < is an implementation relation.
(=

In the proof of transitivity of relation < we use the following lemma:

Lemma 3.29
‘ e fAPfDPg = exg
Proof
We derive:
eaf A PfD>Pg
& { definition of < , Corollary 2.71.2}
(Vs,t:86PeAtePTAsStiesgft) A
(Vi:tePg:tePf Aft<<gt)
:(Vst :s€PeAtePgAsStiesgfi<gt)

edg
o

Proof of Theorem 3.28
Let e and f be enabling functions over the same alphabet.

e First we prove < = L, . Thatis: e <« f = he < hf.
The proof is by induction, assume e « f.
base he |bf < hf|bf
step
helM < hf|M
= {e < f, Proposition 2.34.2}
e(he | M) < f(hf | M)

3.3 Maximal implementation relations 73

=> { definition of A }

ehe [(M+A) < f.hf|(M+A4)
& { definition of h (2.27) }

he | (M+4) < hf|(M+4)
(end of step)

Remains to prove that < is a general implementation relation.

¢ uniformity
Due to Corollary 2.71.1 it is evident that < is uniform with respect to =~ .
Uniformity with respect to renaming and scaling is clearly perceptible.

¢ monotonicity of ||
Let A = (Uz: :Az)andlete = (||z: :e,)andf = (|| z: : £;)
such that ae; = afy = A, , we derive:
(Vz: :e, 9 f3)
& { definition of « (3.27)}
(Vz,8,t': ' €Pe, A EPL A St 168’ K fpt')
= {slae, = &', tlae, = t'}
(Vs,t:as=A A (Ya: :slAz €Pex) A
at=A A (Vz: :t[A, €PL)A
(Vz: :s[A: < t1A;)
(Vo tex(s]Az) S LAt AY))
=> { definition of || (2.30)}
(Vs,t:s€ePe AtePf A st es<1t)

edf

¢ monotonicity of |

Let e and f be enabling functions such that e < f, and let s € P(e || A)
and t € P(f || A) such that s <t¢. We derive:

true
= {e < f, ns < nt, || is monotonic}
e|lns < f| nt
= {<9=0LCy}
h(e || ns) < h(f || nt)
“ h((end) || ns) < h((f1A) | nt)
& {Proposition 2.56.2 }
sT(enA) € t1(fnA)
= { e « f, Proposition 2.56.1, P(en A) C Pe, P(fn A) CPf }

74 Chapter 3: Comparing Performance

e(sT(evd)) < f(t1(fnA))
T oste) < f(t10)
> { Proposition 2.62}
(eltA)s < (fHA))
. transi;.ivity

Transitivity is the only property that is not yet proven. Together with Re-
mark 3.21 and Theorem 3.19, this justifies the first step in the derivation
below.

edf A fdg
= {see above}

eaf A PFDPg
= {Lemma 3.29 }

edg
o

It is rather evident that <« is reflexive for the enabhng functions that are
ascending on their processes.

Proposition 3.30 (sece Proposition 2.82.1)

The reflexive domain of <« is [Asc].
0

Theorem 3.32 states why < is such a special implementation relation. In this
theorem occurs the following —weird— relation on enabling functions:

Definition 3.31 <%,

eX®f & ae=aflA(Vs,a:s€ePf:esa=fsaVfsa=0)
]

The second item of the theorem can be read as ‘when an implementation relation
does not imply < , it is almost as useless as =,

Theorem 3.32

1 (imp ®const) <) = (imp = <)
2 {imp ==<*} v (imp =)

3 imp =>[gg) <

Proof

3.3 Maximal implementation relations 75

1 Assume the left-hand side.

[}

Conclude that for ¢’ and {' in [Const] : e¢'impf’ = he' < hf' .

Now let e and f such that eimpf andlet s € Pe, t € Pf with s £¢ and
let a be a member of their alphabet. Define the constant enabling functions
¢ and ' over the same alphabet as e and f by:

if b#a — sb [} b=a — fita £

flub = if bfa — tb || b=a — fita fi

Observe he’ € hf' and thus ¢ imp .

Observe furthermore that:

h(e || ¢').a = es.alubf.ta

h(f || fYa = f.ta

Conclude from (e || €’) imp (f || f') (and < = Cj) that es.a < f.t.a.

e .ub

i

Due to the previous item, and to < [ggnst] Ra , it suffices to prove:
~(imp = 2*) = imp S[const) 4 (see Definition 3.22 for Ry).
Assume the left-hand side and let e and f such that eimpf but not
e <% f,

Let s and a such that s € Pf and es.a # f.s.¢ and f.sa < o0

Observe that Pf # {¢} and conclude from Lemma 3.26 that
Rs =>[Const] imp and thus that imp is reflexive on [Const].

We derive:
eimpf
= { || is monotonic, imp is reflexive on [Const] }
el n(s\a) imp f| n(s\a)
= { II is monotonic}
(e I n(s\@a)) fa imp (f| n(s\a) [fa
From Theorem 3.19 we infer s € Pe; we conclude that
h((e || n(s\ a)) | a) = (a,e.s.a) and h((f || n(s\ e)) | ¢) = (a,f.s.a) .
So, we have two constant enabling functions ¢’ and f’ such that & imp(’

and he’ < hf’ and hf' #¢.
From Theorem 3.24 we conclude imp <[const] R4 -

Due to Theorem 3.19 it suffices to observe Cp =[45¢) < -

This follows from Lemma 3.29 and Proposition 3.30.

The following example shows that < is not robust.

76 Chapter 3: Comparing Performance

Example 3.33 Speed Twisting by speeding up: < and SU.

We exhibit an enabling function e and a speeding up p of e such that
e d e but = {p.e de).

Define enabling function e over {a,b} by:

esa.= 1

eshb = if 542 - sa+1
I sa>2 — sa+3
fi

Observe (with Definition 2.41) that the speeding up (3 ®e) of e is given

by:
(1oe)sa
(oe).sd

0.5

if sa<l — s5.a+40.5
I se>1 - sa+15
fi

We compose these enabling functions with n(e,1.5). The histories of the

compositions are given by:

h(e || n(e,1.5)) {(a,1.5),(b,2.5)}
h((3 ©e) || n(a,15)) = {(a,15),(6,3)}

Because n(a,1.5) < n(a,1.5), we must conclude ~ (3 ©e < e).

O

The maximal robust implementation relation
Now it is time for the ‘real thing’, the maximal robust IR.

Definition 3.34 <.

eaf = (Vp:peSUe:pedaf)

which is equivalent to e i f = (Vp:peSDf:e < pf).
]
Theorem 3.35

Relation < is a robust implementation relation.
O

In the proof of transitivity of relation < we use the following lemma:

Lemma 3.36 (compare with Lemma 3.29)
e TAPfDOPg = eqg

Proof
We derive:
e fAPf D Pg

3.3 Maximal implementation relations 77

= {definition of <1 (3.34)}
(Vp:peSUe:peaf)APfDPg
= {Lemma 3.29}

(Vp:peSUe:pedg)

&
e<lg

(]

Proof of Theorem 3.35

The implication < = T, follows from < = « . Uniformity holds triv-
jally because of uniformity of <, and so does monotonicity of ||, and
monotonicity of [.

For transitivity we derive:
e fAafag
= {Theorem 3.19, < =< }
et TAPFDPg
= {Lemma 3.36 }
ed g
Remains to prove robustness; we derive:
ea f

© (Vp:peSUe:peafl)
& { Proposition 2.42}
(Vp,0:peSUeroceSU(pe):ope a f)
& {ope=o0o(pe)}
(Vp:peSUe:(Yo:0€SU(pe):o(pe) <«))
@ { definition of < } '
(Vp:peSUe:pe<af)
0
Theorem 3.37 Maximality of <.

For any robust implementation relation imp : imp = <« .

Proof
Let imp be a robust IR.
If, for all e and f, eimpf = Pl ={e} , imp = < trivially holds.
Furthermore, we derive:
(Je,f:eimpf : Pf#£{c})
= {Lemma 3.26 }

78 Chapter 3: Comparing Performance

Rs #[Const] imp

¢ { imp is robust, Theorem 3.24.2}
Ry 4 Copst] imp

& {« [Const| R4 , Theorem 3.32.1}
imp =«

and under the assumption of imp = < we derive:
eimpfl

= { robustness }
(VYp:p€SU.e:peimpfl)

= {imp =« }
(Vp:p€SUe:peaf)

« {definition of < }

e f
||

The definition of <1 is ‘derived’ from the definition of robustness (see Defi-
nition 3.20), in that all possible speeding ups (respectively slowing downs) are
considered. It turns out to be sufficient to consider translations only:

Proposition 3.38
eaf & (Vp:p20:eafdp)
which can be rewritten into:
e f & (Vs,t,u:3€PeAtePIAp20As<tOuiessii®p)

Proof

The = part of the equivalence is evident. Remains to prove the « impli-
cation. This implication can be rewritten into:

(\fs Lp:s€EPerAte PIApZ0AsStDpu:essitdp) =
(V.s,t,p.sePeAtePf'ApeSD.f/\s pt:es< p(ft))
Assume the left-hand side. Let s€ Pe, t € Pf, and p € SD.f. Let fur-
thermore A = de min df.
For M 2z bf we derive:
s g pt
= { p has magnification at least one }
sl(p-M) < tIM&(p.M = M)
= {left-hand side, p.M 2 M }
e(s|(p.M)) < (LI M)®(p.M - M) ‘

T sl (pM+A) € £i](M+A)®(0.M— M)

3.3 Maximal implementation relations 79

For all a in the alphabet of e we conclude, with M = f.t.a:
s pt
= {previous derivation }

esal(p(fta)y+A) < fra|(fla+A)+(p(f.ta)~1ta)
® esal(p(fta)+A) € p(fta)

&
es.a g p(fta)
=]

By means of an example we show that it is not sufficient to consider magnifica-
tions only.

Example 3.30 < and magnifications.
Let enabling function e be defined by:
esa = 1 and esdh = 2xsamaxl

This function is not a member of the reflexive domain of < because in
general, for s€ Pe and £ 20, e{s® u) < e.s® p does not hold:

efsBpu)b = 2%sa+2+p max 1

(es®Bp)d = 2+sa+pmaxl+p

However, the following formula, which is in terms of magnifications only,
does hold:

(Vs,t,A:s€PeAtePeArZIAs€tO A e8€etDA)
Verification of this result is left to the reader.
[m]

The reflexive domain of < is the set of enabling functions that are conservative
on their processes:
Proposition 3.40 (follows from Proposition 3.38 and Proposition 2.82)

The reflexive domain of <« is [Con].
0

Computing <« and <«

We give two propositions that help to simplify the computation of < and
< respectively. Several of the properties that are given have already been
mentioned before.

80 Chapter 3: Comparing Performance

Proposition 3.41

1 eaf = PeDPf :
edf & PeDPf if e€[Asc].

(remark: Pe D Pf is equivalent to e <pgs)

2 eaf < egpef if f€ Asc.Pe,

edf = egpef iffeN, andthus

edf & e<pel if f€N.Asc.
3 eaf & exgf if e,f €N and at least one of them in Asc.
Proof

1 The first result is a part of Theorem 3.19; it implies the = implication in .
the second resuit. For the < implication in the second result we refer to
Lemma 3.29 and Proposition 3.30.

2 First formula:

Let f € Asc.Pe; we derive:
egpef

(Vs s€ePe:esgf.s)
& {f € Ascpe and Pe D Pf (Corolla.ry271 2)}
(Vs,t:sePeAtePfAsSt:es< s ft)

edaf

2 Second formula:
Let f € N'; we derive:
edqf

(Vst sePerntePfAs<g < ft)
= { Proposition 2.80.3 }
(Vs:s€ePe:es<f(slubf.s))
¢ {Proposition 2.80.2}
(Vs:s€Pe:es<f.s)
3 For the « implication we refer to both previous items. Remains to prove
the = implication. ,
Assume e,f € N and e € [Asc], and assume e < . We derive:
e.s
= {Definition 2.78 }

e(h(ns || e))

3.3 Maximal implementation relations 81

0

< {e€ Asc, ns|je a ns|f}
e(h(ns || 1))
{e < f, hins || f) € Pf, Proposition 3.41.1}
f(h(ns || 1))
{ Definition 2.78}
f.s

For f € [Asc], instead of e € [Asc], the derivation is similar (with usage
of Proposition 3.41.2 instead of 3.41.1).

N

Proposition 3.42

<h = <1
eaf & e«af if e€[Con]or fe[Con].

Proof

O

The first implication is evident; remains to prove the second one.

Let e,f be enabling functions over the same alphabet, and let e € [Con].
We derive:

e f

& { definition of <« (3.34)}
(Vp:peSUe:pex)

& { the identity is a speeding up }
(Vp:peSUe:peafreal)

& {pe < e, < istransitive}
eaf

For f € [Con] the derivation is similar (with a slowing down at the right-
hand side instead of a speeding up at the left-hand side).

From these propositions, and from Lemmata 3.29, and 3.36, we conclude that
process inclusion (the second criterion: speed in any possible situation) was not
such a bad guess for comparing enabling functions.

We conclude this section with an example of the usage of <.

Example 3.43 Comparison of four enabling functions.

We compare the following enabling functions over generic actions ¢ and b.

* e is the enabling function of (a,b)*:

esa; = if i=0 — 1
] i>0 — s.ai_1+1 max sbji_1+1
fi

e.8.; = es.q

82 Chapter 3: Comparing Performance

e g is similar to e, but with additional delay between occurrences of the same
generic action: :

gsa; = if i=0 — 1
J i>0 — sai1+2 max sbji_3+1
fi

gsbh = if i=0 — 1
I i>0 — s.a;-1+1 max s.b_1+2
fi

o T is ahybrid of e and g:
fsa; = if ¢=0 — 1

b i>0 — if saj.y <sb_1 — sei1+2
l saiy28b1 - sei1+1
i max sb;q +1
fi
fely = H i=0 — 1
ﬂ i>0 — if sbiy <s.aiq — 8bi_1+2
sy 2 saiog > b1

fi max s.a;.1+1
fi

o h is the enabling function of (a; b)*:
hsa; = if (=0 — 1
bl i>0 - sbq41
fi
hsb = sa;+1

All these enabling functions are conservative, except for f which is not even
ascending. The mutual relations are given by e <« f <t g < h.
Observe that g < h, but the histories of both are given by:

hg.a; 2041 hha; = 241

hg.b; 2i4+1 hh.b; 2142
So when placed in a greedy environment, the delays between successive ac-
tions are 2 for g and 1 for h. With scheduling, for example, by at 1,
g takes an advance with respect to h; this advance is reclaimed by not
enabling @y until 3. This already illustrates the ‘amortized’ or ‘linear time’
aspect of < that is discussed in the second part of Section 3.7.

i
It

0

3.4 Liberal implementations and severe specifica-
tions '

Given a specification f, it is an interesting question whether or not there exists
a unique (modulo =) most liberal implementation of f. That is, an enabling

3.4 Liberal implementations and severe specifications 83

function A f that satisfies:
Afaf and et Af & e<uf.

More general, when given a set of specifications, F , the question arises whether
or not there exists a unique most liberal implementation & F that implements
all these specifications:

(Vf:feF:AFaf) and e<t 8F & (Vi:feF:eaf).

Most liberal implementations are in fact greatest lower bounds with respect to
<.

The same questions arise considering the existence of most severe specifications
(least upper bounds) of (sets of) implementations.

In this section we show the existence of most liberal implementations and most
severe specifications, under rather weak conditions. The results of this section
are not used in the remainder of this thesis.

Example 3.44 Most severe specifications and most liberal implementations.

Enabling function e is inspired on the behaviour of bypass buffers, as given
in Section 5.5.

esa = 1
esh = 1
esec = if sa<shb — sa+4
I sazsb — sa+2
fi
e implements both { and g:
fsa = 1 gsa = 1
fsb = 1 gsh =1
fse = sa+4 g.se = s.a+2max s.b+4

Enabling function h, as given below, is not only the most severe specification
of e, it is also the most liberal implementation of {f,g}:

hsa = 1
hsb = 1
hse = sa+2 max (s.a+4 min s.b+4)

O

In general, however, the most liberal implementations and the most severe spec-
ifications of sets of enabling functions do not exist:

Example 3.45
Consider the set of enabling functions e; : j 2 0 for:
ejai = if i=0 e
I i>0ni=; — sa;1+1/5
I i>0ni#) — —j
fi

84 Chapter 3: Comparing Performance

This set of enabling functions has no ‘lower bounds’, and thus no most liberal
implementation. The most severe specification would be given by:

ea; = if i=0 — 0
J i>0 — sai.1+1/i
fi

which is no enabling function because it has delay (de) zero.
O

Apart from boundary cases with problematic delays or problematic bases, as in
the example, all sets of enabling functions over the same alphabet, have (modulo
2 } a unique most liberal implementation and a unique most severe specification.
For enabling functions, the most liberal implementations are given by:
Definition 3.46 4 for enabling functions. :

Ofs = (glht,u:tePIApS0AsSStOu:ftdp)
o - .
We leave it to the reader to verify that A f is a conservative enabling function
with b Af=bf and d 4 2 df.
Proposition 3.47

A f is a most liberal implementation of f:

&f a4 f and eaf & e Af

Proof

Because 4 f is conservative, it suffices to prove the second formula only.
We derive:

ea f
& { Proposition 3.38 }
(Vs,t,p:8€PeAtePIApLZO0AsStDpes<itdp)
® (Vs:s€Pe
resS(glbt,u:tePrApZ0AsSt®u:fidp))
« (Vs:s3€Pe:es< Afs)
= { Propositioﬁs 3.42 and 341.2, Af € Asc}
e<h Af
0
The definition of & can be extended to sets of enabling functions as follows:

Definition 3.48 4 for sets.
For F a set of enabling functions over the same alphabet we define:

AFs = (glbft,p:fEFALeEPIAp2Z20As<tDp
cftdp)

3.5 The quality of implementations 85

A F 1is a structure that satisfies:
baF > (glbf:feF:bf) and doF > (glbf:feF:df) .

In case bAF > —oc0 and d& F >0, A F is an enabling function and it is
the most liberal implementation of F . The proof of this statement is similar
to the proof of Proposition 3.47. From this result we infer that sets of enabling
functions of which base and delay have uniform lower bounds (> —o0 and > 0
respectively) have a most liberal implementation.

For the dual concept of most strict specifications, we only give a definition. The
details are left to the reader.

Definition 3.49 V¥ for sets.

For a non-empty set of enabling functions, £, over the same alphabet, we
define:

VELt = (lube,s,p:e€EASEPeAp<O0ASHuSE
tesdu)
lub uy

where u; is given by up.a = (lube:e€ & : be)
a

The additional term ¢ lub up ” in this definition is included to assure that V £.t.a
cannot become —oo (in case of a lub over an empty range).

3.5 The quality of implementations

In this section we assume mechanisms to be described by initiated enabling
functions. The moment at which the first action is enabled is considered to be
the initial delay of the mechanism, it is included in the performance analysis.

We introduce angelic- and demonic response time, both giving an extreme view
on the speed of mechanisms. Both give, however, very little information about
the actual behaviours of mechanisms. We are more interested in comparing the
behaviour of an implementation to that of a specification. Therefore we also
introduce the quality of an implementation relative to a specification, as well as
the derived notion of relative response time.

In [23, 27], constant response time is introduced as a characterization of the
progress of cubic trace-theory systems; a system has constant response time,
if there exists a possible behaviour for which there exists a finite upper bound
of the elapsed time between consecutive external actions. In this definition of
constant response time, sequence functions (schedules in the time-domain of
natural numbers) are used to describe possible behaviours. In terms of enabling
functions we define the related concept of angelic response time. In the definition
we use the response time of a schedule, which is the maximal delay between
consecutive actions, including the initial delay. The angelic response time of an

86 Chapter 3: Comparing Performance

enabling function is the lower bound of the response time of all schedules in its
process.

Definition 3.50 Angelic response time: R®.
The response time R.s of a schedule with bs > 0 is defined by:

R.s = bs max (luba:(3b: :8b<s.a)
:(glbb:sb<sa:sa~sb))

where lub@ = 0.

The angelic response time of initiated enabling function e is defined by:
R*e = (glbs:sePe:R%3)
Angelic response time may be extended to initiated enabling structures by
R®.E = R*(E|eE)
_Similar extensions are implicitly assumed in subsequent definitions.
a
A nice property of R® is that e <« f = R*.e < RS, This follows from the
observation that Pe D Pf = R*e £ R®.f. The problem, of course, is that
there is no guarantee whatsoever that this response time will be met in a concrete
situation: the actual time between consecutive external actions depends on the

environment {50 the term angelic does not refer to some ‘angel’ in the mechanism
itself, but to the behaviour of the environment).

A solution seems to be the introduction of demonic response time. Observe
that it does not make sense to take the upper bound of the response time of
individual schedules in stead of the lower bound: ¢ is a member of the process,
and the response time of ¢ is oo! We have to use a more sophisticated view
on response time. Demonic response time is the maximum time an environment
can be forced to wait until it can perform the next communication. For example,
enabling function g of Example 3.43, has demonic response time 2: when «;
and b; are performed simultaneously, the environment has to wait two time
units before it can perform the next communication (@;41 or biyy). Enabling
function h of the same example, has demonic response time 1. The demonic
response time of an enabling function is the maximal delay between performing
an action { b) and enabling of the next action (a); when this next action is not
scheduled at the moment of enabling, this is due to the environment and the
enabling function itself cannot be blamed for the additional delay.

Definition 3.51 Demonic response time: R%.

The demonic response time of an initiated enabling function is defined by

Rde = be max (lubs,a:s€Pe A (Ib: :sb<esa)
:(glbb:sb<esa:esa—sbh))

3.5 The quality of implementations 87

For R4, however, the nice property of R® does not hold: there exist enabling
functions g and h such that g <t h but R9.g > R9.h. Take for example
enabling functions g and h from Example 3.43 (see also Table 3.55).

The quality of an ‘implementation’ relative to a ‘specification’ is defined in terms
of the robust implementation relation < and scaling. An implementation has
high quality with respect to a specification if it is fast with respect to this
specification. It has, on the other hand, zero quality if it has a totally unfit
behaviour, or if it becomes unbounded slow (with respect to the specification).

Definition 3.52 Quality, relative response time: Q, R.

For e and f initiated enabling functions over the same alphabet, the quality
of e relative to f is given by:

Q(e,f) = (lubA:A>0AAQeaf:A) where lub.@ =0.

The response time of e relative to f is defined as

R(e,f) = 1/Q(e,f)

a
In general, the lub in the definition of quality is a maximum:

Proposition 3.53
If 0<Q(e,f)< oo then Qe,f)Qe < f .

Proof
It suffices to prove:
(VA:0<A<1l:AQerf) = eaf
And in order to prove this, it suffices to prove:
(VA:0<A<1:AQedf) > exf
We derive:
(VA:0<A<1:A0e ()
& { definition of <« (3.27)}
(VA8,1:0<A<TIASEPAGe)ALteEPf AL
:(A@e)s< 1)
& { definition of scaling, (2.41) }
(VAst:0<A<1IASENOPe AtePI A st
:A0e(+0s)< 1)
& {dummy change }
(VA5t:0<A<1IASEPeAtePIANAODsSt: A0 (es) <L)

=
(VAs5,t:0<A<1AseEPerAtePIAsgt: A (es) < (iE)
=> { lub over A, continuity of multiplication }
(Vs,t:sePentePf Asgtiess (L)

88 Chapter 3:- Comparing Performance

=3 { definition of <« }
eaf
a

In contrast with angelic and demonic response time, quality (and thus relative
response time) does not deal with the delays between individual actions. An
implementation, however, can be forced to exhibit delays as expected from its
quality relative to a specification, just by adding a controller (see Section 3.7).
Furthermore, quality can be used in compositional design: it has a kind of
transitivity, in a way || and || are monotonic, and it is robust:

Proposition 3.84 (without proof)
1 ‘transitivity’> Q(e,g) =2 Q(e,f)*Q(f,g)

2 ‘monotonicity of || and |
Qe [l en,fo ll) > Qleo, %) min Qes,)
Qe FA,f[FA) 2> Qef)
3 robustness: for any scaling up p of e: Q(p.e,f) 2 Q(e,f)
4 ‘reflexive domain’:

Qe,e)<1 v Pe={e}
Q(e,e)=1 & e€[Con] APe#{c}

R*. | R4, [R(.,e)|R(.,F)|R(.,g)|R(.,h)

>0~
e e
_N N e
8 o~
8 o~
8= r
e

Table 3.55 Response times for Example 3.43.

3.6 Variation of delays 89

3.6 Variation of delays

Enabling structures can be used to describe (abstractions of) behaviours of ‘real
world’ devices. However, the timing in these devices may vary dependent on
temperature, voltage, complexity of data to be processed, and the like. So
when having calculated the speed of some device, under the assemption of some
particular timing (enabling structure), it is important to know what happens if
timing in the device deviates.

The following example shows that a tiny deviation of timing may have a disas-
trous impact on the behaviour.

Example 3.58 Livelock.

Assume someone has designed a device that shares a resource between com-
munications over its a channel and communications over its & channel. The
device enables a actions when during a sufficiently large interval of time no
b actions have occurred; similar for b actions. The device is characterized
by delays «;, &, Bi,and B; (for i > 0) as follows:

esa; = if i=0 — o
[i>0 - F(s.qj-1,0,8,8)+a
fi

esd;, = if i=z0 — 5
f i>0 - F(sbi_1,a,a,8)+ 5
fi
where function F is given by:

F(M,c,5,8) = (glbN:Nz2MA-(3i: :N~3 < se; < N):N)
The designer claims it is a ‘good’ device in that it has a finite response time
with respect to specification (e*,6*). This is due to the fact, he says, that
all delays are equally A: o; = & = B; = B; = A (A>0).

And indeed, this assumption gives the following estimation of the behaviour
of the device:

esa; < if 1=0 — A

[i>0 — s.g-1+2A
fi

esh; € if i=0 — A

I i>0 — sbiq+24
fi
for s € Pe.

So the response time of the device with respect to (a*,b*) is at most 2A.

However, this result depends critically on the assumption that all delays are
exactly the same. Assume for example that the delays 3; are a tiny little bit
more than A: that is, ¢ actions are enabled when during a time interval
longer than A no b actions have occurred. In this case the history of e is

90 Chapter 3: Comparing Performance

given by:
heag; = if i€1 — (i+1)*A heb; = (i+1)xA.
“f i>1 -
fi
This looks more like an implementation of (a?,b*); the response time with
respect to (a*,b*) is oo .
In general, when the delays in the device vary around the intended value A,
it may postpone communication along the @ channel unbounded by perform-
ing communications along the b channel (and vice versa). This phenomenon
is called livelock in [13, 16]. We suggest as an exercise to the reader to verify
the following response times: ‘

k=1=0 kxl=1 k<1<l k>1

first version 0 A . 2A 24
second version 0 A 24 o0

Table R(e,n(a®,d")),for 0 < k,I/ < co (where oo = *).
0 .

If the timing of a device is dependent on, or can be estimated with, —relatively—
fixed delays { # and # in Appendix B), the influence of variation of these delays
is no more than proportional. Furthermore it suffices to know an upper bound
(lower bound) of these delays in order to compute an upper bound (lower bound)
of the performance of the device (with respect to a specification). More precisely,
if, apart from timing, £ and F have the same dependencies then:

1. if the delays in E are at most A times the delays in F': R{(F,F)< X;
2. if the delays in E are at least A times the delaysin F: R(E,F) 2 A.
Both claims can be divided into two parts. The first parts are rather evident:
1_. if the delays in F are at most A times the delaysin F: EAQF;

2. if the delays in E are at least A times thedelaysin F: E2AQF.

The second parts are stated in the following proposition.

Proposition 3.57

Let E and F be enablihg structures over the same alphabet, such that at
least one of them has fixed delays.

1 EXAOF = R(E,F)<A
2 E2)A0F = R(E,F)> A\ ,if PFleF #{c}.

3.6 Variation of delays 91

Proof
Let e and f be the ‘unmaskings’ of E and F respectively:
e=(ak,@,fF) and f = (aF,0,fF).
Let A bethe external alphabet of both enabling structures. The implications
can be rewritten into:
1 e<AOf = R(e[[AfA)<A
2 ez2Aof = RellA,fTA)2A

1 From Corollary 2.54 we infer that e or f is an element of Con. We derive:

e< 2GS

=> {eor fin Asc,since ConC Asc, Proposition 3.41.1 & .2}
edAOf

= { e or f in Con, Proposition 3.42}
e AOGTf

T efAarofla
T R AL A) <A
2 Assume e |A < MOf || A. It suffices to prove that the left-hand side
implies X > A. We derive:
ez AOf
< 1
f< 50e
=> {first implication }
flA @ 1oelA
=> { assumption }
flA @ toeld a Fofla
=> { transitivity of < }
flAaa XofltA
=> {P(f || A) # {e}, Proposition 3.54.4}
A2
]

The following example illustrates that taking the upper (lower) bounds for in-
dividual delays is a convenient way to determine an upper (lower) bound of the
behaviour of a device (which is described in terms of fixed delays). In case of
coupled delays, however, tighter bounds can be achieved by a more penetrating
analysis.

Example 3.58 Variation of delays.

Consider a device with external alphabet e and internal alphabet & that
behaves as:

92

Chapter 3: Comparing Performance
Egsa; = f i=0 — s.b,-+6(ba,i)
I i>0 — s.b;+ 8(ba,i) max s.a;_y + 6(aa,i)
fi
Essb; = if i=0 — §&(ab,i)

I i>0 — s.a-1+ 8(ab,i) max s.b;; + 6(bb,?)
fi

for some —unknown— delays §(zy,?) of which only an upper bouhd, A,is
known: &(zy,1) < A.

a §(aa, 1) - 8(aa,?2) .
bo 5(bb, 1) > b 5(bb, 2) >

Figure Delaysin E.

We only have to fill in the upper bounds A instead of the real delays, in
order to get an upper bound Eap, Ep 2 E;, forany §:
Easa; = if i=0 — sb+A '
0 i>0 — s.b;+ A max s.a;-; +A
fi
Epysbhy = if i=0 — A
I i>0 — s.i-1+ A max s.b;_y + A
fi .
Consider furthermore the specification e = n(a*) for the external behaviour
of the device. Since Ep = 2A ® e, we conclude R(Ej;,e) < 2A for all §;
which is an upper bound for the external behaviour of the device that is
proportional to the upper bound of the individual delays (A }. In order to
draw this conclusion we did not need to analyze the general case Ej, we
needed to observe the upper bound E, only.
The upper bound we gave for the external behaviour still holds when we
assume a coupling of delays, for example: 8(ab,i) + 8(ba,i) € A . In this case
a tight upper bound of the external behaviour is given by R(Ejs,e) < 13A.
In order to observe that this is an upper bound, it suffices to observe
Es || 13A0e =~ 11A@e , which is left as an exercise to the reader.

If A is a lower bound of the individual delays, instead of an upper bound,
we conclude R(Es,e) > 2A (for all 8).

3.7 Conclusion <93

3.7 Conclusion

We have succeeded in finding a relation, <, that can be used to compare
the speed of mechanisms. The statement ‘e <t f’ can be interpreted as ‘e
implements f’, or ‘e is as least as fast as {’. The comparison is one of global
behaviour, rather than a comparison of delays between individual actions. An
important feature of relation < is that it can be used in compositional design:
<t is transitive, and parallel composition and restriction are monotonic with
respect to < . The price that is paid to achieve this result, is that < is
reflexive on the class of conservative enabling functions only. In Chapters 4 and
5 we illustrate the usage of < in the design of linear systolic arrays, and of
distributed FIFO buffers.

In this section we explain why relation < is not suitable for specifications of
behaviours that capture ‘choice’. Furthermore we show that < can be used
when the delays between individual actions are a correctness concern.

Choice

The approach we have chosen to compare behaviours is unfit for specifications
(of external behaviour) in which choice is essential. Such specifications do not
fit in a philosophy in which faster is betier, simply because a faster environment
may mess up the choice.

Example 3.58 Adaptive ordering revisited.

Consider for example the adaptive ordering, specified by enabling func-
tion e of Example 2.73. Observe that e is not conservative, consequently
—(e < e). This is due to the fact that the environment does not always
enforce the ‘proper’ choice. Take for example environment f = n(a ; b)*.
In cooperation with this environment the behaviour is given by e || f = 1.
But when the environment is implemented by g = n(a,b; {a; b)*) (ver-
ify that g < [}, the cooperation performs e || g which is equivalent to:
hsa; = if i=0 — 1
[i>0 — if s < 8.y — sbi_1+1
I sag2sbs — o

fi

hsb; = if i=0 — 1
I i>0 — if sag<sby — s.a;+1
I sap2sby — x
fi
fi

(description under liberal delay conditions)

94 Chapter 3: Comparing Performance

Consequently e || g cannot be considered an implementation of e || f. Be-
cause g < f, e cannot be used to implement e. In fact, any implemen-
tation of e must, for each i, allow a; and b; in any order. For example,
n(a,b)* is an implementation of e.

For similar reasons it is (also) not a good idea to use the adaptive ordering,
e, as an implementation of (a; b)* or (b; a)*: it implements neither of
» these behaviours.
0

This does not mean that problems in which ‘choice’ is essential are taboo. Take
for example the buffer with bypassing that is discussed in Section 5.5. By using
other criteria (than <) for being ‘an implementation of” on a local level, we
are able to give estimations of the quality of such buffers. These local criteria
capture, for example, the precision at which a (real world) device is able to
perform a choice.

Another problem with choice is meta-stability: if a device is not sure what
alternative to choose, it may take arbitrarily long before the decision is made.
This is a phenomenon that cannot be described within the enabling model in a
satisfactory way. '

Delays between individual actions

The way in which we compare behaviours does not consider the delays between
individual actions. It may well be that, in some environment, an implementa-
tion exhibits larger delays than its specification. I this is the case, however,
it_is always due to the fact that the implementation has ‘taken an advance’ on
the specification. An example of this phenomenon is already given in Exam-
ple 3.43, where enabling function g implements h, in spite of the fact that h
exhibits delays of one time unit only, while g also exhibits delays of two time
units. However, a simple interference (addition of a controller) can prevent an
implementation from taking liberties. -

Example 3.60 A number generator.

In this example we assume that communications take one time unit. We
consider a number generator that is to produce results of computations that
are increasingly complex, along channel a. The real-time constraint is that
is produces at least one value every two time units.

fsa; = if i=0 — 1
I i>0 — sai1+2
fi

A parallel implementation that takes ¢ * k; time units to compute the value
that is send during communication a; is described by:

3.7 Conclusion] - 95

o

esa; = if i=0 — 1
l i>0 - sa;i_1+1 max i*xk;+1 ~
fi

The reader is invited to verify that e < f if (and only if) for all ¢ x; < 2.
But, does this implementation indeed produce one value, every two time
units? Assume some clever programmer finds a a way to output the first N
values at double rate: ‘

esa; = if i=0 - 1 o
] 0<i<N - s4ai1+1 max i*xxf2+1
I N — 8.8i-1+1 max ixk+1
f

for some K, 1 <k < 2.

In a greedy environment the outputs a; for ¢ up to N — 1 are produced
at a rate of 1 per time unit, at moments i+ 1. For ¢ > N the outputs
are produced at a rate of 1 per time units, at moments i % k+1. In-
particular, output any_, is produced at moment N and output’ ay at
moment N #k+ 1. The delay between these outputs is N x(k — 1)+ 1.
This delay may exceed 2. In fact, the delay is proportional to N . It seems
that the programmer should better not be too clever.

Considering this example, one may argue that <i has to do with delays since
initiation, rather than with delays between individual actions. From this point
of view ‘e < > means that the amortized time complexity of e is at most that
of f,or that e is a linear time implementation of f (terminology of [25] and
[6] respectively).

However, when it is really important to control the delays between successive
actions, there is a very simple solution. Just add a controller (timer) that
behaves as f. Because e < f implies e | f = f, the combination e || f
behaves exactly as specified. In the example, this controller guarantees that the
environment is offered exactly one communication in every two time units, no
more, no less.

Chapter 4

Divide And Conquer

Systolic arrays! are, usually large, regular composites of, usually small, build-
ing blocks, also called cells. There are two ways to compute, or to estimate,
the external behaviour of such ‘compound’ structures. Consider for example
F=(E || Ex|| E2)nA.

One method is to compute, or estimate, the behaviour of the entire structure
F | and to usé this behaviour in order to compute, or estimate, the external be-
haviour F} A. This method is not recommended for large structures, since this
involves manipulation of complicated enabling structures with a large alphabet.

The other method consists of using a divide and conquer scheme. For example
for F as above:

o compute enabling functions e; that satisfy: ey & Ep [[(eFy UeE; U A) etc.;
o compute f = (e || e1) || (aez U A);
e compute g= (| e2) [A;

and conclude (from the theory of Section 2.7) that g = F'.

When an estimation of the external behaviour is required only, the following
scheme suffices:

e determine enabling functions e; that satisfy: Ey || (eEyUeE;U A) <t e
ete. ; :

» determine f such that (e || &) | (a2 U A) < 1
e determine g such that (f || e2) | 4 < g;

and conclude {from the theory of Section 3.3) that F < g. A similar scheme
can be used for an estimation of the type g < F'.

1 In contrast to some authors, we use the term “systolic azray’ for implementations in which
the cells are not synchronized by a global clock.

96

4.1 Linear systolic arrays 97

In Section 4.1 we introduce linear systolic arrays, in Section 4.2 we discuss how
to compute, or estimate, their external behaviour by means of divide and con-
quer. In Section 4.3 we discuss systolic implementations of a ‘segment problem’:
determining the maximum of successive input values. This problem is both sim-
ple enough to go through the data-part relatively easily, and interesting enough
to illustrate the effect of implementation decisions on the performance.

4.1 Linear systolic arrays

In this chapter we address linear systolic arrays that consist of identical cells,
possibly with a deviating tail. We consider arrays with external communication
at one side only.

An infinite (direct recursive) array consists of a regular, one sided infinite, linear
arrangement of identical cells: that is, identical modulo a renaming p. The
general form of such an infinite array is given by:

(41) F = (|n:0<n:p"E)nd
In infinite arrays, cells may only communicate with cells in a bounded neigh-
bourhood; consequently, sharing of actions between all cells (broadcast) is not

allowed.

p.b ‘ p2.b 3. ptb

s X X

a E pa | pE |p.a| pE pla pPE | P.a

- L X+

l
pc e pi.e ple

Figure 4.2 Schematic representation of an infinite array F.

In illustrations, such as Figure 4.2, shared actions are denoted by connections
that are labeled with (generic) actions. The loose ends at the left-hand side are
the external actions.

The general form of a finite array is given by:

(43) Fy = ((In:0<n<N:p"E) || pV.Fo)nA for N >0
where Fp is the tail. In finite arrays we do allow broadcast; for example channel
¢ in Figure 4.4. Arrays with broadcast are also called semi-systolic.

The following restrictions on renaming p, and on the naming of actions in the
cells, are carefully chosen in order to avoid ‘name clashes’. For other types of sys-
tolic arrays, such as binary trees and linear arrays with external communication
at both sides, other choices have to be made.

98 Chapter 4: Divide And Conquer

p.b p2.b | p°.b pt.b p°.b
b XK]

a E | pa| pE |Pal| prE |PPa| pE | Pla| pr R

~

c 1 | I l J

Figure 4.4 Schematic representation of a finite array Fj.

e We distinguish local actions { p.a # a), and broadcasts { p.a = ¢). Let al-
phabet B be the ‘base’ of the local actions:

—for a,beEB: pta=p"b & n=mAa=bh
~for ag(Un:0<n:p"B): pa=a.

. When using a renaming p in the description of a systolic array, the default

is ‘no broadcast’, p.a s# a: that is, for any ax:tlon a the equality pa=a
holds only when it is explicitly mentioned.

o E must satisfy:
- iECB
~foraeB: aceE & (In:n>0:p"a€cek)

— in case of an infinite array: (lube,n:p*a€eE:n) < oo

The left-hand side of this formula is called the communication distance of
E (this condition implies that broadcast is not allowed in infinite arrays).

e In case of a finite array, Fp must satisfy
- iFp € (Un:0gKn:p*.B)
~ eFg = A (same external alphabet as Fy)
o All loose ends at the left-hand side are communicated with the environment:

A = (setamu:m<nAptaceF :p™a)

In order to save parentheses in expressions like s.(p.a); and e.s{p.a);, these

are abbreviated to s.pa; and e.s.pa; respectively (function application without
a dot).

Observe that Fp41 = (E || p.Fn)n A, and that F=(FE || p.F)uvA.

4.2 Analyzing the behaviour of linear systolic arrays

We define function & as the generating function for the external behaviour of
systolic arrays. Given a mechanism with external behaviour e, the result of

4.2 Analyzing the behaviour of linear systolic arrays 99

placing cell E in front of it, is a mechanism with external behaviour ®.e. For
example, for E as in Figure 4.4, the generating function describes the external
behaviour of a mechanism as given in Figure 4.5.

p.b p2.b
1
b
a E pa | pe
¢ 1 J

Figure 4.5 The generating function: ¢ = (E || pe)fl A .

Definition 4.6

For E, p, and the corresponding alphabet A (according to the conditions
in Section 4.1), function ®g,:EF.A — £F.A is defined by:

@ppe = (E|pe)lta.
[m]

The subscripts of ® are only used when they deviate from E and p respec-
tively. Furthermore F and Fpy are by default arrays that satisfy Formulae 4.1
and 4.3 respectively.

We mention some elementary divide and conquer properties for finite arrays that
follow from the theory of Chapter 2 and Chapter 3.
o For e, : » 2 0 a sequence of enabling functions over A:
if gg= Fo[A and for all n ey41 = @.ep,thenforall n: e, = F,, [A;
if = F31 A andforall n eqy1 = P.e,,thenforall n: e, = F, [A,

e If EleFE €[Con], we have also:
if ol A <tep and forall n d.e, < epyq, thenforall n: Fo A < e,
if eg < Fgl A andforall n eyq41 < Qep, thenforall n: e, < F o1 A.

o Foau=rF, = (Ym:m>n: F,sF,)

o If EfeE €[Con], we have also:

Fopna By, = (Ym:om>n:Fn < Fy)
Fo < Fopr = (Ym:om>n:F, < Fp)

The following theorem supports similar properties for infinite arrays.

100 Chapter 4: Divide And Conquer

Theorem 4.7

If E has a finite communication distance k, then
1 &* is a contraction (see Appendix C)
2 d(d*.e)>dE
Proof (Let F be as in Formula 4.1.)

F can be rewritten into terms of an array with communication distance 1
by clustering k cells into one:

F = (|In:0<n:q"E)
where g =p* and E; = (||j:0<i<k:pP.E)u(AuqgA).
E, and ¢ satisfy the conditions for £ and p in Section 4.1, and Fj has
. . . & —
communication distance 1. Furthermore, %% » = L Ex,q and
"dEy, > dE. So it suffices to prove the theorem for k= 1.

1 We prove that @ is a contraction by proving that
sim(®.e,®.f) > dE +sim(e,f)
for any e and f over A. {see Theorem C.4)

Let e and as aboveand let s € S.A.

First observe that:
sim(s {(E || p.e), sT(E || p.f)) 2 sim(e,f)
Second observe that for ¢ over a(E || p.e):
(E |l pe)tl A
= {ANpA=02}
E(tlaE) A
Conclude from Proposition 2.62 that sim(®.e.s, ®.f.5) > sim(e,f)+ dE.

2 For s and s’ over A holds
sim(s T (E || p.e),s'T(E || p.e)) > sim(s,s’)
Conclude, similar to the previous item, sim(®.e.s, ®.e.s') > sim(e,e’) + dE.

0

The following are some consequences of this theorem and of the contraction
theorem, Theorem C.1, and Proposition C.3.3, The last observation also uses
the continuity of < , as given in Theorem C.5.

If E has a finite communication distance:
o limpue FrlA = FTA
(independent of the tail Fg that is used in the finite arrays)

4.3 The maximum of segments 101

e F'I' A is the unique solution of e in the equation e = ¢.e, and
exPe = exFlA.

e For EteE €[Con]:
Pedie = FlAe e Pe = e FIA.

The second property states that the behaviour of an infinite systolic array is the
unique fixed point of the generating function. In {13, 27] the behaviour is the
least fixed point of a generating function. This is due to the fact that the trace
formalism does not give information about timing.

Example 4.8 Unique fixed point versus least fixed point.

Consider cell E, with alphabet {a,p.a} (both external) that performs
(a;p.a;p.a;a):
Esa, = if i=0 - 1

[i=1 — spa;+1

I i>1 - =

fi

Espa; = if i=0 — s.q9+1

l i=1 = spap+1

I i>1 - o

fi
Enabling function na is a fixed point (and thus the unique fixed point) of
equation P.e=e.

When the timing information is ignored (as in [13, 27]), the process that can
perform two @ actions is also a fixed point of the generating function. In
terms of enabling functions this can be understood as follows.

Let e = na?. ®.e is given by:
besa = if i=0 — 1
I i=1 - sa;_1+3
[i>1 - o
fi
Apart from the timing { +3 instead of +1) this is the same behaviour as
e.

4.3 The maximum of segments

In this section we exhibit several strategies in designing systolic arrays by means
of a rather simple specification. Apart from the behavioural aspect, it also
provides an example of ‘dividing’ a data-specification in order to obtain a parallel
computation. More elaborate examples of this technique can for example be

102 Chapter 4: Divide And Conquer

found in [14, 23, 27]. In [14], a systolic array is derived that communicates to
the environment at both sides. We briefly discuss the behaviour of such arrays
in Section 5.6.

For N :0 < N, we specify program Maxy as follows:

data: .

Maxy has input channel a and output channel b, both of type integer.
The values to be output along b are given by:

(i) = (maxj:0<jAi~N<j<ia(f))
where b(i) is the value that is output during communication ¥ , and a(j)
is the value that is input during communication a;.

{real-time) behaviour:

We are interested in the response time of the solution relative to (the enabling
-function of) (a ; b)*. In particular, this response time should be bounded
by an upper bound independent of N .

The first solution that we give for this problem is not satisfactory because it is
slow, proportional to the size of the problem, N . In the second solution the
speed is improved at the cost of one additional variable per cell. As the first
solution, however, the second solution is only semi-systolic, and a disadvantage
of broadcasts is that they tend to be slow, at least proportional to the logarithm
of the length of the array. In the third solution the problem is solved without
usage of a broadcast. As a variation on the third solution, we discuss the sharing
of hardware between adjacent cells.

First solution

First we consider the simple case: N =0.

For N = 0 the data part of the specification boils down to b(¢) = a(i), so this
case can be implemented by the following program that describes a one-place
buffer with input channel a and output channel &4:

program Maxg (input a: integer, outputb: integer):

var va: integer ;

begin

(a?va ; blva)*

end.
where a?va denotes receipt of an input value in variable va, and dlva denotes
output of the value of va. ’

We use the following conventions when giving enabling structures to describe
{real-time) behaviour:

¢ A mechanism is described relative to the moment of initiation:

4.3 The maximum of segments: First solution 103

e The scheduling of actions within the model reflects the completion of these
actions by the described mechanism.

We assume that a communication takes p time, so the behaviour of Maxgp is
given by enabling function MAg:
(49) MAgsa; = if i=0 — p [i>0 — sbh1+p £
MAg.s.by = swa;+p
Next we consider the general case: N > 0.
We derive:
for i =0: b() = a(i),
for i >0:
b(1)
{ domain split }
(maxj:0€ jAi— N <j<i:a(j)) max a(i)

i

(maxj:0<jA(E-1)—(N-1)<j<(i—1):a(j)) max afi)
In the quantified expression we recognize the output & — 1) of Maxy-1. So,
when using p.Maxy..; with p.a = a we get the following:
bi) = if i=0 — a(?) | i>0 — pb(i—1)maxa(s) fi
We infer the following program for N > 0:
program Maxy (inputa: integer, outputb: integer):
uses p.Maxy..1 with pa=a;
var va, vh: integer ;
begin
alva ; blva ; (alva,p.b?vb ; b{va max vb))*
end.
The program text between begin and end is executed in the head cell. The
hierarchical structure of this program {uses p.Maxy_;) is similar to the use of
‘sub components’ in the ‘com moc’ programs in [13, 24, 27].

If we assume that the computation of the maximum of two integers takes &
time, the behaviour of the head cell of Maxy { N > 0) is given by enabling
function M:

(410) Msa; = if i=0 —- p [i>0 — sb_1+p fi
Msb = if i=0 — s.0;4p
I i>0 - sa;+s+pmaxsphi+u+tp
fi

Msph; = sb+p
The behaviour of Maxy is given by array MAn:
MANy = (M || p-MANx_1}1{a,b} for N >0, with pa=a.

104 Chapter 4: Divide And Conquer

[
] . , ‘ !
Lol oMo | b opM [P2 M [PPb) pAm [ptb|ptMa,

Figure 4.11 Schematic representation of array MA,.

In order to give an impression of what happens, we illustrate the parallel com-
position of M and p.MAp by means of fragments of their dependence relations:

M Qi1 % p.MAg
- bi

dity
p 1o
/ \ b‘-_“ / \
p\._ p.b; /Rﬁ' p.b;

p.b§+1

Q41 A4
P b
ﬂ\. —/Hp/’

M || p-MAo p.b;

Figure 4.12 Dependencies in the composition of M and p.MAe.

In M || p.MAg, action a;¢; cannot be performed until 2p after b; is per-
formed. In general, the problem is that a;y; must wait for p".b; for all
n:0< ng N, and that these b actions are ordered. This results in the fol-
lowing external behaviour fiy = MAy of the systolic arrays:
(413) fysa; = if i=0 — p
ﬂ >0 - 8.b§_1+(1v+1)p
fi
fysh = if i=0VN=0 - sa;+p
I i>0AN>0 — sa;+Kk+p
& ,
A derivation of this external behaviour is given below.

For N > 0 we conclude that the response time of MAy with respect to (a ; b)*
equals (N +1)p max & + p. So MAp is slow proportional to N . When the
values p and k are lower bounds for the duration of communications and
computations respectively, this negative result is still true (see Section 3.6).

4.3 The maximum of segments: First solution 105

Derivation of the external behaviour as given in Formula 4.13.
Observe that fy = MAg ; remains to prove (M || p.f,) || {a,b} = f41 .
Let e =M || p.fn:

e.8.a; = If i=0 — p
I i>0 — s.bi_y+p max s.pbi_1 +(n+1)p
fi

e-s.b; = if i=0 — sa;+p
[i>0 — sa;+Kx+p max s.pbj_1+K+p
fi

e-s.pby = if i=0vn=0 - s.b;+p max s.a;+p
l i>0An>0 — s.b;j+p max s.a;i+K+p
fi

First we consider the underlined dependencies. Observe that the formula for
ep.5.b; implies that for s € Pep:
sbhy 2 if i=0 — saa;+p

I i>0 — sa;+K5+p

fi
This implies that the terms maxs.a; + p and maxs.a; + K+ p in the en-
abling of p.b; are redundant. In the sequel we make a habit out of underlin-
ing redundant dependencies that are to be pruned. Pruning the underlined
dependencies in e yields enabling function e; (which is equivalent to e :
e~ e)
er.s.pb; = sbi+p and e;.s.x = ep.s.z for # pb; .
Next ez = ¢ | {a,b} is computed by assuming that pb; happens as soon
as it is enabled: s.pb; = s.b; + p:

es.0; = if i=0 — p
] i>0 — s.b;_1+p max sbi_; +(n+2)p
fi

= if i=0 — p

I i:>0 — sb_1+(n+2)p
fi
e.8.; = if i=0 — s.a;+p
I i>0 - saj+K+p max shji_1+6+2p
&

The underlined dependency is redundant; pruning yields f,4; .
0

The problem that @;4; must wait for p™.b; for all n: 0 < n < N and that
these b actions are ordered, can be solved in two entirely different ways: one is
to remove the ordering between the b actions (second solution}, the other is to
avoid that a;;1 must wait for all those b actions (third solution).

106 Chapter 4: Divide And Conquer

Second Solution

In the first solution, action p.b;y; has to wait for b; because the value of vari-
able vb may not be changed until the result of the computation va max vb
has been output along &. The introduction of additional buffering can solve
this dependency; in the program Max2y this is done by means of an internal
channel ¢.

For N =0 we use the same program as in the first solution, Max2¢ = Maxg .
For N > 0 we have:

program Max2y (input¢: integer, outputb: integer):

uses p.Max2y_, with pa=a;

var va, vb, ve: integer ;

begin

alva ; blva ; {alva,clve ; bY(va max ve))
~(pblub; clvb)*
end.

The internal communication along ¢ is an alternative for the statement ve := vb.
Furthermore, the first part of the program is the program in the first solution,
modulo a renaming of p.b in ¢; the second part describes a one-place buffer.

The behaviour of the head cell of Max2y is given by enabling structure M2
with external alphabet {a,b,p.b} and internal alphabet ¢:

(4.14) M2s4a; = if i=0 — p

I i>0 - sb_1+p
fi

M2sh = if i=0 — sag+p
Il i>0 — sai+k+p max s.;_ 1 +K6+p
fi

M2sphy = if i=0 — p
I i>0 - sei1+p
fi

M2s.¢ = spb+pmax sb; +p

The array MA2xy has the same shape as MAy , but with cells of type M2
instead of M. ‘

a K4 it
N\ P/V
b
Xl 7 =L
€i-1 {' \ G
~ " /pr

Figure 4.15 Dependencies in cell” M2.)
The reader is invited to verify that MA2y has the following external behaviour:

4.3 The maximum of segments: Second solution 107

(4.16) fy.sa; = if i=0 — p [i>0 — sh_1+p £
fnshy = if i=0VN=0 — sa;+p

ﬂ 1 >20AN>0 — sag;+6+p

fi
For N > 0 we conclude a response time of k + p with respect to (a ; b)* ; when
k and p are upper bounds, s + p is an upper bound for the response time (see
Section 3.6). This response time is achieved at the cost of one additional variable
per cell (with respect to the first solution).

Second solution revisited

A problem with the first two solutions is the broadcast along a: a broadcast to
a lot of receivers tends to be slow, at least proportional to the logarithm of the
number of receivers.

Up to now, the solutions are described under the assumption of a universal
duration of communications (p). Therefore the scheduling of communications
was completely described by the moment of their completion. When the duration
of communications is not universal, one should be careful with using completion
as a criterion.

Let for example e describe a mechanism that needs p; time to communicate
b, and let f describe another mechanism that needs ps:

esb; =s.a;+Kk+m f.8b; = s.a; +ps .
Parallel composition gives: (e ||).s.; = s.a; + (k + p1 max pp) ,
though one would expect that the composition of both mechanisms needs
p1 max pg time units to communicate, and thus behaves according to:
g.5b; = s.a; + K+ (pr max py) .
In order to give a concise description, one has to describe communications with
two actions each: an action of initiation and an action of completion. Otherwise,

the results of parallel composition of mechanisms with distinct durations of
communications may be too ‘optimistic’.

With this warning in mind, we give the external behaviour of MA2y under the
assumption that a broadcast to n receivers takes p, time:

(4.17) Iy.sa; = if {=0 — pyyr
I i>0 — sbii+onp
fi
fy.shy = if i=0vVN=0 — s0;+p
I i>0AN>0 — sa;+6+p
fi

The response time of fy relative to (a;)" is py41 max &+ p, which is at
least proportional to the logarithm of the number of cells. Therefore we prefer
an approach in which no broadcast is used.

108 Chapter 4: Divide And Conquer

Third solution

Both previous solutions are semi-systolic arrays: that is, arrays with a broadcast.
In both solutions a;+1 has to wait for all actions p™.b; because all cells perform
@;4+1 simultaneously. In this solution we consider a program without broadcast
along channel a. As a result, a;4; has to wait for p.a; and b; only.

At the point in the derivation of the first solution where we recognized output
b(i — 1) of Maxpy_1, we may also use p.Maxy_; with p.a # a, provided we
assure p.a(i) = a(i) for all i. This leads to the same obligation for b(i), and
an additional obligation for p.a(i). For N =0 we use the same program as in
the first solution: Max3¢ = Maxq; for N > 0 we use the following program:

program Max3y (input a: integer, outputb: integer):

uses p.Max3n.1 ;

var va, vb: integer ;

begin

"(a?va ; p.alva)*

alva ; blva ; (alva,p.b?vb ; bl(va max vb))*
end. '
Under the same assumptions as in the previous solutions for the duration of a
communication (p) and the duration of the computation of a maximum (),
enabling structure M3 gives the behaviour of the head cell of Max3y for
N>o:

(4.18) M3s4a; = if i=0 — p ,
I i>0 — sb.1+p max spaiy+p
fi
M3sb = if i=0 — s.0;4+p
0 i>0 — sai+K+p max spbi_1 +K+p
fi

M3.spa; = saitp
M3.spb; = sbhi+p

(78 ———>pa, ——%a,+1———>

AT

— b ——»pb‘ --—-—-——»b,.u

K+p K+p

Figure 4.19 Dependencies in cell M3.

The behaviour of Max3y is given by MA3y = MAgy and
MA3y = (M3 | p.MA3y_1)n{a,b} for N>0.

4.3 The maximum of segments: Third solution - 109

a p.a_ pl.a pla_ pla_
™ M3 p.M3 , | PPM3 [PP M3 “1p%.MA,
b pb p.b b ptb
s gt ad

Figure 4.20 Schematic representation of array MA3,.

The external behaviour of MA3y is the same as for MA2x , without consid-
ering the tardiness of broadcasts, as given in Formula 4.16. A derivation of this
external behaviour is given below. Consequently, MA3x has the same response
time as MA2y , when the tardiness of broadcasts is ignored. This result, how-
ever, is achieved without introduction of additional variables (as in MA2y),
and without the usage of a broadcast.

Derivation of the external behaviour for MA3y , as given in Formula 4.16.
We derive (M3 || p.fp) I {a,b} = fuy1 for n > 0. For n =0 the derivation
is similar.

Let n >0 and let ep = M3 || p.fp:

e.8.0; = if i=0 — p
I i>0 — sbi_i+p max spaj1+p
fi
e.8.; = if i=0 — sa;+p
[¢i>0 - sai+k+p max spbi1+Kk+p
fi
ep.8.pa; = if i=0 — s.a;+p max p
I i>0 — s.a;+p max s.pbi_1+p
fi
ep.8.pb; = i i=0 s8.b; + p max s.pa; +p

=
f i>0 - sb;+p max s.pa;+K+p
i

First we hide p.a by assuming that p.e; happens as soon as it is enabled.

Let ey = e || {a,b,pb}:
er.8.0; = if i=0 — p
I i=1 — s.bj_1+p max s.a;.1 +2p max 2p
I i>1 — sbi_14p max sa;_1+2p
' max s.pb;.a+ 2p

t=20 s.a;+p
i>0 — sa;+&+p max s.pb_1 +Kk+p

!

el.s.b,- =

e b

110 Chapter 4: Divide And Conquer

e.8.ph; = if i=0 — s.b;+p max s.a; + 2Zp max 2p
I i>0 — sb;+p max sa;+6+2p
max s.pb_1+ K+ 2p

fi
Next we prune the underlined (redundant) dependencies, which results in
ez, a e

e.88 = if i=0 ~— p
I i>0 — 81+ p
fi

e.8.b; = er.8.;

e.8.pb; = Hf i=0 — 3.b;+ p max s.a;+ 2p
I i>0 — s+ p max sa;+x+2p
fi ‘ }
Now it is time to hide the p.b actions; let e3 = e; || {a,b}:
e3.8.¢; = i i=0 — p
I i>0 — 8biy +p

s.a;+p

saitKk+p

max 8.bi.1+ K+ 20 max s.a;_3 +K+3p
i>1 — sa;+k+p

max 8.b;-1 + Kk + 2p max s.a;.1+ 25+ 3p

- -5
i1
-
{

i

fi
es.s.b; = if
0
]

When this enabling function is pruned properly, one obtains fn41 -
"]

Observe that this (the third) solution for computing the maximum of finite
segments of the input can be generalized to N = oo. This results in the infinite

array ({|n:n20:p"M3)u{a,b},
that computes: b(i) = (maxj:0<j<ia(j)) .
This array has the same external behaviour as MA3y for N > 0, and thus a
response time of &+ p.
However, it is far more convenient to use a one cell array that performs the
following program: '

program Maxe (inputa: integer, outputb: integer):

var va, vb: integer ;

begin

alvh ; bwb; (a?va ; vb := va max vbh; blvb)*
end.

4.3 The maximum of segments: Third solution -1

Third solution revisited

When implementing the previous solutions in hardware, one needs a ‘function
block’ that computes the maximum of two integers. In fact, such a function
block is used in each cell of the array. It may be interesting to reduce the
number of function-blocks in a hardware implementation, possibly at the cost of
some speed. We discuss sharing of the max-block between two neighbour cells
in the third solution.

When a cell M3 and its neighbour p.M3 share a max-block, this imposes
restrictions on the moments that values b(i) and p.b(¢) can be computed. We
assume the max-block must be used under mutual exclusion and that:

o a cell initiates a max-computation as soon as the inputs are available and
the use of the max-block is assigned to this cell,

¢ the max-block is released by a cell as soon as the output of the computation
has been communicated along b (or p.b).

Apart from the first outputs, by and p.bg, for each output & and p.h; the
max-block is needed. Since b and p.b actions alternate, the usage of the max-
block can be assigned to M3 and p.M3 in an alternating way; this results in
the following additional restrictions on the communications along b and p.b:

sby 2 sphat+k+p

sphy 2 sbhi+kdp fori>0
These restrictions can be captured in a modification of M3:
(4.21) M3'sxz = M3sx for z # p.b;

M3 .spb;y = if i=0 — sh+p
I i>0 — sbhi+x+p
i
The behaviour of an implementation in which max-blocks are shared by two

cells each, can be described by an array, say MA3”y, in which cells of type
M3 and M3' alternate: cell p*.M3' shares a max-block with cell p*+1.M3.

a pa_ pa p.a pta
M3 p.M3 "1 p?. M3 7 2. M3 1 pt. MAg
b p.b prb p*b ptb
i it g =3 g

Figure 4.22 Schematic representation of array MA3"4.

In order to estimate the behaviour of such an array, we analyze the behaviour
of arrays MA3’% in which all cells behave as M3'. The external behaviour of
these arrays are given by:

112 Chapter 4: Divide And Conquer

(4.23) fy.8a; = if i=0 — p
b i>0 = sbi1+p
A «

f.8b; = if i=0OVN=0 — sai+p
I i>0AN>0 — sas+x+p
max 8.bi-1 + 2(k + p)

fi

The derivation of this behaviour is left as an exercise to the reader.

For N > 0 the response time of MA3)y with respect to (a; b)* is x+4p,
which is the same as the response time of MA3y .

But what about the arrays we are interested in:* MA3”y ? Since MAy, M3,
and M3’ are conservative, and M3 < M3’, we can estimate the behaviour of
these arrays by: ‘

MAy <0 MANy < MA;V .

Cohsequently the response time of MAy is a lower bound for the response time
of MA” 5 and the response time of MA)y is an upper bound. We conclude that
for N > 0 the response time of MA3”y with respect to (a; b)* is k+p.

Though MA3y and MA3)y have the same response time, they are not equally
fast: the response time of MA3)y with respect to MA3x is 2(x + p) / (x + 2p)
(for N > 0). The real implementation MA3”xy does not do any better relative
to MA3y: for N > 2 there is at least one shared max-block, which results in
a ‘period’ of at least 2(x + p) while the period of MA3y is k+ 2p.

We did not need to compute the external behaviours of the arrays MA3"y in
order to draw these conclusions about their speed. This should not prevent the
interested reader from trying to compute these behaviours (observe that for odd
values of N, the behaviour dependends on the position of the cell that does not
share its max-block).

Chapter 5

Distributed Implementations
of FIFO buffers

This thesis is not about data but about real-time behaviour. Therefore it is
convenient to perform a case-study on mechanisms that are especially designed
for some specific real-time behaviour, under the restriction of a simple relation
between data; First In First Out buffers enjoy this property. In this chapter we
discuss the performance of distributed implementations of FIFO buffers. The
main difference in performance, of the implementations we discuss, is manifested
in extreme situations: buffers that are almost full, and buffers that are almost
empty.

In this introduction we give a way of reasoning about distributed implementa-
tions of FIFO buffers. This reasoning in terms of packets and holes is used in
Section 5.2. Furthermore we exhibit ‘the problem of full buffers’ as well as ‘the
problem of empty buffers’.

In Section 4.3 we already encountered the one-place buffer. A program for the
one-place buffer with input channel a and output channel & is given by:
program BUF; (input a, outputb):

var r ;

begin

(a?z ; blz)*

end.
The buffer receives packets (in variable z) during communications along channel
a , and it gives packets to the environment during communications along channel
b. Observed from a dual point of view this can be phrased as: the buffer receives
holes during b communications, and it gives holes to the environment during
a communications. Initially, the one-place buffer contains a hole. The view of
communications as exchanges of packets and holes is essential in our reasoning
about implementations.

In this chapter we assume delays of one time unit; this results in the following

113

114 Chapter 5: Distributed Implementations of FIFO buffers

description of the one-place buffer:
(6.1) Bysa; = if i=0 — 1
I] t>0 — sbi1+1

. fi

By.sb; = sa;+1
Figure 5.2 shows two states of a cascade of five one-place buffers. The circles
symbolize variables, the tokens symbolize packets. Packets can only move from
the left to the right; they are obtained from the environment at the left-hand
side, and are returned to the environment at the right-hand side. In [2] such
implementations are called ‘ripple’ buffers. In one time unit the first state of
Figure 5.2 develops into the second state; during this time unit, two packets
have changed places with holes.

OODO
QODOL

Figure 5.2 A cascade of five one-place buffers,

Now consider, see Figure 5.3 (a), a cascade of one-place buffers that contains
no packets. When a packet is obtained from the environment (in exchange for a
hole), this packet has to travel through all variables before it can be returned to
the environment (again in exchange for a hole). So the response time of cascades
that are almost empty is proportional to the number of variables they contain.
By exchanging the dual concepts ‘hole’ and ‘packet’in the previous observation,
the same conclusion is drawn for cascades that are almost full, see Figure 5.3 (b).

©—~O0000—~
—~ROOBO~<¢
—~XEOOD—~©
~BEOBD—~<©
OGP~
~ OO~

(a) almost empty (b) almost full
Figure 5.3 Successive states of a cascade.

The performance of cascades is optimal when they are approximately half full. In
this case a continuous stream of packets moves in one direction, and a continuous
stream of holes moves in the opposite direction (Figure 5.4). In this case the

115

number of variables that is used is about twice the number of packets that are
in the buffer, which is a considerable overhead. In VLSI implementations such
an overhead is un-desired because variables are —relatively— expensive. In
software implementations, however, the costs of variables are usually relatively

OODOL
A ~OO0ODO~<
BOO0OD

Figure 5.4 Optimal behaviour of a cascade.

Overview

In Section 5.1 we perform a more formal analysis of the behaviour of linear con-
servative implementations. Furthermore we introduce the type of specification,
By p , we want to implement. B,, specifies the behaviour of a FIFO buffer that
operates with delays of one time unit when the number of packets it contains
lies within the capacity range from ¢~ 1 up to p.

In Section 5.2 we give theoretical bounds for the overhead (in variables) that
is needed to implement FIFO buffers of type Bp, with a non-zero quality.
These bounds are under the assumption that it takes a hole to move a packet.
Furthermore, the bounds depend on the shape of the implementations. We dis-
cuss implementations that are linear arrangements of ‘cells’, implementations in
which celis have a limited number of neighbours, and implementations in which
variables have ‘limited surroundings’; the latter modeling restrictions on the
layout of implementations. The overhead that is needed turns out to be (respec-
tively) linear in p, logarithmic in p, and proportional to the square root of p.
The implementations in Section 5.1 meet the bound for linear implementations,
in that the overhead is linear in p. In Section 5.4 we give hierarchical designs
of conservative implementations that meet the bounds for both other types of
implementations.

The problem with these conservative implementations is that they are symmet-
rical in packets and holes. Therefore they do not only have a poor performance
when they are almost full, but also when they are almost empty. In order to solve
this problem, empty parts of a buffer can be bypassed. Buffers with bypassing
are discussed in Section 5.5.

The implementations in Sections 5.1 and 5.4 are special cases of the — hypo-
thetical — implementations we analyze in Section 5.3. In Section 5.5 we use
these hypothetical implementations to estimate the behaviour of bypass buffers.

Usually, FIFO buffers are not implemented in a distributed way. The behaviour

116 Chapter 5: Distributed Implementations of FIFO buffers

of distributed implementations of FIFO buffers, however, is typical for pipelines
and for systolic arrays that communicate to the environment at both sides. In
Section 5.6 we briefly discuss some general examples.

5.1 Linear conservative implementations

Composing two one-place buffers in cascade gives a buffer that can contain two

packets.
a () c () b

Figure 5.5 A cascade of two one-place buffers.

The external behaviour of this cascade is given by:
(56) CASzs.a; = if i=0 — 1
I i=1 — sai-1+2
Il i22 — s.a;_1+2 max sb._g+2
fi
CAS.8b; = if i=0 — s3.4;+2
I i21 = s.a;4+2 max s.b;_1+2
, fi
A derivation of this behaviour is given below.

In the cascade, the delay between an input ; and output b; is two, instead
of the one in a one-place buffer. This is not surprising, since the packets have
to travel through two one-place buffers, instead of one. Similar for the delay
between b; and aiyz: the holes also have to travel through two one-place
buffers, instead of one.

Derivation of the behaviour of two one-place buffers in cascade.

The external behaviour of a cascade of two one place buffers (see Figure 5.5)
is ep | {a,b}, where e is given by e = Bipe || Bia—we (see For-
mula 5.1 for By):
e.8.0; = if t=0 — 1
I i21 > scia+1

fi
ep.8.b; = s.¢;41
e.8.¢6 = if i=0 — sa;+1 max 1}
I ¢21 — sa;+1 max s.bi-1 +1

In order to compute e, = ey || { @, b}, we assume that ¢ actions happen as
soon as they are enabled:

! As in the previous chapter, redundant dependencies are underlined.

5.1 Linear conservative implementations 117

er.8.a; = if i=0 — 1
[i=1 — s.a;_1+2 max 2
0 i>1 — s.¢i_1 +2 max s.b;_3 +2
fi

e1.8.b; = ersain

Pruning the redundant term max2 in the enabling of s.e; (and s.bp) gives
CAS,.
a

In order to obtain bigger buffers, more one-place buffers can be placed in cascade.
CAS, gives the behaviour of a cascade of v one-place buffers:
(5.7) CAS,.s.0; = if i=0 — 1

[0<i<e — s.a;-1+2

I izv — 8.;.1+2 max shi_,+v

S
CAS,.sb; = if i=0 — sg+v

[i1 - s.a;+v max sb;_;+2

ﬁ .
This formula is a generalization of Formula 5.6 for the cascade of two one place
buffers. It is a consequence of Formula 5.32 for the cascade of FIFO buffers
of type ‘IH’ with a one place buffer { CAS, = IH(v,v,2,v)). Observe that
though CAS; has some redundant dependencies, it is equivalent to the one
place buffer By .

We are interested in buffers with a good performance over a given capacity
range. First we consider specifications of type B,, for p > 0. These specify
buffers that have a capacity range from p— 1 up to p: that is, apart from the
initialization phase, they can contain p— 1 or p packets.
(5.8) Bpsa; = if i=0 — 1
[0<i<p — sa;1+2
I iz» — 8,41
fi
Bp.sb; = $s.ai4p-1+1
In terms of choice-free commands, the behaviour is given by (a; 7)?~1; (a; b)*.
The definition of By isin accordance with Formula 5.1 which gives the behaviour
of an implementation of a one-place buffer.
The quality of cascade CAS, with respect to specification B, is given by:
(5.9) Q(CAS,,By) = if 0<p<(v+1)/2 — (2p - 1}/v
[(v+1)/2<p<vt+l —» (2v-(2p-1))/v
Il p2v+1 - 0
fi
This is a special case of the quality of buffers of type IH, as given in For-
mula 5.27.

118 Chapter 5: Distributed Implementations of FIFO buffers

Figure 5.10 gives the quality of CAS, , dependent on which specification is to
be implemented.

Q(CAS,, By)

1y v
2 p_% P——

Figure 5.10 Performance of a CAS, buffer.
The more logical approach is to state a specification B, and to consider the
quality of several implementations; this is done in Figure 5.11,

1 Q(CAS,, By)

-3 2p—1 v —

Figure 5.11 Performance of CAS, buffers.

In both figures, we observe that quality 1 is obtained when the number of
variables is approximately twice the number of packets: for implementing a
buffer for p packets, a cascade buffer must have about 2p variables; this is an
overhead of p variables. From Formula 5.9 (second alternative) we infer the
amount of overhead that is needed to obtain quality Q,0< Q< 1:

pxQ-1
2-Q
This overhead is linear in p.

B, buffers have a very small capacity range: from p—1 up to p. We gener-
alize the specification to buffers with capacity range from ¢~ 1 up to p, for
0<gxp:

(5.13) Byp.s.0i =

(5.12) v—p =

if i1=0 - 1

[0<i<p — sai1+2

I i>p — 8.8j-1 +2 max s.b;_p+1
fi

Bypshy = if i=0 — s.4i44-1+1
I i>0 — s.i4q-1+1 max s.bj_1+2
fi
B,, has some redundant dependencies; it is, however, equivalent to B, (see
Formula 5.8). The quality of the cascade with respect to specifications of type

5.1 Linear conservative implementations - 119

B,p is given by:
(5.14) Q(CAS,,Bgp) = Q(CAS,,B,) min Q(CAS,, B,)

This is a (again) a special case of the quality of buffers of type IH with respect
to specifications of type B, (see Formulae 5.27 and 5.29).

In the cascade buffers, the delays between successive inputs and successive out-
puts are (at least) two: only one of every two time units an input can be per-
formed (similar for outputs). This restriction is imposed by the building block
By we used. Under the assumption of unit delays, an implementation can per-
form at most one input {output) per time unit. This result can be achieved by
receiving successive ‘input packets’ in different variables, and sending successive
‘output packets’ from different variables. The following ‘wagging scheme’® can
be used to do so:
program Wagging Buffer (input a, output b):
var z,y ;
begin
alz ; (a?y,blz ; alx bly)*
end. : -
Under the assumption of unit delays, the behaviour of this program is given by:
(5.13) BWysa; = if i=0 — 1
I i=1 — sagi-1+1
l {22 — sai_;+1 max sb;_5+1
fi
BWg.S.b,’ = BW;.S.G{.’.l
Apart from the initial delay, this program is twice as fast as CAS»:
(5.16) BW, = 1/20(CAS,®1)
(see Formula 5.6). Consequently, a cascade of ¥ wagging buffers is (apart from
the initial delay) twice as fast as a cascade of 2k one-place buffers.

Figure 5.17 Cascade of five wagging buffers.

The comparison of cascades of one-place buffers and cascades of wagging buffers,
is under the assumption of identical delays (one time unit). Wagging buffers,
however, have a drawback: in hardware, the ‘wagging’ of an input stream to
two variables {plus the merge to one output stream) tends to be more expensive
and slower than sending (and receiving) all values to (from) the same variable.

? Terminology from [2].

120 Chapter 5: Distributed Implementations of FIFO buffers

These drawbacks can be considerably reduced by using one ‘split cell’ to split
the input stream, two parallel cascades of one-place buffers, and one ‘merge cell’
to merge both packet streams into one output stream.

{-0-0-O

" Figure 5.18 Optimization of the cascade in figure 5.17.

The programs of the wagging cells are given by:
program Wagging Split (input a, output b1,52) :
var z,y ;
bégin

a’z ; (aly,bllz ; a?z,b2ly)*
end.
program Wagging Merge (input al,e2, outputb) :
var z,9 ;
begin
al?z ; (a2?y,blz ; allz,bly)*
end.

.

Without proof we mention that, under the assumption of unit delays, such a
construction has the same behaviour as a cascade of wagging buffers.

The problem with the implementations we presented in this section, is that
they have a poor performance when they are relatively full and when they are
relatively empty.

In order to implement B, with quality Q, 0 < Q <1, a linear overhead of
variables is needed. The wagging scheme is twice as fast as the cascade of one-
place buffers, but the overhead is still linear. In the next section we give lower
bounds for the overhead that is needed; in Section 5.4 we give conservative
implementations that meet these bounds.

The fastest cascade implementation of By, with one-place buffersisa CASp4q-1
buffer; the quality of this implementation is (2¢ — 1)/(p+ ¢ —1). When the
specification has a relatively long capacity range (p >> ¢q) this gives a poor
performance. Again, the wagging scheme is twice as fast, but this is only a
constant factor. The implementations in Section 5.4 have a better performance
for relatively empty buffers; if, however, an implementation must have a good
performance when it is.even ‘more empty’, this does not suffice. The implemen-
tations with bypassing in Section 5.5 are even good when they are empty.

5.2 Lower bounds for the overhead <121

5.2 Lower bounds for the overhead

In this section we derive lower bounds for the overhead of implementations for
B, buffers. Rather than in the exact overhead for individual implementations,
we are interested in the order of magnitude of the overhead for complete ‘im-
plementation schemes’. For example, in order to implement buffers of type B,
with cascades of one-place buffers, with a quality that does not tend to zero
for large values of p, a linear overhead is required (see Formula 5.12). In the
derivation of lower bounds, we assume that the external behaviours of imple-
mentations can be described with enabling functions. Furthermore we assume
that the implementations communicate with their environment by sending and
receiving of packets only. Not all implementations of FIFO buffers enjoy these
properties. For example, the programs that are given in [12, 15] interleave their
input and output actions (rather than performing them in a concurrent way),
and within the enabling model this interleaving cannot be described without
introduction of additional channels, along which the environment requests for
inputs and outputs. However, the results we achieve can be generalized to all
kinds of implementations, as long as the communication of packets in these
implementations is based on the principle of exchanging packets and holes, A
similar derivation is given in [12].

The lower bounds we give depend critically on the assumption that it takes a hole
to move a packet, and that moving a packet takes at least one time unit. The
other cornerstone in the derivation of lower bounds is the FIFO strategy; this
strategy ensures that the contents of a buffer that initially contains p packets
is completely refreshed after p outputs and p inputs.

We distinguish three types of implementations. In the first two, we assume a
partition of the implementation into building blocks that have a limited number
of variables. These building blocks are called cells. The types of implementations
are:

e linear implementations (cells have at most two neighbours),
¢ implementations in which cells have a limited number of neighbours (> 2},
s implementations in which variables have limited surroundings.

First we discuss a general way to determine lower bounds.

A general lower bound

All lower bounds we give are based on the fact that it takes a hole to move a
packet, and that moving a packet takes at least one time unit.

Consider the experiment of Figure 5.19, in which a distributed FIFO buffer with
v variables, FIFO , is connected to a one place buffer that initially produces p
packets:

122 Chapter 5: Distributed Implementations of FIFO buffers

program B, (input b, output a) :

var z ;

begin

(a! any value ; 7)?~! ; a! any value ; (b2 ; alz)*

end. '

where every action, including the internal action r, takes 1 time unit. The
external behaviour of this program is B,.

B, | FIFO

Figure 5.19 The experiment.

Packets move from B, to FIFO along channel a; along channel b they move
back again. Consider the situation after communication of the p initial packets
from B, to FIFO; the remaining communication pattern is (b; a)*.

The number of moves per time unit is at most the number of holes: v +1 —p.
We conclude that, if M moves are required to perform (b; a)P, this takes at
least M/(v+ 1 — p) time units. Since (b; a)P comprises 2p communications,
the number of communications per time unit is at most 2p{(v + 1 — p)/M ; this
observation is used in the first step of the following derivation. We derive an
upper bound for the quality of FIFO with respect to B, :

2p(v+1-p)
M
> { see above }

Q(FIFO || By, By)
Q(FIFO || By, By || By)
Q(FIFO,B,) min Q(B,, B,)
Q(FIFO, B,) min 1

{ see below }

Q(FIFO, B,)

Due to the assumption of unit delays, FIFO cannot perform its first action
before moment one, which results in a quality of at most one.®

Remains to estimate the number of moves, M, that is needed to perform
(b; a)®. Due to the First In First Out strategy of FIFO, each packet vis-

3 If we allow a longer initial delay, by using specification B, @1, the term min1 in the
second last formula of the derivation caunot be removed that easily. This does, however, not
affect the order of magnitude of the estimated overhead.

5.2 Lower bounds for the overhead 123

its f)‘, exactly once, during the performance of (b; a)}f. Consequently, M is
the number of moves it takes to get all packets out of their original position, via
B‘p , into their final positions. A lower bound, &,y¢ , for the number of moves
towards f?, is obtained by assuming that all packets take the shortest path to
B,, , and that the initial packing is such that the sum of these shortest paths is
minimal. In a similar way, a lower bound, &, , for the total number of moves
from B,, to the final positions is obtained. Since M 2 oyt + 8;p , we infer (see

derivation above):

2p(v + 1 - p)
50&& + ‘Sin

This can be rewritten into the following lower bound for the overhead in vari-
ables, v — p, that is necessary in order to achieve a quality of at least Q:

N Sout + bin

2p
When designing an implementation scheme for buffers of type Bg, the over-
head v — p must at least be proportional to (éout + 8jy)/p in order to obtain
a performance that does not tend to zero for large buffers.

(5.20) Q(FIFO,B,) <

(5.21) v-p 2 Q -1

Linear implementations

If an implementation can be partitioned into cells, such that each cell has at most
two neighbours, we call it linear. The neighbours of a cell are those cells with
which it can communicate packets (in at least one direction). When a cell can
communicate with the environment (B,,), the environment is also considered a
neighbour of this cell.

In this section we consider linear implementations with grain size g. That is,
each cell in the partition contains at most ¢ variables. It turns out that under
these conditions the overhead is at least linear in the number of packets. The
cascades of one-place buffers, and those of wagging buffers (see the previous
section) are examples of linear implementations; their grain sizes are one and
two respectively, and both have a linear overhead.

All we have to do, in order to obtain a lower bound for the overhead, is to give
lower bounds for éyy¢ and é;, . For reasons of symmetry, it suffices to consider
bout only.

In any implementation, there is exactly one cell with distance one to the output:
the cell with & as an output channel. In a linear implementation, this cell has
at most two neighbours, and the environment is one of them; so there is at most
one cell with distance two to the output. In general, for each 7: ¢ > 0 thereis
at most one cell with distance ¢ to the output. Since each cell contains at most
¢ packets, an upper bound of the number of packets within distance d to the
output is given by:

124 Chapter 5: Distributed Implementations of FIFO buffers

Pd
(Xi:0<igd:g)

dxg

Let d and ¢’ such that p = Pd+g' for 0 € ¢’ < g. A packet at distance i
has to move at least. ¢ times before it reaches By . This results in the following
estimation for oy :

5out

> (Yi:0<igd:g*i)+g'(d+1)
{ calculus }

gd(d+1)/2+ ¢'(d + 1)

(d + 1)(gd + 2¢")/2

[2g
The same lower bound holds for &;.

2

From Formula 5.21 we infer the following lower bound for the overhead:

(522) v—-p > Qx*p/2g-1

As expected, the overhead for linear implementation schemes is at least linear
in the number of packets.

Implementations with limited neighbourhood

We consider distributed FIFO implementations with grain size g, in which
cells have at most F 41 neighbours; F 2 2. It turns out that under these
conditions, the overhead is at least logarithmic in the number of packets.

For 8,44 we take the sum of the distances of the packets to the output, under
the assumption of a close packing to the output. At distance one to the output,
at most g packets can be sited; at distance two, at most ¢+ F packets. In
general, at distance 74 1 at most g* F* packets can be sited. Consequently,
an upper bound for the number of packets within distance d to the output is
given by:

Pd

g+ (Ti:0<i<d: Fi)
{ calculus }
Fi-1
F-1

For reasons of simplicity we assume p = P.d (for some d). Without proof we
mention that the lower bound we derive for §5y¢ also holds for other values of

p.

g*

5.2 Lower bounds for the overhead - 125

Sout
2 . ;
gx(i:0€i<d: (i+1)+F*)
{ calculus }
PGS = AT M =
F-1

it

\

(d- Y*p

P-1
> {d=logp(Flep+1)}

(logg p—logp.g) *p
Due to symmetry, the same lower bound holds for 6, .

From Formula 5.21 we infer the following lower bound for the overhead:

(523) v—p 2 Qx(logp.p-—logrp.g)—1
This lower bound is logarithmic in the number of packets.

Implementations with limited surroundings

In order to obtain the previous logarithmic lower bound for the overhead, the
number of variables within a bounded ‘moving’ distance to the output must
be exponential (P.d is proportional to F?). Due to physical limitations, it is
unlikely that this is possible for large buffers. In this section we assume that
implementations must have a two dimensional layout, in which the distance
between neighbour variables is bounded, and in which the number of variables
per square unit is bounded. It turns out that under these restrictions, the
overhead must be at least proportional to the square root of p in order to
obtair qualities that do not tend to zero for large values of p. This lower bound
is independent of grain size and number of neighbours.

We choose the unit of (physical) length, such that the distance between neigh-
bour variables is at most 1. With v we denote the maximal number of variables
per square unit of length.

The number of moves it takes for a packet to move from one variable, via a
number of variables, to another variable, is at least the physical distance between
the initial and the final position. A lower bound for 8,y and &, is thus
obtained by assuming a physically close packing of packets to the output in the
initial state and in the final state.

For the sake of convenience we assume that the variables are continuously dis-
tributed over the area, rather than occupying discrete positions. The number of
variables within a circle of radius d around the output (input) is then at most
vrd?. Let d such that vrd? = p. The total physical distance to the output
of the p closest variables is at least

126 Chapter 5: Distributed Implementations of FIFO buffers

JE[Bvertdrdo
{calculus }

v j:,’ r2 dr

= {calculus}
27v[3d®

T 2/3(xv)"M2 32

This is a lower bound for é,y¢ as well as §;; . From Formula 5.21 we infer:
(5.24) v-p > f*xQP-1

for some factor f: f > 0 that is independent of a partition in cells, and of the
corresponding values of g and F (f = 2/3(xv)"V/2).

This lower bound is proportional to the square root of p. A similar lower bound
is obtained when instead of a bounded distance between neighbour variables, the

duration of a move is assumed to be proportional to the physical distance to be
bridged.

i

5.3 Performance of hypothetical implementations

The hypothetical implementations we analyse in this section are used in the
following sections to describe conservative implementations and to estimate im-
plementations with bypassing. They depend on four parameters:

s the latency between input and output is o, a >0,
. the latency between output and inputis 8, 8 >0,
s the throughput delay is v, v > 0, and

e the capacity is v, v> 0.

Independent of the throughput delay, we assume an initial delay of one.
The hypothetical implementation is given by:
(5.25) IH(a,ﬁ,y,v).s.‘a; = if i=0 - 1
D 0<i<v — sai-1+7
J v<i — 8.0;_1 +7 max 8.bj., + 8
a -
IH(a,B,7,v)8b; = if i=0 — sa+a
I 0<i — s.g;+a max sbi_1+7
fi
In all implementations we discuss, the capacity is equal to the number of vari-
ables. Furthermore we assume the following relation between the parameters:

(526) yv 2 a+8

5.3 Performance of hypothetical implementations 127

This relation assures that a; cannot be indirectly delayed by g;., via b;_,
(similar for b; by b, via a;).
We introduce abbreviation IH(3,v) for the ‘symmetrical’ buffer IH(8,8,2,v).

The cascades of one-place buffers are special cases of these implementations:
CAS, = IH{v,v) (see Formula 5.7).

The quality of IH(a,,v,v), as implementation of a buffer with capacity range
from ¢—1 up to p, By, (see Formula 5.13), is given by:

(5.27) Q(IH(QHB"Y’ ”))Bq,p) =
29 —1 2v-(2p—-1 2
a min = @p)minwminl)
a B g’
The last term, min1, is due to the initial delay: for the quality with respect to
Byp® p it would be minl + p.

0 max (

A derivation of this quality is given below.

Figure 5.28 shows the quality with respect to buffers of type B, in case v 2 2;
for v < 2 the quality is the same as for vy = 2.

2N

Q(IH(a, 8,7,v), By)

@ B
v — v 1
¥ —_d -

Figure 5.28 Quality of an IH buffer with 7 > 2.
The general case is expressed by:
(6.29) Q(IH(e,0,7,v),Bqp) =
Q(IH(e, B,7v,v), Bg) min Q(IH(a,B,v,v), Bp)
Derivation of Formula 5.27.

The enabling functions involved are conservative, so it suffices to consider
process inclusion. Let
2¢—-1 2v—-(2p~1 2
2 min (2p)min-—minl).
o Y Y
We subsequently prove:

A¢ = 0 max (

1 PByp, CAQPIH(a,8,7,v) = A< A (for 0<A< o).
2 If 0<X: PB,,C A © PIH(a,8,7,v).
B,, is given in Formula 5.13, IH buffers are defined in Formula 5.25.

1 Assume the left-hand side. For each term in the minimum of the formula for
Ag , we have to prove that A is at most this term.

128 Chapter 5: Distributed Implementations of FIFO buffers

e AL1?
Let s=hByp: sa; = 2041 s8b = 2i+2¢ .
Since s.a0 =1, and A ® IH(a,f,7,v).8.60 = A, we conclude A < 1.
o Ag2/y?
Let s = hB,p . For i > 0 we derive:
s e P(Ao IH(a,B,7,7))
¥ e > (A0 IH(a,B,7,0))..6
= {sai=2i+1, ;-1 =2i~1}
241 2 2i-14+ M
® x<2/y
e A< (29-1)/e?
Let again s = hB,, ; we derive:
s €e P(A@IH(a,8,7,v))
T b > (AOIH(a,8,7,v)).0.bs
= {8bi=2i+2q, sa;=2i+1}
%+2 2 2i+1+ra
T A< @a-1)/e
¢ A< (20-(2p~1)/B7
Define schedule s by s.q; = 26+1 s8by = 2i+2p .

Observe that s € PB,, . Furthermore we derive for ¢ > »:
s € P(A@ IH(a, B,7,0))

=
s.ai 2 (AQIH(e,B,7,v)).5.0i
= {sa;=2i+1, sbiy=2(i-v)+2p}
2i+1 2 2(i—-v)+2p+ A0
&
A<(2v+1-p)-1)/B
2 Assume Ao > 0.

It suffices to prove (Ao @ IH(ox,3,7,v)).s € Byp.s for s € PB,,p.
Let s € PB,p; we derive:

()‘0 0] IH(G, ;6: Y ‘v)).s.a,-

- if t=0 g Ao
| 0<icov = saei1+7X
I v<i — 8.0i_1+ YAo max 8.b;_, + fAo
fi

5.4 Conservative implementations that meet lower bounds 129

< {ko}OSO’U?p}Ao@]_,AQS2/’)‘}
if :=0 1
I o<i<yp s.a;-1+2
I pgi<o 8.1 +2
I v<i 8.6i_1 +2 max s.bi_y + B
fi
{ 8.bi—y < 8bi—p—2(v —p) }
if ¢=0 — 1
J o<icp — so;_1+2
i p<i — 8.0i-1 + 2 max s.bi_p+ Ao — (2v — 2p)
fi
<€ {Brog20-2p+1}
By p-s.0;
The derivation of (Ao @ IH(a,$,7,v)).8.b; < Bgp.s.b; is similar.

L

N

A

5.4 Conservative implementations that meet lower
bounds

In Section 5.1 we did already give linear implementations with a linear over-
head. In this section we give a hierarchical design of implementations with lim-
ited neighbourhood that have a logarithmic overhead. We use the most severe
restrictions: a grain size of one, and at most three neighbours per cell. Under
the same restrictions we also give implementations with bounded surroundings
that have an overhead proportional to the square root of the number of packets.
Before giving these implementations we first introduce the constructions we use.

Hierarchical design of buffers

We discuss three ways to enlarge existing FIFO buffers., All extensions (trivially)
exhibit a FIFO behaviour, (i) = a(Z); we focus our attention on the real-time
behaviour. We analyze the real time behaviour of the constructions in case they
are applied to IH buffers. It turns out that the behaviour of these construc-
tions can be obtained by counting variables and adding latencies. We do not
prove all statements we make about the behaviour of these constructions. The
missing proofs, however, can be produced straightforwardly, in the style of the
other proofs. At the end we mention better estimations of the behaviour of
constructions, by using descriptions that are ‘similar’ to IH buffers.

The first, and most simple, of the constructions is the cascade of a FIFO buffer
with a one-place buffer.

(5.30) C.FIFO = (Bypo. || FIFO..c) | {a,b}

130

Chapter 5: Distributed Implementations of FIFO buflers

—"-O—"» R.FIFO o>

anure 5.31 Cascade with a one-place buffer: C. FIFO
Counting vanables and adding latencies already suggests the followmg result for
application of this construction on IH buffers:
(5.32) C.IH(a,B,2,v) ~ IH(a+1,8+1,2,0+1)
For IH buffers with delay v, in general, we mention the following estimation:
(5.33) C.IH(e,B,v,v) < IH(a+1,8+ 1,7 max 2,v+1)

Derivation of Formulae 5.32 and 5.33.
The composition Bj e || IH(a, [3,7,11)“...6 is given by (see Formulae 5 1

and 5.25):

€0.8.04

€5.8.6

eg.8.b;

if i=0 - 1
i>0 — s +1

1=0 — 8.;+1 max 1.
0<i<v — s.a;+1 max s.ci-1+7
v<1t — 8.4;+1 max s.¢;.1 +v max sbi—,+

1=0 — s.+o
0<i — s8¢+ 0 max sbj.1+9

Let 4/ =9 max 2. In case ¥ = 2, enabling function e, as given below, is
equivalent to ep. This case serves to derive Formula 5.32. In case v # 2, ¢
is an upper bound of ep: ey < e . This case serves to derive Formula 5.33.

€1.8.05

€1.8.¢4

e;.8.0;

1l

if i=0 - 1
[i>0 - s.i-1+1 max sai—1+7

if i=0 - sa+1

f 0<i<v — s.a;41 max sy +7 ‘

I »<s — s.0;+1 max s.c;21 +7 max s.b_, + 8
fi

if i=0 — sg+a

] 0<i - s+ o max sy +7

f

Let e; be the result of pruning the redundant (underlined) dependencies in
the enabling of ¢ actions. The external behaviour e3 = e; || {a,b} is given

by:

5.4 Conservative implementations that meet lower bounds - 131

e3.8.a; = if i=0 - 1
I o0<ig<v — sagi—1+7
] v<i — 8.ai-1+7 max 8.b;_(41)+8+1
fi
ez.s.h; = if i=0 — sa;+a+1
I 0<i<v — s.a;+a+1 max s.b;_y +7'
I »<i — s8.a;+a+1 max s.bi_; +7'
max 8.b;_, +a+
fi

The underlined term is redundant because yv 2> a + § (Formula 5.26) and
4' 2 4. Pruning the redundant term results in IH(a+ 1,8+ 1,7 ,v+1).
0O

The second construction we discuss consists of placing one-place buffers at both
sides of the existing implementation.

(5.34) B.FIFO = (Bipopa || p-FIFO || Big—ps) | {a,b}

a p.a p.FIFO p.b ()b

Figure 5.35 FIFO between two one-place buffers: B.FIFO .

The result of applying this construction on an IH buffer with v £ 2 is again an
IH buffer with the expected latencies, and the expected number of variables:

(5.36) v<2 = B.IH(a,8,v,v)~IH(a+2,0+2,2,v+2)

The derivation of this behaviour is omitted. Without derivation we also mention
the following estimation for the case v > 2:

(5.37) y>2 = B.IH(e,8,7,v) <t IH(a+2,0+2,7,v+2)

So far, the constructions are not very spectacular: the increase of the latencies
is proportional to the increase of v. The parallel construction exhibits a better
behaviour with respect to these latencies. The parallel construction is similar
to the wagging construction in Figure 5.18.

7.6

: O}
— e
”, b

a
™~ . FIFO

Figure 5.38 The parallel construction: P.FIFO .
The programs for the split and the merge cell are given by:

132 Chapter 5: Distributed Implementations of FIFO buffers

program Split (input a, output ¢.a,r.a) :
var z
begin
(a?z; q.alz; a?z; ralz)*
end.
program Merge (input ¢.b,r.b, output b) :
var
begin
(g.b?z; blz; r.b7z; blz)*
end.
Let BS and BM be the enabling functions of the split program and the merge
program respectively:

(5.39) BS.s.ag = 1 BMsghy = 1
BS.s.a2i41 = s.qa;i+1 BMsarb; = sbhyx+1
BS.s.a3i42 = sra;+1 BM.sghbiy: = 8bap1+1
BS.s.qa; = s.a+1 BM .s.by; = s.qbi+1
BS.s.ra; = S.da41+1 BM.sbyyey = srb+1

The parallel construction is given by: ,
(5.40) P.FIFO = (BS | ¢.FIFO | r.FIFO || BM) |t {a,b}

The behaviour of the parallel construction on IH(a,,7,v) (see Formulae 5.42
and 5.43) can already be guessed by intunition: the number of variables in the
composite is 2v + 2; the latencies increase by two; and two buffers in parallel
can handle twice as much throughput as one. By renaming of internal actions
(gqa, gb, ra, and r.b), the parallel construction can even be expressed in
terms of cascade construction B:

(5.41) P.FIFO = B.(Rg; - z4; -FIFO || R2; — 24y, -FIFO)
In case FIFO = IH(a,8,v,v), the argument of B can be rewritten into:

IH.se; = if i1 - 1
I 1<i<2v - s@i2+79
I 2v<i — 8.0;~2+7 max 8.bj—z, +
fi
IH' sb; = #f i1 — sa;+a
I t<i — sai+o max s.bj_z+7
4 i

With this enabling function we (temporarily) violate the convention for occur-
rences of generic actions: as far as IH' is concerned, these occurrences may be
out of order; for example, a; may be scheduled before ag. However, the delays
in IH' look very much like those in a IH(a,(,7/2,2v) buffer, so the following
results should not come as a surprise (compare with Formulae 5.36 and 5.37):

(542) v<4 = PUH(o,f,v,v)=IH(a+2,6+2,2,20+2)
and the estimation for v > 4:

5.4 Conservative implementations that meet lower bounds © 133

(543) y>4 = P.IH(a,B,7,v) <t IH(a+2,8+2,7/2,2v + 2)

This is a promising result: the latencies increase linearly, the capacity exponen-
tially.

Formulae 5.33, 5.37, and 5.43, give estimations of behaviours only. In fact, these
estimations are ‘sharp’, in that the left-hand sides have the same qualities with
respect to specifications of type B, as the right-hand sides. Moreover, it is

even possible to define a relation ~ that satisfies the following

Conditions 5.44
Relation = is reflexive for IH buffers: IH(«a,B,v,v) = IH(a,B,7,v) .
Furthermore, for e = IH(a,3,7,v), the following observations hold:

e e < IH{(a,B,v,v)

e Q(e,Byp) = Q(IH(e,B,7,v),Bgp) (forall p and ¢)

o Ce = IH(a+1,8+1,2 max y,v+1)
B.e = IH(a+2,6+ 2,2 max v,v+ 2)
Pe = IH(a+2,0+2,2 max v/2,2v + 2)

o Be ~ IH(a+2,0+2,2,v+2) ify<g2
Pe = IHa+2,+2,2,2v+2) ify<4

(]

Although intuitively appealing, a formal characterization of relation = is not
trivial. The crux is to consider the throughput over the entire schedule, rather
than considering the delays between successive inputs, or outputs. The details
are left to the interested reader.

Implementations with limited neighbourhood

The parallel construction is the most important ingredient in achieving imple-
mentations that have a logarithmic overhead. By repeating this construction,
starting with B;, one obtains implementations with grain size one, in which
each cell has at most three neighbours. From Formula 5.42 (or by counting
variables and adding latencies) we infer that the external behaviours of these
implementations are given by:

(545) P".B; =~ IH(2n+1,3%2"-2)

For these implementations, the latencies are logarithmic in the number of vari-
ables. From Figure 5.28 we conclude that the number of holes that is needed in
order to obtain a quality of one is also logarithmic in the number of variables.
To be more precise, P".B; can be used to implement B, (with quality one) for
p=v —n,where v is the number of variables (of P™.B;). The overhead n is
logarithmic in v as well as in p. In general, when the overhead is logarithmic
in v, it is also logarithmic in p.

134 Chapter 5: Distributed Implementations of FIFO buffers

With sequence P™.B;, however, we do not have a complete implementation
scheme with logarithmic overhead for all specifications of type B,. Take for
example p = 3 % 2™ — 1; the first buffer in the sequence with a non-zero quality
with respect to By is P™*1.B;, which has 3 + 2"+! — 2 variables: this is about
twice the number of packets.

In order to show the existence of an implementation scheme with loga.nthmlc
overhead, it suffices to give implementations for each number of variables v,
such that the latency of these buffers is logarithmic in v. This result can be
achieved by using the parallel construction, as well as cascade construction C.
We define the following scheme (for v > 1):)

(5.46) Ilog, By Tlogay,q C.Ilog,,
Ilog, = C.llog, Ilogy,,, = P.Ilog,

The behaviour of Ilog, is IH(B,v) for a latency § that is logarithmic in v:
(547) B < if viseven — 3log, 2t +2

[visodd — 3log, %2 +3
fi

This upper bound is easily verified (by induction).

We have achieved a logarithmic overhead in variables. This result, however, is
achieved at the cost of using a number of split cells and a number of merge cells
proportional to v. The overhead in costs due to to the wagging of packets in
the split and merge cells is thus linear in p.

Implementations with limited surroundings

The idea of these implementations, is to place buffers in parallel only when there
is enough room to do so. At any distance from the input (output) the number of
variables that is ‘used in parallel’ is no more than proportional to this distance.
We give implementations with a layout that is symmetrical with respect to input
and output. In the layout scheme in Figure 5.50, each dot represents a variable
and each line represents a channel along which packets can move to the right.
When a variable has two outgoing channels, packets alternately take the upper
and the lower one. The packet stream is split at distances 2, 22, 23, etc.
from the input. Later on it is merged at the same distances to the output. At
that stage, when a variable has two incoming channels packets are alternately
received from the upper and the lower one.

In order to describe these implementations we use cascade construction B and
the parallel construction. As an abbreviation we introduce the combined con-
struction BP,, that doubles a buffer (in parallel) and adds 2™ variables at the
input side and 2™ variables at the output side:

(548) BP,,.FIFO = B2?"-1 p_FIFO

In Formulae 5.48 and 5.49 we use the dot for function application in a right
associative way.

5.4 Conservative implementations that meet lower bounds - 135

For any positive integer § there exists a unique pair n > 0 and 0 < k < 2*¥?
such that § = 2(2" — 1) + k. We define implementations I/ A in terms of such

pairs by:
(5.49) I\/ﬁ = BP¢.BP{.BP;3 ... BPy.3.8P,_1.CAS,
For n = 0, this formula is interpreted as I\/p = CASg.

d
Figure 5.50 Layout for I\/ implementations. ¢

Counting of variables and adding of latencies gives the following result for the
behaviour of L\/,@ buffers:

(551) 1/, ~ IH(B, 2/3(2*" - 1)+ 2°k)
Let v be the number of variables of Iv/ 5 From this formula, and from the
definition of n and k&, we infer that 8 £ v/6 v, and that the number of variables

of Ix/;s + is no more than v+ +/3v. The first observation implies that I\/

implementations can be used to 1mp1ement By buffers with an overhead that
is proportional to the square root of the number of packets (with a quality that
does not tend to zero for large buffers). Due to the second observation, all B,
buffers can be implemented in such a way.

An advantage of these implementations, above those that we constructed under

136 Chapter 5: Distributed Implementations of FIFO buffers

limited neighbourhood, is that the number of split and merge cells is propor-
tional to the square root of p. Consequently, the ‘wagging overhead’ due to
splitting and merging of the packet stream is proportional to the square root of
P, and not linear in p as in the implementations we constructed under limited
neighbourhood. '

5.5 Buffers with bypassing

In case one is interested in implementing FIFO buffers in a distributed way, the
overhead of variables that is needed is not an insurmountable difficulty: just
plug in some more variables. A more serious problem is that all implementa-
tions we have given so far, also have a poor performance when they are almost
empty: they cannot be used to implement By, buffers for which ¢ is less than
proportional to the logarithm or (in case of limited surroundings) the square
root of p. This is due to the symmetry of these implementations in packets and
holes: not only the packets but also the holes are routed under a FIFO strategy.

In this section we introduce implementations that exhibit a better behaviour
when they are almost empty. The crux of these implementations is that empty
parts of the buffer can be bypassed. As in the previous section, we build buffers
in a hierarchical way. Similar implementations are given in [12, 15] and suggested
in [7]. In contrast to the implementations in [12, 15], the implementation we
give does not synchronize external inputs and outputs. We do not claim this
to be the optimal way to do things, but it is a nice example of the use of the
enabling model for performance analysis of behaviours with choice. The main
differences with the performance analysis of cubic behaviours are:

o When the timing in a device deviates only a little from the analyzed enabling
structure, this may result in a dramatic deviation of its behaviour. Therefore,
the performance must be analyzed over a whole range of enabling structures,
rather than for just one (see Section 3.6, in particular Example 3.56).

e Because a behaviour with bypassing is not conservative, the strategy of divide
and conquer must be used very carefully: if e is not conservative, f < g
does in general not imply e || f <t e | g.

e In enabling structures with choice, unexpected dependencies may pop up:
dependencies that seem redundant, but —formally— may not be pruned.
This phenomenon is already illustrated in Example 2.73.

The bypass extension is similar to cascade construction B (Figure 5.35), in
which one variable is placed before, and one after the existing buffer. In the
bypass extension (Figure 5.52), however, there is an additional bypass channel
(¢). Packets that arrive in an empty buffer take the bypass channel.

5.5 Buffers with bypassing 137

¢ p.FIFO
b | pb

~——i{ b

Figure 5.52 FIFO with bypass interface: @Byp.FIFO.

In contrast to cascade construction B, the added variables are not used inde-
pendent of each other. Both variables are part of the same program that keeps
track of the number of packets in the buffer, in order to decide whether or not
to allow a bypass. This behaviour is captured in the (pseudo) program below.
program Bypass Buffer (input a, output b):
uses p. FIFO
var va, vb ;4,7: index
begin
alva, i:=0;clva;
(a?va,i:=i+1;
if a; before b;_y - p.alva
[-(a; before b;—1) — clva
i)
ll

ctvb; blub, j:=0;
(if aj4q beforeb; — p.blvb

[-(aj41 before b;) — clvb

fi ;

blob, ji=7+1)

end.
At two places in this program a choice is made. The choice in the first sub-
program (between p.a! and c¢!) decides whether or not a packet takes the bypass
channel. The choice in the second sub-program {between p.b? and ¢?) depends
on whether the packet has taken the bypass or not. In order to implement the
latter choice, it is not necessary to keep track of bypasses and non-bypasses: at
any moment at most one of the inputs is offered by the environment (of the sec-
ond sub-program).* It suffices to make an environment driven (passive) choice,
for example by using a probe {[19]). Within the enabling model, however, a
description of such a choice is rather baroque. Therefore we use the program ‘as
is’ in the analysis of the behaviour.

We do not discuss efficient ways to implement the program, we just analyze
its behaviour. First we introduce enabling structure BYP as a reflection of
the behaviour of this program under the assumption of delays of one time unit,
and under the assumption that the choice between a bypass and no bypass

* under the assumption that FIFO is a buffer

138 Chapter 5: Distributed Implementations of FIFO buflers

is performed exactly as prescribed by the program. Later on we adapt this
description to devices that do not operate that accurately.
The packet that is received during communication a;, is bypassed if (and only
if) it arrives in an empty buffer. This results in the following definition for a
bypass at i:
(5.53) BP(s,i) = if i=0 — true | i>0 — s.;>sby fi
If there is a bypass at ¢, the index of the performed communication along the
internal channel ¢ depends on the number of bypasses that happened before; it
is given by:
(554) n(sri) = |(seti:0<j<iABP(s,7):)]
When, on the other hand, there is no bypass at ¢, the index of the correspond-
ing p.e and p.b communications depends on the number of ‘no-bypasses’ that
happened before; it is given by:
(5.55) w(s,i) = |(setj:0<j<iA-BP(s,7):j)]| ‘
In the sequel, when using functions like BP, p, and =, we tend to leave the
schedule implicit.
The enabling of the external actions is defined as follows:
(556) BYP.s.ag = 1
BYP.s.aiyyy = if BPid — seui+1
I ~BPi — spagi+1
fi max (maxj:j<i:sa;+1)
BYP.s.b; = if BPi — s.epi+1
0 -BPi — spbes+1
fi max (maxj:j<i:sb;j+1)

The underlined dependencies are of no importance, except that they assure
BYP to be an enabling structure.

When defining the enabling of ¢ actions, we need to know the indices of the
corresponding a and b actions. Therefore we introduce fi as the ‘inverse’ of
4 . For natural numbers i we define:

(6.57) @afs,5)=¢ & BP(s,i) A p(s,i) =

However, when there is only a finite number of bypasses, say Nb, such an ¢

does not exist for j 2 Nb; for these values of j we. define fi(s, 3) .00 . The
enabling of communications over ¢ is given by:

(5.58) BYP.s.c; = if f.i — s.api+1
j o< {zz<oo — s.api+1 max sbgi-1+1
I pi=oc -

fi max (maxj:j<jgi:sa;j+1)

In order to define the enabling of p.a and p.b actions, we use the inverse # of
7, which satisfies

5.5 Buffers with bypassing 139

(5.59) 7(s,j)=1 & -BP(s,i)Anr(s,i)=7]
and #({s,j) = oo if no such i exists.
(560) BYP.spa; = if #i<oo — sani+l
I #iz=o0o — o
fi max (maxj:j<7i:sa;+1)

BYPspb; = if Fi<oo — 8bgiq+1
| #i=o00 — o
fi max (maxj:j<#®.i:8b;+1)

In the sequel we forget about the (semi) redundant underlined dependencies in
Formulae 5.56, 5.58, and 5.60.

Enabling structure BYP gives the behaviour of the program under the assump-
tion of delays of exactly one time unit, and under assumption that the choice
between taking a bypass or not, is implemented with absolute precision. When
the delays vary, and the choice is not so precise, this results in a deviating
behaviour. For example, when communication «; is performed a little after
communication b;.q, the arriving packet should be bypassed along channel ¢
to be offered back to the environment after a delay of two time units. However, if
the device, that is used to implement the program, decides that a; and b;_y oc-
curred simultaneously, the packet misses the bypass within an ace, and is routed
via p.FIFO , which may take considerably longer. In order to describe a device
that operates within tolerable deviations § and ¢, both at least zero and less
than one, we make the following assumption about bypasses: BP(s,0) = true
and for ¢ > 0:

(561) BP(s,i) = sa;zsb_1—§ -BP(s,%) = s.u; <€ 8biq1+e¢

Let BYPpp be the enabling structure that corresponds to a bypass function
BP that satisfies these conditions. The unit delays in this enabling structure are
assumed to be upper bounds for the delays in the device; consequently the device

can be described by an enabling structure Byp that satisfies Byp < BYPpgp
(for some bypass function BP).

The composition of a head cell with behaviour Byp with a FIFO buffer FIFO
is described by:
(5.62) @pgy,.FIFO = (Byp | p.FIFO) || {a,b}

‘We intend to analyze the behaviour of this bypass construction when it is applied
to IH buffers. More precisely, when FIFO <« IH(a,f,7v,v), we want to know
which IH buffers are implemented by ®g,,.FIFO, for all possible behaviours
Byp . These are the solutions IH(a',#,4',v") of the following equation:

(5.63) (VBP,Byp, FIFO : Byp < BYPgp A FIFO «i IH(a,8,7,v)
: @gyp-FIFO < IH{(a', B,y v'})

We are in particular interested in upper bounds with capacity v’ = v + 2, that
have a small latency o’.

140 Chapter 5: Distributed Implementations of FIFO buffers

In order to avoid the computation of < in the quantification over FIFO , we
rewrite Formula 5.63 into:

(5.64) (VBP,Byp,FIFO : Byp < BYPgp A FIFO < N.IH(a,$,7,v)

: ®gyp-FIFO < IH(o, 8',%',v"))
The following lemma implies that Formulae 5.63 and 5.64 are equivalent.

Lemma
For fe[Con]: eaf & (Jdg:gme:gg<NT)

Proof
Due to Proposition 3.42, it suffices to prove for f € [Asc]:
eaf & (Jg:gme:ggNS)
The => implication follows from Proposition 3.41.3 (let g = N.e). The «

-implication follows from Proposition 3.41.2.
0

On the following pages, we derive an upper bound for the behaviour of the
extended FIFO buffer, ®p,,.FIFO . This is a tedious exercise, but the enabling
model allows us to give a formal proof of this upper bound. Before doing so, we
give an intuitive way to obtain an upper bound IH{(a',5,v',v').

Forget about tolerances 6§ and ¢ and assume FIFO = IH(a,f,v,v). As men-
tioned before, the bypass extension is similar to cascade extension B (see Fig-
ure 5.35). In case the buffer is not (almost) empty, the behaviour is even exactly
the same as the behaviour of this cascade extension. Therefore it is reasonable
to conclude 3'=p8+2, and v=v+2 (see Formulae 5.36 and 5.37). Fur-
thermore, it is obvious that 7' 2 ¥ max 2. Whether or not we may conclude
equality, depends on the behaviour when the buffer is almost empty.

When a packet arrives in an empty buffer, it takes the bypass and it is avail-
able as an output after two time units. This results in the restriction o > 2.
When, on the other hand, a packet arrives in a non-empty buffer, it is routed
via p.FIFO. At first glance, one may conclude that nothing is gained with
respect to the B construction, and that the latency is o' = a + 2, which is
by no means the result we are striving for. However, assume there is no by-
pass at i, that is s.e; € s.b;—y, then also s+ 2+ o < s8.bj1+2+a. So,
when accepting a throughput delay of (at least) 2+ a, the dependence of b
on a; is redundant. A valid upper bound of the behaviour is thus given by
1H(2,8 + 2,y max 2 + a,v + 2). This is exactly the result we give in the sec-
ond part of Formula 5.82.

Back to the formal derivation again. First we hide the internal channel ¢ of the
bypass cell. This results in the following upper bound for the external behaviour

byp = Byp | {a,b,p.a,p.b}.

5.5 Buffers with bypassing 141

(5.65) byp.sag <€ 1

bypsa;y; € if BPd — sa; 42446
[-BPi — spay;+1
fi

byp.s.b; £ if BPiAi=0 — s.0;+2
I BPiAi>0 — s.0;+2 max 8.b;_1+2
I -BPi ~ 8. pbys+ 1
fi

byps.ppa; € if i< oo — sazi+1 [Fizoo — oo fi
byp.s.pb; € if Fi<oo — sbhpiy+1 | Fiz=00 — oo £
In the sequel we consider the enabling of p.g; and p.b; for %.i < oo only.
Furthermore, we don’t bother about the enabling of ap any more.
The upper bound for the enabling of a;4+y in case of a bypass at ¢ is derived
below; for b; the derivation is even simpler.
Derivation of first alternative for a;4y in Formula 5.65.

byp.s.ais1
< { BP.i, Formulae 5.56 and 5.58 }
if pui=90 — Ssaau+1+1
[0<ppi<oo — sapu+1+1 max sbpu1+1+1
] Rpit = 00 — o+ 1
i

{ & is the inverse of p, Formula 5.57 }
if i=0 — s.2;4+2 [>0 — s.¢;+2 max sb;_y+2 fi
< { BP.i, Formula 5.61}

sa;+2+ 46
]

The enabling of a actions and b actions in case of a bypass imposes the following
restrictions upon o and 4':

(566) o' > 2 4 > 246

From Formula 5.65 we learn that the enabling of a;4; and b; in case of a bypass
at ¢ does not depend on the scheduling of ¢ p.” actions. Remains to analyze the
enabling of a;+1 and b; in case there is no bypass at ¢.

In Formula 5.64, FIFO has as an upper bound the normal form of an IH buffer.
The normal form of IH buffers is given by:

(5.67) N.IH(a,B,v,v).5.0; = max 1y+1

‘ (maxj:j<i:sa;+{(i-j))
(maxj:j<i—v:sbj+(i-v—jh+8)
max Y+ 1+«
(maxj:j<itsa;+(i-j)y+a)
(maxj:j<i:sbj+(i—7k)

N .IH(a,B,7,v).s.b;

142 Chapter 5: Distributed Implementations of FIFO buffers

where max is used as a prefix operator that takes the maximum of the expres-

sions on subsequent lines.

The reader is invited to verify this result.

Now that we have the upper bound N.IH(a,B,v,v) for FIFO, we can derive

an upper bound f > <I>Byp.FIFO . For ag, and in case of a bypass at i, we

already have an upper bound (Formula 5.65):

(568) f.sag = 1 f.8.b; = s.a;+2 max s.b;_1 +2
fsaiy1 = s.a;+2+6

In case of no bypass at ¢, an upper bound is given by:

\

(5.69) f.s.a;41 = max wi*vy+2
(maxj:j<ri:san;j+2+(7i—7)7)
(maxj:j<mi—v:sbej1+(mi—v—jry+p+2)

f.s.b; = max Tixv+2+4+a
(maxj:j< i sap; +2+(ri-j)y+a)
(maxj:j<mi:sbejo1+2+(7i—7)y)

Derivation of Formula 5.69.

From Formulae 5.65 and 5.67 and from FIFO < N.IH(e,B,7,v) we infer
for eg = byp || p.FIFO:
€.5.8i+1 S S8.p0ri+1 and ep.s.d; < s.pbei+1
in case of no bypass at ¢, and
e-s.pa; < max iy+ 1 max s.ax;+1
(maxj:j<i:s.paj+(i—3)y)
(maxj:j<i—v:aphi+(i-v=j)y+5)
€.8.pb; € max v+ 14« max s.bgi_q+1
(maxj:j<i:spaj+(i-j)7+a)
(maxj:j<i:spbj+(i—j7)y)
We are interested in the behaviour of e || {a,b}. First we hide p.a. If
p.a actions happen as soon as they are enabled, this results in the following
upper bound for s.pa;:

8.pa;
< max iy+1

saxi+1

(maxj:j<i:spa;+(i—3)r)

(maxj:j<i—v:spbj+(i—v—j)y+p8)
< { unfold dependencies of pa; on as; }

max y+1
(maxj:j<i:sarj+14+(i-j)7)
(maxj:j<i:spaj+(i-j)v)
(maxj:j<i—v:sphj+(i—v—j)y+5)

5.5 Buffers with bypassing - 143

= {induction }
max ¢y+1
(maxj:j<i:san; +14+(G-5))
(maxj:j<i-vispbj+(i—v-jly+p8)
Let ey = ep | {a,b,pb}. Using the derived upper bound, we conclude:
€.8.8;41 € Max Wiy 2
(maxj:j<mi:san;+2+(ni-jhy)
(maxj:j<ri—v:isphj+(ri-v-jly+5+1)
e1.8.b; € spbrit+1
For the enabling of p.b; we derive:

e1.5.pb;

£ {upper bound for s.pa; }
max #y+1+4+ o max sbz;q+1
(maxj :j<i tir+1 +(i-iv+a)
(maxjk:j<ink<] tsaxktl+(f-k)y +(E-jy+a)
(maxjk:j<iAk<j—visph+(-—v-ky+B8+(i-jv+a)
(maxj:j<i:spb+(i-j)y)
max v+ 1+ a max sbzi.q1 41
(maxj:j<i:tv+14+a)
(maxk:k<itsaze+1+(-k)y+a)
(maxk:k<i—v:sph+(i—-kly—-vy+a+p)
(maxj:j<i:spbj+(i—j))

= {a+f<gvr}
max v+ 14+ o max s.bgiq+1
(maxj:j<isaxj+14+(E-j)v+a)
(maxj:j<i:spbj+(i—34)v)

Using this upper bound for e;, it can be established that f is an upper

bound of e || {a,b} =ep || {a,b}. This derivation similar to the deriva-

tion above.

i}

Remains to find an IH buffer that is an upper bound for . The idea behind
bypassing is that we strive for an upper bound with a small latency, o', between
input and output.

In order to compare f with an IH buffer we have to rule out the use of = and
in Formula 5.69. We use the following implications in order to do so.

(5.70) -~BPi = wi<i j€i = mi-wj<i—j
In case of no bypass at ¢, we infer the following upper bounds for the enabling
of a;¢1 and b;:

144 Chapter 5: Distributed Implementations of FIFO buffers

(5.71) f.s.a547 € max (i+1)x(ymaxi)+1
(maxj:j<i+1:sa;+(i+1~7j)(y max 2))
(maxj:j<i+1~-(v+2)

tebj+ (i+1-(v+2)—f)y +6+2)
(6.72) f.sb; € max i(y max 1)+ 1+«
(maxj:j<i:sa;+(i-jyy+a+2)
(maxj:j<i:sbj+(i-j)+(y max 2))

We give a derivation of the upper bound for f.s.a;4; . The derivation for f.s.b;

is similar.

Derivation of Formula 5.71.

f.s.a,-.,.l
= { Formula 5.69, dummy transformation j:= 7.j }
max 7Taxy-+2
(maxj:j<iA~BP.j:sa;+2+(xi-7mj)y)
(maxj:rj<ni—vA-BP.j:sbja+(ri—-v—njly+8+2)

< { Formula 5.70 }
max (i— 1)y +2
(maxj:j<iA-~BPjisa;+2+(-j))
(maxj:j<i—vA-BPj:sbj1+(i—-v-j)y+B8+2)

< { extension of range for j, dummy transformation }
max (i—1)y+2
(maxj:j<i:s88;+24+ (G~ j))
(maxj:j<i—v—1:8bj+(i-v-1-5)y+4+2)

<

max (i+1)*(y max $)+1
(maxj:j<é:sa;+(i+1-7)*(y max 2))
o (maxj:j<(E+1)-(v+2):8bj+(i+1-(v+2)-gy+5+2)

From Formula 5.71, and under the assumption o' = v+ 2, we conclude the
following restrictions:

(5.73) ¥ 2> 7 max 2 gz B+2
From Formula 5.72, we conclude the following additional lower bound:
(5.74) o 2 a+2
Together with the results in case of a bypass (Formula 5.66), this gives the
following result for the composition @gy,:
(5.73) FIFO « IH(a,8,7,v) =
$pyp FIFO <o IH(a+2,5+2,7 max 2+6,v+2)

This is a disappointing result, the upper bound for the behaviour is no better
than the result for cascade construction B: the delay between input and output
increases by two! (see Formulae 5.36 and 5.37). It is certainly not the result

5.5 Buffers with bypassing - 145

we want to achieve with bypassing. In order to improve the upper bound for
the delay between input and output we reconsider the estimation of f.s.b;. The
idea is that (in case of no bypass) the dependence on a actions can be hidden
by assuming longer delays between subsequent b actions.
{5.76) f.o.; € max i(ymax2+a+e)+2+1
(maxj:j<i:sbj+(i—7)(y max 2+ a+¢))

Derivation of Formula 5.76.
f.s.b;

{Formula 5.69}
max 7Tixy+24a
(maxj:j<mi:sar;+24+(ri—jly+a)
(maxj:j<mi:sbgja+2+(ri-j)v)

{ ~BP(x.j), Formula 5.61}
max 7Taxvy+24+a
(maxj:j<misbzj1+2+(mi-jF)y+a+e)
= {dummy transformation j:=#%.j—1}

F/A\

max rixv+24a

(maxj:j<iA-BP(j+1):8bj+24+(ri-n(j+1))y+a+te)
{ Formula 5.70, extension of range for j }

max (i—1)y+2+a

(maxj:j<iisbj+(i—-j—1y+24+a+e)

max i(ymax 24+a+e)+2+1

(maxj:j<i:sbj+(i—j)ymax 2+ a+e))

N

F/AN

)
From Formula 5.76 we infer the following restrictions, in addition on Formulae
5.66 and 5.73:
577 o 2 2 ¥ 2 24+a+te
This results in the following upper bound for & Byp'
(5.78) FIFO <« IH(e,B,7,v) =

@Byp.FIFO Q JH(2,8+2,y max 2+ a+¢, v+ 2)

At the cost of a —relatively— high throughput delay, we have achieved an
estimation with a latency between input and output of two time units.

The bypass construction can be used to define systolic arrays of bypass cells,
similar as in Chapter 4. In order to obtain implementations for any number
of variables, we use two different tails: B; for odd v and CAS; for even v.
Since bypass cells are not conservative, we have to consider the behaviour of
tails that implement B; and CAS, also. The behaviour of a systolic array
with v variables is given by Ibyp, as follows:

{5.79) Ibyp, <o By , Ibyp, <« CAS; , and Ibyp,,, = ®Byp.o-Ibyp,

146 Chapter 5: Distributed Implementations of FIFO buffers

for bypass cells Byp.v that operate within tolerances § and &. A schematic
representation of an Ibyp, array is given in Figure 5.80.

a

~

b

Figure 5.80 A schematic representation of Ibyp,,s.

From Formulae 5.75 and 5.78, we infer the following upper bounds:
(5.81) Ibyp, <t IH(v, v, 24 6, v) Ibyp, < IH{(2,v,4+¢,v)
An important result, for both upper bounds, is that apparently the decision
whether to perform a bypass or not, is not critical: when the bypass cells operate

within tolerances § and ¢, the influence on the upper bounds is no more than
proportional to § and ¢. For § = ¢ = 0 we obtain:

(5.82) FIFO <« IH(e,B,v,v) =
@Byp.FfFO < [H(a+2,8+2,ymax 2, v+2) A
@Byp-FIFO < IH(2,8+ 2,y max 2+ &, v+ 2)
and for the systolic arrays:
(5.83) Ibyp, <« CAS, Ibyp, < IH(2,v,4,v)

Q(IH(?, v,4, ‘i}), Bp)

X3

3

v v

r Y
P—3

Figure 5.84 A lower bound for Q(Ibyp,,B,).

The quality of CAS, with respect to specifications of type B, is given in
Figure 5.10; the quality of IH(2,v,4,v) is given in Figure 5.84. Both qualities
are combined into lower bound Qgz(Byp,,B,) for the quality of systolic bypass
buffers. This lower bound is given in Figure 5.86. The quality of systolic bypass
buffers with respect to specifications of type By, has lower bound:

(5.85) Q(Ibyp,,Bgp) 2> Qu(Ibyp,,B,) min Qr(Ibyp,,By)

So, under the assumption of unit delays, each specification of type By, can be
implemented with a quality of at least a half. When leaving the assumption
of unit delays, there still is a (uniform) positive lower bound for the achievable
. quality with which specifications of type By, can be implemented.

5.6 Buf-like behaviour as a side-effect 147

QL(Ibypm Bj?)

s

1 1

v v v 1

4] 1
P—3

Figure 5.86 A hybrid lower bound for Q(Ibyp,,B,).

The main drawback of the bypass scheme is that, in hardware, the implementa-
tions of bypass cells are expensive and slow with respect to implementations of
By, and also with respect to implementations of split and merge cells. When
one is satisfied with slower implementations, in particular with a slower through-
put, it suffices to use fewer bypass cells. A throughput delay of 2n + 2 can be
achieved with linear arrays in which the number of bypasses is reduced by a
factor n with respect to Ibyp buffers (under the assumption é = ¢ = 0). Con-
sider for example the array in Figure 5.87, in which the number of bypasses is
reduced by a factor two. This array implements IH(2,14,6,14), whereas array
Ibyp,,4 of Figure 5.80 implements IH(2,14,4,14).

a

Figure 5.87 An implementation with a reduced number of bypasses.

However, after such a reduction, the number of bypasses is still linear in the
number of variables. From Formula 5.43 we learn that the parallel construction
can be used to compensate the increase of the throughput delay: it reduces
the throughput delay by a factor two. Using this property, it turns out that
under limited neighbourhood a logarithmic (in v) number of bypasses suffices;
and that under limited surroundings it suffices to use a number of bypasses
proportional to the square root of v. The implementations that meet these
bounds are similar to the Ilog , and I / implementations in the previous section
{Formulae 5.46 and 5.49). It is left as a challenge to the reader to construct such
implementations.)

5.6 Buf-like behaviour as a side-effect

The most simple form of a ‘buf-like’ behaviour, is the behaviour of a one-place
buffer. This behaviour is very common for systolic arrays that communicate to
the environment via one cell. For example, the solutions of the ‘max’ problem
in Section 4.3. A more general buf-like behaviour is exhibited by systolic arrays

148 Chapter 5: Distributed Implementations of FIFO buffers

with the input at one side, and the output at the opposite side. In such arrays,
the latency between input and output is (at least) proportional to the length
of the array (the distance between input and output). In general, concurrent
programs can be used to decrease the latencies and the throughput delay (with
respect to sequential programs). It is clear that arrays with input and output
at opposite sides are not particularly suitable to obtain small latencies. In this
section we informally discuss three (general) examples implementations that
are especially designed to obtain small throughput delays. The first, ‘parallel
computation’ is a blunt approach in which sequential programs are placed in
parallel, in a similar way as we did for FIFO buffers with limited neighbourhood
(Figure 5.38, Formula 5.45). The second, ‘pipeline computation’, consists of
dividing a computation over a number of cells that are placed in cascade, similar
to the cascade buffers (as given in Section 5.1). Finally, we discuss linear systolic
arrays that communicate to the environment at both sides.

Parallel computation

Consider the data-specification ¥(¢) = C.a(i), for some function C. A straight-
forward implementation of this specification is given by

program COMP (input a, outputb):

var 7 ;

begin

(alz ; biC.z)

end.
For C the identity, this would yield a one-place buffer. We assume, however,
that C is a complicated function that takes s time units (relative to the du-
ration of a communication, which is normalized at 1), for some & >> 1. The
behaviour of the program is given by:
(5.88) Comp = IH(1+k,1,2+4k,1)

"The duration of a computation, &, does not only result in a large latency be-
tween input and output (1 4 &), but also in a large throughput delay (2 +).
Without using specific properties of function C, it is not possible to reduce the
latency. By placing programs in parallel, however, it is possible to reduce the
throughput delay. We exhibit such a parallel construction under the condition
of limited neighbourhood.

Assume, for the sake of simplicity, that Kk + 2 = 27+1 for some natural n. Ap-
plying the parallel construction (Figure 5.38) n times results in the following
behaviour (see Conditions 5.44, compare to Formula 5.45):
(5.89) P".Comp ~ IH(2n+x+1,2n+41,2,3%2"-2)
The right-hand side of this formula is roughly equal to

IH{x + 2logk, 2logk, 2, 3/2K)
Figure 5.90 gives the speed of this construction, relative to B, buffers. This

5.6 Buf-like behaviour as a side-effect 149

result is achieved at the cost of approximately 3/2x variables, and x/2 (ex-
pensive) function blocks for program COMP. In addition to these costs, there
is also the overhead (of control) in the implementation of the split and merge
cells that are used in the parallel construction P .

Q(P™1.Comp, B,)

2 tlogy Kk 3x-logyk 3k p-1 —

Figure 5.90 Approximate performance of parallel computation.

Pipeline computation

Consider the same specification as in the previous paragraph. Assume that
the computation of C can be distributed over N computations of more simple
functions C, as follows:

(5.91) C.z = CN—I .CN,.z e Cl .Co.x
where the function application is right associative.

Let Comp,, describe the behaviour of the program for C,. The duration of the
computation is K, :
(5.92) Comp, = IH(1+ £4,1,2+ g,1)
The pipeline that computes C is a cascade of the programs for Cg, C;, up to
Cn-1 . Its behaviour is given by:
(593) Pipe =

([|n:0<n< N :p*IH(1 + Kn, 1,2 + Kny 1)bpa) u {a,b}
for a renaming p with p¥.a = b.
In contrast to the cascades for FIFO buffers, we have obtained a cascade in which
the cells have other than unit delays. Without proof we mention the behaviour
of such cascades. Computing such behaviours simply consists of adding laten-
cies, adding the number of variables, and taking the maximum of the throughput
delays.
(5.94) (IH(a, 8,7,)b~ || IH(@,B,7,8)ae) I {a,b}

~ IH(a+a,B+8,7,v+%)

Furthermore, the conditions on = (Conditions 5.44) can be extended with:
(5.95) e~ IH(a,B,v,v) A {2 IH(&,8,7,%) =

(e || fame) I {a,0} = IH(a+@&,B+(3,7 max 7, v+7)
This allows us to rewrite the behaviour of Pipe into
(5.96) Pipe =~ IH((1+&)*xN,N,2+k&,N)

150 Chapter 5: Distributed Implementations of FIFO buflers

where & is the average of &, and & is the maximum of &, (for 0< n < N).
The performance of this pipeline is given in Figure 5.97. It resembles the exper-
imental results, as well as the results of logic simulation, that are given in [17]
(Figures 9 and 10 respectively).

N
x

L34
v
b

&
%i*N Np

.% ——
Figure 5.97 Performance of Pipe, relative to B, buffers.

The effect of the duration of computations is illustrated in Figure 5.104. In
this figure, III corresponds to the case that all computations are equally fast,
£ = K. Case I in the picture corresponds to & = K+ 1.

Pipeline implementations cannot achieve throughput delays smaller than two
times the duration of a communication. Furthermore, an efficient pipeline im-
plementation can only be achieved if a computation can be distributed, as in
Formula 5.91, over sufficiently small sub-computations. The costs of pipeline
implementations, however, are usually considerably less than for parallel com-
putations. Apart from the overhead, due to distribution of the computation,
only one realization (implementation) of function C is used, whereas in parallel
computations, the number of functions blocks that compute C is proportional
to the speeding-up that has to be achieved.

Systolic computation

In general, data specifications are of a less trivial form than b(i) = C.a(i).
Take for example the specification of the maximum of segments that is given in
Section 4.3. In this section we discuss implementations with systolic arrays that
communicate with the environment at both sides.

A basic technique in designing systolic implementations is the introduction of
additional channels, see for example [14]. We discuss arrays Pipy in which
only one additional channel (¢) is introduced. The arrays consist of N cells
and a one-place buffer, as given in Figure 5.98. At the left-hand side, values
are received from the environment along channel a. At the right-hand side
the results are sent to the environment along channel b = p™.a. Within the
array there is an additional ‘counter stream’ along which old results are sent
from the right to the left. The outputs that result from the counter stream
are not available to the environment (in contrast to for example the arrays in
Section 4.3), in the picture this is symbolized by receiving them in a sink.

5.6 Buf-like behaviour as a side-effect 151

a N . N N pPa=b
.| Pe p.pc p*.pc P.pe| |ptpc e
Sink = < - <« R.B,

Figure 5.98 Schematic representation of Pipg.
We assume that the cells meet the following (data) specification:

c(i) = pe(i-1) pa(i) = C'(a(i),pc(i—1))
where p.c(—1) is some predefined constant (and not a communication along
channel p.c). In the following program we deliberately separate the computation
of va and the communication of va along channel p.a. This allows us to
investigate the effect of alternative orderings for these actions.

program Pip-cell(input a,p.c, output p.a,¢) :

var va, e

begin {ve = p.e(—1)}

(ctve; pctoc)

a?va ; (va := C'(va,ve) ; (p.atve ; alva),p.clvc)*
end.

Let & be the duration of a computation {plus an assignment) and let K = N &
Enabling structure pc gives the behaviour of the program:

(599) pcsa; = if i=0 = 1] i>0 — spa_;+1 fi
pcspa; = 87 +1
pcsn; = if i=0 - sa+k
J ¢>0 — s.a;+ & max s.pei.i+ &
fi
peseg = if i=0 = 1 [i>0 = spyg+1 fi
pc.s.pe; = 8.7+ 1 max s+ 1

where T actions symbolize the (completion) of the computations of C’.
L1
st
M .
/ p.cg \
c; 1 1

Figure 5.100 Dependencies in pc.

Cit1

The external behaviour of the array is the same as for a pipeline with a uniform
distribution, without overhead: & = & and & = & * N . This behaviour is given
by

(5.101) Pipy ~ IH(N + k, N, 2+ &, N)
Usually, constructions like || in the program-text of Pip-cell, that are freely

152 Chapter 5: Distributed Implementations of FIFO buffers

used in this thesis, are not allowed in programming languages. In particular,
the appearance of pe?ve in both parts of the parallel composition may be a prob-
lem. A solution is to describe the program with one choice-free command. This
means, however, that the behaviour has to be restricted: there is no choice-free
command that describes the behaviour of pc. We briefly discuss three alterna-
tives:
{(5.102) I: (a,e; 7; p.a,pc)*
II: a;(r; pa,c; a,pe)*
HI: a;((r; pa),c; a,p.c)*
The first behaviour is almost perfect. The only problem is the delay that is im-
. posed by the one-place buffer between p".a and p".c. Apart from a relatively
small increase of the latency from b to a, this results in a more significant in-
crease of the throughput delay (see Formula 5.103). In the second behaviour, the
combination of restrictions imposed by two adjacent cells results in a through-
put delay of 2+ 2% (dependencies p.e;_y — 75 — p.a; and p.a; — p.1; — p.&s).
Only the third behaviour results in the same external behaviour as the original
array with cells of type pc. Verification of these resulis is left to the interested
reader.

(5.103) I: IH(N+k,N+1,3+% ,N)

II: IH(N + &, N +%,2+ 2R, N)

Im: ~ IH(N+x, N ,2+&,N)
The performance of these three alternatives, as illustrated in Figure 5.104, illus-
trates that one should be careful when restricting the behaviour of a program.
It is advisable to analyze the un-restricted behaviour first in order to obtain an
upper bound for the performance. In this case, only the third alternative meets
this upper bound.

2

4

1t 14

i 1 3
¥ ¥

Q1,B,) N Qu,s) N quu,B) N

Figure 5.104 Performance of the three alternatives, for £ = 0,1,3,7 %

“As usual, p— 1 is along the horizontal axis.

Chapter 6

Conclusion

In this thesis we introduced a model that allows us to express, manipulate,
and compare (a certain type of) real-time behaviours. The first two topics are
discussed in Chapter 2, the third in Chapter 3.

The manipulations concern the parallel composition of mechanisms (||), and
hiding of actions from the environment, called masking { « }. Another important
manipulation is the abstraction from internal actions, called projection {).
Masking and projection are completely different operations: masking describes
modifications of mechanisms that change external actions into internal actions,
projection is used to make the description of mechanisms more abstract, with-
out modifying the described mechanisms. When reasoning in terms of external
behaviours only, every act of masking should be followed by an act of projection.
The combination of both operations is called restriction (|).

The comparison concerns the speed of the external behaviour of mechanisms.
Both relations, < and <, that have been introduced to compare speed, are
suitable for compositional design, in that parallel composition as well as re-
striction are monotonic (with respect to them). A remarkable feature of both
relations is that they are neither reflexive, nor anti-reflexive. The reflexive do-
mains of these relations are considered to be the ‘smooth’ behaviours. For «
these are the ascending behaviours, for < the conservative behaviours.

In this chapter we discuss some extensions of the expressive power, Section 6.1,
and the manipulative power, Section 6.2, of the model. These include the us-
age of zero delays and the introduction of serial composition (catenation). In
Section 6.3 we conclude this thesis with some final remarks.

6.1 Expressive Power

Liberal delay conditions

In Example 2.73 we illustrated the phenomenon of dependencies that seem re-
dundant, but formally may not be pruned. Though the necessity of such re-

153

154 Chapter 6: Conclusion

dundant dependencies does not affect the expressiveness of the model, they are
‘unnatural’ and may confuse the understanding of a behaviour. In concrete
examples, intuition tells us that these dependencies are redundant. In this sec-
tion we show that one should be careful when trying to formalize ‘liberal delay
conditions’ that would allow such a pruning.

Using Corollary 2.71.1, we can give the following —indirect— definition of ‘lib-
eral’ enabling structures.

Definition 6.1 Liberal enabling structures.

A structure F is a liberal enabling structure if (and only if) there exists an
enabling structure E over the same alphabets as F' that satisfies £ =pg F
(that is, the behaviour on PE is identical).

- A

It is, however, far more convenient to have a direct characterization of liberal
delay conditions. Since, for any enabling structure, only the behaviour on its
process really counts (see Corollary 2.71.1), one may be tempted to give the
following qualification of liberal enabling structures, using the ‘liberal delay’
drE of enabling structures (compare with Definition 2.21): _
A structure E is a liberal enabling structure if (and only if) bE > ~o0o and
drE > 0, where:

drE = (glbs,t:s,te PEAs#t:sim(fE.s,fE.t) —sim(s,t))
for PE as in Proposition 2.33:

PE = (sets:as=aFE A s2FE.s A sliE=EsliE:s)
By means of an example, we show that this is not a satisfactory qualification.

Example 6.2 Problems with liberal delays.

Let e have external alphabet {a,b} and an empty internal alphabet. Let
furthermore the behaviour of e be defined by:

esa = if sa€2 —» o [} sa>2 - 1 £
esb = sa+1

From the formula for PE weinfer Pe = (sets:sa>2Asb2>sa+1:8).
From the formula for drE we infer dre = 1. However, ¢ does not have
a history; the process of en b is even empty! In general, each structure E
with an empty process has liberal delay drE equal oo (which is more than
zero).

a

Partial enabling structures

In this thesis we assumed that enabling structures must have a ‘beginning’,
in that the behaviour that is described may not begin at —oo. For initiated

6.1 Expressive Power - 155

enabling structures we even assume a beginning after moment zero on the time-
axis. Once in a while, however, it may be useful to have partial definitions, or
partial estimations, of behaviours, that do not necessarily have such a beginning.

Example 6.3 Usage of partial enabling structures.

Consider the estimation of the behaviour of ‘ IH ’ buffers in Section 5.3. Any
enabling e function over {a,b} that satisfies:

esh; 2> sa;+a
has a quality with respect to By, of at most (2¢ — 1)/«

Another way of expressing this, is by using partial enabling functions f, on
{a,b} that state latency restrictions as follows:

fy.8.0; = ~0 fo.8.0; = s.a;+a
From the fact that the quality of f, with respect to Bgp is (2¢ - 1)/a,
and f, <i e, can be concluded that the quality of e is at most (2¢ — 1)/«
(under the assumption that the comparison of enabling functions is extended
to partial enabling functions). In this way, the effect of partial behaviour on

the total behaviour can be estimated in a compositional way. For example,
the ‘cascade’ of £, and for is L o

(fa brc H fara — c) iT {&,b} X gy
This knowledge can be used to estimate the latency of a cascade of the buffers
e and e', of which the first has latency at least a, f, < e, and the second
has latency at least o', f,» <0 e'. Because parallel composition is monotonic
with respect to < , we can immediately conclude that the cascade of both
buffers has at least latency a+ ':

fatar U (Rpae-€ || Rame€’) [{asb} .

0

Partial enabling structures can be defined as structures! E such that for all s
over the external alphabet of E, E || ns is a (non-partial) enabling structure.
For partial enabling structures, masking is not always allowed; take for example
fx as in the example above: f,1b is not a partial enabling structure.

Zero delays and almost zero delays

In the enabling model, we assumed a universal, positive lower bound for the
delay between cause and effect. This clearly rules out delays of zero time units.
Though such zero delays may not be realistic, they can be useful when reasoning
‘in abstracto’ about the behaviour of some programming constructs.

Example 6.4 Usage of zero delays in modeling interleaving of events.

Consider a device with internal events of type a and b, that share a re-
source under mutual exclusion. This ‘sharing’ enforces an interleaving of

' In fact as generalizations of structures, for which E.s.c may be —oo.

156 Chapter 6: Conclusion

]

occurrences of a and b. In order to give an estimation of the (additional)
delays that are imposed on the completion of these events, due to inter-
leaving, we first have to give a formal description of this interleaving. We
distinguish three stages in the usage of the shared resource:

o the request for the resource: actions @; and b;,

o the assignment of the resource, which coincides with the initiation of the
event: actions ia; and ib;,

o the release of the resource, which coincides with the completion of the
event: actions a; and b;.

Under the assumption that a actions take o« time, and b actions take §
time, the enabling of completions is given by:

F.sa; = siag;+a Esb;, = s.ib;+p

We assume a ‘first requested, first served’ regime, in which the causal delays

between request and assignment, and between release and next assignment
are zero. Furthermore, we assume a slight preference for a actions; that is,
when a request for an e action and for a b action occur simultaneously,
the resource is assigned to the a action first. This results in the following
enabling for actions ia; and ib;:

E.sig; = s.d; max (lubj: s.z,- < 8. : 8.b;)

E.s.ib; = s.b; max (lubj: s.3@; < 8.b; ¢ s.a;)
which is a description with zero delays, under liberal delay conditions.
Finally we assume that the request for a;41 cannot be performed before the
completion of a; ; similarly for b events:

EsGi1 2 s E.s.E.-H 2> s.b;

Under these conditions, the following bounds for s.e; and s.b; can be de-
rived:

s@;+a € sa; € s@G+a+p
shi+B < < sh+a+p

Consequently, the ‘effective duration’ (between request and completion) of
a events and b events is at most o+ 8.

s.b;

In the above example we used zero delays in a way that can, obviously, be
incorporated in the enabling model. In general, however, the usage of zero
delays may cause problems. One problem is ‘productivity’. A lot of reasoning
about enabling structures is based on the fact that, if we know something about
schedule s up to moment M , we can conclude something about schedule E.s
up to moment M + dE. Unfortunately, an enabling structure E with zero
delays has dF = 0. Apart from problems with productivity, there are problems
with ‘feedback’.

6.1 Expressive Power - 157

In [10], three important features of ‘real-time’ semantics are postulated: respon-
siveness, modularity, and causality. Responsiveness means a reaction delay
of zero; modularity states that the behaviour of a composite follows from the
behaviours of the participants; causality states that ‘for every event that is gen-
erated, there is a causal chain of events that leads to this event’. Furthermore,
the negative conclusion is drawn that these three features are in conflict: no
semantics can exhibit all three of them. The following example, with ‘positive
feedback’ shows a similar result for the enabling model.

Example 6.5 Positive feedback.

Assume that we allow enabling functions with zero delays. Let enabling
functions e and f, both over {a,b}, model mechanisms in which & has to
wait for a, and in which a has to wait for b respectively:

esa = 1 esbh = sa fsae = 8b fsb = 1
The parallel composition of e and f is given by:
(e || f).s.a = 1 max s.b (el £).sb = 1 max s.a

Let us first consider what happens when actions are performed as soon as
they are enabled. That is, let us consider the solutions s of the history
equation (e || f).s = s (see Definition 2.27). Foreach M : M > 1, schedule
{(a,M),(b,M)} is a solution of this equation. In contrast to enabling
functions with positive delays, the history equation for e || { has no unique
solution. Under the assumption of ‘causality’, however, the positive feedback
‘e implies b implies @’ is no justification of the occurrence of a. This
interpretation corresponds to the ‘least’ solution of the history equation: ¢.

The same assumption of causality corresponds to a process P{e ||)= {¢e}.
However, schedules of type {{a,M),(b,M}}, for 1 £ M, are all members
of the processes of both e and f, but only ¢ is a member of {e}. This
does not stroke with compositionality: when a schedule is allowed by e as

well as f, it should also be allowed by e || f.
0

Summarizing, responsiveness, causality, and modularity are conflicting demands.
In the enabling model we have chosen for causality and modularity.

An even more exotic example of abusing zero delays is ‘negative feedback’ action
a triggers the enabling of &, but when b happens instantaneously it disables
a.

Example 6.8 Negative feedback.
Let enabling function g describe a mechanism that prevents o when b is
performed before (or at) a critical moment {2):

gsa = if sbg€2 -
I sb>2 — 2
fi

gsh = 1

158 Chapter 6: Conclusion

The history equation of e || g has no solutions at all (see the previous ex-
ample for). When a happens at 2, b is enabled at 2. Assuming that b
happens at soon as it is enabled, it also happens at 2 and consequently pre-
vents a from being performed. When on the other hand, a happens after 2,
b also happens after 2, and consequently a is enabled at 2. Apparently,

o and-b cannot both be performed as soon as they are enabled.
O

Both examples illustrate that one should be careful when using enabling func-
tions with zero delays. As soon as delays are non-zero, feedback cannot occur
any more. In the model, we even assumed a positive lower bound for all delays.
. This positive lower bound allows to prove several properties by induction, or by
referring to Banach’s contraction theorem. A —restricted— way to allow arbi-
trary small delays is by inserting the following productivity demand, instead of
the demand for a positive delay, in the definition of enabling structures (Defini-
tion 2.21):

s#t = sim(E.s, E.t) > sim(s,t))
The productivity lies in the ‘>’ in this formula.
Example 6.7 Arbitrary small delays.

We present a function e that is allowed by the productivity demand, and a
function f that is not. e has a positive ‘global delay’, whereas for f only
the individual delays are positive.

esa; = if i=0 — 1
I i>0 — saiq+27°
fi
esdh; = if i=0 — (lubi: :s.a;)+1
I i>0 — sbq+1/i
fi
fsa; = if i=0 — 1
I i>0 — sap+1/i
fi

If s.ap # t.ap, and for all ¢ s.a; 2 s.a0 and t.a; 2 tag,
sim(f.s,f.t) = sim(s,).
m]

Most propositions remain valid when enabling structures may have arbitrary
small delays. The proofs, however, cannot rely on ‘simple’ induction, or on
Banach’s theorem any more. For example, it is evident that the history equation
has at most one solution, but we won’t bother the reader with the proof that
it has at least one solution. Things get even worse when using the following
definition of arbitrary small delays, that considers delays for individual actions:

s#t = (Va: :sim(E.s.aq,E.t.a) > sim(s,t)))
This constraint also allows enabling function f of the previous example.

6.2 Manipulative Power 159

Since we could not think of ‘practical applications’ for arbitrary small delays,
we took the easy way by forbidding them.

6.2 Manipulative Power

Identification

Identification is a generalization of renaming. Where renaming can be used to
connect mechanisms to each other via the proper actions, identification can be
used to connect mechanisms to themselves,

Consider, for example, a systolic array such as given in Figure 5.98. The output
p®.a is fed back into the array via a one-place buffer, R.B;, to input pS.c.
Another possibility to establish a feedback, is to connect the output directly
to the input, without delay. Such a loop can be described by identifying p°.c
and p*.a: p®.c = pb.a = b (see Figure 6.8). Such an identification is explicitly
prohibited in the definition of renaming.

a p°a b

pe p.pc pt.pc p.pc prpe|

Sink [B - -t - -

Figure 8.8 Array with instantaneous feedback.

Another way to describe a direct feedback is by using a deviating tail-cell in
the first place. The usage of identification on the general cell has the advantage
that in this case the array consists of identical cells. It already suggests that the
tail-cell can be implemented (in VLSI) in the same way as the other cells: the
identification can be established by the surrounding wiring.

Identification of p.a and p.c with b in cell pc (see Formula 5.99) results in the
following behaviour:

(6.9) pc'sa; = if i=0 — 1

I i>0 — 8.bp 141
fi

pc’srm = if i=0 — sa;++w
I i>0 — s+« max sbi;+ &'
fi

pc'se = if i=0 — 1
ﬂ i>0 — s8bi1+1
fi

pc’sb; = 8.7+ 1 max s.¢+1

Identification may, however, lead to anomalies. Consider for example the alter-
natives for pc that are given in Formula 5.102. Ouly the first one gives rise to
an acceptable behaviour (in fact to an array that is equally fast as an array with

160 Chapter 6: Conclusion

cells of type pc). Identification of p.a and p.c in both other alternatives results
in ‘lock’, because they do not allow p.a and p.c to occur simultaneously. The
identifications are given by:

(6.10) Ipaubpsss: (a,e; 73 0)
I panbpse: a;7;c; 0
111 pa—-bpbsb i 85 T,C5 &0
The reader is invited to give a formal definition of identification.

The introduction of identification as an additional operation on enabling struc-
tures causes us to reconsider the way in which we compare enabling structures.
We are pleased to inform the reader that identification is not only monotonic
with respect to process inclusion, but also with respect to the comparison re-
lations <« and < . Therefore, both relations can be used for compositional
design that includes the possibility of identification.

Sequential composition

In this thesis we introduced parallel composition as a way to compose mech-
anisms. An operation with which most programmers are more familiar is se-
quential composition, or catenation. The catenation of two mechanisms, E; F,
can be defined as a mechanism that first performs E, and initiates F at the
moment that all external activities of E are completed. Under the assumption
that F describes a mechanism relative to its moment of initiation, the initiation
of this mechanism at moment M results in behaviour F & M (the translation
of F' over M , see Definition 2.41).

Example 6.11 Catenation.
Let enabling structure E over external alphabet {a,b} and internal alpha-
bet ¢ be given by:

Esa = 1
Esbdb = sa+1min3
Ese = sb+45

Let furthermore enabling function f over d be given by:
fod = 2

The catenation E;f has external alphabet { a,b d} and internal alphabet
¢, and its beha,vmur is given by:

(E;f)sa = 1

(E;f)sb = sa+1min3
(Eif)se = 8b+5

(E;f).sd = (s.a max s.b)+2

A formal definition of catenation can be given as follows:

6.2 Manipulative Power 161

Definition 6.12 Catenation of enabling structures.
For F and F such that eF £ @, bF > 0,and aEnaF = &, the catena-
tion F; F is an enabling structure with external alphabet eE U eF | internal
alphabet iE U1F | with the following behaviour:
(E;F)sa = if acaE — E.(staE)a
I ecaF — if Cs=00 — o
[Cs<oo —» (F&C.s)(slaF)a
fi
fi
where C.s gives the moment that the external activity of F is completed:
Cs = (luba:a€eE:sa) .
0O

In contrast to identification, catenation affects the way we compare enabling
structures: catenation is not monotonic with respect to < .

Example 8.13 Catenation and < .
Let ¢ and f be defined by:
esa = 1

fsb = 1
fse = if sb<l15 — 2
I sb215 — sb+2
fi
Both e and f are ascending, consequently ¢ < e and f <« f. The cate-
nation of e and f has the following behaviour:

(e;fsae = 1

(e;f)sh = sa+1l

(e;f)se = if sb-sa<1l5 — sa+2
[sb-sa>215 — sb+2
fi

This catenation, however, is not ascending, it is not even a member of [Asc].
Let for example s = {(a,1),(,3),(¢,5)} and ¢t = {{e,2),(b,3),(c,3) }.
Though s € ¢, and both s and f are members of the process of the cate-
nation, {e;f).s.c=5 and {e;f)te=3.
We have to conclude that = ((e;f) < (e;f)).

O

Fortunately, catenation is monotonic with respect to the robust implementation
relation < . Infact, < is a maximal implementation relation under the condi-
tion of monotonicity of catenation. Therefore, <i can be used for compositional
design that includes catenation of mechanisms, while < cannot.

Another way to incorporate catenation in the model, is by enhancing enabling
structures with explicit external actions for initiation, 1, and completion, T . A

162 Chapter 6: Conclusion

convenient way to do this, is to define E.L = —0o (partial enabling structures),
or E.L =0, and to allow zero delays in the enabling of T. Catenation of
enabling structures with disjunct alphabets (except for L and T) can now be
defined as a parallel composition in which the completion of the first and the
initiation of the second are identified, and subsequently hidden.

Example 6.14 ‘1 - T’ enabling structures and their catenation.

We rewrite the enabling functions of Example 6.13 into ‘L - T’ enabling
functions.

esl = 0

elsa = s.Ll+1

e'.s.T = s.a

fls.l = 0

flsb = sl+41

flse = if sbh-31<15 — 5.1 +2
I sb~sl215 — sb+2
fi

8T = s

Observe that ' is not ascending, in contrast to . In fact,a ‘L - T’ en-
abling structure E’ is ascending, if (and only if) the corresponding ‘normal’
enabling structure, E , is conservative. The catenation of e’ and f’ is given
by:

(YL =0

(¢'f).sa s.L+1

(¢ f)sb = sa+1

(' ").s.c

i

if sb—sa<1b5 — sa+2
| sb-s5a>215 — sb+2
fi

()T = s

We leave formal definitions of this type of enabling structure, and this type of
catenation, to the imagination of the reader.

The introduction of catenation, with either definition, is not sufficient to deal
properly with enabling structures over generic actions; this is already clear from
the convention that alphabets must contain all occurrences of generic actions,
or none: the behaviour of an enabling structure over at least one generic action
is not completed until oo. So, a first requirement is to allow enabling struc-
‘tures over the first occurrences of generic actions. Catenation involves then a
renumbering of occurrences. Consider for example the enabling function that
can perform one occurrence of a: &.8.09 = 1. An enabling function that can
perform two occurrences of a is given by { = & €ag — ay - It is clear that
for enabling structures over generic actions the renumbering should be incorpo-
rated in the definition of catenation, as is done in Table 6.15. From this table we

6.2 Manipulative Power 163

also learn that, where the old description fails to model catenation properly, the
new description fails to model parallel composition properly. Apparently, both
operations impose conflicting demands on the way in which enabling structures
are used to describe mechanisms over generic actions.

command old description new description
a esa; = if i=0 - 1 8.8.09 = 1
§ i>0 - o
fi ag = {ao}
a? fsa, = if i=0 — 1 {800 = 1
[i=1 - sag+1 fsay = sag+1
I i>1 - o)
i af = { ag, a1 }
compo- e;e = ¢ é;é_ = g'
sitions ellf = e gl|f = 1

Table 8.15 Comparison between ‘old descriptions’ and ‘new descriptions’.

We mention two solutions for the incompatibility of catenation and parallel
composition for mechanisms over generic actions. The first imposes restrictions
upon hierarchical design, the second yields a redefinition of parallel composition.

s Hierarchical descriptions of mechanisms must start with a phase of com-
positions that are similar to those in choice-free commands (Section 2.4):
catenation and parallel composition without shared actions. Both are de-
scribed properly with the ‘new description’. This phase must be followed
by ‘blowing up’ the use of generic actions to all occurrences of these actions
(the added occurrences must be enabled on oo). This blowing up results in
building blocks according to the ‘old description’ that can be composed in
parallel.

s Another solution is to use the ‘new description’ and to add missing oc-
currences before computing parallel composition. For example, & (see Ta-
ble 6.15) has one occurrence of a less than f . Before performing the paral-

lel composition of both, & should be blown up to enabling function g over
{ag,a1} that is defined by:

gsas = 1 (asfor &)

g.8.a1 = oo (to prohibit ay)

The parallel composition of g and f trivially is g. A disadvantage of this
blowing up method, is that one obtains whole ranges of enabling structures
over distinct alphabets that are equivalent. For example, g is equivalent to
e.

164 ’ Chapter 6: Conclusion

An essential remark about blowing up, for both solutions, is that it is monotonic
with respect to <.

The problems with catenation become even more interesting, when the number
of occurrences can depend on the schedule. For example as in the bypass cell
(Section 5.5) in which ¢ actions happen in case of a bypass only (Formula 5.58).

6.3 Miscellaneous

The enabling model provides a means to analyze, and compare, the real-time
behaviour of a variety of mechanisms. It supports parallel composition of mech-
anisms, abstraction from internal actions (projection), and hiding of external
actions (masking). In this chapter we showed that the model also supports
identification of actions and sequential composition of mechanisms. The speed
of behaviours is compared by means of a relation * < ’ that can be used in com-
positional design. The analysis of conservative behaviours, is straightforward
and relatively easy. For example, process inclusion suffices to conclude that a
conservative implementation is at least as fast as a specification. Furthermore,
variation of delays in conservative implementations has at most a proportional
effect on their speed.

The computation of behaviours, in this thesis, is done by hand. The computation
of parallel composition is rather easy; the computation of restriction is usually far
more laborious. An interesting topic of research is the automated computation
of these operations. For enabling structures in general, this can be considered
Utopian. A lot of mechanisms, however, exhibit a kind of ‘repetitive’ behaviour;
for example, of the form §;7T*. For repetitive mechanisms that have fixed
delays automated computation, or estimation, appears to be a realistic option.
In [4], the ‘timing simulation’ (history) of ‘pseudorepetitive systems’, which have
AND-causal dependencies with fixed delays only, is approximated by means of
linear programming. We are, however, more interested in efficient computation,
or estimation, of the complete external behaviour of mechanisms.

For non-conservative behaviours the analysis becomes less attractive. Take for
example the bypass cell, as given in Section 5.5. In contrast to conservative
behaviours, there is no —predefined— relation between the index of an action,
and the indices of the actions it depends on. This gives rise to delicate manip-
ulations with ‘index transformations’ (and their inverses), dependent on choices
that are made in the past. Furthermore, the behaviour critically depends on
the accuracy with which these choices are implemented in ‘real world’ devices.
A suitable way to specify (or describe) such a device is by means of a set of
enabling functions that gives all allowed (or possible) functional behaviours of
the device. This is a gereralization of specifications by means of relation <,
in which specification f in fact specifies the set of enabling functions e that
satisfy e < f. A typical way to analyze mechanisms that have to meet a con-
servative specification, but consist of such non-conservative building blocks, is

6.3 Miscellaneous - 165

to use comparison relation < on a global level only, and to use other criteria
on a local level.

The model is developed to describe true concurrency: it does not enforce arti-
ficial interleaving of actions in the description of concurrency. A drawback of
the model is the effort that is required to describe intended interleaving (e.g.
Example 6.4). Another problem is that the way in which we compare the speed
of mechanisms, is not really fit for mechanisms that interleave (external) actions.

In this thesis we concentrated on real-time behaviour, neglecting the data. This
separation of concerns is only possible when the real-time behaviour is data
independent. In some cases of data dependency it suffices to decouple the real-
time behaviour by introducing non-determinism. This is done by describing a
device with a set of the enabling structures that correspond to the real-time
behaviours of the device for each possible (input) data. This leads, however,
to loss of information that may be crucial to prove correctness of the real-time
behaviour. For a concise description of devices that exhibit data-dependence,
the enabling of actions must be given dependent on values that are received (or
sent).

In the enabling model, we have chosen to describe the real-time behaviour of
a wide class of deterministic, non-disabling mechanisms, rather than to restrict
the model to a subclass of these behaviours. If only the conservative behaviours
are considered, one obtains a relatively simple model in which process inclusion
suffices to compare speed. It may be worthwhile to study properties of even
more restricted subclasses of behaviours, such as the possibility for automated
computation of operations, which is mentioned before. In the opposite direc-
tion, it is interesting to study generalizations, such as behaviours that may be
non-deterministic, possibly probabilistic. Another generalization is the above-
mentioned inclusion of the description of data. It needs no argument that such
modifications require other ways to compare and specify behaviours — instead
of the relation <1 and the induced notion of quality, which are used in this
thesis. Even for the model as is, it is interesting to consider other types of
comparison and specification.

Appendix A

Notational Conventions

Functions

A function in 4 — B is a function with domain A and range B ; we use this
notation rather than the notation B4 . For function application we use the nota-
tion with a dot, as well as a notation withoutadot: fz = fe) = flz) = fz .

For functions with a totally ordered range, lub (glb) is defined as the point-
wise maximum (minimum), where < is defined as the related partial order.
That is, for f and ¢ functions of the same type:

(flub g).e = f.a max g.a (for all @ in the domain of these functions)
and f<g & (flubg)=g.

For functions we also use a set-notation. For example, {(a,3),(b,1)} is used
to denote the function with domain {a,b} that maps a on 3 and b on 1.

Miscellaneous

The number of elements of a set X is denoted by | X |.
For the sake of convenience, we frequently use a hidden and. For example, we
write @ = b = ¢ instead of (a = b)A(b=¢) and a,b € A instead of
(a€ A)A(be A). The way we formulate derivations is also based on this
hidden and. For example the following derivation of (f lub g).a 2 f.a:
(f lub g).a
= { definition of lub }
f.¢a max g.a
2 { definition of max }
f.a

The (optional) remarks between braces are called hints; they are inserted to
clarify the individual steps of the derivation.

166

167

Quantified expressions

The general pattern we use for quantification is:
(quantifier dummies : range of the dummies : quantified expression)

Restrictions in the range that are evident from the context are usually omitted.
Quantification over an empty range gives the unit element of the quantifier.

Below an example of quantified expressions, under the convention that z and
y are reals.

(Fz,y: 122 = ~-(1+9?)) = false
(lubz,y:22=—-(1+9?):2) = -
(setz:ze{-1,0,1}:2%2) = {0,1}
(glbzx:ze{-1,0,1}:22) = 0
The quantifiers we use are:
quantifier | meaning unit element
v universal quantification true
3 existential quantification false
glb greatest lower bound dependent on type of expression
tub least upper bound idem
max maximum idem
set set constructor %]
3 summation 0
U union of sets 7]
n intersection of sets dependent on type of expression
I parallel composition idem

Binding power

In order to save parentheses we attach different binding powers to several op-
erators. The lowest binding power is given to binary relations, then follow the
other binary operations and then the unary operations. A refinement of this
tri-partition is given in the table below.

168 Appendix A: Notational Conventions

>, <, &
A,V
other binary relations

| , max, min, lub, glb
) T’ r,lr’\’l‘)l
+ ’ @ |
*, ©
function application with a dot
function application without a dot

JamoJ Burpurg Buisearou]

unary operations \

ilf-

In order to save even more parentheses, binary operations with the same binding
power are (mutually) left associative; except for function application without
a dot, which is right associative. For example: 5-2+43 = (5—2)+3 and
e.s.a = (e.s)a,but bPE = b(PE).

Appendix B
{AND,OR} Causality!

In Section 2.2 we used dependence functions to introduce the basic concept
of enabling. Dependence functions state the dependence of one action on an
arbitrary number of (other) actions. In this appendix we introduce two types
of composition on the level of dependence functions: AND-causal composition
and OR-causal composition. The first is similar to parallel composition (||):
an action is enabled as soon as all preconditions are satisfied. In the latter, an
action is enabled by a composition as soon as at least one of the preconditions
is satisfied. Furthermore we introduce I1-dependence functions as dependence
functions that describe dependence on at most one action.

This appendix is devoted to the composition of dependence functions out of
i-dependence functions by means of AND- and OR-composition. Theorem B.7
states that by {AND,OR} composition of 1-dependence functions, one can ob-
tain all dependence functions, and thus the behaviour of all enabling structures.
Using ascending 1-dependence functions one can even obtain all ascending de-
pendence functions. Conservative dependence functions can be described in
terms of {AND,OR} composition of 1-dependence functions with fixed delays
(between cause and effect). The latter result is used in Sections 2.5 and 3.6.

We only compose dependence functions over the same alphabet by means of
AND- and OR-composition; we leave this alphabet implicit. Furthermore we
adopt the conventions oo —0c =0 and O0xoo = 0. The symbols ¢ and v
denote dependence functions, ® and ¥ denote sets of dependence functions.

The AND-composition of dependence functions ¢ and ¢ is given by ¢ lub ¥
their OR-composition is given by ¢ glb . Both, AND- and OR-composition,
are generalized to composition over sets of dependence functions. AND- and
OR-composition of dependence functions may result in functions that are no
dependence functions. Apart from a step that may become 0 (as for enabling
structures), the function value may become —oo , which is not a member of the
time domain. For example:

! The terminology of ‘{AND,OR} causality’ is borrowed from [8].

169

170 Appendix B: {AND,OR} Causality

(lubg:9€D:¢)s = —oo
(glbi:i>0Ad8s=—i:¢;)8 = —-00
In the sequel when referring to AND (OR) -composition, we implicitly assume
that the result is a dependence function.

A composition class is a set of dependence functions that is closed under AND-
composition as well as OR-composition. & is a base of composition class ¥
if ® C ¥ and if all elements of ¥ can be composed out of elements of & (by
means of AND-composition and OR-composition).

A 1-dependence function is a dependence function that depends on the schedul-
ing of at most one action. For example, s.a + 1 and the function identical 1 are
1-dependence functions, but s.a + 1 max s.b+ 3 is no 1-dependence function
(it depends on both ¢ and b).

Definition B.1 1-dependence function.

‘Dependence function ¢ is a 1-dependence function if there exists an action
a such that:

(Vs,t:s.a=t.a:ds=¢t)
O

The variation of a dependence function gives a kind of ‘smoothness criterion’;
dependence functions with low variation are not sensitive for small deviations of
the schedule.
Definition B.2 Distance, variation: dis, v.
The distance ¢ dis’ between two schedules is given by:
dis(s,t) = (luba: :|sa—ta]|)
The variation of dependence function ¢, v¢, is defined by:

v = (lubs,t:s;ét:J—Ml)
dis(s,t)
O
Proposition B.3 (without proof)

A dependence function is conservative if (and only if) it is ascending and has
variation at most 1.
O

Thexmonus is used in Definition B.5.

Definition B.4 (monus) =.
M-N = M-Nma?0
O

The following dependence functions are used as 1-dependent building blocks in
the {AND,OR} construction of dependence functions.

171

Definition B.5 #, #, #,and #.

We define the 1-dependence functions #(N), #(é,a), #(z,M,é,a), and
#(z,M,é,a) by:

7(N).s = N for NeT

#(6,a).s = sa+é 0<é< o

#(z,M,N,a).s = z+(s.a=~M)+ N 1€2€0, M<N<ox
#(z, M,N,a)s = c+(M >sa)+ N 0<rgoo, M<N<

O

These functions are 1-dependence functions, some of their characteristics are
given in Table B.6. Dependence functions of type # and # are also called the
1-dependence functions with fixed delays. The delay of #(6,a) is 6. In case
of the description of a mechanism relative to the moment of initiation, #(N) is
only used with N > 0; in this case N is the (initial) delay of #(N).

7(N) #(8,a) #(z,M,N,a) #(z,M,N,a)
delay 0o) N-M N-M
-variation 0 1 z z
type constant conservative ascending

shape ¢ / \

Table B.6 Some characteristics of the building blocks.

% s.a along the horizontal axis, =.s along the vertical axis.

Theorem B.7 (see below) gives a nice theoretical result about the expressiveness
of 1-dependence functions and {AND,OR} composition. Since the real-time
behaviour of a lot of programs can be described in terms of fixed delays and
{AND,OR} composition, and because the conservative enabling functions are
the reflexive domain of comparison relation <i , we consider the last item of
particular inferest.

Theorem B.7

1Let V:1€«VE® and A:0<A <™.
The functions of type #(V,M,N,a) and #(V,M,N,a} with N - M 2 A
are a base of the composition class of dependence functions with variation
at most V and delay at least A.

2 The functions of type #(co,M,N,a) and #(o0,M,N,a) are a base of the
composition class of all dependence functions.

172 Appendix B: {AND,OR} Causality

3 Let V:1{Vgo0and A:0<A<C0.
The functions of type #(V,M,N,a) with N — M > A and #(N) are a base
of the composition class of ascending dependence functions with variation at
most V and delay at least A.

4 The functions of type #(c0, M, N,a) and ®(N) are a base of the composition
class of all ascending enabling functions.

5 The functions of type #(N) and #(d,a) are a base of the composition class
of all conservative dependence functions.

Proof

It is left to the reader to verify that all suggested composition classes are
indeed composition classes, and that the suggested bases are subsets of these
classes. Remains to prove that all elements of the classes can be composed
out of elements of the suggested bases. \

1 Let V: 1<V and A: 0< A <00, andlet ¢ be a dependence func-
tion with variation v¢ € V and delay d¢ 2 A.

We exhibit dependence functions ¢.(¢, M) that are AND-causal composi-
tions of elements of the suggested base, and that can be OR-causally com-
posed into ¢.

Deﬁ;te for t and M : M < oo suchthat ¢.t < M + A thefunction ¢.(¢, M)
by:
o(t,M) = (lubb:tb< M :#(V,t.b,M + A,b)) max
(lubb:tb< M : #(V,t.b,M + A,b)) max
(lubb:tb> M :#(V,M,M + A,b)) A
Remains to prove: ¢ = (glbt,M:¢t<M+AAM <oo:¢(t,M))
The proof of this decomposition is divided in two parts:

e Forany s: ¢85 = (glbM:¢s<M+AAM<oo:¢(s,M)s) .
In case ¢.s = oo this is evident; for the case ¢.s < co we derive:
&(s,M).s
~ {definitions of ¢(t,M) and of # and # }
(lubb:sb< M :Vx(sb-sb)+ M +A) max
(lubb:sb< M :Vx(sb-sbh)+ M+A) max
(lubb:sb>2M :Vs(M=sb)+ M+ A)
= { definition of =, alphabet non-empty }
M+ A

i

¥ dé > A, it suffices to observe the cases ¢.t = M + A ; but we also want to capture the
case d¢ = A.

173

Because A < oo, this establishes the equality.

e Forany s, t,and M < oo suchthat gt < M+ A: ds<o(t,M)s .
Let s, t,and M asin the precondition. Define u by:

b = if th< M — t.b
I th2MAsb<M — M
I tb>MAsb2M — sb
fi

Observe that u | M =t | M ; since ¢t < M+ A < M +dg, we conclude:

du=.t.

We derive:
B(t, M).3

= { definitions of ¢(t, M} and of # and # }
(lubb:tb< M :Vs(tbh=-sb)+ M+ A) max
(lubb :tb< M :Vs(sb+tb)+ M+ A) max
(lubb:tb>M : V(M =sb)+ M+A4)

= { definition of = }
(lubb:tb< M :V+(tb=-3sb)+ M+ A) max
(lubb:tb< M :Vs(sb=tb)+ M+ A) max

(lubb:tb2 MAsb< M :V+(M=sb)+M+A) max
(lubb:tb2MAsb< M :Vx(sb=M)+M+A) max

(lubb:tb>2MAsb2
(lubb:tbz2MAsb2
= { definition of « }
(lubb: : Vx(ub=+sbd)+ M+ A) max
(lubb: :Vx(sb-ubd)+ M+ A)
= { definition of + }
(lubd: : Vs|sb-—ubl+M+A)
= { definition of dis }
Vaxdis(s,u) + M + A
> {V>vé)
|¢s—pul+M+A
b {du=¢1t and pt <M+ A}
| g8~ ¢u|+ du

P
~ ¢.8

2 Follows from 1.

M:Vi{sb-sb)+M+A) max
M:V(sbsh)+ M+A)

174 Appendix B: {AND,OR} Causality

3 This proof is similar to the proof of 1.

Let V:1€V oo and A: 0< A< o0, and let ¢ be an ascending de-
pendence function with variation v¢ € V and delay do > A

Definefor ¢ and M : M < oo such that ¢.t < M + A the function ¢.(t, M)
by: .

o(t,M) = (lubb:tb< M :#(V,t.b,M + A,b))
where lub@ = #(M + A).
Remains to prove: ¢ = (glht,M ¢t <M +AAM < 0 :¢(t,M))
The proof of this decomposition is divided in two parts:

e Forany s: ¢.3 = (gIbM:¢ps<M+AAM<oo:¢(s,M).s) .
This is proven similar to the proof of the same property in 1.

e Forany s, t,and M < oo suchthat gt < M+ A: s P(t,M)s .
Let s, t,and M asin the precondition. Define u by:

b = if th<MAshb2td — tb \
I to>Mvsb<th — sb
fi

Observe that u | M <t | M ;since ¢t < M+ A M+do and ¢ is as-
cending, we conclude: ¢.u € ¢.t.

Observe also that u € s and consequently ¢.u < ¢.3.
We derive:
o(t,M).s
= { definitions of ¢(t,M), &, and # }
M+ A max (lubb:tb< M :Vx(sb=tb)+M+A)
= { definition of = }
(lubb:tb< MAshb<th:Vx(sb=sb)+M+A) max
(lubb:tb< MAsb2tb: Va(shb=tb)+ M+ A) max
(lubb:tb2>2M :Vs(sb-sb)+ M+A)
= { definition of u }
(lubb: : Vx(sb-ub)+ M +A)
= {definition =, s> u }
(lubb: : Vx|sb—ub|+M+A)
= { definition of dis }
Vsdis(s,u)+ M + A
{V2ve}
|ps—du|+M+A
{¢s2du}

Y

175

(.5 — dpu)+ M+ A
> {dug ét and gt <M+ A}

¢.8
4 Follows from 3.

5 A dependence function ¢ is conservative if it is ascending and has variation
at most one (Proposition B.3). Consequently, the claim in the theorem
follows from 3, with V = 1, and from the following ‘decomposition’:

#(1,M,N,a) = #(N) max #(N — M,a)

O

Appendix C

Metric Spaces

First we give a brief introduction to (ultra-) metric spaces, including a gener-
alization of Banach’s contraction theorem. Furthermore we introduce metric
spaces of schedules, processes, and enabling structures. In order to support the
theory about infinite systolic arrays in Chapter 4, we prove the continuity of
<1’ in the metric spaces of enabling functions.

For set X, and function d: X * X — the real numbers the pair (X,d) is a
metric space if for all z, y,and z in X:

d(z,y) 2 0
dz,y) = 0 & =z=y
d(z,y) d(y,z)

d(z,2) < d(z,y)+d(y,2)
It is called an ultra-metric space if the following —stronger— triangle inequality

holds:
d(z,z) < d(z,y) max d(y,z)

A metric space is complete if each Cauchy sequence has a limit; where a Cauchy
sequence is a sequence z; : ¢ 2 0 such that

(Ve:e>0:(3k: (Vim:lm>k:d(zp,z;)<e)))

A function ® in X — X isa contraction if there exists a real number ¢: 0 < ¢ < 1
such that for all 2 and y:

d(®.z,8.y) < ¢*d(z,y)

Theorem C.1 Generalized contraction theorem.

For @ afunction in a complete metric space, such that for for some k: k> 0,
®* is a contraction: -

e & has a unique fixed-point, say z, and

e any sequence I, : n 2> 0 such that z,,; = ®.z,, has limit z.

D

176

177

The original theorem of Banach is for k= 1.

To apply the theory of metric spaces we have to introduce a concept of distance;
we use the concept of similarity in order to do so.

Definition C.2 Metric d.

Let X and Y such that sim{(X,Y) is defined (see Definitions 2.15 and
2.23). The distance d{X,Y) of X and Y is defined by:

d(X,Y) = 2 --sim(X, Y)
O
A similar distance is used in [26] between sets of traces. The metric for processes
is also called the Hausdorff distance.

Without proof we mention:
Proposition C.3
1 For any alphabet A, (8.4,d) is a complete ultra-metric space.

2 For any alphabet A, the set of processes over A is, with metric d, a com-
plete ultra-metric space.

3 For A,B: ANB =@, (E5(A,B),d) is an ultra-metric space;
for any A: A > 0, the subset of enabling structures with delay at least A
is a complete ultra-metric space.

]

Theorem C.4 Contractions in terms of similarity.

Function @, in one of the metric spaces as given in the previous proposition,
is a contraction if and only if for some A, A > 0:

(Vez,y: :sim(®.z,B.y) 2 sim(z,y) + A)
Proof
sim(®.z,®.y) > sim(z,y)+A
® —sim(®.z,®.y) < 2—(sim(z,y) +A)

< 2-sin1(<I>.:t,‘I>.y) < 2-sim(m,y) +2— 0
& { definition of d }

d(®.z,®.y) < Q-A*d(x,y)
0

From this theorem we immediately infer that (the behaviour) of an enabling
structure is a contraction. Consequently the history (see Definition 2.27) of an
enabling structure exists, and is uniquely defined.

We conclude this appendix with a theorem that is used in Section 4.2, in order
to estimate the external behaviour of infinite linear systolic arrays.

178 Appendix C: Metric Spaces
Theorem C.5 Continuity of < and < .d ,
For sequences e, : 1 2 0 and £, : n 2 0 with limits e and f respectively:

1 (Vn::e,af,) = eaf
2 (Yn:i:egyaf,) = eaf
- Proof
Define M, = sim(en,e) min sim(f,,f).
1 Let s € Pe and ¢t € Pf such that s < ¢. We derive for all n:
en 4 I
= { definition of « (3.27), s | M, € Pe,, similar for ¢ }
en'(s an) < t;u(t an)
= ens | My St | M,

® es| My 1t| M,
Since limy, 00 M, = 00 we conclude es < f.t. From Definition 3.27 we
conclude e < f. '
2 We derive:
(VYn: tepaa fy)
& { Proposition 3.38}
(Yru:p20:e, <, 0p)
= { previous item }
(Yp:p2z20:eafdp)
¢> { Proposition 3.38}
e f

Bibliography

[1]

J.C.M. Baeten and J.A. Bergstra,

Real Time Process Algebra,

Formal Aspects of Computing Vol. 3, No. 2, April-June 1991, Springer
International: pp 142-188.

C.H. (Kees) van Berkel, Martin Rem, and Ronald W.J.J. Saeijs,

VLSI Programming,

Proceedings, 1988 IEEE International Conference on Computer Design:
pp 152-156.

C.H. (Kees) van Berkel and Ronald W.J.J. Saeijs,

Compilation of Communicating Processes into Delay-Insensitive Circuits,
Proceedings, 1988 IEEE International Conference on Computer Design:
pp 157-162.

Steven M. Burns and Alain J. Martin,
Performance Analysis and Optimization of Asynchronous Circuits,
Advanced Research in VLSI 1991, UC Santa Cruz: pp 71-86.

Jo C. Ebergen,
Translating Programs into Delay-Insensitive Circuits,
Ph.D. thesis, October 1987, Eindhoven University of Technology

P.C. Fischer, A.R. Meyer, and A.L. Rosenberg,
Real-time Simulation of Multihead Tape Units,
Journal of the ACM, Vol. 19, No. 4, October 1972: pp 590-607.

Leo J. Guibas and Frank M. Liang,

Systolic Stacks, Queunes, and Counters,

Proceedings, Conference on Advanced Research in VLSI, Paul Penfield Jr.
editor, January 1982, Massachusetts Institute of Technology: pp 55-164.

J. Gunawardena,

Causal Automata I: Confluence = {AND,OR} Causality,

Semantics for Concurrency, Proceedings of the international BCS-FACS
Workshop, July 1990, University of Leicester UK. Springer 1990: pp 137-
156.

179

180

[9)

[10]

Bibliography

M. Hennessy,
Algebraic Theory of Processes,
The MIT Press, 1988,

C. Huizing and R. Gerth,

On the semantics of reactive systems

Technical report, 1987, Eindhoven University of Technology.

Also appeared in: C. Huizing,

Semantics of reactive systems: comparison and full abstraction,

Ph.D. thesis, March 1991, Eindhoven University of Technology: pp 103-120.

C.A.R. Hoare,
Communicating Sequential Processes,
Prentice Hall, New York 1985.

Wout J. Janse,

A Queue with Bounded Response Time and Maximum Storage Utilization?,

[18]

Master’s thesis, August 1988, Eindhoven University of Technology.

A. Kaldewaij,
A Formalism for Concurrent Processes,
Ph.D. thesis, May 1986, Eindhoven University of Technology.

Anne Kaldewaij and Martin Rem,

A derivation of a systolic rank order filter with constant response time,
Mathematics of Program Construction, J.L.A. van de Snepscheut editor,
Lecture Notes in Computer Science 375, Springer 1989: pp 281-296.

Or, from the same aunthors,

The Derivation of Systolic Computations,

Science of Computer Programming 14 (1990): pp 229-242.

Joep L.W. Kessels and Martin Rem,
Designing systolic, distributed buffers with bounded response time,
Distributed computing (1990) 4, Springer 1990: pp 37-43.

W.E.H. Kloosterhuis,
Livelock in Concurrent Processes,
Master’s thesis; September 1987, Eindhoven Umvermty of Technology

Shinji Komori, et al.,

An Elastic Pipeline Mecha.nism by Self-Timed Circuits,

1EEE Journal of Solid-State Circuits, Vol. 23, No. 1, Februari 1988: pp 111-
117.

Leslie Lamport,

What Good is Temporal Logic,

Information Processing 83, R.E.A. Mason editor, IFIP Congress series 1983:
pp 657-668.

[19]

[20]

[23]

24]

[27]

181

A.J. Martin,
The Probe, An addition to communication primitives,
Information Processing Letters 20 {1985): pp 125-130.

Mazurkiewicz,
Trace Theory,
Advances in Petri Nets 1986, part II, W. Brauer, W. Reisig, and G. Rozen-
berg editors, Lecture Notes in Computer Science 255, Springer: pp 279-324.

J. van de Mortel-Fronczak,
Models of Trace Theory Systems,
Ph.D. thesis, scheduled for 1991/92, Eindhoven University of Technology.

A. Paueli,

Specification and Development of Reactive Systems,

Information Processing 86, H.J. Kugler editor, IFIP Congress series 1986:
pp 845-858.

M. Rem,

Trace theory and systolic computations,

Proceedings, Parallel Architectures and Languages Europe, June 1987, vol-
ume I, JW. de Bakker, A.J. Nijman, and P.C. Treleaven editors, Lecture
Notes in Computer Science 258, Springer 1987: pp 14-33.

Jan L. A. van de Snepscheut,

Trace theory and VLSI design,

Ph.D. thesis, October 1983, Eindhoven University of Technology.

Also appeared as Lecture notes in computer science 200, Springer 1985.

R.E. Tarjan,

Amortized Computational Complexity,

SIAM Journal Alg. Discrete Mathematics, Vol. 6, No. 2, April 1985: pp 306-
318.

J.T. Udding and T. Verhoeff,

Using a Partial Order and a Metric to Analyze a Recursive Trace Set Equa-
tion,

Technical Report, Department of Computer Science, Washington Univer-
sity in St. Louis WUCS-88-17.

G. Zwaan,
Parallel Computations,
Ph.D. thesis, January 1989, Eindhoven University of Technology.

Glossary of Symbols of
Chapter 2

Fat unary operators ‘ Page(s)
a | alphabet of anything 13

b | base of schedules, processes, and enabling structures 12, 13, 20
d | delay of dependence functions and enabling structures 18, 20
e’ | external alphabet of (enabling) structures 18

f | functional behaviour of {enabling) structures 18

h | history of enabling structures 21

i | internal alphabet of (enabling) structures 18

n | enabling function of schedules and choice-free commands | 21, 30
P | process of enabling structures 23
‘Types’ Page

Asc ascending enabling functions 3

Con conservative enabling functions 35

Const constant enabling functions 21

£8 enabling structures 20

EF enabling functions 20

N normal enabling structures 51

S.A schedules over alphabet A 12

SC,SU, SD | scales, speeding ups, slowing downs 28

T the time-domain: {—o00,00] 12

182

Types of variables Page
a,b,c,d | action 12
A, B,C | alphabet 12
e,f,g,h | enabling function 20
E,F,G | enabling structure 20
£ set of enabling structures or — functions 20
A p magnification and translation of scales,

0< A<, —00< u<oo 28
M, N,0 | moment in time 12
P, Q process {or schedule-set) 13
R renaming 27
p,0 scale 28
s,t,u,v | schedule 12
$’ y’ z a’ny
X, Y,Z | any
Miscellaneous Page(s)
EA,E empty schedule 13
sim similarity 17, 20
©,8 magnification and translation in scaling 28
| until, restriction in time domain 14
Il parallel composition 15, 23
1 masking of enabling structures 23
1 extrapolation of schedules 36
Y projection, hiding 14, 37
It restriction of enabling structures 38
€p,=p | comparison over P of enabling structures 45
[la equivalence class modulo internal renaming 49
[] equivalence class or closure over = 53
N normal form of enabling structures 51
~M equality of behaviour up to moment M 43
Npp equality of external behaviour up to M 43

183

Index

action, 12
alphabet, 12
alphabet of, 13

(enabling) structure, 18
amortized time complexity, 82, 95
{AND,OR} Causality, 169-175
AND-causal, 33, 169
ascending, 34

dependence function, 170
automated computation, 164

base of
(enabling) structure, 20
process, 13
schedule, 12
schedule-set, 13
behaviour
functional, 18
possible, 23
binding power, 167
broadcast, 97, 107
bypass buffer, see FIFO buffers

catenation, 160-164
causality, 157

cell, 96

choice (problems with), 93

choice-free command, 30, 29-31, 163

class of, 55 :
closure, modulo =, 53
communication distance, 98
finite, 100
completion, T, 161
composable
enabling structures, 23
processes, 15
processes (pairwise), 16

184

compositional

design, 58, 88

set of enabling functions, 59
conservative, 35

dependence function, 170
constant (functions), 21
contraction theorem, 176
cubic, 31, 85

data dependency, 165
deadlock (example), 26
delay, 11, 17, 18
(almost) zero, 155-159
delay of
(enabling) structure, 20
dependence function, 18
dependence function, 18, 169-175
1-dependence function, 170
dependence relation, 31-35
divide and conquer, 56, 96-112

enabling function, 20
enabling function of
choice-free command, 30
schedule, 21
enabling structure, 11, 20, 16-27
closed, 20
initiated, 16, 20, 87
partial, 154-155
environment
greedy, 17, 62
observing, 62, 64-66
smooth, 65
equivalence class
modulo ~, 53
modulo internal renaming, 49

equivalence of enabling structures,
43-55
event, 7
event-rule system, 32
external, 11
alphabet, 18
extrapolation of schedules, 36

feedback {undesirable}, 156, 157
FIFO buffers, 113-152
bypass, 138
tolerable deviations, 139
bypass buffer, 63, 136-147
implementation, Ibyp, , 145
program, 137
bypass cell, 164
capacity, v, 126
general bounds, 121-123
hierarchical design, 129-133
hypothetical implementation,
IH(a,B,%,v), 126-129
initial delay, 126
latencies, a, 5, 126
limited neighbourhood
bounds, 124-125
construction, llog, , 133-134
limited surroundings
bounds, 125-126
construction, l\/ﬁ , 134-136
linear
bounds, 123-124
construction, CAS, , 116-120
overhead (bounds), 121-126
specification
By, 117
Byp, 118
throughput delay, v, 126
fixed delays, 31-35, 169, 171
function
application, 166
set notation, 166

generating function, 99
fixed point (example), 101
generic action, 29-31, 162

185

glb of functions, 166

hidden and, 166
hint, 166
history, 17, 21
equation, 21, 157, 158
hole, 113

identification, 159-160
implementation, 56-95

most liberal, 83-85
implementation relation, 66-71

general, 58-61

maximal, <, 71-76

maximal robust, < , 76-82
initiation, ., 32, 161
interleaving, 165

example, 155
internal, 11

alphabet, 18

left associative, 168
liberal delay conditions,
47, 48, 153-154

be careful with, 154
linear systolic array, 112
linear time implementation, 82, 95
livelock {example), 89
lock (example), 26
lub of functions, 166

magnification, 28

masking, 22, 23

maximum of segments (case study),
101-112

Mazurkiewicz trace, 31

merge {example), 33

meta-stability, 94

metric (based on similarity), 177

metric space, 176-178

modularity, 157

normal form, 51-55

one-place buffer, 102, 106, 113
OR-causal, 33, 169

186

packet, 113
parallel composition, 25, 39
of enabling structures, 22, 23
of equivalence classes, 49
of processes, 15
partial order, 31
pipeline, 149-150
prefix, 14
probe, 137
process, 13
inclusion, 62-63, 81
process algebra, 4
process of enabling structure,
17, 22, 23
productivity, 156, 158
programming notation, 8, 29
projection
of enabling structures,
37, 35-43
of processes, 14, 37
of schedules, 14

quality, Q, 87, 85-88
quantified expression, 167

reactive system, 3
‘real world’ device, 7, 89-92
reflexive domain, 58
renaming, 27-28
p,98
repetitive behaviour, 164
response time, 85-88
angelic, 85, 86
constant, 85
demonic, 85, 87
relative, R, 85, 87, 89
responsiveness, 157
restricted command, 29
restriction, 38, 35-43
reverse scaling {example), 28
right associative, 168
ripple buffer, 114
robust, 57, 66

scaling, 28, 27-29

Index

schedule, 12
empty, 13
schedule-set, 13
semi-gystolic, 97
sequence function, 86
sequential composition, 160
similarity, 17
of enabling structures, 20
slowing down, 28
smooth, 58
smoothness-class, 59
specification, 56-95
most severe, 83-85
speed twist, 57, 63, 64, 76
speeding up, 28
structure, 18
systolic array, 96
‘one-sided’; 96-112
‘two-sided’, 150152
semi-systolic, 97

tail, 97
time-domain, 12
translation, 28

uniform

relation, 58

set of enabling functions, 59
until, 14

variation of delays, 89-92

wagging scheme, 119
overhead, 119, 134, 136

Samenvatting

Het enabling model kan worden gebruikt voor het analyseren en vergelijken
van het real-time gedrag van een ruime klasse mechanismen. Het ondersteunt
parallelle compositie, abstractie van interne acties en het afschermen van externe
acties voor de omgeving. Ook ‘identificatie’ van acties en catenatie kunnen
binnen het model beschreven worden.

Het model beschrijft mechanismen die parallel samenwerken met synchrone
communicatie, maar zonder synchronisatie door middel van een globale klok.
Gedacht kan worden aan VLSI programma’s of realisaties hiervan op het niveau
van ‘handshake protocols’. De beschrijving van mechanismen is gebaseerd op
het ‘enabling concept’: afhankelijk van het verleden verklaart een mechanisme
zich bereid om acties uit te voeren; voor zover dit interne acties betreft worden
ze uitgevoerd zodra het mechanisme bereid is, externe acties (communicaties)
worden uitgevoerd zodra zowel het mechanisme als zijn omgeving beide bereid
zijn tot uitvoering. We beperken ons tot deterministische mechanismen die niet
‘disabelen’, d.w.z. de bereidheid van een mechanisme om acties uit te voeren
volgt eenduidig uit het ‘verleden’ en zodra een mechanisme bereid is om een
(externe) actie uit te voeren, zal het mechanisme bereid blijven om deze ac-
tie uit te voeren totdat de actie daadwerkelijk is gebeurd. Binnen het model
definiéren we parallelle compositie, abstractie van interne acties (projecteren)
en het afschermen van externe acties voor de omgeving (maskeren).

Het model kan worden gebruikt voor het vergelijken van performance. Hierbij
moet worden gedacht aan vragen als ‘Is het ene mechanisme (een implementatie)
tenminste zo snel als het andere (de specificatie)?’ en, meer algemeen, ‘Wat is de
snelheid van dit mechanisme ten opzichte van dat mechanisme?’. In hoofdstuk
3 introduceren we een relatie, voor het vergelijken van performance, die geschikt
is voor het compositioneel ontwerpen van mechanismen. Dat wil ondermeer
zeggen dat deze relatie transitief is, en dat parallelle samenstelling monotoon is
ten opzichte van deze relatie. Een opmerkelijk detail is dat de relatie slechts op
de klasse der conservatieve gedragingen reflexief is. Een gevolg hiervan is dat de
relatie slechts voor conservatieve specificaties zinvol is.

We illustreren het gebruik van het model aan de hand van twee case-studies.
De eerste, in hoofdstuk 4, betreft het uitrekenen van een ‘segment som’ met
behulp van een systolisch array. We bespreken verschillende aspecten van zo'n

187

188

implementatie. De tweede, in hoofdstuk 5, betreft het gedistribueerd imple-
menteren van FIFO (First In First Out) buffers. We leiden, onder verschillende
condities, ondergrenzen af voor het aantal (extra) variabelen dat nodig is om
FIFO buffers met een gegeven capaciteit te implementeren. Bovendien geven we
implementaties die deze grenzen benaderen. Bij het implementeren van buffers
met ‘bypassing’ maken we gebruik van niet-conservatieve ‘cellen’. Dit leidt ertoe
dat we —op lokaal niveau— andere correctheidscriteria, dan die van hoofdstuk
3, gebruiken.

Curriculum Vitae

Wim Kloosterhuis werd op zondag 20 mei 1962 geboren te Onstwedde. In Venray
doorliep hij aan de scholengemeenschap ‘Jerusalem’ het Atheneum B.

Vanaf september 1980 studeerde hij Wiskunde (oude stijl) aan de Technische
Hogeschool (later Universiteit) Eindhoven, waar hij koos voor de afstudeerricht-
ing Informatica. Bij de Faculteit der Electrotechniek deed hij een zgn. grote
stage op het gebied van adaptieve data-compressie algorithmen. Als afstudeerder
bij professor Rem kreeg hij de opdracht om ‘systolische arrays’ te bestuderen.
Dit evolueerde tot een studie van het begrip ‘livelock’, wat resulteerde in het
afstudeerverslag ‘Livelock in concurrent mechanisms’. Hierop studeerde hij in
september 1987 met lof af.

In oktober 1987 verruilde hij zijn studiebeurs voor een AIO salaris. Als AIO bij
de sectie Parallellisme en Architectuur kreeg hij wederom alle vrijheid om zelf
zijn onderzoeksgebied te bepalen. Dit resulteerde uiteindelijk in een studie van
de ‘performance’ van mechanismen, die zijn neerslag vond in dit proefschrift.

STELLINGEN

behorend bij het proefschrift

The Enabling Model

A Tool for Performance Analysis

- of Concurrent Mechanisms

van

Wim Kloosterhuis

Technische Universiteit Eindhoven,

september 1991

1. In {1} worden sequence functies gebruikt voor de performance analyse van
cubische processen. Met de theorie in dit proefschrift kan worden aange-
toond dat sequence functies betrouwbaar zijn bij het geven van mogelijke
externe gedragingen van mechanismen die worden beschreven met conserva-
tieve (trace-theorie) processen. (De cubische processen vormen hiervan een
echte subset.) Sequence functies blijven echter een primitief hulpmiddel bij
het bepalen van de performance.

[1] G. Zwaan, Parallel Computations, proefschrift, jannari 1989, TUE.

2. Voor een conservatief trace-theorie proces P (zie [2], confluent in de termi-
nologie van [1]) geldt, voor alle ¢ en ¢ in P:

s~t = (Yu:use€ PAut€ P:us=ut)
waar smt & (Vov::sweP&iveP).

Deze implicatie bevestigt nog eens dat conservatieve processen ‘behoudend’
Zijn.

[1] J. Gunawardena,
Causal Automata I: Confluence = {AND,OR} Causality,
Semantics for Concurrency, Proceedings of the international BCS-FACS
Workshop, July 1990, University of Leicester UK, Springer 1990: pp 137-
156.

[2] G. Zwaan, Parallel Computations, proefschrift, januari 1989, TUE.

3. Bij de beschrijving van mechanismen dient, naast kostenaspecten, het gedrag
ten opzichte van de omgeving centraal te staan. In dit opzicht is het onge-
wenst om een onderscheid te maken tussen het uitsluiten van communicaties
met de omgeving door ‘activiteit’ (livelock) enerzijds en door ‘het ontbreken
van activiteit’ {refusals) anderzijds.

4. Systolische arrays waarin de cellen worden gesynchroniseerd door een globale
klok, zijn per definitie slechts ‘semi-systolisch’.

5. De ‘elastic pipelines’ in [1] zijn slechts in beperkte mate ‘elastisch’ te noemen.
De timing is namelijk onafhankelijk van de complexiteit van de berekeningen
die worden uitgevoerd. Hierdoor duren eenvoudige berekeningen even lang
als meer ingewikkelde berekeningen.

[1] Shinji Komori, et al.,
An Elastic Pipeline Mechanism by Self-Timed Circuits,
IEEE Journal of Solid-State Circuits, vol. 23. no. 1, February 1988:
pp 111-117.

6. Het enabling concept kan worden uitgebreid door aan elke actie een deelver-
zameling van de tijd-as toe te kennen waarin de actie kan gebeuren (i.p.v.
deelverzamelingen van de vorm [M,o0] als in dit proefschrift). Bij paral-
lelle compositie moet dan de doorsnede van deze deelverzamelingen genomen
worden. Deze benadering vindt zijn tegenhanger in de beschrijving van data-
communicatie in [1] en [2] (Sectie 2.3, communicatie in TNP).

[1] M. Rem, Trace theory and systolic computations,
Proceedings, Parallel Architectures and Languages Europe, June 1987,
volume I, J.W. de Bakker, A.J. Nijman, and P.C. Treleaven editors, Lec-
ture Notes in Computer Science 258, Springer 1987: pp 14-33.

. Zwiers, ompositionality, Concurrency and Parti orrectness,
2] J. Zwi C itionality, C d Partial C.
proefschrift, februari 1988, TUE, of
Lecture Notes in Computer Science 321, Springer 1989.

7. Voor een relatie die de snelheid van programma’s vergelijkt is transitiviteit
een handige eigenschap. Hoewel transitiviteit ‘intuitief’ voor de hand ligt,
mag ze niet als vanzelfsprekend worden aangenomen.

Definieer bijvoorbeeld dat een programma P sneller is dan een programma
@, notatie P < @, als P met een kans groter dan 1/2 eerder termineert dan
Q (onder bepaalde aannamen over de input). Mits de verzameling mogelijke
gedragingen van programma’s ruim genoeg gekozen wordt, is deze ‘sneller
dan’ relatie niet transitief. Het is zelfs mogelijk een drietal gedragingen voor
programma’s P, @ en R te geven zodanigdat P< @, Q< Ren R< P.

8.

10.

11.

Het alfabet van een proces is de verzameling van acties waarin het proces kan
participeren. Een fundamentele eis die aan acties moet worden gesteld, is dat
we er vrijelijk over kunnen beschikken. Dit wil ondermeer zeggen dat alfabet-
ten vrijelijk kunnen worden hernoemd en dat er altijd ‘verse’ (ongebruikie)
acties zijn. Indien alfabetten oneindig groot mogen zijn, kan de vereiste uit-
gebreidheid van het universum van acties, §1, worden gerealiseerd door de
maximale cardinaliteit van alfabetten ¥; te kiezen, en de cardinaliteit van
Q' R®;i1. Doorgaans zal i = 0 volstaan.

[1] G. Cantor, Beitrige zur Begriindung der tranfiniten Mengenlehre,
Georg Cantor, Gesammelte Abhandlungen Mathematischen und Philo-
sophischen Inhalts, 1962, Georg Olms Verlagsbuchhandlung, Hildesheim:
pp 282-356.

. Er zijn precies tien gedragingen van ‘general implementation relations’ (de-

finitie 3.1 in dit proefschrift) op de klasse der constante enabling functies.

De kwalificaties vermomd plagiaat (Rhapsodie in blue) en melodisch leen-
tjebuur (pianoconcert in F)} zeggen meer over de kwaliteiten van de criticus,
[1], dan over de kwaliteiten van de bekritiseerde, George Gershwin,

{1] Casper Héweler, XYZ der Muziek, 27° druk, 1987, Unieboek Houten.

‘Mensenrechten’ zijn voor ons erg belangrijk. Zo weegt ons recht op een
goedkoop bakje koffie en op goedkope textiel nog steeds zwaarder dan het
recht van een koflieplukker of textielarbeider op een menswaardig bestaan,

[1] Max Havelaar: Koffie met toekomst,
december 1989, Stichting Max Havelaar, Utrecht.

[2] STOF TOT NADENKEN: van wever tot keuken, eerlijke handel?,
1990, S.0.S. Wereldhandel.

