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Abstract 

BDDs provide an established technique for propositional formula ma­
nipulation. In this paper we present the basic BDD theory by means of 
standard rewriting techniques. Since a BDD is a DAG instead of a tree 
we need a notion of shared rewriting and develop appropriate theory. A 
rewriting system is presented by which canonical ROBDDs can be obtained 
and for which uniqueness of ROBDD representation is proved. Next, an 
alternative rewriting system is presented suitable for actual computing 
ROBDDs from formulas. For this rewriting system a layerwise strategy is 
defined, and it is proved that when replacing the classical apply-algorithm 
by layerwise rewriting, the same complexity bound is reached as in the clas­
sical algorithm. Moreover, a layenIJise innermost strategy is defined and 
it is proved that the full classical algorithm for computing ROBDDs can 
be replaced by layerwise innermost rewriting without ·affecting the com­
plexity. Finally a lazy strategy is proposed sometimes performing much 
better than the traditional algorithm. 

1 Introduction 

Equivalence checking and satisfiability testing of propositional formulas are ba­
sic but hard problems in many applications, including hardware verification [6] 
and symbolic model checking [7]. Binary decision diagrams (BDDs) [4, 5, 12, 
16], are an established technique for this kind of boolean formula manipulation. 
The basic ingredient is representing a boolean formula by a unique canonical 
form, the so called reduced ordered BDD (ROBDD). After canonical forms have 
been established equivalence checking and satisfiability testing is trivial. Con­
structing the canonical form however, can be very costly; it is even possible that 
the size of the canonical form is exponential in the size of the original formula. 
A main goal of the BDD approach is to keep constructing these canonical forms 
tractable for as many boolean formulas as possible. 

Various extensions to the basic data-type have been proposed, such as 
ODDs [13], BEDs [1] and EQ-BDDs [8]. Many variants of Bryant's original 
apply-algorithm for computing boolean combinations of ROBDDs have been 
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proposed in the literature. Usually, such adaptations are motivated by partic­
ular benchmarks, that show a speed-up for certain cases. In many cases, the 
relative complexity between the variants is not clear and difficult to establish 
due to the variety of data-types. 

BDDs are recursively defined structures and they are manipulated by re­
peating small steps. It seems rather natural to view the BDD theory and the 
manipulations on BDDs from a term rewriting point of view. In this paper, we 
pursue this view On the following lines: First, a signature for BDDs is given. 
Next we consider a finite axiomatization of logical equivalence on these trees. 
Using the fairly standard rewriting techniques ([2]) of critical pair analysis and 
recursive path ordering, we turn this into a complete, i.e. normalizing and con­
fluent, term rewriting system (TRS), for which the normal forms are exactly 
the ROBDDs. In this way great part of BDD theory is obtained for free: the 
existence of an ROBDD representation follows from the normalization property, 
and unicity of the ROBDD representation follows from the confluence property. 
The main theorem that propositional formulas are logically equivalent if and 
only their ROBDD representations are syntactically equal, turns out to be a 
corollary of soundness and completeness of the basic axiomatization. 

A complication is that the relative efficiency of BDDs hinges on the max­
imally shared representation. In order to avoid the intricacies of maximally 
shared graph rewriting, we present an elegant abstraction. Instead of introduc­
ing a rewrite relation on graphs, we introduce a shared rewrite step on terms. 
In a shared rewrite step, all identical redexes have to be rewritten at once. We 
prove that if a TRS is complete, then the shared version is so too. This enables 
us to develop the main theory in standard term rewriting (without sharing). 
The rewrite analysis can be lifted to shared rewriting for free. This lifting is 
needed to study the algorithmic complexity in terms of rewrite steps. 

The power of a rewriting approach to BDD theory goes beyond are-development 
of existing theory. In particular, we describe a TRS to be used to compute the 
ROBDD for a propositional formula. Instead of correctness of one single algo­
rithm this implies that every reduction strategy represents a correct algorithm. 
In this respect we hope that the BDD-world can benefit from research on rewrit­
ing strategies, see [l1J for an overview. Moreover, in the BDD-world various 
extensions are emerging, both with respect to the data structure as well as the 
algorithmics. (see e.g. [9, 1]). Term rewriting can present a general framework 
for describing the variations. 

After having established the basic theory, we present a TRS for applying 
logical operations to ROBDDs and prove its correctness. This generalizes the 
traditional algorithm, using Bryant's function apply. Then a layerwise reduction 
strategy for this TRS is given which mimics the usual apply-algorithm, and 
we prove that it has the same time complexity. In this approach the apply­
algorithm is replaced by rewriting, being a basic part of the full traditional 
algorithm. The next step is to give a rewriting approach for the full algorithm: 
we define a layerwise innermost reduction strategy for which we show that if 
the ROBDD is computed by applying the TRS using this strategy, then the 
required number of rewrite steps does not exceed the known complexity bound 
of the standard algorithm. 
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As an alternative strategy the lazy strategy is presented. It is proved that 
by lazy rewriting a topmost symbol is computed in time linear to the shared 
size of the input term. We also give an example, where lazy rewriting performs 
much better than any innermost strategy, including the traditional algorithm 
based on apply. 

In Section 2 we present basic theory for decision trees and describe how 
canonical forms are obtained by rewriting. In Section 3 we present our approach 
to shared rewriting, independent of the particular application to BDDs. In 
Section 4 ROBDDs are presented as shared representations of canonical forms 
and a TRS is given and analyzed for various strategies to compute them. Finally 
in Section 5 the results of some experiments are presented. 

This paper grew out of earlier work [15]. In the present paper we extend the 
more restrictive definition of layerwise as introduced there, while being able to 
prove the same main theorem. The current upper bound on head reductions is 
sharper than in that version, by using the shared size of a term. Moreover, the 
results for layerwise innermost rewriting and the experiments are new. 

2 Decision trees 

We consider a set A of binary atoms, whose typical elements are denoted by 
p, q, r, . ... An valuation CI over A is defined to be a map from A to {true, false}; 
intuitively for an atom p and a valuation CI the value CI(P) represents whether 
the boolean atom p holds for the valuation CI or not. 

A binary decision tree over A is a binary tree in which every internal node 
is labeled by an atom and every leaf is labeled either true or false. In other 
words, a decision tree over A is defined to be a ground term over the signature 
having true and fa Ise as constants and elements of A as binary symbols. 

Introducing the convention that in a decision tree the left branch of a node 
p corresponds to p taking the value true and the right branch corresponds to 
false, a boolean value [T]" can be assigned to every decision tree T and every 
valuation CI, inductively defined as follows 

[true]" 
[false]" 

[P(T, U)]" 
[P(T, U)]" 

= 
= 
= 
= 

true 
false 

[T]" 
[U]" 

if CI(P) = true 
if CI(P) = false. 

The function mapping CI to [T]" is the boolean function described by T. 
Conversely, it is not difficult to see that every boolean function on A can be 
described by a decision tree. One way to do so is building a decision tree such 
that in every path from the root to a leaf every pEA occurs exactly once, and 
plugging the values true and false in the 2#A leaves according to the 2#A lines 
of the truth table of the given boolean function. 

For any decision tree T let # (T) be the size of T, being the number of 
internal nodes, defined inductively by 

#(true) = #(false) = 0, #(p(T, U)) = 1 + #(T) + #(U). 
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Two decision trees T and U are called equivalent, denoted as T "" U, ifthey 
represent the same boolean function, i.e., if 

[T]O' = [U]O' for all II: A -+ {true, false}. 

Decision equivalence can be described by an equational axiomatization as 
follows. Let £ consist of the equations 

(1) p(x, x) = x 
(2) p(q(x,y),q(z,w)) = q(p(x,z),p(y,w)) 
(3) p(p(x, y), z) = p(x, z) 
(4) p(x,p(y,z)) p(x,z) 

for all p, q E A, p =f. q. Note that £ is finite if and only if A is finite. Let =e 
be the congruence generated by £. We prove that £ is a sound and complete 
axiomatization for decision equivalence, i.e., the relations =e and "" on deci­
sion trees coincide. This means that two decision trees are equivalent if and 
only if this can be derived by only applying the four types of equations in £. 
A straightforward elementary proof is given in [17]; here we give an alterna­
tive approach based on rewriting which will be the basis of uniqueness of the 
ROBDD representation. For the basics of rewriting (confluence, critical pair 
analysis, termination, recursive path ordering) we refer to [2]. 

The first step is to complete £: find a confluent and terminating rewrite 
system DT such that =e and +-tDT coincide. One problem in doing so is 
orienting rule (2). If between two atoms p and q no preference is given, this 
cannot be oriented without getting cyclic reductions. The way to solve this 
is choosing a total order < on A, and orient the rewrite rules in such a way 
that the left hand side is greater than the right hand side with respect to the 
corresponding recursive path order. In this way all equations are oriented from 
left to right, where equation (2) is only allowed for q < p. This rewrite system 
has non-converging critical pairs, in particular (P(q(x, y), z), q(P(x, z),p(y, z))), 
obtained from rewriting p(q(x, y), q(z, z)) by rule (1) and rule (2), respectively. 
Orienting yields the new set of rewrite rules 

p(q(x, y), z) -+ q(P(x, z),p(y, z)) 

for all p, q satisfying p > q, and by symmetry also 

p(x, q(y, z)) -+ q(P(x, y),p(x, z)) 

for all p, q satisfying p > q. Surprisingly, the original rule (2) can be removed 
now since 

p(q(x, y), q(z, w)) -+ + q(P(x, z),p(y, w)) 

ifp> q, and 
q(p(x, z),p(y, w)) -+ + p(q(x, y), q(z, w)) 
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if q > p, in both cases only using rules (3), (4) and these new rules. We define 
the rewrite system DT to consist of the rules 

p(x,x) -+ x for all p 
p(p(x, V), z) -+ p(x, z) for all p 
p(x,p(y, z)) -+ p(x, z) for all p 
p(q(x, V), z) -+ q(p(x, z),p(y, z)) for p > q 
p(x, q(y, z)) -+ q(P(x, V), p(x, z)) for p > q. 

We have constructed DT in such a way that indeed =£ and +-tnT coincide. 
Moreover, DT is terminating since every left hand side is greater than the 
corresponding right hand side with respect to recursive path order. Finally, it 
can be checked that all critical pairs are convergent. This can be done by hand 
or automatically, for the latter approach it has to be remarked that it suffices 
to prove it for the case of #A = 3 since no rule contains more than two different 
symbols. Since all critical pairs converge DT is locally confluent, and since DT 
is terminating too we conclude that DT is confluent. 

Definition 1 A decision tree is in canonical form with respect to the order 
< on A if on every path from the root to a leaf the atoms occur in strictly 
increasing order, and no sub term of the shape p(T!, T2) exists for which Tl and 
T2 are syntactically equal. 

Clearly a decision tree is in canonical form if and only if it is in normal 
form with respect to DT. Since DT is terminating and confluent we have the 
following theorem. 

Theorem 2 Every decision tree reduces by DT to a unique canonical form, 
and Tl and T2 have the same canonical form if and only if Tl =£ T2. 

Next we prove completeness of the equational axiomatization. First we need 
a lemma. 

Lemma 3 Let T, U be decision trees in canonical form satisfying T '" U. Then 
T=U. 

Proof: We apply induction on #(T) + #(U). If #(T) + #(U) = 0 then both 
T and U are true or both T and U are false and we are done. 

Consider the case #(T) + #(U) > O. In case either T or U is equal to true 
or false, say T is equal to true, then U can be written as U = P(Ub U2). Since 
U is in canonical form both U1 and U2 are in canonical form and p does neither 
occur in Ul nor in U2. Since U '" true we obtain U1 '" true and U2 '" true; 
from the induction hypothesis we conclude U1 = true = U2, contradicting the 
assumption that U is in canonical form. 

In the remaining case we have T = P(TbT2) and U = q(Ul' U2). First 
assume that p # q. Since < is a total order we have either p < q or q < p, 
by symmetry we may assume p < q. Since T and U are in canonical form p 
does not occur in any of the trees T j , T2 and U. For arbitrary u satisfying 
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alP) = true we obtain [T1]a = [P(T1 , T2)]a = [U]a. Since p does not occur 
on Tl and U, the values of [Tl]a and [U]a do not depend on alP). Hence 
[Tl]a = [U]a for all a, hence Tl '" U. By taking a satisfying alP) = false we 
obtain T2 '" U in the same way. From the induction hypothesis we conclude 
Tl = U = T2 , contradicting the assumption that T is in canonical form. 

In the remaining case we have T = p(Tl, T2) and U = p(U1, U2). Since T 
and U are in canonical form p does not in occur in any of the trees T1 , T2 , U1 

and U2. For arbitrary s satisfying alP) = true we obtain [T1]a = [P(Tl, T2)]a = 
[P(Ul, U2)]a = [U1]a. Since p does not occur on Tl and Ul, the values of 
[T1]a and [U]a do not depend on a(p). Hence [TI]a = [U1]a for all a, hence 
Tl '" Ul. By taking a satisfying alP) = false we similarly obtain T2 '" U2. 
From the induction hypothesis we then conclude Tl = Ul and T2 = U2. Hence 
T = p(Tl, T2) = p(Ul, U2) = u. 0 

Theorem 4 For decision trees T, U we have T =0 U if and only if T '" U. 

Proof: The 'only if'-part is soundness which follows immediately from the fact 
that all rules are sound. For the 'if'-part (completeness) assume T '" U. Let 
T', U' be the canonical form of T, U, respectively. By soundness we conclude 
T '" T' and U '" U'; transitivity of '" yields T' '" U'. By Lemma 3 we conclude 
T' = U'j from Theorem 2 we conclude T =0 U. 0 

Combining Theorems 2 and 4 yields a straightforward way to decide whether 
two decision trees are equivalent or not: reduce them to canonical form and look 
whether they are syntactically equal. However, in Example 5 we shall see that 
it can happen that the canonical form has size exponential in the size of the 
original decision tree, even if you may choose a suitable ordering < yourself. 
Hence worst case this procedure for establishing equivalence is of exponential 
complexity. A straightforward quadratic procedure for establishing equivalence 
is well-known; one version is presented in [17]. 

Example 5 Let n be any natural number. Let A consist of Pl,P2,··· ,Pn, 
ql, q2, ... , qn, r and define inductively 

To = Uo = false, T; = Pi(qi(true, false), Ti-Il, Ui = qi (Pi (true, false), Ui-Il, 

for i = 1, ... , n, and V = r(Tn, Un). Clearly V is a decision tree of size #V = 
4n+ 1. In [18] it has been proved that for every order < on A the corresponding 
canonical form of V has a size exceeding 2n/2, which is exponential in the size 
ofV. 

3 Sharing 

A term can be seen as a tree. For measuring the space complexity, the size 
of a term is usually defined as the number of nodes of this tree. For efficiency 
reasons, most implementations apply the sharing technique. A subterm is stored 
at a certain location in the memory of the machine, various occurrences of the 
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Pn Pn 

I~ 
Pn-I Pn-I 

I 

P2 P2 

I~ 
PI PI 

I~ 
true false 

Figure 1: The effect of sharing: Tn and Un. 

same subterm are replaced by a pointer to this single location. This shared 
representation can be seen as a directed acyclic graph (DAG). It is allowed that 
nodes have more than one parent, but no cycles are introduced by sharing a 
term. Allowing sharing in the representation admits efficient representation of 
logical circuits. 

Mathematically, we define the maximally shared representation of a term 
as the set of its subterms. It is clear that there is a one-to-one correspondence 
between a tree and its maximally shared representation. 

A natural notion size of the shared representation is the number of nodes 
in the DAG. So we define the shared size of a term: 

#sh(t) = #{s I s is a subterm of t}. 

The size of the shared representation can be much smaller than the tree size 
as illustrated by the next example, which is exactly the reason that sharing is 
applied. 

Example 6 (See Figure 1) Define To = true and Uo = fa Ise. For binary symbols 
PI,P2,P3,· .. define inductively Tn = Pn(Tn- l , Un-ll and Un = Pn(Un- l , Tn-I)' 
Considering Tn as a term its size #(Tn) is exponential in n. However, the only 
subterms of Tn are true, false, and Ii and Ui for i < n, hence #sh(Tn) is linear 
in n. 

Maximal sharing is essentially the same as what is called the fully collapsed 
tree in [14J. In [lOJ it is shown that the maximally shared representation is 
unique, and that the original term can be reconstructed from it. 

In implementations some care has to be taken in order to keep terms max­
imally shared. In essence, when constructing a term, a hash table is used to 
find out whether a node representing this term exists already. If so, this node is 
reused; otherwise a new node is created. We also refer to the ATerm library [3], 
which is a C-library offering a data type for terms, that are internally stored 
maximally shared. The main operations are constructing and destructing terms 
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in constant time, and unreferenced terms are garbage collected automatically. 
Furthermore, all BDD-packages can be seen as implementing the idea of maxi­
mal sharing. 

We now study the time complexity of a term t. In term rewriting this 
is usually defined as the length of the maximal reduction sequence from t to 
normal form. Note that all occurrences of the same redex have to be contracted 
one by one. Because in the shared representation all distinct subterms occur 
once, it is reasonable to count the contraction of these subterms only once. 

Although it is possible to define the rewrite relation On DAGs, this is quite 
complicated. Note that if a subterm is rewritten, then this should be noticed by 
all referring nodes. Also note that if C[D[I"ll reduces to C[D[r"ll, then D[r"] 
may occur somewhere else in CO, so after contracting the redex, a number of 
sharing steps are needed to remove the duplicated nodes from DO. 

These problems are partly solved in [1], where a data structure is invented for 
representing BEDs (a generalization on BDDs). Extra indirections are inserted 
from nodes to their reduced versions. This technique was already used in [10] 
on an implementation of rewriting with maximal sharing, called Unlimp. 

In order to avoid these complexities, we introduce the shared rewrite relation 
on terms. In usual unshared rewriting a rewrite step consists of writing the 
term as C[l"] for some context C, some substitution" and some rewrite rule 
I --t r, and replace the term by C[r"]. In shared rewriting not only this single 
occurrence of I" is replaced by r", but by sharing also every other OCCUrrence of 
I". By this observation we define shared rewriting without explicitly referring 
to the shared terms. 

Definition 7 Between two terms t and t ' there is a shared rewrite step t ~ R t! 
with respect to a rewrite system R if t = C[l", ... , I"] and t! = C[r", ... , r"] for 
one rewrite rule I --t r in R, some substitution (J and some multi-hole context 
C having at least one hole for which I" is not a subterm of C. 

We will take the maximum number of ~-steps from t as the time complexity 
of computing t. 

Both in unshared rewrite steps --t R and shared rewrite steps '* R the sub­
script R is often omitted if no confusion is caused. 

We now study some properties of the rewrite relation '* R. The following 
lemmas are straightforward from the definition. 

Lemma 81ft '* t' then t --t+ t'. 

Lemma 9 If t --t t' then a term t" exists satisfying t' --t' t" and t ~ t". 

The next theorem shows how the basic rewriting properties are preserved 
by sharing. In particular, if --t is terminating and all critical pairs converge, 
then termination and confluence of '* can be concluded too. 

Theorem 10 
(J) If --t is terminating then '* is terminating too. 
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(2) A term is a normal form with respect to =} if and only if it is a normal 
form with respect to --+. 

(3) If --+ is confluent and terminating then =} is confluent and terminating 
too. 

Proof: Part (1) follows directly from Lemma 8. 
If t is a normal form with respect to --+ then it is a normal form with respect 

to =} by Lemma 8. If t is a normal form with respect to =} then it is a normal 
form with respect to --+ by Lemma 9. Hence we have proved part (2). 

For part (3) we obtain termination by part (1); it suffices to prove confluence. 
Assume 8 =}* Sl and 8 =}* 82. Since =} is terminating there are normal forms 
n1 and n2 with respect to =} satisfying Si =}* ni for i = 1,2. By part (2) n1 

and n2 are normal forms with respect to --+; by Lemma 8 we have S --+* ni for 
i = 1,2. From confluence of --+ conclude n1 = n2. Since 8i =}* ni for i = 1,2 
we proved that =} is confluent. 0 

Note that Theorem 10 holds for any two abstract reduction systems --+ and 
=} satisfying Lemmas 8 and 9 since the proof does not use anything else. 

Example 11 (Due to Vincent van Oostrom) Not for all assertions in Theo­
rem 10 the converse holds. For instance, the rewrite system consisting of the 
two rules J(O, 1) --+ f(l, 1) and 1 --+ ° admits an infinite reduction f(O, 1) --+ 
J(I,I) --+ f(O, 1) --+ "', but the shared rewrite relation =} is terminating. 

For preservation of confluence the combination of termination is essential, 
as is shown by the rewrite system consisting of the two rules ° --+ J(O, 1) and 
1 --+ f(O, 1). This system is confluent since it is orthogonal, but =} is not even 
locally confluent since f(O, 1) reduces to both f(O, f(O, 1)) and f(f(O, 1), 1), not 
having a common =}-reduct. 

Notions on reduction strategies like innermost and outermost rewriting carry 
over to shared rewriting as follows. As usual a redex is defined to be a subterm 
of the shape IU where I --+ r is a rewrite rule and 0" is a substitution. A 
deterministic (one step) reduction strategy is a function that maps every term 
that is not in normal form to one of its redexes, for instance the leftmost 
innermost strategy. More general, a (non-deterministic) reduction strategy is 
defined to be a function that maps every term that is not in normal form to a 
non-empty set of its red exes, being the red exes that are allowed to be reduced. 
For instance, in the innermost strategy the set of redexes is chosen for which 
no proper subterm is a redex itself. This naturally extends to shared rewriting: 
choose a redex in the set of allowed redexes, and reduce all occurrences of that 
redex. Note that it can happen that some of these occurrences are not in the 
set of allowed redexes. For instance, for the two rules'1rxr~£;liz' --+ b the 
shared reduction step g(a,j(a)) =} g(b, f(b)) is an outermostl'rerluction, while 
only one of the two occurrences of the redex a is outermost.}' 'Fl " • 

9 



4 Reduced OBDDs 

Normally a BDD (binary decision diagram) is defined to be a decision tree in 
which sharing is allowed. An OBDD (ordered binary decision diagram) then 
is a BDD in which on every path from the root to a leaf the atoms occur 
only in strictly increasing order, with respect to some fixed total order on the 
atoms. The main motivation for OBDDs is that there is a natural notion of 
reduced OBDD (ROBDD) in such a way that it is a unique representation for 
boolean functions that often can be found reasonably efficiently. Unicity has 
many strong consequences. For instance, a boolean formula is satisfiable if and 
only if its ROBDD is not equal to false, and it is a tautology if and only if its 
ROBDD is equal to true. In our terminology it is very easy to define ROBDDs 
and prove uniqueness of representation. 

Definition 12 Let < be a total order on A. A ROBDD with respect to < 
is a decision tree t in canonical form with respect to <, in maximally shared 
representation. 

Usually a ROBDD is defined to be an OBDD in which no node occurs 
for which the left branch and the right branch point to the same node, and 
no two nodes labelled by the same symbol occur for which both the two left 
branches point to the same node and the two right branches point to the same 
node. This definition coincides with our definition: the first condition due to 
canonical form, the second due to maximal sharing. 

Theorem 13 Let < be a total order on A. Then every boolean function can 
unique/ybe represented by a ROBDD with respect to <. 

Proof: Every boolean function can be represented by a decision tree. After 
reducing to canonical form and sharing the desired ROBDD is found. Unicity 
follows from Lemma 3 and unicity of maximal sharing. 0 

4.1 ROBDDs by rewriting 

Next we describe how an arbitrary propositional formula or circuit can be trans­
formed to a ROBDD. Just like reducing arbitrary decision trees to canonical 
form we do this by rewriting. Due to sharing the basic steps of rewriting will 
be => instead of -+. 

One quite simple approach would be to give rewrite rules that first transform 
the propositional formula to a decision tree and then apply D T until a canonical 
form has been reached. Although this approach is simple and correct, we do 
not follow it since it will be very inefficient. Instead we develop an approach by 
which the standard BDD algorithms based on Bryant's apply-function can be 
mimicked. This apply-function computes the ROBDD of T 0 U for ROBDDs T 
and U and binary propositional operations 0 in complexity O(#sh(T)*#sh(U)). 

We assume that the propositional formula is constructed from boolean atoms 
from a set A, the values true and false, the unary operation ~ and binary 
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operations V, 1\ and +-t, all with their usual meaning. Other operations like 
implication and exclusive or can either easily be added to the framework, or 
alternatively they can be expressed in the other operations without affecting 
efficiency considerations. The latter is the reason for including +-t: generally 
formulas including +-t or xor can not be represented in formulas of the same 
(unshared) complexity without them. 

Usually in propositional formulas the boolean atoms appear as constants. 
In order to fit in the framework of BDDs it is more natural to consider boolean 
atoms as binary symbols, where a boolean atom p in a formula has to be 
interpreted as p(true, false). The replacement of every occurrence of an atom 
p in the formula by p( true, fa Ise) can be seen as a kind of preprocessing before 
the rewriting process starts, which is left implicit in the sequel. In this way 
both propositional formulas and BDDs are represented as terms over the same 
signature consisting of constants true and false, the unary symbol ~ and in 
which all elements of A and the symbols V, 1\ and +-t are binary symbols. This 
general kind of terms both covering propositional formulas and BDDs appeared 
before in [1]. Now we present a rewrite system B by which the propositional 
symbols are propagated through the term and eventually removed, reaching 
the ROBDD as the normal form. For the binary symbols from A we use prefix 
notation, for the symbols V, 1\ and +-t we keep the infix notation as is usual in 
propositional formulas. 

Definition 14 The rewrite system B consists of the following rules, split up 
into idempotence rules, propagation rules and elimination rules: 

p(x,x) -t X for all p (idempotence rules) 

~p(x,y) -t p(~x,~y) io.,11 P } (propa-p(x,y) op(z,w) -t p(x 0 Z,Y 0 w) for all 0, p 
p(x,Y) oq(z,w) -t p(x 0 q(z, w), yo q(z, w)) for all 0, p < q 

gation 

q(x,y) op(z,w) -t p(q(x, y) 0 z, q(x, y) 0 w) for all 0, p < q 
rules) 

.true -t false true 1\ x -t x 
~false -t true x 1\ true -t X 

true V x -t true false 1\ x -t false 
x V true -t true x 1\ false -t false 

(elimination rules) false V X -t x true H x -t x 
X V false -t x x +-t true -t X 

false +-t x -t ~x 

x +-t false -t ~x 

Here p ranges over A and 0 ranges over the symbols V, 1\ and +-to 

We have defined B in such a way that terms are only rewritten to logically 
equivalent terms. Hence if some term rewrites in some way by B to a ROBDD, 
we may conclude that this reduced OBDD is the unique representation for the 
original term. 

The rewrite system B is terminating since every left hand side is greater than 
the corresponding right hand side with respect to any recursive path order for 
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a precedence )- satisfying ++ )- ~ and <> )- p for <> E {~, V, /\, ++} and pEA. 

Hence reducing will lead to a normal form, and it is easily seen that ground 
normal forms do not contain symbols ~,V, /\, ++. 

The rewrite system B is not confluent, for instance if p > q the term 
p(q(false, true), q(false, true)) /\ p(false, true) reduces to the two distinct normal 
forms p(false, q(false, true)) and q(false,p(false, true}}. Moreover, we see that B 
admits ground normal forms that are not in canonical form. However, when 
starting with a propositional formula this can not happen due to the invariance 
of the following notion of orderedness: 

Definition 15 A term is called ordered if for every subterm of the shape p(T, U) 
for pEA all symbols q E A occurring in T or U satisfy p < q. 

We have the following invariance lemma. 

Lemma 16 

• Every propositional formula is ordered . 

• 1fT is ordered and T -+8 U, then U is ordered too. 

Proof: The first claim is clear since in a propositional formula T = true and 
U = false for every subterm of the shape p(T, U}. The second claim follows by 
induction from the same claim without '*', which follows from an analysis of 
the shape of the rules. 0 

Theorem 17 Let <I> be a propositional formula over A. Then any reduction of 
<I> with respect to ~13 leads to the same normal form, and this normal form is 
the unique ROBDD of <I>. 

Proof: From Lemma 16 it follows that normal forms of propositional formulas 
are ordered. By definition a term is in canonical form if and only if it is ordered 
and it is in normal form with respect to the idempotence rules. Hence normal 
forms of propositional formulas are in canonical form, hence are ROBDDs. By 
Theorem 13 the ROBDD representation is unique. 0 

In this way we have described the process of constructing the unique ROBDD 
purely by rewriting. Instead of having a deterministic algorithm for this COn­
struction as described in the literature [4, 12, 16], we still have a lot of freedom 
in choosing the strategy for reducing to normal form, but one strategy may 
be much more efficient than another. In the next subsections we discuss and 
develop a number of strategies. 

4.2 Leftmost innermost reduction 

The simplest and most used rewriting strategy is the leftmost innermost strat­
egy: reduce the leftmost of all innermost redexes. By elaborating an example 
we now will show that the leftmost innermost strategy, even when adapted to 
shared rewriting, may be extremely inefficient. 
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Example 18 As in Example 6 (Figure 1) define To = true and Uo = false, and 
define inductively Tn = Pn(Tn- l , Un-I) and Un = Pn(Un-l, Tn-d· 

Both Tn and Un are in canonical form, hence can be considered as ROBDDs. 
Both are the ROB DDs of simple propositional formulas, in particular the term 
Tn is the ROBDD of i-+r~1 Pi and Un is the ROBDD of ,( i-+r~1 Pi). In fact they 
describe the parity functions: Tn (resp. Un) holds if and only if the number of 
i-s for which Pi does not hold is even (resp. odd). 

Surprisingly, the leftmost innermost reductions of ,(Tn) and ,(Un) to nor­
mal form have exponential lengths as we see in the next proposition. Define a 
,-step to be an application of a rule ,p(x,y) -+ p(,x, ,y). 

Proposition 19 For every n both for ,(Tn) and '(Un) *B-reduction to nor­
mal form by the leftmost innermost strategy requires 2n - 1 ,-steps. 

Proof: We apply induction on n. For n = 0 the proposition trivially holds. 
For n > 0 the first reduction step is 

The leftmost-innermost reduction continues by reducing ,(Tn-d. During this 
reduction no ,-redex is shared in ,(Un-I) since ,(Un-d contains only one ,­
symbol that is too high in the tree. Hence ,(Tn-I) is reduced to normal form 
with 2n - 1 - 1 ,-steps due to the induction hypothesis, without affecting the 
right part ,(Un-d ofthe term. After that another 2n- 1 _l ,-steps are required 
to reduce ,(Un-d, making the total of 2n -1 ,-steps. For ,(Un) the argument 
is similar, concluding the proof. 0 

Although the terms encountered in this reduction are very small in the 
shared representation, we see that by this strategy every *-step consists of 
one single -+-step, of which exponentially many are required. This exponential 
behaviour of leftmost innermost reduction is caused by the fact that, despite of 
sharing, during the reduction very often the same redex is reduced. 

Since leftmost innermost reduction of the term representation of ,( i-+r~1 Pi) 
starts with a reduction to ,(Tn), we see that this exponential behaviour occurs 
in the B-computation of the ROBDD of a linear size propositional formula. 

4.3 Layerwise reduction 

In this subsection we introduce a new strategy called layerwise avoiding the 
exponential behaviour discussed in the previous subsection in which very often 
the same redex is reduced. More precisely, we show that in layerwise reduction 
of a term of the shape ,T or ToU where T, U are ROBDDs and 0 E {V, /\, i-+}, 
every propagation redex is reduced at most once. Ultimately tills will lead to a 
complexity comparable with the standard algorithm for computing ROB DDs. 
First we investigate the involved redexes. 

A redex is called essential if it is a propagation redex or an elimination 
redex. The smallest symbol in a term t containing at least one symbol pEA is 
called the level of t. For ordered terms it is clear that redexes with respect to 
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the propagation rules as they OCCUr in Definition 14 are exactly the propagation 
redexes of level p. 

Proposition 20 Let T, U be ROBDDs. 

• If ~T .... s V then every essential redex in V is of the shape ~T' for some 
sub term T' ofT. 

• If T 0 U .... s V for 0 = V or 0 = /\ then every essential redex in V is of 
the shape T' 0 U' for some subterm T' of T and some subterm U' of U. 

• If T ++ U .... s V then every essential redex in V is of the shape T' ++ U' 
or ~T' or ~U' for some sub term T' of T and some subterm U' of U. 

Proof: We apply induction on the reduction length of .... s. If this length is 
zero all assertions are trivial. For the induction step we assume that in 

~T .... s V' .... 8 V or ToU .... s V' .... 8 V 

every essential redex in V' is of the desired shape and we have to prove that 
the same holds for V. If V' .... 8 V is an application of a propagation rule or 
elimination rule this follows from the shape of the rules; if V' .... 8 V is an 
idempotence step this follows from the observation that idempotence will not 
create new essential redexes, note that by definition idempotence can not be 
applied on subterms of ROBDDs. 0 

A term t is called flat ifu .... s t for u =..,T for some ROBDD Tor u = ToU 
for ROBDDs T, U and 0 E {V, /\, ++}. The motivation for calling this flat is 
that in flat terms no connective symbols ~, V, /\ and ++ may occur nested by 
Proposition 20. 

Now we give some lemmas investigating how redexes can be created, and 
which will motivate the definition of layerwise reduction. 

Lemma 21 Let t be a flat term and let t .... 8 u be a reduction for which u 
contains a propagation redex of level q that is not contained in t, for some 
q E A. Then either 

• t .... 8 u is a propagation step of level p for p < q, or 

• t = C[false ++ q(Uj,U2)] or t = G[q(uJ, U2) ++ false], and u = ~(q(uJ, U2)), 
for some context G and some terms Ul> U2. 

Proof: Let u = G[l"], where /" is the propagation redex of level q not contained 
in t2' Let 0 E {~, V, /\, ++} be the root of I". By Proposition 20 and the 
observation that every closed term having its root in { ~, V, /\, ++} is an essential 
redex, we see that the position of the redex in t is not below the position of I" 
III u. We distinguish the three possibilities for t .... 8 u. 

• t .... 8 u is an idempotence step G'(p(v, v)] .... G'[v]. As observed v is not 
inside I", by which I" already occurs in t, contradicting the assumption. 

14 



• t --+ B u is a propagation step. We see from the shape of the rules that 
the only way that LeT can be created is by a propagation step of level p for 
p < q. 

• t --+B u is an elimination step. We see from the shape of the rules that 
the only way that LeT can be created is if t = C[false ++ q(Ul, U2)] or 
t = C[q(Ul,U2) ++ false], and U = ,(q(Ul,U2)), for some context C and 
some terms Ul,U2. 

o 

Lemma 22 Let t be a flat term and let t --+ B U be a reduction for which u 
contains a redex of the shape false ++ q(v, w) or q(v, w) ++ false that is not 
contained in t. Then t --+B U is a propagation step of level p for p < q. 

Proof: By Proposition 20 and the shape of the rules. o 

Definition 23 A redex is called layerwise if it is not a propagation redex of 
level q such that 

• there is a propagation redex of level p for p < q, or 

• there is a redex of the shape false ++ p(t, u) or p(t, u) ++ false for p ~ q. 

A layerwise reduction is a reduction reducing only layerwise redexes. 

Clearly every term not in normal form contains a layerwise redex, hence 
layerwise reduction always leads to the unique normal form. Just like innermost 
and outermost reduction, layerwise reduction is a non-deterministic reduction 
strategy. By definition a redex is layerwise if and only if every occurrence of this 
redex is layerwise. Note that a similar property holds for innermost redexes, 
but not for outermost redexes. 

Note that in Definition 23 the second condition only plays a role for reduc­
tion of terms in which the symbol ++ occurs. 

In an earlier version of this paper ([15]) we proposed a more restricted defi­
nition of layerwise in which reducing elimination redexes was often forced to be 
postponed. Experiments however show that first reducing elimination redexes 
often leads to shorter reductions, and sometimes to much shorter reductions. 

We will show that layerwise reduction leads to normal forms efficiently for 
suitable terms. 

For a term t its active level actlev(t) is defined to be the smallest value p 
with respect to < for which t contains either a propagation redex of level p or a 
redex of the shape false ++ p(t, u) or p(t, u) ++ false. If a term does not contain 
such a redex then its active level is defined to be 00, with 00 > p for all pEA. 

Lemma 24 Let t be a flat term and let t --+B u. Then actlev(t) ~ actlev(u). 

Proof: Lemmas 21 and 22. o 

15 



Proposition 25 In every layerwise '*B-reduction of a flat term every propa­
gation redex is reduced at most once. 

Proof: Assume that a propagation redex I" of level p is reduced twice: 

G[l"] '*B t '*B G'[l"] '*B ., .. 

Since the reduction is layerwise a propagation redex of level p may only be 
reduced if the active level is exactly p, hence actlev( G[l"]) = actlev( G'[l"]) = p. 
By Lemma 24 we conclude that all intermediate terms have active level p too. 
Since in G[l"] '* t all occurrences of I" are reduced, the redex I" does not occur 
in t. Hence the (unshared) reduction t --+B G'[l"] contains a step tl --+B t2 
such that the redex l" does not occur in tl but occurs in t2' Lemma 21 allows 
two cases. The first is that tl --+B t2 is a propagation step of level less than p, 

contradicting actlev( tl) = p. The remaining case is that tl contains a redex of 
the shape false t-t p(u, v) or p(u, v) t-t false. In none of the reduction steps of 
G[l"] --+B tl this redex can be created according to Lemma 22 since all terms 
have active level p. Hence the redex false t-t p(u,v) or p(u,v) t-t false already 
occurs in C(l"], contradicting the assumption that the first reduction step is 
layerwise. 0 

Proposition 25 implies a bound On the number of propagation steps in a 
layerwise reduction. The following lemma will be used to achieve a bound on 
the number of all rewrite steps. For any term t we define size(t) to be #sh(t) 
plus the number of distinct subterms of t having t-t as its root, i.e., size(t) is 
the number of distinct subterms of t where subterrns having t-t as its root are 
counted twice. 

Lemma 26 Let any reduction t ~ B " consist of m shared propagation steps 
and n shared idempotence and elimination steps. Then 

size(u) + n :5 size(t) + 3m. 

Proof: We apply induction on the reduction length m + n. If m + n = 0 then 
the claim is trivial. For the induction step assume that the reduction is of the 
shape t ~B U' '*B U. By the induction hypothesis we may assume that the 
claim holds for t '* B u'; we distinguish two cases: 

• Let u' ~ B U be a propagation step. Due to the shape of the rules we 
conclude that size(u) :5 size(u') + 3. Here equality may hold for propaga­
tion rules for t-t. Combined with the induction hypothesis size(u') + n :5 
size(t) + 3(m - 1) we obtain size(u) + n :5 size(t) + 3m . 

• Let u' ~B u be an idempotence or elimination step. Due to the shape 
of the rules we conclude that size(u) :5 size(u') - 1 (Here is the point 
where we need size instead of #,h: by the rules false t-t x --+ .x and 
x t-t false --+ .x the shared size #,h does not strictly decrease). Combined 
with the induction hypothesis size(u') + (n - 1) :5 size(t) + 3m we obtain 
size(u) + n :5 size(t) + 3m. 
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In both cases we are done. o 

Theorem 27 Let T be a ROBDD. Then every layerwise '*8-reduction of ~T 
contains O(#sh(T)) steps. 

Let T, U be ROBDDs. Then every layerwise '*8-reduction ofT V U, T 1\ U 
or T <-t U contains O(#,h(T) * #,h(U)) steps. 

Proof: Let the considered reduction consist of m shared propagation steps and 
n shared idempotence and elimination steps. By Proposition 20 the number 
of candidates for propagation redexes is O(#sh(T)) or O(#,h(T) • #sh(U)), 
respectively. By Proposition 25 each of these candidates is reduced at most once. 
Hence the total number m of propagation steps has the required complexity. 
Applying Lemma 26 we conclude that the total number of steps m + n is 
less or equal to 4m + size(t). If t = ..,T we have size(t) = O(#,h(T)) and 
we already observed that m = O(#,h(T)), hence m + n = O(#sh(T)). If 
t = To U we have size(t) = O(#sh(T) + #,h(U)) and we already observed that 
m = O( #,h(T) * #,h(U)), hence m + n = O(#,h(T) * #,h(U))' For both cases 
this concludes the proof. 0 

In Example 18 we saw that the first condition of Definition 23 is essential 
for Proposition 25 and Theorem 27 to hold. In the next two examples we show 
that the same holds for the second condition of Definition 23. 

Example 28 Let P < q and consider the following reduction in which the same 
q-redex ..,(q(true, false)) is reduced twice: 

p(false, q(true, false)) <-t p(q(true, false), false) 

'*8 p(false. <-t q(true, false), q(true, false) <-t false) 
'*8 p(~(q(true, false)),q(true, false) <-t false) 
'*8 p(q( ..,(true), ..,(false)), q(true, false) <-t false) 
'*8 p(q(~(true), ..,(false)), ..,(q(true, false)) 
'*8 p(q( ..,(true), ..,(false)), q( ~(true), ~(false))). 

Every reduction step satisfies the first condition of Definition 23, but not the 
second. Hence the second condition of Definition 23 is essential for Proposition 
25 to hold. 

Example 29 (See Figure 2) Let PI < ... < Pn-I < q < rl < ... < rn < 81 < 
." < 8n, let U = 81(false,82(false, ... ,8n(false,true) ... )), and let 

T = Plb(U,false), 
P2(r2(U, false), 

Pn-l (rn-I (U, false), rn (U, false)) ... )). 

Clearly T is an ROBDD and #sh(T) = G(n). A layerwise reduction of T <-t 

q(true,false) will arrive at T' = Pl(SI,P2(S2,.·· ,Pn-I (Sn-I, Sn)" .)) where 
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Figure 2: Counter example for generalized layerwise reduction. 

S; = q(r;(U, false), r;(U, false) H false) for all i. Note that T' does not con­
tain any propagation redex. If the reduction continues by successively reduc­
ing every subterm S; to normal form, then every reduction step satisfies the 
first condition of Definition 23, but not the second. Since every reduction of 
Si to normal form requires f/(n) steps, the length of this total reduction of 
T H q(true, false) is f/(n2 ). For a layerwise reduction this length is O(n) by 
Theorem 27. We conclude that the second condition of Definition 23 is essential 
for Theorem 27 to hold. 

Bryant's apply-function to compute the ROBDD ofToU for ROBBDs T and 
U and a binary operator 0 has complexity O(#,h(T) * #sh(U)), see [4, 12, 16]. 
This is exactly the same complexity as we derived in Theorem 27 for computing 
the same ROBDD by means of layerwise reduction. Write apply(T) for layerwise 
reducing a term T to normal form. We now can define an algorithm reduce to 
find the ROBDD for a propositional formula 4:>: 

reduce(true) = true 
reduce(false) = false 

reduce(p) = p(true, false) 
reduce(,4:» = apply(,reduce(4:>)) 

reduce(4:> V \]i) = apply(reduce(4:» V reduce(\]i)) 
reduce(4:> 1\ \]i) = apply(reduce(4:» 1\ reduce(\]i)) 

reduce(4:> H \]i) = apply(reduce(4:» H reduce(\]i)) 
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Roughly speaking this function reduce mimics the standard algorithm from 
[4, 12, 16J. Note that applying reduce is not pure rewriting but a combination of 
rewriting and function application. In the next section we succeed in mimicking 
the standard algorithm by pure rewriting. 

4.4 Layerwise innermost reduction 

In order to compute the ROBDD of a propositional formula <I> we simply want 
to rewrite <I> by B using a particular reduction strategy, until the normal form 
is obtained which is the desired ROBDD according to Theorem 17. In this 
subsection we introduce a layerwise innermost strategy for which we show that 
the required number of rewrite steps does not exceed the known complexity 
bound of the standard algorithm. 

Definition 30 A redex is called layerwise innermost if it is an innermost redex 
that is not a propagation redex of level q such that 

• there is an innermost redex with respect to a propagation rule of level p 
for p < q, or 

• there is an innermost redex of the shape false ++ p(t, u) or p(t, u) ++ false 
forp:$ q. 

A layerwise innermost reduction is a reduction reducing only layerwise inner­
most redexes. 

Clearly every term not in normal form contains a layerwise innermost redex, 
and just like innermost, outermost and layerwise, layerwise innermost reduction 
is a non-deterministic reduction strategy. The next lemma gives the properties 
of layerwise innermost reduction that we need in the sequel. 

Lemma 31 
(1) Every layerwise innermost redex is innermost, i.e., every proper subterm 

is in normal form. 
(2) Let T, U be ROBDDs and 0 E {V, /\, ++}. Then every Zayerwise inner­

most reduction of ~T or To U to normal form is a layerwise reduction too. 
(3) Let a subterm of a term t be a layerwise innermost redex of ~t or to It 

or u 0 t. Then it is a layerwise innermost redex of t too. 

Proof: Parts (1) and (3) are immediate from the definition; part (2) holds 
since every essential redex occurring in a reduction of ~T or To U to normal 
form is an innermost redex according to Proposition 20. 0 

In order to compare the reduction lengths of layerwise innermost reduction 
with the complexity bound of the standard algorithm, we first specify that 
complexity bound. Fix an order < on A. Let F be recursively defined on 
propositional formulas as follows. 

F(P) = 

FH») = 
F(¢ 0 1/» 

o 
F(¢) + s(¢) 
F(¢) + F(1/» + s(¢)s(1/» 
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where s(1)) is defined to be the shared size of the ROBDD of ¢ with respect to 
<. The standard apply-function to compute the ROBDD ofT<>U for ROBBDs 
T and U and a binary operator has complexity ()(#sh(T) * #sh(U». As con­
sequence, there is a constant C such that the number of computation steps to 
compute the ROBDD of a propositional formula 1> by means of the standard 
algorithm is at most C * F(1)). Our main theorem states that the number of 
reduction steps of a layerwise innermost reduction of ¢ has exactly the same 
complexity bound. 

Before presenting and proving the main theorem we give a lemma. 

Lemma 32 Let <> E {V, /\, ++} and let t <> u '* B t' <> u' be a layerwise inneN1lost 
reduction of n steps not containing any root reduction step. Then there are 
layerwise inneN1lost reductions t '*B t' and u '*8 u' of nt, nl.< steps, respectively, 
satisfying n :<=; nt + nl.<' 

Proof: We apply induction On n. For n = 0 the lemma trivially holds. For 
n > 0 the reduction can be written as 

t <) u ;:::}8 t" <) u" =>8 t f <> u'. 

By the induction hypothesis we have layerwise innermost reductions t!' '*B t' 
and u" '*B u' of nl,n2 steps, respectively, satisfying n -I:<=; nl + n2. For the 
redex of the first step t <> u '*B t" <> u" we have three possibilities: 

• It occurs in t and not in u. Then u = u" and there is a layerwise innermost 
reduction step t '* B t!', giving rise to layerwise innermost reductions 
t '*8 t ' and u '*5 u' of nt = nl + 1 and nl.< = n2 steps, respectively, hence 
satisfying n = 1 + (n - 1) :<=; 1 + nl + n2 = nt + n". 

• It occurs in u and not in t. Then t = t" and there is a layerwise innermost 
reduction step u '* B u", giving rise to layerwise innermost reductions 
t '*B t' and u '*5 u' of nt = nl and n" = n2 + 1 steps, respectively, hence 
satisfying n = 1 + (n - 1) :<=; 1 + nl + n2 = nt + n,.. 

• It occurs both in t and in u. Then there are layerwise innermost reduction 
steps t '*B t" and u '* B u", giving rise to layerwise innermost reductions 
t '*5 t' and u '*5 u' of nt = nl + 1 and n" = n2 + 1 steps, respectively, 
hence satisfying n = 1 + (n - 1) :<=; 1 + nl + n2 < nt + n". 

Here the reduction steps t '*B t" and u '*B u" 
Lemma 31, part (3). In all cases we are done. 

are layerwise innermost by 
o 

Theorem 33 There is a constant C such that the computation of the ROBDD 
of any propositional formula 1> by applying layerwise innermost reduction to 
normal form requires at most C * F(1)) reduction steps. 

Proof: Let C be the constant implied by Theorem 27 such that for every 
ROBDD T every layerwise '*!3-reduction of ~T contains at most C * #sh(T) 
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steps, and that for all ROBDDS T, U every layerwise =>B-reduction of T V U, 
T /\ U or T +-t U contains at most C * #sh(T) * #sh(U) steps. 

We will prove the theorem by induction on the structure of the formula <p. 
For the basis of the induction we have <P = p(true, false) is in normal form, 

and the claim holds. 
For the induction step we distinguish two cases: <P = ""<PI and <P = <PI 0 <P2 

for 0 E {V, /\, +-t}. 
Let <P = ",,<PI. Let T be the ROBDD of <PI and let U be the ROBDD of 

<p. By Lemma 31, part (1), every layerwise innermost reduction of <P is of the 
shape 

<P = ""<PI =>8 .... T =>8 U. 

By removing the top .... symbol in the reduction ""<PI =>8 .... T we obtain a 
reduction from <PI to T, which is layerwise innermost by Lemma 31, part (3). 
Hence it has at most C * F( <pd steps by induction hypothesis. Hence the 
reduction ""<PI =>8 .... T has at most C * F(<pI) steps. The layerwise innermost 
reduction .... T =>8 U is layerwise too by Lemma 31, part (2). Then by the 
definition of C we conclude that the reduction .... T =>8 U consists of at most 
C * #.h(T) = C * S(<PI) steps. We conclude that the total number of steps 
in the layerwise innermost reduction of <P is at most C * F( <PI) + C * S( <PI) = 
C * F(""<PI) = C * F(<p). 

For the remaining case let <P = <PI 0 <P2. Let Ti be the ROBDD of <Pi for 
i = 1,2, and let U be the ROBDD of <p. By Lemma 31, part (1), every layerwise 
innermost reduction of <P is of the shape 

<P = <PI 0 <P2 =>8 TI OT2 =>8 U. 

Due to Lemma 32 the number of steps of the first part <PI 0 <P2 =>; TI 0 T2 
is at most nl + n2 where ni is the length of a layerwise innermost reduction 
<Pi =>; 11 for i = 1,2. By the induction hypothesis we obtain ni :s: C * F(<Pi) 
for i = 1,2. The second part TI 0 T2 =>; U of the reduction is layerwise by 
Lemma 31, part (2); by the definition of C we conclude that it contains at most 
C * #sh(TI) * #sh(T2) steps. Combining these results on the first and second 
part of the reduction <P =>; U we conclude that the total number of steps is at 
most C * F(<PI) + C * F(<P2) + C * #sh(TI) * #sh(T2) = C * F(<p). 0 

4.5 Lazy reduction 

With the innermost reduction strategy, the deepest connectives are propagated 
downwards, and finally eliminated. We will now consider the opposite strategy, 
called lazy strategy, which is defined in such a way that a step is only performed 
if it contributes to lifting the smallest variable to the root. ,"Technically, the 
definition proceeds by distinguishing head reduction (-t H) and lazy reduction 
(-tL). Head reduction will be defined as the closure of propagation and elimi­
nation rule instances under connectives. Lazy reduction is the closure of head 
reduction and the idem potence rule under proposition symbols. 

Definition 34 The head reduction steps are defined inductively by the follow­
ing clauses: 
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• For any elimination and propagation rule I -+ r and ground substitution 
a, l(1 ---+ H r(1. 

• If S -+ H t, then ~s -+ H ~t and for any ground term r and connective 
OE {V,/\,+-r}, sor-+Htor andros-+Hrot. 

The lazy reduction steps are defined inductively as follows: 

• For any ground term t, p(t, t) -+L t 

• Ifs-+Htthens-+Lt. 

• If S -+ L t, then for any ground term r and atom p, p(r, s) -+ L p(r, t) and 
p(s,r) -+LP(t,r). 

A redex I" is called lazy in C[l"], if we have C[I"] -+ L C[r"] for the corre­
sponding right hand side r. We now show that -+ L is a strategy, in the sense 
that each term that is not yet normal contains a lazy redex. This first requires a 
lemma on head normal forms. For a rewrite relation -+ we write t it to denote 
that t is in normal form, i.e., cannot be rewritten by -+. 

Lemma 35 If t it H for some closed t then t is of the form false, true or 
p(t, til). 

Proof: Induction on t. Let t 1+ H. If t = r 0 s, for some connective 0, then 
r it H and s it H, otherwise t would do a -+ wstep. By induction hypothesis, s 
is of the form true, false or p(s', S"), and similar for r. Now for each of the nine 
cases that arise, there exists some elimination or propagation rule in the TRS 
by which r 0 s can do a -+ H step; contradiction. So t cannot be of the form 
r 0 s. Similar for t = ~r. 0 

According to the previous lemma, terms of the form false, true and p(r, s) can be 
called head normal forms. This notion was used in an alternative definition of 
the lazy strategy in [15]. The current definition is more precise, and the separate 
notion of head reduction admits a nicer formulation of the main property of lazy 
reductions (Proposition 37). 

Proposition 36 If t it L then t it 8· 

Proof: Induction on t. Let t be in -+L normal form. If t is one of true, false, 
then clearly t its' Furthermore, t cannot be ofthe form rOB or ~r, for then t can 
do a -+ H step by lemma 35, which is a -+ L step by definition. Finally, consider 
t of the form p(r, s). The only rule to do a top-level reduction is idempotence, 
but this would be a -+ L -step which is not possible by assumption. Next, r 
and B must be in -+ L normal form, for otherwise t does a -+ L step. Hence by 
induction hypothesis, rand s are in -+8 normal form too, so a -+8 step inside 
a proper subterm of t is also excluded. 0 

For arbitrary TRS the lazy reduction strategy can be defined by distinguish­
ing constructor symbols and defined symbols. In our case, false, true and the 
atoms are the constructor symbols, as they appear in normal forms, and the 
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connectives are the defined symbols. The idempotence rule is special, in the 
sense that the root symbol of the left hand side is a constructor symbol. The 
special treatment of idempotence in our definition of lazy rewriting is motivated 
by Example 38. 

Lazy reduction is related, but not identical, to outermost rewriting. First, 
outermost idempotence redexes can always be postponed in our definition. Also, 
truel\false is a lazy redex in the term truel\(truel\false), although not outermost; 
this is on purpose, as the topmost constructor of the right conjunct is not yet 
visible. Conversely, in p(,true, true) 1\ (true 1\ false), the subterm ,true is an 
outermost redex, but not a lazy redex; this is on purpose, as the topmost 
constructor of the left conjunct p(,true, true) is already visible. 

Lazy reduction can be lifted to shared rewriting in the usual way: first 
identify some lazy redex, then replace all its occurrences. Note that opposed to 
the innermost and the layerwise strategies, some of these occurrences might be 
in non-lazy position. Consider for instance q(true, ,true) 1\ ,true. We have: 

q(true, ,true) 1\ ,true --'>L q(true, ,true) 1\ false 

but 
q(true, ,true) 1\ ,true In q(true, false) 1\ ,true 

Nevertheless, using shared rewriting both copies are rewritten: 

q(true, ,true) 1\ ,true '*L q(true, false) 1\ false. 

We will now prove the main property of lazy reduction, which states that 
the smallest variable is lifted to the top in a number of steps linear to the 
size of the shared term. This strengthens the result in [15] considerably, which 
was only proved for the unshared size. The result is stated in terms of head 
reduction. 

Proposition 371ft =tH t', then n:-:; 2,#sh(t). 

Proof: First define the set H of subterms of t that are accessible by head 
reduction as follows: 

H(true) = H(false) = H(P(t, u)) = 0 
H( ,t) = {,t} U H(t) 

H(t<>u) = {t<>u} UH(t) UH(u), for<> E {V, 1\, +-t} 

Let top(t) denote the number of nodes in the accessible top, counting +-t twice, 
i.e. 

top(t) = #H(t) + #{u E H(t) J3v,w.u = vH 11bh-J; 

Because '* H is defined as the closure of elimination an'd'''propagation rules 
under connectives, each '* H step removes all occurrences of some 'elimination 
or propagation redex [U from H (t). That redex is replaced by the corresponding 
right hand side r U

, which starts with an atom in all cases, except that +-t might 
be replaced by , (for this reason +-t was counted twice), effectively decreasing 
top(t) with at least one. Other sub terms in H(t) are either removed by an 
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elimination rule (decreasing top(t) further), or they are of the form G[IU] and 
replaced by C[rU] (possibly decreasing top(t) due to sharing). Hence, ift '*H U 

then top(t) > top(u). Clearly, top(t) ::; 2.#sh(t). So the number of possible 
rewrite steps n ::; top(t) ::; 2.#sh(t). 0 

Combined with Lemma 35, we have that head-reduction reveals the top-most 
symbol of the BDD in a linear number of steps. Although the proposition 
is stated in terms of head reduction, we obtain as a corollary that each lazy 
reduction sequence starting in t reaches a term of the form p( u, v) in at most 
2#sh(t) steps. (but in the next lazy step p may disappear due to a propagation 
step). 

Note that by applying the idempotence rule the accessible top might in­
crease, and the above proof would not be valid. The following example shows 
that excluding idempotence from head reductions is indeed essential. 

Example 38 Write p .::::. t to denote p(t, t). Consider the shared term 
~Pl .::::. P2 .::::. ... .::::. Pn .::::. true. As a shared term, this has size linear 

n 
in n. We have the following reduction: 

n-l 
'*H 

~idemp 

~Pl -:::. P2 C ... ,::::::. Pn .:::. true 

n 

'PI-=-"" ... --, P2 .:::. ... .::. Pn .::. true 
~ 

n-l 

..., ... ""P2 C ... .:::::, Pn .::. true 
~ 

n 

..., ... -,true 
~ 

n 

false/true 

The length of this reduction is quadratic in n. Apart from the idempotence 
steps it is a head reduction, showing that for validity of the linearity bound of 
Proposition 37 it is essential to exclude idempotence in the definition of head 
reduction. 

We conclude this section by giving a typical example where lazy reduction 
outperforms any innermost strategy, like the traditional apply-algorithm. 

Example 39 Let cP be a formula of size m, whose ROBDD-representation is 
exponentially large in m. Without loss of generality we assume that true and 
false don't occur in q, and that some variable P is strictly smaller than all 
variables occurring in formula CP. Consider the formula P /\ (cp /\ ~p), which is 
clearly unsatisfiable. Note that any innermost strategy, such as the traditional 
algorithm using apply, will as an intermediate step always completely build the 
ROBDD for CP, which is known to be exponential in m. 

We now show that the lazy strategy has linear time complexity. Replace 
each propositional variable q by q(true, false), transforming cP to CP'. Using the 
lazy reduction strategy sketched above, we get a reduction of the following 
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shape: 

p(true, false) 1\ (<li' 1\ ~p(true, false)) 
n+1 
~ H p(true,false) 1\ (q( !p), !P2) 1\ p( ~true, ~false)) 
~ H p(true, false) 1\ p(q(!P), !P2) 1\ ~true, q(!P), !P2) 1\ ~false) 
~ H p(true 1\ (q(!P), !P2) 1\ ~true), false 1\ (q(!P), !P2) 1\ ~false)) 

~i p(false, false) 
~L false 

where n is the number of steps applied on !P' until a head normal form q(!P), !P2) 
is reached. This shape is completely forced by the lazy strategy. Note that the 
reduction of ~p doesn't interfere with !P, as !P doesn't contain p. By Lemma 37 
we have n :s: 2m. Furthermore, depending on the order in which the redexes 
are contracted, 4 :s: k :s: 6, so the length of the reduction is linear in m. Note 
that reductions inside !p) and !P2 are never permitted. 

In [1] the up-one algorithm is devised, which brings a variable to the top 
of a BED in linear time. Our work unifies this algorithm with the usual ap­
ply algorithm (called up-all for BEDs), by showing that both algorithms can 
be obtained as a special reduction strategy of the same TRS. Lazy reduction 
coincides with the repeated application of up-one, and layerwise innermost re­
duction coincides with up-all. In [1] it is noticed that up-one can be more 
effective in case the resulting BDD is small, like in the example above, but 
there the effect is partially attributed to the addition of logical rewrite rules, 
such as x 1\ (y 1\ ~x) -t false. Our example shows that pure lazy rewriting can 
have similar effects. The effect of rewrite rules acting on nodes labeled with 
connectives can also be obtained by the level exchange operation on nodes with 
newly introduced variables [9]. 

5 Experiments and concluding remarks 

In order to get a better impression of the performance of the various strategies 
we made an implementation for them counting the number of rewrite steps to 
reach the ROBDD for a number of formulas. 

We consider five strategies: leftmost innermost, iayerwise, layerwise inner­
most, leftmost lazy and layerwise lazy. Here the layerwise lazy strategy means 
that among all lazy redexes one is chosen that satisfies the requirements as they 
occur in the definition of layerwise. 

We consider six formulas. The first one is the fourth pigeon hole formula 
ph4: 

5 4 

(/\(V Pij)) 1\ ( /\ 
i=l j=l j:=1 •... ,4.I$:i<k:'55 

Since the first big conjunct implies that at least 5 variables are true and the 
second big conjunct implies that at most 4 variables are true, the formula is 
equivalent to fa Ise. 

The second formula is chess4, a formula describing all possibilities to tile a 
4 x 4 chess board by 8 dominoes. 
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The third formula is a random formula of size 200 on 10 variables. Without 
going into detail of how to define a random formula we only mention that we 
tried a number of samples for different notions of randomness all roughly giving 
the same pattern as the sample given in the table. 

The fourth is bi-imp, a bi-implicational formula consisting only of H: 

PI H P2 H ... H PI5 H PI H P2 H ... H P15, associated from left to right. It 
is not difficult to see that this formula is equivalent to true. 

The last two are unsatisfiable formulas unSi = P /\ (<I">i /\ ~p) for i = 1,2, 
where <1">1 = V;~1 (Pi /\ qi) and <1">2 = (~q) /\ <1">1' We take the order P < PI < 
P2 < .,. < PI0 < ql < q2 < ... < qlO < q. The formula <1">1 with this order is a 
standard example of a small formula having a big ROBDD: the ROBDD of <I">! 
has 2046 internal nodes. 

formula 
strategy ph4 chess4 random bi-imp uns! unS2 
leftmost innermost 32633 3248 6962 262147 4119 16408 
layerwise 2113 1863 2946 1790 58 4123 
layerwise innermost 4225 3142 2849 633 4119 7202 
leftmost lazy 7017 2024 5319 671750 29 31 
layerwise lazy 1984 1696 3333 1986 29 31 

Every number in the table denotes the number of rewrite steps required for 
the given formula to reach the ROBDD by using the given rewrite strategy. 

It is not possible to choose a definite winner among the given strategies. 
Roughly speaking we can say that layerwise innermost is often a good strategy, 
but that sometimes layerwise or layerwise lazy is better. However, the formulas 
uns! and uns2 serve bad for layerwise innermost (with shared sizes of interme­
diate tenns of over 2000, which does not occur in the other examples) and very 
well for both lazy strategies. For the example uns! the layerwise strategy is not 
bad; in the example uns2 however the lazy strategies convincingly outperform 
the layerwise strategy. 

As a conclusion we state that we developed a framework for a wide class 
of algorithms to compute the ROBDD of a propositional formula, all proved 
to be correct, essentially covering the standard algorithm, but also covering 
algorithms that perform much better than the standard algorithm in particular 
cases. 
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