

7e Nederlandse testdag, Eindhoven, 8 November 2001 :
proceedings
Citation for published version (APA):
Feijs, L. M. G., Mauw, S., Goga, N., & Willemse, T. A. C. (editors) (2001). 7e Nederlandse testdag, Eindhoven, 8
November 2001 : proceedings. (Computer science reports; Vol. 0110). Technische Universiteit Eindhoven.

Document status and date:
Gepubliceerd: 01/01/2001

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/nl/publications/8db44534-1cc8-425a-a2fa-44ab68cd440e

CS-Report 01-10

7e Nederlandse Testdag

L.M.,G. Feijs
N.Goga
S. Mauw
T.A.C. Willemse

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

7e Nederlandse Testdag

by

L.M.G. Feijs, N. Goga, S. Mauw and T.A.C. Willemse (Eds.)

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nlfinf/onderzoek

Computer Science Reports 01110
Eindhoven, October 2001

01/10

7e Nederlandse Testdag
Preface

These are the proceedings of the seventh edition of the Nederlandse Testdag (a.k.a. Dutch Testing Day),
held on November 8,2001 in Eindhoven, The Netherlands.

The increase in the complexity of software and hardware systems was the predominant concern in the
software design of the last decades. This increase is still going on today. and mastering this complexity
is possible, only by investigating, discussing and evaluating methods and techniques for testing such sys­
tems. The Nederlandse Testdag serves as a forum in which researchers from the industry and the academia
discuss and present their latest experiences and theories in the area of testing. The initiative for organising
the Nederlandse Testdag is, and has always been, the result of the combined efforts of the Dutch academia
and the industry. The Nederlandse Testdag is an annual event which was first held in 1995.

This year's edition again consists of one invited presentation by Jens Grabowski, on ITCN-3. and six
regular presentations, both from the academia and from the industry. The presentations capture a broad field
of the entire testing spectrum. In the presentation by Martin Gijsen (CMG), test automation for GraphicaJ
User Interface (GUI), dedicated and embedded systems according to the TestFrame methodology is ex­
plained. Klaas Mateboer (Collis) presents the test-tool Conclusion. Ren6 de Vries (university of '!\vente)
reports on specification testing in practice and illustrates this by means of an example. In the presentation
by Loe Feijs (Eindhoven University of Technology), testing is related to game-theory. Marcel Verhoef
(Chess) and Bertil Oving (NLR) present their experiences using real-time simulation, UML and VDM to
obtain more reliable spacecraft avionics. Finally, Ben van Buitenen (Baan), provides an insight in service
pack testing: how to efficiently test customised software components and packages.

The organisation of the Nederlandse Testdag is grateful for the sponsorship it received from the Eind­
hoven University of Technology, the Eindhoven Embedded Systems Institute, and the financial support
from Dutch Research School IPA. We are very much indebted to CMG and Telelogic's willingness to
sponsor this event financially. Over the years, both companies have profiled themselves as companies in­
vesting both time and resources in advancing the current state in testing. Finally, the organisation thanks
Marcella de Rooij and BIize Russell for their organisational assistance.

Loe Feijs
Niculae Gaga
Sjouke Mauw
TIm Willemse

TU/e_ (1l![DJl!.
""" .. "~

November 2001
Eindhoven

The Netherlands

/lfele!ogic

Contents

Putting TTCN-3 into Practice
lens Grabowski (Institute for Teiematics, University of
Lubeck)

Effective Test Automation for GUI, non-GUI and Em- 22
bedded Systems
Martin Gijsen (CMG)

Object Oriented Testing with Conclusion 42
Klaas Mateboer (Collis)

Specification Based Testing: Lessons from Practical Ap· 52
plications
Rene de Vries (University of Twente)

Prisoner's Dillema in Software Testing 65
£oe Feijs (Eindhoven University afTechnology)

Efficient Development, Verification and Validation of 81
Spacecraft Avionics
Marcel Verhoef(Chess) and Berti! Dving (NLR)

Service Pack Testing in a Commercial Development En- 94
vironment
Ben van Buitenen (Baan)

Infonnation on CMG and Telelogic III

iii

Putting TTCN-3 into Practice

Jens Grabowski
Institute for Telematics,

University of Lubeck

ec;q,JorighL 1. Grabow:<lci, 2001 Out"" Testda~ 2001, No •. 2001

The abbreviation TTCN

TTCN was an abbreviation for

><and~~ Notation

TTCN is now an abbreviation for

Testing and Test Control Notation
CCapjorighl J. Grabowili, 2001 2 Dutcb Tcsldag 2001. Nov. 2001

1

Outline

• What is TTCN-3 ?

• Concepts

• TTCN-3 Core Notation
• Graphical Presentation Format for TTCN-3

• First Experiences

• Summary and Outlook

ecq,yriglrt 1. GrabowIkl z001 3 Dutch Testdag 2001, Nov.:roo]

What is TTCN-3 ?
• The new standardised test specification and test

implementation language

• Developed based on experiences from previous
TTCN editions
• Removal of OSI specific concepts,

• Improvement of concepts,

• Introduction of new concepts

• Applicable for all kinds of black-box testing for
reactive and distributed systems, e.g.,
• Telecom systems (ISDN, ATM); Mobile systems (GSM, UMTS);

Internet (has been applied to IPv6); CORBA based systems.

CCopyriglll J. GnbowIk~ 2001 4 Dutcl> Ttstdall2001, N<Jv. 200]

2

Main New Aspects of TTCN-3
• Triple C

· Configuration: Dynamic concurrent test configurations
• Communication: Message- and procedure-based communication
• Control: Test case execution and selection mechanisms

• Improved
• Harmonized with ASN.1 (and IDL)
• Module concept

• Extendibility
• Attributes, external function, external data

• Well-defined syntax, static & operational semantics

• Different presentation formats

CC<lp)"igln J. GnbowskL ZOOI 5 Out"" T .. tdag 2001, Nov. 200J

What is TTCN-3 ?

ASN.l
Types &
Values

t."te ' rr.yTestcase () r\,1115 on MTCTyp" "Yale .. TSr'fYpe
(mydetault :~ acti".t .. IOthen.tiseFail);

verdict ... et(pan) ;

,
map IPI'C_I5AP1: rs.>.Pl. ..y"t"",:TSI_ISJU>lJ;

PTCJ$APl •• tart (fu."lc_Prc_IShP~ ();

Pl'C_MSAP2 .• tart (func •. Pl'C. ..)1SAP2 () I ;
Synchconi2ation() ;
.11 c""",,o"e'llt.do".;
109 (-Corr-eet Termi natiOl'-) ;

3

n format ..

What is TTCN-3 ?

ASN.l
Types &
Values

Other
Types &
Values 2

other
Types ..

Values n

7

Tabular
format

Presentatio
n format n

Outline

• What is TTCN-3 ?

• Concepts
• TTCN-3 Core Notation

TTCN-3
User

Dutclt Tostdag 2001, Nov. 2001

• Graphical Presentation Format for TTCN-3

• First Experiences
• Summary and Outlook

CCcpJoTight 1. Gr.IbowsIci, 2001 8 DI:tch Tesuiae 2001, Nov. 2001

4

Black-Box Testing

Port.send(Stimulus) Port.receive(Response)

SUT

SUT: System Under Test
Port: Formally specified system interface

9

• Stimulate SUT.

• Compare observed
response with
expected response.

• Assign verdict.

DuIclt Testd"8 2001, Nov. 200]

Test configuration (1)

SUI

10

5

.Executing a test
case .

• Returning a
2001, Nov. 2001

Test configuration (2)

Test system
Connected Ports OUT

"'I'-r'rrr,

OUT
Mapped Ports

Abstract Test System Interface OUT

IN

IN

-I SUT
,

11 DuIdJT~2001. Nov.200J

Test Components

• There are three 'kinds' of components
• MTC (Main Test Component)

• PTC (Parallel Test Component)

• Abstract Test System Interface defined as component

Real test system connected to the sur

12 Dutch Tcotdag 2001, Nov. 2001

6

Communication Ports

• Test components communicate via ports
• A test port is modeled as an infinite FIFO queue
• Ports have direction (in, out, inout)
• There are three types of port

• message-based, procedure-based or mixed

PTC1
P1 (out) P1 (in) PTC2

P1.send (Msg) P1.receive (Msg)

CCJp}T1gln J. (lnb""",ki, 2001 13 DuI.cltT~2001, Nov. 2001

Verdicts
• Verdicts: pass, fail, inconc, none, error

• Each test component has its own local verdict
. can be written (set) and read (get)

• Global verdict returned by Test Case

Verdict returned by the test
case when it terminates .:

I I I
MTC • PTC, • PTC2 CD

i i
i

verdict. set (fail) verdict.set(pass) verdict.set(inconc)

CCapyright J. Gr.Ibc>w.k~ 2001 14 DuIclI Tostdag 2001, Nov. 20111

7

Outline

. • What is TTCN-3 ?

• Concepts

• TTCN-3 Core Notation
• Graphical Presentation Format for TTCN-3

• First Experiences

• Summary and Outlook

OCopyrigh\ J.Grabowski, 2OO! 15 Dutch Testda8 2001, Nov. 2001

TTCN-3 Modules

Definitions

Module
Control

• Modules are the building
blocks of all TTCN-3
specifications

• A test suite is a module

• A module has a definitions
part and a control part

• Modules can be
parameterised

• Modules can import
definitions from other
modules

16

8

Dutch Tmdag lOCIJ. N<n<. 2001

Module Definitions

Constants

Signatures

Data Templates

Signature Templates

Functions

Test Steps

Test Cases

• Definitions are global to the
entire module

• Data Type definitions are
based on nCN-3
predefined and structured
types

• Templates define the test
data

• Ports and Components are
used in Test Configurations

• Functions, Test Steps and
Test Cases define behaviour

17 Dutch T=stdlI.8 2001, Ncrv. 2001

Data Type and Template Defintions
type record Request {

RequestLine requestLine,
ReqMessageHeader reqMessageHeader optional,
charstring crlf,
charstring messageBody optional

}

template Request Invite_s_ 1 := {
requestLine := Request_Line_s_ 1 ("INVITE"),
reqMessageHeader -
Req_Mes_Header_s_1("INVITE"),
crlf := CRLF,
messageBody := omit

\
OOl!Iyrip. J.Gfab ki. 2001 18 Dul.ch T .. ldatJOO1, N<l~. 2001

9

Port and Component Type Definitions

type port SipPortType {

inout Request, Response;

}

type component SipTestComponent {

var integer Counter ;= 0;

timer T1 ;= 0.5;
timer T2 ;= 4.0;
port SipPortType SIP _PCO

}

CCopyrlghl J. Grabowski, 2001 19 Dutclt T .. !d'g ZOOl. Nov. 2001

OCopyright J. Gn!>owW. 2001

Test Case Definition
• Test cases are a special

kind of function executed in
the control part of a module

• The interface part (runs on)
references the type of the
MTC

• The system part (system)
references the type of the
test system interface

• The Behaviour part defines
the behavior of the MTC

20 Dutch TosIdall 2001, Nov, 2001

10

A Test Case example
testcase SIP _UA_REC_ V _0010

runs on SipTestComponent system Sip Configuration {

var default mydefault := activate (DefaulL 1("0"));
map(self:SIP _PCO, system:SIP _PCO);
SIP _PCO.send(lnvite_s_1);
T1.start;
SIP _PCO.receive(Response_r_1);
verdict.set(pass);
T1.stop;
deactivate (mydefault);
postamble("O");

}
\

OCopyngln J. GraOOwsIci, 2001 21 DIru:h Tettdag 2001, Nov. 2001

Test Case
Execution

Module Control

• Module control is the
'dynamic' part of a TTCN-3
specification where test cases
are executed (execute)

Local declarations, such as
variables and timers may be
made in the control part

• Basic programming
statements may be used to
select and control the
execution of the test cases

22 Dutoh T .. tdag 2001. Nov. 200]

11

Control Part
.,------------,.,'--------,-"-,._"---- --.. ,'--"_. ---- "--_.----._-----_._--_.-"-,-----------_ .•. _--------------_._-_ ..• _-._-------------_ .. -.

control { I
var integer count := 0; i
var verdicttype myVerdict := pass; 1

I
if (execute (SIP _UA_REC_ V _010) == pass) {

I
i

while (count <= 10) {
I

i
myVerdict := execute(SIP _ UA_REC_ V _020); !
count := count + l' i ,

I } // end while
1

} 1/ end if I

I
} // end control

.---------,.-.. - -- --_ ••.. _-- -- -_._.------- . __ ._---....... _-,-- -' .. _---_.----_._._-- - .'. _ .•.• _------- --_.,--- -._- --,-_ .. -,-- ----- ----"--,--

CCopyrigbt 1. Grabawill. 2001 23 Dutdt Tt!1da8 2001, Nov. 2001

Outline

• What is TTCN-3 ?

• Concepts
.• TTCN-3 Core Notation

• Graphical Presentation Format for TTeN-3
• First Experiences

• Summary and Outlook

Ot:tJp)'igh\ J. GnbooIsk~ 2001 24 Dutdt Teon<iag 2001, N.,.,.. 2001

12

Graphical Presentation Format (GFT)

• GFT is based on MSC-2000

• GFT uses the TTCN-3 data descriptions

• GFT defines several MSC extensions to make
MSC-2000 applicable in the testing context

• In GFT each TTCN-3 test case, function and test
step is presented in form of a GFT diagram

• GFT defines only the requirements for a graphical
presentation of the module structure but no
concrete graphics

CCop)righ! 1. Grabowski, 2001 25 Dutcb T .. ld.o.!l2001, Nov. 2001

GFT Examples (1)
testcase MyTestCase Page 1 (2)

(in boolean internetService, inout integer nrPass)
runs on MtcType system TestSystemtype

mtc Pl CP

I MtcType I Impcotypel I mCPtype I
I var reportType report I , ! ,

i i
i i

var default def ,
: .. activate i i ,

! (MyDefault ())
\ ,

map(self:Pl, I i " , ,
system:mPCO) i i

i i
if (internetservice)) i ,

, i

I newInternetpTC () I

oc:..r.:m.gh\ 1. ~i,:ID01 26 Dutch Tcstdq 2001. Nov. 2001

13

GFT Examples (2)
function aGuest(in float eatingDur) runs on GuestType

self p1 Cp

I GuestType I ! gPCOtype IIpcptype!

I timer T1 I ! ! J ,
var default

, ,
i ,

def : ... activate , ,
(GuestDefault ()J..

,

I I Tl(waitPizzaDur)~
standardPizzaOrder i 1

X-
PizzaType I

I
T1

! < pass
i i ,

T1 (eatingDur)~ standardPayment

! I T1 ~ ReportType i

~7est, verdic t. get) !
,J.. /"'-.

CCop)righlJ. Gnbowakl. <nil 27 DutcIl Tq;!da! 1001, New.]I)(I/

GFT Examples (3)
function newlnternetPTC () runs on MtcType

self fl cp

I MtCType I ! mPCOtype ! I mCptype
!

var InternetType newPTC
:= InternetType.createi

connect(self:CP,newPTC:CP);
map{newPTC:Pl,system:iPCO)

IlneWPTc.start(internetuser(»!

activePTCs := activePTCs+li
createdPTCs := createdPTCs+l

®
OCopyrigh\ J. Gm>awskl, 2001 28 Dutch Tesulag 2001. Nov. 2001

14

Outline

• What is TTCN-3 ?

• Concepts

• TTCN-3 Core Notation

• Graphical Presentation Format for TTCN-3

• First Experiences
• Summary and Outlook

~Jorighl J. Gr.!b k~ 2001 29 Dutch Testdag 2001, Nov. 2001

First Experiences (1)

• TTCN-3 has been developed 1999-2001

• The first commercial tools are available or will be
available at the end of 2001
Telelogic (Sweden). Testing Technologies (Germany).

Dane! (Germany). Da Vinci Communications (New Zealand)

• Internal work on TTCN by
Nokia (Germany. Finland). Ericsson (Sweden. Hungary)

Nortel (Canada). Motorola (UK. China)

• Academic tools
University of Lubeck. Technical University of Berlin

OCtip)OigblJ_~~ l\lI.}l 30 Thru:h 't$Id~g 1001, Ntw. 2001

15

First Experiences (2)

• Trial applications
• IPv6 testing

• performed by Ericsson (Hungary)

• Session Initiation Protocol (SIP)
• performed by ETSI (France) and GMD (Berlin)

• Strong commitment of the UMTS testing group to
use TTCN-3 in 2001 if the tools are available

CCowij!ht 1. Gnbawsk~ 2001 . 31 Dutch T .. ldag 2001, N",". 2001

Outline

• What is TTCN-3 ?

• Concepts
• TTCN-3 Core Notation

• Graphical Presentation Format for TTCN-3

• First Experiences

• Summary and Outlook

CCopyrigbt 1. Qnbawskl, 2001 32 Dutcl! T .. tdag 2001, Nov. 2001

16

Summary

• New version of the only standardized test notation

• TTCN is widely used and well-established in the telecom
domain

• Programming-like testing language with flexible data
support and several presentation formats

• Wider scope of application
• applicable to many kinds of testing and not just conformance testing

(development, system, integration, interoperability, scalability ...)
• applicable in the datacom domain

• Harmonization

· first choice for test specifiers, implementors and users both for
standardized test suites and

· as a generic solution in industrial software development

CCqI)righi-J. Gnhowsk~ 2001 33 Dutch T .. !dag 2001, New. 2001

Kinds of testing TTCN-3 can do
- by Nortel -

• Conformance • Reliability

• Interoperability • Fault tolerance

• Configuration • Scalability

• Compatibility • Degraded mode

• Performance • Unit

• Stress • Product
• Robustness • Development

• Integration • Design

• Functional • Interface

• Load • System

OCop)-liglrt J. Gr2b<mo1k~ 2001 34 Dut.:h t .. l<lag 2001, Nov. 2001

17

Outlook

• Maintenance of TTCN-3
• Corrections of the Core Language at the End of 2001

• Intensive work on the Graphical Presentation Format

• TTCN-3 runtime interface is under development

• New TTCN-3 features under discussion
• Regular expressions (planned for Dec. 2001)

• Global timer (e.g. to express hard real-time
requirements)

• Concurrent execution of test cases

CCapyright I. Grabowski. 2001 35 Dutch T..w, 2001, NO'I. 2001

GFT Ongoing Work

• Completion of GFT in terms of
• Language concepts.
• Grammar definition.
• Mapping from and to TTCN-3 Core Notation.

• Convergence with MSC-2000.
• Case studies on the use of GFT.
• Transition to UML

• UML is lacking test specification support.
• MSC-2000 is proposed as input to UML v2.0.
• GFT could become a UML testing profile.

OCop)'righ\ 1. OnbowIk~ 2001 36 DutdI TCSIdag 2001, Now. 2001

18

G
Thank you for your

attention.

CCcpyright J. ~ 2001 37 Dull'h Te:sldag 2001, Nov. 2001

Who is making TTCN-3

• Individuals

· Anthony Wiles (Project Leader, ETSI)

· Colin Willcock (Nokia),
Jens Grabowski (ITM Lubeck),
Ina Schieferdecker (FOKUS),
Ekkart Rudolph (TU Munchen),
Paul Baker (Motorola),
Johan Nordin (Telelogic)

• Ostap Monkewich (ITU-T Rapporteur, Nortel),
Dieter Hogrefe (ETSI MTS chairman, ITM Lubeck)

• Organizations
• Nokia, France Telecom, Motorola, Ericsson, Nortel, Tektronix,

Danet, FOKUS, TU Berlin, Telelogic, NMG Telecoms, Da Vinci
Communications, Testing Tech, Fraunhofer Gesellschaft, ITM
Lubeck

e0lp'Jri;hlJ.~~l 38 DuICh r .. ldag 2001, Nov. 2001

19

Contact and Further Information

• Contact

Anthony Wiles (Anthony. Wiles@etsLfr)
Colin Willcock (Colin.Wilicock@nokia.com)
Jens Grabowski Uens@itm.mu-Iuebeck.de)
Ina Schieferdecker (schieferdecker@fokus.fhg.de)
Ekkart Rudolph (rudolphe@informatik.tu-muenchen.de)
Dieter Hogrefe (hogrefe@itm.mu-Iuebeck.de)
Paul Baker (Paul.Baker@motorola.com)
Johan Nordin (Johan.Nordin@telelogic.com)

• Further information:

www.etsi.org/ptcc/ptccttcn3.htm (TTCN online information)
publications@etsLfr (for ETSI documents)

ceq,)rigbl j, Gnbo>.1Ici, 2001 39 Dutch Tostdag ZOOI, Nov. 2001

Bibliography

• ETSI ES 201873-1 TTCN-3: Core Language. 2001.

• ETSI TR 201873-3 TTCN-3: Graphical Presentation
Format (GFT). 2001.

• J. Grabowski, A. Wiles, C. Willcock, D. Hogrefe: On the
Design of the new Testing Language TTCN-3. 13th IFIP
International Conference on Testing Communicating
Systems' (Testcom 2000), Ottawa (Canada), Kluwer

Academic Publishers, August 2000.

CCop)'igin 1. Gr.boMk~ 2001 40 Dut<:h T£SIdq 2001. Nov. 2001

20

Bibliography
• Jens Grabowski: TTCN-3 - A new Test Specification

Language for Black-Box Testing of Distributed Systems.
17th Intern. Conf. and Exposition on Testing Computer
Software (TCS'2000), Theme: Testing Technology
vs.Testers Requirements, Washington D.C., June 2000.

• E. Rudolph, I. Schieferdecker, J. Grabowski: HyperMSC -
a Graphical Representation of TTCN. Proceedings of the
2nd Workshop of the SOL Forum, Society on SOL and
MSC, Grenoble, June 2000.

CCop)riglu J. Gnbowol<i. 2001 41 Dutch Tcsldag 2001, Nov. 200]

Bibliography

· P. Baker, E. Rudolph, I. Schieferdecker: Graphical Test
Specification - The Graphical Format of TTCN-3. In "SDL2001:
Meeting UML", LNCS 2078, Springer, 2001.

· I. Schieferdecker, S. Pietsch, T. Vassiliou-Gioles: Systematic
Testing of Internet Protocols - First Experiences in Using TTCN-3
for SIP. Proceedings of the 5th Africom Conf. on Communication
Systems, Cape Town, South Africa, May 2001.

· Paul Baker, Jens Grabowski, Ekkart Rudolph, Ina Schieferdecker.
A Message Sequence Chari-profile for Graphical Test Specification,
Development and Tracing. Proceedings of the 18th International
Conference and Ex-position on Testing Computer Software, Theme:
Meeting the New Challenges of Testing, Washington, D.C., June
2001.

CICo9lrir,/lt 1. Gnh<rwU.i, 2001 42 Dutch Tes1dag 2001, NO\'. 2001

21

Effective test automation
for GUI,

non-GUI and
embedded systems

Martin Gij sen

Martin. Gij sen@cmg.nl

CMG

Presentation overview

• Preparing for test automation

• The TestFrame methodology: theory & practice

• Related topics of interest

22

Why automate test execution?

• Time - faster testing

• Quality - more testing

• Cost - cheaper testing

• Fun - happier testers

• These are (conflicting) business objectives

• Automating tests is not a goal in itself

What should be automated?

• What can be automated?
- Test = initial state + stimuli + observable behavior
- Error recovery

• What are the benefits?
- How much time will automating save?
- How many more tests can be performed?

• What are the costs?
- Time to support automated test execution
- Investing in hardware, software, licenses & training
- Hiring consultant (for know-how I staff)

23

GUI vs. non-GUI test automation

GUI systems:

• Standard interface, off-the-shelf test tools

Non-GUI and embedded systems:

• Special software & equipment for special interfaces

• Precise timing

• Interfacing solutions wili differ for different products

• Consider (automated) testability early

Interfacing with a system

Host { IThstl
~

y Test layer
(' action words ')

Test
y report

... ------. ----------.-------------.--- ------------
Tool interfaces

Software Hardware
tools

...
tools

--_.--------_.-- ---------------- -----------------._-----.--- -------------
System interfaces

Target { Testability ./, System
facilities I under test

24

Common test automation challenges

• Automated tests are hard to read and write

• Automated tests require programming skills

• Programming testers are rare

• Sensitivity to maintenance of testware

These resulted in the development of
the TestFrame methodology

basics

The testers define 'action words'

Action words:

• the test commands

• normal words, usual vocabulary

• natural level of abstraction

• no test execution, interfacing or tool details

, 'I

• no programming experience from testers required

25

Abstraction levels

Level of
thouQht
Action words r

:c:t:I Translation I by tester

I Translation I by software I

I SUT interface(s) I ---------

Sample for GUI: Bank application
name

~ E
• GUI system

• Host = target

• Interface: GUI
~ ~ • Tool: GUI test tool

• Also works when testing through middleware!

26

S 1 fi .amn e or em bedded: mobile phone

name I"mbe,
ladd numbe, .John Doe

• Embedded system

loff

Ion 1234

name ,"mbe,

• Host:f target

• Interfaces: keys, display,
antenna, serial port

Icheck numbe, lohn Doe 123456789 • Testability:

"
- use serial port

name - some extra SW in phone
I",mo," numbe' lohn Doe - most logic on host

, numoe,

I
loff I

Some key TestFrame advantages

• Action words make tests easy to read, write and
maintain

• Clear separation of roles:

- test analyst: subject expert, focus on functionality (what)

- navigation engineer: software engineer,

focus on test execution details (how: tools and interfaces)

• Reduces sensitivity to maintenance

of tests and test execution platform

27

The process
design cpding

write
requirements 10--::,----'

Some remarks

develop tests

implement new
action words·

• TestFrame analysis:
clusters & test conditions

• Software engineering effort

execute
tests

• Action words at lower abstraction level

• Resources

• Error recovery

28

Conclusions

• Business objectives guide test automation

• Non-GUI only means other interfacing

• Ensure testability in requirements phase

• Action words, for any system:
- easy to read, write & maintain tests

- low maintenance sensitivity

- separate 'what' and 'how' into 2 roles

Related topics of interest

• Integrating with use cases

• Test generation from (behavioral) models:
- Functional level of abstraction

- Model is kept simple

• Integrating with formal methods

• Testing through middleware

29

Sources of infonnation

• Soon: Martin Gijsen: white paper

• Hans Buwalda & Maartje Kasdorp:
"Getting automated testing under control",
STQE magazine, NovlDec 1999

• Mark Fewster & Dorothy Graham:
"Software Test Automation -
Effective use of test execution tools"

• http://www.testframe.com

30

Embedded TestFrame,
An Architecture for Automated Testing

of Embedded Software
Harro S. Jacobs and Peter H.N. de With

CMG Eindhoven B.V. - Sector Trade, Transport & Industry, Luchthavenweg 57
P.O. Box 7089, 5605 JB Eindhoven, The Netherlands, e-mail: tswe@cmg.nl

Abstract - Embedded TestFrame is an architecture for
automated testing of embedded software. Testing is
performed at two levels: 1) test specification based on
spreadsheets and 2) test implementation using mature
programming languages. In addition, test implementation
is partitioned over a test computer and the embedded
system, to minimize the overhead for the embedded system
that often has limited resources. The use of mature
programming languages is advantageous, because
experience with and tooling for these languages is
widespread. The use of spreadsheets supports an abstract
test specification in an early stage without having the final
interface available of the software to be tested.

We have successfully implemented this architecture at
Philips Semiconductors, where Embedded TestFrame has
been accepted as the primary solution for all test activities.

Keywords - automated testing; embedded software;
architecture; host-target communication

I. INTRODUCTION

With the advent of digital television, set-top boxes,
and mobile telephones, embedded systems which were
conventionally perfonning control only, have become so
powerful that a multitude of processing tasks, including
applications and user interaction, are carried out. Recent
architectures for high-end digital audio and video
systems contain (multiple) 32- or even 64-bit CPUs and
DSPs and up to 64 MB RAM. The corresponding
embedded software shows a strong complexity increase
due to augmented memo!), size. As a result, the total
development time is increasingly detennined by the
software development time.

Due to the complexity and size of embedded software
together with strong demands on time-to-market and
quality, testing is a crucial point that should be addressed
during software development. Traditionally, testing is
carried out during the last phases of the software
development life cycle. As a consequence, testing
activities are often subject to high time pressure, which
either results in delayed market introduction or low
product quality. Furthennore, high recall costs for
embedded systems should be avoided.

In this paper, we propose a novel architecture for
automated testing of embedded software, named
Embedded TestFrame, featuring the possibility to start

test development in an early stage. We advocate an
incremental approach for test development that can
already be started as soon as the first requirements are
fixed. Test execution can then take place as soon as the
first componene is developed and thus provide early
feedback in case of errors. The advantage is that the
effort can be spread over a longer, better manageable
period.

During software development, it is advisable to re­
execute tests for completed components on a regular
basis, because context changes may impact components
that were considered to be correct. Moreover, re­
execution of tests plays a crucial role during software
maintenance, where new releases should be verified
thoroughly. In conclusion, many situations exist in which
it is required to repeat test execution regularly. In these
situations, automated testing is often cost effective. The
benefit of automated tests is that they provide a rapid
though very reliable and reproducable statement of the
product quality. As such, repeated execution of
automated tests gives a good indication of the product
quality over time, offering valuable metrics for project
control. For the above-mentioned reasons, automated test
execution has been adopted as a key feature of
Embedded TestFrame.

Development of an automated test suite must not be
underestimated, because test suites often turn out to be
equally large or even larger than the software to be
tested. One should always be aware of the trade-off
between effort and (knowledge about) product quality;
one may choose to only automate tests for very critical
components, and to do manual tests for the remaining
system parts.

This paper is divided as follows. Section II describes
important characteristics of embedded systems and
embedded software and discusses required architectural
elements of Embedded TestFrame. Section III presents
the overall framework for automated testing. Section IV
addresses the architecture of Embedded TestFrame and
discusses the partitioning between host and embedded

I In this paper, we do not have the intention to
distinguish between components, modules, etc., but use
the tenn 'component' for any clearly defined piece of
software that can be tested.

31

system. In Section V, we focus on an important tool in
this architecture, called ActiveLink, which features
seamless communication between host and software to
be tested. Section VI deals with the implementation of
Embedded TestFrame at Philips Semiconductors. Section
VII presents the conclusions.

II. CHARACTERISTICS AND REQUIREMENTS

Prior to presenting an architecture for the automated
testing of embedded software, the key characteristics of
embedded software are discussed and the corresponding
requirements for the architecture are mentioned.

A. Relatively high complexity of software

The complexity of embedded software is rapidly
increasing. As mentioned before, the size of a test suite
may become very large, and sometimes even exceeds the
size of the software to be tested. Thus, an architecture for
testing embedded software should enable a controlled
and incremental development oftest suites.

B. Large variety of embedded systems

Embedded software runs on dedicated embedded
systems, which will be referred to as targets from now
on. A large variety of targets exists given the broad
choices of processors, boards, (real-time) operating
systems, programming languages, development
environments, etc. An architecture for the automated
testing of embedded software must deal with this large
variety.

C. Resource-constrained targets

Typically, targets have constrained resources with
respect to, for example, processing power and memory
size. Although Moore's law - the periodical doubling of
resource capacities - also applies to the embedded
domain, embedded systems are often still not 'oversized',
due to small profit margins. An architecture for testing
embedded software should be apt to such situations and
should provide means to keep the major part of a test
suite outside the target.

D. Software interfaces

The software interfaces of a target are the interfaces
that can only be accessed by software that executes on
the target itself, see Figure I. An example ofa software
interface is the Application Programmers Interface (API)
of the software to be tested. Other examples are those
applications that provide for or absorb data of the
software to be tested. An architecture for testing
embedded software should enable the test suite to control
these software interfaces.

target

~'~'i:;';~:'~1 ,~
, 'softWare":
under test

,,\:{;;':J:,, r;~~<

Figure 1: Software and hardware interfaces.

E. Hardware interfaces

The hardware interfaces are the interfaces on the
physical boundaries of the target, which are controlled or
observed by the embedded software, see Figure 1.
Examples are serial and parallel ports, but also manual
switches, LEDs, and display devices. An architecture for
testing embedded software should enable the test suite to
control the hardware interfaces. The architecture should
not be limited to a certain set of known hardware
interfaces, but it should be extensible, because the
number and variety of these interfaces are continuously
growmg.

F. Software reusability and portability

Since the complexity of embedded software is
increasing rapidly, components are no longer developed
for a single system, but are applied in classes of systems.
Therefor, reusability and portability of embedded
software is of growing importance. Consequently, it must
be possible to develop a test suite - or at least a large part
of a test suite - that is target independent and can be used
for a class of systems.

III. T1;lSTF'RAME

A. Method

We have developed a technique, called TestFrame, in
order to deal with test suites of highly complex software
(not specifically embedded software), see [1] and [2J.
This technique makes a clear distinction between two
phases: the test specification and the test implementation
or navigation, which will be briefly explained.

Test specification - In this phase, spreadsheets are
u~ed in which high-level keywords with parameters, Le.,
action words, are listed. These action words are domain­
specific and represent an abstract definition of the test
stimuli and the expected responses. The spreadsheets are
based on the software requirements and do not consider
the actual interfaces of the software to be tested. The test
developer defines the action words and constructs the
spreadsheets.

Test navigation - In this phase, the action words that
have been defmed during test specification, should be
linked - or navigated - to the actual interfaces of the

32

software to be tested. Sometimes, this link is a one-to­
one mapping on the interface functions of the software to
be tested. However, because of the allowed abstraction in
the test specification, the test navigation can be
considerably large.

B. Architecture

The architecture of TestFrame is depicted in Figure 2.
The figure shows the separation between the test
specification and navigation, as well as the TestFrame
Engine and the test report.

Figure 2: Architecture of TestFrame.

The TestFrame Engine is responsible for the test
execution as follows. The tool sequentially parses the test
specification, i.e., the spreadsheets, and communicates
each action word to the test navigation. The test
navigation controls and observes. the software to be
tested and sends the results to the TestFrame Engine.
Finally, the TestFrame Engine generates a test report
with a complete execution trace of the test as well as a
management sununary briefly showing which tests
failed.

The separation between the test specification and the
test navigation allows for a structured development of
test suites; The test specification can already be written
when the first requirements are known. Test navigation
can be developed in a later stage when the software and
hardware interfaces of the software to be tested have
been defined. Note that the distinction between test
specification and navigation also allows for
specialization in the project team, e.g., analysts writing
test specifications, and software developers constructing
test navigation.

IV. EMBEDDED TESTFRAME

A. Architecture

Embedded TestFrame is the appliance of TestFrame
in the embedded domain. As mentioned before,
embedded software is typically executed on a target with
limited resources. For this reason, the architecture
distinguishes a test computer, i.e., the host, and a target,
see Figure 3.

Figure 3: Host and target in Embedded TestFrame.

The host is used for storing large parts of the test
suite, such as the test specification, the test report, the
TestFrame Engine, and part of the test navigation. As
such, the overhead on the target can be minimized.

The test navigation is responsible for connecting the
TestFrame Engine and the software and hardware
interfaces of the software under test. The Embedded
TestFrame architecture foresees a number of modules to
realize these connections, see Figure 4.

Figure 4: Architecture of Embedded TestFrame.

The most prominent module is the host navigation,
which implements the action words. As such, the host
navigation is domain specific and must be developed by
the test engineers. This module must be developed in
proven programming languages, like C, C++, or Java.
We explicitly avoided the development of a dedicated
script language, because knowledge of and experience
with proven languages is better available and tool
support is mostly mature (integrated development
environments, source level debuggers, etc.).

B. Hardware interfaces

Because of the large variety of hardware interfaces,
we do not strive for a library to control and observe all
these interfaces. Furthermore, for some of these
interfaces, such as manual switches and LEDs, dedicated
hardware/software tools should be developed.
Considering the effort, these are typical interfaces for

33

which often is chosen to abandon automated testing, and
Instead to control these interface manually.

For many hardware interfaces, such as serial and
parallel ports, drivers andlor peripherals are available. In
this case, these drivers should be integrated in the host
navigation, see Figure 4. Also in this case, the use of
mature languages is beneficial for it eases integration.
For example, Windows drivers for serial communication
can be used in a straightforward way. The strength of
Embedded TestFrame is that the architecture is open en
flexible for the integration of third party drivers.

C. Software interfaces

Since a connection must exist between the host
navigation and the software interfaces of the software
under test, an explicit communication means is required.
Because many communication protocols (RS232,
TCPIIP, JTAG, etc.) are available and proven standards
for unified high-level communication are virtually
absent, we developed ActiveLink. This tool offers a
small-sized communication mechanism for transparent
host-target communication at a functional level.
ActiveLink eases the communication between code
executing on the target and code executing on the host.

Figure 4 shows that navigation code can reside on the
host as well as on the target. As discussed before code
on the target should be minimized and navigation ;hould
therefor as much as possible be implemented on the host.
Although rules of thumb exist how this partitioning
should take place, test developers are free to deviate and
to apply a dedicated partitioning scheme. Another aspect
of the partitioning is that host-target communication
clearly influences the real-time behavior of the software
to be t~sted. If this hampers testing, one should develop
naVlgation code on the target that is critical for
supporting real-time operation.

V. ACTIVELlNK

A. Architecture

An important tool in the Embedded TestFrame
architecture is ActiveLink that offers a seamless
connection between host and target, while abstracting
from the actual communication protocol. ActiveLink is a
solution for C and C++ environments. For Java
environments, we use Remote Method Invocation (RMI),
a standardized Java solution that is comparable to
ActiveLink.

ActiveLink offers a Remote Procedure Call (RPC)
mechanism, which allows the host to call a function that
is implemented on the targe~ and vice versa.
Furthermore, ActiveLink allows to control remote
memory, i.e., to dynamically allocate memory on the
target and to copy memory between host and target.

Figure 5: Architecture of ActiveLiuk.

Because of the large variety of targets, the
architecture of ActiveLink focuses on portability, see
Figure 5. The figure shows two porting interfaces: the
platform inteiface and the protocol inteiface.

Platform interface - This interface abstracts from
platform-specific retails, such as the processor and the
(real-time) ~perating system. For each platform, these
speCific details should be made available to ActiveLink,
which has already been realized for Windows
95/98/NT/2000, pSOS, Linux, Solaris, and VxWorks.
The platform interface enables us to port ActiveLink to
other platforms with relatively little effort.

Protocol inteiface - This interface abstracts from the
actual communication protocol between host and target,
and supports already communication over TCPIIP PCI
and. RS232. The protocol interface enables ext~ndin~
ActiveLInk WIth. any communication protocol as long as
rehable bI-dlrectional data transfer is available.

B. Wide applicability

ActiveLink has not been specifically designed for
Embedded TestFrame; it is a highly portable tool for
cross-platform communication on application level.
Therefor, it enables development of distributed
applications in heterogeneous environments. It can be
used for other purposes as well, like remote maintenance
and control, . and remote diagnostics. Recently, we
realized a tracmg tool based on ActiveLink to analyze the
dynamic behavior of embedded software.

VI. IMPLEMENTATION AND EVALVA TION

Embedded TestFrame has been implemented
successfully at Philips Semiconductors within the Reuse
Technology Group (RTG). This department develops
reusable components for the domain of digital audio and
Vldeo systems, such as digital televisions, set-top boxes
(satellite receivers for digital video), and DVD players.
BeSides a PGbased simulation environment, RTG

34

currently uses MIPS- and TriMedia-based systems with
the operating systems pSOS and WinCE. Also dual
processor solutions executing different operating systems
are being used.

In the initial phase, Embedded TestFrame was used
for the automated testin g of a 2D graphics component on
these systems for graphical user interfaces with menus,
animations, etc. An existing test application was
integrated in the Embedded TestFrame architecture (as
target navigation) and spreadsheets and host navigation
for additional test cases were written. ActiveLink was
used for host-target communication to call the API of the
2D graphics component. Additionally, ActiveLink was
used for comparing the generated bitmaps of the 2D
graphics component with reference files that were stored
on the PC. As such, the tests that formerly required
visual inspection, were automated.

It was found that the choice for high-level languages
C and C++, led to a steep learning curve for the test
developers, because of their experience with these
languages. The test suite was target independent and was
executed on a periodical basis to test the 2D graphics
component on different systems.

The successful implementation of Embedded
TestFrame and its ease of use has resulted in the full
integration of this package in the RTG tool set, and it is
currently being used for other projects as well.

VII. CONCLUSIONS

We have presented an architecture for the automated
testing of embedded software. This architecture is
generic and aids to structured development oftest suites.
Important requirements for this architecture are that it
should cope with a large variety of targets and the
constrained resources of these targets.

The presented architecture offers the ability to
partition tests into three parts: test specific ation, test
navigation on host, and test navigation on target. This
partitioning is highly flexible, because it needs no a­
priori decisions about where to put what functionality.

A key feature of the Embedded TestFrame
architecture is that developers can concentrate on the test
functionality, while two tools, i.e., the TestFrame Engine
and ActiveLink, support the partitioning and hide the
platform and interface specific features.

The successful introduction of Embedded TestFrame
at Philips Semiconductors has resulted in a continued
development of this architecture in order to cope with
new technologies. It is our intention to expand the range
of targets for using Embedded TestFrame and to increase
the flexibility of this solution according to the needs of
our customers.

VIII. REFERENCES

[1] CMG, "TestFrame, Een Praktische Handleiding Bij
Het Testen van Informatiesystemen ", ten Hagen &
Starn Uitgevers, ISBN 90-76304-67-X, Den Haag,
1999

[2] Hans Buwalda, Maartje Kasdorp, "Getting
Automated Testing Under Control", Software
Testing & Quality Engineering, November /
December 1999

35

Test automation for embedded
and other dedicated systems

Martin Gij sen

CMG

Martin.Gijsen@cmg.nl

GUI screens are today's de facto standards for software user
interfaces. It therefore makes sense that test automation, or automated
test execution, is used most for GUI applications. Dedicated systems,
however, often have other user interfaces or none at all. Test
automation for these systems is not quite the same. But what exactly
is different? And how can it be done effectively?

•••

We use dedicated systems· every day. Many are embedded systems, which integrate software
witb tbe hardware it controls, unlike PC software. Your mobile phone and the coffee machine
in the office are some examples. Otber systems are also dedicated in tbat they are built for one
purpose, but are not really embedded. One example is an ATM, which can consist of a regular
PC connected to a monitor, a card reader, a small keypad and a cash dispenser. All these
dedicated systems have specific interfaces and share tbe complications these have for test
automation.

Pacemaker

Dedicated systems can be 'mission critical' or 'safety critical', implying that system failures
can have such severe consequences tbat they must be extremely rare. While some consider tbe
quirks of the office coffee machine serious, they would be orders of magnitude more serious
in a pacemaker or nuclear reactor. Failure is unacceptable when lives are at stake. High
quality is also important because of the cost of fixing problems once the product is in the
field, especially for embedded systems. Simply having a test process, even a good one, is not
enough. The whole development process must carefully guard product quality. The test
process then checks that tbe product does indeed meet its requirements.

It makes perfect sense to automate the testing of software for dedicated systems. And not just
because of the higher quality-to-market, shorter time-to-market, lower cost and less repetitive
work tbat result from effective test automation. If tbe timing of actions has to be more precise
than is possible manually, automation is the only way. But even when the timing does not

36

have to be that accurate, testing dedicated systems often requires special tooling. These tools
often include both hardware and software. Examples are the hardware that supports wireless
communication with the mobile and the software to control that hardware from a host
computer. Using these tools to automate test execution is a logical next step. But is it always
possible?

'Back door'

Testing requires providing a system with certain stimuli and checking its responses. A test
action for a mobile could be pressing a button or sending it a certain message. The text on the
display and a phone number that is sent out are system responses. All of this takes place at the
system interfaces, in this case the buttons, display and antenna. If these interfaces do not
support an action or check, some tests cannot be executed. To automate testing, actions must
be possible through automated means. This includes bringing the system in the initial state for
the test case. .

~
~

D.

~

Test layer
('action words')

Test
report

~~

------- ---------------~-------- --------

.. , ..
Software Hardware

tools ~ tools

~

-------- --------------- ------------------------ -------

Ir r ' ..
Testabili~y • ... System
facilities under test

------------------.
Tool interfaces

System interfaces

figure .I: 7lle test enVironmen" mc.ludmg product mtetfoce enhancements for testing

Automated test execution is a co-ordinated effort. It involves the system under test, the tools
that talk to it and preferably an additional layer of software that addresses the tools (see figure
I). We will return to the importance of this layer shortly. The limitations to test automation

37

are usually in the system itself or in the tooling. How are mobile buttons pressed, for
example? How is the display read out? It makes no real difference whether the system
interfaces are meant for people or other systems. They have to be addressed. These testability
issues must be considered early in the development process to prevent unpleasant surprises
later. It may be possible to add or enhance an interface in the design stage that will serve as a
'back door' for testing (and maintenance) purposes. An example is the serial port on mobiles.
The software will require some modifications as well. Tools must be checked for suitability
on the same points. It may be possible to adapt them or have them adapted to specific needs.

To test just the software, it can be compiled for a regular computer and run in a software
simulation of its regular environment. This requires no hardware tools and usually makes
addressing the interfaces much simpler. It is very useful for functional testing. The hardware
does not even have to exist yet. For non-functional requirements such as performance and for
the interfaces, integration testing with the real environment is still required.

Another issue to consider is whether any modifications to the system for testability or even
observing system behaviour could have undesirable side effects. These could disturb the
system and invalidate test results. Measuring a signal can weaken it and cause problems.
Modifications can make software too large to fit in the often limited internal memory of
embedded systems. The added logic on the target machine can then be limited to interfacing
only and the rest performed on the host, thus minimizing memory footprint and processing
time overhead on the target.

It is, of course, not necessary or even desirable to automate all tests. The benefit of
automating a test depends on many factors such as its importance and how often it will be
repeated during its lifetime. If the benefits of automating certain tests do not justify spending
additional time or money, they should be performed manually. When test automation appears
technically possible, some other issues require careful consideration.

Action words for effective testing

Very many test automation projects never fly or appear unsustainable. One important reason
is that testers are often uncomfortable writing automated tests. Another is the amount of
maintenance to test cases and test environment. Among the few serious general approaches
for test automation, the 'action word' concept from the TestFrame method has been very
successful. It has been applied in hundreds of projects, for Gill, web and dedicated systems
(such as telecommunication equipment and digital TVs).

Action words are basically commands to the test environment, with or without arguments.
The trick is in how they are defined. 'Test analysts' define product specific action words at
the natural level of abstraction that they think about the tests, in their normal vocabulary. The
action of storing a name and phone number in a mobile, for instance, requires pressing quite a
few buttons. But as what individual buttons are pressed is irrelevant, they are better left
implicit in an 'add number' action word. Details will not appear in test cases unless they need
to be explicit. This includes test execution, tooling and interfacing details. Only the essence

38

remains. Figure 2 shows an example test case for a mobile phone, written in the usual
spreadsheet format. This simple concept has 'some important consequences.

code
on 1234

name number
add number John Doe 0123456789

off

Code
on 1234

Name number
check number John Doe 0123456789

Name
make call John Doe

Name
remove number John Doe

Name
check no number John Doe

off
jigure 2: Action ItVrds and their arguments: easy to read and low maintenance sensitivity

Automated test cases are now easy to read, write and maintain, even for programming
illiterate testers. A test case can read almost like plain text, even for the test manager. It will
also be concise and easy to review by other testers. Even error recovery can often be implicit.
For developing all tests, the testers require only the action word definitions and the usual
analytical skills, no programming skills or tooling details.

Test execution is taken care of by 'navigation software'. It implements the action words using
the tools, providing the details that the test cases leave implicit. This software corresponds to
the additional layer of test software in figure 1. It is best developed by software engineers,
called 'navigation engineers'. They will need knowledge of tools and interfaces to translate
the action words into actions at tool or system interfaces. They do not require the insight in
the system of the testers.

39

The use of action words also strongly reduces maintenance sensitivity of tests and test
environment. When changes in system functionality cause maintenance to test cases, the well­
chosen action words (and navigation software) hardly change. Similarly, changes in interfaces
or tooling will cause some maintenance to action word implementations, but if the system
functionality does not change, neither do the test cases. Even switching to a different tool
should have no impact on the test cases. The reduced maintenance sensitivity helps
accommodate requirement changes during the development process. It also stimulates reuse
of both tests and navigation software for other versions of the same product and related
products.

These factors help avoid the common problems and achieve effective test automation. The
above approach is useful for any system, be it GUI or dedicated. The test analysis process -
developing test cases in action words - is also the same for all systems (although the nature of
the tests will differ because the systems do). The main difference for dedicated systems is in
implementing the action words.

For GUI systems this software is written in the scripting language of the tool that simulates
user actions (keystrokes and mouse clicks). Navigation engineers are experts in GUI
interfaces and their test tools. They will need to structure their code, but it is rarely complex.

develop
product

write ./ realize run tests
require- action

~ ments words

"-. define ./
action
words

"-. write test
cases

.figure J: Developing product, test cases and action words in parallel

To test dedicated systems, the navigation software has to address other interfaces than the
scripting language of a GUI tool. The exact interfaces vary greatly from system to system, but
they often require writing special software. Sometimes calling operating system functions or
existing library procedures suffices. Sometimes the navigation software is written in the
scripting language of a tool, as for GUI systems. If some of the system's environment is

40

simulated, additional software is written around it. Sometimes complex data structures must
be passed, such as the many kinds of messages from and to the mobile. All this makes the
navigation software larger and more complex and therefore requires more software
engineering skills to develop and maintain. Although the navigation software will be much
less complex than the system itself, its development is best treated as a separate software
engineering effort. It can take place in parallel with system and test development (see figure
3).

Doing it right

Because of the special interfaces, test automation for dedicated systems is different from GUI
systems. Both the system and the tools must be (made) suitable. Addressing the system
requires other knowledge and often more software engineering skills than for GUI systems.
But as for other systems, the action word concept from the TestFrame method helps avoid
some major pitfalls of test automation. It makes automated test cases easy to read and write. It
clearly and strictly separates test development ('what') and test execution ('how'). It defines
two roles and helps people in each role focus their creativity and skills. And it avoids the
usual maintenance nightmare. Thus it helps create sustainable test automation solutions for
both GUI and dedicated systems.

41

1 I Object Oriented Testing with Conclusion

26/10/2001

Object Oriented Testing
with Conclusion
.) : :-: . ./(:' , -'I~, :~ ~\C !

Klaas Mateboer

ollis

.CoDis Object Oriented Testing with Conelusion

Contents

Introduction

Backgrounds of the testtool Conclusion

Complications of automated testing

Object Orientation

Object Oriented Testing

A first implementation

Examples

Demonstration

Discussion

42

2 I Object Oriented Testing with Conclusion

+CoDis Object Oriented Testing with Conclusion

Backgrounds of the testtool Conclusion

SmartCard testtool Taste
Blackbox testing
Functional testing
Regression tests
Simple communication protocols

Redesign and development since 1996
TTCN influences
ETDL script language combines basic
programming facilities with communication
skills, event handling, matching algorithms
pca concept for clear and extensible interfacing
with the system under test
F I F concept for flexible integration of foreign
implemented functions (e.g. cryptography)

.eoni. Object Oriented Testing with Conclusion

Application fields

SmartCard testing

Simple communication protocols

Slave device

Cryptography

SmartCard terminal testing

Master device

Multiple interfaces (cards, user, host)

More complicated communication protocols

Host simulation and testing

Sophisticated communication and messaging

Multiprocessing

Database interfaces

43

3 I Object Oriented Testing with Conclusion

+CoDjs Object OrIented Testing with Conclusion

Starting points

All interfaces with the SUT are realised by
PCO's

Every interaction with the SUT is represented
by a byte string .

I nterface specific actions can be performed
using control commands

Test language includes basic facilities for
operations on byte strings

Complicated algorithms are available through
FIF's

.eoms Object Oriented Testing with Conclusion

Campi icatians

Parsing complicated messages

Functional tests at higher protocol layers

Customisation of test reports

I nteraction with databases

Component bus interfaces

44

4 I Object Oriented Testing with Conclusion

+CctDi. . Object OrK!t\~ Testing with COnc!usion

New goals

Test description

Less imperative descriptions

Matching more than byte strings only

Test environment

Protocol layering

Report generation

+eoMs Object Oriented Testi!\g with Conclusion.

What may be the solution?

More intelligence in the test tool

I nterpretation of events

Verification of messages

Representation of test results

PCO's should be to the point
No protocol imlementations

No verification tasks

No reporting

New constructions for matching

Different types of messages and events

Arrays and collections

45

5 I Object Oriented Testing with Conclusion

+eoni. Object Oriented Testing with Conclusion

Object Orientation

Everything is an object

A program is a bunch of objects telling each
other what to do by sending messages

Each object has its own memory made up of
other objects

Every object has a type (class)

All objects of a particular type can recieve the
same messages

+Collis Object Oriented Testing with Conclusion

Object Oriented Testing (1)

Every interaction with the SUT is represented
by a verifiable object

Every verifiable object class is placed in
hierarchic classification structure

Every class has predefined attributes

Object properties are objects itself

46

6 I Object Oriented Testing with Conclusion

+ec,Dis Object Oriented Testing with Cpncluslon

Object Oriented Testing (2)

The test language is extended with facilities
for object (class/property) specification

Matching based upon subclassing and optional
property matching

Verifiable objects handle translation of
expressions and events

Verifiable objects can handle part of their
representation

OqJec:t Oriented Testing with Conclusion

Object classification

Package structure for flexibility and
maintenance

Hierarchical class tree

I nheritance of attributes

I nterfaces for standardised application areas

47

7 I Object Oriented Testing with Conclusion

.CoDis Objeet Oriented T estLng with Conclusion

Object specification

Class identification
Package name
Class name (object. transport. Vehicle)

Optional subclassing (Vehicle: :Bicycle: : Tandem)

Property specification
Flexible property lists (attribute~value, ..)

Property specifications may be incomplete
Properties can be ac!justed

Collections and Arrays

Component type

•rY"'~-1S _ Object Oriented Testing with Conclusion

Object inspection

Object type can be checked by matching
Switch (ReceivedObject)

ClassX: ...

ClassY: _ ..

Object properties can be addressed
x = Object.attribute

Array elements can be addressed
x ~ Array(i]

48

8 I Object Oriented Testing with Conclusion

.CoDis Object Oriented Testing with Conclusion

Object manipulation

Object type cannot change

Object properties can be changed by
respecification
Object.attribute = newvalue

NewObject = OriginalObject(attribute=newvalue)

Array elements can be reassigned
Array[i] NewElement

NewArray = Arrayl ++ Array2

NewArray = OriginalArray[i,j]

.~Dis Object Oriented Testing with COl'1ctuslon

Example classification

49

9 I Object Oriented Testing with Conclusion

+c:::onis Object Oriented Testing with Conclusion

Example test script

+CoDis Object Oriented Testing with Conclusion

Example test report

50

10 I Object Oriented Testing with Conclusion

+CcJDjs Object Oriented Testing with Conelu5ion

Demonstration

Conclusion

• .coDis. Object Oriented Testing with Conclusion

Discussion

51

'~COte de Resyste

Specification Based Testing:

Lessons from practical applications

LucentT."'. __ 0
IleUUlbsl~ .-

C~ COte de Resyste

Rene de Vries
(rdevries@cs.utwente.nl)

~ PHILIPS

t.H ...u """" ItifIt" TU/e

Overview

• Scope and motivation

(,)
University of Twente

Tho""",,,_

-~ --

• Example: Highway Tolling System

• Evaluation and concluding remarks

Nederlandse Testdag 2001

52

C~ COte de Resyste

Testing
Testing: .

to check the quality of a system

• by performing experiments

in a controlled environment

Software Testing:

• testing the quality of a software product

Primary Focus:
• reactive software systems

Nederlandse Testdag 2001

C~ COte de Resyste

Types of testing
Object

box

Aspect
Nederlandse Testdag 2001

53

s

Accessibility

4~ COte de Resyste -~----
Specification based testing

What?

test functional behaviour

of black box implementation

with respect to specification

Why?

to check correct functioning of
implementation

specification
based testing

Nederlandse Testdag 2001

4..t COte de Resyste

implementation
process

-~ --
Specification based testing:

1 generate test from
specification

2 execute test against
implementation

3 obtain verdict

Ideal situation

specification

Nederlandse Testdag 2001

54

test tool

+,..~ verdict

(pass I fail)

C--t. COte de Resyste

Problems of Testing
;>
• What is correctness?

Validity of the experiments

Com plexity of manual derivation

• Time consuming and laborious

Inability of manual execution

-~­~--

Solution: Mathematics and Automation

Nederlandse Testdag 200 I

C--t. COte de Resyste --
Formal methods

Examples

• use mathematics to model
relevant part of your system

Z, Temporal Logic, SDL,
LOTOS, Promela, ...

precise semantics: no room for
misinterpretation

allow formal validation and
reasoning about systems

amenable to tools: automation

Nede:r1andse Testdag 2001

55

,~ COte de Resyste --Formal methods and
specification based testing

formally specified!!!! specification

What?

verdict

(pass I fail)

• checking, by means of testing, whether an implementation
is correct with respect to its specified behaviour

• where the specification is a formal description
Nederlandse Testdag 2001

,~ COte de Resyste

Cote de Resyste
(Conformance Testing of Reactive Systems)

Research and development project

Funding by: Slichting voor Technische Wetenschappen (STW)

Effort: 15fte (8TW) + 8 fte (partners) for 4 years
(Januari 1998 - December 2001)

--

Partners: industry (Philips and Lucent Technologies) and academia (TUE,
UT)

Aim:
Develop methods and techniques and build tools for

automated specification based testing based on
formal theory and validate these in practice.

Nederlandse Testdag 200 I

56

C~ COte de Resyste

Case Studies

• Academic:
- conference protocol (reference)

• Industrial:
- Easylink (Philips)
- TV components (Philips)
- V5EES (Lucent Technologies)
-CSC (CMG)
- Rekeningrijden (Interpay)

Nederlandse Testdag 2001

C~ COte de Resyste -~---
Example: Rekeningrijden

Nederlandse Testdag 200 I

57

C~ Cote de Resyste

Characteristics

• Simple protocol

• Parallism

• Real-time requirements

• Encryption

Nederlandse Testdag 2001

C~ COte de Resyste --
Phases for Automated Testing

• IUT study
- informal and formal specification

• Tools
- semantics and openness

• Test environment
- test architecture, implementation, SUT specification and testing

• Test execution
- cam paigns and execution

Nederlandse Testdag 2001

58

C~ COte de Resyste

Highway Tolling System

Wireless UDP/IP

Nederlandse Testdag 200 J

C~ COte de Resyste --
spec Test Tool TorX

focus on on-the-fly testing •
Nederlandse Testdag 2001

59

C~ COte de Resyste

Test architecture I

spec

PB

Nederlandse Testdag 2001

C~ COte de Resyste --
Test architecture II

spec

PB --
+

CJ: UDP/IP

SUT

Nederlandse Testdag 2001

60

C--t. COte de Resyste ---
Test architecture III

spec
ObuSim

PB

Ob~+Sim 1~111t~~~:i~i I;~ I II
TCP/IP

+
UDP/IP Test Context

Nederlandse Testdag 2001

C--t COte de Resyste --
Test Execution

• Campaigns

- Management of test tool configurations

- Management of IUT configurations

- Steering the test derivation

- Archiving results

• Execution results

- 2 errors: 1 validation and 1 during testing

Nederlandse Testdag 2001

61

4..t COte de Resyste ------
Problem: Quiescence in ioco

Input

~
Observe Input

~ 1---c-------1

1 to

Ti~

Timeoy Timeoy

TorX PB TorX PB

Spec := Spec + Tick

Nederlandse Testdag 2001

4..t COte de Resyste ---
Major Lessons

• Stest '" Svalidation

• Engineering of the test environment is laborious

• Automated testing is very flexible

• Test campaigns support bookkeeping and control on
experiments

• How to cope with real time requirements

- efficient computation for on-the-fly testing

- lack of theory

Nederlandse Tcstdag 2001

62

--

C~ COte de Resyste ------
Concluding remarks

• Automated testing is:
- beneficial (high volume and reliability)

- flexible (adaptation and many configurations)

• More needed:
- Adapter implementation

- Real Time theory

- Campaigns and result analysis·

Step ahead in testing realistic industrial applications

Nederlandse Testdag 2001

C--t. COte de Resyste

More information:
• http://fmt.cs.utwente.nl/cdr

Thanks:
CdR partners and Interpay B.V.

Nederlandse Testdag 2001

63

C"..t COte de Resyste -~---
Questions

Nederlandse Testdag 2001

64

Prisoner's Dilemma in Software Testing

Loe Feijs
Eindhoven University of Technology

Abstract

In this article the problem of software testing is modeled as a formal strategic game.
It is found that for certain values of the productivity and reward parameters the game is
essentially equivalent to the Prisoner's Dilemma. This means that the game has a unique
Nash equilibrium, which is not optimal for both players, however. Two formal games are
described and analyzed in detaiJ, both capturing certain (though not all) aspects of real
software testing procedures. Some of the literature on the Prisoner's Dilemma is reviewed
and the re<>uits are translated to the context of software testing.

Keywords: software testing, software quality, game theory, Nash equilibrium, prisoner's
dilemma.

1 Introduction

Software is playing an increasingly important role in modern society. Not only in office software
and computer games, but also in embedded systems such as in televisions, telephony exchanges,
cars, etc. computer programs of considerable size are essential. Software bugs constitute a
serious problem [1]. Software testing is frequently used to find errors so they can be repaired
and hopefully, the software quality improved. In view of the societal relevance of software
quality, it makes sense to consider software quality as an economic issue and to use rational
methods when studying it. In this article we use concepts from game theory for that purpose.
The problem of software testing is modeled"" a formal strategic game. One of the findings of
this article is that this game is of a special nature, known as Prisoner's Dilemma [2].

The article is structured as follows. Sect. 2 introduces the necessary game theory, which
includes the Prisoner's Dilemma. Sect. 3 describes the role of testing in software engineering.
Sect. 4 describes an idealized testing game and Sect. 5 discusses a subtle variation of the same
game. We have an example of a concrete testing game, providing support for and adding
plausibility to the game of Sect. 4. Its presentation is very technical, however; therefore all the
details are described in App. A. In App. B this concrete testing game is analyzed. In Sect. 6
the effect of multiple performance levels is investigated. In Sect. 7 several known results on the
Prisoner's Dilemma are summarized and translated to the context of software testing. Finally
Sect. 8 contains some concluding remarks.

2 Prisoner's Dilemma

There are two types of games that are st udied in game theory: zero sum games and non-zero
sum games. Zero sum games obey the rule that the sum of the payoffs to all players equals
zero. An example is the game of chess where a player receives one point if he wins, -1 point
if he looses and 0 points in case of a draw. There are two players and three outcomes: white
wins and black looses, white looses and black wins, and a draw (no one wins). The payoffs
are (1,-1), (-1,1) and (0,0), respectively. In each c""e, the sum equals zero, e.g. if white
wins the payoffs are given as the pair (I, -1) so the sum 1 + (-1) = O. Zero sum games were
studied by Zermelo and Von Neumann [3] who established solution concepts and proved their

65

existence using minimax analysis and fixed point theories. Zero sum games model situations
where players have a conflict of interests such that their interests are completely opposite.

Non-zero sum games, by contrast, model situations in which there is a conflict of interest,
but where the opposition is not complete. To a certain extent, the players can have shared
interests, but their interests are not completely aligned either. Throughout this article the class
of non-zero sum games is needed.

Another distinction usually made in game theory is between strategic games and extensive
games. In a strategic game all players choose their actions once in a simultaneous fashion
whereas an extensive game is more general; in an extensive game it is possible to perform
several actions in a sequential fashion (as for example in chess and checkers). Throughout this
paper we focus on strategic games, which are formally introduced next.

A strategic game is a triple (N, (Ai), (Ui)) where N is a finite set of players and for each
player i E N there is a set Ai of so-called actions. For each player i E N there is a function
Ui A ---j. IR that assigns a payoff to each tuple of actions. Here A = IIiEN Ai, or in the
special case that the size of N equals two, A = Al X A2. The payoffs give rise to a preference
ordering <,:, on A, one ordering for each player, defined by a <,:, b iff u,(a) <': u,(b). The absolute
values of the payoffs are considered irrelevant in the sense that only the induced preference
ordering counts. Throughout this article the number of players equals two. Thus N contains
two elements and without loss of generality it can be assumed that N = {1,2}. A pair of
actions (a, b) for a E Al and b E A2 is called an action profile . .

A simple example of a strategic game is BoS, the Battle of the Sexes, in [5] explained as
Bach or Stravinsky. It is here used as an example to introduce a convenient tabular notation
called payoff matrix. The actions of player 1 correspond to the rows of the matrix. The actions
of player 2 correspond to the columns of the matrix. Each entry in the matrix contains a pair:
the payoff of player one, followed by the p~yoff of player 2. The payoff matrix of BoS is:

B S
B 2,1 0,0
S 0,0 1,2

The action sets are Al = A2 = {B, S}, that is, each player has to indicate his choice for
a concert of music, going to either Bach (B) or Stravinsky (S). Their main·concern is to go
together, but one person prefers Bach and the other prefers Stravinsky.

The interesting question is which action profiles are to be chosen by rational players. A
very important concept for studying this question is the Nash equilibrium (the original publi­
cation is [4]; we follow the presentation of [5]). A Nash equilibrium (N.E.) of a strategic game
(N, (A,), (Ui)) for N = {1,2} is an action profile (aO,bO) with the property that (a',b') <':1
(a, b') for all a E A, and similarly (aO, bO) <:2 (aO, b) for all b E A2. The intuition is that a Nash
equilibrium is a consistent expectation pair in the sense that player 1, if he is rational, sticks to
his choice a* which is better for him than any other choice (assuming player 2 does not deviate
from his b*) and conversely for player 2. The concept of Na.sh equilibrium is illust"rated by the
game of BoS, which has two Nash equilibria, viz. (B, B) and (8,8). The preferences are shown
in the diagram of Figure 1 which is like the payoff matrix except for the arrows which indicate
how player 1 can improve a certain action profile by another action profile (according to the
vertical arrows) and similarly for player 2 (according to the horizontal arrows).

After these preparations the Prisoner's Dilemma is introduced. The Prisoner's Dilemma is
the two-player strategic game with the following payoff-matrix:

C D
C 1, 1 3,0
D 0, 3 2, 2

The game was proposed by Merril Flood and Melvin Dresher in 1950 in a slightly different set­
ting. The name 'Prisoner's Dilemma' was proposed by Albert Tucker, who found the anecdote
of the two prisoners. In [2J the game is explained as follows:

66

Figure 1: Improvements for the BoS game.

Two members of a criminal gang are arrested and emprisoned. Each prisoner is in
solitary confinement with no means of speaking to or exchanging messages with the
other. The police admit they don't have enough evidence to convict the pair on the
principal charge. They plan to sentence both to a year of prison on a lesser charge.
Simultaneously, the police offer each prisoner a Faustian bargain. If he testifies
against his partner, he will go free while his partner will get three years in prison on
the main charge. Oh, yes, there is a catch ... If both prisoners testify against each
other, both will be sentenced to two years in jail.

This explanation motivates the sets Al = A2 = {C, D} where D means 'Defect' and C means
'Cooperate'. Since the absolute values are irrelevant, the Prisoner's Dilemma can equally well
be described by the following payoff matrix (taken from [5]):

C D
C 3,3 0,4
D 4,0 1,1

There is something paradoxical about the Prisoner's Dilemma which is the fact that the only
N.E., the action profile (D, D) with payoff pair (1,1) is inferior to the pair (C, C) with payoff
pair (3,3). It is inferior for both players. The improvements diagram of Figure 2 demonstrates
that (D, D) is the only N.E.:

FfJ
I 1·1 rn

Figure 2: Improvements for the Prisoner's Dilemma.

3 Software testing

Since the invention of stored-program computers in the 1940s the importance of computer
programs has been steadily increasing. Today, many millions of people rely on software such
as Unix, Windows, MS Office for important aspects of their work. Televisions, telephony
exchanges, cars, airplanes, mobile phones, etc. each contain thousands, sometimes millions of
lines of embedded code. Experience shows that it is very hard to guarantee the correctness of
these programs (often referred to as software). Sometimes the problems seem out of control,
as illustrated by the problems reported in [lJ: Software's Chronic Crisis. Gibbs mentions the

67

example of the baggage-handling system of Denver's new international airport that, for nine
months, was held captive by "Lilliputians-errors in the control software". Shaw of Carnegy
Mellon, Bourgonjon of Philips and others note how software is exploding. Gibbs writes about
bugs, small glitches, the density of errors and so on. Software testing is used in serious attempts
to improve the situation by detecting errors as soon as possible. A.B Hall puts it in [1]: "The
benefits of finding errors at that early stage is enormous". Testing plays an important role
in the present industrial practice, particularly when the software systems are very large. A.B
an example we mention the development of Windows 2000, being 29 million lines of code. We
quote from [6] where it is reported that: <I[] at the level of size and complexity of Windows 2000,
writing code was no longer the central activity. Indeed, testing and debugging have accounted
for between 90 and 95 percent of the work". It is generally believed that large-scale software
projects have to spend 50% or more of their effort in testing.

There is a large literature on the art and science of software testing. Formal method spe­
cialists stress the fact that testing can reveal errors but can not prove the absence of errors
(Dijkstra EWD340); both research and case studies are done to explore the power of correct­
ness proofs and automated analysis tools (model checkers). Despite these research efforts, most
practitioners consider some form of testing indispensible. In the field of protocol conformance
testing, the topic of testing is subject of much research and development. We mention the
language TTCN [7J and Finite State Machine based methods such as those mentioned in [8],
[9J and Labeled Transition System methods, for example [10J.

Most authors in formal testing research adopt the viewpoint that there should be a formal
specification which is used as a starting point for procedures to generate tests, execute them,
and determine their coverage: The main goal seems to be that the efficiency, or error detection
power of the tests-to-be-derived is optimized.

Useful as this may be, little or no attention is given to the fact that there is an opposition
of interests between the tester and the implementor. The goal of the tester is to find errors,
whereas it is easily observed in practice that an implementer likes his program to be shown
correct (as he often believes it is). The practical advise to separate these roles, letting the
tester be another person than the implementer is well-known for this reason.

In this article we do not just seek an optimizing procedure for the tester, but we focus on the
opposition of interests. Since game theory has a vocabulary and analysis methods for situations
of opposite interests, these can be applied to software testing. This is undertaken in the next
section.

4 An idealized testing game

In this section a very simple and yet fairly general model is proposed first. The model is nothing
but a payoff matrix for two players: an implementer (player 1) and a tester (player 2). After
that the model will be refined to bring in the probabilistic aspects that ocur when neither the
implementation nor the test are perfect (so both PASS and FAIL are possible outcomes, each
with its own probability). The model is abstract in the sense that it does not tell what' an
implementation or a test looks like. A more concrete example model, showing that the abstract
model makes sense, is postponed until App. A.

The Idealized Testing Game (ITG) is the two-player strategic game (N, (Ad, (u;)) where
N = {1,2} and Al = A2 = {p,q}, with the intuition that p means (poor' (bad) and q means
'quality' (good). The Ui are given by the payoff matrix:

p q
p 2,2 0,3
q 3,0 1,1

The motivation for this payoff matrix is as follows. The implementer is rewarded if he delivers
an error-free, or almost error-free piece of software. The tester is rewarded if he performs a
thorough testing job. In practice it is hard to tell whether the software is error-free or not;

68

that is precisely what testing is meant for. Therefore in ITG the implementer is rewarded if
no error is found (an outcome denoted as PASS). The tester should be eager to find errors.
Therefore in lTG, the tester is rewarded if at least one error is found (an outcomed denoted
as FAIL). The implementer chooses between doing a poor job, delivering software containing
errors, and doing a quality job, delivering error-free or almost error-free software. The tester
chooses between doing a poor job, performing a test with low error detection capability, and
performing a quality test, which takes more effort: but which is more likely to reveal errors.
The payoffs for the action profile (P,p) are 2 for the implementer and 2 for the tester. Both
do a poor job, so yes, the software contains errors, but at the same time there is a low error
detection capability by the tester's choice. Some of the errors are found, some are not. Both
the implementer and the tester are equally well rewarded; this explains both payoffs that are 2
(recall that the absolute value is irrelevant). Another situation occurs when an almost perfect
implementation is investigated in an almost perfect test. But now the payoffs are 1 since both
players have to make serious investments in effort (time), and perhaps also in costs for more
sophisticated personal education, tools etc. The costs of these efforts, here estimated to have a
value of 1, are to be subtracted from the rewards, both for the implementer and the tester.

Next consider the action profile (q,p), that is, an almost perfect piece of software investigated
by a poor test. Clearly this gives a PASS. The implementer's reward increases from an average
of 2 to a certain value of 4. But the effort is higher too, so the implementer gets 3. The tester
has no costs for the effort, but no rewards either. The effect of reward outperforms the effort
(=1) so the tester's payoff is 2 less than his payoff for (P,p); the tester gets O. Conversely, (p, q)
gives a FAIL with payoffs 0 and 3.

The payoff matrix of ITG is the payoff matrix of a Prisoner's Dilemma. There is one N.E.,
the action profile (q,q). In the N.E. both players choose to do a quality job.

Next this model is to be refined in order to bring in the probabilistic aspects. The refined
model is called ITG'. It is defined by a 4 x 4 payoff matrix. From lTG' the earlier model
ITG can be derived in a formal way: the four choices for the implementer are reduced to two
choices, each of which is a lottery over two alternative implementations of equal quality level
(and similarly for the other player). By this approach, the numbers from the ITG payoff matrix
can be retrieved later (in other words: lTG' will provide a more detailed motivation for ITG).

The refined Idealized Testing Game (ITG') is the two-player strategic game (N, (A~), (ui)
where N = {1,2} as before and where A; = A, = {pl,p2,q1,q2}. The u: are given by the
payoff matrix:

p1 p2 q1 q2
pI 4,0 0,4 0,3 0,3
p2 0,4 4,0 0,3 0,3
q1 3,0 3,0 3,-1 -1,3
q2 3,0 3,0 -1,3 3,-1

The motivation for this payoff matrix is as follows. The implementer has always several alter­
native design choices, even after he has made a conscious or unconscious decision to spend the
effort corresponding to a poor job or the effort corresponding to a quality job. In realUfe this
design space is huge but here it is assumed to be a two-element set. It is the set {p1,p2} for
'poor' and the set {q1,q2} for 'quality'. The reward for a programmer doing a good job, as
witnessed by a PASS, equals 4 (think of 4$, 4K$ or 400K$ depending on the size and complexity
of the specification). In the case of a FAIL the programmer receives reward O. The tester gets
4 for a FAIL, 0 otherwise. A poor implementation and a poor test cost O. A quality imple­
mentation costs 1 (the effort), which is counted negatively. The same holds for the test cost.
It is assumed that (P1,p1) and (P2,p2) produce a PASS whereas (Pl,p2) and (P2,p1) produce
a FAIL. But if the programmer chooses any of his quality alternatives q1 or q2 he enforces a
PASS whenever the tester chooses one of the poor alternatives. And so on, as conveniently
summarized by the following matrix (call this a verdict matrix):

69

pI p2 qI q2
pI PASS FAIL FAIL FAIL
p2 FAIL PASS FAIL FAIL
qI PASS PASS PASS FAIL
q2 PASS PASS FAIL PASS

This concludes the motivation of lTG',
This game lTG' has no N.E. For example, consider the action profile (pI, pI) having payoffs

4,0. Then the tester can improve by choosing p2 instead of pI. The resulting action profile
(Pl,p2) has payoffs 0,4. Then the implementer can improve by choosing p2. The action profile
(P2,p2) yields 4,0 so the tester improves to (P2,pI). The action profile (P2,pI) yields 0,4 so
the implementer improves to (Pl,pl). The limprovements' go round in circles. Of course the
reason is that the implementer has no reason to distinguish whether pI or p2 is better because
he has no way to know what the tester will do (PI or p2).

Therefore the following two-step strategy is reasonable: first choose between p and q, then
conduct a lottery over the alternative implementations. In reality an implementer does not feel
like throwing dice concerning his implementation decisions; he tries his best with the selected
time frame, but yet he makes mistakes at places where he is unaware of it and that is modeled
as a random device.

In order to calculate the average payoffs, the payoffs are mUltiplied by a·weighting factor.
The sub-matrix where the implementer takes one of the p choices and the tester takes one of
his p choices, contains four entries with equal probabilities. These must be 25%. The weighting
matrix is:

pI p2 qI q2
pI 25% 25% 25% 25%
p2 25% 25% 25% 25%
qI 25% 25% 25% 25%
q2 25% 25% 25% 25%

Performing an element-wise multiplication of the lTG' payoff matrix and the weighting
matrix we get:

pI p2 qI q2
pI 1,0 0,1 0,0.75 0,0.75
p2 0,1 1,0 0,0.75 0,0.75

qI 0.75,0 0.75,0 0.75,-0.25 -0.25,0.75
q2 0.75,0 0.75,0 -0.25,0.75 0.75,-0.25

Taking this latter matrix, the four weighted payoffs can be added for each of the four sub­
matrices. For the (P,p) sub-matrix we must (player-wise) add 1,0 and 0,1 and 0,1 and 1,0
which means that the average payoffs for (P,p) are 2,2. The result is:

p q
p 2,2 0,3
q 3,0 1,1

This is easily recognized as ITG. So ITG comes out as an abstraction of ITG'.
Althougb ITG and lTG' are based on reasonable assumptions they are very abstract. The

syntax and semantics of the prograIllE and the details of the testing procedures are not elab­
orated and there is not even a difference between an implementer and a tester. We have an
example of a concrete testing game TCTG (Text Copy Testing Game), providing support for
and adding plausibility to ITG and ITG'. In TCTG the task for the implementeds to tran­
scribe a given text, perhaps from one character set to another, or perhaps even simpler, to type
precisely the characters of a given string. The length of the specification and the length of the

70

implementation are the same, L say. The task of the tester is to select one or more positions
in the range 1 to L. If the implementation and the specification differ at one or more of the
selected positions then an error is found and the verdict is FAIL. Otherwise the verdict is PASS.
The presentation of the Text Copy Testing Game is very technical, however. Therefore all the
details are described in App. A. In App. B this concrete testing game is analyzed.

Discussion: ITG is based on lTG' which contains reasonable assumptions about the test pro­
cess such as the assumption that a poor-poor confrontation and a quality-quality confrontation
yield a 50%/50% ratio of PASS and FAIL. Another assumption is that the reward or success is
4 times the effort needed to perform a quality job. This factor of 4 is a parameter of the game
(call it the reward/effort ratio, symbol R). If the ratio R = 4 then ITG results, essentially
a Prisoner's Dilemma. Taking other values, other games result, some of which have another
nature than the Prisoner's Dilemma. For arbitrary ratio R the adapted payoff matrix of ITG
is:

p q
p ~R,~R O,R-I
q R -1,0 ~R-UR-I

Its is interesting to consider values of R that are below 4; the nature of the game changes at
R = 2. For example, taking R = 14 the payoff matrix turns into:

p q

P 0.75,0.75 0,0.5
q 0.5,0 -0.25,-0.25

This is not a Prisoner's Dilemma. There is one N.E., viz. (P,p) and the corresponding payoffs
0.75,0.75 are better than the payoffs for any other action profile (for both players). If this is
interpreted in the usual way by assuming that both player and tester behave rational and hence
take this N.E., then it is a natural explanation to say that there is not enough incentive for both
players to choose the quality alternative: the expectation of the reward does not outperform
the effort.

5 What if the implementer moves first?

There is an assumption underlying the ITG that can be questioned, viz. that the implementer
and the tester choose their performance level simultaneously. This is motivated by the way
many software engineering projects are organised. As soon as the requirements analysis phase
has been completed and the software specification is available, not only the implementer starts
working, but also the tester. A large part of the tester's work consists of choosing test cases and
carefully describing them. This work should not wait until the implementer is ready because
of the usual requirement to keep the overall project duration as short as possible (another
part of the work is test execution, which has to wait for the implementation anyhow). For,
the main development of the present paper we adopt the viewpoint that testing is a strategic
game which means that both players move simultaneously, as motivated by the parallelism in
the development project. It is also motivated by the fact that even after the implementer has
delivered his implementation, the tester does not know the implementer's performance level
(usually, testing is needed for that).

But, as a short side-line we shall briefly analyse a sequential version of lTG, wich we call
ITG5eq . In ITGseq the payoff matrix is:

p q

P 2,2 0,3
q 3,0 1,1

71

which is the same as for ITG. The difference is that in ITGseq the implementer chooses first.
Then, knowing the implementer's choice, the tester chooses. The motivation for this could be
that in certain specific situations the tester can easily sample the implementer's work in order
to estimate the performance level (for example if the code contains many deeply nested IF
THEN ELSE statements, bugs are likely).

Next ITGseq is analysed according to a max-maximization procedure (this is a two-phase
optimization similar to the well-known min-max procedure for zero-sum games). If the imple­
menter chooses p then the tester is left with the upper sub-matrix:

The assumedly rational tester maximizes his own payoff and therefore chooses q. In this case
the implementer receives payoff O. Alternatively, if the implementer chooses q then the tester
is left with the lower sub-matrix:

The tester, maximizing his own payoff, chooses q. In this case the implementer receives payoff
1. The implementer is facing a choice between p with payoff 0 and q with payoff 1. Assuming
the implementer is rational, he must choose q. Then the tester chooses q. So the solution of
the max-maximization analysis is the (sequential) action profile (q, q). As it happens, this is
the same a.s the N.E. of the ITG.

6 Adding an extra performance level

One of the objections one could have against the relevance of the ITG and the TCTG of App. A
as a model of an implementer's behavior and a tester's behavior is the binary choice with respect
to the performance level. Perhaps a real implementer does not want to choose between two
extreme values of 'poor' and 'quality' levels, or between Q = 20% and Q = 50%. A real
implementer sees a whole range of performance levels, so perhaps he chooses between three
levels (or even more). It is not a priori clear what implications this has for the nature of the
game. ITG and TCTG make it difficult to choose between the poor level and the quality level
(because of the paradoxical nature of the Prisoner's Dilemma) but will the dilemma disappear
if there is a third, intermediate level? In order to investigate this, we construct another game
called ITG3 which is a 3 x 3 strategic two-player game.

The game ITG3 is obtained from ITG by introducing an intermediate performance level
halfway between 'poor' and 'quality'. The same notational devices used in App. B are used here.
In order to simplify the calculations we approximate the effort values by linear interpolation
(the rewards are always the same, but the effort part is varying). Therefore the refined payoff
matrix is:

p pq q

P 4,0/0,4 4,-0.5 /0,3.5 4, 1/0,3
pq 3.5,0/-.5,4 3.5,-0.5/-0.5,3.5 3.5,-1/-0.5,3

q 3,0/-1,4 3,-0.5/-1,3.5 3,-1/-1,3

The weighting matrix is also taken to be the result of linear interpolation between the
idealized values of P(FAIL) which are 0%, 50% and 100% in ITG. Therefore the weighting
matrix is:

p pq q

P 0.5 /0.5 0.25 / 0.75 0/1
pq 0.75/0.25 0.5 / 0.5 0.25/0.75

q 1/0 0.75 / 0.25 0.5 /0.5

72

The payoff matrix and the weighting matrix can be multiplied in an element-wise fashion to
get:

p pq q
p 2,0 /0,2 1,-0.125/0,2.625 0,0/0,3

pq 2.625,0/0.125,1 1.75,-0.25/ -0.25,1. 75 0.875,-0.25/ 0.375,2.25
q 3,0/0,0 2.25,-0.375/ -0.25,0.875 15,-0.5/ 0.5,1.5

And by pair-wise adding the payoffs for PASS and FAIL the following payoff matrix is obtained
(call this abstract 3 x 3 game ITG3):

p pq q
p 2,2 1,2.5 0,3

pq 2.5,1 1.5,1.5 0.5,2
q 3,0 2,0.5 1,1

This is again a game with one N.E. at (q, q) but as in the Prisoner's Dilemma the payoffs 1,1
for the N.E. are less than certain other payoffs, such as the 2,2 for <:P,p). The improvements
diagram for ITG3 is shown in Fig. 3. From this analysis we see that introducing an intermediate

Figure 3: Improvements for the ITG3 game.

performance level does not change the essential nature of the game.

7 Testing is a Prisoners Dilemma; so what?

COIlBider a software development laboratory in which there are programmers (=implementers)
and testers. The efforts and rewards are determined according to the principles such as those of
ITG and TCTG. Programmers receive a fixed basis salary, but if they choose to do a !quality'
job, they have to spend more hours (which could have been spent otherwise in a profitable way,
which means that the programmer pays for extra efforts). Moreover the programmer receives a
bonus (the reward) if the subsequent test results in a PASS verdict. A similar payment system
is adopted for the tester. There are other conceivable set-ups as well, for example introducing a
programmer's boss who chooses the programmer's performance level and pays him accordingly;
in this case it is the boss who plays the game, but it does not make much difference.

Now from the viewpoint of the software lab's manager: is it good or bad that there is a
Prisoner's Dilemma going on in his lab? There are several aIlBwers possible, depending on the
type of theoretical results that are employed and depending on the level of belief that these
theoretical results apply to real life. Six different types of theoretical results are discussed:

• The concept of N.E. is a straightforward theoretical concept of !solution' for a two player
strategic game. If it is assumed that rational players choose the N .E. and if both the

73

programmer and the tester are rational, then they must choose the 'quality' performance
levels; for the lab manager this means that they do their best to deliver quality software,
which is the manager's (and the customer's) best outcome. It is best for the manager,
not for the players. Looking at this way, ITG is good.

• Already in the early days of the development of game theory, serious doubt has been
raised whether real people would behave rational in the sense of choosing the N.E., even
in paradoxical situations. The Prisoner's Dilemma was conceived precisely as a tool
for investigating this. In the Flood-Dresher experiment [2] done in 1950 a sequence of
Prisoner's Dilemma games was conducted by the same pair of players; mutual cooperation
was the most common outcome: 60 of the 100 games. Mutual defection, the N .E., occurred
only 14 times. Translating this to the lTG, mutual cooperation means /,p,p) and mutual
defection means (q, q). If the programmer and the tester behave as in this experiment,
their behavior is bad from the lab manager's (and the customer's) point of view.

• If the same game is played repeatedly by the same pair of players, it is not correct from a
game-theoretical view to consider these as independent games (as immediately remarked
by John Nash in his reaction to the Flood-Dresher experiment, see [2)). The sequence is
to be considered as one game in which the two players move pairwise, using the knowledge
about the other player's strategy (as built-up so far) in each successive move. In game
theory this is known as an 'extensive game with perfect information and simultaneous
moves' (see [5] 6.3.2). Now each player has to decide upon a strategy which contains
his initial move and also all the answers to all sequences of moves of the other player.
Special examples of such strategies are finite state machines. In [5] Sect. 8.4 several such
strategy machines are defined. For example one machine Ml for player 1 works as follows:
play C (cooperate) 88 long 88 player 2 plays C; play D (defect) for three periods, and
then revert back to C, if player 2 plays D when he should play C. So the other player
is being "punished" for three periods for playing D and then "forgiven". The machine
M2 of player 2 starts by playing C and continues to do so if the other player chooses D.
If the other player chooses C then it switches to D, which it continues to play until the
other player again chooses D, when it reverts to playing C. If two players play Prisoner's
Dilemma using these finite state machine strategies, the game goes into cycling behavior
with a cycle-length of 5. Both (C, C) and (D, D) occur in the cycle, next to (C, D) and
(D, C). If the programmer and the tester work according to such strategies (and other
strategies such as the 'grim' strategy in [5] or the well-known 'tit-for-tat' strategy) then
the lab manager is likely to observe cycles; it can be expected that the cycles are irregular
because of the random effect of the (p, q) and the (q,p) action profiles (recall that ITG is
b88ed on average payoffs).

• It is possible to consider the higher-level strategic game in which each player has to choose
a multi-move strategy once; for example the programmer could choose to always take move
D and the tester could behave as defined by machine A12 . The interesting question now
is whether there exist some kind of optimal multi-move strategy (some clever machine,
perhaps) that is optimal for player 1 and similar for player 2. In [5} Sect. 8.10.3 the
following result is given: "if the strategic game G has a unique N.E. payoff profile then
for any value of T the action profile chosen after any history in any subgame perfect
equilibrium of the T-period repeated game of G is a N.E. of G." Here 'subgame perfect
equilibrium' refers to a special type of N.E. for extensive games, taking certain credibility
considerations into account (see [5] Sect. 6.2 for the details). If the programmer and
the tester have to play ITG in a finite repetition and if they behave rational then this
result means that they choose (q, q), which is good from the lab manager's viewpoint.
However there is evidence that experimental subjects do not behave in a way that is
consistent with this result (see the discussion in [5] Sect. 8.2, and also see the Flood­
Dresher experiment [2]).

• When considering infinitely repeated games there is the complication that it is not a-priori

74

clear how the payoffs of infinite sequences are to be defined Uust adding them leads to
infinite values). There are several alternative definitions: the discounting criterion, the
limit of means criterion and the overtaking criterion. The set of equilibria is huge. In [5]
Sect. 8.2 Osborne remarks: "the fact that it [the behavior of experimental subjects] is
cOIU?istent with some subgame perfect equilibrium of the infinitely repeated game is un­
interesting since the range of outcomes that are so-consistent is vast." Moreover software
developments do not run ad infinitum without bringing in new people or changing the
rules .

• It is possible to consider players which choose multi-move strategies (grim, tit-for-tat,
etc.) but not just two fixed players; rather an evolving population of players is con­
sidered. In [11 J three different arrangements are discussed. The first arrangement is
a historic sequence of tournaments organized by Axelrod in the later 1970. Colleagues
(game theorists) submitted strategies. The simple strategy tit-for-tat won (start with co­
operative response and then always repeat the other player's previous move). The second
arrangement is a computer simulation of large populations of certain basic types of players
equipped with stochastic strategies. Many mutation-selection rounds are performed. As
a result, the average payoff in the population can change suddenly. Most of the time,
either almost all members of the population cooperate, or almost all defect. The longer
the system was allowed to evolve, the greater likelihood "for a cooperative regime to bIos­
som." In heterogeneous populations tit-for-tat is not always superior; it is outperformed
by another strategy (,Pavlov', see [12] and [13]). The third arrangement is a population
that lives on a two-dimensional -grid. Players only interact with eight immediate neigh­
bors. A lone cooperator will be exploited by the surrounding defectors and succumbs.
But four cooperators in a block can hold their own. Geometric patterns arise that wander
accross the board. In one example popUlation [11] the percentage of cooperators grad­
ually takes a stable value of about 32%. Translating these assumptions to the world of
software development we can think of a high-tech area (or perhaps the whole world) with
software companies, providing programming services and testing services to a limited set
of neighboring companies. For details see [ll] and [14].

8 Concluding remarks

The results of our investigations show that if the reward for passing tests for the programmer is
high enough and the reward for finding an error for the tester is high enough, there is essentially
a Prisoner's Dilemma game hidden in the interaction of a programmer and a tester. The main
cause of this seems to be in the assumption that the development laboratory manager cannot
measure the quality of the software directly; he only sees PASS or FAIL and therefore he cannot
distinguish a bad or lazy programmer in combination with a bad or lazy tester from a good
and eager programmer and an a good eager tester (in both cases there is a mixture of PASS
and FAIL verdicts on average). .

The simplest theoretical solution of the game, the N.E. seems to suggest that mutual defec­
tion is the expected outcome. The Prisoner's Dilemma is often seen as Han interesting metaphor
for the fundamental biological problem of how cooperative behavior may evolve and be main­
tained" [14]. In the context of testing the situation is reversed since a testing process is set-up
with a deliberate, even desirable, conflict of interest built into it. So the N .E. means that both
players choose 'quality' rather that 'poor', which is good from the viewpoint of the software
development laboratory and its customers. Looking at sequences of games, the theory does not
have much predictive power. Experiments and computer simulations tend to show complex,
oscillatory behaviors, mostly showing cooperation. Two-dimensional evolutionary simulations
show complex moving patterns.

The complex, oscillating and moving patterns are quite consistent with the image of a
software crisis and hard-to-eliminate bugs sketched in [1]. In view of our findings it seems wise
for a software development lab manager to make sure that he separates the roles of programmers

75

and testers and that he makes sure there is enough reward for a programmer to achieve PASSes
and for a tester to achieve FAILs. Although our game-theoretical analysis was done using
numerical values for the payoff matrix, it is certainly possible that rewards in real life include
items such as a feeling of professional responsibility and personal pride.

Disclaimers: it is necessary to relativize the findings because there are certain assumptions
behind the models that need not hold in real life situations. First of all, this is the assumption
that there is a precise specification given to both players that guarantees that the verdicts PASS
and FAIL are not subject of dispute. Although a frequent assumption in research on formal
test generation, this need not be true in real development projects. Another assumption is that
testing by a professional tester is the only way of determining the quality of the programmer's
work. This assumption does not hold if there are other mechanisms at work such as code­
walkthroughs, beta-testing, or program correctness proving. Yet another assumption is that
neither defect-free software nor full-coverage tests are possible (at or near Q = 100% and
P = 100% the theory turns into a degenerate caBe). Finally the ITG and TCTG do not cover
the intricacies of real software development: writing a program involves subtle tradeoffs between
development time, run-time efficiency, code-size, reusability etc. We constructed another game
where finite state machines were tested by finite sequences (programmer effort being automaton
size, test effort being test sequence length). We found a Prisoner's J!ilemma in this too (details
not included in the present article). But, similarly to the text copy testing game this is still an
enormous simplification. Programming languages such as C++ and Java are very complex and
so are test languages such as TTCN; moreover defining and measuring metrics for programmer's
productivity, software quality and test coverage are rich research subjects by themselves.

Acknowledgements

Some of the ideas behind this work described in this article originated in the context of the Cotes
de Resyste project and during discussions with Nicu Goga, Sjouke Mauw and Jan Tretmans.
The author likes to thank Pieter Cuijpers for his constructive feedback on earlier versions of
the paper.

76

A The text copy testing game

In order to validate the concepts of ITG we develop a more concrete game in which real testing
is going on. This game, called TCTG, for Text Copy Testing Game is still not really about
software testing, but at least it is about testing. It will be formally analyzed to see whether it
is approximated by ITG.

In TeTG The task for the implementer is to transcribe a given text, perhaps from one
character set to another, or perhaps even simpler, to type precisely the characters of a given
string. The length of the specification and the length of the implementation are the same,
L say. The task of the tester is to select one Of more positions in the range 1 to L. If the
implementation and the specification differ at one or more of the selected positions then an
error is found and the verdict is FAIL. Otherwise the verdict is PASS. If the tester chooses
several positions, they all have to be different.

As in ITG the implementer and the tester are rational players who choose a performance level
first and after that perform a job according to the expectations set by the chosen performance
level.

It is convenient to introduce numerical values for the performance levels. In ITG there
are two levels but here many levels could exist. The performance level for the implementer is
modeled as a variable Q (the Quality of the implementation). The performance level for the
tester is modeled as a variable P (the Power of error detection of the test). Both Q and Pare
in the range from 0 to 1 (the values of 0 and 1 are included). Sometimes they are conveniently
expressed as percentages. So instead of choosing a p (poor) performance level the implementer
may choose Q = 25% and instead of a q (quality) performance level the implementer may choose
Q = 50%. In the same way the tester may choose P = 25% or P = 50%, respectively. As in
ITG the idea is that equal performance levels lead to a probability of error detection P(FAIL) of
about 50%. Indeed, it will turn out that Q ~ P ~ 50% '* P(FAIL) ~ 50% but because of some
of the details of the text copying and testing procedures this idea only holds by approximation
for other value pairs for Q and P. The performance level variables are a useful concept but for
each value pair of Q and P, the precise probability P(FAIL) has to be calculated as a function
f(Q, P). It is natural to demand that the efforts of the implementer and the tester increase
monotonically when Q and P increase, respectively. It would be nice for the implementation
effort to be a linear function of Q and for the testing effort to be a linear function of P. In the
text copy testing game this turns out to hold for P indeed but for Q it only holds as a very
rough approximation. This concludes the general introduction of the numerical performance
levels; next they must be defined for the specific situation of text copying and text testing.

It is an error if at a specific position the typed character differs from the specified character.
In a text of L characters any number of errors E between 0 and L is possible (0 and L inclusive).
The implementer's performance level Q is defined by Q = E~l' For example when L = 100, the
range of Q is from 0.99% (100 errors) to 100% (no errors). Other definitions are conceivable,
for example L'LE but we consider it inappropriate to assign a relatively high value of 500/0 to a
text in which half of the characters are wrong (in software code it would be ridiculous to even
look at software in which 50% of the code statements are wrong). The tester's performance
level P is defined by P = f where T is the number of positions tested. The range of P is from
0% (nothing tested) to to 100% (everything tested). The advantage of the current definitioIlE
is that Q = 50% and P = 50% nicely outbalance each other.

Next the relations between the efforts and the performance levels must be defined. These
relations depend on the way of working of the implementer and the tester. For the implementer
it is assumed that there is a mechanism such that spending more effort leads to a reduction in
the number of errors. An example of such a mechanism is a voting text editor: each character
is typed n times for a given number n E {I, 3, 5, 7, ... } etc. and whenever at least ~ of these
typings are the same, that determines a winning character which goes into the implementation.
Otherwise a special error characters is taken. Note that this relation satisfies the monotonicity
condition Although the usage of voting mechanisms is not widespread in software engineering,
the idea of using redundancy in software design has been proposed under the name "distinct

77

programming" by Tom Gilb [15J.
The implementer has a built-in error rate e, for example e = 0.1 which cannot be changed

(except by exploiting the voting mechanism). For the tester it is assumed that his effort is
proportional to the number of positions tested.

Given these assumptions, the numerical values of Q and P can be determined for various
effort values. For L = 100 and e = 0.1 the expected number of errors with a repetition
rate of 1, denoted as f(# errors I Ix) equals e x L = 10. So Q = fr = 9%. For triple
repetition E(# errors I 3x) = (P(2errors) + P(3 errors)) x L = (3.(1 - e).e' + e3

) x L =
(3 x 0.9 x 0.01 +0.001) xL = 0.028 x L = 2.8 whence Q = '."+1 = 26%. For five-fold repetition
E(# errors I 5x) = (';4 x (0.9)' x 0.001 + 5 x 0.9 x 0.0001 + 0.00001) x L = 0.86 whence
Q = 1.1, = 54%. Also e(# errors 17x) = (';~;' x (0.9)3 x 0.0001 + ';' x (0.9)' x 0.00001+
7 x 0.9 x 0.000001+0.0000001) x L = 0.27 whence Q = 1.~' = 79%. Finally e(# errors 19x)
= 0.08 so Q = 1.~8 = 93%. The following table summarizes the above findings (for L = 100
and e = 0.1):

I #repetitions Q
1 9%
3 26%
5 54%
7 79%
9 93%

The relation between the effort (here the number of tested positions) and the power of error
detection P (the tester's performance level) is summarized by the following table (for L = 100):

I #positions I P
10 10%
30 30%
50 50%
70 70%
90 90%

For a game theoretic analysis only the reward/effort ratio is important and therefore the fixation
of the absolute effort values is postponed.

B Analysis of the text copy testing game

The first question is how P(FAIL) depends on Q and P as a function J(Q, P) to'be determined.
First consider a few simple cases for L = 100. Let there be one error (Q = 50%) and let there
be 50 tested positions (P = 50%). Then P(FAIL) = 50% (the probability that this error is
one of these 50 positions out of 100). Let there be 3 errors, E = 3, so Q = E~l = ~ and let
there be 50 tested positions (P = 50% again). P(FAIL) "" 1 - (P(given error not found))3
= 1 - (1 - p)3 = 1 - (0.5)3 = 0.875, that is 87.5%. In general, if E « L then P(FAIL) ""
1- (1 - p)E and since E = ~ -1 the following formula for J(Q,P) is adopted:

J(Q, P) = 1 - (1 _ P)-b-'

For which combinations of Q and P does P(FAIL) = 50% hold? Easy calculations show
J(0.5,0.5) = J(0.25,0.21) = J(0.125,0.094) = 50%. This shows that the iso-P(FAIL) line of
50% does not always run through the points defined by the equation Q = P, but for the points
shown here it is pretty close.

Next it is time for playing the game. The implementer chooses between Q = 20% and
Q = 50%. After that he chooses randomly among ('~O) implementations (if Q = 20%) or 100
implementations (if Q = 50%). The tester chooses between P = 20% and P = 50%. After

78

that he chooses randomly among (',000) tests (if P = 20%) or ('~OO) tests (if P = 50%). The
cost of effort difference between Q = 20% and Q = 50% is put equal to 1 (think of it as 1$,
perhaps). Interpolating between 1 and 3 repetitions, Q = 20% occurs at 2.3 repetitions and
interpolating between 3 and 5 repetitions, Q = 50% occurs at 4.7 repetitions; in other words,
the 4.7 -2.3 = 2.4 extra repetitions (on average), being 2.4 x L = 240 key strokes cost 1$ extra,
or 0.42 $c per key stroke. Similarly the cost of the difference between P = 20% and P = 50%
is put equal to 1. The difference is 30 positions so each position selected and inspected by the
tester costs 3.33$c. It is convenient to assume for Q = 20% and P = 20% the efforts to be equal
to 0 (this is convenient; it is irrelevant for the game-theoretic analysis). Let the reward/effort
ratio (R) be set to 5.

What is P(FAIL)? It depends on Q and P. For Q = P = 20%, P(FAIL) = 0.59. For
Q = 50%, P = 20% it is found that P(FAIL) = 1(50%,20%) = 1- (0.8)",,-1 = 0.2 and as
calculated before, for Q = P = 50%, P(FAIL) = 50%. So there is a difference with the lTG,
where (q, p) turned P(FAIL) into 0, whereas here the analogous (Q = 50%, P = 20%) still
leaves a non-neglectable P(FAIL) = 0.2 and similarly (p, q) gives P(FAIL) = 1 in ITG but
the analogous probability is only = 1 - (0.5)",,-1 = 0.9375 here. It will be interesting to see
whether it still is a Prisoner's Dilemma.

On the basis of the abovementioned assumption the payoff matrix is determined (recall the
effort difference of 1 and the reward/effort ratio of 5). Instead of the e~O) x (12°0°) entries
formally required in the Q = 20%, P = 20% quadrant of the payoff matrix, a more convenient
notation is possible: only one entry is necessary to calculate the average payoffs (and similarly
for the other three quadrants). This entry contains the payoff values for PASS and the payoff
values for FAIL (in the given order), separated by a slash. Using this representation the payoff
matrix is:

P=20% P=50%
Q-20% 5,0/0,5 5,-1/0,4
Q-50% 4,0/-1,5 4,-1/-1,4

The same representation can be used for the weighting matrix containing the probabilities of
PASS and FAIL. The weighting mat~ix is:

P=20% P=50%
Q-20% 0.41/0.59 0.0625/0.9375
Q-50% 0.80/0.20 0.50/0.50

The payoff matrix and the weighting matrix can be multiplied in an element-wise fashion to
get:

P=20% P=50%
Q-20% 2.05,0/0,2.95 0.3125,-0.0625/0,3.75
Q-50% 3.2,0/-0.2,1 2,-0.5/-0.5,2

And by pair-wise adding the payoffs for PASS and FAIL the following payoff matrix is obtained
(after rounding off 0.3125 to 0.31 and 3.6875 to 3.69). Call this abstract 2 x 2 game TCTG:

P=20% P=50%
Q-20% 2.05,2.95 0.31,3.69
Q-50% 3,1 1.5,1.5

Please observe that this TCTG is essentially a Prisoner's Dilemma (as characterized by the
fact that it has one N.E. which is not optimal for both players). It is not as nice and symmetric
as the ITG; the differences come mostly from the fact that P(FAIL) takes irregular values, not
precisely 0%, 50% or 100%.

79

References

11J W.W. Gibbs. Software's chronic crisis. Scientific American, Sept. 1994, pp. 72-81 (1994).

12J W. Poundstone. Prisoner's dilemma, Doubleday ISBN 0385-41567-2 (1992).

[3] J. Von Neumann. Zur Theorie der Gesellschaftsspiele, Mathematische Annalen, 100, pp.
295-320 (1928).

14J J.F. Nash. Equilibrium points in N-person games, Proceedings of NAS (1950).

15J M.J. Osborne, A. Rubinstein. A course in game theory, MIT Press (1994).

[6] E. Freeman. Building Gargantuan Software, Scientific American Presents, Vol. 10, N. 4,
Special issue on extreme engineering, pp. 28-31 (1999).

17J OSI. Conformance testing methodology and framework, Part 3: The Tree and Tabular
Combined Notation (TTCN), ISO/IEC DIS 9646-3 (1990).

18J S. Vuong, W. Chan, M. Ito. The OIUv method for protocol test sequence generation, In:
Second International Workshop on Protocol Test Systems, Berlin, Oct. (1989).

19J J.R Moonen, J.M.T. Romijn,O. Sies, J.G. Springintveld, L.M.G. Feijs, RL.C. Koymans.
A two-level approach to automated conformance testing of VHDL systems, In: M. Kim, S.
Kang, K. Hong (Eds.), IFIP TC6 International Workshop on Testing of Communicating
Systems, Chapman & Hall, pp. 432--447 (1997).

[10] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence, Software -
Concepts and Tools, 117:103-120 (1996).

I11J M.A. Nowak, R.M. May, K. Sigmund. The arithmetics ofmulual help, Scientific American,
June 1995, pp. 50-53 (1995).

[12] M.A. Nowak, K. Sigmund. Tit for tat in heterogeneous populations, Nature, VoL 355, pp.
250-253 (1992).

113J M.A. Nowak, K. Sigmund. A strategy of win-stay lose-shift that outperforms tit-for-tat in
the Prisoner's Dilemma game. Nature, Vol. 364, pp. 56-58 (1993).

114J M.A. Nowak, RM. May. Evolutionary games and spatial chaos. Nature, Vol. 359, pp.
826-829 (1993).

(15) T. Gilb. Distinct software: a redundancy technology for reliable software, in: Infotech State
of the Art Report on Software Reliability, Pergamon Infotech, Maidenhead, UK. (1977).

80

ENHANCED SYSTEM VERIFICATION AND VALIDATION, PERFORMANCE
THROUGH METHOD INTEGRATION

J. van der Wateren(ll, J.J. van den Berg(l), A.M. Bos(2), M.H.G. Verhoet<2), J. Kratz(2" E.J. Haverkamp(2)

(J)Chess Embedded Technology B.v., P.G. Box 5021,2000 CA, Haarlem, The Netherlands, Email:
Jeroen. van.der. Wateren@chess.nl, Jeroen. van.den.Berg@chess.nl

(2)Chess Information Technology B. v., P.O. Box 5021,2000 CA, Haarlem, The Netherlands, Email: Bert.Bos@chess.nl.
Marcel. Verhoef@chess.nl, leroen.Kratz@chess.nl, Erik.Haverkamp@chess.nl

ABSTRACT

In all phases of the lifecycle of the satellite, hardware as well as software development relies heavily on modeling and
simulation. During the study phase, models of the major components are developed for proof of concept validation.
During the design phase, simulation models are used to test and verify parts of the design. Those models can replace the
environment or parts of the satellite hardware and software, which are momentarily not available. During integration,
validation and verification models are used to check parts or sub-assemblies of the flight hardware and software. Those
models are either environmental models or models resembling not yet available parts of the flight hardware and
software. During the operational phase, simulation models are used in simulators for training the ground personnel and
for testing new versions of on-board software before they are uploaded to the satellite.

Re-use of simulation models is limited. During the satellite lifecycle different design teams, who all have their own
design methodology, concurrently develop the hardware and software sub-systems of the satellite. In time, a sub-system
(hardware or software) also passes several design teams that vary over the development phases. And again, these design
teams will often not re-use models developed by other teams. Although there is a great dependency during the whole
lifecyc1e of a satellite on simulation models, these models are often created more than once for every sub-system and
for every phase of a sub-system. The effectiveness and efficiency of today's verification and validation solutions can be
greatly enhanced if this issue is properly addressed. We feel that the way forward is to better integrate currently
available methods and techniques for verification and validation.

During the last year Chess worked intensively on a Guidebook that proposes the combination of three items: methods,
techniques and SV & V facilities integrated into one single development strategy. This paper presents the results that the
usage of this Guidebook has for the development of software in space projects.

1. DEVELOPING ON-BOARD SOFTWARE FOR SATELLITES

To obtain a development strategy in which methods, techniques, standardization, validation and verification are tightly
coupled with the process of developing On Board Software, it is not necessary to invent new software development
methods nor techniques used in the development process nor validation and verification facilities. The strength of our
proposal consists of the combination of these three items: methods, teclmiques and SV & V facilities integrated into one
development strategy. For the method part of the development strategy the ESAIESTEC ECSS-E-40 software
engineering standard is used, because this standard is already widely used in the development of On Board Software.
Secondly a graphical language (UML), a formal language (VDM++) and their appropriate usage in the different
software engineering phases of the ESAIESTEC ECSS-E-40 standard are used. UML provides a way of easily
communicating models to software engineers with different levels of knowledge. VDM++ provides a rigorous way of
describing systems and offer validation and verification possibilities early in the development phase. To complete our
approach with validation and verification the position of the Simulation HAndling Module (SHAM) and EuroSim
models in the different development phases are defined.

81

1.1 VDM
VDM is a model-oriented specification language. This means that a specification in VDM consists of a mathematical
model built from simple data types like sets, lists and mappings, along with operators which change the state of the
model. VDM comes in two flavors: VDM-SL and VDM++. In VDM-SL the operations are specified as functions with
expressions as their result and VDM++ is the object-oriented version ofVDM in which the functional paradigm as well
as the imperative (applicative) paradigm can be used. The authors chose VDM, because of their experience with this
formal language and the possibility to use roundtrip engineering when combined with UML models.

1.2 !!M1
The Unified Modeling Language™ (UML) is an industry-standard language for specifying, visualizing, constructing,
and documenting the components of sofrware systems. Using UML, programmers and application architects can make a
blueprint of a project, which, in turn, makes the actual sofrware development process easier. Models are simplifications
of reality and can therefore help people to better understand the system they are developing. The possibility to simplify
the system is one of the powerful features of UML. UML can be used in phases A,B,C and D of the ESA sofrware
development process.

1.3 Simulation HAndling Module
During the past five years, SHAM has been used in many missions for Software Verification and Validation (SV&V).
Examples of projects where the SHAM has successfully been used [1] are: ISO, SOHO, Cluster, XMM, Integral and
Huygens. Recently SHAM has also been used in the Rosetta project, where it was the intention to even use it in the
design phase to facilitate the software design engineer with a very powerful design and debugging tool.

I
I

I
I
r
I
I
I

I
I

I
I

/

/
/

/

/
/

I ·,h:'~.;'2';,:
I

~ ,
/~

~~

CPU

Software

'-, ---, , , , ,
\

\
\

\
\
\

I
I

I
I

I
I

I
I

I
I
I
I

I
I

interface

/' Simulated

'"~n~;;:;;;)--/~:"""------4 Environment In clueing sat,elli'te. d -' (Eurosim)
/

--
~

/

Fig. I. SHAM, all white squares are original parts of the target system. This means the SHAM contains the real CPU
and runs the real software (OBS). Simulated items are presented with dotted squares like the hardware and environment.

82

The SHAM is a hardware emulator that is able to control the execution of the developed On Board Software (OBS) on
the identical CPU that will be used in the satellite. The SHAM controls this CPU and simulates all the hardware around
the CPU, as can be seen in Fig. 1. By not simulating the CPU but using the real CPU, the validation results of the OBS­
tests are very reliable. There is only one single version of the OBS that is used operationally and tested to exclude
differences in software behavior between debug (or test) and operational releases. The aBS can be tested nOD­

intrusively which means that no debug statements have to be compiled into the binary. The developer and the user are
certain that the OBS that is tested on the SHAM is exactly the same as the OBS running on the real satellite in space.
Another advantage of the SHAM is the fact that the CPU does not have to be emulated in software. Every year CPU's
become faster and more complex which makes the software emulation of these CPU's in real time more difficult.

1.4 EuroSim
Along with the SHAM, different kind of simulators, like EuroSim, Simula and MatLab are used to run simulation
models needed during the development of the OBS for satellites. These simulators are able to simulate the satellite and
its environment in space. Chess recently developed a general SHAM Simulator Interface (SSI) for the Eurosim platform
to make it possible to run the real OBS on the real CPU in a simulated space environment. The SSI will in the future
also be available for other simulation platfonns.

2. THE INTEGRA TED VERIFICA nON AND VALIDA nON APPROACH

The software development process can be decomposed into phases. Every phase results in one or more products that is
an input to a following phase. This process is described by the well-known V-model (Fig. 2).

DeSign

,~ "
. coding ~

Time

SV&V

acceptance
tests

. system te~ts

integration;
. tests

Fig. 2: V -model, relation between design- and SV & V phases as a function of time.

The authors extend on this V-model by defining the mirrored V-model as is shown in Fig. 3. This model presents the
proposed development strategy, combining the strength of:

• Development techniques (VDM-SL, VDM++, UML)
• SV & V facilities (EuroSim, SHAM)
• Model evolution (OBS, Environment)

In the V-model the time line is from left to right, in the mirrored Y -model the time flows from top to bottom and
presents the different ESA development phases (A-F). The V-model represents only the development phases, while
blocks in the mirrored Y -model denote the documents belonging to the phases. Note also the model development on the
right side of the model, there is a continuous enhancement/reuse of the models.

83

B

c

o

E

F

Techniques

E
u.
r
o
s
i S
m H

A
M

I VDM

+

D
D •

-

Document

Binary

Development
Phase

Process Model

~ Required input

•••..•• Reuse

- - ~ Verification

Fig. 3: The mirrored Y -model; the time flows from top to bottom and presents the different ESA development phases
(A-F), the blocks represent the documents belonging to the development phases.

The mirrored Y -model emerged during the writing of our Guidebook. This Guidebook describes the integrated software
development process as presented in the mirrored V-model. It proposes a unified (space'onboard) software development
approach in which errors are detected as early as possible in the software development and by which errors will not
even reach the review meeting. It suggests a combination of existing methods in such a way to improve reuse from
phase to phase and to improve the integration of validation & verification in the development process. The model shows
vertically on the left-hand side the tools and techniques that are used together with the ESA software development
phases (A-F). On the right-hand side the evolution and reuse of the different models is presented. For the OBS this is
done by showing the UML and VDM models and for the environment the reuse of the EuroSim simulation models is
described. In the middle of the mirrored V-model the software development process, as known from the V-model,
divided into the different phases is shown. Horizontally the Validation and Verification part of the process is presented.

84

3. PMC-CASE: OBS DEVELOPMENT CASE-STUDY

To obtain some practical experience with the proposed development strategy, the authors perfonned a simplified test­
case. The main goal of this case was the development of the On Board Software (OBS) for an ideal satellite. This
satellite was defined as a Point Mass of 100 kg, moving in a 2-dimensional world. Since we were developing the OBS
to control this point-mass we named the satellite: Point-Mass Controller (PMC). The PMC was equipped with two
thrusters, both having their resulting forces in the opposite direction. The thruster for the positive direction could apply
a force of 200 Newton and the other thruster 50 Newton, the only sensor available to the PMC was an acceleration
sensor. The OBS should be able to move the PMC over a distance of 100 meter by controlling the thrusters and reading
the acceleration sensor. The remainder of this paper the PMC-case is used to explain the ideas in the different phases of
the mirrored Y -model as described in the Guidebook.

(phase A - B]
During the concept phase the requirements of the aBS are to be defined. At first glance it seems a simple case,
therefore it shouldn't be that difficult to find the user requirements. The authors used Matlab to model the physics of the
PMC in order to get a feeling about the system and to make it possible to try some different scenarios. The first
requirements were defined, for example:

The two thrusters are not allowed to be switched on at the same time
The PMC is not allowed to pass the final position of 100m, it should move smoothly to the final position without
any overshoot.

After the first requirements were defmed, the system was described in the fonnal specification language VDM-SL. This
formal language makes it, among other powerful features, possible to add pre- and post-conditions to the system model.
Definition of pre- and post-conditions is the part of VDM that is very powerful and will most likely give important
discussions among the designers and the customer. In order to determine these conditions, the designer has to have a
good understanding of what the system will do. The designer will come up with questions that he otherwise would not
have come up with l

. In VDM-SL the designer can execute his model to test it in several ways. Since we are now in the
requirements definition phase we should already define the acceptance tests that should be performed in one of the final
phases to test if all the requirements are satisfied. The authors defined the acceptance tests in VDM-SL and could
execute them to test the requirements! By now no system is build and no code has been written, but the designers are
already able to test the modeled system they want to build.

The Object Oriented (00) approach was chosen for the continuation of the PMC-case, therefore the VDM-SL
specification is converted to VDM++. One of the strengths of VDM++ is the ability to perfonn round-trip engineering
with UML. The VDM++ toolkit has been used to automatically generate a UML-class diagram of the system. This
class-diagram provides the designer/developer with an easier to understand description of the system. The VDM++
specification and UML-c1ass diagrams were now changed into a more detailed and complete specification that was used
as an input for the architectural design phase [Phase C]. In order to verify the specifications, more detailed test-cases
were developed in VDM++. For some parts of the software it was necessary to create prototypes, this was done by
executing this code in the environment model. By this time the designers had to make the architectural design and this
was done by creating sequence diagrams and state diagrams that are also part of UML. Interfaces were described and
the architectural design was completed.

[Phase D]
The developers were given the architectural design of the OBS in order to start the code-design. For the implementation
of the software the developers used the SHAMIEuroSim combination. EuroSim used the environment model from
Matlab that the designers developed in one of the early phases of the PMC-case. After the code was written the test­
cases as described in VDM-SL and VDM++ were used to test the OBS. Chess has coupled the SHAM to EuroSim by
designing and implementing a SHAM Simulator Interface (SSI). This interface allows the user to connect the SHAM
and the Simulator (EuroSim) fonning one powerful system for simulating and testing (onboard) software in an early
stage of a project. The PMC-case was used to initially test the SSI and check its abilities to intertwine the two systems.
This action proved the powerful abilities the SSI has to offer.

1 The authors experienced this themselves during the PMC-case.

85

4. CONCLUSIONS AND FUTURE WORK

This paper presented the status of our ideas about an integrated OBS development process. We found that considerable
improvements can be obtained by mutually tuning existing methods and techniques.

• The software development methodology and graphical language UML have been coupled [6] to ECSS-E-40.

• A fonnal specification language was added to UML, such that the specifications, design and software production
could be formalised. The combination of UML and VDM enable a smooth transition from requirements, design to
code generation.

• The SHAM was already in use for OBS development. In this project we positioned the environment model from
the SHAM environment to EuroSim, by which reuse of environment models could be obtained from phase to
phase. Integration with operation simulators is now also feasible, as is shown by [5]

This combination learned us that validation and verification became effective over all development phases:
requirements could be formally verified, the design could be verified with respect to the requirements and the software
with respect to the design and the requirements.

The development tools and techniques (VDM-SL, VDM++, UML, EuroSim) were chosen by the authors, because of
their experience and knowledge of these particular tools. This does not imply that other similar tools can not be used.
The Guidebook proposes a software development process and does this in such a way that any suitable tool for a
particular problem can be used.

The project proceeds in 2001 with a more solid example and the implementation of a coupling between the SHAM and
EuroSim. .

5. REFERENCES

1. A.M. Bos, J. van der Wateren, "Real-Time Software Testing throughout a Project Life-cycle using Simulated
Hardware ", Simulators for European Space Programs, ESTEC, Noordwijk, 1998.

2. MS. Mejnertsen, K. Hjortnaes, S. Ekholm et aI, "Software Validation Facility for the SPARe Micro-processor", Data
Systems in Aerospace, ESA SP 447, Lisbon. 1999

3. A.M. Bas, M. Geerling, M.H.G. Verhoef, J. van der Wateren, "Development of Safety-critical Software using Formal
Methods in IDE", International Aeronautic Federation, Amsterdam, 1999

4. M. Brouwer, A.A. Casteleijn, H.A. van Ingen Schenau et ai, "Developments in Test and Verification Equipmentfor
Spacecraft", Simulators for European Space Programs, ESTEC, Noordwijk, 2000

5. L.J. Timmermans, T. Zwartbol, B.A. Dving, A.A. Casteleijn, M.P.A.M. Brouwer, "From Simulations to Operations:
Developments in Test and Verification Equipment/or Spacecraft", DASIA, Nice, 2001

6. B.A. Oving, L.J. Timmermans, A.A. Casteleijn, T. Zwartbol, A.M. Bos, M.H.G. Verhoef, J. van der Wateren,
"Efficient Development and Validation of Spacecraft Avionics Through Improved Tool Integration ", Toulouse, lAP
2001, to be published.

86

FROM SIMULATIONS TO OPERATIONS:
DEVELOPMENTS IN TEST AND VERIFICA TION EQUIPMENT FOR SPACECRAFT

L.J. Timmermans, T. Zwartbol, B.A. Oving, A.A. Casteleijn, M.P.A.M. Brouwer

ABSTRACTfRESUME

National Aerospace lAboratory NLR, Space Division
P.O. Box 153,8300 AD, Emmeloord, The Netherlands
Phone: (+31) 527248444 Fax: (+31) 52724 8210

E-mail: {timmerlj.zwanbol.Dving.castelyn.mbrouwer}@nlr.nl

Supported by Research and Development programs of the European Space Agency (ESA), simulation and test tools are
being developed to improve the life cycle cost efficiency of spacecraft development. Standardisation and rationalisation,
use of (C)OTS products, reuse of both software and hardware are some of the lines along which schedule optimisation
and cost reduction is pursued.

Based on experience with the development, production and use of test equipment for scientific satellites such as XMM­
Newton and INTEGRAL, the National Aerospace Laboratory NLR is developing a next generation of Test and
Verification Equipment (TVE) for spacecraft avionics systems, such as Attitude and Orbit Control Subsystems (AOCS).
Starting points for these developments are the application of existing relevant technologies, modularity, scalability,
commonality and· reuse of tools, equipment and results during the various phases of the spacecraft life cycle.

This paper will focus on the interface between TVE and ESA's latest generation Spacecraft Control & Operation
System, SCOS-ZOOO, as important element of the next generation TVE to enable reuse of technologies from simulations
to flight operations.

1. INTRODUCTION

During spacecraft development, a number of simulation and test facilities are used to support different activities like
mission analysis, design and development, Assembly, Integration and Verification (AJV) and flight-operations
preparation and training. Simulation is used extensively in design verification and operations preparation, but
simulation is also required for test benches involving real flight hardware. Electrical Ground Support Equipment
(EGSE) is used to verify the spacecraft's functionality on ground, by stimulating it with test signals and telecommands
(TC), and analysing its responses via monitoring interfaces and telemetry (TM).

From past spacecraft programs, a number of important issues for the optimisation of the spacecraft life cycle have
emerged, e.g.:
• Need to reuse simulation environments and simulation model software, not only during the development and

verification phases, but also during commissioning and in-flight operations.
• Need for early on-board software prototyping and validation. Historically much simulation effort was spent on the

verification of control algorithms functionality and performance, before implementation in the On-Board Computer
(OBC). Experience has shown that it is equally important to exercise the (often very complicated) Failure
Detection, Isolation and Recovery (FDIR) functions implemented in on-board software of autonomous spacecraft,
and possibly associated operational control procedures in an early stage of the development. The use of a
simulation facility. possibly coupled to an OBC emulator. will enable early prototyping and validation of control
algorithms and autonomy functions.

• Need for the development of operational flight control procedures as early as possible, such that the on-board
software and operational procedures are exercised to the greatest possible extend on the ground. The developed
operational procedures shall be usable during system level integration and test. commissioning and operations.

• Need to use a (central) spacecraft database (SDB) throughout the life cycle. As.the life cycle consists of several
phases with activities taking place at different locations, it shall be possible to interface to, build up and use the
SDB in the different phases and at different places. This requires compatibility and import/export capabilities of
database tools used.

87

Based on experience with production and use of test systems for satellites such as X1vflv1-Newton and INTEGRAL,
NLR is developing a new generation of Test and Verification Equipment (TVE) for spacecraft avionics systems.
Starting points for the developments are: the existing TVE technology, lessons learned from XMM-Newton and
INTEGRAL, application of relevant technologies developed in ESA -R&D- programs, commonality, modularity and
scalability, reuse during the various phases of the spacecraft life cycle, use of COTS products.

2. INTEGRATION OF RELATED ESA TECHNOLOGIES

Among the related technologies being developed under ESA programs, are the Project Test Bed (PTB), the Spacecraft
Control & Operation System (SCOS), the Software Validation Facility (SVF), and the TVE itself. These technologies
are independently used in different phases of the spacecraft life cycle. By reuse of these technologies, the next
generation TVE bridges the spacecraft life cycle [2].

The Project Test Bed is intended to be used as a single test platform, based on real-time simulation, that is able to
provide support to the different phases of a project, and be reused across projects [3]. The core of the test bed is the real­
time simulator that includes libraries of both spacecraft subsystem models and environment models. The simulator is
based on the real-time simulation environment EuroSim [4], which provides support for model development and
integration, simulation execution and analysis of results.

SCOS-2000 is the latest generation Spacecraft Control & Operation System [8], based on long-time experience,
developed and used at the European Space Operations Centre (ESOC). The system is scalable in order to suit different
mission requirements, budgets and/or mission phases and provides the essential functions to monitor and control a
satellite both in orbit and during testing.

The Software Verification Facility is an onboard software test environment, which provides representative behaviour
for a target system, based on the Simulation HAndling Module (SHAM), an onboard computer (OBC) emulator,
developed by Chess Engineering B.V. [5]. SVF also comprises a software environment for aio TMffC handling and
simulation. The SVF/SHAM concept has widely been used the last few years for several ESA scientific satellites.

The Test and Verification Equipment has been developed by NLR for integration and testing of spacecraft avionics
systems. Next to a real-time simulator, TVE features a generic front-end with a modular, V:rv1E based, architecture,
containing hardware interfaces to the spacecraft data buses and to the avionies units for stimulation and monitoring.

While PTB is currently mainly used in the first phases of
the spacecraft life cycle, SCOS is used in the final phase.
TVE is typically used in phase CID, see Fig. 1. The next
generation TVE bridges the life cycle by integrating aio
the EuroSim and SCOS-2000 technologies. Integration of
SHAM, used for both software development and software
maintenance, is taking place. The integration of these
technologies will stimulate the reuse of simulation and
test tools and project results from the early simulations
phases (AlB) to the final operations phase (E).

3_ THE TVE CONCEPT

>­
C1
o ~
'0 ..
1§ E
" c. J!l 0

~ ~
W "

Fig. 1. Overview of TVE related ESA technologies in
the spacecraft life cycle

TVE was originally developed for ESA, and is (being) used for testing of the AOCS of the XMM-Newton and
INTEGRAL scientific satellites, at AOCS subsystem and spacecraft system level [1].

TVE is a closed loop test bench facility (no real motion) for avionics systems. A complete avionics system, together
with dynamics and environment can be considered as a loop, which is actively closed by the Attitude Control Computer
(ACC) or, more general, an On-board Computer (OBC). The OBC cyclically reads out the sensors, performs the control
and other tasks (e.g. FDIR. TMfTC) and issues the resulting commands. The spacecraft dynamics and environment are
simulated. The sensor electronics are stimulated by the simulation such that they produce the measurements for the
OBC. The OBC wil command the actuators to control the spacecraft dynamics. The relevant signals from the actuator

88

units are acquired by monitoring interfaces and routed back into the simulation. The dynamics simulation runs at a
fixed simulation cycle rate, which generally is a multiple of the OBC sample frequency.

During the Assembly, Integration and Verification activities in phase CID, the avionics subsystem is gradually built up,
depending on the schedule of incoming units. Hardware units not yet present are to be simulated. The functional
behaviour of these units is simulated in software, while the units physical interfaces are simulated by a hardware unit
simulation interface. In this way verification can be petformed with any combination of real and simulated units;
starting from pure software simulations, via integration of a single aBC, gradual replacement of software models by
hardware units, up to a fully integrated subsystem.

Four main elements can be identified in test and verification of spacecraft, see Fig. 2:
1. The System Under Test (SUT), which is (part of) the spacecraft avionics systems that needs to be tested as if it is in

its operational environment; an important unit is the OBC that controls the spacecraft
2. Front-end Environment (FE). The Front-end electronics consist of two parts:

• stimulation and monitoring equipment, which electrically or physically stimulates sensors and electrically
monitors actuator units

• data bus interfaces, which are able to:
• simulate missing units (address, data interface)
• monitor all traffic (data, instructions) on the bus
• simulate the bus controller
• perform fault injection

3. Simulation Environment (SE), which hosts the Simulation Model
Software (SMS) to simulate the spacecraft dynamics and space
environment, to calculate stimuli values, and to simulate avionics
units

4. Checkout Environment (CE), which contains the knowledge about
the SUT (e.g. procedures and TMffC database) and from which
automatic test procedures are executed and AIV activities are
controlled

The term environment is used as a combination of software and hardware.

Front-end Environment (FE)

Spacecraft Avionics (SUT)

Checkout Environment (eE)

Fig. 2. Main elements in test and
verification of spacecraft avionics

For the current TVE FE, data bus interfaces are available for Modular Attitude Control Systems (MACS) and On Board
Data Handling (OBDH). For the next generation TVE, new developments are test interfaces for the MIL-1553 bus, the
new PSS-04-255 standard OBDH bus, and the SpaceWire (upgraded IEEE-1355) data link. TVE's electrical stimulation
and monitoring equipment interface comprises a set of low level boards. For stimulation, NLR has developed Analog
Stimuli Interface (AS!) and Bi-Ievel Stimuli Interface (BSI) boards which provide configurable, high-resolution
current/voltage stimuli channels. These channels have fully isolated test interfaces with overvoltage and overClUTent
protection. For acquisition of data to be monitored, Monitoring Interface (MOl) and General Timing Monitor (GTM)
boards have been developed. With the MOl board analogue and bi-level values can be acquired. The GTM board
provides timers for the measurement of time duration with 1 IDS resolution. For the next generation TVE also features
an IRIG-B timer board. Furthermore, dedicated, manufacturer supplied, Units Checkout Equipment (UCE) can be
integrated in the FE, e.g. for operation, stimulation and monitoring of star tracker or sun acquisition sensor units.

Simulation Environment (SE)
The current TVE is based on ProSim, a general purpose simulation tool and ancestor of EuroSim. For the next
generation TVE, EuroSim will be used, which is a configurable simulator tool that is able to support all phases of space
and non-space programmes through real~time simulations with a person andlor hardware-in-the-Ioop. For PTB, the
simulator is also based on the EuroSim real-time simulation environment. TVE-specific tools and interfaces will be
developed as extensions to EuroSim. has the possibility to interface with other processes via the so-called external
simulator access.

Checkout Environment (CE)
Within the current TVE, the checkout environment to control the tests is strongly coupled with the ProSim. For system
level testing, there are two ways to develop and operate the avionics subsystem related tests:

89

• use TVE, and request a Central Checkout System (CCS), also referred to as core EGSE, to send telecommands to
the spacecraft. In this case, both by the CCS and TVE must process telemetry.

• use the CCS, and remotely control the TYE simulation environment and test interfaces.

For XMM-Newton, TYE was used as Checkout Environment. All tests have been developed in the ProSimlEuroSim
Mission Definition Language (MOL), a C-like language with access to (part of) the simulator. Because MDL is an
interpreter language, test scripts could also be changed during a test. Also flight procedures have been implemented in
MDL, for verification.
For INTEGRAL the CCS is used to perform all system level tests, which has the advantage that telemetry only needs to
be processed once, and all AIV engineers use the same checkout environment. On the other hand, tests developed at
subsystem level with the TYE (on also the system level tests from XMM) can not fully be reused.
Since SCOS-2000, with its EGSE capabilities, will be used as -::-1===
Checkout Environment for the next generation TYE, test procedures
can be reused at avionics subsystem, spacecraft system, and
spacecraft operations level.

SCOS-2000

The next generation Test and Verification Equipment will improve
life cycle cost efficiency of spacecraft development, especially of
ESA scientific spacecraft. Reuse of existing technologies and
standardisation will bridge the spacecraft life cycle from the early
simulation phases (AlB) to the final operations phase (E). These
technologies include SCOS-2000 for checkout and operations,
EuroSim for simulation such that models developed with PTB can be
reused, and the TVE front-end to interface with the flight hardware.
Furthermore Chess BV (NL), supported by NLR, is developing and
interface between the SHAM and EuroSim [12], which will facilitate
the reuse of the SVF/SHAM technology. The reuse of these
technologies is shown in Fig. 3.

Fig. 3. Reuse of existing ESA
technologies for main elements of the
next generation TVE

4. COMMONALITIES BETWEEN SPACECRAFT CHECKOUT AND OPERATIONS

Systems for spacecraft checkout and spacecraft operations have a large degree of commonality. The system used to
perform spacecraft checkout is traditionally called Electrical Ground Support Equipment (EGSE) and is used for
Assembly, Integration and Verification (AIV) at both spacecraft system level and spacecraft subsystem level (like
AOCS). During system level tests the EGSE controls a number of Special Checkout Equipment (SCOE), which are
similar to the subsystem EGSE but with different functionality. The EGSE enables to control behaviour of spacecraft
equipment under test by sending (tele)commands and acquiring signals and telemetry through specific interfaces. The
system used for mission preparation and spacecraft operations is called Mission Control System (MCS). As for the
EGSE, the MCS has to deal with spacecraft monitoring and commanding.

ESA has a long-standing objective of having a common system to be used
as an EGSE and later on as an MCS [6,7]. From a technical viewpoint it is
obvious that for those systems many functions are similar, if not the same.
However the necessary harmonisation had not in practice been possible,
since these two systems are used in different phases of the mission and,
moreover, under different responsibilities; the spacecraft prime contractor
for the EGSE and ESA/ESOC for the MCS. This problem is essentially of a
managerial and a contractual nature. By merging the Technical Directorate
of ESTEC with the Directorate of Operations at ESOC into a single
Directorate Technical and Operation Support (TOS) the EGSE support and
operation support (including MCS) are now under the same technical
responsibility. The combined system is called generically "EGSE and
Mission Control System" (EMCS). The ESA Scientific Directorate is
strongly pushing the spacecraft primes to propose systems that are common
to EGSE and MCS.

90

Fig. 4. EGSE I SCOE and MCS
systems use common data

The data used by an EGSE and a MCS are very similar, see Fig. 4. Both the EGSE and the MCS must have knowledge
about the spacecraft and its behaviour. This is described in a database that is often called the Mission Information Base
(MIB). The core information in the MIB is the Telemetry and Telecommand characteristics. By using the ESA Packet
Utilisation Standard' (PUS), missions can easily reuse the same EGSE or MCS infrastructure.
Both the EGSE and the MCS are operated using procedures. During checkout, activities are described using a formal
test language. During operation one has flight operation procedures which could also be defined using an operation
language. By using a common language, like the Procedure Language for Users in Test and Operations (PLUTO) as
defined in the ECSS-E-70-32 standard [10], test and operational procedures can easily be reused.
The last type of data needed by both an EGSE and a MCS are display data, especially TMfTC related mission
representation, which can be alphanumeric displays, graphics or synoptic/mimic displays. By using the same
representation, people involved in the AIV phase can easily provide support during the (early) operations, and vice
versa, resulting in a better knowledge transfer and improved operations.

An important difference is that the EGSE needs to control Special Checkout Equipment (SCOE), which can in essence
be treated like spacecraft TMfTC. Note that TVE can be used both as standalone EGSE during subsystem level tests,
and as SCOE during system level tests. Another important difference is that the EGSElSCOE tries to uncover weakness
(e.g. through error injection and checks) of the spacecraft, whereas the MCS has to work around such faults in order to
keep the spacecraft alive.

From a system level, however, the
interface of the (core) EGSE with the
several spacecraft SCOEs can be
compared with the interface of the MCS
with the several ground stations. In both
cases an interface is necessary to
exchange the data in a standard way. In
case of SCOS as MCS, the Network
Control and Telemetry Routing System
(NCTRS) is used as interface, see Fig. 5.

(,subsystem

~ iJii level test

TVE EGSE
CCS!

Core EGSE

~acecraft
~ ~~'eratlons

I NCtS I ..
MCS

Note that for EGSEs and MCSs, one can
distinguish two types of commonality:
the horizontal commonality where the
same system is reused between different
missions, and the vertical commonality
where for a same mission the same
system is reused between the AIV phase
and the operations phase.

Fig. 5. System commonality for avionics subsystem level tests, avionics
tests at system level and spacecraft operations

5. THE INTERFACE BETWEEN SCOS-2000 AND TVE

During operations, the SCOS-2000 has the role of MCS and as such controls the spacecraft via TMfTC. During
checkout, SCOS-2000 has the role of CE, controlling both the SUT and the TVE (and other EGSElSCOE equipment).
The interface between SCOS-200D and TVE will be TMfTC based, such that for SCOS-2000 a common interface is
maintained.

Internally, TVE components communicate via the TVE Message Transfer Protocol (TMTP). The TMTP is mainly used
for communication between CEiSE and FE. The TVE Protocol Messages (TPM) contain e.g. data for the electrical and
data interfaces, status info and error/warnings.

The conversion between the TMfTC based (external) SCOS-2000 communication and the TMTP based (internal) TVE
communication will be provided be a Routing Environment (RE). Telecommands from SCOS-2000 to TVE will have
an embedded TPM, which is passed by the RE. The RE will put data from TVE in telemetry packets, to be read by
SCOS-2DOO. All communication with the SUT will be passed through the RE in an appropriate format. Effectively, the

'The PSS-D7-101 standard will be replaced by the ECSS-E-70-41 standard [11]

91

data stream coming from SCOS-2000 is split into a TPM stream for the TVE and a TMlfC stream for the SUT. The
conceptual architecture is shown in Fig. 6.

Since SCOS-2000 in the role of MCS interfaces with the NCTRS, an RE has been developed that implements the
NCTRS ICD [9] on CE side, thus acting as an NCTRS simulator during checkout. On SE side, the EuroSim External
Simulator interface has been implemented. For further reuse the RE should be able to connect different types of CE and
SE, other than SCOS-2000 and EuroSim.

The TVE related TMlfC includes:
• control and monitor of the simulator state
• control and monitor of the real-time

simulator test environment (Mission
Definition Language actions)

• control and monitor of the simulation
model variables (data dictionary)

• any TPM to TVE internal processes, e.g.
to petfonn error injection

• eTTor and warning messages

The user is provided with dedicated displays
to command and monitor the TVE from the
SCOS-2000 checkout environment.

6. CURRENT STATUS

Fig. 6. Conceptual architecture of the next generation Test and
Verification Equipment, showing the main elements and interfaces

Currently, the next generation Test and Verification Equipment at NLR operates in the following configuration:
• SCOS-2000, release 2.0, running on a Sun platform, as Checkout Environment
• EuroSim Mk2, running on a Linux PC, as Simulation Environment
• TMlfC based interface between SCOS-2000 and TVE, with a NCTRS simulator implementation as Routing

Environment

For the target configuration TVE, a Linux version of SCOS-2000 will be used. The Linux version will become available
in the next months.

Fig. 7 shows a screen snapshot that reflects the current development status, with part of the CE, RE and SE operational
with the Point-Mass Controller (PMC) test case. The PMC-case is developed by Chess as case study for the
development of On-Board Software [12]. A paint-mass is commanded to a certain position with the OBS controlling
two thrusters (in opposite directions and unequal forces). In the NLR configuration the OBS is running in the FE.
Newton's law is simulated in EuroSim, which provides only the acceleration data as sensor for the PMC. The graph
shows the position of the point-mass in time. The target position is set with a telecommand from the SCOS-2000
Manual Stack window, which shows two telecommands for the TVE system. The NCTRS simulator window shows the
connections to SCOS-2000 and a hex dump of a raw telecommand.

7. CONCLUSIONS

NLR is actively contributing to the trend of maximising reuse of software and hardware throughout the spacecraft life
cycle. It is developing modular and scalable Test and Verification I;quipment, which integrates PTBlEuroSim,
SVF/SHAM and SCOS-2000 technology, such that it can be (re)used for simulation and verification from the early
simulations to final operations. Standardisation of tools is pursued.

8. ACKNOWLEDGEMENTS

NLR thankfully acknowledges the fruitful discussions with the ESA Technical Operations and Support Directorate,
especially the Mission Control System Division, the Test and Operations section, and the Modelling and Simulation
section. Also the useful feedback from the current TVE users - Astrium Friedrichshafen for XMl\1-Newton and Alenia
Turin for INTEGRAL - for their suggestions in improving the Test and Verification Equipment is much appreciated.

92

~rosim
l7

roles
mcdeldeveloper]

test conduetor I
nbserver I

test ar1Blyst I

, - , -

~----------------- ---------------- -g
- --

Fig. 7. Screen snapshot reflecting the development status for the next generation TVE, with user interfaces of
SCOS-2000, NCTRS simulator and EuroSim operational in the Point-Mass Controller test case.

9. REFERENCES

1. H.A van Ingen Schenau, L.C.J. van Rijn and 1. Spaa, rest and Verification Equipment for the Altitude & Orbit
Control System of the XMM satellite, NLR-TP-98236, Athens, DASIA 1998.

2. M.P.AM. Brouwer, AA Casteleijn, H.A. van Ingen Schenau, B.A Oving, LJ. Timmermans, T. Zwanbol,
Developments in rest and Verification Equipment for spacecraft, Noordwijk, SESP 2000.

3. RFranco & J. Mira, The Project rest Bed and its application to future missions, ESA Bulletin n.95, August 1998.
4. DJ. Schulten, U.G. Termote, MJ.H. Couwenberg, EuroSim and its applications in the European Robotic Arm

Programme, Montreal, DASIA 2000.
5. J. van der Wateren, A.M. Bos, Real-time software testing throughout a projects life cycle using simulated

hardware, Noordwijk, SESP 1998.
6. J-F. Kaufeler, ESA management approach for a common EGSE and MCS system, Toulouse, SpaceOps 2000.
7. J-F. Kaufeler, B. Melton, M. Jones, Spacecraft check-out andjlight control systems: compatibility or commonality,

Tokyo, SpaceOps 1998.
B. SCOS-2000 Team, Terma, SCOS-2000 System Level Architectural Design Document, S2K-MCS-ADD-0001-TOS­

Gel, Issue 3.2, 22/10/2000.
9. C. Lannes, Inteiface Control Document, NCrRS, Volume 2- Detailed inteiface definition: MCS, N2K-MCS-ICD-

0002-TOS-GeI, Issue 2.0, 15-Nov-1999.
10. ECSS-E-70-32 Ground systems and operations - Procedure definition language
11. ECSS-E-70-41 Ground systems and operations - Telemetry and teleconunand packet utilization.
12. J. van der Wateren, 1. van den Berg, A.M. Bos, M.H.G. Verhoef, J. Kratz, E. Haverkamp, Enhanced System

Verification and Validation Peifonnance through Method Integration, Nice, DASIA 2001, to be published.

93

Service pack testing
in a commercial development environment

B.H.J. (Ben) van Buitenen
Manager Product Testing Group ERP

Baan Development

Contents

.~ Testing in Baan Development

:- Development of major releases

:-: Aspects around service packs

t': Development of service packs

Real life data & examples

,- Pitfalls, tips & guidelines

.. : Wrap up,

94

Testing in Baan Development

Development of major releases

Execution 1~;iJ')!;""'"'\; . I

1~ID8

.--1\ _______

~ .-iUT < -I~t~g~a·ti~~ -::- - s~ie~- -::- - V~rif. - -
; FUT-' ' Test 'Test test
- - - . '. - - - - - - - .' - - - - - - - ,'- - - - - - ,

A description of the topics
r that enter this version or release

\Invensys ~...-

95

Development of major releases

Execution

r
\lIwensys --

I '~'?'l~i':.!.i"i,",j' I

DD8

Specification:
functionality and structure

: _TU(~ -In-t~g~~ti~~ -:- - s;Sie~- -::- - V~rif. - -:

~ FUT-' 'Test Test test
- - - - - - - - . - - - - . - - .' - - - . - - ,

Development of major releases

Execution

- ~ - - - - - - - - - - - - - . - - - - - - - - -
: _-rUT', Integration " System " Verif.
: FUt: : _ _ Te_st _ _ _ _ Test _ test.

Software construction

~~----------
96

Develo eases
Technical unit test (White box test)

knowledge of HOW it operates

Execution

Develo

Execution

ses
Functional unit test (Black box test)

knowledge of WHAT it should do

DDBD

Integration
Test

97

System Verif.
Test test

- - - " - - - - - - '

System
Test

Verif.
test

Development of eleases
Verification if all separate units

do work correctly in conjunction with each other

I . ';:;:"~'''''0!n;",,:C 1
r "-;;-'fF- • r-~~-'--' -----1.- - - - - - - "
l_'eeL "l1l'01f'lJ@" !' System Verif.

test Execution .. : - ',1 'ir l;@(oj' Test
'_ _ _ ,L~~ ___ ~_._: ,~.~_~ ,

DD8D

Development of major releases

. .
Goal 'ilil11 i'iiM.llt~ c [?'.~JW®:F-llfi1 'l:'mJ:0'l!l ij)'J,f) .

Execution I .®}(Y'h'l>1;F(~ : I

DDB

--
OK?

Prep. ready?
Prod. read

98

System
Test

.' -

After this phase:

- Code freezes

Verif.
test

- independent systems

- release management

- formal software delivery

- usage of Install. Proced.

- etc

Development of major releases

Goal

Execution

Knowledge
Transfer

Development of major releases

99

.- - - -
,Verif.:
: test'

What are service packs?

Individual (requested) solutions - reactive

A collection of individual solutions/modifications delivered
in a bundle to our customers - pro-active

(a solution can be triggered by a remark from the field or
solutions can be a functional enhancement).

•
r­
\Irwensys
-~-

• •• • • •

What are service packs?

• • • • • •
• •
•

• •

• •

100

• • •

•
• • • •
I

•

Aspects around service packs

C Less focus on functionality, more focus on quality -> more SP's

l i Little modifications can affect the whole product

Individual fixes can depend on each other

Need for shorter delivery cycles (release train)

.. ~ When are service packs - good enough?

Developers like to work on new development, but need to produce.
quality SP's

[~ Use of automated regression tests.

Aspects around service packs

[~ Do we know the quality of our product after the
installation of a Service Pack?

~] Are customers happy with Service Packs?

Example 1:

- In Baan 5.0c SP2 we have 436 remarks solved
- This resulted in 660 modified components
- A customer asked for the solution of 10 problems
- He received 436 - 10 = 426 fixes for free
- But with a bad-fix rate of 5 % he gets also 21 new

problems for free

101

Aspects around service packs

~_-J Do we know the quality of our product after the
installation of a Service Pack?

. ~ Are customers happy with Service Packs?

~ ~ Example 2:

.. Old bug back.

Development of service packs

What can we do to improve?

102

time-

Answer: PMC tool

Answer: VRC structure

Development of service packs

What can we do to improve?

Development of service packs

Analyze the impact of the change on the

whole syste",!

::--.,,:1 , • •)""'1t'" • • • • • •
<" • : ;

•
,:.~i.:.

;;,"':
. .

•

103

????

create
solution

Development of service packs

Categorize type of impact

Development of service packs

Mandatory review of all software
changes with a high impact by the owner
of that software part

104

Development of service packs

Results of the analysis should be
registered

Devel ,,' , ~

Location: Remark Solution SrI.rityof Additional What should be telt.e!?
ID: Reviewed tho Testing

Solution: R ul....:!?

CS (TCS describe in words what the
I " rn w /. I /

Development of service packs

1ST: re-testing

105

Which test case
(only If you know
Iheease;

refrirto INl
exj m riI

Development of service packs

IAT: testing

Development of service packs

ST: testing

106

10

TTCN Testing
into the future

The testing part of the software develop­
ment process 1s rapidly galnJng in impor­
tance, and, wJth new technologier becoming
more and more complex, there is an
i!lcreased need for automated testing
solutions to support both conformance to
global standards and functional tesUng.
Now there is a tool that meets the
requirements.

Recently, Telelogk emered Into an agreement With

Nokia Rese;u-ch Center to de",,]op a lest tool based

on the new globally standardized test language

ITCN-3. The new tesr tool. which will be available
commercially to all TeJelogk custome,.., I:! designed

for easy and rapId testing of sy:;tems and devices

usIng a variety of technologIes, indudlng 3G,
Internet protocols, distributed and heterogeneous

systems.

An example of th~ graphical

u"', inrerfaa of the new

TTCN-3 rest too/.

"This JoInt development project," says Ingemar

Ljungdahl. Chief Technology Officer at Telelogk,

·confirms our strong market and technology
po:sltlon and also provld"" an example of how
Teleloglc Is working with key customers In order

to share their experience of using TICN for

advanced test engln""ring:

'I<"~ring in nln!I)I.,~ e!!vinl!!!!I.'nt~

"This Is a ~ery exclting time for the testing

community," adds Richard Watson, Product

Manager at TeJeloglc. "These new TICN·3 tools

see the birth of test development being performed

In whichever fonn Is most .ultable for the user.

for example UML, MSC, text, etc., while keeping

cons down by being able to debug and execute all
of these different 'view! on the same execution

engine and equipment.· According to Watson,

"rrCN has provided the backbone for telecom
conformance testing for the last ten years, The
next generation, ITCN·3, mark.. the emergence

of a testing archltectu to support many olher

Industries, Including commerce, iUlomollve,

avionics and military,·

GlotJaJ stamfard

"rrCN·3 Is a fuU review of the ISO 9646-3
leSI notation, TTCN-Z: explain:! }ohan Nordin,

TeJelogk's repre.entallve at the European

Telecommunications Standards Institute (ETSI).
"New areas of application testing are possible as

TICN-3 has been designed to address function!

API-based testing as well as the event-b"",d

testing for which ITCN-Z Is used today.ITCN-3
also Includes feature. such as synchronous

communil;:"tlon and dynamic parallel test configu.

rations. Drawing on the experience and features

ofTTCN-Z, the ITCN-3 core notation mbles

a more conventional programming language in

orou to rl!'cluce the learning tlutihold," summa­

rizes NordIn.

I~~J' l') ll'lITlI, ,,, y !O us",

"F"cllltating learning and milking the jump

betw""n the different technologies as easJly U

posslble were guiding princlples for the tool

design,' adeb Fl!'clerko Engler, SenIor Archltect;rt

Teleloglc. "The backbone of the neW testing tool

has been developl!'cl using a generi~ TeJeJoglc plat·

form, internally called 'TeJeloglc Studio,' for
development of a state-of-the-art user Interface,

which Is abo being used In other TeJelogk producu."

With this common technology, It Is pos.'IlbJe to

provide seamless tool Integration and a coherent

framework for the dlfferenl Telelogle tool seb.

"Because the graphical user InterraC<! Is highly CUll­

tomizable, It can be luned into vlrtually any
desired user setup." ~ondude. Engler.

If"eleJogic
Telelogic
Kaap Hoomdreef 30
3563 AT Utrecht
+31 302651738 infoNL@lelelogic,com

Real life data & examples

--_. _- -
.

, ,
I

t I I I I

I I

I i I
,

I I
,

I !

I I ,

Many changes on a component: inspection
Many changes in a solution: re testing

Real life data & examples

,- Individual solution test (1ST) - done by development

I

j
Total 3 (167) 9 2

Impacted Area Test (IAT) - on cp, ti, and wh

,

." i
I

; I
I

I i
,

,

tc covered by OCT '
td done in PSS test
tools tested implicitly

~- System Test (ST) - Duration two weeks - 5 full time testers, executing CFF in
the first week, re-testing in the second week, (232 gr.md
development - 5x5x2=50 gr.md testing - 1:5 ratio)

~ -...-

108

Pitfalls, tips & guidelines

Prevent loss of product ownership - act as co-builder

Use lasting metrics that are easy to provide or produce

Don't use a single quality indicator - use dashboard approach

Plan evaluations as part of a deliverable

, Define objectives (e.g. FURPS) up-front

l_ Test-scope to be agreed with product owner (Q responsibility)

~ Testing must be in the integrated project plan

Use one single remark tracking and registration of hours.

Wrap up

.' Testing is a part of development (product ownership!)

,', Set objectives up-front and have them committed

. _ Metrics are crucial

It is all about managing risks

Delivery of SP's needs requires tooling and attention.

QUESTIONS?

109

110

Testing your Infrastructure
Within many companies, local divisions and units invested in desktop
hardware and software according to their own preferences. While this
approach was sufficient at departmental or branch level, trying to
exchange information across the company highlighted serious
incompatibilities. Therefore, most of these organisations are now in the
process of initiating company-wide desktop standardisation projects.

CMG gained experience in implementing so-called Test & Integration
Centre's (TIC) for a number of large accounts. The main objective of a
TIC is to define, develop and test the company-wide desktop standard
as part of the whole infrastructure. In order to improve the quality,
efficiency and effectiveness of the testing activities by testing the
Infrastructure, CMG has often implemented TestFrame 1M as an integral
part of testing processes.

The advantage of using TestFrame™
When using TestFrame™ the tests are built in modules. A few
advantages of using those modules are:
• quality: you can easily test the whole system (automated) instead of

testing only the changes (regression and integration testing) without:
any human interaction (no human errors):

<£M@
Information Technology

• structuring: by structuring the test in modules, you can use those
modules to test any applications you want. So you can easily test
many different desktops environments.'

• time saving: you only have to define and automate the test
(modules) once, the tests will then run automatically as often as
necessary (sometimes even overnight).

TE RAME

Because CMG has great experience of testing Infrastructures with the
help of TestFrame™, CMG has already developed a large number of
standard tests (modules) for many standard office applications. These
standard modules can be used by every small, medium or large
organisation. You only have to develop tests for those applications that
are specific to your organisation.

What is TestFrame™?
TestFrame™ is a methodology and the basic principles behind this
methodology can be compared with the structure of a Greek temple.
The roof symbolises your business objectives: high quality-ta-market
and short time-to-market. In order to achieve these objectives, we need
a firm foundation, just as a temple needs a firm foundation. Within the
CMG vision, this is based on the requirement that all testing material
should be simple to maintain and should be reusable (modules). Three
success factors act as the pillars supporting the roof: fitting (you can
test everything, and it can be done in every organisation), structuring
(by structuring your test, you get a higher quality and reusable products)
and tooling (we can automate the testing by using any test-automation
tool). The proper resources and the proper structure adapted to fit your
organisation.

CMG Arnhem B.V.

,/'-

, ,
T
T , ,
•
-

&Ii_et

7' • • , ,
• ,
• ,

.l.
RE.U '" T'E1T~ROOUC1'll

Velperweg 37 PO-box 37 6801 HA Arnhem Tel +31-26- 3544544 Fax +31-26-3544566 info: hans.potze@cmg.nl (Associate Director)

ALKMAAR' AMSTELVEEN • AMSTERDAM· ARNHEM • DEN HAAG • EINDHOVEN' ENSCHEDE' GRONINGEN • MAASTRICHT· ROTTERDAM· UTRECHT
WOERDEN' BRUSSEL' FRANKFURT' HAMBURG· KEULEN' MONCHEN. STUTTGART' LONDON' MANCHESTER' PARIJS' NASHUA (USA)' SINGAPORE

=-............ -
• , , , , , ,

--

ActiveLink
Technical Software Engineering

In embedded saftware developmeni, communicaiionbelw';eii-multij)le---.
processars is .often required. Since many communicatianpratacols
(RS232, TCP/IP, JTAG, etc.l are available and proven standards far
unified high-level cammunication are virtually absent, we develaped
ActiyeLink; a small-sized taal far crass-platfarm communication.

ActiveLink .offers a Remate Procedure Call (RPC) mechanism as well
as means to contral remate memary, i.e., ta allocate memory an. a
remate pracessor and to capy memary fram a remote processor, and
vice versa. AcliveLink enables the development of distributed.
applications in heterogeneaus enviranments.lt features:

o Transparent cross-platfarm cammunicatian by means .of Remate
Procedure Calls.

o Distributed me mary space access.
o Provides a platform independent interface.

.0 Suited far embedded systems because .of small memory footprint.
o Interfaces with pragramming languages C and C++.

ActiveLink is available in twa packages:
o The Activelink End-User Package supparts the Windaws and the

MIPS/pSOS platform with TCP/IP and RS232 cammunicatian.
o The Activelink Develapers Kit allaws portability ta any pracessar

architecture (e.g., ARM, SPARC), operating system (e.g., WinCE,
VxWarks, linux), and communication protocal (e.g., PCI, USB).

ActiveLini(architecture

Activelink has been integrated with Embedded TestFrame, the CMG
solutian far autamated testing 9f",mb",dde9 sof!v.i.,!re" _____ . ______ ..

CMG Eindhoven B.V.

i

I
I

<£M@
Information Technology

Active_

TESf!!JRAME

We can offer:
o helpdesk support
o an site suppart and training by

means .of warkshops
o support for parting Activelink

to your platform
o an automated test enviranment

with Embedded TestFrame
o support for development .of

distributed applicatians

For more information, please contact Gert-Jan van Dijk (gert-jan.van.dijk@cmg.n!) or Harro Jacobs (harro.jacobs@cmg.nl).

luchthavenweg 57 PO Box 7089 5605 JB Eindhoven The Netherlands
Tel: +31-(0)40 - 29 57 777 Fax: +31-(0}40 - 29 57 630 Internet: www.cmg.nl

ALKMAAR' AMSTELVEEN· AMSTERDAM· ARNHEM. DEN HAAG· EINDHOVEN· ENSCHEDE· GRONINGEN' MAASTRICHT· ROTTERDAM. UTRECHT WOERDEN.
BRUSSEL- FRANKFURT - HAMBURG - KEULEN - MONCHEN - STUTIGART- LONDON - MANCHESTER- PARIJS - NASHUA (USA) - SINGAPORE

."

Verification is defined as confirming by examinations and provisions of
objective evidence that specified requirements have been fulfilled. Efforts in
verification are aimed at preventing and finding discrepancies (errors)
between the requirements and the development deliverables.

Inspections are carried out in the activities on the left side of the
Development V-model. Testing is carried out in the activities on the right
side of the V-model.
A trade-off has to be made between the efforts devoted to prevention and
to testing. This trade-off is necessary, since complete prevention of all
errors and the finding of all errors are both impossible and would require
unlimited resources. Practical experience has shown that the 80/20 rule
applies in this trade-off: in the optimal situation, 80% of the errors should be
found in inspections, whereas the remaining 20% should be found in the
subsequent testing efforts.

Inspections
Inspections are an effective and efficient approach to prevent errors in the
work products of a development project. Research and experiences have
shown that inspections have a high return on investment: 50 errors found
in inspections, save 250 hours in module testing.

Testing
A number of decisions need to be made when determining how to test the
different work products:
• Primarily, an approach for testing should be determined; a choice

should be made between random testing, or testing according to a
recorded test plan including a strategy?

• Secondly, a method for testing should be determined; should tests be
carried out ad-hoc, or should structured test specifications be developed
that can be repeated?

• Finally, the choice can be made to execute the tests manually or to
automate them.

CMG can offer
• Workshop, training and implementation of inpections
• Implement a method of structured testing, i.e. TestFrame
• Automate testing using the TestFrame method

CMG Eindhoven B.V.

For more information, you can contact Roland Kieboom (Assistant Director) at Roland.kieboom@cmg.nl.

Luchthavenweg 57 Postbus 7089 5605 JB Eindhoven
Tel: 040 - 29 57 777 Fax; 040 - 29 57 630 Internet: www.cmg.nl

~M@
Information Technology

Preventing Finding ._-
-

TESfiRAME

Active!l.ifl1

ALKMAAR· AMSTELVEEN' AMSTERDAM· ARNHEM' PEN HAAG • EINDHOVEN' ENSCHEDE' GRONINGEN' MAASTRICHT' ROTTERDAM· UTRECHT
WOERDEN' BRUSSEI,.· FRANKFURT' HAMBURG' KEULEN' MONCHEN' STUTTGART' LONDON' MANCHESTER' PARIJS' NASHUA (USA)' SINGAPORE

-"

Sofware Inspectie is ean ·methode- waarrriee vroegtijdf~i fii-het software­
ontwikkelproces op een effectieve en efficiente wijze issues, die
uiteindelijk zouden lei den tot fouten in het eindproduct, kunnen worden
opgespoord. Het doel is om het aantal fouten in het eindproduct tot een
minimum te reduceren en de kosten voor het vinden van deze fouten te
beperken. Software inspecties kunnen worden toegepast voor zowel
ontwikkeldocumentatie en source code.

Inhoud van de training:
• Vergelijking van Inspecties met rev;ews, walkthroughs etc.: verschillen tU5sen

een inspectie, review en een walkthrough en het toepassen van deze methodes
• Inspectie principes: basis principes van inspecties, korte introductie van wat

inspecties nu eigenlijk zijn
• Inspectie process: stap voor stap doorlopen van de 8 fasen van het inspectie

proces: planning; kick-off; checking, logging, process brainstorming, edit; follow-up en'
exit

• EntrylExit criteria: wat zijn de criteria om met een inspectie te kunnen starten en wat
zijn de criteria om de inspectle te beeindigen en het geinspecteerde product goed te
keuren

• Sampling methode: het vergroten van de efficientie van het inspectie proces door
verschil1ende personen delen (samples) van het product te laten inspecteren

• Metrics: het gebruik van metres om de efficientie en de effectiviteit van de inspectie
te vergroten

• Checklists: het gebruik van checklists om de kans op het vinden van major issues te :
vergroten '

• workshops: het uitvoeren van inspecties op eigen documenten met als doel het in de
praktijk leren van het proces en het leren vinden van major issues.

Doelgroep
Software engineers, testers, kwaliteits medewerkers en andere
medewerkers die betrokken (zullen) zijn bij de inspectie van
documenten en/of code.
Instapprofiel
2 Jaar kennis/ervaring om de producten (documenten/code) die voor
inspectie worden aangeboden te kunnen beoordelen.
Voorbereiding
De deelnemers dienen een document of listings van source code mee
te brengen waarmee zij tijdens de workshops het inspectie proces
kunnen trainen.
Aantal dagen
De cursus omvang is 2 opeenvolgende dagen.
Rendement van de training
leder major fout die tijdens de inspectie wordt gevonden levert een
besparing van gemiddeld 8 uur op voor het totale project waarin de
kosten v~~r de inspectie zijn inbegrepen.

Voor meer informatie over de mogelijkheden voor een groepstraining bij'
u in het bedrijf kunt u vrijblijvend contact opnemen met uw CMG
accountmanager of het SPI competence centre in Eindhoven.

<5M<§
CMG Eindhoven B.V.

Information Technology

CMG is member of

Luchlhavenweg 57 Postbus 7089 5605 JB Eindhoven Tel: 040 -29 57 777 Fax: 040 - 29 57 630 www.cmg.nl/spi

AlKMAAR • AMSTElYEEN • AMSTERDAM' ARNHEM • DEN HAAG • EINDHOVEN' ENSCHEDE • GRONINGEN • MAASTRICHT' ROTTERDAM' UTRECHT
WOERDEN' BRUSSEl' FRANKFURT' HAMBURG' KEUlEN' MONCHEN' STUTTGART • LONDON • MANCHESTER' PARIJS' NASHUA (USA). SINGAPORE

10

TTCN Testing
into the future

The testing part of the software develop­
ment process 1s rapidly galnJng in impor­
tance, and, wJth new technologier becoming
more and more complex, there is an
i!lcreased need for automated testing
solutions to support both conformance to
global standards and functional tesUng.
Now there is a tool that meets the
requirements.

Recently, Telelogk emered Into an agreement With

Nokia Rese;u-ch Center to de",,]op a lest tool based

on the new globally standardized test language

ITCN-3. The new tesr tool. which will be available
commercially to all TeJelogk custome,.., I:! designed

for easy and rapId testing of sy:;tems and devices

usIng a variety of technologIes, indudlng 3G,
Internet protocols, distributed and heterogeneous

systems.

An example of th~ graphical

u"', inrerfaa of the new

TTCN-3 rest too/.

"This JoInt development project," says Ingemar

Ljungdahl. Chief Technology Officer at Telelogk,

·confirms our strong market and technology
po:sltlon and also provld"" an example of how
Teleloglc Is working with key customers In order

to share their experience of using TICN for

advanced test engln""ring:

'I<"~ring in nln!I)I.,~ e!!vinl!!!!I.'nt~

"This Is a ~ery exclting time for the testing

community," adds Richard Watson, Product

Manager at TeJeloglc. "These new TICN·3 tools

see the birth of test development being performed

In whichever fonn Is most .ultable for the user.

for example UML, MSC, text, etc., while keeping

cons down by being able to debug and execute all
of these different 'view! on the same execution

engine and equipment.· According to Watson,

"rrCN has provided the backbone for telecom
conformance testing for the last ten years, The
next generation, ITCN·3, mark.. the emergence

of a testing archltectu to support many olher

Industries, Including commerce, iUlomollve,

avionics and military,·

GlotJaJ stamfard

"rrCN·3 Is a fuU review of the ISO 9646-3
leSI notation, TTCN-Z: explain:! }ohan Nordin,

TeJelogk's repre.entallve at the European

Telecommunications Standards Institute (ETSI).
"New areas of application testing are possible as

TICN-3 has been designed to address function!

API-based testing as well as the event-b"",d

testing for which ITCN-Z Is used today.ITCN-3
also Includes feature. such as synchronous

communil;:"tlon and dynamic parallel test configu.

rations. Drawing on the experience and features

ofTTCN-Z, the ITCN-3 core notation mbles

a more conventional programming language in

orou to rl!'cluce the learning tlutihold," summa­

rizes NordIn.

I~~J' l') ll'lITlI, ,,, y !O us",

"F"cllltating learning and milking the jump

betw""n the different technologies as easJly U

posslble were guiding princlples for the tool

design,' adeb Fl!'clerko Engler, SenIor Archltect;rt

Teleloglc. "The backbone of the neW testing tool

has been developl!'cl using a generi~ TeJeJoglc plat·

form, internally called 'TeJeloglc Studio,' for
development of a state-of-the-art user Interface,

which Is abo being used In other TeJelogk producu."

With this common technology, It Is pos.'IlbJe to

provide seamless tool Integration and a coherent

framework for the dlfferenl Telelogle tool seb.

"Because the graphical user InterraC<! Is highly CUll­

tomizable, It can be luned into vlrtually any
desired user setup." ~ondude. Engler.

If"eleJogic
Telelogic
Kaap Hoomdreef 30
3563 AT Utrecht
+31 302651738 infoNL@lelelogic,com

Computer Science Reports Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

If you want to receive reports, send an email to:m.m.i.1.philips@tue.nl (we cannot guarantee the availability of
the requested reports)

In this series appeared:

97/02 J. Hoaman and O. v. Roosmalen

97/03 J. Blanco and A. v. Deursen

97/04 J.C.M. Baeten and l.A. Bergstra

97/05 J.C.M. Baeten and J.J. Vereijken

97/06 M. Franssen

97/07 J.C.M. Baeten and J.A. Bergstra

97/08 P. Hoogendijk and R.C. Backhouse

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction ofCorTect Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.

97/10

97111

97112

97113

97114

97/15

97116

97117

97118

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, E.J. Luit, D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van der Aalst

W .M.P. van der Aalst

J.F. Groote, F. Monin and
J. Springintveld

M. Franssen

W .M.P. van der Aalst

M. Vaccari and R.C. Backhouse

Werkgemeenschap lnfonnatiewetenschap
redactie: P.M.E. De Bra

W. Van der Aalst

M. Voorhoeve

J.C.M. Baeten and J.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of .Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri-net-based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p.28

J.P-: A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification ofInter-organizational wo,rkflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Informatiewetenschap, p. 60.

Formalization and Verification of Event-driven Process Chains, p. 26.

State I Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois COI)Dections, p. 14

Flat Fragments ofCTL and CTL*: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
June 22,1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

98/08 Informal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology ,13-15 July 1998

edited by R.C. Backhouse, p. 180

98/09 K.M. van Hee and H.A. Reijers An analytical method for assessing business processes, p. 29.

98/10 T. Basten and J. Hoaman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistemt Yarrow, p. 15

98/12 Ninth ACM Conference on Hypertext and Hypermedia
Hypertext '98

98/13

99/01

99/02

99/03

99/04

99/05

99/06
66

99/07

99/08
VFM'99

99/09

99/10

99111

99112

99/13

99/14

99/15

99/16

99117

99/18

99/19

Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypermedia.

J.F. Groote, F. MOllin and J. v.d. Pol

V. Bos and U.T. Kleijn

H.M.W. Verbeek, T. Basten
and W .M.P. van der Aalst

Re. Backhouse and P. Hoogendijk

S. Andova

M. Franssen, R.e. Veltkamp and
W. Wesselink

T. Basten and W. v.d. Aalst

P. Brusilovsky and P. De Bra

D. Bosnacki. S. Mauw, and T. Willemse

J. v.d. Pol, J. Hooman and E. de long

T.A.C. Willemse

J.C.M. Baeten and C.A. Middelburg

S. Andova

K.M. van Hee, R.A. van der Toom,
J. van der Woude and P.A.C. Verkoulen

A. Engels and S. Mauw

J.F. Groote, W.H. HesseJink, S. Mauw,
R. Vermeulen

OJ. Hauben, P. Lemmens

T. Basten, W,M.P. v,d. Aalst

J,C.M. Baeten and T, Basten

J.C.M. Baeten and C.A. Middelburg

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications ofprotacals and distributed systems by computer.
Extended version ofa tutorial at CONCUR'98, p. 27.

Structured Operational Semantics of X , p. 27

Diagnosing Workflow Processes using Woflan, p. 44

Final Dialgebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

Efficient Evaluation of Triangular B·splines, p. 13

Inheritance of Work flows: An Approach to tackling problems related to change, p.

Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web,p.119.

Proceedings of the first international syposium on Visual Formal Methods·

Requirements Specification and Analysis of Command and Control Systems

The Analysis ofa Conveyor Belt System, a case study in Hybrid Systems and timed
,u CRL, p. 44.

Process Algebra with Timing: Real Time and Discrete Time, p. 50.

Process Algebra with Probabilistic Choice, p. 38.

A Framework for Component Based Software Architectures, p. 19

Why men (and octopuses) cannatjuggie a four ball cascade, p. 10

An algorithm for the asynchronous Write·All problem based on process collision-,
p. 11.

A Software Architecture for Generating Hypermedia Applications for Ad·Hoc
Database Output, p. 13.

Inheritance of Behavior, p.83

Partial·Order Process Algebra (and its Relation to Petri Nets), p. 79

Real Time Process Algebra with Time·dependent Conditions, p.33.

99/20 Proceedings Conferentie Informatiewetenschap 1999
Centrum voor Wiskunde en Informatica

00/01

00/02

00/03

00/04

00/05

12 november 1999, p.98 edited by P. de Bra and L. Hardman

J.C.M. Baeten and J,A. Bergstra

J.C.M. Baeten

S. Mauw and M.A. Reniers

R. Bloo, J. Hooman and E. de Jong

J.F. Groote and M.A. Reniers

Mode Transfer in process Algebra, p. 14

Process Algebra with Explicit Termination, p. 17.

A process algebra for interworkings, p. 63.

Semantical Aspects of an Architecture for Distributed Embedded
Systems-, p. 47,

Algebraic Process Verification, p, 65.

00/06

00107

00108

00109

00/10

00/11

00112

00/13

00/14

00/15

00/16

00/17

00/18

00119

00/20

01/01

01102

01/03

J.F. Groote and J. v. Warnel The Parallel Composition of Uniform Processes wit Data, p. 19

C.A. Middelburg Variable Binding Operators in Transition System Specifications, p. 27.

1.0. van den Ende Grammars Compared: A study on determining a suitable grammar for parsing and
generating natural language sentences in order to facilitate the translation of natural
language and MSC use cases, p. 33.

RR. Hoogerwoord A Formal Development of Distributed Summation, p. 3S

T. Willemse, J. Tretmans and A. Klomp A Case Study in Formal Methods: Specification and Validation on the OMIRR
Protocol, p. 14.

T. Basten and D. Bo~naCki Enhancing Pariial·Order Reduction via Process Clustering, p. 14

S. Mauw, M.A. Reniers
and T.A.C. Willemse Message Sequence Charts in the Software Engineering Process, p. 26

1.C.M. Baeten, M.A. Reniers Termination in Timed Process Algebra, p. 36

M. Voorhoeve, S. Mauw Impossible Futures and Determinism, p. 14

M. Oostdijk An Interactive Viewer for Mathematical Content based on Type Theory, p. 24.

F. Kamareddine, R. Bloo, R. Nederpelt Characterizing A.-terms with equal reduction behavior, p. 12

T. Borghuis, R. Nederpelt Belief Revision with Explicit Justifications: an Exploration in Type Theory, p. 30.

T. Laan, R. Bloo, F. Kamareddine, Parameters in Pure Type Systems, p. 41.
R Nederpelt

J. Baeten, H. van Beek, S. Mauw SpecifYing Internet applications with DiCons, p. 9

Editors: P. v.d. Vet and P. de Bra Proceedings: Conferentie lnformatiewetenschap 2000, De Doelen,
Utrecht, 5 april 2000, p. 98

H. Zantemaand J. v.d. Pol A Rewriting Approach to Binary Decision Diagrams, p. 27

T.A.C. Willemse Interpretations of Automata, p. 41

G.1. Joigov Systems for Open Terms: An Overview, p. 39

01/04 P.J.L. Cuijpers, M.A. Reniers, A.G. Engels Beyond Zeno-behaviour, p. 15

01105 D.K. Hammer, 1. Hooman, M.A. Reniers, Design of the mine pump control system, p. 69
O. van Roosmalen, A. Sintotski

01/06 J.C.M. Baeten and E.P. de Vink Axiomatizing GSOS with termination, p. 22

01110 7 e Nederlandse Testdag
editors L.M.G. Feijs, N. Goga, S. Mauw, T.A.C. Willemse

T U Ie technische universiteit eindhoven

P.O. Box 513
5600 MB Eindhoven
The Netherlands

/ department of mathematics and computing science

	Preface
	Contents
	Putting TTCN-3 into Practice
	Effective test automation for GUI, non-GUI and embedded systems
	Embedded TestFrame, an Architecture for Automated Testing of Embedded Software
	Test automation for embedded and other dedicated systems
	Object Oriented Testing with Conclusion
	Specification Based Testing: Lessons from practical applications
	Prisoner's Dilemma in Software Testing
	Enhanced system verification and validation, performance through method integration
	From simulations to operations
	Service pack testing in a commercial development environment
	TTCN - Testing into the future
	Testing your Infrastructure
	ActiveLink Technical Software Engineering
	Verification: Inspections and Testing
	Testing Software Inspectie

