

An algebraic approach to transactional processes

Citation for published version (APA):
Beek, van, H. M. A. (2002). An algebraic approach to transactional processes. (Computer science reports; Vol.
0218). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/4c4b4d5e-c4f7-4896-baa1-9412f9905584

An Algebraic Approach to Transactional Processes

H.M.A. van Beek

Department of Mathematics and Computing Science
Technische Unversiteit Eindhoven

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
harm@win.tu€.nl

Abstract

We present a set of operators in order to simplify the modelling of transactional behaviour
of processes using process algebra. We give an axiomatic semantics of the operators presented.
Apart from that, we give their operational semantics using Plotkin-style deduction rules. Our
goal is to give formal specifications of Internet applications using process algebra, for which
transactional behaviour should be modelled.

1 Introduction

Nowadays, a growing amount of activities take place via the Internet. To give some examples,
one can vote, visit an auction and make payments via the Internet instead of going to a polling
place, auction hall or a bank. Most of these processes are based on the concept of transactions.
A transaction can be seen as a "set" of (inter)actions which occur "as a group" [14]. I.e., they
either all or none succeed. This means that if during a transaction something goes wrong, the
visitor does not have to fear that his vote is counted without him wanting to, that his correct bid
for an object is ignored or that he pays an amount of money which will never reach the receiver's
account. If the transaction isn't finished correctly, it is undone as if it never took place.

Apart from Internet applications, nearly all database systems implement transactional access:
after doing table updates, one has to commit the updates to make them visible to other users. As
long as the updates are not committed, they can be undone (rolled back).

So transactions cover a significant part of all processes. Our goal is to give formal specifications
of Internet applications for distributed consensus [4, 3] which comes as close to real-life applica
tions as possible. We therefore need to have a formalism to handle transactional processes. Since
we have chosen to use process algebra [7] for the specification of Internet applications, we prefer
modelling transactional behaviour of processes in process algebra. Although transactional be
haviour can already be specified in process algebra with recursion (as will be proven in Section 6),
introducing specific transactional operators cause specifications being shorter and thus more leg
ible and manageable. In this paper we present these operators by giving both an axiomatic and
operational semantics.

In Section 2, transactions are explained in more detaiL We give an example by which the usage
of transactional processing is clarified in Section 3. Next, in Section 4, we adapt the concept of
transactions in a way that makes it able to specify transactional behaviour using process algebra.
We do this by using axiomatic semantics. In Section 5 we give operational semantics for the
operators. We make use of the semantics for proving soundness of the axioms in Section 6.
Finally, we discuss future work and related work in Sections 7 and 8 and we draw some final
conclusions in Section 9.

1

2 Transactions

Gray and Reuter [17] define a transaction as a "set" of (inter)actions which occur "as a group",
meaning that they either all succeed, or none of them do. If all actions within a transaction are
completed, the global state can be changed by an atomic and synchronized commit statement.
During execution of this commit statement no other process can access data updated by that
statement.

To get a feeling for the usage of transactions, have a look at the following example. Suppose
someone is going to the polls, e.g. to vote for a president. Then this voting process consists
of several steps. First of all, the voter has to identify himself by showing his passport. If the
identification succeeds, he gets a ballot containing the names of the candidates. The voter enters
the polling booth, fills in the ballot and leaves the polling booth. Up till now, the voter has not
voted yet. By destroying the ballot any time in the process, the voting is rolled back. However,
if the voter puts his ballot in the ballot box he "commits" his vote. In this example, the commit
action is an atomic action: putting the ballot in the ballot box. However, it might be possible that
this action cannot be atomic. E.g. when doing a payment from one bank account to the other.
The first account should be reduced and the second one increased. Suppose that something goes
wrong while increasing the second account after the first one has been reduced. Then the entire
transaction should be undone in such a way that the owner of the first account gets his money back
and the second account contains exactly the amount of money as before starting the transaction.
So transactions help in coupling related actions that should all succeed or none of them.

Another example where transactions can be convenient is when two or more parallel processes
access shared data. E.g., suppose that two persons try to book the final seat for a flight. They
both log in to the airline's website and fill in and submit the booking form. Then by submitting

the form, they do both update shared data, viz. the set of available seats. When not using
transactions, the flight can get overbooked or one of the two passengers does not get registered
although he received a confirmation. So transactions can be of interest if parallel processes access
shared data.

As shown in the examples, the sharing of data can lead to unwanted or unexpected behaviour
since updating and reading of the data can interleave. To prevent applications from having un
expected behaviour, its parallel components should meet the so-called ACID properties [16, 181.
ACID is an acronym for atomicity, consistency, isolation and durability.

Atomicity A transaction's changes to the state are atomic: either all happen or none happen.

Consistency A transaction is a correct transformation of the state. The actions taken as a group
do not violate any of the integrity constraints associated with the state.

Isolation Even though transactions execute concurrently, it appears to each transaction, T, that
other transactions take place either before T or after T. So isolation means that a program
under transaction protection must behave exactly as it would do in single-user mode.

Durability Once a transaction completes successfully (commits), its change to the state survives
failure.

Processes that meet all four characteristics are called transactions. Transactions, and therefore
atomic actions, are the basic building blocks for constructing applications. Transactions can be
nested. So a transaction can contain subtransactions.

In general, a transaction consists of subtransactions, read and write actions, ended by a commit
action. If during a transaction something goes wrong, a rollback takes places, undoing all data
changes, and the transaction can start over again. If all actions succeed, the commit statement
causes the data changes to be durable.

During execution of parallel transactions, a transaction can lock other transactions by accessing
shared data. That is, transactions can cause other transactions to come in a state in which they are
not allowed to execute specific actions. This locking mechanism prevents accessing so-called dirty

data (i.e. data that has been changed, but not committed yet) by using read locks. Furthermore,

2

by using write locks it prevents having lost updates, i.e. changed data is updated by another
transaction before it had been committed. Unlocking takes place while committing or rolling back
a transaction.

In this paper we focus on transactions that are not allowed to update data that is updated by
another running transaction, so-called first degree isolated 1 transactions. So we only take write
locks into account. Read locks can be added to the formal definition for transactions in a similar
way as write locks. So by leaving out read actions and read locks we do not reduce the complexity
in a major way. Since we focus on adding transactional behaviour of the processes, we also leave
out the explicit changes to the data space.

To give an idea on how transactions are used, we first give an example in Section 3. After that,
we explain the way we adapt the concepts of transactions to process algebra.

3 Example

We give a small example which nicely shows the behaviour of the transactional operator in defining
processes. In this section, we only give some informal definitions of the operators. They will be
formalized in later sections. Have a look at the following two processes:

(a :~ 0 . a:~ a + 2) II (a:~ 1 a:~ a X 2)

and
((a :~ 0 a:~ a + 2)) II ((a:~ 1 a:~ a X 2))

The assignments to variable a can be seen as atomic actions. By using the operator we
compose these actions into sequentially executable processes. E.g., a: = 0 a: = a + 2 specifies
that first a becomes 0 after which a is increased by 2.

Both processes consist of two subprocesses which are placed in parallel using the merge operator
(II). As mentioned, each subprocess sequentially executes two assignments to variable a. In the sec
ond process, we make use of ((and !! brackets to embrace the subprocesses, which turns them into
transactions. Since both transactional processes ((a :~ 0 . a:~ a + 2)) and ((a :~ 1 a:~ a X 2))
access shared variable a simultaneously, write access to variable a in one of the transactions locks
the other transactions until a rollback or commit takes place. See Figure 1 for the intended process
graphs of both processes.

In the first process, normal interleaving of the two subprocesses on either side of the merge
operator is allowed. This leads to 6 (2f~!) possible solutions, resulting in three possible outcomes:
a equals 2, 4 or 6.

By turning both subprocesses into transactions, write access to a in one of the subprocesses
leads to locking the other subprocess (see the right graph in Figure 1). If a subprocess is not
finished (i.e. if only one of the two actions is executed) a rollback (R) can take place, resulting
in a transition to the state before starting the subprocess. If both actions in a subprocess are
executed, the transaction can commit (C), which leads to unlocking the other subprocess.

It can be easily seen that although we have an infinite number of possible executions (viz.
rollbacks can take place infinitely often), if the process finishes then a equals 2.

The example given in this section nicely shows the expressiveness of the transactional operator
for defining transactional behaviour.

4 Adding Transactions to Process Algebra

Our starting point is an algebraic axiomatisation BPA (Basic Process Algebra), as described
in [7]. The signature of BPA consists of action alphabet A, alternative composition operator +
and sequential composition operator '. The axioms for BPA, Al-5, are given in Table 1.

1 More information on degrees of isolation can be found in Section 7.2.

3

(a :~ 0 . a:~ a + 2) II (a:~ 1 a:~ a X 2) ((a :~ 0 . a:~ a + 2)) II ((a:~ 1 a:~ a X 2))

a = 2, a = 4 or a = 6

a=2

Figure 1: An example of using the transactional operator.

To group actions into transactions, we need a transactional composition operator. As men
tioned in Section 3, we turn a process into a transaction by embracing it using ((and)1 brackets.
In this paper we focus on transactional behaviour of the processes, so we leave out the actual data
changes. Furthermore, we abstract from read access to shared variables. Therefore we can look at
an action a as being a write action to a shared variable which is uniquely identifiable by a. The
right process in Figure 1, for example, would be modelled by ((a. a))II((a. a)).

If a transaction executes action a, a E A, all transactions running in parallel with this trans
action should be locked with respect to write access for shared variable a. During execution of a
transaction, something can go wrong, e.g. a connection gets lost or a time-out takes place. The
entire transaction has to be rolled back, unlocking all other transactions that were locked by ac
tions executed in this transaction. After this rollback, the transaction can start over again. If
no rollback takes place, the transaction can commit, causing other transactions to get unlocked
as well. For specifying this mechanism, we make use of an auxiliary operator ((_, _, -II' The first
parameter will be used for storing the actual transactional process. In case of a rollback, we make
use of this parameter to restart the process. The second parameter is used for storing the set of
executed actions, i.e. the shared variables that are updated. This set is used for the unlocking of
other transactions and resetting the variable's values. Note that a set will be sufficient since all
variables have only one value before being updated by a transaction. Apart from that, only the
first write action from within a transaction influences the locking mechanism. Finally, the last
parameter contains that part of the process that needs to be executed before the transaction can
commit. So ((x, A, Y)I can be read as ((transactional process x, which has already executed the set
of (unique) actions A and still has to execute process y before a commit statement can take place".

Transaction ((x, 0, x)) can be compared with transaction ((x)) which has not executed any of
its actions yet. If a transaction ((x, A, YI) has already executed an action, i.e. if A f:- 0, it can
roll back, using rollback action R A . This causes all transactions that are locked with respect to
variables in A to get unlocked. Next, ((x)) can start over again. If a transaction commits, action
C A is executed which also unlocks other transactions. Since we abstracted from the data changes,
RA and CA behave equally. So we make use of U C!2nlocking action) to represent either C or R.

Definition 4.1 Let A be a set of actions, A C; A and U be an unlocking action, U E {C, R}. Then
UA is the unlocking action that unlocks all actions in A that are locked in other transactions, once.

4

x+y y+x Al ~UB,h UB Ll
(x+y)+z z+(y+z) A2 [anl, an+l ifa=b L2
x+x x A3 [anl, an ifai-b L3
(x + y)z xz +yz A4 [al, a L4
(xy)z x(yz) A5 [axl, [al,· [xl, L5

[x+yl, [xl, + [yl, L6
xlly x~y+y~x Ml
UA ~X UA lxJ A M2 lUBJ A UB ULl
an~X an[xJa M3 lanJ A an - l ifaEA/\n>O UL2
a~x ax M4 lanJ A an ifa¢AVn=D UL3
UA X~y UA (xlllyJ A) M5 laJ A a UL4
anx~y an(xll [yJa) M6 laxJ A laJ A 'lxJA UL5
ax~y a(xlly) M7 lx + yJ A lxJ A + lyJ A UL6
(x+y)~z x~z + y~z M8

((x)) ((x, 0, x)) TRl
((x,0,UB)) U~ . C~ TR2
((x,A,UB)) U~,CA +RA ' ((x)) if Af ° TR3
((x,A,an)) R A ' ((x)) ifn>O/\Af0 TR4
((x, 0, %)) ao.C{a} TR5
((x,A,ao)) ao . CA U{a} + R A . ((x)) ifa l"A /\Af0 TR6
((x,A,ao)) a· CA + R A . ((x)) if a E A TR7
((x,0, a)) ao.C{a} TR8
((x,A,a)) ao . CA U{a} + R A . ((x)) ifal"A/\Af0 TR9
((x,A,a)) a· CA + R A . ((x)) if a E A TRlO
((x, 0, UBy)) U~ . ((x, 0, y)) TRll
((x,A,UBy)) U~· ((x,A,y)) + R A · ((x)) if Af ° TR12
((x, A, anY)) R A · ((x)) ifn>O/\Af0 TR13
((x, 0, %y)) %. ((x, {a},y)) TR14
((x, A, aoY)) %. ((x,AU{a},y)) +RA · ((x)) ifa l"A /\Af0 TR15
((x, A, aoY)) a ((x ,A,y)) + R A · ((x)) if a E A TR16
((x,0, ay)) ao· ((x, {a},y)) TR17
((x,A,ay)) ao· ((x,AU{a},y)) +RA · ((x)) ifal"A/\Af0 TR18
((x,A,ay)) a ((x,A,y)) + R A · ((x)) if a E A TR19
((x, A, y + z)) ((x,A,y)) + ((x,A,z)) TR20

Table 1: PAtrans: Process Algebra with Transactions

We introduce a new action alphabet, 1I1L, containing unlock actions:

1UL ~ {UA I U E {C, R}, A C; A} .

As can be seen in Definition 4.1, execution of a unlocking action unlocks actions once. If
more than two transactions run in parallel, actions can get locked more than once. Therefore,
we provide a mechanism to extend actions with a locking counter indicating how many times the
action is locked.

Definition 4.2 Let a be an action and n be a natural number. Then an is a lockable action.
Action an represents action a which is locked n times. In anI n is called a lock counter.

Again, we introduce a new action alphabet, L, containing lockable actions:

IL ~ {an I a E A, n E N} .

If transaction ((x, A, y!) executes action a for the first time, i.e. a rt A, then a is extended
with a lock counter having value 0 and A is extended with a. If the transaction executed an a
before, i.e. a E A, no locking counter is added since the transaction already has exclusive rights
on action a. We now have all ingredients for giving the axiomatic semantics of the transactional
operators, TRl-20 in Table L TR2 and TR3 state that if the only action in a transaction is a
unlock action (C B or R B), then this action is the result of a nested sub-transaction. This unlock
action should not unlock actions outside the transactions, so B is replaced by 0. After this (final)

5

action, the transaction can be committed. TR4-7 handle lockable actions. The transaction is not
allowed to execute a locked action (an, n > 0, TR4), so in that case only a rollback can take place,
after which the transaction can start over again. If the lockable action is not locked, i.e. its lock
counter equals 0, it can be executed. Next, the transaction can be committed. As mentioned, we
differentiate between actions that occur in A and those that do not (TR5-7). Axioms TR8-1O are
similar to TR5-7, and TRll-19 are similar to TR2-1O.

We still need some operators to increase and decrease the lock counters. We introduce two
operators, [x] a and l x J A on processes to lock and unlock processes, respectively. The locking
operator has two parameters, process x and action a. [x] a means that all lockable a actions in x
get locked (once more). Unlocking operator l x JA also has two parameters, viz. process x and a set
of actions A meaning that all locked actions that occur in x which are elements of A get unlocked
once. The axioms for both operators, Ll-6 and ULl-6, are given in Table 1. We introduce a new
variable, a, which has a range of A U IT.. U 1lL.

Up till now, we have not mentioned how the operators introduced so far cooperate to reach
the expected transactional behaviour. Since blocking of transactions is only of interest when
transactions run in parallel, accessing a shared data space, we specify parallel composition using
the merge (II) and left-merge m) operators based on the merge operators introduced in [81. The
axioms for the parallel composition, Ml-8, are also given in Table 1. If a unlocking action is
executed in parallel with other processes, the action is executed and the process running in parallel
gets unlocked once (M2 and M5). Execution of a lockable action locks the processes running in
parallel (M3 and M6). All other actions do not influence the parallel running processes' behaviour
(M4 and M7). The process algebra given by the axioms in Table 1 is denoted by PAtrans, Process
Algebra with Transactions.

5 Operational Semantics

The semantics of the process algebra with transactions is given by the term deduction system
induced by the deduction rules shown in Table 2. The variables are defined as in the axioms. The
deduction rules are given using a Plotkin-style notation [20]. These are similar to the operational
rules of most process algebras. We use predicate ~ J to denote that a process may execute a
and then terminate. We make a case distinction over the atomic actions that can be executed.

Each process a can do an a-step and then terminate (rule 1). Unlocking actions and non
lockable actions are influenced by neither the locking (rules 6, 7, 9, 10, 11 and 13) nor the unlocking
operator (rules 14, 15, 17, 18, 19 and 21). Depending on the parameters of the locking and
unlocking operators, lock counters can be increased (rules 8 and 12) or decreased (rules 16 and
20), respectively.

Rule 22 handles rollback actions: If a transaction has started (A f 0), the transaction can
roll back by executing a rollback action R A , after which the transaction can start over again.
A unlocking action that comes from within a transaction may not influence actions outside the
transaction (rules 23, 26, 31 and 34). Furthermore, normal actions and lockable actions which are
not locked, i.e. On with n ~ 0, can always be executed (rules 24, 25, 27-30, 32, 33 and 35-38).
Depending on whether they have been executed by the transaction before, i.e. if a is in A, they
get lockable and they are added to the set of executed actions A.

For defining the deduction rules for the parallel composition operators, again we distinguish
between atomic action in A, IT.. and 1I1L. Execution of unlock actions cause the process running in
parallel to get unlocked once (rules 39, 42, 45 and 48) where execution of lockable actions introduce
the lock operator, causing the parallel running processes to get locked once more (rules 40,43, 46
and 49). All other executions do not influence parallel running processes (rules 41,44,47 and 50).

6

---,
a~v

a X·y--+y

x~x,

x·y~x'·y

x~v x~V, afb

[xh~';
e

[x h -"". ,;
UA ,
x~x x~x', afb

[xh~[x'h
w " [xh~[x'h

x-"".';, (a"AVn~O)
" lxJA -"".,;

x~x', (a¢AVn=O)

"

x~x,

x+y~x', y+x~x'

x~v x-Sv , ,
[xJa~V [xh~';

x~x, x-Sx'
" [xJa~[x'L [xh-S[x'h

x ~ V, (a E A An> 0)

" lxJA~V

x~x', (aEAAn>O)

"

"

Af0 x~V
R: 22

((r, A, x)) ----". ((r))
U 23

((x))~C~

x~V, a¢A

" ((r,A,x)) ~CAU{a}

x~V, aEA

" ((r,A,x))~CA

__ x_~_';:...:." ,,---a~"=--A_
" ((r,A,x)) ~CAU{a}

x-S V, a E A

" ((r,A,x)) ~CA

x~x,
U " ((x)) ~ ((x, 0, x'))

UB ,
x~x

U 3 4
((r, A, x)) ~ ((r, A, x'))

x-Sx', a¢A
---~~~-~---"
((r, A, x)) "". ((r, A U {a}, x'))

x~x, x-Sx'
--=-----"
((x)) "". ((x, {a}, x'))

--=-----"
((x)) "". ((x, {a}, x'))

x~x', a¢A
---~~~-~---"
((r, A, x)) "". ((r, A U {a}, x'))

x-Sx', a E A
------;;----"
((r, A, x)) ~ ((r, A, x'))

x-SV
------;;-"----'------;;--"
xlly -S y, yllx -S y

x~x', aEA
------;,------"
((r, A, x)) ~ ((r, A, x'))

x~x,

x~V
---::-1I "--rUT:A--"l--:J-"
xllY---+ y A

x-Sx'
---,-----00
x~y -S x'lly

Table 2: Operational Semantics of PAtrans

6 Properties of Process Algebra with Transactions

In this section we prove some properties of PAtrans. First of all, we give a soundness proof, i.e.
we prove that the set of closed PAtrans terms modulo bisimulation equivalence, T(PAtrans)/-i---+,
is a model for P Atrans.

Definition 6.1 (Bisimulation for PAtrans) Bisimulation for PAtrans is defined as follows: a
binary relation R on closed terms in P Atrans is a bisimulation if and only if the following transfer
conditions hold for all closed PAtrans terms p and q:

1. if R(p, q) and T(PAtrans) F p -'+ y', where a E A u IL u 1llL, then T(P Atrans) F q -'+ V.
2. if R(p, q) and T(P Atrans) F p -'+ p', where a E A u IL u 1llL, then there exists a process term

q' such that T(PAtrans) F q-'+q' and R(p', q').

7

Two closed PAtrans terms p and q are bisimular, notation p f-+ q, if there exists a bisimulation
relation R such that R(p, q).

Using bisimulation, we can now construct a model for the axioms of PAtrans. In order to do this,
we first need to know that bisimulation is a congruence with respect to all operators.

Lemma 6.2 (Bisimulation is a congruence) Let T(PAtrans) be the term deduction system
induced by the deduction rules shown in Table 2. Then bisimulation equivalence is a congruence
on the set of closed PAtrans terms.

Proof It can be easily seen that the operational semantics given in Table 2 is in path format
[5]. Since it is proven that if a term deduction system is in path format, strong bisimulation is a
congruence [61 (based on [5, 15]), this immediately proves this lemma. 0

So now that we know that bisimulation is a congruence, we can construct a model for the
axioms of PAtrans.

Definition 6.3 (Bisimulation model for PAtrans) The bisimulation model for PAtrans is con
structed by taking the equivalence classes of the set of all closed PAtrans terms with respect to
bisimulation equivalence. As bisimulation is a congruence, the operators can be pointwise defined
on the equivalent classes.

Theorem 6.4 (Soundness) The set of closed PAtrans terms modulo bisimulation equivalence,
T(PAtrans)/<->, is a model for PAtrans.

Proof We will prove this theorem by proving that each axiom is sound, i.e., prove that for all
closed instantiations of the axiom both sides of the axiom correspond to the same element of the
bisimulation modeL This proof outline is taken from [24, 6]. The proof can be found in Sec
tion A.1. 0

Apart from proving soundness, we prove that all PAtrans terms can be eliminated to a term
in a basic process algebra with recursion (BPArec), as defined in [6]. By doing this, we prove
that the expressiveness of the process theory has not increased. Since the same set of processes
can be defined without using PAtrans operators, the transactional operators introduced can be
considered a syntactic extension for simplifying the notation of transactional processes. The
following definitions are based on [61.

Definition 6.5 (Recursive specification) Let V be a set of variables. A recursive specification
E ~ E(V) is a set of so-called recursion equations, E ~ {X ~ sx(V) I X E V}, where each sx(V)
is a BPA term that only contains variables of V. The set of actions of the BPA is Au IL U 1llL.

Definition 6.6 (Solution) A solution {(XIE) I X E V} of a recursive specification E(V) is a
set of processes in some model of BPA such that replacing variable X by (XIE) in the recursion
equations of E(V) yields true statements in that model.

Definition 6.7 Let E ~ E(V) be a recursive specification and let t be an open BPA term. Then
(tiE) is the process t with all variables X both occurring in t and V replaced by (XIE).

We give a set of recursion equations in the proof of the elimination theorem. Apart from the
atomic actions of PAtrans and all lockable and unlock actions, the domain of BPArec, P1BPArec,

contains the set of constants (XIE) for all X E V:

ABPA,oc ~ A U IL U 1llL U {(XIE) I X E V} .

Since a solution is a (possibly empty) set of processes, we extend the model T(PAtrans) with
two assumptions, RSP and RDP-, which are defined in Definitions 6.8 and 6.9, respectively.
These assumptions state that there is exactly one solution. Before giving the exact definitions, we
introduce the concept of guardedness. We call an occurrence of variable X in term t guarded if t
has a sub-term of the form a . s with s a BP A term containing this occurrence of X. If we can
rewrite a term to a guarded term using the axioms, we call this term guarded too.

8

Definition 6.8 The Recursive Specification Principle (RSP) is the following assumption:

A guarded recursive specification has at most one solution.

Definition 6.9 The Restricted Recursive Definition Principle (RDP-) is the following assump
tion:

Every guarded recursive specification has a solution.

We can only make use of these two principles if all recursive occurrences of processes in PAtrans
are guarded.

Theorem 6.10 All recursive occurrences of processes in PAtrans are guarded.

Proof The proof can be easily seen by looking at the axioms for the transactional composition
in Table 1, TRl-20. Since recursion only takes place after a rollback, all recursion specifications,
i.e. all occurrences of ((xl! on the right-hand side of the equal sign in axioms T2-20, are preceded
by a rollback action R. 0

Since all recursive specifications in P Atrans are guarded, we can make use of model T (P Atrans)+
RDP- + RSP to prove the following elimination theorem.

Theorem 6.11 (Eliminiation to BPArec) For every PAtrans term t there exists a guarded
recursive specification E over BP A such that t is a solution of E.

Proof This theorem is proven by induction on the general structure of t and can be found in
Section A.2. 0

Herewith we have proven that the transactional operators can be considered a syntactic exten
sion for simplifying the process algebraic notation of transactional processes.

7 Towards Real-life Transactions

We introduce some additional concepts which enable us to better model real-life processes. As
mentioned in Section 2, we abstracted from read access to variables and we only took first degree
isolated transactions into account. We shortly discuss some concepts to come closer to real-life
transactions.

7.1 Explicit Write Actions

Up till now, we only took write actions into account. However, both read actions and internal
actions might be needed when giving real-life examples. Therefore, we need to make a distinction
between write actions and other (i.e. read or internal) actions. In former sections, we assumed
that execution of action a meant a write action to (shared) variable a. We can explicitly indicate
whether an action is a write action to a variable. The set of actions A in ((x, A, y// will then be
redefined such that it contains only write actions.

Although this is a major change in the notation and the way we deal with variables, this
does not influence the axioms as presented in Section 4 drastically. If we consider 10 isolated
transactions, there are dependencies between write actions only. So both read actions and internal
actions are not influenced by the locking operator and therefore only write actions should have their
lock counter increased. We make this distinction between different kinds of actions by adapting
the conditions in the axioms and operational rules.

Note that since only (more) conditions on the format of the actions are added, this extension
does not influence the soundness nor the elimination to BPArec substantially.

9

7.2 Degrees of Isolation

In real-life transactions, a distinction is drawn between four degrees of isolation, mainly due to
performance issues [17]. For reaching our goal, i.e. for giving formal specifications of Internet
applications, this notion of degrees of isolation should be added. A short overview of the different
degrees of isolation is given in Table 3.

I Issue II Degree 0 I Degree 1 Degree 2 Degree 3

Common name Chaos Browse Cursor Stability Isolated
Protection pro- Lets others 0° and No lost updates, No lost updates,
vided run at higher no lost updates no dirty reads no dirty reads,

isolation repeatable reads
Transaction Well-formed Well-formed Well-formed Well-formed
structure w.r.t. write w.r.t. write and two-phase and two-phase

and two-phase w.r.t. write
w.r.t. write

Dependencies None write --+ write write --+ write write --+ write
write --+ read write --+ read

read --+ write

Table 3: Degrees of isolation as given in [171.

A 0° isolated transaction is called chaos. It does not overwrite another transaction's dirty data
if the other transaction is 1° or greater. A 1° isolated transaction is called browse. It prevents data
updates to get lost. It is both well-formed and two-phase with respect to writes. A transaction is
said to be well-formed with respect to writes if all data updates are preceded by locks, locking data
updates to the same data in other transactions until it is committed or rolled back. Two-phase
means that all locks precede all unlocks. A 2° isolated transaction, called cursor stability, has
the same properties as a first degree transaction, but it also implements well-formedness with
respect to reads. So also the reading of updated data by other transactions is locked. Finally, a
3° isolated transaction also locks data read by a transaction until it commits or rolls back. This is
called isolated, serializable or repeatable reads. Optimally, all transactions should be 3° isolated.

Next to differentiating between the type of actions, we can also make a distinction between
degrees of isolation. Although this does not increase the complexity of the transactional locking
mechanism, we need to add lots of extra syntax to make this possible. One of the causes is that we
need to introduce an explicit read action. On the other hand this is caused by the fact that actions
from within 1° isolated transactions both are lockable and cause other actions to get locked. So
the lock counter we make use of is not only a counter which stores the number of times the action
is locked, but it also specifies that execution of the action causes other action to get locked (as
stated in axiom M3). We call an action that causes other actions to get locked a locking action.
In zeroth, second and third degree isolated transactions, lockable actions do not necessarily have
to be locking and vice versa, as can be seen in Table 4.

degree lockable locking
of isolation write read write read

zeroth yes no no no
first yes no yes no

second yes yes yes no

third yes yes yes yes

Table 4: Locking versus lockable actions

So apart from the lock counter, we need to extend actions from within transactions with a
locking attribute to indicate whether the action is a locking action. This of course depends on the

10

degree of isolation, which should be added to the transactional operators.
Furthermore, we need to make a distinction between shared locks and exclusive locks [17].

Shared locks are set by read actions from within 3° isolated transactions and cause other trans
actions not to write to variables read by the transactions. However, the other transactions are
allowed to read them. On the other hand, write actions set exclusive locks on variables, causing
other transactions to get locked when accessing variables, even for read actions. A 3° isolated
transaction can upgrade a shared lock to an exclusive lock by writing to a variable it has a shared
lock on.

The set of variables that we stored in the auxiliary transactional operator (the A in ((x, A, y)))
is used for keeping track of the variables the transaction has exclusively locked. By introducing
shared locks, we need to either split this set into two sets, one for shared and one for exclusive
locks, or we should extend the elements in the set with an attribute which indicates whether the
element is shared locked or exclusively locked.

To conclude, adding degrees of transactions to the formalism presented leads to the introduction
of several extensions. Although these extensions do not make the concepts more complex, they
introduce a considerably large amount of syntactical overhead, which goes beyond the scope of
this article. Giving a detailed description of this is left for future work.

8 Related Work

Since both transactions and process algebra are widely used concepts, a lot of research is done in
both areas.

Transactions can be considered as groups of actions. In process algebra there are mecha
nisms available to group actions. In [10] a mechanism is introduced for specifying asynchronous
communication between processes, based on process algebra. Each communication consists of
(independent) write and read actions. Each read action should be preceded by its corresponding
write action. If this is not the case, actions can get locked which can be compared to transactional
locking. The semantics of this mechanism is given in [13]. In [9] the tight multiplication operator
is introduced. This operator is used in the same way as the sequential composition operator.
However, no interleaving can take place between two actions which are composed into a process
using this tight multiplication operator.

Transactions can roll back, causing actions being undone. Bergstra, Ponse and Warnel [11] add
a mechanism for modelling this undoing of actions to process algebra.

The classical transaction concept appeared for the first time in [14]. In [16, 18] the ACID
properties of transactions are explicitly indicated. A nice and complete overview of the main
concepts of transactions is given and discussed by Gray and Reuter in [17].

Our model of nesting of transactions is an extension of the concept of nested transactions as
developed by Moss [19]. Other extensions of Moss' concept are for example multi-level transactions
[25] and open nested transactions [26].

For the concepts described in this paper we make use of the two-phase locking (2PL) protocol
(i.e. all locks within a transaction precede all unlocks) as introduced in [14]. This concurrency
control technique is widely used in most database management systems. Many variations on the
2PL technique exist [1, 23, 17, 21]. Apart from two-phase locking, other concurrency control
mechanisms exist, like timestamp-ordering (TO) techniques [22] and optimistic schedulers [2]. All
techniques can be combined into hybrid techniques, e.g. 2PL-TO combinations [12].

9 Conclusions

Both transactions and process algebra are widely used, however, as far as we know, no formalism
to express transactions using process algebra has been developed before. In this paper we joined
these concepts which led to a nice way of formally specifying transactional behaviour.

11

Although we abstracted from parts of the concept which must be added to make the formalism
useful for specifying real-life processes, a basic framework for transactional reasoning using process
algebra has been introduced. We summarized what has to be done to make the formalism put
into practice. In our opinion, these extensions do not influence the complexity of the formalism,
however, a lot of (syntactical) extensions have to be added.

By combining the concepts described in this paper with the process algebra we are making
use of for modelling Internet applications [4, 3]' we are able to give specifications that come closer
to real-life applications. Currently, we are working on this combination to come to a complete
process algebra for specifying Internet applications.

Acknowledgements

I would like to thank Jos Baeten and Sjouke Mauw for their valuable comments on preVIOUS
versions of this paper.

References

[1] P.A. Alsberg and J.D. Day. A principle for resilient sharing of distributed resources. In 2nd
International Con]. on Software Eng., San Francisco, pages 562-570, San Francisco, CA,
USA, 1976.

[2] D.Z. BadaL Correctness of concurrency control and implications for distributed databases.
In Proceedings of the IEEE COMPSAC 79, Chicago, USA, November 1979.

[3] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. Operational semantics of DiCons, a formal
language for developing internet applications. CS-Report 01/12, Dept. of Mathematics and
Computer Science, Technische Universiteit Eindhoven, October 2001.

[4] J.C.M. Baeten, H.M.A. van Beek, and S. Mauw. Specifying internet applications with DiCons.
In Proceedings 16th ACM Symposium on Applied Computing, pages 576-584, Las Vegas, USA,
March 2001.

[5] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational semantics
with predicates. In E. Best, editor, Proceeding of the International Conference on Concurrency
Theory - CONCUR'93, number 715 in Lecture Notes in Computer Science, pages 477-492,
Hildesheim, Germany, 1993. Springer-Verlag.

[6] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in Computer
Science, pages 149-268. Oxford University Press, 1995.

[7] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical Com
puter Science 18. Cambridge University Press, 1990.

[8] J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras. Report IW 206,
Mathematisch Centrum, Amsterdam, 1982.

[9] J .A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Information
and Control, 60:109-137, 1984.

[10] J .A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asynchronous communication
mechanisms. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors, Proc. Seminar on
Concurrency, number 197 in Lecture Notes in Computer Science, pages 76-95. Springer
Verlag, 1985.

12

[11] J.A. Bergstra, A. Ponse, and J.J. van Warne!. Process algebra with backtracking. In J. W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, REX Workshop, number 803 in
Lecture Notes in Computer Science, pages 46-91, Noordwijkerhout, The Netherlands, 1994.
Springer- Verlag.

[12] P.A. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM
Computing Surveys, 13(2):185-221, June 1981.

[13] F.S. de Boer, J .W. Klop, and C. Palamidessi. Asynchronous communication in process al
gebra. In Andre Scedrov, editor, Proceedings of the 7th Annual IEEE Symposium on Logic
in Computer Science, pages 137-147, Santa Cruz, CA, June 1992. IEEE Computer Society
Press.

[14] K.P. Eswaran, J .N. Gray, R.A. Lorie, and 1.1. Traiger. On the notions of consistency and
predicate locks in a data base system. Communications of the ACM, 19(11), November 1976.
Also published in/as: IBM, Res.R. RJ1487, San Jose, CA, December 1974.

[15] W.J. Fokkink. The tyft/tyxt format reduces to tree rules. In M. Hagiya and J.C. Mitchell, edi
tors, Proc. 2nd Symposium on Theoretical Aspects of Computer Software - TACS'94, number
789 in Lecture Notes in Computer Science, pages 440-453, Sendai, April 1994. Springer
Verlag.

[16] J. Gray. The transaction concept: Virtues and limitations. In International Conference On
Very Large Data Bases (VLDB '81), pages 144-154, Los Angeles, CA, USA, September 1981.
IEEE Computer Society Press.

[17] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf
mann, 1993.

[18] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Com
puting Surveys, 15(4):287-317, December 1983.

[19] J.E.B. Moss. Nested Transactions: An Approach to Reliable Computing. PhD thesis, MIT,
1981.

[20] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department, Denmark, 1981.

[21] K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Transactions on
Database Systems, 19(1):117-165, March 1994.

[22] R.M. Shapiro and R.E. Millstein. Reliability and fault recovery in distributed processing.
In OCEANS'77, Conference Record, volume II, pages 31D.1-31D.5, Los Angeles, CA, USA,
October 1977.

[23] R.E. Stearns and D.J. Rosenkrantz. Distributed database concurrency controls using before
values. In Y.E. Lien, editor, Proceedings of the 1981 ACM SIGMOD International Conference
on Management of Data, pages 74-83, Ann Arbor, Michigan, 1981. ACM, New York.

[24] J.J. Vereijken. Discrete-Time Process Algebra. PhD thesis, Technische Universiteit Eindhoven,
1997.

[25] G. Weikum. A theoretical foundation of multilevel concurrency control. In Proceedzngs of the
5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 31-42,
Cambridge, Massachusetts, March 1986.

[26] G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions and open
nested transactions. In A.K. Elmagarmid, editor, Transaction Models for Advanced Database
Applications. Morgan Kaufmann, February 1992.

13

A Proofs

A.1 Soundness

Theorem A.l (Soundness) The set of closed PAtrans terms modulo bisimulation equivalence,
T(PAtrans)/<->. is a model for PAtrans.

Proof We will prove this theorem by proving that each axiom is sound, i.e., prove that for all
closed instantiations of the axiom both sides of the axiom correspond to the same element of the
bisimulation model. This proof outline is taken from [24, 6]. For each axiom, we take the relation
which relates each process to itself (identity) and which relates the left-hand side of the equation
to its right-hand side. So e.g. for proving axiom Al, we take relation

R ~ {(x, x), (x + y, y + x) I x, y closed PAtrans terms} .

Furthermore, x, y, and z are closed PAtrans terms. We use subscript notation to indicate the
deduction rules we make use of.

Axiom Ai We have to show that x + y <-> y + x.
First we look at the transitions of the left-hand side.

• Suppose x + y -"+..j. Then4 x -"+ ..j or y -"+..j. But then also4 y + x -"+ ..j.
• Supposex+y~z. Then5x~zory~z. Butthenals05y+x~zandR(z,z).

The proof of the right-hand side is analogous, replacing x by y and y by x.

Axiom A2 We have to show that (x + y) + Z <-> x + (y + z).
First we look at the transitions of the left-hand side.

• Suppose (x + y) + z -"+..j. Then4 x + y -"+ ..j or z -"+ ..j iff4 X -"+ ..j, y -"+ ..j or z -"+ ..j iff4 X -"+ ..j
or y + z -"+..j iff4 X + (y + z) -"+..j.

• Suppose ~x+y)+z~x'. Then4 x+y~x' or z~x' iff4 x~x', y~x' or z~x' iff4 x~x'
or Y+Z--4X' iff4 x+(y+z)-"+x' and R(X',X').

The proof of the right-hand side is analogous.

Axiom A3 We have to show that x + x f-+ x.
First we look at the transitions of the left-hand side.

• Suppose x + x ~ J. Then4 x ~ J or x ~ J, so x ~ J.

a a a a () • Suppose x + x ---+ y. Then5 x ---+ y or x ---+ y, so x ---+ y and R y, y .

The proof of the right-hand side is trivial.

Axiom A4 We have to show that (x + y)z <-> XZ + yz.
Note that there is no possibility for either the left-hand side or the right-hand side to execute a
terminating action. First we look at the transitions of the left-hand side. Suppose (x + y)z ~ x',
then

• either2 x + y ~ J and x' = z. Then4 x ~ J or y ~ J. But then2 xz ~ z or yz ~ z and
thus5 xz+yz~x'. R(x',x').

• or3 x + Y ~y' and x' = y'z. Then5 x~ y' or y~ y'. But then3 xz ~y'z or yz ~y'z and
thus5 xz+yz~x'. R(x',x').

Next, look at the transitions of the right-hand side. Suppose xz + yz ~ x', then either5 xz ~ x'
or yz~x'. Note that this case is symmetric in x and y, so suppose xz~x'. Then2 x~J and
x' = z or3 x ~ y' and x' = y' z.

14

• if x"+ V and x, ~ z, then4 x + y"+ V and thus2 (x + y)z "+ x, and R(X', x').

• if x ~ y' and x' = y'z, then5 x + y ~ y' and thus3 (x + y)z ~ x' and R(x', x').

Axiom A5 We have to show that (xy)z<-->x(yz).
Note that there is no possibility for either the left-hand side or the right-hand side to execute a
terminating action. First we look at the transitions of the left-hand side. Suppose (xy)z ~ x',
then the only possibility is that3 xy~y! and x' = y'z. Then2 x~J and y' = y or x~z! and
y' = z'y.

• if x ~ J and y' = y, then x' = yz and2 x(yz) ~ x', R(x', x').

• if x "+ Zl and y' ~ zly, then x, ~ (Z'y)Z and3 x(yz) "+ Zl (yz). Furthermore, R(Z' (yz), (Z'y)Z).

The proof of the right-hand side is analogous.

Axiom Ml We have to show that xilY <--> x~y + y~x.
We look at the transitions of both sides of the axiom at the same time, making a case distinction
over the actions x can execute. Note that this axiom is symmetric in x and y.

• If x~V, then39 xlly~ lyjA' and45 x~y~ lyjA' S05 x~y + y~x~ lyjA' Note that
R(lyjA' lyjA)'

• If x~V, then40 xlIY~ [yL, and46 x~y~ [yL, S05 x~y + y~x~ [yJa' Note that
R([yJ a , [yJJ.

• If x -"+ V, then41 xilY -"+ y, and47 x~y -"+ y, S05 x~y + y~x -"+ y. Note that R(y, y).

• If X ~Xl, then42 xlly~x'lllyjA' and48 x~y ~x'lllyjA' S05 x~y+y~x ~ x'lllyjA' Note
that R(x'lllyjA' x'lllyjA)'

• If X~X', then43 xlly~x'll [yJ a, and49 x~y~x'll [yJ a, S05 x~y + y~x~x'll [yJa' Note
that R(X'11 [yla, xiii [yJa)'

• If x -"+ x', then44 xilY -"+ x'lly, and50 x~y -"+ x'lly, S05 x~y+y~ x -"+ x'IIY. Note that R(X'lly, x'IIY).

Axiom M2 We have to show that UA~X <-->UA l x jA'
We look at the transitions of both sides of the axiom at the same time. Sincel U A ~ J, we

conclude that45 UA~X~ lxjA' Furthermore2, UAlxjA ~ lxjA and note that R(lxjA' lxjA)'

Axioms M3-M4 Similar to axiom M2, using deduction rules 46 and 47, respectively.

Axiom M5 We have to show that UAX~y<-->UA(xlllyjA)'
Note that neither side of the axiom can execute a terminating action. We look at the transitions
of both sides of the axiom at the same time. UAX~y "+ z iff48 UAx "+ x, and z ~ x'lllyjA' Then2

a ~UA and x, ~ x, so UAx~y~xlllyjA' Furthermore2, UA(xlllyjA)~xlllyjA and note that
R(xlllyjA' xlllyjA)'

Axioms M6-M7 Similar to axiom M5, using deduction rules 49 and 50, respectively.

Axiom M8 We have to show that (x + y)~z <--> x~z + y~z.
First of all, note that this axiom is symmetric in x and y. First, we look at the transitions of the
left-hand side. Suppose (x+Y)~Z"+X'. Then

• either45 x + y~ V and x, ~ lzjA' But then4 x ~ V or y~ V, thus45 x~z ~ lzjA or

y~z ~ lz jA and thus5 x~z + y~z ~ lz jA' Note that R(lz jA' lz jA)'

• or46 x + y~J and x' = [zJ a · But then4 x~J or y~J, thus46 x~z~ [zJ a or
y~z~ [zJa and thus5 x~z+y~z~ [zJa' Note that R([zJa, [zJJ.

15

• or47 x + y~J and x' = z. But then4 x~J or y~J, thus47 x~z~z or y~z~z and
thus5 x~z+y~z-"+z. Note that R(z,z).

• or48 x + y~yl and x, ~ yllllzJA' But then4 x ~ y' or y~yl, thus48 x~z~yllllzJA
or y~z ~ yllllz JA and thus5 x~z + y~z ~ yllllz JA· Note that R(Y'lllz JA, yllllz JA).

• or49 x + Y ~ y' and x, ~ ylll [z lao But then4 x ~ y' or y ~ y', thus4g x~z ~ ylll [z la or
y~z~ylll[zla and thus5 x~z+y~z~ylll[zla' Note that R(Y'11 [zla,ylll [zla)'

• or50 x + Y ~ y' and x' = y'llz. But then4 x ~ y' or y ~ y', thus50 x~z ~ y'llz or y~z ~ y'llz
and thus5 x~z + y~z -"+ ylliz. Note that R(Y'llz, ylllz).

The proof of the right-hand side is similar, again using a case distinction on the actions.

Axiom Ll We have to show that rUB], <-+UB.
We look at the transitions of both sides at the same time. Observel,6 that either side can only do
a UB-transition to J. No other transitions are possible.

Axioms L2-L4 These axioms are similar to L1, using rules 7, 8 and 9, respectively.

Axiom L5 We have to show that [ax],.::: [a], . [x],.
We look at the transitions of both sides at the same time. Note that neither the left-hand side
nor the right-hand side can do a transition to J since X· Y cannot do a transition to J. We use a
case distinction on the actions:

• [ax]' ~y iff,o y ~ [x], and a ~ UA .

[a],. [x], ~y iff6.2 Y ~ [x], and a ~ UA . Note that R([x]" [x],).

• Suppose, ° ~ b. Then, [ax 1 b ~ Y iff'2 Y ~ [xl b and a ~ On·

[a], . [x], ~ Y iff8.2 Y ~ [x], and a ~ On. Note that R([x]" [x],).

• Suppose, ° f b. Then, [ax]' ~ y iffll Y ~ [x], and a ~ On.

[a],. [x], ~y iff7.2 Y ~ [x], and a ~ On. Note that R([x]" [x],).

• [ax]' -"+y iffl3 Y ~ [x], and a ~ 0.

[a],. [x], -"+ y iffg.2 Y ~ [x], and a ~ 0. Note that R([x]" [x],).

Axiom L6 We have to show that [x + y], <-+ [x], + [y],.
Note that this axiom is symmetric in x and y as a result of the commutativity of the alternative
composition operator. First we have a look at the left-hand side. Suppose [x + yJ b ~ J, then4

• either6 a ~ UA and x ~..j or y ~..j. But then6 [x], ~..j or [y], ~..j and thus4

[x], + [y],~..j.

• or7 a ~ On, ° f b and x ~..j or y ~..j. But then7 [x], ~..j or [y], ~..j and thus4
[x], + [y],~..j.

• ors a = an+l, a = b, and x ~ J or y ~ J. But thens [x] b ~ J or [yJ b ~ J and
thus4 [x], + [y], ~..j.

• org a ~ ° and x -"+ ..j or y -"+..j. But theng [x], -"+ ..j or [y], -"+ ..j and thus4 [x], + [y], -"+ ..j.
The proof of [x + y], -", z is similar to the proof of [x + y], -",..j, using axioms 5,2 and lCl-13.

Next, we have a look at the right-hand side. Suppose [x], + [y], -",..j, then4 either [x], -",..j
or [yJ b ~ J. Since this axiom is symmetric in x and y, we suppose that [x] b ~ J. Then,

16

o either6 a ~ UA and x~ V' But then4 x + y~ V and thus6 [x + Ylb ~ V'

o or7a~an,afbandx~V. Butthen4x+y~vandthus7 [x+Yh~v .

• or8a=an+l,a=bandx~J. Butthen4x+y~Jandthus7 [x+yJb~J.

o eitherg a ~ a and x -". V. But then4 x + Y -". V and thusg [x + Y 1 b -". V·

The proof of [xl b + [y 1 b -":, z is similar to the proof of [xl b + [y 1 b -":, V, using axioms 5, 2 and
10-13.

Axioms ULI-UL6 The proofs for axioms UL1 to UL6 are similar to the proofs for axioms L1
to L6, using rules 14-21 instead of rules 6-13.

Axiom TRl We have to show that ((x)) <-> ((x, 0, x)).
We make a case distinction on the set of possible transitions ((x)) can do and show that ((x, 0, x))
can do exactly the same transitions. Furthermore, we show that the right-hand side cannot do
any other transitions.

o SUppose23 ((x)) ~ CO. Then23 x ~ V and thus26 ((x, 0, x)) ~ CO. Note that R(C" CO).

o SUppose24.25 ((x)) -"", Cia}' Then either24 x -"", vor25 x -". V and thus27.2g ((x, 0, x)) -"", Cia}'
Note that R(C{a}, Cia})'

o SUppose31 ((x)) ~ ((x, 0, x')). Then31 x ~ x, and thus34 ((x, 0, x)) ~ ((x, 0, x')). Note that
R(((x, 0, x')), ((x, 0, x'))) .

• Suppose32i3 ((xl! ~ ((x, {a}, x')). Then either32 x ~ x' or33 X ~ x' and therefore35,37
((x, 0, x)) ~ ((x, {a}, x')). Note that R(((x, {a}, x')), ((x, {a}, x'))).

So ((x, 0, x)) can do all transitions ((x)) can do. It can be easily verified that the right-hand side
cannot do any other transitions since for all other transitions (using deduction rule 22, 28 or 36)
A f ° or a E A is needed. However, A ~ O.

Axiom TR2 We have to show that ((x, 0, UB)) <-> U, . CO.
First of all, note that neither the left-hand side nor the right-hand side can do a transition to
V. Suppose ((x, 0, UB)) -":, x'. Then26 the only possibility is that x, ~ C, and a ~ U" so

((x, 0, UB)) ~ CO. Furhtermore2, U" C, can only do a U,-transition to CO, and note that R(C" CO).

Axiom TR3 We have to show that if A f 0, ((x, A, UB)) <-> U, . C A + RA . ((x)).
Let A f O. We look at both sides of the axiom at the same time. Since A f 0, ((x, A, UB)) can do
a R A-transition22 to ((x)). R A · ((x)) can do this transition too, and thus5, U" CA + R A· ((x)) can
do a RA-transition to ((x)). Note that R(((x)), ((x)).

For the rest, ((x, A, UB I! can do a U0-transition26 to CA. This is exactly the only other transition
U" CA + R A · ((x)) can do.

Axiom TR4 We have to show that if n > 0 and A f 0, ((x, A, an)) <-> RA . ((x)).
Let n > 0 and A f O. Since A f 0, ((x, A, UB)) can do a R A-transition22 to ((x)). R A· ((x)) can do
(only) this transition, and note that R(((x)), ((x))). Since n > 0, no other transitions are possible
for ((x, A, an)).

Axiom TR5 We have to show that ((x, 0, aD)) <-> aD· Cia}'
The right-hand side can only do a ao-transition to C{a}. Furthermore27, ((x, 0, ao!! ~ C{a} and
R(C{a}, Cia})' Note that rule 27 is the only deduction rule that can be applied to ((x, 0, aD)).

Axiom TR6 We have to show that if a <t A and A f 0, then ((x, A, aD)) <-> aD· CAU{a} + RA· ((x)).
Suppose a <t A and A f O. We look at both sides of the axiom at the same time. Since A f 0,
((x, A, aD)) can do a R A-transition22 to ((x)). RA · ((x)) can do this transition too, and thus5,
aD· CAU{a} + RA · ((x)) can do a RA-transition to ((x)). Note that R(((x)), ((x))).

17

Furthermore27, ((x,A,ao))~CAU{a}- ao - CAU{a} can do this transition too, and thus5, ao
CAU{a} + RA . ((x)) can do an aD-transition to CAU{a}' Note that R(CAU{a}, CAU{a})' It can be
verified that rules 22 and 27 are the only deduction rules that can be applied to ((x, A, aD)) and
that the two transitions given for ao - CAU{a} + RA - ((x)) are the only two transitions possible_

Axiom TR 7 The proof of axiom TR 7 is similar to the proof of axiom TR6, using deduction
rule 28 instead of 27.

Axioms TR8-10 The proofs for axioms TR8 to TR10 are similar to the proofs for axioms
TR5 to TR 7, using rules 29 and 30 instead of rules 27 and 28.

Axioms TRll-19 The proofs for axioms TRll to TR19 are similar to the proofs for axioms
TR2 to TRlO, using rules 34-38 instead of rules 26-30.

Axiom TR20 We have to show that ((x, A, y + z)) <-> ((x, A, y)) + ((x, A, z)).
First of all, a rollback can take place iff A f 0: ((x, A, y+z)) ~ ((x)) iff22 A f 0 iff22 ((x, A, y)) ~ ((x))
and ((x, A, z)) ~ ((x)) iff5 ((x, A, y)) + ((x, A, z)) ~ ((x)). And note, R(((x)), ((x))).

Next, we look at the transitions of the left-hand side. Suppose ((x, A, y + z)) -"+ x'. Then

• either26 y+z ~.;, a ~ U, and x, ~ CA. But then4 y ~ .; or z ~.;, thus26 ((x, A, y)) ~ C A
or ((x,A,Z))~CA and thus5 ((x,A,y)) +((x,A,Z))~CA. Note that R(CA,CA).

• or27 Y + z~ J, a fj. A, a = ao and x' = CAU{a}- But then4 y~ J or z ~ J, thus27
((x, A, y)) -"", C AU{ a} or ((x, A, z)) -"", C AU{ a} and thus5 ((x, A, y)) + ((x, A, z)) -"", C AU{ a}' Note
that R(CAU{a}, CAU{a})'

• or28 Y + z~J, a E A, a = a and x' = CA_ But then4 Y~J or z~J, thus28
((x, A, y)) -"+CA or ((x, A, z)) -"+ CA and thus5 ((x, A, y))+((x, A, z)) -"+CA. Note that R(CA, CAl.

• or29 Y + z~J, a fj. A, a = ao and x' = CAU{a}- But then4 Y~J or z~J, thus29
((x, A, y)) -"", C AU{ a} or ((x, A, z)) -"", C AU{ a} and thus5 ((x, A, y)) + ((x, A, z)) -"", C AU{ a}' Note
that R(CAU{a}, CAU{a})'

• or 30 y+z -"+.;, a E A, a ~ a and x, ~ CA. But then4 y -"+ .; or z -"+.;, thus28 ((x, A, y)) -"+ C A
or ((x, A, z)) -"+ CA and thus5 ((x, A, y)) + ((x, A, z)) -"+ CA. Note that R(C A, C A).

• or34 Y + z~y', a = U0 and x' = ((x,A,y'))_ But then4 y~y' or z~y', thus26

((x, A, y)) ~ ((x, A, yl)) or ((x, A, z)) ~ ((x, A, yl)) and thus5 ((x, A, y))+((x, A, z)) ~ ((x, A, yl)).
Note that R(((x, A, yl)), ((x, A, yl))).

• or35 Y + z ~ y', a fj. A, a = ao and x' = ((x, A U {a}, y'))_ But then4 y ~ y' or z ~ y',
thus35 ((x, A, y)) -"", ((x, A U {a}, yl)) or ((x, A, z)) -"", ((x, A U {a}, yl)) and thus5 ((x, A, y)) +
((x, A, z)) -"", ((x, A U {a}, yl)). Note that R(((x, A U {a}, yl)), ((x, A U {a}, yl))).

• or36 Y + z~y', a E A, a = a and x' = ((x,A,y'))_ But then4 y~y' or z~y', thus36
((x, A, y)) -"+ ((x, A, yl)) or ((x, A, z)) -"+ ((x, A, yl)) and thus5 ((x, A, y))+((x, A, z)) -"+ ((x, A, yl)).
Note that R(((x, A, yl)), ((x, A, yl))).

• or37 Y + z~y', a fj. A, a = ao and x' = ((x,A U {a},y'))_ But then4 y~y' or z~y',
thus37 ((x, A, y)) -"", ((x, A U {a}, yl)) or ((x, A, z)) -"", ((x, A U {a}, yl)) and thus5 ((x, A, y)) +
((x, A, z)) -"", ((x, A U {a}, yl)). Note that R(((x, A U {a}, yl)), ((x, A U {a}, yl))).

• or38 y+z~y', a E A, a = a and x' = ((x,A,y'))_ But then4 y~y' or z~y', thus38
((x, A, y)) -"+ ((x, A, yl)) or ((x, A, z)) -"+ ((x, A, yl)) and thus5 ((x, A, y))+((x, A, z)) -"+ ((x, A, yl)).
Note that R(((x, A, yl)), ((x, A, yl))).

The proof of the right-hand side is similar, again using a case distinction on the actions_
o

18

A.2 Proving elimination to BPArec

Theorem A.2 (Eliminiation to BPArec) FOT every PAtrans term t there exists a guarded re
cursive specification E over EPA such that t is a solution of E.

Proof This theorem is proven by induction on the general structure of t.

1. t == a for a E Au IL u 1llL. Then t is a finite BPArec term.

2. t == tl + t2 for PAtrans terms tl and t2. By induction, there are finite guarded BPArec terms
8, and 82 such that T(PAtrans) + RDP- + RSP I~ 8, ~ t, and T(PAtrans) + RDP- + RSP F
82 ~ t2. But then also T(PAtrans) + RDP- + RSP F 8, + 82 ~ t, + t2 and 8, + 82 is a finite
BP Arec term.

3. t = tl . t2 for PAtrans terms tl and t2 . This case is treated analogous to case 2.

4. t == [t'h for PAtrans term t, and b E A. By induction, there exists a finite guarded BPArec
term 8, such that T(PAtrans) + RDP- + RSP I~ 8, ~ t,. Since all recursive specifications
in PAtrans are guarded, there is a BPArec term Tl which is in head normal form, such that
T(PAtrans) + RDP- + RSP F r, ~ 8, ~ t,. We prove this case by induction on the structure
of Tl:

• r, == UA for A C; A. Then PAtrans I- t ~ [UAh ~ UA and UA is a finite BPArec term since
UA E P1BPArec.

• Tl == an for a E A and n E N, n ~ O. Then, depending on whether a = b, PAtrans ~ t =

[anJa ~ an+, or, if a f b, PAtrans I- t ~ [anh ~ an. Both an+, and an are finite BPArec
terms.

• r, == a for a E A. Then PAtrans I- t ~ [a 1, ~ a and a is a finite BP Arec term.

• r, == a· r2 for a E ABPA,oc and BPArec term r2. Then PAtrans I- t ~ [a. r2h ~ [a h· [r2h.
By induction there exist finite guarded BP Arec terms p, and P2 such that PAtrans I- p, ~ [a J b

and PAtrans I- P2 ~ hh. Then also T(PAtrans) +RDP- + RSP F t ~ [ah' hh ~ p,. P2
and PI . P2 is a finite linear BPArec term.

• r, == r2+r3 for r2 and r3 closed BPArec terms. Then PAtrans I- t ~ [r2 + r3h ~ [r2h+ [r3h.
By induction there exist finite guarded BPArec terms P2 and P3 such that P Atrans ~ P2 =

hh and PAtrans I- P3 ~ [r3h· Then also T(PAtrans)+RDP- +RSP F t ~ hh+ hh ~
PI + P2 and PI + P2 is a finite guarded BPArec term.

• rl == X for some recursion variable X. This case is not possible since rl should be guarded.

5. t == It,J A for PAtrans term t, and A C; A. This case is treated analogous to case 4.

6. t == tl~t2 for PAtrans terms tl and t2. By induction, there exists a finite guarded BPArec
term 8, such that T(PAtrans) + RDP- + RSP F 8, ~ t,. But since all recursive specifications
in PAtrans are guarded, there is a BPArec term rl which is in head normal form, such that
T(PAtrans) + RDP- + RSP F r, ~ 8, ~ t,. We prove this case by induction on the structure
of rl:

• r, == UA for A C; A. Then PAtrans I- t ~ UA~t2 ~ UA lt2JA' We proved (5) that there
exists a finite guarded BPArec term 82 such that T(PAtrans) + RDP- + RSP I~ 82 ~

lt2JA . Since UA is in P1BPArec, there exists a finite guarded BPArec term 33 such that
T(PAtrans) + RDP- + RSP F t ~ UA lt2JA ~ 83, viz. 83 ~ UA · 82·

• r, == an for a E A and n E N,n::> O. Then PAtrans I- t ~ an~t2 ~ an [t2Ja' We proved (4)
that there exists a finite guarded BPArec term 82 such that T(PAtrans) + RDP- + RSP F
32 = [t2J a . Since an is in P1BPArec, there exists a finite guarded BPArec term 33 such that
T(PAtrans) + RDP- + RSP F t ~ an [t2la ~ 83, viz. 83 ~ an' 82·

19

• rl == a for a E A. Then PAtrans ~ t = a~t2 = a· t2 . By induction there exists a finite guarded
BPArec term 82 such that T(PAtrans) + RDP- + RSP F 82 ~ t2 . Since a is in ABPA,oc,

there exists a finite guarded BPArec term 83 such that T(PAtrans) + RDP- + RSP F t ~
a· ts = a· 32 = 33, viz. 33 = a· 32.

• r, == a· r2 for a E ABPA,oc and BPArec term r2. Then PAtrans I- t ~ (a. r2)~t2' Depending
on the structure of a, PAtrans I- t ~ UA(r21Ilt2JA)' PAtrans I- t ~ a n (r211 [t2la) or PAtrans l
t ~ ahllt2)' So there is a function 1 such that PAtrans I- t ~ (a. r2)~t2 ~ a· (r2111(t2))
where 1(x) E {lxJA' [xJa' x}. We proved (4,5) that 1(t2) is a finite guarded BPArec term.
Furthermore, PAtrans I- r2111(t2) ~ r2V(t2) + 1(t2)~r2 and, by induction, both r2V(t2)
and 1(t2)~r2 are finite guarded BPArec terms and thus r2111(t2) is a finite guarded BPArec
term. Since a is in ABPA,e" a· (r2111(t2)) and thus (a. r2)~t2 is a finite guarded BPArec
term.

• r, == r2+r3 for r2 and r3 BPArec terms. Then PAtrans I- t ~ (r2+r3)~t2 ~ r2~t2+r3~t2' By
induction there exist finite guarded BPArec terms 32 and 33 such that PAtrans ~ 32 = r2~t2

and PAtrans I- 83 ~ r3~t2' Then also T(PAtrans) + RDP- + RSP F t ~ (r2 + r3)~t2 ~
r2~t2 + r3~t2 = 32 + 33 and 32 + 33 is a finite guarded BPArec term.

• rl == X for some recursion variable X. This case is not possible since rl should be guarded.

7. t == t,IIt2 for PAtrans terms t, and t2. PAtrans I- t,IIt2 ~ t,IIt2 ~ t,~t2 + t2~t,. We have
proved (6) that there exist finite guarded BPArec terms 8, and 82 such that T(PAtrans) +
RDP- + RSP I~ 8, ~ t,~t2 and T(PAtrans) + RDP- + RSP F 82 ~ t2~t3. But then,
T(PAtrans) + RDP- + RSP F t,IIt2 ~ t,~t2 + t2~t, ~ 8, + 82 and 8, + 82 is a finite guarded
BP Arec term.

8. t == ((t,)) for closed PAtrans term t,. PAtrans I- ((t,)) ~ ((t" 0, t,)). As will be proven in 9, there
exists a finite guarded BPArec term 8, such that T(PAtrans)+RDP- +RSP F 8, ~ ((t" 0, t,))
and thus T(PAtrans) + RDP- + RSP F 8, ~ ((t,)).

9. t == ((tI, A, t2!! for PAtrans terms tl and t2 and A <;;; A. We give a set of recursive equations,
E, and prove by induction on the structure of t2 that for all terms ((tl, A, t2!! there exists a
BPArec term 8 such that T(PAtrans) + RDP- + RSP F 8 ~ ((t" A, t2))' Let E, the set of
recursive equations, be defined as follows:

bo ' C{b},

a· CA +RA · X;",

bo ' CAU{b} + R A · X;",

U X t.,
0' tl'

R, . X;",
b X t.AU{b} + R X t .' o· h A' t ,

X t.{c}
cO' tl '

X t
•
A + R X t

.' a· tl A' t ,

As can be easily seen by comparing axioms TR2-20 with the recursive equations in E, T(PAtrans)+

RDP- +RSP F (X;;·A IE) ~ ((t" A, t2)) holds for all t" A and t2. So there exists a BPArec term

for every ((t" A, t2)) in PAtrans, viz. (X;;·AIE). Furthermore, since PAtrans I- ((t)) ~ ((t, 0, t)),
T(PAtrans) + RDP- + RSP F ((t)) ~ (X;·'IE).

SO for all PAtrans terms t there exists a finite guarded BPArec term 8 such that PAtrans+RDP- +
~PF8~t. 0

20

	200218_Page_01
	200218_Page_02
	200218_Page_03
	200218_Page_04
	200218_Page_05
	200218_Page_06
	200218_Page_07
	200218_Page_08
	200218_Page_09
	200218_Page_10
	200218_Page_11
	200218_Page_12
	200218_Page_13
	200218_Page_14
	200218_Page_15
	200218_Page_16
	200218_Page_17
	200218_Page_18
	200218_Page_19
	200218_Page_20

