

Systems engineering : a formal approach. Part V.
Specification language
Citation for published version (APA):
Hee, van, K. M. (1993). Systems engineering : a formal approach. Part V. Specification language. (Computing
science notes; Vol. 9313), (Systems engineering : a formal approach; Vol. 5). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/55cb4977-9039-4fd6-9688-7fd5f98811f1

Eindhoven University of Technology

Department of Mathematics and Computing Science

Systems Engineering: a Formal Approach

Part V: Specification Language

by

K.M. van Hee

Computing Science Note 93/13
Eindhoven, April 1993

93/13

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Information Systems Engineering:

a Formal Approach

by

KM. Van Hee

March 30, 1993

This report is part of a preliminary version of a book that will
be published.

Contents

I System concepts

1 Introduction

2 Application domains

3 Transition systems

4 Objects

5 Actors

6 Specification language
6.1 Values, types and functions
6.2 Value and function construction.
6.3 Predicates......
6.4 Schemas and scripts

II Frameworks

7 Introduction

8 Transition systems framework

9 Object framework

10 Actor framework

III Modeling Methods

11 Introduction

12 Actor modeling
12.1 Making an actor model after reality
12.2 Characteristic modeling problems.
12.3 Structured networks
12.4 Net transformations ..

1

9

11

15

23

33

47

63
63
68
71
72

81

83

85

93

103

129

131

135
135
146
162
167

13 Object Modeling
13.1 Making an object model after reality
13.2 Characteristic modeling problems
13.3 Transformations to other object frameworks .

14 Object oriented Modeling

IV Analysis Methods

15 Introduction

16 Invariants
16.1 Place invariants.
16.2 Computational aspects .
16.3 Transition invariants

17 Occurrence graph

18 Time analysis

19 Simulation

V Specification Language

20 Introduction

21 Semantic concepts
21.1 Values and types
21.2 Functions

22 Constructive part of the language

23 Declarative part of the language
23.1 Predicates and function declarations
23.2 Schemas and scripts

24 Methods for function construction
24.1 Correctness of recursive constructions
24.2 Derivation of recursive constructions

25 Specification methods
25.1 Value types for complex classes
25.2 Specification of processors

A Mathematical notions

B Syntax summary

C Toolkit

2

173
175
188
199

217

231

233

235
238
252
260

263

271

283

295

297

301
301
309

313

329
329
333

339
339
344

351
351
357

365

371

375

Part V

Specification Language

295

Chapter 20

Introduction

We specify systems by defining simplex and complex classes on the one
hand, and actors on the other hand. For simplex and complex classes
we already introduced a graphical language to define important parts,
however there is no language to define the values and value types for
attributes. Similarly we have introduced a graphical language to define
the net model of an actor however we do not have a language to define
the processor relations. The specification language will be used to fill
these gaps.

We want to have a language of high expressive comfort which means
that it is relatively easy to express the concepts we need in a formal way.
Since we have chosen to use mathematical concepts to model systems
and since we aim to develop precise, well-defined models of systems, it
seems natural to choose the language of mathematics for our purpose.
However there is not such a thing. To give a formal definition of such
a language is very difficult and may be impossible. Therefore we define
a subset of the mathematical language formally. The main restrictions
we make are that we do not allow function-valued functions and that all
sets are finite. (As a consequence we do not have for example the limit
concept.)

In modeling systems we often want our models to be executable,
which means that a computer can simulate the behavior of a system,
given a model of it. So the language should at least have an executable
subset.

Another desired feature of the specification language is a static type
system. This means that all expressions we define in the language have
a type and that it is possible to verify the assigned types without eval
uation of expressions. (So the types can be verified at compile time
instead of run time.) Many errors can be detected in an early stage by
type checking.

At first sight one may think that imperative programming languages
like Pascal or C could satisfy our need. They certainly have enough
expressive power, which means that every concept we possibly need,
can be expressed in such a language. (In particular every computable
function can be expressed in such a language.) However the expressive

297

expressive comfort

executable model

static type system

expressive power

executable specifications
extendible language

specification language

modeling language

lambda calculus

set theory

typed set theory

finite mathematical value

comfort is too low and there is no powerful type system. A typical
weakness of imperative languages is the assignment statement, which
enables one variable to have two different values in the same expression.
Therefore the semantics and verification of expressions is difficult.

Logical languages like Prolog and functional languages like ML are
better candidates, specifically if they have a type system (like ML).
However they still do not have the expressive comfort of the usual math
ematical notations yet.

Algebraic specification languages like Act One and Obj are also
good candidates, while model-oriented specification languages like Z
and VDM are more suitable for our purpose because they allow explicit
modeling of data structures.

Our specification language is a subset of Z and we give type rules
and semantics. (The name of the language Z is a mark of honor to
Zermelo, who was one of the pioneers of the axiomatic foundation of
set theory.) A subset of our language is constructive and is in fact
a typed lambda calculus. Specifications in the constructive subset are
called executable specifications. Our language is extendible because we
do not limit the number of primitive types and primitive functions. So
a systems engineer may add his own primitives.

The term specification language is usually used for languages to spec
ify data structures and functions or relations on them and not for lan
guages to express complete system models. Therefore we use the term in
this sense. Together with the graphical languages to define simplex and
complex classes and actors, they form a complete modeling language.

There are three important approaches to formal foundation of math
ematics, based on: set theory, predicate logic and lambda calculus. In
the approach based on lambda calculus every mathematical concept is
expressed as a lambda expression. In set theory every concept is con
sidered to be a set. With only the symbol 0 for the empty set, comma's
and set brackets, one is able to represent all finite sets. For instance,
the natural numbers can be represented by: 0 = 0,1 = {0},2 = {0, {0}}
and an arbitrary natural number is represented by n = {O, 1, ... , n - 1}
(where each natural number n should be replaced by its representation).

To express functions, one needs pairs of elements. Suppose a and b
are mathematical values represented as sets, then we can represent the
pair (a,b) as {{a}, {a,b}}. (Note that it is possible to deduce which
element is the first and which one is the second element.)

We use a mixture of the three approaches, which may be called a
typed set theory. Instead of using only sets we use other mathematical
constructs such as rows, sequences and tuples, as well. Our construction
starts with an arbitrary (but finite) number of primitive sets (called basic
types) and a fixed set of constructors. Everything mathematical concept
that can be constructed in this way is called a finite mathematical value,
or shortly value. (In fact all values can be represented as finite sets as
we have seen above.) Note that simplexes and complexes are also values,
in this sense! Besides finite mathematical values we have types which
are (finite or infinite) sets of these values and functions that map values

298

of one type to values of another type. Note that functions are no values!
The semantics of our language will be expressed in untyped set the

ory and predicate logic. Because this meta language and the specifi
cation language are very close, we use the same symbols for semantics
and syntax. From the context it will be clear which one we mean. In
chapter 21 we consider the mathematical notions we need. In chapter
22 we treat the syntax of the constructive part of the language and its
mapping to the semantic notions. Here we define types, values and func
tions that can be executed. In chapter 23 we define the dec/amtive part
of the language where we introduce predicates, function declarations,
schemas and finally scripts. In chapter 24 we consider some methods
for construction of functions. In chapter 25 we give some methods for
the definition of complex classes and processor relations.

299

300

Chapter 21

Semantic concepts

In this chapter we introduce the semantic concepts of the language,
in particular the notions of values, types and junctions. (So the only
syntax in this chapter belongs to the meta language.) We start with
values and types.

21.1 Values and types

The mathematical concepts we will consider, have to belong to specific
sets called types. The elements of types are called finite mathematical
values or simply: values. We postulate the existence of basic types.

Definition 21.1 A basic type is a finite or countable set. The elements
of these sets are called constants. The set of basic types B is finite and
contains at least:

• 0, the empty type,

• 18 the type of truth values, i.e. 18 = {true, jalse},

• IN,,;z and IQ, the types of natural, integer and rational numbers.

The basic types are mutually disjoint. The set of all constants is denoted
by C, i.e. C = UB.
o

At first sight it might look strange that we assume IN, ,;z and IQ mutually
disjoint. There is a good reason to make this assumption because we
can construct ,;z from IN and IQ from ,;z. In these constructions an
integer is an equivalence class of pairs of naturals and a rational is an
equivalence class of pairs of integers: for example -5 is the equivalence
class of all pairs of naturals (x, y) such that x + 5 = y. So according
to this construction the types are really disjoint. However there are
isomorphisms that embed IN and ,;z in IQ. The values in IN are denoted
by {O, 1,2, ... }, the values in ,;z as in IN but with a sign (for example
+3 and -3) and the values in IQ as pairs separated by / and with a sign
(for example +3/4). This notation will be the same in the specification
language in the next chapter.

301

basic type

CODstants

8et con8tructor

empty 8et

row con8tructor

pair
empty row

8equence con8tructor

sequence

empty sequence

tuple constructor

tuple

components
empty tuple

At first sight the 0 as type seems to be useless because it does not
contain values. There is however a type constructor (IF), that can build
on 0 to obtain types that contain values.

Next we introduce value constructors to construct new values out
of constants and one special value .L that does not belong to the basic
types. It will have a particular meauing "unknown" or "non·existent".
The value .L is used in the following cases:

• to express that a processor does not consume a token from a cer
tain input connector,

• to express that a function is not defined for a certain argument,

• in three-valued logic, where there is besides true and false a third
value unknown.

Definition 21.2 All constants and .L are values.
We consider four value constructors:

1. Set constructor:
If, for n ;?: 0, bl , , bn are values, then

{b\, ... ,bn }

is also a value called a set although it is always a finite set. The
set constructor forms finite sets of values. In particular {} is a
value, called the empty set.

2. Row constructor:
If, for n ;?: 0, b\, ,bn are values, then

(b\, ... ,bn)

is also a value, called a row. A row of two elements is called a
pair and 0 is called the empty row.

3. Sequence constructor:
If, for n ;?: 0, bl ... ,bn are values, then

(b\, ... ,bn)

is a value called a sequence. In particular () is a value, called the
empty sequence.

4. Tuple constructor:
Tuples are constructed with the use of attributes. Therefore we
postulate the existence of a countable set of attributes L, which is
disjoint with all basic types and does not contain .l-
If, for n ;?: 0, b\, ... , bn are values and i l , ... , in are different
attributes then

{il b\, ... ,in bn }

is a value, called a tuple. The elements (I b) ofa tuple are called
components. In particular {} denotes the empty tuple (which is
the same as the empty set).

302

o

Note that 0 and {} are different concepts: the first one is a type while
the second one is a value.

A sequence only differs, at this moment, from a row by the kind
of brackets. Later, when we introduce types, we will see the "real"
difference between rows and sequences. A tuple is in fact a set of pairs;
the first component of a pair is an attribute. Since the attributes are
unique it is even a function. We use a different notation for the pairs
in a tuple to distinguish them from "normal" pairs, because the first
element of these pairs is an attribute instead of a value.

The set of all possible values, that can be formed from the constants
and .1 by finite application of the value constructors, is called the free
value universe. For example

(3,.1,.1,(4,5,6))

and
{a 3,b1, c (4,5, 6)}

are values. The equality function, denoted by =, will have the property
that two sets with the same elements but with a different representa
tion are equal. (Note that we consider = to be a Boolean valued func
tion with two arguments, represented in infix notation.) For instance
{I, 2, 3, 3} = {3, 2, I} is true. (Note that {I, 2, 3,3} is a well-formed set
here.) Similarly two tuples are equal if they have the same components,
for instance

{a 2,b 3} = {b 3,a 2} is true.

However two rows are equal if and only if they have identical represen
tations, so

(1,2,3,3) = (3,2,1) is false.

Tuples are important for expressive comfort; their components can be
retrieved by specifying a attribute, while we have to compute the posi
tion of an element in a row in order to retrieve it.

Definition 21.3 Let B be a non-empty finite set of basic types. The
set FU, called the free value universe, is the smallest set such that:

1. .1 E FU,

2. C C FU,

3. FU is closed under the four value constructors.

o

This set contains too many values. For instance the value {3, true, (1, false)}
is not a value we want to consider, for a set to be a value should con
tain only values of the same type. Analogously to value constructors we
define type constructors. Remember, a type is just a set of values.

303

free value universe

set type constructor

set type

product type constructor

product type

sequence type constructor

tuple type constructor

type universe

Definition 21.4 The four type constructors are:

o

1. Set type constructor:
If T is a type then

JF(T)

denotes the type of all finite sets of values of T and is called a set
type.

2. Product type constructor:
If TI , ... , Tn, for n ~ 0, are types then

TI X ••• X Tn

denotes the type of all rows (tI, ... ,tn) wheret; E T; for i E {l, .. . ,n},
and is called a product type.

3. Sequence type constructor:
If T is a type then

T·

is the type of all finite sequences of values of type T.

4. Tuple type constructor:
If Tt, . .. , Tn are types and iI, ... , in are distinct attributes, then

is the type of all tuples {lll-+ tt, ... ,ln 1-+ tn} where t; E T; for
iE{l, ... ,n}.

Two values of type T· may therefore have different length but their
elements will be all of the same type.

Note that two tuple types are equal if they have the same set of
attributes and for each attribute the same type. Also note that

A x (B x C) ;6 A x B x C.

Next we introduce the type universe TU and the universe of allowed
values U. (Note that the notion of a tuple in the specification language
differs from the tuple we used to define frameworks!)

Definition 21.5 Let 8 be a non-empty, finite set of basic types. The
set TU is the smallest set such that:

• VB E 8 : Bl. E TU,
where Bl. = B U {.L},

• TU is closed under the four type constructors.

304

The value universe U satisfies:

U = {x 13T E TU: x E T}

o

Note that it is not excluded that a value from U belongs to more than
one type.

Theorem 21.1 All elements of the value universe are in the free value
universe, i.e. U C FU.

Proof. First note that (by definition) all constants and .L belong to
U. IT x E U then there is a type f such that x E f. We use structural
induction to show f c FU. Let T, Tlo • •• , Tn belong to TU and let them
be subsets of FU. Assume f = IF(T). Then f C FU since all elements
of f are finite sets of elements of FU. Next assume f = Tt X ... X Tn.
Then it is also a subset of FU because all elements of f are rows of
elements of FU. The other cases are similar.
o

Theorem 21.2 All types in the type universe are countable.

Proof. We use structural induction. First note that, by definition all
basic types, extended with .L, are countable.

• Assume that type T is countable. So T is isomorphic with IN.

Consider IF(T). Each element of IF(T) can be represented as an
infinite sequence of O's and l's: its n-th element is a 1 if and only
if the n-th element of T (according to the isomorphism) is in the
set. Hence every element of IF(T) has finitely many l's and so it
represents a natural number in binary notation. So IF(T) is also
isomorphic to the set of natural numbers, and therefore countable.

• Assume that T1 , ••. , Tk are countable types. Consider Tl X ••• X Tk.
This set is isomorphic with the set INk, because each Ti is iso
morphic with IN. This set is countable because for each natural
number m the set ofrows (nlo ... , nk) with nl + ... + nk = m is
finite, and therefore we can count them (first the set with m = 0,
then m = 1 etc.).

• Assume T is countable, so it is isomorphic with IN\{O}. Consider
T·. This set is isomorphic with the set of all finite sequences of
natural numbers (unequal to zero). For each k E IN the number
of sequences with sum k is finite. Therefore we can count them.

• Assume that T1 , ••• , Tk are countable types and that i 1 , ... ,ik are
distinct attributes. Then [il : Tlo ••• , ik : TkJ is isomorphic with
[Tl X ••• X TkJ and therefore it is countable.

So we conclude that all T E TU are countable.
o

305

value universe

lexicographical ordering

Theorem 21.3 The sets U and FU are countable.

Proof. The proof is an exercise.
D

Next we assume that every basic type has total ordering, denoted
by ~. We will see how this ordering induces an ordering for every type.

Definition 21.6 Let ~ be an ordering on every basic type. With induc
tion we extend ~ to every type in TU. This ordering is called the lexi
cographicalordering. (Let x < y be an abbreviation for x ~ y II xi y.)

• IIc E C : .L ~ c,

• If T is already ordered by ~ then we extend ~ to IF(T) as follows:
let {a1, 00., am}, {bt. 00 ., bn} E IF(T), such that

1. IIi E {1,oo.,m -1}: ai < ai+1

2. IIi E {1,oo.,n -1}: bi < bi+1

then
{at. 00 .,am } ~ {bt.oo .,bn}

if and only if one of the following conditions holds:

3k E {1,oo.,min(m,n)}: (iii E {1,oo.,k-1} :ai = bi) II ak < bk,

m ~ nil IIi E {1,oo.,m}: ai = bi.
In case p, q E IF(T) do not satisfy (1) and (2), we can find equiva
lent elements p, g E IF(T), i.e. p = p and g = q, such that p and g
do satisfy (1) and (2). Then we define p ~ q if and only if p ~ g.

• If Tt. ... , Tn are already ordered by ~ then we extend ~ to T1 X ••• X Tn
as follows

let (at. ... ,an), (b1,oo.,bn) E T1 X 00. X Tn

then
(a1, ... ,an) ~ (b1, ... bn)

if and only if one of the following conditions holds:
3k E {1,oo.,n}: (IIi E {1,oo.,k-1} :ai = bi) II ak < bk,
Ilk E {1, ... , n} : ak = bk.

• If T has already been ordered then we extend ~ to T* like we did
for IF(T).

• If it. 00 ., in are distinct attributes and T}, 00., Tn are types, al
ready ordered by ~, then we extend ~ to [i1 : T1, ... , in : Tn] as
follows:

- introduce an ordering (also denoted by ~) on the attribute
set L,

306

o

- mapeachtupletoarowinTt.,x ... xTt •• wheret.,::; ... ::;t •• ,
and call this map f,

- two tuples x and y satisfy x ::; y if and only if f(x) ::; f(y).
(The last ordering is defined above.)

In fact the relation::; is not an ordering on tuples and sets but on the
. equivalent classes with respect to the equality function of tuples and
sets!

Theorem 21.4 For all T E TU, ::; is an ordering relation on T.

Proof. By structural induction the proof is an immediate consequence
of definition 21.6.
o

Note that sets can be represented in a normal form which is the repre
sentation of a set where the elements are arranged in ascending order
and duplicates are left out. The normal forms are representatives of
equivalence classes.
Similarly we introduce an equivalence relation on tuple types and we
use it to define a normal form for tuple types.
We also introduce another type constructor called join, denoted by M.

Definition 21.7 Let [kt: St. ... ,km : Sm] and [it: Tt. ... ,in : Tn] be
two tuple types.
They are called equivalent if and only if:

• m= n,

• there is a permutation· (it. ... , in) of (1, ... , n) such that
VjE{l, ... ,n}:kj=I'j" Sj=T'j"

Two tuples are equivalent if and only if they have the same components,
may be in different order.
They are called compatible if and only if:

Vi E {I, .. . m},j E {I, ... , n} : k; = lj => S. = Tj

And if they are compatible their join is denoted by:

[kl: St. ... ,km : Sm] M [it : Tt. ... ,in: Tn]

and is equal to the set of all tuples

such that

Vi E {l, ... ,m},j E {l, ... ,n}: k. = lj => s. = tj
o

307

normal form of a set

tuple equivalence

tuple compatibility

tuple join

simple singular value

singular value

regular values

We assume there is an ordering on the set of attributes L and we say
that a tuple type with attributes in ascending order is in nON1lal fON1l.
For example, if k :5 l then the second tuple type of

[l : T, k : 5] and [k: 5, l : T]

is the normal form of the first one.
Similarly we say "a tuple is in normal form" if its attributes are in
ascending order.

Note that we have values that do not contain any constants, for
example:

(0), ({}), U,{{}}, {O}, ({}), ({.L}, (}),(.L).

They are examples of singular values.

Definition 21.8 A simple singular value is a value that does not con
tain a constant.
A singular value is a simple singular value or a value that contains a
simple singular value.
All other values are called regular values.
o

Singular values may belong to more than one type, for example
{a 3,b U} belongs to [a: IN,b: JF(A)] as well as to [a : IN,b :
JF(A X A)], for some type A. However regular values have a unique
type.

Theorem 21.5 Regular values have a unique type.

Proof. We will show that two types Tl and T2 have only singular values
in common, which is equivalent with the assertion of the theorem.

Suppose Tl and T2 are different basic types extended by.L. Then
.L is their only common value, because basic types are disjoint by def
inition. If Tl and T2 are types of different structure, i.e. they belong
syntactically to different categories (the categories are: set type, prod
uct type, sequence type and tuple type), then it is easy to verify that
they have no regular values in common. The only difficulty occurs with
tuples and sets because they have the same brackets. However the only
common value is U, which is singular.

Now assume Tl = JF(A) and T2 = JF(B) and A and B have no
regular value in common. Suppose now that {at, ... , an} is a regular
value and that it belongs to Tl n T2. Then at least one of the elements
aI, ... ,an is a regular value and this value should belong to A and B.
This is a contradiction.

Next consider Tl = Al X ••• X An and T2 = Bl X ••• X Bn, where Ai
and B; have no regular value in common, for all i E {I, ... , n}. Suppose
now Tl and T2 have a regular value in common, say (Cl,. .. , cn). Then,
for at least one i the value C; is a regular value and should occur in A;
and Bi, which is a contradiction.

308

The same arguments apply to the other two cases where Tl and T2
belong to the same syntactical category.
(The proof of the other cases is an exercise.)
o

Hence there exists a function type that assigns to regular values the type
it belongs to.

21.2 Functions

We have a universe U of values, however we have not yet defined func
tions on this universe. The set of all total functions UF is called the
function universe, i.e.

UF = U U.

Almost all functions we are interested in, are defined as partial func
tions. For example the function pick is only defined for sets and not
for sequences. In order to make all functions total, we define them as

, .l outside their meaningful domain. So we assume all functions to be
total on U.

Each function has a name and a graph. Recall that the graph of a
function is a set of pairs, such that the first elements of these pairs are
unique. Note that a function may have an infinite graph, so a graph of
a function is not a value in general.

We will represent function application with brackets, so f applied
to a is represented by f(a). A function of more than one variable, for
example a and b, is in fact a function on a row, namely (a,b), which
can be considered as one variable. If we apply a function to a row we
only use one pair of brackets, so we write f(a, b) instead of the more
consequent notation f((a, b)).

Although types are countable sets, UF is uncountable! To verify
this, take the set of functions IN 18.
Since 18 is isomorphic with the set {O, I}, the set of functions IN -+ 18
is isomorphic with all real numbers in the interval [0,1), which is an
uncountable set. (To understand this note that each element of IN -+ 18
can be considered as a binary fraction.) However, in specifications we
will only use count ably many functions: the ones that can be defined in
our language, which only has countable many sentences. The functions
we will use are constructed from a given, countable set of primitive
functions, using abstraction and recursion (see chapter 22).

There may be more than one definition for the same graph. Since
each definition may have its own name, we may have two functions with
different names but with the same graph. Therefore two functions are
identical if and only if they have the same name and the same graph.
(Note however we will not define equality for functions in the specifi
cation language, because equality of function graphs is undecidable.)
This fact allows us to use the same name for functions having differ
ent graphs. This phenomenon is called overloading and is often used

309

function universe

overloading

function signat.ure

monomorphic function

domain t.ype
range t.ype

polymorphic function

in mathematics. For instance the function "+" is used for addition of
natural numbers but also for addition of complex numbers and vectors
in some vector space.

As we are not interested in all values in the free universe, we are not
interested in all functions either. We will use the types to characterize
the "interesting" functions. These functions have meaningful domains
that are types or unions of types. The notion of a signature is important
here.

Definition 21.9 A signature of a function in UF is a set of pairs of
types, i.e. a signature is an element of IF(TU X TU). For I E FU we
denote the signature by sign (I).
o

We will consider two kinds of functions monomorphic and polymorphic
functions.

Definition 21.10 A monomorphic function I E UF has a signature
that is a singleton {(T, S)}, such that:

"Iu E T: I(u) E Sv I(u) =.L

"
"Iu E U\T: I(u) = .L.

The type T is called the domain type of I and type S the range type.
o

So a monomorphic function has one type as meaningful domain. Poly·
morphic functions have a meaningful domain that consists of several
types.

Definition 21.11 A polymorphic function I has a signature sign(l)
with at least two elements, such that "Iu E U:

• ("I(T X S) E sign(l): u ¢ T) => I(u) = .L,

• 3(T X 5) E 8ign(l): u E T " (I(u) E 5 V I(u) = J.),

• "I(TI X Stl, (T2 X 52) E 8ign(l) :

u E Tl nT2 => I(u) E SI X S2V I(u) =.L.

o

The (meaningful) domain of a polymorphic function I is

U{"I(X) I x E sign (I)}

and the range is

310

An example of a polymorphic function is union, which assigns to two
sets of values of the same type a set of values of that type. Its signature
is

((IF(x) x IF(x),IF(x)) I x E TU}.

Note that an "overloaded" function name can be considered as the name
of one polymorphic function. However in the specification language we
make a distinction between overloaded function names and polymorphic
functions: an overloaded name has several different signatures assigned
to it, while a polymorphic function name has only one signature with
type variables in it.

Next we make another distinction between functions: strict and non
strict functions. A strict function evaluates to 1. if it is applied to a
singular value. A function that is not strict is ca.lled non-strict. An
example of a strict function is +, so 3 + 1. equals 1.. An example
of a non-strict function is the selection function discussed below. An
important subset of the non-strict functions are the lazy functions. A
function with more than one argument (Le. a function on rows), is ca.lled
lazy if its function value is already determined if some of the variables
are bound by values. If for example

Vx,y: f(3,x) = f(3,y)

then the function value is determined by the first argument and" then
we do not have to evaluate the second one. In particular f(3, 1.) will
have the same value. Lazy functions are important in recursive defini
tions because there we are not able to evaluate a.ll the arguments. The
selection function is the most important lazy function.

In our specification language we have some primitive functions, i.e.
functions that are not defined in the language but from which we only
know the name, the signature and the graph. The graph is only known in
implicit form, which means that we assume there is a "retrieval mecha
nism" that delivers the function value if we give the argument. Primitive
functions are therefore defined in the meta language. They are defined
informa.lly in part I and forma.lly in the Toolkit. Only two primitive
functions are defined here, because they are very important: the equal
ity function (=) and the selection function if.then.else.fi. We use them
in infix notation. The function = compares two values and if they are
(syntactica.lly) identical or if they are equivalent (in case of sets and
tuples) then the function value is true else it is false. The function is
lazy:

1. = 1. is true, x = 1. is false, 1. = x is false,

for any x # L
An application of the selection function reads:

if a then b else c ft.

If a is true then the function value is equal to the value of b else to the
value of c. The function is lazy: if a is true then c may be 1. and if a is
false then b may be L If a is 1. then the function evaluates to L

311

strict function

Don.strict function

lazy function

There are in principle count ably many primitive functions because
of the projection functions (.. ;, IT;,;, ...). For each attribute (set) there is
another projection function. We have chosen for this approach instead of
the introduction of attribute (set) variables, which would require another
kind oflambda constructions in which there are functions with two kinds
of variables: value variables and attribute variables. In tools it is easy
to generate the projection functions we need.

New functions are defined from primitive functions and already de
fined functions by means of syntactical constructs that are defined in
the next chapter.

312

Chapter 22

Constructive part of the
language

In this chapter we give the syntax to define types, values and functions
and we map the syntactical constructs to the semantic notions. This
part of the language is the constructive or executable subset of the lan
guage. In the next chapter we introduce the non-constructive part. As
noted before, our syntax will be close to the syntax of the meta lan
guage. We start with the meta syntax, Le. the syntax we use to define
the syntax of the specification language. It is a form of extended BNF.

Definition 22.1 The meta syntax follows the next rules:

o

• The definition sign for non-terminals is ::=.

• Any part of a syntax in underlined typeface is to be taken literally.

• Any part between '{}' braces may be repeated. So 'a ::= {b}' is
shorthand for 'a := bib a'.

• Any part between "[1" square brackets may be omitted. So
'a ::= [blc' is shorthand for 'a ::= be I c'.

• Any part between '<>' triangular brackets may be repeated; each
repetition must be preceded by a comma' • '. So '< a >' is short
hand for 'a[{.loa} 1'.

• The syntax for identifiers, digits and characters is not further elab
orated.

We define in fact a family of languages. Each language is characterized
by a so-called syntax base and the syntax rules. (Some components of
the syntax base are needed in the subsequent chapters only.)

Definition 22.2 A syntax base is a 8-tuple of sets of names

(L, C, TV, V, VN, FN, TN, SN)

where:

313

meta syntax

syntax base

type expression syntax
type deflnition syntax

• L is the set of attributes,

• C is the set of constants,

• TV is the set of type variables,

• V is the set of value variables,

• VN is the set of value names,

• FN is the set of function names,

• TN is the set of type names,

• SN is the set of schema names.

The set TN contains the names of the basic types, i.e. at least 0, IN,
~, IQ and lB.
The sets TV and TN are disjoint and TV = {$, $}, $2, ... }.
The sets V and VN are disjoint.
The sets L and V satisfy L n V -# 0.
o

We assume in the rest of this part that a syntax base is given.
The mapping of expressions to their semantics is performed by an

evaluation function l. So (maps expressions to values, types or func
tions. Not all expressions have semantics: only expressions without free
variables (this notion will be explained later). We will distinguish the
expressions in the specification language from expressions in the meta
language, by using [] brackets for functions that have expressions as
domain, for example c[EJ. Type expressions have the following syntax.

Definition 22.3 The syntax of type expressions and type definitions
is:

• type expression ::= type name I type variable I set type I
product type I sequence type I tuple type I
{type expression 2

• attribute E L

• type name E TN

• type variable E TV

• set type ::= IF {type expression2

• product type ::= type expression K product list

• product list :: = type expression I product type

• sequence type ::= type expression!.

• tuple type ::= type variable I {(attribute < type expression)!
I tuple type M tuple type

314

• type definition ::= type name ;::.type expression

The set of all type expressions without type variable is denoted by TE.
o

In a sub expression of the form $1 M $2 of a type expression we know
that $1 and $2 have to be replaced by compatible tuple types only.

The semantics of type expressions is straightforward, since the meta
language and the specification language are so close. For the semantics,
i.e. the range of £ we use the same symbols as for the specification lan
guage. The semantics of type expressions and type definitions is defined
formally in the next definition. Note that "type" is a semantic notion
and "type expression" a syntactic notion. In expressions of the form
"£[.W] = IN" the symbol IN is just a name in the left-hand side and the
set of natural numbers in the right. hand side.

Definition 22.4 The evaluation function £ applied to type expressions
without type variables, satisfies the following rules. Let all capitals
denote type expressions without type variables and with known evalua·
tions.

o

1. if T is a basic type then £[T] = T,

2. £[.IF(T)) = JF(£IT)),

3. £[Tl x ... x Tn] = £lT1) X ••• X £lTn],

4. £[T*] = £[T]*,

5. £[[11 : T , In : Tn]] = [It : £[Tl]' ... , £lIn: Tn]],

6. £[[11 : Tl, ... ,ln: Tn] M [k1 : SI, ... ,km : Sm]] =

[al: £[P.], ... ,ar : £[Pr)]

if and only if:

• Vi,j : I, = kj => £[T,] = £lSj],

• {al, ... ,an} = {l ,ln} U {k ,km},

• if a, = Ij then P, = Tj and if a, = kj then P, = Sj,

7. the semantics of a defined type name is equal to the semantics of
the defining expression.

Note that TE is the syntactical equivalent of the type universe TU.
Next we consider the definition of values. We define them by means
of terms or value expressions. The value constructors, defined in the
meta language definition 21.2 are already in syntactical form; we will

315

evaluation fUDction

map term

typed lambda expression

us them here too. With value constructors we are able to define val
ues by constructing them explicitly, which means writing down their
representation. However we often need to define values implicitly by
some expression that indicates how the value should be constructed.
For instance, if we want to define the set of all prime numbers that
are elements of some given (finite) set 8 of type IF(IN) we do not want
to construct this set explicitly. This would require us to check for all
elements of 8 if they are prime or not, but We want to define this set by
an expression of the form:

{x: 8 I prime (x)}

where prime is a Boolean valued function that attains the value true if
and only if its argument is a prime number. (How we construct or specify
these functions will be explained later.) We call such an expression a
set term. Here we assume we have such a collection of functions, given
by their names, for example primitive functions. Note that 8 in the
expression is a set value and not a type! Therefore we are sure that the
expression denotes a finite value and not an infinite set, such as:

{x: IN I prime (x)}.

Another example of the use of this set constructor is:

{x : prod (8,t) I 1I"2(X) = 1I"t(x) X 1I"t(x)}

which denotes in meta language:

{(y, z) lyE 81\ z E t 1\ z = y2}.

Here sand t are of type 1F(IN) and prod is a function that forms the
Cartesian product from two finite sets and x denotes multiplication.
(These functions can be constructed from the primitive functions.) The
set constructed above represents in fact a finite function with a domain
that is a subset of 8 and a range that is a subset of t. Of course it
is a value itself with type IF(IN X IN). Finite functions or map8, are
very useful in specifications and therefore it is important to have a
convenient notation. The construction above is cumbersome, because
we have to define explicitly the set that should contain the range of
the map. Therefore we will introduce another syntactical construct to
express maps. The same map is expressed, using this construct by
(8 E IF(IN)):

(x: 8 I x X x).

This construct is called a map term and is formally a typed lambda
expression.

Now we have seen two constructs to define values implicitly: set term
and map term. There is a third one: function application. We have seen
that already in the examples above: prime(3) evaluates to the Boolean
value true and 4 X 5 to the number 20. There is also a fourth way by
means of the value constructors for terms (instead of constants and .L).

316

Definition 22.5 The syntax of terms is:

• term ::= value variable I value name I constant I (term) I
value construction I application I set term I map term

• value variable E V

• value name E VN

• constant E C U {l.}

• function name E FN

• value construction ::= set construction I row construction I
sequence construction I tuple construction

• set construction ::= i (term)11 {}

• row construction ::= {(term)} I Q

• sequence construction ::= i (term) L I Q
• tuple construction ::= i(attribute!:;!.term)ll {}

• application ::= function name {term}

• set term ::= i value variable ~ domain 1 term 1
• map term ::= {value variable~ domain 1 term}

• domain ::= set construction I set term

• value definition ::= value name := term : type expression

The type expression in the value definition may not contain type vari
ables.
o

Note that there is for each value an identical value construction in
the language. Therefore all values are terms! A value definition gives a
name to a term, such that the name can be used as abbreviation for the
term. Not all terms generated by the syntax are allowed. First of all
the terms used should be well-typed. Typing of terms is defined using a
typing function T defined below. For instance, in a set term the term on
the right-hand side of the bar should be of the Boolean type, as prime
in our example above.

In order to be able to define the typing function T and the evaluation
of terms, i.e. £ for terms, we need to the notion of scope.

Definition 22.6 In set terms and map terms the term on the right
hand side of the bar is called the scope. An occurrence of a variable in
a set or map term is said to be bound, if it appears left of the colon, or
if it appears in the term right of the bar and is the same as a variable
occurring left of the colon.

317

term syntax

scope

bounded occurrence

free variable occurrence

standardizing

standard term

type function

In case set or map terms are nested, a bound variable on the right
hand side of the bar is bound by the first set or map term with this
variable on the left-hand side of the colon, encountered if we go from
this variable to the left. The occurrence of a non· bound variable is called
a free variable occurrence.
o

Consider for example the set term

{x: {1,2,3,4,5,6,} I x E mg«x: {1,2,3} I x x x))}.

The first and second x are bound by the set term, the third, fourth and
fifth x by the map term. (Here E and mg are defined functions, they can
be found in the toolkit (see appendix C). We only consider semantics
of terms without free variables. Hence terms with free variables have
semantics with respect to some context in which these free variables are
bound.

The function T assigns to terms a type and £ a value, only in case the
term does not have free variables. We will assume that all free variables
in a term differ from bound variables occurring in the term. This can
be accomplished by a proper renaming of bound variables. This process
is sometimes called standardizing and terms that are standardized are
called standard terms.

We use substitution of variables by values. This is denoted by sub
and superscripts. For example

b'" e

is the term derived from the term b by substituting each free occurrence
of x with the term e. In case we have a simultaneous substitution of
variables Xl,' •. ,Xn by terms el," . ,en we write

Definition 22.7 The type function T assigns to well-typed terms a type
according to the following rules.
Regular values are well· typed. If t is a regular value then

T[t] = type[t),

where type is the function that assigns to constants their type (cf.theorem
21.5).
Let t, tt. ... , tn be a well· typed terms.

1. consider a value name n, that is defined in an expression of the
form: = t : T, then T[n] = £[T),

2. the type of a constant is the unique basic type to which it belongs,

3. T[(t)) = T[t),

318

4. r[{t1> ... , tn}] = JF(r[tt]),
provided that r[t;] = r[tt] for
i E {2, ... ,n},

5. r[(t1> ... , tnn = r[ttl X ••. X r[tn],

6. r[(t1> ... , tn}] = (r[ttJ)", provided that r[t;] = r[ttJ for i E
{2, .. . ,n},

7. r[{it tt, ... ,in tn}] = [it: r[ttJ, ... ,in : r[tn]] provided
i1> . .. , in are distinct,

8. consider an application of the form /(t), let / have signature
sign(J), then

V(A, B) E sign(J): r[t] = A => r[/(t)] = B,

9. r[{x : a I b}] = r[a], if there is a type T such that r[a] = JF(T)
and if for some value e of type T: r[b~] = JB,

10. r[(x : a I b)] = JF(TxS), where T is a type such that r[a] = JF(T)
and S a type such that r[b~J = S for some value e of type T,

11. a value definition of the form n := t : T is well-typed if and only
if r[t] = <[TJ.

If a type can be derived by these rules a term is well-typed, otherwise
it is not well-typed.
o

This definition is in fact a type checking algorithm. Note that the type
of a map term is a set of pairs, without the restriction that the first ones
are unique.
In rule 6 we assume that / might be polymorphic and therefore we have
to assume that there is more than one domain type. Note that singular
values are polymorphic. For instance:

{({},({}))}

belongs to
JF(JF(T) X (JF(S)")

for all types T and S.
One could extend the domain of r to singular values, by extending its
range to sets of types, such that r applied to singular values returns a
set of types instead of one type. Such a set of types can be represented
by a type expression with type variables. We do not follow this approach
here to keep type checking simple. However our type checking is not as
powerful as it could be, because we do not type singular values.
Next we will see how to evaluate terms without free variables to values.
This is determined by the evaluation function E. Here we assume that

319

for each function name /, the graph of / can be consulted. This means
that we must be able to decide if for two values a and b:

(a,b) E graph(f).

Later we will see how this problem can be solved, at least in many

320

practical cases.

Definition 22.8 The evaluation function £ maps terms to values ac
cording to the following rules.
If t is a value then 4t] = t.
Let t, t" ... ,tn be a terms from which the value is known.

o

1. if t is a constant, then 4t] = t,
2. if n is a value name defined by n := t : T, then 4n] = 4t],

3. 4(t)] = 4t],

4. 4{t" ... ,tn}] = {4t,], ... ,£[tn]}, (in fact its normal form),

5. 4(t" ... ,tn)] = (4t,), ... ,4tn]),

6. 4(t" ... , tn)] = (4t,], ... , £ltn]),

7. £l{l, t" ... ,Ln tn}] = {l, 4t,], ... ,Ln £[tn]}, (in fact
its normal form),

8. let t be an application of the form f(a), then 4f(a)] = b if and
only if (£[a] , b) E graph(J),

9. let t be a set term of the form {x : a I b} then (expressed in the
meta language):

10. if t is a map term of the form (x : a I b), then in the meta language:

£[t] = {(y,z) lYE 4a]A 4b;] = z}.

Most of these rules are obvious: it is exactly what we intuitively
mean by the language constructs. Note that we require for the evalua
tions of function applications of the form f(a), that £[a] has to be known
before we can determine 4f(a)]. This is called applicative order reduc
tion in lambda calculus or function programming languages. We will
make one exception to this rule for lazy functions: for them we assume
that "sufficient" arguments are evaluated. In particular to accommo
date recursion the selection function if.then.else.fi is lazy evaluated. So
if we evaluate the term

if x then y else z fi

then we evaluate x first and then we evaluate y only if £(x) = true and
z only if £(x) = false.

We have introduced terms which are used to construct values in an
intensional way. One of the main constructions is made by function

321

evaluation function

applicative order red uelion

recursion

application. However we have given only a very limited set of primitive
functions. In principle we "have" all functions in UF however we are
only able to use them, if we can characterize them with a finite descrip
tion. We use two mechanisms (lambda) abstraction and recursion to
define new functions from primitive or already defined functions.

Abstraction is the well-known way we define functions in mathemat
ics. For instance (in meta language):

I(x) = a 8in(x) + b cos2(x)

is a definition of I by giving a term and indicating which name has to
be considered as variable (in this case x). In (untyped) lambda calculus
this definition is of the form

I = .xx. (asin(x) + bcos2(x))

An example of abstraction in our languages is:

+(x,y):= (x - (0 - y))

which is the addition function constructed from the function "-" and
the constant O. We may apply this function (in infix notation) as 3 + 5,
which evaluates to 8.

Recursion is the construction of a function by an explicit equation,
which means that it is an abstraction with sell-relerence. For instance
a recursive equation for the union of sets is:

union(x, y) = il x = {} then y else ins (pick(x), union(rest(x), y)) fi

The equation is called "explicit" because the value we want to define is
given explicitly on the left-hand side of the equation. An example of an
implicit equation is:

l(x)2 + l(y)2 = c.

In general it is not sure that such an equation has precisely one solution,
it may have many solutions or no solution at all.
Consider for instance the recursive equation

I(x) = -/(x + 1)

with x E ~, which has solution

I(x) = (-1)Zc for any c E ~.

The next recursive definitions have no solution at all (x E IN):

I(x) = I(x) + 1,

I(x) = I(x+ 1)+ 1.

Now we have defined functions by abstraction of variables from terms,
we will give the syntax of function definitions. Each definition ends
with the specification of the signature of the function. For polymorphic
functions we use type variables.

322

Definition 22.9 The syntax of function definitions is:

• function definition ::=

function namer (variable) 2 := term i signature,

• function name E FN,

• variable E V,

• signature ::= type expression * type expression.

o

In signatures the domain and range types are separated by the * sign.
If a type variable occurs, the signature is a set of pairs that belongs
to a polymorphic function. If no type variable occurs, the signature
is a singleton and belongs to a monomorphic function. Note that a
value definition can be considered as a function definition without a
domain. Formally the semantics of a signature is defined by the following
definition.

Definition 22.10 Let a signature T * S be given, where T and S are
type expressions.
If neither T nor S contain type variables, then the semantics of this
signature is:

(IT * S1 = {(€(T),€(S])}.

If Tor T and S contain type variables $1>"" $n, then:

€(T* S) =
((€(A),€(BJ) 13AI , ... ,An E TE: A = T(Sl •...• S.) " B = S($I •...• '.)}.

(Al •...• A.) (A A.)

In case subexpressions of the form $1 M $2 occur, then $1 and $2
may be replaced by compatible tuple types only.
o

Hence all simultaneous substitutions of occurrences ofthe type variables
by "proper" types determine the signature of a function.

We only allow recursion per function construction, so we do not allow
for instance that function J is defined using applications of a function
g. that is defined using applications of J. This is not a real restriction
since we may transform these two mutual recursive equations into one
recursive equation, as follows. Let

J(x):= terml : A * T
g(y) := term2 : B * S.

We define a function h such that

h(x,y) = (f(x),g(y)),

323

function definition syntax

signature semantics

well-t.yped (unct.ion deflnit.ion

by choosing an a and a b such that, for all x and y:

f(x) = '1r1(h(x,b)) and g(y) = '1r2(h(a,y)).

Then the definition of h becomes:

h(x,y):= (term~, term;): A x B '* T x S,

where in term: is term termj with each occurrence ofthe form f(E) re
placed by '1r1(h(E, b)) and each occurrence of the form g(E) by '1r2(h(a, E))
for expressions E. As an example let:

f(x) = l(x,g(b)) A g(y) = k(y,f(y)).

Then we obtain:

h(x, y) = (l(x, '1r2(h(x, b))), k(y, '1r1(h(y, V)))).

To give the semantics of a function definition we consider, as for terms,
the type rules and evaluation rules.
We start with defining when a function definition is correctly typed,
i.e. when it has a correct signature. Remember that we consider a
function of more than one variable as a function on a product type.

Definition 22.11 A function definition of the form:

f(xI, ... ,xn):= t: EI X ••• X En '* Eo

where t is a term and Eo, . .. , En are type expressions with possibly type
variables $1, ... , $m in the signature, and with no other free variables in
t then Xl, ... , Xn is weI/-typed if and only if:

o all type variables in Eo also occur in at least one of the type
expressions E1, • •• , En,

o for all substitutions of the type variables by type expressions with
out type variables At. .. . , An,

are correct type expressions (i E {O, ... , n}),

o for all substitutions of the value variables Xl, ... , xn by regular
values el, ... , en, such that ej is of type Bj (i E {l, ... , n}), the
value

has to satisfy:

- if b does not contain applications of f: T[b] = E[Bo),

- if b contains applications of f of the form:
f(CI, .•• ,cn) then, this expression should be given the type
€(B] first. .

324

o

Note that we do not give an algorithm here, but only a definition of
correctly typed function constructions. To see how an algorithm could
work we give an example. Consider the recursive definition of IInion
again. Let A be an arbitrary, non-empty type and let e1 and e2 be
values of type IF(A). Consider

r[union(el> e2)] =
r[il e1 = {} then e2 else ins(pick(ed, IInion(rest(e1), e2»fi).

We derive the type of this term bottom up:

1. r[e2) = IF(A) (by assumption),

2. r[rest(et)1 = IF(A) (since rest is polymorphic),

3. r[lInion(rest(e1), e2)] = IF(A) (by the signature of IInion),

4. r[pick(ed] = A (by polymorphism of pick),

5. r[ins(pick(e1)' union(rest(et}, e2))] = IF(A) (by definition of
ins),

6. rhl = IF(A) (given),

7. r[e1 = {}] = IB (by definition of =),

8. hence the original term has type IF(A), since it fits the signature
of i/.then.else.fi.

Next we define how the graph of a constructed function is determined.

Definition 22.12 A function construction of the form

I(X1,""Xn):= t: E1 X .•• X En:} Eo

determines the graph of I in the following way:

o

• if the definition is not recursive

• if the definition is recursive, then I is a solution of the equation
with unknown graph g:

g = {«et, ... ,en),fg[tl:::::::::l)) I (et, ... ,en) E U},

where fg is the evaluation function f modified in sucb a way that
every evaluation of the form £l/(e1,' .. , en)) is replaced by c if and
only if (e1," .,en),c) E graph(g).

325

function grapb

Note that we did not specify which function should be chosen, in case
there are more solutions to the equation in g. In chapter 24 we will see
which one we recommend to choose.

Another way to define the graph of f is by means of a .>.-expression.
Define a function F as follows:

and let function f be a fixed point of F, i.e. F(f) = f. (Note that we
mix here the specification language with the meta language.)

As an application of these primitive functions we consider the logical
functions V, II,:} and , which can be constructed from these prim
itives. In part I we gave the standard definitions for these functions.
Here we give them for the three-valued logic with truth values in lIh
(i.e. true, false and .1). We will use them in the next chapter.
We start with :}, it satisfies the equation:

x :} y:= if x = .1 then
if y then true else .1fi

else
if x then y else true fi

fi : IB x IB :} IB.

(Note the different meanings of :}.)
This gives the following truth table for :}:

true true false .1
x false true true true

.1 true .1 .1

With this function we can define the other logical functions in a well
known way:

,x .- x :} false: IB :} IB,

xVy .- ,x:} y : IB x IB :} IB,

x II Y .- ,(,x V ,y): IB x IB:} IB.

The truth tables for these functions can be derived easily, for example

true true true true
x false true false .1

.1 true .1 .1

In this way we define in the language all other functions we need. Often
we want functions to be strict. If we have defined a function, for example

326

f : $1 '* $2, that is non-strict and we want to make it strict we simply
define:

](x):= if x = 1. then 1. else f(x)fi: $1'* h

(In examples we often "forget" this modification, because it makes the
specification less readable.)

327

328

Chapter 23

Declarative part of the
language

In the foregoing chapters we introduced the constructive part of the
specification language: finite mathematical values and function defi
nitions. Specifying systems in this way is on one hand nice: we get
constructs that can be evaluated by a machine, so we can simulate the
systems we define. The only problem is recursive constructions, where
we have to find a solution (cf. the next chapter). On the other hand the
expressive comfort is limited. In this chapter we introduce declarative
expressions that cannot be executed. They are meant for the systems
engineer who has to transform them into constructive expressions. Con
sider for instance the construction of the union function we have seen
before. A more natural and better understandable specification is:

• name: union

• signature: JF(T) x JF(T) :} JF(T)

• predicate: "Ix, y: JF(T). Vz : T.

z E union(x, y) ¢} z E x V z E Y

This is an example of a function declaration. This concept will be
defined later. We see here a predicate that involves quantification over
a type. Up to now we only considered quantification over sets: the set
term and the map term. The Boolean functions forall and exists are
examples (cf. Toolkit). Note that in general, such a quantification over
a type is not computable, i.e. there is no algorithm for it. However for
expressive comfort we will introduce them.

Another reason for introduction of predicates and quantification over
types is that we wish to introduce restricted tuple types, which are called
schemas. We have seen examples of schemas in part I. Schemas are used
for the specification of complex classes and processor relations.

23.1 Predicates and function declarations

A predicate generalizes the concept of a Boolean type term.

329

predicate syntax

well.typed predicates

Definition 23.1 Given a syntax base and the syntax defined so far,
predicates are defined by:

•
predicate ::= booll :::!predicate I {predicate f!.predicate21

quantor (variable h domain!. predicate
domain ::= type expression

.IJE{V,t\,~}

• quantor E {V,3}

• bool ::= Boolean term

• variable E V

A Boolean term is a term with type IE.
The functions ..." V, t\ and ~ are defined in chapter 22.
o

The quantors (V and 3) have scope rules in a similar way as we defined
them in definition 22.6. Predicates without free variables have seman·
tics: the function € assigns one of the values true, false or .l to them.
Therefore they can be used as Boolean values.

To define which predicates are well-typed we proceed along the same
lines as we did for function constructions.

Definition 23.2 Predicates without free (value) variables are well-typed
if the following rules hold.
Consider first the case without type variables:

• if a predicate p is a Boolean term then €(p] = IE,

• if p is a well-typed predicate then

and

are well-typed if and only if x is the only free variable of predicate
p and for any value e of type T: pl:: :::::::1 is well-typed.

In case any domain contains type variables, these rules should apply for
all substitutions of these type variables with type expressions without
type variables.
o

The semantics of predicates in case of no free variables and no type
variables is given below. We extend the evaluation function € defined in
definition 22.8 to predicates.

330

Definition 23.3 Predicates without free value variables and without
type variables are evaluated according to the following rules. Assume
predicate p is well-typed.

o

1. if predicate p is a Boolean term then £(p) is already defined,

3. for a predicate of the form: pO q where 0 E {V, II ,:}}:

4. if p is a predicate of the form

then

() . t 'f' aU al ft T [(ZI Zn)] • £ P IS rue 1 lor v ues el, ... , en 0 ype : £ q(.l n) =
true,

• £(p) is false if there is at least one row (eb"" en) of type T'
such that £[q(ZI, ... ,zn)] = false,

(e'l •...• en)

• in aU other cases £(p) = .i,

5. if p is a predicate of the form

then

• £(p) is true if there is at least one row (eb ... ,en) of type T'
such that £[q(ZI, ... ,zn)j = true,

(ell .. o,en)

• £(p) is false if for aU values el, ••• , en of type T: £[q!:ll:::::::/J =
false,

• in aU other cases £(p) = .i.

We apply predicates to function declarations. We have seen how
useful it is to have another mechanism to describe a function in addition
to the function definition.

Definition 23.4 The syntax of a function declaration, given a syntax
base and the syntax introduced so far, is:

function declaration ::= function name;,; signature ;,;predicate

o

We have to define what we mean by a weI/-typed function declaration
and what the meaning of a well-typed function declaration is. This is
done in the next definitions.

331

function declaration syntax

.. ell-typed function declaration Definition 23.5 A function declaration is well-typed if and only if

o

• the predicate is well-typed,

• the predicate does not contain free (value) variables,

• the type variables in the predicate also occur in the signature,

• the signature is well-typed (Le. all type variables occur at least in
the domain type).

Definition 23.6 The meaning of a well-typed function declaration of
the form

f::D~ R::p

where D and R are type expressions, possibly with type variables $1, ... , $n,
is the set of all (mono- or polymorphic) functions 9 such that:

• 8ign(g) =

{(f[ds Sn)],4R(s Sn))) 11i, ... ,Tn E TE},
(TI •...• Tn) (Tlt Tn)

• for all suitable type expressions Tb • .• , Tn E TE:

(Note that 9 is used as a function name and that it is assumed that
graph(g) is known and that TE is the set of type expressions without
type variables.)
o

So the meaning of a function declaration is the set of all functions that
fit into its signature and have the property expressed by the predicate.
Note that this set may be empty as in the next example:

f:: IN ~ IB:: '<Ix: IN. (3 X (x div 3) = x ~ f(x) = true)

/I

(5 X (x div 5) = x ~ f(x) = false).

It is impossible to give a function definition for such a function because
we have to indicate explicitly for each argument a unique value and
for all multiples of 15 we have here two different values. It may also
happen that a function declaration denotes a set with many elements,
for instance

f:: IN:: '<Ix: IN • f(x) ~ f(x + 1).

It is the task of the systems engineer to prove that there is at least
one function in the set. If there is more than one function the systems
engineer leaves the choice to a constructor of the system.

332

23.2 Schemas and scripts

Schemas play an important role in models because they are used to
define complex classes on the one hand and processor relations for pro
cessors on the other hand. The complexes can be represented as tuples
belonging to a schema and the firing rules of processor relations are
represented by tuples of the schema that belongs to the processor. The
schemas for processor relations may contain type variables to express
that we have a generic processor definition that can be used in different
locations in an actor model with different type substitutions. Because
schemas are so important there is a set of operators on schemas to be
able to construct a schema stepwise, out of more simple schemas. The
syntax of schemas is given in the next definition.

Definition 23.7 Given a syntax base a schema has the following syn
tax

• schema ::= lschema signature lpredicatel

• schema signature ::= (variable I type expression)

• variable E V n L

All free variables of the predicate have to occur in the schema signature
as well.
o

Note that we use here that attributes may also be van·ables. They have a
different meaning depending on their role in expressions. The semantics
of a schema is defined below.

Definition 23.8 Consider a schema of the form:

Then:

£[[Xl: Tl, ... ,xn : Tn I p]] =
{ . I[. T To]] I W(Zl •...• zn)]}

Z • £ Xl' 10"" Xn: n £ (~l(.) ~n(.» .

The value z belongs only to the set, if the predicate evaluates to true.
(So if it is 1. then z does not belong to the set.) The set of all schemas
without type variables is called the schema universe and is denoted by
SUo
o

So a schema is in fact a restricted set of tuples.

333

schema expression syntax

schema universe

well-typed schema

schema expression syntax

schema definition syntax

Definition 23.9 A schema without type variables, of the form:

is well-typed if for all values e1, ... ,en of types T1, ... ,Tn respectively,

are well-typed.
If there are type variables involved, the assertion should hold for all,
possible substitutions of the type variables by type expressions without
type variables.
o

Next we introduce schema expressions and schema definitions. After
wards we give some examples that illustrate the use of these expressions.
This part of the language incorporates most of the schema calculus of
Z.

Definition 23.10 A schema expression and a schema definition have
the following syntax:

• schema expression ::= schema I (schema expression) I
schema name((tyPe expression}) I -
.:::! schema expression I -
schema expression 8 schema expression I
schema expression \ ((variable}) I
schema expression l' ((variable) f I
quantor variablel predicate.! schema expression

• schema definition ::=
schema name[{(type variable}}] := schema expression

• 8 E {V, A, =>}

• quantor E {1f,3}

• variable E V n L

The following conditions should hold:

• the variables left of the symbols \ and t should occur in the
schema signatures of the schema expression,

• the variable behind a quantor should appear in a signature of
the schema expression with the same type expression, and the
predicate should have no free variables or type variables,

• the schema expression in a schema definition may contain type
variables, however these type variables must appear also on the
left hand side of the ":=" symbol,

• schema definitions may not be recursive.

334

o

A schema expression, in case there are no type variables, determines a
schema. For all the expressions we will define the semantics below. A
schema definition with type variables defines a schema-valued function
over a Cartesian product of TE.
For example:

h($) := [x : $, Y : .1F($) I x E y)

defines a function h. For every TETE the function value h(T) is
obtained by substituting T for $. If there are no type variables on the
right hand side of a schema definition, then the schema name is not
allowed to have type variables, in which case it is used as a shorthand
for a schema expression, like a type definition. The requirement that
schema definitions are not recursive means that the schema name on
the left hand side is not allowed to occur on the right hand side.

In order to define the semantics of schema expressions and schema
we introduce a syntactical transformation function that maps schema
expressions to schemas. This function is called 6. So the semantics
of a schema expression is in fact the composition of f and 6, first we
transform a schema expression into a schema (6) and then we apply the
evaluation function (f).

Definition 23.11 The semantics of a schema expression without type
variables is given by the function 6. Let s be a schema expression.

1. if 8 is a schema then 6[8] = 8,

2. 6[(8)] = 8,

3. 6[~[X1: T ,Xn : Tn I p]] = 6[[X1 : T ,Xn : Tn I ~p]],

4. 6[[X1 : T1, . .. , Xn : Tn I p) (J [Y1 : S , Ym : Sm I q]] =

[Z1 : R1, ..• , Zt : Rtl p(Jq),

where

• (J E {V,A,=>,<*},

• Vi,j: Xi = Yj => Ti = Sj,

• {Z ,Zt} = {X ,Xn } U {Y ,Ym},

• Vi,j,k: Zk = Xi => Rk = Ti A Zk = Yj => Rk = Sj,

335

syntactical transformation
function 6

schema definition semantics

schema equality

7. 0['v'X1 : T I q 0 t[X1 : T1,·· ',Xn: Tn I pJ] =

[X2 : T2, . .. , Xn : Tn l'lx1 : T 0 q ~ pl,

8. 0[3X1 : T I q 0 t[X1 : Tt. .. . , Xn : Tn I p]] =
[X2:T2, ... ,xn:TnI3x1 :Toq /I pl.

Variables may be rearranged first.
The semantics of schemas is given in definition 23.8.
o

Definition 23.12 The 8emantic8 of a 8chema definition of the form

(where n 2: 0) is a function, also denoted by /, such that

/ E TEn --+ SU,

where TE is the set of all type expressions without free variables and
SU the schema universe and where for Tt. .. . , Tn E TE:

if the right-hand side is defined.
o

We introduce the concept of equality for schema expressions.

Definition 23.13 Two schema expressions 81 and 82 are said to be
equal, (notation 81 = 82) if and only if:

o £[0[81]] and £[0[82]] are defined,

o £[0(8tJl = £[0[82]]'

o

We will elucidate these definitions with some examples.
Consider the schema definitions

Obviously:

81 .- [x :IN,y:lN I x ~ yl
82 .- [y: IN, z : IN I y ~ zl
83 .- [x: IN, y : IN, z : IN I x + z = Yl

o {x H l,y H 3} belongs to 81 and {x H l,y H 2,z H l} to 83,

o 81/\ 82 = [x : IN, y : IN, z : IN I x ~ Y /I Y ~ zl,
o 81 ~ 82 = [x : IN,y: IN,z: IN I x ~ y ~ y ~ zl,

336

• {x 1-+ 1,y 1-+ O,z 1-+ O} belongs to'1 =? '2,

• {x 1-+ 1, Y 1-+ 3, Z 1-+ 4} belongs to '1 II '2,

• '3\(Z) = [x: IN,y: IN 13z: IN. x + z = y],

• hence (by the properties of natural numbers): '3\(Z) = '1,

• '3 r (z) = [z : IN I 3x : IN • 3y : IN • x + Z = y],

• "Iz:IN I zmod2 = 0.'2 =
~:INI~:IN.zmod2=0=?yS~=
[y : IN I y = 0] (by properties of IN),

• 3z: IN I true.'3 = [x : IN, y : IN 13z : IN • x + z = y] = '1.
Note that a schema with predicate true is in fact a tuple type, i.e.

As a consequence we have:

[XI: TI , ... ,xn : Tn I true] II [YI: SI, ... ,Yn: Sn I true] =
[xI:TIo ... ,xn:Tn] M [YI:SI, ... ,Yn:Sn].

Another property is:

3x: Tip. [x: T,YI: SI,···,Yn: Sn I q]

=
([x:T Ip]1I [x:T,y!: SIo ... ,Yn: Sn I q])\(x)

(The proof is an exercise.)
These properties show that our language is redundant, but that is a
consequence of the wish to have great expressive comfort.

Next we introduce script •. A script is a coherent set of type defini- script

tions, function definitions, function declarations and schema definitions.
We required several times that we do not allow recursion in type

definitions, schema definitions, and function specifications. For function
constructions we allow a limited form of recursion.

To formalize what we mean, we will require that all definitions and
declarations in a script, can be given a rank, (Le. a natural number) such
that all names used in this definition or declaration have a definition or
declaration with a lower rank. For function definitions we make an
exception: they may use names with equal rank also (Le. the name
of the definition may be used in the definition). This means that we
define according to the principle: define before use, with an exception
for function construction. In the next definition we give the syntax of a
script.

Definition 23.14 A script has the following .yntax:

• script ::= line I line i script

337

script syntax

• line ::= type definition I value definition I
function definition I function declaration I
schema definition

such that there is a function, that assigns a natural number n to every
line l , with the property that every name occurring in the definition
part of the line is defined itself in a line with a number smaller or equal
to n in case the line is a function definition and smaller than otherwise.
o

In the table format of the language we allow all kind of definitions in a
schema body, i.e. the part where the predicate is written. A definition
in a schema body is considered to be local to that schema.

338

Chapter 24

Methods for function
construction

We address four problems: correctness of recursive constructions, find
ing them, transforming them into easier to handle constructions and the
transformation of function declarations into constructions. The only
difficult part of function construction is recursion, therefore we focus
on that aspect here. In some cases the systems engineer will declare a
function first, then he transforms this declaration into a construction
and finally he transforms this construction into an algorithm. This is
the longest path. It is also possible that he starts with a construction
and that it turns out that the construction can be executed fast enough.

24.1 Correctness of recursive constructions

As said before, a recursive construction is the definition of a function
by means of an explicit equation. In order to have a correct recursive
construction we have to answer three questions:

• existence: is there a solution?

• unicity: is there only one solution and if there are more whlch one
should we choose?

• computability: is the solution computable, i.e. is there an algo
rithm to compute for an arbitrary argument the corresponding
function value?

Note that the first question is undecidable, so there is no algorithm to
solve this problem.

In order to answer these questions we introduce first another view
on recursive equations. Consider for example the recursive equation:

union(x, y) :=
if x = {} then y else ins (pick(x), union(rest(x),y))fi: $ X $:} $.

Another view on this equation is that the term that defines the
function union, specifies a function in U U with union as argument.

339

recursion operator

In lambda calculus this function can be expressed as:

>.f. >.x, y. if x = {} then y else ins (pick(x), f(rest(x), y» fi.

(Note that we do not allow such functions in the specification language,
but it is allowed in the meta language.) We call this function the recur
sion operator of the equation. Then we may rephrase the problem as:
find a solution of the equation in f with recursion operator F:

f= F(f).

So union is a fix point of F and therefore:

f = F(f) = F2(f) = ... = F"(f).

It is in many cases possible to compute, for some argument x, f(x)
by iterated application of F, i.e. by Fn(f)(x). It turns out that we
can compute Fn(f)(x) without knowing f. As an example consider the
multiplication function mull:

mult (x,y):= if x = 0 then 0 else y + mult (x - l,y)fi

:INxIN=,>IN

For a specific argument (mult(2, 5» iterated application works as fol
lows:

mult (2,5) =

if 2 = 0 then 0 else 5 + mult(1, 5)fi =

5 + mult (1,5) =
5 + (if 1 = 0 then 0 else 5 + mult(O, 5)fi) =

5 + 5 + mult(0,5) =

5 + 5 + (if 0 = 0 then 0 else mult(-1,5)fi) =

10

Note that mult(-1,5) does not have to be evaluated: it would have
given .L, since -1 is not in IN.

Next we consider the method of successive approximations, which is
a general method to solve fix point equations. In the rest of this section
we do not consider siguatures of function definitions and we will identify
graphs of functions with their names.
We start with the definition of some technical concepts.

Definition 24.1

• A portial ordering on U -+ U is defined by:

Vf,g E U -+ U :fe g¢!?VX E U: f(x) = g(x)V f(x) =.L.

340

o

• Let (fo, ft, ...) be a sequence of functions in U U. The se
quence is called monotonous if and only if:

lin E IN : In C In+!.

• The limit of a monotonous sequence, denoted by limnEN In, is:
(limnENln)(x) = .1, if lin E IN: In(x) =.1,

!k(x), for some k such that !k(x) i'.L.
(Hence for all k: !k C limnEN In.)

• A function FEU - U is called monotonous if and only if:

II/,g E dom(F): leg =? FU) C F(g).

• A function FEU U is called stable if and only if for all
monotonous sequences (fo, ft, .. .):

F(limnENln) C limnENFUn).

The method of successive approximations constructs a monotonous se
quence of functions (fo, ft, ...) such that the limit is the fix point of the
recursive equation.

Theorem 24.1 Let FEU - U be monotonous and stable and let
sequence (fo, ft, ...) satisfy:

• IIx E U: lo(x) = .1,

• lin E IN : In+! = FUn).

Then /* = limnEN In has the property:

r = FU*)·

The components of the sequence are called successive approximations.

Proof. From the monotonicity we derive by induction, that lin E IN :
In C In+!. Note that 10 c ft. Assume In C In+l.
Then In+! = FUn) C FUn+tl = In+2.
So the sequence is monotonous and for all k E IN we have Ik C /*.
Hence

Ik C !k+! = F(!k) C FU*)

and so
/* c FU*).

From the stability we derive: FU*) C limnEN FUn).
Since limnEN In = limnEN\{o}/n and FUn) = In+! we have

FU*) C /*.

Combining these cases gives the desired result.
o

341

monotonous sequence

limit of a monotonous sequence

monotonous fuuction

stable function

successive approximations

method of successive
approximations

iterated application

linear recursive functions

The approach of solving a recursive equation by means of such a se
quence is called the method of successive approximations. Note that we
do not have to compute these functions completely (which is impossi
ble) but that we compute them for sufficiently many arguments in case
we want to compute the value of the fix point function for one given
argument.

We call the method of successive approximations applicable for a
recursive equation if the recursion operator F is monotonous and stable.

Theorem 24.2 Under the conditions of the former theorem, the solu
tion r is the smallest solution of the equation in the sense that, if 9 is
another fix point of F then reg.

Proof. We prove this by induction. Of course fo C g. Assume that
fn C g. Since F is monotonous we have F(fn) C F(g). Because 9 is
a fix point and by the definition of fnH' we have fnH C g. Hence
'r/n E IN : fn C 9 and therefore reg.
o

There is a good reason to take always the least fix point r because all
other solutions 9 have the property

'r/x : r(x) '" 1. ~ /*(x) = g(x),

so r is the only "sure" solution. The next theorem shows that /* is
"reached" by successive approximations in finitely many steps, for each
argument.

Theorem 24.3 Under the conditions of the theorem 24.1 we have:

'r/x E U: 3n E IN : /*(x) = F(fo)(x).

Proof. The proof is an immediate consequence of: fn = F(fo) and
the definition of the limit.
o

So if the method of successive approximations is applicable, we can com
pute the function value of the least fix point by iterated application of
the recursion operator. We will apply this result to an important special
case, linear recursive functions. Here we give a sufficient condition for
applicability.

Theorem 24.4 Consider the equation for a linear recursive function:

f(x):= if b(x) then a(x) else h(x,f(g(x» fi

where a, b, h, 9 are strict functions.
Then the method of successive approximations is applicable.

Proof. Let F be the recursion operator of the equation. First we show
the monotonicity of F. Let p and q be functions such that p C q and

342

let x '" 1. be given. If F(p)(x) = 1. then nothing has to be proven,
otherwise either b(x) = true or p(g(x» '" 1. (use strictness of h). In
the latter case p(g(x» = q(g(x», since p C q. So in both cases we have
F(p)(x) = F(g)(x), which proves the monotonicity of F.

The next step is to verify the stability. Let (so, s}, ...) be a monotonous
sequence and s* = limnENsn' If F(s*)(x) = 1. nothing has to be
proven, otherwise either b(x) = true or s*(g(x» '" 1.. In the first case
F(s*)(x) = F(sn)(x) = a(x) (for all n E IN).
In the latter case there is an n E IN such that sn(g(x» '" 1., since the
sequence is monotonous. Hence since Sn C s*, we have
s*(g(x» = sn(g(x» and so F(s*)(x) = F(sn)(x).
So we have shown that

'Ix E U : F(s*)(x) '" 1. :} 3n E IN : F(s*)(x) = F(sn)(x)

hence F(s*) C limnENF(sn).
o

For this case we can derive a more detailed result.

Theorem 24.5 Let F be defined as in the former theorem. If for some
x E U the following properties hold:

b(x) = b(g(x» = ... = b(gn-l(x» = false /I b(gn(x» = true,

then:
j*(x) = h(x,h(g(x), ... ,h(gn-l(x),a(gn(x») ... »

and for k > n: FkUo)(x) = j*(x).

Proof. Since b(x) = false we have:

j*(x) = FU*)(x) = h(x,j*(g(x))).

By iterated application we obtain:

j*(x) = FU*)(x) = h(x,h(g(x), ... ,h(gn-l(x),j*(gn(x))) ...)) (*)

Since b(gn(x» = true we have j*(gn(x» = a(gn(x». If we substitute
this in (*) we obtain the first assertion.
Similarly

fnH (x) = h(x, h(g(x), ... , h(gn-l(x), ft(gn(x))) . •• ».
Since b(gn(x» = true we have h(gn(x» = a(gn(x».
So fnH(x) = FnHUo) = j*(x).
o

Note that we used the laziness of if.then.else.fi here. Next we consider
a class of recursive equations for which there is always a solution that
can be obtained by one of the methods discussed above. The functions
defined in this way are called primitille recursille functions. They are
very important because most of the functions we encounter in practice
are primitive recursive (cf. Toolkit).

343

primitive recursive function
construction

Definition 24.2 A function construction is primitive recursive if it is
of the form:

J(x,y):= if x = 0 then a(x,y) else h(x,y,J(x -l,y))ft

where a and h are given strict functions and the type of x is IN.
o

Primitive recursive functions satisfy the conditions of theorem 24.4. To
verify this let b(z) := (1rt(z) = 0), Z = (x,y) and g(z) .- (1rt(z)-
1,1r2(z)). Then we may transform the equation for J as:

f(z) := if b(z) then a(z) else h(z, J(g(z)))ft.

Theorem 24.6 Consider a primitive recursive equation in J as defined
above. This recursive equation has a unique solution.

Proof. Let J and 9 be two solutions. Fix some y. Clearly:
f(O,y) = a(O,y) = g(O,y). Assume for some n E IN that J(n,y) =
g(n, y). Then:

f(n + 1, y) = h(n + 1, y, f(n, y)) = h(n + 1, y,g(n, y)) = g(n + 1, y).

Hence we have shown by induction, that there is at most one solution.
By iterated application we find:

f(n,y) = h(n,y,h(n-1,y, ... ,h(1,y,a(0,y)))).

o

There are many applications of this theorem. For instance the multi
plication function mult has a unique solution according to this theorem.
There are different syntactical forms of these theorems, for example the
functions a, b, hand 9 could have been given by their defining terms
instead of an application.

24.2 Derivation of recursive constructions

One of the major problems of constructive specifications is to find a
. correct and easy to understand recursive construction for a function f.

In many cases we use the following approach:

• determine the signature S => T of the function J,

• determine a subset B of S , so B is a value of type JF(S), on which
the function is known (note that B is often given in the form of a
Boolean function on b with signature S => 18),

• determine a function a with the same signature as J that coincides
with f on B: '/z E B: f(x) = a(x),

344

o determine a set-valued function R with signature S ~ IF(S) with
the meaning that the value f(x) can be expressed by means of the
values f(y) for y E R(x), in case x ~ B,

o determine a function h that tells how to compute f(x) from the
values given by R(x): f(x) = h(x, ((y,j(y)) lyE R(x)}),

o create an equation of the form:

f(x):= if x E B then a(x) else h(x,{(y,f(y» lyE R(x)})fi.

Note that this is not an expression in the language, but a template
for such expressions.

This method is very similar to the technique called dynamic program
ming and the technique to construct differential equations to describe
physical phenomena.

We will illustrate these steps with some examples. The first example
is the well-known the Fibonacci sequence. The function fib computes
the n-th value of this sequence. We follow the steps:

o the signature of fib is IN ~ IN, so S = IN,

o B = {O, I},

o 'Ix E B: fib(x) = 1,

o 'Ix E S : R(x) = {x - 1,x - 2},

o h(x, {(V, fib(y» lyE R(x)}) = fib(x - 1) + fib(x - 2),

o so we obtain (in the specification language) ,
f(x) :=
if x = ° V x = 1 then 1 else fib(x - 1) + fib(x - 2) fi: IN ~ IN

The next example is the construction of a function f that assigns to
each node the length of a shortest path in a graph to some specific node
b. The steps are as follows:

• the signature of f is S => CU, where S is some type that contains
all the nodes,

o B = {b},

o f(b) = 0,

oRis a function that assigns to each node a set of nodes, so its
signature is S ~ IF(S); in fact R determines the edges of the
graph,

o h(x, {(y,f(y)) lyE R(x)}) = min«y: R(x) I d(x,y) + f(y)))
where d is the distance function with signature S x S ~ CU and
where min is a function with signature IF($ x QI) ~ QI that
determines the minimum of the range of a binary relation.

345

dynamic pl'ogramming

Ackermann function

Newton-Rapb80D metbod

f

Figure 24.1: Newton-Raphson

• so we obtain in the specification language: f(x) :=
if x = b then 0 else min«y: R(x) I d(x,y) + f(y))): S:} ~.

Note that we need to verify several conditions to guarantee that this
definition is correct, such as: for each node there is a finite path to
b and the range of d contains only non-negative values. A proof that
iterative application ends, is required. This example is a typical case of
dynamic programming.

The method does not work always. Consider for instance the Ackermann
function, defined by:

A(x, y):= if x = 0 then y + 1
else if y = 0 then A(x - 1,1)

fi
fi

else A(x-l,A(x,y-l))

Here we see that R(x, y) includes (x - 1, 1) but also (x - 1, A(x, y - 1))
which is dependent of A. However this function is a pathological case.

Our last example is a classical problem of numerical analysis. We are
looking for a root of an equation of the form f(x) = 0 where f is a given
function with signature ~ :} ~. In fact we are already satisfied with
finding an approximation for the root, i.e. a value x such that f(x) is
close to O. We use the well-known Newton-Raphson method to solve the
problem. Based on two domain values y and z that can be considered
as successive approximations for the unknown x, we can derive a better
approximation x using the equation

fez) - fey) = fey) .
z-y v-x

See figure 24.1. We follow the steps again for the function root that will
determine an approximation for the root:

• the signature of root is ~ X ~ :} ~,

346

• B is determined by the absolute value of the function value of the
approximation: B = ((V,z) I z = abs(J(v)) A z < f}, where (is
some given non-negative number and abs gives the absolute value
of its arguments,

• a is defined by: a(v, z) = V, the last computed approximation of
the root,

• R is given by R(V, z) = {(V - (z - V) x 1(J("J("), V)} ,

• h is simple: h(V, z) = (V - (z - y) x j(J~Jt"l' y) ,

• the solution, in the specification language, is: root(V, z) :=

il abs(v - z) < f then V else root(V - (z - V) x f(l~~(Y), y) ft·

A proof of the correctness of this construction requires the verification
of some conditions for 1 (the Lipschitz condition for instance), this is
however out of the scope of this book.

We call functions for which the set R(x) never contains more than
one element linear recursive lunctions. Most examples we have seen,
belong to this class. In fact they reduce to the special case we have
considered before, i.e. they are of the form:

I(x):= il b(x) then a(x) else h(x,/(g(x»ft.

Here g(x) is the unique element of R(x). An important subclass of the
linear recursive functions is the class of tail recursive functions. They
are characterized by the fact that:

h(x, I(g(x))) = I(g(x».

Next we consider the problem of transforming constructions into
easier ones. Tail recursive functions are important because they can be
computed relatively fast by repetition in stead of iterated application.
With "repetition" we mean the loop construction of imperative pro
gramming languages. If we have a tail recursive function construction
of the form:

I(x):= il b(x) then a(x) else I(g(x))ft

then the following imperative program will compute I:

while -.b(x) do x+- g(x) ad;x +- a(x)

If the precondition of this repetition is x = Xo then the postcondition
is x = I(xo). (Note that +- denotes the assignment statement and ";"
the composition operator.) In general it is not possible to transform
a linear recursive function construction into tail recursion, however if
h has some special properties it is possible. The next theorem gives
sufficient conditions. (We consider the type information afterwards.)

347

Theorem 24.7 Let a linear recursive construct of the form

f(x):= if b(x) then a(x) else h(k(x),f(g(x»fi

be given. Let h satisfy:

• let b, a, h, k and 9 be strict functions,

• there is a unit element e such that Vy: h(e, y) = y,

• h is associative, i.e. Vx, y, x: hex, hey, x» = h(h(x, v), z).

Then we have
Vx: f(x) = r(e,x),

where r is defined by:

r(y,x):= if b(x) then h(y,a(x)) else r(h(y,k(x)),g(x))fi.

(Note that r is a tail recursive function.)

Proof. We show by induction that for all relevant x and y:

where the index n refers to the n·th approximation according to the
method of successive approximations. Clearly for n = 0 the equation
holds because both sides are .L. Assume the equality holds for n. Con
sider rn+l(Y, x). In case b(x) = .L the assertion holds, so there remain
two cases: either b(x) = true or b(x) = false. In the first case we have
rn+,«y,x» = h(y,a(x» and also !n+l(x) = a(x), hence the equation
holds. In the second case we have, by the induction hypothesis:

rn+l (y, x) = rn(h(y, k(x », g(x)) = h(h(y, k(x)), fn(g(x)))

On the other hand

fn+l(x) = h(k(x),fn(g(x)))

and therefore

h(Y,!n+l(x» = h(y,h(k(x),/n(g(x))))

The associativity of h gives the assertion.
o

Note that notwithstanding the function k in the construction, this is
an example of the special case we considered before. Here we used k
because we had to decompose h a bit. The types involved are as follows:

• /, a, k : $, => $2,

• b: $, => lB,

• g: $, => $"

348

• h: $2 X $2 => $2,

• r: $2 X $1 => $2.

The term "associativity" becomes more clear if the function h is repre
sented in infix notation. Finally note that this transformation can be
carried out automatically.

We illustrate this transformation with the factorial function, defined
by

fac(x):= if x = 0 then 1 else x x fac(x - 1) fi: IQ => IQ
The tail recursive equivalent is:

r(y,x):= if x = 0 then V else r(v x X,x -1)fi: IQ x IQ => IQ

Note that h(x,V) = x x V, k(x) = x and that g(x) = x-I in this case.
Clearly h is associative and 1 is the unit element.

Transformation to tail recursion is not restricted to linear recursive
constructions. Consider for example the following solution for the Fi·
bonacci sequence:

Fib(n,x,v) :=
ifn=lthenv
else if n = 2 then x

e/seFib(n - 1, x + y, x) fi
fi:INxINxIN=>IN

This function is easy to transform into an imperative program with
one repetition.

The last problem we consider is the transformation of a function
declaration into a construction. There are very little methods to do
this. It is more an art than a trade and it requires often background
knowledge, for instance in the form of theorems. Consider for instance
a specification of the function root that is constructed above:

root :: IQ x IQ => IQ :: 'Ix : IQ • 'IV : IQ.

root(x,y) = x ¢} abs(j(x» < f.
There is no way to derive the construction given above from this speci
fication. Sometimes a construction is the best specification we can give.
Consider for instance the function fac. Informally we would specify this
as:

fac(x) = 1 x 2 x ... x x.

However if we try to formalize this we will note that
fac(x) = x X fac(x -1) in case x # 0, which is almost the construction.

Next we consider the specification of the function union again.

union :: IF($) x IF($) => IF($) :: 'Ix : IF($) • 'IV : IF($).

Vz: $.z E union(x,v)¢} z E xV z E V.

To derive a construction from this specification we have to infer that for
x and V of type IF($):

349

factorial functioD

1. union is associative, Le. union(union(x, y), z) = union(x, union(y, z)),

2. union(0, y) = y,

3. union({a},y) = ins(a,y),

4. ins(pick(x), rest(x)) = x.

The first two properties are easy to prove, while the next two require
some knowledge of the primitive functions ins, pick and rest. Now we
are able to rewrite union(x, y), in case x f. 0 as follows:

union(x, y) = union(ins(pick(x), rest(x)), y)

= union(union({pick(x)}, rest(x)), y)
= union({pick(x)} , union(rest(x), y))
= ins(pick(x), union(rest(x), y)).

Here we used the properties in the following order: 4, 3, 1 and 3. From
this we derive the well-known construction:

union(x, y):= if x = {} then y else ins(pick(x), union(rest(x), y))

(we left out the signature; it was given above.) This example illustrates
that tenn rewriting is a good technique to derive properties that can be
used in a function construction.

350

Chapter 25

Specification methods

The specification of an actor model requires that all the complex classes
should be mapped to a value type and that for each processor a schema
is defined. In this chapter we give some methods for finding of a suitable
value type for complex classes for a schema for a processor.

25.1 Value types for complex classes

Remember that sometimes a complex class is rather trivial. If for in
stance, the complex class contains only one simplex class and satisfies
the (only possible) tree constraint. In that case the complex class will
have the type of the simplex class. For simplex classes we are free to
choose a value type and in many cases we define a basic type for them,
sometimes one of the standard basic types like IN, (Q or 1B and some
times some new basic types. In the latter case we could also have some
new primitive functions. However in most cases we do not introduce
new primitive functions for new basic types, which means that we can
only compare two values by means of the equality function (=) and that
we may perform set operations on them.

There are various ways to represent a complex class by a value type.
The constraints and the functions we will apply to the complexes influ
ence our choice. There is however one standard construction to represent
a complex class by a schema. This construction is studied first and af
terwards we will exploit the constraints to obtain representations that
are easier to use in functions and processor relations.

Consider a complex class with name c with simplex classes with
names S1>' •• , Sn and relationships with names r}, • •• , rm' Assume that
the simplex classes are given by (defined) types with names Sl"",Sn
respectively. Then the complex class c is represented by the schema:

SI: JF(SI), ... ,Sn: JF(Sn),

rl : JF(SDM(T,) X SRG(Tn)"'" rm : JF(SDM(Tm) X SRG(Tm) I
rl C prod(sDM(T,j, SRG(T,j),"" rm C prod(sDM(Tm)' SRG(Tm)]'

Note that the subscripts DM and RG of the variables do not belong
to the language, so this is a mixture of meta language and specification

351

a » b
r

Figure 25.1: A simple complex class

language. In this definition we used the function prod that assigns to
two sets their Cartesian product. Note that we have a type constructor
for forming of the Cartesian product of types but no function yet to do
the same for sets. The construction of prod can be found in the Toolkit.

It is easy to verify that this value type is a correct representation
of the function com defined in part II. If we have other constraints we
can add them to the predicate part of the schema. In chapter 13 we
used the specification language already to express constraints. There we
considered every simplex class as a basic type like we do here. Consider
the simple complex class C displayed in figure 25.1. Then we have the
following schema definition for C:

C:= [a: IF(A),b: IF(B),r: IF(A X B) Ire prod(a, b)].

For each relationship r we can define functions like we did in chapter
13. Now we define:

r(x):= setapp/y(r,x) : A:} IF(B).

(Note that we overload the name r.) If we want to express a cardinality
constraint for r, for instance that r is functional and surjective, then we
add to the predicate of the schema C:

IIx : A. x E a:} size(r(x)) = 1.

This is a non· executable expression! However we can always trans
form this into an executable one since the domain of quantification is
finite. The executable form of this constraint is (with function f oral!
defined in toolkit):

foral!((x: a Isize{rt(x)) = 1).

There is no need for an executable form of a constraint in case we can
prove that the constraint is invariant for all transitions of the actor.
However if we cannot prove this, then we use the constraint as part
of a postcondition in a processor relation, and then the executability
might be essential. (Note that then the invariance of the constraint is
fulfilled in a trivial way, namely by allowing only transitions that keep
the constraint valid.) In most cases we will not test a constraint in a
processor relation completely and so there is no need for executability.

There is one important case where testing of a constraint is neces
sary, and that is if tokens from an outside source enter the system and
that it is not guaranteed that these tokens are correct. Then we may use

352

r
b

q

c

Figure 25.2: Exploitation of a key constraint

the constraint as a precondition in a processor relation. Note that the
standard constraints can be transformed into predicates or executable
expressions automatically. Since we now have a standard construction
for all complex classes, we are able to express for all characteristic mod·
eling problems of chapter 13 a suitable value type. However sometimes
the constraints allow us to find a more convenient value type.

There are several constraints that can be exploited to obtain sim
pler representations than the standard type for a complex class. In all
these cases it is easy to find the one-one transformations that map the
instances of the schemas to the corresponding complexes.

First we consider the case where we have a relationship that is total
and surjective. In this case we do not have to represent the simplex
classes separately in the schema. Suppose in the example of figure 25.1,
we have that relationship r is total and surjective. Then the schema
can be reduced to a schema without predicate (i.e. a tuple type):

C := [r : IF(A X B)]

because the simplexes in a complex of class C can be derived from r.
So if we want to refer within the schema's predicate to the simplexes
of class A and B then we use dom(r) and rng(r), respectively inside a
schema with r as attribute.

The second case we consider is a domain key constraint formed by
total and functional relationships. Consider the complex class D dis
played in figure 25.2. Since relationships r and q form a key, we can
define the complex class D by:

D := [a : IF(B X C), b: IF(B), c : IF(C) I a c prod(b, c)].

The relationships are here implicit.
The next case concerns a tree constraint with some total, functional

and surjective relationships. (Note that this kind of structure often
occurs.) In figure 25.3, we display complex class E and A as root simplex
class. A schema definition is:

E := [a : A, c: C, d: D, b: IF(B)].

353

domain key constraint

~ree constraint

inheritance' constraint

exclusion constraint

a p" 1 b ,
T

r ~ ~
q, "

b d

Figure 25.3: Exploitation of tree constraint

address person name

marks student instructor officeJlours

Figure 25.4: Exploitation of inheritance

(Note that this just a tuple type.) So the relationships are all implicit
here and again we do not have to worry about the constraints. In case
there were two or more relationships between the simplex classes, the
schema definition would have the relationship names as attributes as
well.

In the final case we consider inheritance constmints in combination
with exclusion constmints. In figure figure 25.4 we display a complex
class S as an example. In addition to the mentioned constraints we
assume that a tree constraint holds with Person as root. A schema
definition for Sis:

S := [p: Person, a: .IF(Address) , n : Name, m : .IF(Marks),
o : .IF(OfficeHours) , k : Kind I
k E {'student', 'instructor'} A k =' student' => 0 = n A
k =' instructor' => m = nl.

So we did not represent the simplex classes Student and Instructor
directly but we used another attribute to make the distinction between
the two kinds of persons. This "trick" is on the level of object modeling
not recommended because it would introduce constraints that involve
specific simplexes, however on this level of specification it might be
handy, because it gives a simple schema definition.

354

We conclude this section with the representation of the relational
data model in the specification language. In chapter 13 we have seen
how we can represent our object model in several other frameworks, for
instance the relational data model. These transformations where useful
in case the systems engineer wants to continue the specification process
in another framework. However the type system of our specification
language has schemas which can be considered as a generalization of
the relations of the relational data model. Therefore it should be easy
to express a relational model into schemas. If we combine this transfor
mation with the transformation from an object model into a relational
model then we have another "standard" type for complex classes (note
that we restrict us to one complex class that might be considered as a
universal complex class). Consider again the relational schema studied
in section 13.3:

relation attribute domain key
Ti ai Ai n

a2 Ai y
a3 A2 y

T2 a4 A2 y
as A3 y
a6 A3 n

T3 ar A3 y
as A4 y
a9 A4 n

(Note the difference between a "relational schema" and a "schema"in
the sense of the language.) A schema for this relational model is defined
in two steps: first we define tuple types for each table and afterwards
we define a schema D for the whole database. Note that we have to
take care of the key constraints.

Ri := [
R2:= [
R3:= [
D:= [

ai : Ai ,a2 : Ai ,a3: A2J
a4: A2,as: A3,a6: A3J
ar : A3, as : A4, a9 : A4J
Ti : 1F(Ri), T2 : 1F(R2), T3 : 1F(R3) I
'Ix : Rio Y : Ri • x E Ti 1\ yETi 1\

71'o,(x) = 71'o,(y) 1\ 71'03(X) = 71'03(Y):} x = Y 1\
'Ix : R2, y : R2 • x E T2 1\ Y E T2 1\

71'o,(x) = 71'o,(y) 1\ 71'0. = 71'0. :} X = Y 1\
'Ix : R3, y : R3 • x E r3 1\ y E r3 1\

71'o,(x) = 71'o,(y) 1\ 71'o.(x) = 71'o.(Y):} x = yJ

For other data models similar representations can be found. In par
ticular we can express the nested relational model directly in the speci
fication language. (This is an exercise.)

Queries for a relational model can be expressed in the relational
algebra. The relational algebra has the following operators:
proiection, selection, rename, join, union and set difference.

355

We show here how these operators can be "simulated" in the spec
ification language. Consider a relation r that belongs to a tuple type
with at least a and b as attributes, so

r : 1F([a : $10 b : $2] ~ $3).

The projection should be defined for each attribute list. For example
the projection on attribute a is:

Pa(r) :=
if r = {} then {}
else ins(11' .(pick(r)), PaC rest(r)))
fi : 1F([a : $10 b: $2] ~ $3).

The selection selects tuples with certain values, for example the se
lection on attribute a that should have value x (x is a variable):

Sel(r,x) :=
if r = {} then {}
elseif 'II'.(pick(r)) = x then ins(pick(r),Sel(rest(r),x))

else Sel(rest(r), x) fi
fi: 1F«[a: $10 b: $2] ~ $3) X $t) => 1F([a: $t, b: $2] ~ $3).

The rename only changes attribute names. For example:

Rac(r) :=
if r = {} then {}
else ins({a 'II'.(pick(r)),c 'II'b(pick(r))},Rac(rest(r)))
fi : 1F([a : $10 b: $2]) => 1F([a: $10 c: $2]).

These functions are specific, i.e. they have to be defined per query.
The other operators are generic functions i.e. they are defined for arbi
trary relations.

For the join we need an auxiliary function: semijoin:

semijoin(x, y) :=
if x Ell y = y Ell x then ins(x Ell y, semijoin(x, rest(y)))
else semijoin(x, rest(y))fi :
$t x 1F($2) => 1F($t ~ $2).

The join is defined by:

join(x, y) :=
if x = {} then {}
else ins(semijoin(pick(x), y),join(rest (x), y))
fi : 1F($t X $2) => 1F($t ~ $2).

The union is already defined.
The set difference is defined by:

setdif(x,y):= {z: xHz E y)}.

So the relational algebra is incorporated in the specification lan
guage.

356

tuk

t1

.1 .. 1

.... terial

productl product2

Figure 25.5: Production system

25.2 Specification of processors

The final piece of the puzzle is the specification of a processor. We use
schemas to specify them. We will address the following problems:

• how does a schema defines a processor relation?

• how to deal with token identity and time stamps?

• how can we use the processor characteristics?

• how do we deal with pre and postconditions?

We will answer these questions using a simple example of a processor.
In figure figure 25.5 we display this processor, that is executing tasks.
A task defines a product. There are four kinds of tasks and so there
are four kinds of products (1, 2, 3 and 4). Two kinds of tasks (1 and
2) require equipment, while all tasks require materials. There are two
kinds of equipment (A and B) and there are also two kinds of materials
(C and D). The four kinds of products are to be send to two different
places: products 1 and 3 are sent to one place and the other products
to the other place. In the table below we give an informal description
of the processor relation:

t? e? m? e! q! r!
1 .L C .L 1 .L
2 .L D .L .L 2
3 A C A 3 .L
4 B D B .L 4

We will give a schema for this processor. According to the definition
of the actor model a processor relation Rp for processor p is a set of
functions with domains that are subsets of the set of input and output
connectors. The function values are triples consisting of an identity,
a value and a time stamp. We will represent these triples as different

357

variables in the schema. (We sometimes mix up the terms "connector"
and "variable" of schema that represents the processor relation.) For
each connector C we have in principle three variables in the schema that
represents a processor relation: c, c, and Ct. The first one denotes the
value of the token that is consumed or produced via connector c, the
second one denotes the identity of the token and the last one its time
stamp. We also use the decorations to distinguish the input and output
connectors, ? and ! respectively for channels and I for output to a store.

If some variable equals .1 for some tuple that belongs to the schema,
it denotes that the corresponding connector, i.e. the connector with
the same name, no token passes during the firing. So here we give the
symbol .1 a specific interpretation. This interpretation fully agrees with
the fact that no token should pass a connector if the connector does not
appear in the domain of the firing rule. Recall that if the predicate of a
schema evaluates to .1, then the tuple does not belong to the schema and
therefore not to the processor relation (cr. definition 23.8). Consider
the following example (in which we do not consider identities and time
stamps):

[a? : IN, b? : IN, c! : IN I a? :S 5 /I c! = 2 x a].

So b? is free: it may be either .1 or some natural number. This is a form
of non-determinism we seldom want, because it is not determined if the
processor will consume a token from connector b? or not. If we want to
exclude this, we have to add for instance, b? i- .1 in the predicate of the
schema definition. Suppose now that the predicate would be extended
by a conjunct:

b
? _ 60
• - ? a.

In this case it would also be unclear if a token via connector b? should
be consumed or not, because if a? = 0 then b? = .1 and in all other
cases (a? is 1, 2, 3, 4 or 5) b? is properly defined.

In general it is undecidable if a token will be consumed or produced
for a connector or not, because it depends on the evaluation of an ar
bitrary function. An example that shows the role of 1. in a schema is
modification of the example above:

[a?: IN,b?: IN,c!: IN I a? =.1 /I b? = 1. /I c! = .1].

This schema denotes a set of exactly one tuple:

{a >-+ .1, b >-+ .1, c >-+ .1},

however this tuple means that there is neither consumption nor pro
duction of tokens, so it is an incorrect definition of a processor relation,
because the domain of the (only) firing rule in the processor relation is
empty!

Next we consider the time stamps and identities in the processor
relation and we will give a schema for the example of figure 25.5. For

358

the variables representing identity and time stamp of a token, we have
the following types ID and TIME, where ID = IN> and TIME = ~.
(Remember that we may use sequences of natural numbers as represen
tations for token identities and that the parent function F assigns to an
identity its parent by deleting the last element of the identity.) We do
not allow that the identity and time variable are defined in case the cor
responding, value variable is undefined, i.e. .1. The schema definition
for the example of figure figure 25.5 is:

P
t? : IN
e?: CHAR
m?: CHAR
e!: CHAR
q!:lN
r!:lN
ti?,ei1,ei!,mi?,Qi!,Ti!: ID
tt?,et?,ft!,mt?,qi!,ri!: TIME
if t? = 1 /I e? = .L /I m? - "C" then e! - r! - .L /I q! - 1
else
if t? = 2 /I e? = .L /I m? = "D" then e! = q! = .L /I r! = 2
else
if t? = 3 /I e? = "A" /I m? = "Gil then e! = "A" /I q! = 3 /I r! =.L
else
if t? = 4 /I e? = "B" /I m? = "D" then e! = "E" /I q! = .L /I r! = 4
else true fi fi fi fi
h:= max({t,?,e,?,m,?}) + f(t?): ~
if e! # .L then F(ei!) = ti? /I e,! = h else ei! = e,! = .L fi
if q! # .L then F(qi!) = ti? /I q,! = h else qi! = q,! = .L fi
if r! # .L then F(ri!) = ti? /I r,! = h else ri! = r,! = .L fi
qi! # .L => qi! # ei!
ri! # .L => ri! # ei!

The function f defines for task t? the production time. The type CHAR
is a basic type of characters. The function max should be defined in a
way that it ignores .L.

The example of figure figure 25.5 shows that it is cumbersome to
specify the time stamps and identities in this way, particular if we do
not use the identities or the time stamps. Therefore we recommend to
divide the specification into two schemas: one dealing with the values
only and one' schema for the identities and the time stamps. In case
the identities or time stamps play no role, then the last schema can be
generated automatically. In our example we would have a schema P •• ,
and a schema Pid-time and the total schema becomes:

P := P •• , /I Pid-time.

Schema P •• , has six variables, namely only the variables that deal with
values and the first four predicates. Schema Pid-'ime has 16 variables:

359

the variables that deal with time and identity and the value variables
that are used to determine them, further it has the last five predicates.
We call P;d-t;me the auxiliary schema of P •• " which is called the main
.schema. Schema p ••• becomes:

Pval

t? : IN
e?: GHAR
m?: GHAR
e!: GHAR
q! :IN
r!:IN
if t? = 1 A e? = .L A m? = "Gil then e! = r! = .L A q! = 1
else
if t? = 2 A e? = .L A m? = "D" then e! = q! = .L A r! = 2
else
if t? = 3 A e? = "A" A m? = "Gil then e! = "A" A q! = 3 A r! = .L
else
if t? = 4 A e?="B" A m? = "D" then e! = "B" A q! =.L A r! = 4
else true fi fi fi fi

As we have seen in this example, in many cases we determine the time
stamp of output tokens by means of a delay with respect to the transition
time. The transition time is always available as the maximum of the
time stamps of the consumed tokens. Instead of specifying the time
stamps of the produced tokens in the auxiliary schema, we write in the
main schema an expression of the form:

Xt! = TransTime + delay,

where x! is an output variable, TransTime is a value equal to the maxi
mum of the time stamps of the consumed tokens and delay is a term that
evaluates to a non-negative element of~. So we introduce underhand a
time variable TransTime in the main schema. It is easy to transform
such a "polluted" main schema into a correct one by transferring this
predicate to the auxiliary schema in the right form.

The choice of the input token that was used for identification of
the output tokens, was rather arbitrary in the example above. The only
thing that counts is that there is really an input token for the connector.

There are cases in which it is important to use the identities of tokens
also in values of tokens. Sometimes a simplex in the complex of a token
represents an identity, for example an order number or a transaction
identity. In these cases it is very convenient that we have an always
available source of new identities, namely the token identities. In such a
case we may give an output variable y! an identity as value provided that
it has ID as type. Formally this requires a quite complex predicate that
includes F(y!) = x;? as a conjunct, in which x;? is the input token that
is used for the generation of new identities. The rest of the predicate

360

states that all other children of x;?, either used as identity of an output
token or as a value, should be different. It is not difficult to express this,
but it can be generated automatically. Therefore we introduce another
keyword, like TransTime above, namely New and we use it like:

y! = New.

A specification with these two keywords in it can be transformed into a
"correct" one.

If we use identities as values then we can do more than just com
paring them by means of = and i. It is sometimes interesting to check
if One identity is a prefix of another or if they have a common prefix.
These questions arise in object oriented modeling.

Next we consider the processor characteristics. The processor in the
example above is neither input nor output complete, which is easy to
verify by the occurrence of .L in the schema. The processor is not total
either, since there are several combinations of values of input tokens
for which there is no firing rule. However the processor if functional.
Functionality also includes that if a processor can fire with for example
n specific input tokens, then it cannot fire with more tokens including
these n. For a complete and functional processor we can find a function
that determines the processor relation. Consider for example a processor
with input connectors a?, b? and c? and output connectors x! and y!.
Then there should be a function f such that:

x! = 11"1(f(a?,b?,c?)) /I y! = 11"2(f(a?,b?,c?».

In general the predicate in the main schema of a processor relation has
the following format:
if PI(XI?, ... ,xm ?) then ql(XI?, ... ,Xm?,YI!, ... ,Yn!) else

if Pk(XI?, ... ,xm?) then qk(XI?, ... ,Xm?,YI!, ... ,Yn!) else false

fl .. ·fl·
Here the Boolean functions PI, ... , Pk are the preconditions and the
Boolean functions qlo ... , qk are the postconditions.

If at least one precondition evaluates to true for an input variable
equal to .L, then the processor is not input complete. In case the pro
cessor relation is functional, the post conditions can be transformed into
the following form:
qi(Xl?, .. "xm?,Yt!"",Yn!) =

In that case the processor specification is executable.

361

References and Further Reading

The specification language is very close to the language Z. The main
difference is that we do not consider a function signature as a type.
Further our language has a constructive (and therefore executable)
subset, i.e. a functional language. Main literature for Z is [Spivey, 1987]
for the semantics, [Spivey, 1989] for the language and the toolkit, and
[Wordworth, 1992; Hayes, 1987; Woodcock and Loomes, 1988] for the
specification methodology, including verification of properties. The lan
guage Z is close to the language of VDM, See [Jones, 1990; Andrews and
Ince, 1991]. In the VDM literature more attention is paid to stepwise
refinement and verification.

An important aspect of specification is the recursive definition of
fUnctions, which is the key issue of functional programming. Good books
for functional programming are: [Glaser et al., 1984], [Meyer, 1990] and
[Wilkstrom, 1987]. A good reference for type theory in combination with
functional programming is [Thompson, 1991]. Type systems with tuple
types usually adopt Cardell's method for polymorphy (see [Cardell and
Wegner, 19851). We do not need this approach because of the M operator
for types. Functional languages are based on lambda calculus and the
main reference is [Barendregt, 1984]. For set theory and predicate logic
see [Enderton, 1977].

362

Exercises
1. Prove theorem 21.3.

2. Prove the remaining cases of theorem 21.5.

3. Prove the following equality in schema calculus:

3x : Tip 0 [x : T, Yl : S}, ... , Yn : Sn I q]

=
([x: Tip] i\ [x : T, Yl : S}, .. . , Yn : Sn I q])\(x)

4. Give type definitions to represent the nested relational model in
the specification language.

5. Prove that the function dom (see the toolkit) satisfies the decla
ration:
signature dom : IF($1 x $2) => IF($t)
predicate II f : IF(T x S) 0 IIx : T 0

3y : $2 0 (x, y) ¢> x E dom(f).

6. Give a declaration and a construction for a function update, that
assigns to a binary relation f with signature IF($1 x $2) and two
elements x E $1 and y E $2 a new binary relation r', that contains
the pair (x, y) and satisfies:

IIv : $1 ollw : $2 0 x "I v=>« v, w) E r ¢> (v, w) E r')

i\

IIw :$10(X,W) E r' => W= y.

Prove that the result of the function update is a functional binary
relation if it is applied to a functional binary relation.

7. Give a declaration and a definition of the function In that assigns
to two integers k and I the set of all integers i that satisfy: k :5
i :5 I.

8. Give a declaration and a construction for a function that assigns
to an arbitrary singular value a suitable type expression.
(Hint: represent a singular value and a type expression as a se
quence.)

9. Give declarations and definitions of two functions that compute
the union and the intersection respectively, of the elements of a
set of sets.

10. Give declarations and definitions for two functions that compute
the mean and standard deviation of a frequency distribution, i.e.
the arguments are of type IF(~ x IN) and have unique first com
ponents.

363

11. Consider the Car Rental Company of exercise 6 in part III again.
The rental prices are based on the following rules. There are three
types of cars: compact, midsize and fullsize. The rental price of a
car is a basic day price (depending on the type of car) multiplied
by a daily discount (factor) for the length of the rental period and
by the number of days of the rental. Further a drop off charge has
to be paid if the car is delivered by the client to another station
of CRC. The drop oll' charge is equal to the basic day price, if the
car is returned to a station at a distance not further than 1000
km and two times the basic day price in case it is delivered at a
farther station.
There are three exceptions to this rule:

(a) if the car is rented for a longer period (Le. longer than 15
days) and it is not a compact car, then the drop oll' charge
for long distance (Le. more than 1000 km) is only one basic
day price,

(b) if a fullsize car is rented for at least 6 days, but no longer
than 15 days, then the drop oll' charge for long distance is
also only one basic day price,

(c) if a fullsize car is rented for at least 16 days and it is returned
at a station not further than 1000 km, no drop oll' charge has
to be paid.

There is no daily discount if a car is rented for less than 6 days.
If a compact car is rented for a period longer than 5 and shorter
than 16 days, the daily discount is 10% if the car is returned to the
rental station, 5% if it is returned to another station not further
than 1000 km and there is no discount in case it is returned to a
station further than 1000 km.
If a compact car is rented for a long period (longer than 15 days),
then the discount is 20% if the car is returned to the rental station,
10% if it is returned to another station not further than 1000 km
and 5% in case it is returned to a station further than 1000 km.
For midsize and fullsize cars rented for a period longer than 5
days and no longer than 15 days, the discount is 20% if the car
is returned to the rental station, 15% if it is returned to another
station not further than 1000 km and 10% in case it is returned to
a station further than 1000 km. For for fullsize cars that are rented
longer than 15 days the discounts for the rental period between 6
and 16 days is increased by 15% and for midsize cars by 10%.
The basic daily price of a compact car is $ 30, of a midsize car $
50 and of a fullsize car $ 70.
Give a specification for the processor that computes the rental
price.

(All the functions in the toolkit can be considered as exercises as well.)

364

Appendix A

Mathematical notions

Mathematics and in particular mathematical logic, is used to define and
analyze the frameworks and as the meta language for the specification
language. The mathematical notations are very similar to the specifi
cation language. The basic notions used belong to set theory, predicate
calculus and lambda calculus.

Let A, A" ... , An, B and C be sets and a, a" .. . , an be elements.

Sets

• 0, lN, ~, ~, IR and 1B denote special sets: the sets of natural
numbers, the integers, the rational numbers, the real numbers and
the set of Boolean values (true and false), respectively. These sets
are mutually disjoint.

• a E A is true if and only if a is an element of A.

• A C B is true if and only if A is a subset of B, i.e. if and only if
all elements of A are also elements of B.

• Au B is the union of A and B, i.e. the set of elements that belong
to A or B.

• An B is the intersection of A and B, i.e. the set of elements that
belong to A and B.

• A\B is the difference of A and B, i.e. the set of all elements of A
that do not belong to B.

• An enumemted set is denoted by {al' ... , an}, where at, ... an are
elements.

• #(A) is the cardinality of A, i.e. the number of elements of A
(this number can be (0).

Constructed sets

• JP(A) is the power set of A, i.e. the set of all subsets of A.

365

• JF(A) is the finite power set of A, Le. the set of all finite subsets
of A.

• A· is the set of all sequences of elements of A, including the empty
sequence £; they are denoted by (at, ... , an).

• A I X .•• X An is called a Cartesian product and is the set of all
rows (ab"" an) such that ai E Ai; rows of two elements are called
pairs.

• [b I : AI, ... , bn : Anl is called a tuple type and is the set of all tuples
of the form {bI H at, •.. , bn H an} where bt, ... , bn are different
elements of a set B, they are called attributes in this role. For
all i it should hold that ai E Ai' Formally there is no difference
between a tuple and set of pairs {(bI , ad, . .. , (bn, an)}.

There are two other constructions for sets: set comprehension and the
generalized Cartesian product. They are defined after the introduction
of some other notions.

Functions

• A lunction is a set of pairs such that the first elements of the pairs
are unique (note that a tuple is also a function).

• The domain of a function I is the set of first elements of the pairs
that belong to the function; it is denoted by dom(f).

• The range of a function I is the set of all second elements of the
pairs that belong to the function; it is denoted by mg(f).

• A B is the set of all functions I with dom(f) C A and mg(f) C
B; the elements of A B are called partiallunctions.

• A -+ B set of all functions I E A B with dom(f) = A,

• Let I E A B then I t C is the restriction of I to C, Le. the set
of all pairs of I such that the first element belongs to C.

• If a E dom(f) then I(a) is the element in rng(f) such that
(a,/(a)) E I; I(a) is called the application of I to a.

• For functions on a Cartesian product applications are sometimes
represented by subscripts, for example I(a, b) as I.(b) and I(a, b, c)
as I.,b(c).

• If I E A (B C) then I is a lunction-valued function and
then there is an equivalent function j E (A X B) C such that
for all a and b: I(a)(b) = j(a,b); j is called the curried version
of I.

366

• If F is a set-valued function (i.e. the range elements are sets)
then II(F) is the generalized Cartesian product, i.e. the set of all
functions I such that dom(f) = dom(F) and for all x E dom(F):
I(x) E F(x).

• The inverse of a function I E A ... B is a set-valued function 1-1
such that, for b E B 1-1 (b) is the set of all elements of a E A such
that I(a) = b.

• A function I E A ... B is called injective if for all a, b in dom(f)
with a;' b: I(a);' I(b).

• A function I E A ... B is called surjective if rng(f) = B,

• A function I E A B is called bijective if it is injective and
surjective.

• A function I E A ... B is called total if dom(f) = A (so I E A -+

B).

Predicates

• Functions I E A ... JB are called Boolean lunctions or predicates.

• If a and b are Boolean values then ~a, a 1\ b, a V b, a :} B are also
Boolean values, denoting the negation, conjunction, disjunction
and implication respectively.

• For a predicate pEA +-+ JB the universal and existential quan
tification over the set A are denoted by: "Ix E A : p(x) and
3x E A : p(x), respectively.

• If p is a predicate then {x E A I p(x)} is the set of all elements a of
A for which the p(a) evaluates to true; also the notation {x I p(x)}
is used which means that A has to be replaced by dom(p); this
notation is called set comprehension.

Ordering

• A partial ordering on a set A, denoted by a symbol ::;, is a predi
cate in A x A ... JB (denoted in infix notation, i.e. we write a ::; b
instead of::; (a, b)), such that:

- a ::; a, for all a E A (reflexivity)

- if a ::; band b ::; a then a = b (anti-symmetry)

- if a ::; band b ::; c then a ::; c (transitivity).

• If A C B then b is sup(A), called the supremum or the least upper
bound of A with respect to B, if for all a E A : a ::; b and there is
no other element with this property in B. (It can be proved that
the sup is unique.)

367

• Similarly b is inf(Al, called the infimum or the greatest lower
bound of A with respect to B, if for all a E A : b ::; a and there is
no other element with this property in B.

Lambda calculus
Lambda calculus is a formalism that is used in this book to define func
tions. It has its own language and rules to derive new expressions from
given expressions. First we define this language:

• there is a set of variables and a set of constants; they are disjoint,

• each variable and each constant is an expression,

• if El and E2 are expressions then E1(E2) is an expression, called
the application of El to E2,

• if x is a variable and E an expression then (Ax.E) is an expression,
called an abstmction or a lambda expression.

For expressions we have the following rewrite rules. Let x and y be
a variables and E an expression. (We use "=" to express that two
expressions can be obtained from each other by applying a rewrite rule.)

• Q-conversion: (AX. E) = (Ay. E;), where E; denotes the expres
sion E with each occurrence of x replaced by y. Here we assume
that y does not occur (free) in E (see part V for a definition of
"free occurrence" of a variable).

• /J-reduction: (AX. E)(y) = E;.

• 'I-reduction: (AX. E(x» = E.

A rewriting step is called a reduction if the number of A'S has decreased.
An expression that cannot be reduced is called a normal form. The
(first) Church-Rosser theorem states that an expression can be reduced
to at most one normal form. If all normal forms can be evaluated, i.e.
have a value, then all expressions with a normal form obtain the value
of their normal form. As an example consider:

(AX. f(g(x))

where f and 9 are constants that denote given functions. Then the
lambda expression denotes the function ({a, f(g(a)) I a E dom(g)}, if
rng(g) C dom(f). In general if X is the only variable in E then the
lambda expression (AX. E) denotes the function consisting of all pairs
(a, E:). If it is not clear from the context which elements a we have
to consider we write: AX EA. E, to specify that we have to consider
all elements of A for which the expression E can be evaluated. This
is an expression in typed lambda calculus because all variables have a
domain or type. This is the lambda calculus we use in the specification
language. The variables in an expression may be place holders for func
tions, for example (Ay. yea)) denotes the function that assigns to an

368

arbitrary function y the function value for argument a (a is a constant
here). An example of reduction:
(Ay. (AX. y(x)))(a) = (by,B-reduction)
(AX. a(x)) = a (by Ij-reduction).

Principle of structural induction

Structural induction is a generalization of induction over the natural
numbers. Suppose we have a finite set of rules to construct objects out
of given objects and that we have a finite set of atomic objects (i.e.
objects that are not constructed out of others). If we' have to show that
a property holds for all objects then we have to show:

• all atomic objects have the property,

• assuming that all components of an arbitrary object have the prop-
erty we have to prove that the object has the property.

If we take the natural numbers as objects and the construction rule is
"addition by one" then the principle of structural induction says that
we have to prove the property for 0 and under the assumption that it
holds for n we have to show that it holds for n + 1.

369

370

Appendix B

Syntax summary

Meta syntax

• The definition sign for non-terminals is ::=_

• Any part of a syntax in underlined typeface is to be taken literally_

• Any part between 'n' braces may be repeated. So 'a ::= {b}' is
shorthand for 'a ::= bib a'.

• Any part between "[]" square brackets may be omitted. So
'a ::= [b]c' is shorthand for 'a ::= be Ie'.

• Any part between' < >' triangular brackets may be repeated; each
repetition must be preceded by a comma', '. So '< a >' is short
hand for 'a[{.!.a}l'.

• The syntax for identifiers, digits and characters is not further elab
orated.

Syntax base
The syntax base consists of the following sets:

with:

(L,C,TV,V, VN,FN,TN,SN)

L: the set of attributes,
C: the set of constants,
TV: the set of type variables,
V: the set of value variables,
VN: the set of value names,
FN: the set offunction names,
TN: the set of type names,
SN: the set of schema names.

The set TN contains the names of the basic types, i.e. at least 0, IN, ~,
<Q and lB. The sets TV and TN are disjoint and TV = {$, $1, $2, ... }.
The sets V and VN are disjoint. The sets L and V satisfy L and V are
not disjoint. The syntactical variables that range over these sets are:

371

• constant E CU {.L}

• variable E V

• attribute E L

• a.variable E V n L

• value name E VN

• type variable E TV

• type name E TN

• function name E FN

• quantor E {1f,3}

• Ii E {v, t\ ,=?}

Type expressions and type definitions

type expression ::=
type name I type variable I set type I
product type I sequence type I tuple type
{type expression}

set type ::= IF {type expression}

product type ::= type expression ~ product list

product list ::= type expression I product type

sequence type ::= type expression!.

tuple type ::=
type variable I I (attribute i type expression)l
I tuple type ~ tuple type

type definition ::= type name :=type expression

Terms

term ::=
variable I value name I constant I (term) I
value construction I application I s;t te";;' I map term

value construction :: =
set construction I row construction I
sequence construction I tuple construction

set construction ::= i(term)ll {}

row construction ::= {(term)2 I 0

sequence construction ::= i(term)L I Q

372

tuple construction ::= i(attribute!::t.term)ll {}

application ::= function name i term 2
set term ::= i value variable ~ domain 1 term 1
map term ::= i value variable~ domain 1 term 2
domain ::= set construction I set term

value definition ::= value name := term : type expression

Function definition

function definition ::=
function namei (variable 12;.: term ~ signature,

signature ::= type expression ~ type expression.

Predicates

predicate ::= booll :::!predicate I (predicate ~predicate) I
quantor (variable h domain!. predicate -

domain ::= type expression

bool ::= Boolean term

A Boolean term is a term with type 18.

Function declaration

function declaration ::= function name ~ signature ~ predicate

Schema

schema ::= {schema signature Ipredicatel

schema signature ::= (a. variable ~ type expression)

Schema expression

schema expression ::=
schema I (schema expression) I
schema na-;:"e{ (type expressio';)) I
:::! schema expression I -
schema expression 6 schema expression I
schema expression \ ({ a. variable)) I
schema expression 1 «(a. variable))" I
quantor a.variablelpredicate!.schema expression

schema definition ::=
schema name [i (type variable) 21 := schema expression

The following conditions should hold:

373

• the variables (a. variable) left of the symbols \ and t should occur
in the schema signatures of the schema expression,

• the variable behind a quantor should appear in a signature of
the schema expression with the same type expression, and the
predicate should have no free variables or type variables,

• the schema expression in a schema definition may contain type
variables, however these type variables must appear also on the
left hand side of the ":=" symbol,

• schema definitions may not be recursive.

Script

script ::= line I line! script

line ::= type definition I value definition I
function definition I function declaration I
schema definition

There should be a function, that assigns a natural number n to every
line l, with the property that every name occurring in the definition
part of the line is defined itself in a line with a number smaller or equal
to n in case the line is a function definition and in a line with a smaller
number otherwise.

374

Appendix C

Toolkit

The functions are grouped by their kind. They are presented in the
following format:

• "user" name (for example "equality"),

• symbolic name and signature (for example = : $1 X $2 ~ 18),

• - infix or prefix; which indicates how we use the function (for
example "=" is used in infix notation: a = b, while the prefix
notation is = (a,b»,

- strict or non-strict; in the latter case we have to modify the
definition sometimes to guarantee this (for example if f is
defined but not yet strict, then we modify its definition by

j(x):= if x = 1. then 1. else f(x)fl,

- primitive or derived; in the first case the function is defined in
the meta language and in the latter case in the specification
language,

• definition of the function without signature; if a function name is
overloaded there are several definitions,

• auxiliary definitions, if necessary.

General functions

1. equality

• =: $1 X $2 ~ 18

• infix / non-strict / primitive

• this function compares two values and if they are identical
or equivalent (in case of sets and tuples) then the function
value is true else it is false .
.L = .L is true II 'Ix E U : x "I .L ~ x = .L is false.
Note that if "=" is applied to values of different types it will
always be false.

375

2. selection

• if.then.else.ft: 18 X $ X $ => $

• infix I non-strict and lazy I primitive

• if a then b else cft,
if a is troe then the function value is equal to b else to c;
the function is lazy: if a is troe then c may be .L and if a is
false then b may be .L;
if a is .L then the function value is .L.

Numerical functions

3. subtraction

• - := iZ X iZ => iZ
-:= <Qx<Q=><Q

• infix / strict / primitive

• the meaning is the well-known subtraction

4. integer division

• div: IN X IN => IN
div: iZ X iZ => iZ

• infix / stricti primitive

• the meaning of a diu b is the maximal number of b's contained
in a, division by 0 gives .L

5. rational division

.+: <Qx<Q=>~
• infix I strict I primitive

• this is the well-known division for rational numbers; division
by 0 gives .L

6. truncation to integer

• truncint: <Q => iZ

• prefix I strict / primitive

• troncint(x) = max{y E iZ I y:$ x}

7. truncation to natural

• troncnat: iZ => IN
troncnat: ~ => IN

• prefix I strict I primitive

• if x E iZ and x;:: 0 then: troncnat(x) = x,
if x < 0 then troncnat(x) = 0,
else troncnat(x) = max{y E IN I y:$ x}

376

8. conversion to integer

o toint: IN => ~
o prefix / strict / primitive

o toint(x) = +x

9. conversion to rational

o torat: IN => ~
o prefix / strict / primitive

o torat(x) = +x/1

10. addition

0+: IN xIN =>IN
+: ~X~=>~
+: ~X~=>~

o infix / strict / derived

o x + y:= truncnat(toint(x) - ((+0) - toint(y))), for the first
function,
x + y := x - (0 - y) for the second function and
x + y:= x - ((+0/1) - y) for the last function.

11. multiplication

ox:INxIN=>IN
x:~x~=>~

x: ~xlQ=>1Q

o infix / strict / derived

o xxy:= truncnat(torat(x)+((+l/l)+torat(y))),forthefirst
function,
x X y := truncint(torat(x) + ((+1/1) + torat(y))), for the
second function and
x X y := x + ((+1/1) + y), for the last function

12. modulo

o mod: IN X IN => IN
mod: ~ x ~ => ~

o infix / strict / derived

o x mod y:= x - y x (x div y)

13. power

o 1:= ~ x IN => ~
o infix / strict / derived

ox 1 n:= iln = o then (+1/1) else x x x i (n-1)fi

14. less than

377

• <: IN x IN => IB
<: :iZ x :iZ => IB
<: il x il => IB

• infix / strict / primitive

• these are the well-known comparison functions

15. less or equal

• ::;: IN x IN => IB
::;: :iZ x :iZ => IB
::;: il x il => IB

• infix / strict / derived

• x ::; y:= if x = y then true else
if x < y then true else false fi

fi

16. greater

• >: IN x IN => IB
>: :iZ x :iZ => IB
>: il x il => IB

• infix / strict / derived

• x> y:= y < x

17. greater or equal

• 2::: IN x IN => IB
~: :iZ x :iZ => IB
~: il x il => IB

• infix / strict / derived

• x ~ y := y ::; x

18. maximum

• max:INxIN=>IN

• infix / strict / derived

• x max y:= if x::; y then y else x fi

19. minimum

• min:IN x IN => IN

• infix / strict / derived

• x min y:= if x ~ y then y else x fi

20. summation

• sum: 1F($ x ill => il
• prefix / strict / derived

378

• sum (f) := if f = {} then 0
els~ 'll"2(pick(f» + sum(rest(f» fi

Boolean functions

21. implication

• *: IB X IB * IB
• infix / non-strict / derived

• x * y := if x = .J.. then
if y then true else .J..fi

else
if x then y else true fi

fi

22. negation

.': IB*IB

• prefix / non-strict / derived

• ,x:= x * false

23. or

• V: IBxIB*IB

• infix / non-strict / derived

• x Vy:=,x * y

24. and

• " : IBxIB*IB
• infix / non-strict / derived

• x " y:=,(,x V ,y)

25. universal quantification

• forall : 1F($ X IB) * IB

• prefix / strict / derived

• foral/(f) := if f = {} then true
else 'll"2(pick(f» "forall(rest(f» ft

26. existential quantification

• exists: 1F($ X IB) * IB

• infix / strict / derived

• exists (f) := if f = {} then false
else 'll"2(pick(f» V exists(rest(f» ft

Set functions

27. insertion

379

• ins: $ X ./F($) :} ./F($)

• prefix / strict / primitive

• the function satisfies the equation: ins(a,b) = {a} U b

28. choice function

• pick: ./F($):} $

• prefix / strict / primitive

• the function satisfies: pick(x) E x and pick({}) = J.

29. rest of set

• rest: ./F($) :} ./F($)

• prefix / strict / primitive

• the function satisfies: rest(x) = x \ {pick(x)} and rest({}) =
J.

30. element of

• E: $ x ./F($) :} 18

• infix / strict / derived

• x E y:= if y = {} then false else
if x = pick(y) then true else

x E rest(y)

31. subset

fi
fi

• c: ./F($) x ./F($) :} 18

• infix / strict / derived

• x C y:= foral1(z : x I z E y)

32. union

• U: ./F($) x ./F($) :} ./F($)

• infix / strict / derived

• xUy:= if x = {} then y else ins(pick(x),rest(x)Uy)fi

33. intersection

• n := ./F($) x ./F($) :} ./F($)

• infix / strict / derived

• xny :={z:xlzEy}

34. set difference

• \ : ./F($) x ./F($) :} ./F($)

• infix / strict / derived

380

o x\y := {z: x I-.(z E y)}

35. size

o size: 1F($) ~ IN

o prefix / strict / derived

o size (x):= if x = {} then 0 else 1 + size (rest (x))Ji

Sequence functions

36. concatenation

o cat: $. X $ ~ $.

o prefix / strict / primitive

o let a = (al, ... ,am) E $. and c E $ then:
cat(a,c) = (a1o ... ,am,c)

37. head of the row

o head: $. ~ $

o prefix / strict / primitive

o let a = (at, ... , am) E $. then:
head(a) = al

38. tail of the row

o tail: $. ~ $.

o prefix / strict / primitive

• let a = (at, ... , am) E $. then:
tail(a) = (a2, ... ,am)

Row functions

39. projection on one index

• lI'n : $1 X " . X $n X $ ~ $n,
for each n E IN\ {O} we have such a function

• prefix / non-strict / primitive

• for x = (al, a2, ... ,an, anH,"') we have: lI'n(x) = an

40. projection on a set of indices

• II(i" ... ,i.) : $1 X .•• X $n X $ ~ $no for each row (i1o"" ik)
we have such a function, provided that the row is ascending
and ik = n

• prefix / non-strict / primitive

• for x = (ai, a2, . .. , an, an+l,"') we have:
II(i, ,i.)(X) = (ai"", ai.)

41. Cartesian product

381

• prod : 1F($1) X 1F($2) => 1F($1 X $2)

• infix / strict / derived

• prod(a,b):=
if a = {} then {}
else iprod (pick(a), b) U prod (rest (a), b» fi

• auxiliary function:
iprod(x,b) :=

if b = {} then {}
else ins((x,pick(b», iprod(x, rest(b)))
fi: $1 X 1F($2) => 1F($1 X $2)

Tuple functions

42. projection on one attribute

• 1rt: [l : $lJ ~ $2 => $t.
for each attribute l E L there is such a function

• prefix / non-strict / primitive

• for x = {l a, ... } we have: 1rt(x) = a

43. projection on a set of attributes

• II(I" ... ,I.) : [11 : $t. ... , Ik : $kJ ~ $ => [It : $1,"" Ik : $kJ

• prefix / non-strict / primitive

• for x = {ll at. ... } we have:
II(I;" ... ,I;.)(X) = {i;, a;" ... ,1.; • a;.},
provided that {l;" ... ,l;.} C {ll, ... }

44. tuple update

• Ell: $1 X $2 => $, ~ $2

• infix / non-strict / primitive

• {kl at. ... ,km am} Ell {II bl,···,ln bn} =

45. join

where {kl, ... ,km} U {1t. ... ,ln } = {rt. ... ,rp } and
lIi,j: (ri = Ij => Ci = bj) 1\

(ri = kj 1\ ,3t: ri = I,) => c; = aj

• join: 1F($1 X $2) => 1F($1 ~ $2)

• prefix / strict / derived

• join(x, y) :=
if x = {} then {}
else ins(semijoin(pick(x), y),join(rest(x), y» fi

382

• auxiliary function:
semijain(x, y) :=
il x (j) y = y (j) x then ins(x (j) y, semijain(x, rest(y)))

else semijain(x, rest(y)) fi :
$1 x .IF($2) => .IF($1 M $2)

Functions on binary relations

46. domain

• dam: .IF($1 x $2) => .IF($I)

• prefix / strict / derived

• dam(f):=
il I = {} then {} else ins(7r1 (pick(f)) , dam(rest(f))) fi

47. range

• mg: .IF($1 X $2) => .IF($2)

• prefix / strict / derived

• mg(f):=
il I = {} then {} else ins(7r2(pick(f)), mg(rest(f))) fi

48. maximum of a relation

• Imax : .IF($ X Qi) => Qi

• prefix / strict / derived

• Imax(f):=
il 1= {} then 0 else 7r2(pick(f)) max Imax(rest(f))

49. set apply

• setapply:: .IF($1 X $2) X $1 => .IF($2)

• prefix / strict / derived

• setapply(f,x):= {y: rng(f) I (x,y) E j}

50. apply for mappings

• .: .IF($1 X $2) X $1 => $2

• infix / strict / derived

• I.x:= pick(setapply(f, x))

51. inverse

• inv: .IF($1 X $2) X $1 => .IF($2 X $t)

• prefix / strict / derived

• inv(f):= {z :prod(rng(f),dam(f)) I (7r2(Z),7rI(Z)) E j}

383

Bibliography

[Abrial, 1974] J.R. Abrial. Data semantics. Data Base Management,
pages 1-59, 1974. North-Holland.

[Aerts et al., 1992] A.T.M. Aerts, P.M.E. de Bra, and K.M. van Hee.
Transforming functional database schemes to relational representa
tions. In Specification of Database Systems. Workshops in Computing
Series, Springer-Verlag, 1992.

[Agha, 1986] G.A. Agha. ACTORS, A Model of Concurrent Computa
tion in Distributed Systems. MIT Press, 1986.

[Ajmone Marsan et al., 1985] M. Ajmone Marsan, G. Bablo, A. Bobbio,
G. Chiola, G. Conte, and A. Cumani. On Petri nets with stochastic
timing. In IEEE Proceedings of the International Workshop on Timed
Petri Nets, pages 80-87, Torino, Italy, 1985.

[Andrews and Ince, 1991] D. Andrews and D. Ince. Practical Formal
Methods with VDM. McGraw-Hill International, 1991.

[Atkinson et al., 1989] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dit
trich, D. Maier, and S. Zdonik. The object-oriented database sys
tem manifesto. In Proceedings of the First International Conference
on Deductive and Object-Oriented Databases, pages 40-57, Kyoto,
Japan, 1989.

[Bachman,1969] C.W. Bachman. Data structure diagrams. Data Base
1,2, 1969.

[Baeten and Weijland, 1990] J.C.M. Baeten and W.P. Weijland. Pro
cess Algebra, volume 18 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1990.

[Barendregt, 1984] H.P. Barendregt. The Lambda Calculus - Its Syntax
and Semantics. Studies in Logic and Foundations of Mathematics.
North-Holland, 1984.

[Berthomieu and Diaz, 1991] B. Berthomieu and M. Diaz. Modelling
and verification of time dependent systems using time Petri nets.
IEEE Transactions on Software Engineering, 17(3):259-273, March
1991.

385

[Berthomieu and Menasche, 1983] B. Berthomieu and M. Menasche.
An enumerative approach for analyzing time Petri nets. In R.E.A.
Mason, editor, IPIP, Information Processing, volume 83, pages 41-46.
Elsevier Science Publishers, 1983.

[Boardman, 1990] J. Boardman. Systems Engineering: An Introduc
tion. Prentice-Hall, 1990.

[Boehm, 1981] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[Booch, 1991] G. Booch. Object Oriented Design. Benjamin Cummings,
1991.

[Brauer, 1980] W. Brauer. Net Theory and Applications: Proceedings
of Advanced Course on General Net Theory, Processes and Systems,
volume 84 of Lecture Notes in Computer Science. Springer-Verlag,
1980.

[Brodie et al., 1984] M.L. Brodie, J. Mylopoulos, and J. Schmidt.
On Conceptual Modelling: Perspective from Artificial Intelligence
Databases. Springer-Verlag, 1984.

[Buneman and Frankel, 1979] O.P. Buneman and R.E. Frankel. FQL
a functional query language. Proceedings 1979 A CM Sigmod. Inter
national Conference on the Management of Data, 1979.

[Cardelli and Wegner, 1985] L. Cardelli and P. Wegner. On understand
ing types, data abstraction and polymorphism. ACM Computing Sur
veys, 17(4), December 1985.

[Ceri and Pelagatti, 1984] S. Ceri and G. Pelagatti. Distributed
Databases: Principles and Systems. McGraw-Hill, 1984.

[Checkland, 1981] P. Checkland. Systems Thinking, Systems Practice.
John Wiley and Sons Ltd., 1981.

[Chen, 1976] P.P. Chen. The entity-relationship model: Towards a uni
fied view of data. ACM Transactions on Database Systems, 1:9-36,
January 1976.

[Coad and Yourdon, 1990] P. Coad and E. Yourdon. Object-Oriented
Analysis. Prentice-Hall, 1990.

[Codd, 1970] E.F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13:377-387, 1970.

[Cohen et al., 1986] B. Cohen, W.T. Harwood, and M.1. Jackson. The
Specification of Complex Systems. Addison-Wesley, 1986.

[Colom and Silva, 1991] J.M. Colom and M. Silva.. Convex geometry
and semiflows in PIT nets, a comparative study of algorithms for

386

computation of minimal p-semiflows. In G. Rozenberg, editor, Ad
vances in Petri Nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 79-112. Springer-Verlag, 1991.

[Dahl et al., 1970] O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula
67 common base language. Technical Report S-22, Norwegian Com
puting Center, 1970.

[Date, 1990a] C.J. Date. An Introduction to Database Systems: Volume
I. Addison-Wesley, 5th edition, 1990.

[Date,1990b] C.J. Date. An Introduction to Database Systems: Volume
II. Addison-Wesley, 1990.

[David and Alla, 1989] R. David and H. Alla. Du Grafcet aux Resaux
de Petri. Hermes-Paris, 1989.

[David and Alla, 1990] R. David and H. Alla. Autonomous and timed
continuous Petri nets. Proceedings of 11th International Conference
on Applications and Theory of Petri Nets, Paris, 1990.

[Davis and Olson, 1985] G.B. Davis and M.H. Olson. Management. Mc
Graw, 2 edition, 1985.

[Di Giovanni and Iachini, 1990] R. Di Giovanni and P.L. Iachini.
HOOD and Z for the development of complex software systems. In
D. Bjorner and C.A.R. Hoare, editors, VDM'90, VDM and Z - Formal
Methods of Software Development, volume 428 of Lecture on Com
puter Science Notes. Springer-Verlag, 1990.

[Dijkstra, 1968] E.W. Dijkstra. Co-operating sequential processes. Pro
gramming Languages (F. Genuys e.d.), 1968. Academic Press.

[Enderton, 1977] H.B. Enderton. Elements of Set Theory. Academic
Press, 1977.

[Falkenberg and Lindgreen, 1989] E.D. Falkenberg and P. Lindgreen,
editors. Information System Concepts: An In-depth Analysis, IFIP
TC8 Working Conference, Namur, Belgium, 1989. Elsevier Science
Publishers.

[Finkel, 1990] A. Finkel. A minimal coverability graph for Petri nets.
In Proceedings of the 11th International Conference on Applications
and Theory of Petri nets, Paris, 1990.

[Galbraith,1973] J. Galbraith. Designing Complex Organizations.
Addisson-Wesley, Reading Mass, 1973.

[Genrich and Lautenbach, 1979] H.J. Genrich and K. Lautenbach. The
analysis of distributed systems by means of predict ate/transition
nets. In G. Kahn, editor, Semantics of Concurrent Compilation,
volume 70 of Lecture Notes in Computer Science, pages 123-146.
Springer-Verlag, 1979.

387

[Genrich and Lautenbach, 1981] H.J. Genrich and K. Lautenbach. Sys
tem modelling with high level Petri nets. Theoretical Computer Sci
ence, 13:109-136, 1981.

[Genrich,1987] H.J. Genrich. Predictate/transition-nets. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 19S6
Part I: Petri Nets, Central Models and their Properties, volume 254 of
Lecture Notes in Computer Science, pages 207-247. Springer-Verlag,
1987.

[Glaser et al., 1984J H. Glaser, C. Hankin, and D. Till. Principles of
Functional Programming. Prentice-Hall International, 1984.

[Goldberg and Robson, 1983] A. Goldberg and D. Robson. Smalltalk
SO: The Language and its Implementation. Addison-Wesley, 1983.

[Gyssens et al., 1990] M. Gyssens, J. Paredaens, and D. van Gucht. A
graph-oriented object database model. In Principles of Database Sys
tems, 1990.

[Hammer and McLeod, 1981] M. Hammer and D. McLeod. Data de
scription with SDM: a semantic database model. ACM-Transactions
on Database Systems, 6(3), 1981.

[Hayes, 1987] 1. Hayes, editor. Specification Case Studies. Prentice-Hall,
1987.

[Hennessy, 1988] M. Hennessy. Algebraic Theory of Processes. The MIT
Press, Cambridge, 1988.

[Hesselink, 1988] W.H. Hesselink. Deadlock and fairness in morphisms
of transition systems. Theoretical Computer Science, 59:235-257,
1988.

[Hoare, 1985] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[Hopcroft and Ullmann, 1979] J.E. Hopcroft and J.D. Ullmann. Intro
duction to A utomata Theory, Languages and Computation. Addison
Wesley, 1979.

[Hull and King, 1987] R. Hull and R. King. Semantic database mod
elling: Survey, applications, and research issues. ACM Computing
Surveys, 19(3), March 1987.

[IEEE, 1989] IEEE, editor. Petri Nets and Performance Models, Pro
ceedings of the 3rd International Workshop, Melbourne 1989. IEEE
Computer Society Press, 1989.

[IEEE, 1991] IEEE, editor. Petri Nets and Performance Models, Pro
ceedings of the 3rd International Workshop, Melbourne 1991. IEEE
Computer Society Press, 1991.

388

[Jackson, 1983] M. Jackson. System Development. Prentice-Hall Inter
national, 1983.

[Jantzen and Valk, 1980] M. Jantzen and R. Valko Formal properties of
place-transition nets. In W. Brauer, editor, Net Theory and Appli
cations, volume 84 of Lecture Notes in Computer Science. Springer
Verlag, 1980.

[Jensen, 1990] K. Jensen. Coloured Petri nets: a high level language
for system design and analysis. In G. Rozenberg, editor, Advances in
Petri Nets 1990, volume 483 of Lecture Notes in Computer Science,
pages 342-416. Springer-Verlag, 1990.

[Jensen, 1992] K. Jensen. Coloured Petri Nets: Basic Concepts, Anal
ysis Methods and Practical Use. EATC Monographs on Theoretical
Computer Science. Springer-Verlag, 1992.

[Jones, 1990] C.B. Jones. Systematic Software Development using
VDM. Prentice-Hall, 1990.

[Karp and Miller, 1969] R.M. Karp and R.E. Miller. Parallel program
schemata. Journal of Computer and System Sciences, 3:147-195,
1969.

[Kleijnen and Groenendaal, 1992] J.P.C. Kleijnen and W. van Groenen
daal. Simulation: a Statistical Perspective. John Wiley, 1992.

[Lautenbach, 1975] K. Lautenbach. Liveness in Petri Nets. Technical
report, GMD Bonn, 1975. GMD-ISF 75-02-1.

[Lewis and Papadimitriou, 1981] H.R. Lewis and Papadimitriou. Ele
ments of the Theory of Computing. Prentice-Hall, 1981.

[Lundeberg et al., 1981] M. Lundeberg, G. Goldkuhl, and A. Nils
son. Information Systems Development - A Systematic Approach.
Prentice-Hall, 1981.

[Lyytinen, 1987] K. Lyytinen. Different perspectives on information
systems: Problems and solutions. ACM Computing Surveys, 19(1),
March 1987.

[Marca and McGowan, 1988] D.A. Marca and C.L. McGowan. SADT :
Structured Analysis and Design Technique. McGraw-Hill, 1988.

[Martinez and Silva, 1982] J. Martinez and M. Silva. A simple and fast
algorithm to obtain all invariants of a generalised Petri net. In C. Gi
rault and W. Reisig, editors, Application and Theory of Petri Nets:
selected papers from the first and the second European workshop, vol
ume 52 of Informatik Fachberichte, pages 301-310, Berlin, Germany,
1982. Springer-Verlag.

389

[Mazurkiewicz, 1984] A. Mazurkiewicz. Traces, histories, graphs: in
stances of a process monoid. Mathematical Foundations of Computer
Science, Lecture Notes on Computer Science, 176:115-133, 1984.
Springer.

[Meyer, 1988] B. Meyer. Object Oriented Software Construction.
Prentice-Hall, 1988.

[Meyer, 1990] B. Meyer. Introduction to the Theory of Programming
Languages. Prentic-Hall, 1990.

[Milner, 1980] R. Milner. A Calculus of Communicating Systems, vol
ume 92 of Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Mintzberg, 1979] Hoo Mintzberg. The Structuring of Organisations.
Prentice-Hall, 1979.

[Murata,1989] T. Murata. Petri nets: Properties, analysis and appli
cations. Proceedings of the IEEE, 77(4):541-580, April 1989.

[Nijssen and Halpin, 1989] G.M. Nijssen and T.A. Halpin. Conceptual
Schema and Relational Database Design: A Fact Oriented Approach.
Prentice-Hall, 1989.

[Oren et al., 1984] T.!. Oren, B.P. Zeigler, and M.S. Elzas. Simulation
and Model-based Methodologies: An Integrated Perspective, volume 10
of Nato ASI-series F: Computer and Systems Science. Springer
Verlag, 1984.

[Paredaens et al., 1989] J. Paredaens, P. de Bra, M. Gijssens, and
D. van Gucht. The structure of the Relational Data Model. EATC
Monographs on Theoretical Computer Science. Springer-Verlag, 1989.

[Parent and Spaccapietra, 1985] S. Parent and S. Spaccapietra. An al
gebra for a general entity-relationship model. IEEE Transactions on
Software Engineering, SE-11(7), 1985.

[Peterson, 1980] J .L. Peterson. A note on coloured Petri nets. Infor
mation Processing Letters, 11(1):40-43, August 1980.

[Peterson, 1981] J.L. Peterson. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, Prentice-Hall, 1981.

[Petri, 1962] C.A. Petri. Kommunikation mit Automaten. PhD thesis,
Institut fiir Instrumentelle Mathematik, Bonn, Germany, 1962.

[Petri, 1980] C.A. Petri. Introduction to general net theory. In
W. Brauer, editor, Net Theory and Applications: Proceedings of the
Advanced Course on General Net Theory, Processes and Systems, vol
ume 84 of Lecture Notes in Computer Science, pages 1-20, Hamburg,
1979, 1980. Springer-Verlag.

390

[Pless and Pliinnecke, 1980] E. Pless and H. Pliinnecke. A Bibliography
of Net Theory, volume 80-05 of ISF-Report. Gesellschaft fur Mathe
matik und Datenverarbeitung Bonn, 2nd edition, 1980.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs. In Proceed
ings of the 18th IEEE Annual Symposium on the Foundations of Com
puter Science, pages 46-57. IEEE Computer Society Press, 1977.

[Pressman, 1987] R.S. Pressman. Software Engineering - A Practi
tioner's Approach. McGraw-Hill, 2nd edition, 1987.

[Ramamoorthy and Ho, 1980] C.V. Ramamoorthy and G.S. Ho. Per
formance evaluation of asynchronous concurrent systems using Petri
nets. IEEE Transactions on Software Engineering, 6(5):440-449,
September 1980.

[Reed and Roscoe, 1988] G.M. Reed and A.W. Roscoe. A timed model
for communicating sequential processes. Theoretical Computer Sci
ence, 58:249-261, June 1988.

[Reisig, 1985] W. Reisig. Petri Nets: an Introduction. Prentice-Hall,
1985.

[Reisig, 1987] W. Reisig. Place-transition systems. Petri Nets: Central
Models and their Properties. Advances in Petri Nets 1986 Part 1.
LNCS 254, 1987.

[Revuz, 1975] D. Revuz. Markov Chains. North.Holland/ American El
sevier, 1975.

[Rishe, 1988] N. Rishe. Database Design Fundamentals. Prentice-Hall,
1988.

[Ross, 1977] D.T. Ross. Structured analysis: A language for communi
cating ideas. IEEE Transactions on Software Engineerin9, SE-3(1),
1977.

[Ross, 1983] S.M. Ross. Stochastic Processes. MacMillan, 1983.

[Ross, 1990] S.M. Ross. A Course in Simulation. Collier MacMillan,
1990.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[Schek and Scholl, 1986] H.J. Schek and M.H. Scholl. The relational
model with relation-valued attributes. Information Systems, 11:137-
147, 1986.

[Schiffers and Wedde, 1978] M. Schiffers and H. Wedde. Analyzing pro
gram solutions of coordination problems by CP-nets. Mathematical
Foundations of Computer Science - Lecture Notes on Computer Sci
ence, 64:462-473, 1978.

391

[Sernadas et al., 1991] C. Sernadas, P. Resende, P. Gouveia, and A. Ser
nadas. In-the-Iarge object-oriented design of information systems. In
[van Assche et al., 1991], 1991.

[Shannon, 1975] R.E. Shannon. Systems Simulation: the Art and Sci
ence. Englewood Cliffs, Prentice-Hall, 1975.

[Shipman, 1981] D.W. Shipman. The functional data model and the
data language daplex. A CM Transactions on Database Systems,
6:140-173,1981.

[Sibertin-Blanc, 1991] C. Sibertin-Blanc. Cooperative objects for the
conceptual modelling of organizational information systems. In [van
Assche et al., 1991], 1991.

[Sifakis, 1977] J. Sifakis. Use of Petri nets for performance evaluation.
In H. Beilner and E. Gelenbe, editors, Proceedings of the Third Inter
national Symposium IFIP WG. 7.9., Measuring, modelling and eval
uating computer systems, pages 75-93, Bonn-Bad Godesberg, 1977.
North-Holland.

[Sifakis, 1980] J. Sifakis. Performance evaluation of systems using nets.
In W. Brauer, editor, Net theory and applications: Proceedings of
the advanced course on general net theory, processes and systems, vol
ume 84 of Lecture Notes in Computer Science, pages 307-319, Ham
burg, 1979, 1980. Springer-Verlag.

[Snepscheut, 1985] J.L.A. van de Snepscheut. Trace Theory and VLSI
Design. LNCS 200. Springer-Verlag, 1985.

[Sol and van Hee, 1991] H.G. Sol and K.M. van Hee, editors. Dynamic
Modelling of Information Systems. North-Holland, 1991.

[Sommerville, 1989] 1. Sommerville. Software Engineering. Addison
Wesley Publishing Company, 3rd edition, 1989.

[Spaccapietra, 1987] S. Spaccapietra. Entity-Relationship Approach:
Ten Years of Experience. North-Holland, 1987.

[Spivey, 1987] J .M. Spivey. Understanding Z. A Specification Language
and its Formal Semantics. Cambridge University Press, 1987.

[Spivey, 1989] J .M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, 1989.

[Teorey et al., 1986] T.J. Teorey, D. Yang, and J.P. Frij. A logical de
sign methodology for relational databases using the extended entity
relationship model. Computing Surveys, 18(2):197-222,1986.

[Thompson, 1991] S. Thompson. Type Theory and Functional Program
ming. Addison-Wesley, 1991.

392

[Tsichritzis and Lochovsky, 1982] D.C. Tsichritzis and F.H. Lochovsky.
Data Models. Prentice-Hall, 1982.

[Ullman, 1988] J.D. Ullman. Principles of Database and Knowledge
base Systems. Computer Science Press, 1988.

[van Assche et al., 1991] F.J.M. van Assche, B. Moulin, and C. Rolland,
editors. The Object Oriented Approach in Information Systems, IFIP
TC8 Working Conference, Quebec, Canada, 1991. North-Holland.

[van Benthem, 1983] J.F.A.K. van Benthem. The Logic of Time. D.
Reidel Publishing Company, 1983.

[van der Aalst, 1992] W.M.P. van der Aalst. Timed Coloured Petri Nets
and their Application to Logistics. PhD thesis, Eindhoven University
of Technology, 1992.

[van Hee and Verkoulen, 1991] K.M. van Hee and P.A.C. Verkoulen. In
tegration of a data model and high· level Petri nets. In Proceedings
of the 12th International Conference on Applications and Theory of
Petri Nets, pages 410-431, Gjern, Denmark, June 1991.

[van Hee and Verkoulen, 1992] K.M. van Hee and P.A.C. Verkoulen.
Data, process and behaviour modelling in an integrated specification
framework. In H.G. Sol and R.L. Crosslin, editors, Proceedings of the
Second International Conference on Dynamic Modelling of Informa
tion Systems, Washington, D.C., USA, March 1992. North-Holland.

[van Hee et al., 1989a] K.M. van Hee, G.J. Houben, and J.L.G. Dietz.
Modeling of discrete dynamic systems - framework and examples.
Information Systems, 14(4):277-289, 1989.

[van Hee et al., 1989b] K.M. van Hee, L.J. Somers, and M. Voorho
eve. Executable specifications for distributed information systems. In
[Falkenberg and Lindgreen, 1989], pages 139-156, Narour, Belgium,
1989.

[van Hee et al., 1991] K.M. van Hee, L.J. Somers, and M. Voorhoeve.
A formal framework for dynamic modelling of information systems.
In [Sol and van Hee, 1991], pages 227-236, 1991.

[Ward and Mellor, 1985] P.T. Ward and S.J. Mellor. Structured Devel
opment for Real- Time Systems. Yourdon, 1985.

[Wilkstrom, 1987] A. Wilkstrom. Functional Programming IJsing ML.
Prentice-Hall, 1987.

[Woodcock and Loomes, 1988] J. Woodcock and M Loomes. Software
Engineering Mathematics. Pitman, 1988.

[Wordworth, 1992] J.B. Wordworth. Software Development with Z.
A pratical approach to Formal Methods in Software Engineering.
Addison-Wesley, 1992.

393

[Wymore, 1967] A.W. Wymore. A Mathematical Theory of Systems
Engineering: The Elements. John Wiley and Sons Inc. New York,
1967.

[Yourdon, 1989] E. Yourdon. Modern Structured Analysis. Prentice
Hall, 1989.

[Zeigler, 1976] B. Zeigler. Theory of Modeling and Simulation. Wiley
Intersdence, 1976.

[Zeigler, 1982] B.P. Zeigler. Multi facetted Modelling and Discrete Event
Simulation. Academic Press, 1982.

394

Index

! decoration, 49, 73
, decoration, 49, 73
(;),85
=,65
? decoration, 49, 73
An,A*,Aoo,A+,85
X -similar ~ x, 89

II ... , 66
.1, 65
·,69
U,66
(, 24, 85
Ell, 67
7ft, 66
a, 88
T,88
k-bounded net, 167

A, 104
absolute time, 272
abstract simplex, 177
Ackermann function, 346
active domains, 172
active objects, 217
activity network, 166
actor, 15,47
actor framework, 84
actor model, 107
actor model properties, 112
actor modeling steps, 137
actor roles, 147
aggregate, 194
antithetic variates technique, 290
applicable firing assignment, 110
applicative order reduction, 321
association simplex class, 178
attribute domain, 203
attribute simplex class, 178
automated systems, 21
autonomous behavior, 25, 86

395

autonomous trace, 86

base, 253
basic type, 63, 301
bisimilar, 89
bounded nets, 167
bounded occurrence, 317
breadth-first search, 264
broadcasting, 152
business systems, 16

C, 103, 104
CA,107
cancellation token, 158
canonical form, 247
cardinality constraint, 41, 97
cat, 67
CB,94
channel, 47, 122
class diagram, 37
class model, 93
classical Petri nets, 47, 163
client-server, 219
closed actor, 54, 104, 106
CM,101
CN,93
com, 95
complex class, 35
components, 302
composition of actor models, 119
composition of object models, 118
compound object, 177
concrete simplex, 177
conflict free, 164, 279
congruential method, 287
connector, 47
constants, 301
constraint, 96
constraints, 28, 40
construction model, 11

consumption function, 237
cont, 100
context actor, 137, 139
continuous processes, 159
control variates technique, 289
CR,94
critical path method, 279
CT,107

D"e, 96
data oriented, 134
dead set, 242
deadlock, 25, 87, 242
decomposition guidelines, 140, 145
defined predicate, 72
delay, 272, 277
depth-first search, 264
deterministic transition law, 26
deterministic transition system,

87
direct addressing, 152
discrete dynamic systems, 12
DK,97
DM,94
domain class, 39
domain exclusion constraint, 97
domain key constraint, 43, 97,

353
domain type, 310
DX,97
dynamic programming, 345

E,86
eager autonomous behavior, 27,

88
earliest arrival time, 278
empty row, 302
empty sequence, 302
empty set, 302
empty tuple, 302
entity simplex class, 178
entity-relationship schema, 208
environment, 161
evaluation function, 315, 321
event, 24, 86
exclusion constraint, 43, 97, 354
executable specifications, 297,298
expressive comfort, 297

396

expressive power, 297
extendible language, 298
external events, 27, 118

F, 107, 108
t,110
FA,110
factorial function, 349
fairness, 155
FC,97
file as one token, 149
file as set of tokens, 151
filter, 236
finite mathematical value, 298
finite state machine, 165
firing assignment, 110
firing rules, 108
firing variable, 248
flat net model, 103
flow balance, 238
flow function, 237
flow matrix, 235, 238
FN,107
formalism, 13, 83
framework, 83
free choice nets, 164
free constraint, 101
free value universe, 303
free variable occurrence, 318
function application, 68
function declaration syntax, 331
function definition syntax, 323
function graph, 325
function signature, 310
function universe, 309
functional dependencies, 204
functional equation, 249
functional model, 11
functional object model, 201
functionality, 43,51,97,122
functions, 65

global constraint, 46, 101, 173
graph of function, 90
graphical representation, 52
guidelines, 133

HA,104
head,67

hierarchical net model, 104
history, 192
HL,105

I, 103, 104
i subscript, 73
Ie, 100
ID, 107
identity filter, 237
if then else fl, 66
IM,101
independent place invariants, 244
induced transition system, 111
information preservation, 200
information simplex, 177
information system, 18, 137
inheritance constraint, 43, 100,

354
initial event, 24
injectivity, 43, 97
input completeness, 51, 121
ins, 67
instance, 38, 94, 95, 199, 204
intelligent information systems,

20
inter-organizational information

systems, 20
interval-timed actor model, 271
invariance properties, 61
invariant place property, 240
inverse transformation method,

287
irreducible data model, 203
isomorph, 91, 209
iterated application, 342

join M, 64

key constraint, 43, 97
knowledge, 217, 218

£,86
L, 103, 104
l(p),87
lambda calculus, 298
latest arrival time, 278
lazy function, 311
lexicographical ordering, 306
life cycle, 28, 217

397

limit of a monotonous sequence,
341

linear recursive functions, 342
live processor, 241
livelock, 25,89, 117, 280
local constraint, 173

M, 104, 105
m-complex class, 218
map construction, 69
map term, 316
marking, 236
maximal autonomous behavior,

86
maximal autonomous trace, 86
maximal exclusion constraints, 180
measurement actors, 139
memoryless transition system, 87
message, 217
meta syntax, 313
method, 131,217
method of successive approxima-

tions, 342
minimal key constraint, 180
minimal support invariant, 254
model, 83, 199
model making, 61, 131
model transformation, 131
modeling language, 298
molecular object, 177
monitoring information systems,

19, 197
monomorphic function, 65, 310
monotonous function, 341
monotonous sequence, 341
monotonous transition system, 88,

114
multi-valued dependencies, 204
mutual exclusion, 155

N,85
negative correlation, 289
nested relational schema, 212
New, 60, 73
Newton-Raphson method, 346
non-deterministic transition law,

26
non-elementary actor, 47

non-negative place invariant, 242
non-strict function, 311
normal form, 203
normal form of a set, 307

0, 103, 104
o-actor,218
o-complex class, 218
o-object method, 219
object, 15
object framework, 84, 199
object life cycle, 154
object model, 35, 101, 199
object oriented, 134
object oriented frameworks, 200
object oriented modeling, 217
object roles, 146
object universe, 96
occurrence graph, 263
office information systems, 20
OM, 107
open actor, 53, 104, 106
OU,96
output completeness, 51, 121
overloading, 68, 309

P, 103, 104
pair, 302
parent function, 107
partial functions, 68
path, 24, 89
PC, 101
Petri filter, 237
pick, 67
place invariant, 144, 234, 238
planning, 192
polling, 168
polymorphic function, 65, 310
positive place invariant, 243
predicate, 71
predicate syntax, 330
prefix pi, 85
prefix of a trace, 24
prefix-closed, 85
primary key, 203, 208
primitive recursive function con

struction, 344
process oriented, 133

398

processing time, 156
processor, 47
processor characteristics, 51,121
processor execution rules, 54
processor relation, 49, 108
product type, 304
product type constructor, 304
production function, 237
protocol, 219, 263
prototype, 283

Q~coverability tree, 264

Rp, 108, 109
Rr ,c,96
range class, 39
range exclusion constraint, 97
range key constraint, 43, 97
range type, 310
reachability, 263
reachable states, 25
realizable, 261
recursion, 322
recursion operator, 340
recursive functions, 70
referential integrity, 204
regression analysis, 286
regular values, 308
relation, 204
relational data model, 200
relational data modi, 203
relational instance, 203
relational schema, 203
relationship constraint, 97
relationship path, 98
relative time, 272
representation function, 96
rest, 67
RG,94
RK,97
RN,93
root simplex class, 101
root simplex class, 101
row, 64
row constructor, 302
RX,97

safe net, 167
SC,I01

schema, 50, 72, 73, 199
schema definition semantics, 336
schema definition syntax, 334
schema equality, 336
schema expression syntax, 333,

334
schema operator, 74
schema universe, 333
scope, 317
script, 75, 337
sequence, 64,85,302
sequence constructor, 302, 304
sequential process, 153
serializability, 116
set, 64
set constructor, 302
set restriction, 68
set theory, 298
set type, 304
signature, 66, 323
sim, 94
similarity, 89, 274, 275
simple singular value, 308
simplex class, 34
simulation, 233
singular value, 308
SN,93
specification, 61
specification language, 298
St, 109
stable function, 341
stage, 219
standard constraint, 97
standard term, 318
standardizing, 318
state, 23, 39, 109, 219
state machine, 153, 165, 218
state space, 23, 88, 109
static type system, 297
store, 47, 106, 122
strict function, 311
strongly memoryless transition law,

28, 88
successive approximations, 341
suffix-closed, 85
support, 254
surjectivity, 43, 97
synchronization, 154

399

syntactical transformation func
tion 6, 335

syntax base, 313
system composition, 30, 118

T, 88, 107
t subscript, 73
tail, 67
target system, 137
TC,100
terms, 69, 317
time, 111
time dependent, 192
time domain, 24, 88, 107
time-out, 157
timed colored Petri nets, 49
timeless actor models, 163
Tl,87
token, 15, 35, 109
token identification, 55
token priority, 159
token time, 54, 145
top, 104
totality, 43, 51, 97, 121
tr, 110
trace, 24, 86
transaction, 219
transition balance, 260
transition invariant, 234, 260
transition law, 25, 86, 111
transition relation, 87, 110
transition system, 86
transition systems framework, 84
transition time, 55, 111
Trans Time, 60, 73
trap, 242
tree constraint, 45, 100, 353
tuple, 64, 204, 302
tuple compatibility, 307
tuple equivalence, 307
tuple join, 307
tuple type constructor, 304
type, 39
type and value constructors, 64
type checking, 233
type definition syntax, 314
type definitions, 68
type function, 318

type universe, 304
type variable, 65
typed lambda expression, 316
typed set theory, 298

universal complex class, 37,93
universal constraint, 173

validation, 132
value, 39
value simplexes, 218
value universe, 305
valueless actor models, 162
verification, 61, 132

Wp ,89
weights, 238
well-typed function declaration,

332
well-typed function definition, 324
well-typed predicates, 330
well- typed schema, 334

400

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91107 E.PolI

91/08 H. Schepers

91109 W.M.P.v.d.Aalst

91110 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91111 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der W oude

91112 E. van der Sluis

91113 F. Rietman

91114 P. Lemmens

91115 A.T.M. Aerts
K.M. van Hee

91116 AJJ.M. Marcelis

91117 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ...)then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICA TIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91118 Rik van Geldrop

91119 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91122 G. Wolf

91123 K.M. van Hee
LJ. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91125 P. Zhou
J. Hooman
R. Kuiper

91126 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91130 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91132 P. Struik

91133 W. v.d. Aalst

91134 J. Coenen

91/35 F.S. de Boer
J.w. Klop
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92101 J. Coenen
J. Zwiers
W.-P. de Roever

92102 J. Coenen
J. Hooman

92103 J.C.M. Baeten
J .A. Bergstra

92104 J.P.H.W.v.d.Eijnde

92105 J.P.H.W.v.d.Eijnde

92106 J.C.M. Baeten
J .A. Bergstra

92107 R.P. Nederpelt

92108 R.P. Nederpelt
F. Kamareddine

92109 R.C. Backhouse

92110 P.M.P. Rambags

92111 R.C. Backhouse
J.S.C.P.v.d.woude

92112 F. Kamareddine

92113 F. Kamareddine

92114 J.C.M. Baeten

92115 F. Kamareddine

92116 R.R. Seljee

92117 W.M.P. van der Aalst

92118 R.Nederpelt
F. Kamareddine

92119 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92120 F.Kamareddine

92121 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the WarshalllFloyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92122 R. Nederpelt
F .Kamareddine

92/23 F. Kamareddine
E.K1ein

92124 M.Codish
D.Dams
Eyal Yardeni

92125 E.Pol1

92126 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92127 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J .H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 KM. van Hee

93/13 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

BOllum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimConlExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

	Contents
	1. Introduction
	21. Semantic concepts
	21.1 Values and types
	21.2 Functions
	22. Constructive part of the language
	23. Declarative part of the language
	23.1 Predicates and function declarations
	23.2 Schemas and scripts
	24. Methods for function construction
	24.1 Correctness of recursive constructions
	24.2 Derivation of recursive constructions
	25. Specification methods
	25.1 Value types for complex classes
	25.2 Specification of processors
	References and Further Reading
	Exercises
	Appendix A : Mathematical notions
	Appendix B : Syntax summary
	Appendix C : Toolkit
	Bibliography

