

On Synthesis of (k,K) Circuits.

Citation for published version (APA):
Naidu, S. R., & Chandru, V. (2003). On Synthesis of (k,K) Circuits. IEEE Transactions on Computers, 52(11),
1490-1494. https://doi.org/10.1109/TC.2003.1244946

DOI:
10.1109/TC.2003.1244946

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1109/TC.2003.1244946
https://doi.org/10.1109/TC.2003.1244946
https://research.tue.nl/en/publications/d4cb4937-72b1-4e51-9605-b8d0c46a4742

Brief Contributions__

On Synthesis of Easily Testable (k, K) Circuits

Srinath R. Naidu, Student Member, IEEE, and
Vijay Chandru

Abstract—A (k;K) circuit is one which can be decomposed into nonintersecting

blocks of gates where each block has no more than K external inputs, such that

the graph formed by letting each block be a node and inserting edges between

blocks if they share a signal line, is a partial k-tree. (k;K) circuits are special in that

they have been shown to be testable in time polynomial in the number of gates in

the circuit, and are useful if the constants k and K are small. We demonstrate a

procedure to synthesise (k;K) circuits from a special class of Boolean

expressions.

Index Terms—Testing, stuck-at fault, polynomial time, k-tree, treewidth,

synthesis.

�

1 INTRODUCTION

THE problem of determining a test for a stuck-at fault in an
arbitrary combinational circuit is known to be NP-complete [4].
Given this negative result, researchers have tried to come up with
restricted classes of circuits for which the problem is known to be
solvable in polynomial-time. One example of a class of circuits for
which the stuck-at fault testing problem is solvable in polynomial-
time is the class of (k;K) circuits introduced by [3]. They showed
that for this class of circuits, the testing problem can be solved in
Oð2kKg2Þ where k;K are constants and g is the number of gates in
the circuit. Membership in this class of circuits is based on certain
structural properties of circuits. Since the identification of this class
of circuits, research has focused on determining if an arbitrary
circuit can be classified as a (k;K) circuit for small values of k and
K. Unfortunately, this problem has also been shown to be
NP-complete by [9], thus appearing to severely limit the usefulness
of the (k;K) class of circuits in real-life.

In this paper, we investigate a synthesis procedure for

(k;K) circuits. More specifically, we determine how to take an

arbitrary logic function obeying certain restrictions and produce an

easily testable circuit belonging to the (k;K) class. The logic

expressions implemented by our class of circuits are of the type

F1 < op > F2 < op > F3 < op > :::Fn, where each Fi represents

arbitrary combinational logic on no more than K distinct primary

inputs and op stands for another specific logic function. Our

synthesis algorithm first checks if an intuitively defined term

graph of the given logic expression is a special type of graph called

a partial k-tree. If this is the case, then, it finds an embedding of the

term graph into a full k-tree. Then, we work with this k-tree to

establish an appropriate order of combining terms and come up

with a (2k� 1;K þ 1) implementation of the logic expression.

2 PRELIMINARIES

A (k;K) combinational circuit is one which can be partitioned into
nonintersecting blocks of gates such that each block has no more
than K inputs and the graph formed by letting each block be a
node and inserting an edge between two blocks if they share a
signal line is a partial k-tree. We define a k-tree as follows: 1) A
complete graph on k-vertices is a k-tree. 2) Let G be a k-tree. Select
some k-clique subgraph of G. Let H be a graph obtained by adding
a new vertex to G and making it adjacent to all the vertices in the
selected k-clique. Then, H is a k-tree.

A partial k-tree is simply a subgraph of a k-tree. A vertex
elimination operation on a graph applied on a vertex results in that
vertex being removed and edges added to the resulting graph such
that the neighbors of the removed vertex are all connected to each
other. A k-elimination sequence is a sequence of all the vertices of
the graph where at the time of the elimination each vertex has
degree no greater than k. After the elimination sequence is applied,
the original graph becomes the empty graph. A partial k-tree has a
k-elimination scheme. The terms “partial k-tree” and “treewidth no
greater than k” are equivalent [6] and we use them interchangeably
in what follows.

3 RELATION TO PREVIOUS WORK

The paper relates to previous work in polynomial-time testability
in an interesting way. It has been shown in [8] that, if a parameter
called cutwidth of a circuit is of OðlogGÞ, where G is the number of
gates in the circuit, then the circuit is testable in Oð2OðCÞ �GÞ,
where C is the cutwidth of the circuit. Since C is OðlogGÞ, the
circuit is actually testable in time that is quadratic in G.

Korach and Solel showed in [5] that, if a graph G has log-
bounded cutwidth, then it must have constant treewidth. The
polynomial-time testing algorithm of [7], [9] has been shown to be
of Oð2kKGÞ, for (k;K) circuits, which is linear in G. The connection
graph that we use in what follows is identical to the problem graph
of [8]. Therefore, for the many circuits of log-bounded cutwidth
that occur, in practice, the algorithm of [7] is more efficient thereby
showing that for these circuits, treewidth is more useful than
cutwidth.

4 SYNTHESIS BY ALGEBRAIC FACTORIZATION

Algebraic factorization is used in multilevel logic synthesis to
reduce the number of times literals appear in the expression thus
reducing the number of fanout variables. See Fig. 1a for an
implementation of the function abþ cdbþ adþ ac. The connection
graph of Fig. 1b is constructed by letting each gate be a node and
inserting edges between nodes if they share a signal line. This
graph is a partial 4-tree as C8; C7; C6; C5; C4; C3; C2; C1 is a
4-elimination scheme. In Fig. 1c, we show an implementation
corresponding to aðbþ dþ cÞ þ cdb. The connection graph for this
circuit, shown in Fig. 1d is only a partial 2-tree. Although
factorization makes a difference, in this case, we show next that
even if an expression is factored into a form where each variable
appears exactly twice, it might still not be implementable as a
(k;K) circuit for constant k and K. First, we note that the
connection graph corresponding to a circuit implementing a logic
expression where each variable occurs no more than twice, has
degree 3. To see this, consider any gate in the circuit implementing
such an expression. Assume that all gates are two-input gates. If
the gate is a primary input gate, it has, at most, two primary inputs
each of which may fan out to, at most, one other gate. This means
the node in the connection graph corresponding to such a gate

1490 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

. S.R. Naidu is with the Department of Electrical Engineering, Eindhoven
University of Technology, Den Dolech 2 5600 MB Eindhoven, The
Netherlands. E-mail: s.r.naidu@ele.tue.nl.

. V. Chandru is with the Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India.

Manuscript received 2 Dec. 1999; revised 12 June 2001; accepted 22 Oct.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111024.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:25 from IEEE Xplore. Restrictions apply.

must be of degree 3 because G shares signal values with, at most,

three other gates. The same holds for an internal gate. For

connection graphs of degree 3, we can state the following:

Lemma 1. There exists a graph G of OðmÞ vertices such that no vertex

has degree greater than 3, whose treewidth is at least �ð
ffiffiffiffiffi

m
p

Þ.
Proof. Consider a complete graph H on �ð ffiffiffiffiffi

m
p Þ vertices. We

perform the following vertex splitting operation on vertices of H.

Each vertex of degree greater than 3 is split into two vertices of

smaller degree such that the two vertices together are joined to

all the neighbors of the original vertex and to each other. We

perform this splitting operation until all the vertices are of

degree no greater than 3. Note that we cannot split a vertex of

degree no greater than 3 vertex into two vertices, both of which

are of strictly smaller degree. The splitting operation we have

described is the reverse of the well-known edge contraction

operation of graph minor theory. A graphH is a minor ofG ifH

is isomorphic to a graph formed by contracting an edge of G

[10]. From the theory, it is well-known that, if H is a minor of G,

then treewidthðHÞ � treewidthðGÞ. The postsplitting graph, say

G is of degree 3 and can have no more than OðmÞ vertices. Since
H is a minor of G, we know that treewidthðGÞ � treewidthðHÞ.
Therefore, treewidthðGÞ is at least �ð ffiffiffiffiffi

m
p Þ. tu

This result is not surprising because of the well-known fact that

the Hamilton circuit problem remains NP-complete even when

restricted to cubic graphs and it is known that there exists a

polynomial-time algorithm that determines if a graph of bounded

treewidth has a Hamilton circuit [1].

5 SYNTHESIS PROCEDURE

Suppose we are given an expression of the form F1 < op >

F2 < op > . . .Fn, where the Fis are Boolean functions, each having

no more than K inputs and op is another Boolean function, such as

XOR, AND, etc., and our task is to find an implementation of this

expression as a (k;K) circuit for some constants k and K. Each
Fi can contain any kind of combinational logic whatsoever, but
< op > must be a commutative and associative logic operator
since we can then have the freedom of linking the blocks of logic
corresponding to the Fis in any order. We first create a term graph
of the given expression. The term graph consists of a node for each
Fi and and an edge between two nodes if the support sets of the
functions they represent share a variable. For example, consider
the expression a0b0cþ cbd0gþ eac0kf þ ih0g0 þ f 0g0hþ je0dþ k0j0.
The term graph for this expression is shown in Fig. 2a. We decide
to link up the nodes in this graph in the order shown in Fig. 2b to
form the circuit implementing this expression. The graph of Fig. 2b
is a partial 4-tree. Consider the decomposition of the circuit shown
in Fig. 2c, where in each block we include a node of the term graph
and at most one single OR node. Other decompositions are
obviously possible but we choose this one because it follows
naturally from the term graph which in turn can be easily
constructed from the given logic expression. In Fig. 2d, we show
the graph that results when each block in Fig. 2c is treated as a
node and edges inserted between two blocks if they share a signal
line. Notice that the graph minus the dotted edges is really just the
original term graph. The graph of Fig. 2d is a partial 3-tree. The
dotted edges represent the overhead of linking up nodes in a
particular order, and can significantly change the treewidth of the
resulting graph. Consider a partial 2-tree on n vertices. It is
possible to assign a labeling 1; 2; . . . ; n to the vertices of the partial
2-tree, such that if one added edges as necessary so that for every
i; 1 < i < n there is an edge between i and iþ 1, the resulting
graph would have treewidth at least �ð ffiffiffi

n
p Þ. Therefore, it is

important to find a labeling scheme that causes only a slight
increase in treewidth. We describe a labeling scheme takes takes a
graph of treewidth k and produces one of treewidth no greater
than 2k� 1.

Before we describe the labeling scheme, we introduce some
notation. We refer to a k-clique of vertices by a label vector whose
components are the labels associated with the vertices of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003 1491

Fig. 1. Factoring reduces treewidth of the implementation.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:25 from IEEE Xplore. Restrictions apply.

k-clique in ascending order. For instance, ðx1; x2; . . . ; xkÞ refers to a
k-clique with labels x1; x2; . . . ; xk where x1 < x2 < . . . < xk. The
label vector used to annotate a particular k-clique can change
through the labeling process. The labeling scheme proceeds first by
identifying some k-clique in the graph and labeling it with
ð1; 2; . . . kÞ. We push this label vector onto a stack. The next vertex
to get a label is an unlabeled vertex adjacent to all the k vertices of
the k-clique at the top of the stack. If the label vector at the top of
the stack is ðx1; x2; . . .xkÞ, and we find a vertex adjacent to it, then
all labels greater than or equal to xk are first increased by one, and
then the new vertex is assigned the label xk. Assigning the new
vertex with the label ðxkÞ creates k new cliques. Let X denote the
set fx1; x2; . . .xk; xk þ 1g. We push onto the stack k new label
vectors X n fxk�1g; X n fxk�2g; . . . ; X n fx1g; X n fxk þ 1g in that
order onto the stack. As an example, let k ¼ 3 and let the top of the
stack be (1, 2, 3). Then, after the push operation this clique gets the
label vector (1, 2, 4) while three new cliques (1, 3, 4), (2, 3, 4) and
(1, 2, 3) are pushed onto the stack in that order. If there is no
unlabeled vertex adjacent to the top of the stack, then pop the
stack. The pushing and popping operations continue until all
vertices are labeled.

Definition. We shall denote a k-clique ðx1; x2; . . . ; xkÞ to contain a

k-clique ðy1; y2; . . . ; ykÞ if x1 � y1; x2 � y2; x3 � y3; . . . ; xk�2 � yk�2

and either (1) xk�1 < yk�1 and xk ¼ yk or (2) xk�1 ¼ yk�1 and xk >

yk or (3) xk�1 < yk�1 and xk > yk.

It is easy to check that the k-clique at the top of the stack before
a push operation contains the newly created k-cliques after the
push operation. Next, we introduce the notion of a branch k-clique.
A branch k-clique is one which, when it is on the top of the stack
during the labeling procedure, is found to be adjacent to more than
one unlabeled vertex. A branch k-clique ðx1; x2; . . .xkÞ is defined to
be the parent of the branch k-clique ðy1; y2; . . . ; ykÞ if there is no
branch k-clique ðz1; z2; . . . ; zkÞ such that ðx1; x2; . . . xkÞ contains
ðz1; z2; . . . ; zkÞ and ðz1; z2; . . . ; zkÞ contains ðy1; y2; . . . ; ykÞ. All the
ancestors of a given branch k-clique are present in the stack below

the given branch k-clique during the time that it is on the stack.
When a k-clique is popped off the stack, it is never pushed back
onto the stack. We can create a branch k-clique graph creating a
node for each branch k-clique and inserting an edge between two
branch k-cliques if one of them is the parent of the other.

After the labeling procedure is finished, we construct a belong-
set S of vertices belonging to a k-clique ðx1; x2; . . . ; xkÞ recursively
as follows: 1) All vertices with labels greater than xk�1 and less
than xk which are adjacent to the k-clique ðx1; x2; . . . ; xkÞ, belong to
set S and 2) Any vertex with label between xk�1 and xk and
adjacent to an edge whose endpoints both belong to
S [fx1; x2; . . . ; xkg, also belongs to set S. A vertex p is said to
properly belong to a given branch k-clique ðx1; x2; . . . ; xkÞ if it is in
the belong set of ðx1; x2; . . . ; xkÞ and is not in the belong set of any
branch k-clique that is a descendant of ðx1; x2; . . . ; xkÞ. For a leaf
branch k-clique, its belong-set and its proper belong-set are one
and the same. We can provide another characterization of the
belong-set S of vertices pertaining to a branch k-clique
ðx1; x2; . . . ; xkÞ. Consider the phase of the stack during the labeling
procedure when a given branch k-clique appears at the top of the
stack until the branch k-clique is popped off the stack. Then, S is
the union of the disjoint sets of vertices P1; P2; . . . ; Pj correspond-
ing to the j rise-falls of the stack for the given branch k-clique
where a rise-fall corresponds to the stack growing up and falling
off to the level of the branch k-clique in question. Each of the sets
Pi is called a component. We can see that, if p is the smallest
vertices in Pi and q the highest labeled vertex in Pi, then Pi

contains all vertices with labels between p and q. As an example of
our labeling algorithm, Fig. 2d is the graph that is produced when
our labeling algorithm is given the term graph of Fig. 2a. Let H be
the graph with dotted edges obtained by applying the labeling
algorithm to the term graph. We now state several lemmas which
will enable us to establish our main result, namely, that our
labeling scheme gives us a ð2k� 1; K þ 1Þ implementation of the
given logic expression.

Lemma 2. The branch k-clique graph is a forest of rooted trees.

1492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Fig. 2. Term graph and different ways of linking the terms.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:25 from IEEE Xplore. Restrictions apply.

Lemma 3. Let t the number of push-pop operations performed on the
stack with n the maximum label assigned after t operations. If
ðx1; x2; x3; . . . ; qÞ, q � n is on the top of the stack then,

1. the labels m and ðmþ 1Þ are adjacent and the stack contains
k-cliques with last two components m;mþ 1 for all m such
that q � m � n� 1.

2. the rightmost components of the k-cliques on the stack from
top to bottom form a nondecreasing sequence and successive
elements differ by at most 1.

3. Going from the top of the stack to the bottom, for all edges
with the same rightmost component, the vectors correspond-
ing to the first k� 1 vertices in each k-clique form a strictly
decreasing sequence. If X and Y are vectors, we say that
X < Y if each element of X is less than or equal to the
corresponding element of Y and there is at least one element
of X strictly less than the corresponding element of Y .

4. At some later point in time, the top of the stack carries a
clique of the form ðy1; y2; y3; . . . ;m;mþ 1Þ for all m such
that q � m � n� 1.

Proof. All the points above can be proven by induction. tu
Lemma 4. Let there be a dotted edge between vertices labeled ðp� 1Þ and

p after the labeling procedure is completed. Then, ðp� 1Þ and p belong
to adjacent components of some branch k-clique ðy1; y2; . . . ; ykÞ.
Moreover, ðp� 1Þ is the vertex of largest label in the ith component of
ðy1; y2; . . . ; ykÞ and p is the vertex of smallest label in the ðiþ 1Þth
component of ðy1; y2; . . . ; ykÞ.

Proof. Since ðp� 1Þ and p are not adjacent labels at the end of the
labeling procedure, there must be some point during the
labeling procedure when no unlabeled vertex is found adjacent
to any k-clique label vector with ðp� 1Þ and p as the last two
components. The next unlabeled vertex must be found adjacent
to a k-clique ðy1; y2; . . . ; v; pÞ with v < p� 1. If this were not the
case, then by Lemma 3.2 all k-cliques with rightmost endpoint p
would be popped off the stack and thereafter the rightmost
endpoint of k-cliques remaining on the stack would be ðpþ 1Þ
or higher. This would freeze the positions of the labels ðp� 1Þ
and p and they would remain adjacent at the end of the labeling
procedure. Therefore, it is the assignment of a label p to the
unlabeled vertex adjacent to ðy1; y2; . . . ; v; pÞ that ðp� 1Þ and p

first become nonadjacent. Further processing never causes them
to be adjacent again. tu

Lemma 5. Let Pi be some component with respect to the branch k-clique
ðx1; x2; . . . ; xkÞ. Let the vertex with the smallest label in Pi be p and
let the vertex with largest label in Pi be q. Then, p is adjacent to the
ðk� 1Þ-clique ðx1; x2; . . . ; xk�1Þ and q is adjacent to xk.

Proof. We will prove the statement by induction. When the first
vertex of the component Pi is added, the statement of the
lemma is clearly true. Let the statement be true after n vertices
of Pi have been processed. Let the branch k-clique for which Pi

is a component have the label ðx1; x2; . . . ; xk�1; vÞ with v < xk. If
p0 and q0 are the smallest and largest labels, respectively, then p0

is adjacent to ðx1; x2; . . . ; xk�1Þ and q0 to v by the induction
hypothesis. There are three possible labels that the ðnþ 1Þth
vertex can obtain. If the ðnþ 1Þth vertex acquires the label p0,
then it must have been added adjacent to some k-clique with p0

as the rightmost endpoint. But, the only labels smaller than p0

are x1; x2; . . . xk�1 which means that it must have been added
adjacent to ðx1; x2; . . . ; xk�1; p

0Þ. If the ðnþ 1Þth vertex acquires
some label u such that p0 < u � q0, then the vertex previously
labeled q0 gets the label q0 þ 1. It still remains the highest labeled
vertex, and the statement of the lemma continues to hold.
Finally, if the ðnþ 1Þth vertex gets the label v, then it must have
been added adjacent to some k-clique with v as its rightmost
endpoint, say, ðw1; w2; . . . ; wk�1; vÞ. The new highest label in the

component becomes v and it is adjacent to the highest labeled
vertex in the branch k-clique which has the label vþ 1. After the
vertices of Pi are removed from the stack, the labels of the
vertices in Pi are frozen. Thus, the vertex of the smallest label in
Pi remains adjacent to the first k� 1 vertices of the branch k-
clique and the vertex of greatest label remains adjacent to the
rightmost endpoint of the branch k-clique. tu

Lemma 6. Let ðx1; x2; . . . ; xkÞ be a leaf branch edge with belong-set S.

Let p and q be the smallest and largest labels in S, respectively. Then,

the edges ðp� 1; pÞ and ðq; q þ 1Þ cannot both be dotted edges.

Proof. Assume that there exists a dotted edge between ðp� 1Þ and p.
Then, by Lemma 4, ðp� 1Þ and p belong to adjacent components
of some branch k-clique ðy1; y2; . . . ; ykÞ. Further, ðy1; y2; . . . ; ykÞ
must be an ancestor of ðx1; x2; . . . ; xkÞ. Since p is the lowest
labeled vertex in some component of ðy1; y2; . . . ; ykÞ as well as in
some component of ðx1; x2; . . . ; xkÞ, by Lemma 5 it must be
adjacent to both ðk� 1Þ cl iques fx1; x2; . . . ; xk�1g and
fy1; y2; . . . yk�1g. We note that y1 � x1; y2 � x2; . . . ; yk�1 � xk�1.
Further, p can be adjacent via solid edges only to vertices in the
belong-set of ðx1; x2; . . . ; xkÞ and the vertices fx1; x2; . . . ; xkg.
Thus, p can only be adjacent to vertices with labels between xk�1

and xk, in addition, to the vertices in the ðk� 1Þ-clique
ðx1; x2; . . . ; xk�1Þ. This means ðy1; y2; y3; . . . ; yk�1Þ ¼ ðx1; x2; . . . ;
xk�1Þ and the branch k-clique ðy1; y2; y3; . . . ykÞ is really
ðx1; x2; . . . ; xk�1; ykÞ.

Let there exist a dotted edge between q and ðq þ 1Þ. As
before, q and ðq þ 1Þ must belong to adjacent components of
some branch k-clique ðz1; z2; . . . zkÞ. ðz1; z2; . . . ; zkÞ contains
ðx1; x2; . . . ; xkÞ and by Lemma 5, q must be adjacent to both zk
and xk since it is the largest label in components belonging to
ðx1; x2; . . . ; xkÞ as well as ðz1; z2; . . . ; zkÞ. In this case, zk � xk.
But, q can only be adjacent to vertices in the belong-set of
ðx1; x2; . . .xkÞ as well as vertices in fx1; x2; . . . ; xkg. Thus,
zk ¼ xk. Therefore, the ancestor branch k-clique ðz1; z2; . . . ; zkÞ
is really ðz1; z2z3; . . . ; zk�1; xkÞ. Therefore, if there are dotted
edges ðp� 1; pÞ and ðq; q þ 1Þ, the leaf branch k-clique
ðx1; x2; . . . ; xkÞ has as ancestors the branch k-cliques
ðx1; x2; . . . ; xk�1; ykÞ and ðz1; z2; . . . ; zk�1; xkÞ, where yk > xk;

zk�1 < xk�1 and for all i; 1 � i � k� 2; zi � xi. The branch k-
clique graph is a forest of trees and one of these k-cliques must
be the ancestor of the other. But, this is impossible as neither k-
clique can contain the other. tu

Theorem. H is a partial ð2k� 1Þ-tree.
Proof. We will provide a ð2k� 1Þ-elimination scheme for the graph

H which will prove that H is a partial ð2k� 1Þ-tree. We will
proceed bottom-up on the branch k-clique tree, removing leaf
branches first. Removing a leaf-branch means that we convert
the given leaf branch k-clique into a non-branch k-clique. Let
ðx1; x2; . . . ; xkÞ be a leaf branch k-clique with components
P1; P2; . . . ; Pj. Let the lowest labeled and highest labeled vertex
in component Pi for all i be pi and qi, respectively, and the
vertex in each component that is adjacent to all the vertices of
the leaf branch k-clique be mi. Due to lemma 6, there are three
cases to consider:

1. p1 and qj do not have dotted edges incident on them: The
induced subgraph on the vertices of the first compo-
nent, fx1; x2; . . . ; xk; p1; . . . ; m1; . . . ; q1g, is a k-tree. We
follow an elimination scheme for these vertices in H
that is a k-elimination scheme in the induced subgraph.
However in H, the elimination scheme becomes a ðkþ
1Þ-elimination scheme owing to the possibility of the
existence of a dotted edge between some k-leaf and p2,
the lowest labeled vertex in the component P2. When
all the vertices in P1 are eliminated, the result is the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003 1493

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:25 from IEEE Xplore. Restrictions apply.

possible introduction of a dotted edge between p2 and
xk. We can find another ðkþ 1Þ-elimination scheme
using arguments as above to eliminate the vertices
p2; . . . ;m2 � 1 of the second component, if they exist
(such vertices may not exist if p2 ¼ m2). Then, we use
another ðkþ 1Þ-elimination scheme to eliminate the
vertices m2; . . . ; q2. We can repeat these scheme on the
first j� 1 components of the leaf branch k-clique, and
then remove the vertices pj; . . . ;mj � 1 of the last
component . Doing so, ul t imate ly converts
ðx1; x2; . . . ; xkÞ into a nonbranch k-clique.

2. p1 has a dotted edge but not qj: We first follow a
k-elimination scheme for the vertices mj þ 1; . . . ; qj, that
is, a k-elimination scheme for these vertices in the
induced graph on the vert ices fx1; x2; . . . ; xk;
mj; . . . ; qjg which is a k-tree. Similarly, we follow a ðkþ
1Þ-elimination scheme on the vertices pj; . . . ;mj � 1
following a k-elimination scheme for these vertices in
the induced subgraph on the vertices fx1; x2; . . . ; xk;
pj; . . . ;mjg. The last vertex to be removed is mj. It is
adjacent to the leaf branch k-clique ðx1; x2; . . . ; xkÞ and
has a dotted edge connection to qj�1. Since qj�1 is the
highest labeledvertex inPj�1 it is, by lemma4, adjacent to
xk. Therefore, eliminating mj will create at most k� 1
new dotted edges leading from qj�1 to the vertices
fx1; x2; . . . ; xk�1g. Thus, we will now have a ð2k�
1Þ-elimination on the vertices mj�1 þ 1; . . . ; qj�1. Going
forward, we can eliminate all the vertices,

pj�1; . . . ;mj�1; pj�2; . . . ;mj�2; . . . qj�2; pj�3; . . . ;

mj�3; . . . ; qj�3; . . . ; p2; . . .m2; . . . q2;

and a part of the first component consisting of the

verticesm1 þ 1; . . . ; q1 via a ð2k� 1Þ-elimination scheme.

This converts ðx1; x2; . . . ; xkÞ into a nonbranch k-clique.
3. p1 has no dotted edge but qj does: This case is similar to

Case 1 and we can follow the same strategy as in Case 1.

After converting all branch k-cliques into nonbranch

k-cliques, we are left with a single k-tree without any

dotted edges whose vertices can be eliminated by a

k-elimination scheme. tu
There still remains the question of checking if a given graph is

embeddable into a k-tree, given that the input to our labeling
algorithm is a k-tree. Checking if a given graph is a partial 2-tree
is easy as one only needs to find a degree 2-elimination scheme
for the graph. For the general case, there is an order Oðnkþ2Þ
algorithm in [2].

6 CONCLUSIONS

In this paper we examined the question of synthesising (k;K)
circuits. These circuits are known to be easily testable provided k

andK are small. We require the input expressions to be of the form
F1 < op > F2 < op > . . .Fn, where op refers to some operator that is
the same throughout the expression and the Fis are Boolean
functions on no more than K distinct inputs.

REFERENCES

[1] S. Arnborg and A. Proskurowski, “Linear Time Algorithms for NP-Hard
Problems Restricted to Partial k-Trees,” Discrete Applied Math., vol. 23,
pp. 11-24, 1989.

[2] S. Arnborg, D.G. Corneil, and A. Proskurowski, “Complexity of Finding
Embeddings in a k-Tree” SIAM J. Algebraic and Discrete Methods, vol. 8, no.
2, pp. 277-284, Apr. 1987.

[3] S.T. Chakradhar, V.D. Agrawal, and M.L. Bushnell, Neural Models and
Algorithms for Digital Testing: Dordrecht, The Netherlands, Kluwer
Academic Publishers, 1991.

[4] H. Fujiwara and S. Toida, “The Complexity of Fault Detection Problems for
Combinational Logic Circuits,” IEEE Trans. Computers, vol. 31, no. 6,
pp. 553-560, June 1982.

[5] E. Korach and N. Solel, “Treewidth, Pathwidth and Cutwidth,” Discrete
Applied Math., vol. 43, pp. 97-101, 1993.

[6] J. van Leeuwen, “Graph Algorithms,” Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity Theory, pp. 527-631. Amster-
dam: North Holland Publishing, 1990.

[7] S.R. Naidu, “Polynomial-Time Testable Combinational Circuits,” MSc
(Engg) thesis, Dept. of Computer Science and Automation, Indian Inst. of
Science, July 1998.

[8] M.R. Prasad, P. Chong, and K. Keutzer, “Why Is ATPG Easy?” Proc. 36th
Design Automation Conf., pp. 22-28, 1999.

[9] N.S.V. Rao and S. Toida, “On Polynomial-Time Testable Combinational
Circuits” IEEE Trans. Computers, vol. 43, no. 11, pp. 1298-1309, Nov. 1994.

[10] N.D. Robertson and P.D. Seymour, “Graph Minors III. Planar Tree-Width,”
J. Combinatorial Theory, Series B 36, pp. 49-64, 1984.

1494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:25 from IEEE Xplore. Restrictions apply.

