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On Finite Simple Subgroups
of the Complex Lie Group of Type Eg

ARJEH M. COHEN AND ROBERT L. GRIESS, JR.

“~- Abstract. The object of this paper is to produce-a list of finite quasisimple
groups which may be embedded in the Lie group G = Eg(C). We provide ...
additional information about the ways these finite groups are embedded
and have strong restrictions for the cases which are questionable. We hope
that the results of this paper can be used to give a classification of all finite
subgroups of G. )

1. Introduction and statement of results. We can regard the embedding
of a finite group L in a Lie group as a variation of the theme of representation
theory. If the Lie group is of classical type By, C,, or Dy, the embedding of L is,
up to central extensions, just a faithful representation of L of degree 2n+ 1, 2n,
or 2n leaving invariant a nondegenerate form Which is symmetric, alternating
and symmetric, in the respective cases; and so the embeddings into these Lie '
groups form part of the classical theory. This leaves the five exceptional types
of simple Lie groups. The finite subgroups of G2(C) have been determined (up
to conjugacy) in Cohen and Wales [10], and those of Eg(C) and F4(C) are
described in Cohen and Wales [11]. In this paper, we begin the case of Eg(C)
and obtain some results for E7(C) and other Lie subgroups as a byproduct.

Our main result is Theorem 1.1 below. To prove it, we go through the list
of finite simple groups. Thus, we take as an axiom the completeness of the list
of finite simple groups. A second axiom here is the correctness of the relevant
information in the Atlas [12]. We examine conjugacy classes, centralizers, and
character tables extensively, even though we make reasonable efforts to use ele-
mentary arguments and general theory whenever possible. To reduce the chance
of having to adapt our arguments, or (worse) our conclusions in case of a cor-
rected mistake in the Atlas, we have tried to check nonexistence arguments in
at least two ways (although we usually present one in the paper). '
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368 A. M. COHEN AND R. L. GRIESS, JR.

Finite subgroups of a Lie group are compact (0-dimensional) Lie subgroups.
For complex simple Lie groups G, maximal closed Lie subgroups of strictly posi-
tive dimension are essentially determined by Dynkin [15] (see also Borel and De
Siebenthal [4] for the case of maximal Lie rank). In this context, it is natural to
ask for the hst of all finite subgroups (up to conjugacy, or coarser, up to isomor-
phism) of a given Lie group G, which are not contained in a closed Lie subgroup
of G of dimension > 0. In the next section, we describe how our main theorem
fits into such a classification for G = Eg(C). (See §1.5 for notation used in the
theorem below.)

1.1. THEOREM. Suppose L is a finite nonabelian simple group and G is the
complez Lie group of type Eg.

(i) If L can be embedded in G, then L is zsomorphzc to one of the following
groups: Alt, (5 <n < 10), L(2,9) (¢ =7,8,11,13,16,17,19, 25,27, 29, 31, 32, 61),
L(3,9) (g = 3,5), PSU(3,3), PSU(3,8), PSU(4,2), PSQ(’I, 2), PSQ“'(S, 2),
G2(3), °Dy(2), 2F4(2)', M.

(i) If a perfect nonsplit central extension L of L can be embedded in G, then
L is isomorphic to one of 2 - Alt,, (6<n<17),3-Alt, (6<n<7),6-Al,
(6 <n<7), SL(2,9)(¢ = 7,8,11,13,17,19,25,29, 31,32, 37), SL(3,9) (¢ =
3,4), 4-L(3,4), 6- L(3,4), 2- PSU(4,2), 6 - PSU(4,3), Sp(4,5), 2 - Q(7,2),

2-07%(8,2),22-0%(8,2), 2 Mi3, 2 Js.

As of this moment, we have no full answer to the converse, but in the open
cases we give feasible characters of L on the adjoint module g for G. We do not
deal with the question of conjugacy. In Table 1, the symbols preceding L give the
status of embeddings of L into G. A + indicates that an embedding exists, and
a 7 indicates that the existence is plausible but not established. In some cases,
the shape of an interesting character of L is given in the column following L (an
irreducible character is given by its dimension and an index frequently related
to the order of appearance in the Atlas [12]; the expression 12 x 3, stands for a-
sum of twelve (nonspecified) irreducible characters of degree 3). The character
- given is (or, if there is a question mark in the first column: is conjectured to be)
the restriction to a subgroup isomorphic to L of the adjoint character x for G. If
relevant, a statement about uniqueness (notation !) of x| (sometimes as a fixed
point free character, notation fpf) is added. The last column gives information
on a known connected Lie subgroup of G containing a subgroup isomorphic to L
(of course, in the case PSU(3,8), where an embedding has not been established,
we mean that an embedding in G would imply an embedding of L in E;(C)).
It should be stressed that there may be other embeddings of L via (possibly
distinct) connected Lie subgroups. In the cases L(2,q) (¢ € {31, 32,61}), there
is no proper closed Lie subgroup of strictly positive dimension containing a sub-
group of G isomorphic to L(2, ¢); this is expressed by the abbreviation max for
: ma.x1mal in the last column.
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TABLE 1 ’
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Finite nonabelian simple groups L and their embeddability in Eg(C)

status L xlz via, e.g.,
+ Alts ! fpf: 14 X (3¢ + 3p) + 16 X 45 +20.X 5z SL(3,C)
+ Altg SL(5,C)
+ Alty SL(6,C)
+ Altg no fpf SL(7,C)
+ Altg _ no fpf SL(8,C)
+ Altio 1: Qg + 35, + 364 + 2 X 844 3. PSL(9,0)
+ L(2,7) ipf: 5X 34 +5X 3p +6X6a + 10X Ta+14X8a SL(3,0C)
+ L(2,8) . “G2(C)
+ L(2,11) SL(5,C)
+ L(2,13) : , G2(C)
+ L(2,16) 12 15, + 174 + 17 + 175 + 179 HSpin(16,C)
+ L(2,17) 3:PSL(9,C)
+ L(2,19) 3. PSL(9,0)
+ L(2,25) F4(C)
+ L(2,27) 14 x 14 4264 + 26 + 7 X 264 F4(C)
+ L(2,29) (28 +1) X 154 + 284 +28p +28c + 29 + 304 Spin(15, C)

+30¢ +30s +(1.—¢) X 30%,6 =0,1
? © L(2,31) 2% 30y + 2 X 300 + 324 + 32e + 325 +32 max
7 L(2,32) : . 8x3l. max

? L(2,61) 624 + 62 + 62¢ + 624 .. max
+ L(3,3) - _ ’ via F4(C)
+ L(3,5) 1124, + 124, 35: SL(3,4)
+  PSU(3,3) ' G2(C)
? PSU(3,8) 3% 1g + 133, + 2 X 564 2. E7(C)
+ . PSU(4,2) SL(5,C)
+ PSO(7,2) 4% 1g+6XTa+5x%x21g+274+2X 35 SL(7,C)
+  PSOt(8,2) 1:3 X 1q + 5 X 284 + 354 +.35p + 35¢ 4.PSL(8,C)
+ 3D4(2) 1:14 X 14+ 7 X 264 + 524 F4(C)
+ 2F4(2) 1: 8% 1g +3X 27 + 3 x 274 + 78 3. Es(C)
+ G2(3) 1:1qa + 2% 144 + 644 + 64 + 914 Spin(14, C)
+ My Spin(10, C)

In Table 2 we give information about the embedding in G of nonsimple qua-

sisimple groups L with simple quotients L

(i.e., of nontrivial perfect central

extensions I, of nonabelian simple groups L). The meaning of + and ? in the
first column is as for Table 1. In the third column, we give a (possible) type of
Lie subgroup Cg(Z (ﬂ)) and, in the fourth column, a connected Lie subgroup
of Cq(Z(L)) containing L (with the understanding that the embedding of L in
such a group is plausible (but not proven) if a question mark appears in the first
column of the corresponding line).
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TABLE 2

Finite quasisimple (but not simple) groups L and their embeddability in G = Eg(C)

status L type of Cq(Z(L)) an intermediate Lie subgroup

+ 2-Alt, (n < 17) Dg HSpin(16, C)
+ - 3-Alte - . AgEg SL(3,C)
+ 3. Alty ‘A2 Eg SL(6, C)
+ 6- Altg AsAzA1 . . SL(G, C)
+ 6- Alty AsAzA; SL(6,C)
+ SL(2,7) Dg ‘ SL(4,C)
+ SL(2,11) Dg : SL(6,C)
+ SL(2,13) Ds SL(6,C)
+ SL(2,17) Ds SL(8,C)

? SL(2,19) A Eq 2. E7(C)
+ SL(2,25) Dg Spin(13,C)
? SL(2,29) A1 Eq 2. E7(C)
? SL(2,37) A E7 2- E7(C)
+ 2. L(3,4) A1 Ey 4.PSL(8,C)
+ 4-L(3,4) A7A; . SL(8,C)
+ 6-L(3,4) AsAz4; ~SL(6,C)
+ 2. PSU(4,2) Ds ' SL(4,C)
+ 6-PSU(4,3) AsA2A4 ) SL(6,C)
4 2. PSQ(7,2) Ds SL(8,C)
+ 2:-PSNt(8,2) Dg SL(8,C)
+ 22. PSQ(8,2) D4Dy Spin(8, C)
+ Sp(4, 5). Dg Spin(13, C)
+ 2- M, Dg Spin(lz, C)
+ 2.Jp Dg SL(6,C)

We deal with central extensions of finite simple groups because suitable clas-
sifications of finite subgroups of proper closed Lie subgroups of Eg(C) of strictly
- positive dimension do not exist for all’ cases. Notably, the adjoint complex Lie
group of type E7 does not (regularly) embed in G while its simply connected
cover does, so a finite simple group L will have an embedding in the adjoint Lie
group of type Ey if and only if it has a central extension L; with center Z (Ly)
of order at most 2 which can be embedded in 2 closed Lie subgroup of G of type
E;. Thus; our main result contributes to filling the gaps in those classifications
(cf. Corollary 1.2).

Another reason for encompassing central covers in our study is that vari-
ous finite simple groups contain central covers of a smaller simple ‘group whose
nonembeddability in Eg(C) is readily established. By this criterium, several
finite simple groups are eliminated as candidates for an embedding in G. ‘

1.2. COROLLARY. If L is a nonabelian finite subgroup of E;(C) then L
is isomorphic to one of Alt, (n <9), L(2,q) (¢ =7,8,11, 13,17,19, 25,27, 29),
L(3,3), L(3,4), PSU(3,3), PSU(3,8), PSU(4,2), PSQ(7,2), PSQ+(8,2),
3D4(2), 2F4(2),, Mll; M12, Jo. V

Except for L(2,19), L(2,29), PSU(3,8), and J,, we know that all isomor-
‘phism types occur. 2- M, embeds via Spin(12, C) in the simply connected Lie
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subgroup K of G of type E7 in such a way that Z (K) coincides with the center
of this cover; however, 2 - Alt;3 embeds in K via Spin(12, C) in such a way that
the centers of these groups do not coincide.

~ We would like to see the question marks in Tables 1 and 2 settled. In order
to finish the full problem of determining isomorphism classes of finite subgroups,
knowledge about normalizers and centralizers of nonabelian simple subgroups
L of G is required. In this paper, we do not tend to this problem at all. We
know of very few criteria to show nonmaximality in case |z does not involve the
trivial character. As a consequence, the following list of maximal finite simple
subgroups of G may well be longer than the actual one. :

1.3. COROLLARY. If L is a finite simple subgroup of G which is not con-
tained in a positive-dimensional closed Lie subgroup of G, then L 1is isomor-
phic to one of the following groups: Alts [with x|r as in Table 1], Altg, Alt7,
‘Altso, L(2,9) (¢ € {7,8,11,13,16,17,19,25,29,31,32,61}), L(3,5), PSU(3,3),
PSU(4,2), PSQ(7,2), M-

1.4. REMARK. Let H be a group of exceptional Lie type with Z (H)=1and
let h be its Coxeter number. Kostant observed that 2h + 1 is a prime power and
that H is likely to contain L &2 PSL(2,2h + 1). More generally, if d is a regular
number (cf. Springer [25]) such that 2d+1 is a prime power, it seems interesting .
to ask whether H contains a subgroup isomorphic to PSL(2,2d+1). According
to our main theorem, the answer is negative for H = Eg(C) and d = 20 or 24.

- Nevertheless, the speéial choice d = h/2 leads to an interesting list, including
L(2,19) and L(2,31) for E7(C) and Eg(C), respectively. IR

1.5. NOTATION. Our notation is reasonably standard. For genéral group :
theory and finite simple groups, see Huppert [19], Gorenstein [16]. For a subset
S of a group, S* denotes S — {1}. We write Frob,., for a Frobenius group with
kernel of order a and complement of order b, and Alt,, Sym,, for the alternating
and symmetric group on n letters, respectively. Furthermore, Dihy, stands. for
the dihedral group of order n. Let p be a prime. We sometimes use p™ to denote
the elementary abelian p-group Z? and p'*2" for an extraspecial p-group; when
p = 2, we may write 212" where ¢ = + if p"*! embeds in the extraspecial
group, and € = — if not. For groups A and B, A.B denctes an extension with
normal subgroup A and quotient B. The action of A.B on A is meant to be
understood from the context. Also A : B and A - B denote split and nonsplit
extensions, respectively (again, there is ambiguity in general, but it should be
resolved in context).

2. Generalities on finite subgroups of E5(C). The following division
of cases shows how to relate the above result to the classification of all finite
subgroups.

2.1. PROPOSITION. Let G be a semisimple Lie group with trivial center. For
a finite group L embedded in G, one of the following holds:
(i) L is contained in a proper Lie subgroup of G of positive dimension;
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(ii) L < Ng(E) where E is a nontrivial elementary abelian' subgroup of G
such that C(A) is finite for every nontrivial Ng(E)-invariant subgroup A of E;

(iil) L has a nonabelian normal subgroup K which is a direct product of iso-
morphic finite simple groups such that Ce(K) is finite.

~ PROOF. Suppose (i) does not hold. If K is a nontrivial normal subgroup of
L, then Ce(K) is normalized by L, whence finite. If moreover, K is a minimal
normal subgroup of L, then, by standard theory (cf. Gorenstein [16]), K is a
direct product of isomorphic simple groups. If K is abelian, then (ii) readily
follows by taking E = K and reduction to L = Ng(E) otherwise the simple
factors of K are nonabelian and (iii) follows. 0O
2.2. REMARKS. If G = Fg(C) and L < G is as in (ii) but not as in {i) of the
proposition, the subgroup E is known to be conjugate to one of two particular
elementary abelian subgroups of G of order 25 and 52, respectively, and Ng(E)
is isomorphic to a group of shape

25+10 §1,(5,2) or 5%.5L(3,5),

respectively (cf. Alekseevskii [2]). It may be worth making a few remarks about
these groups. The subgroup L of G = Eg(C) of shape 25+10.5L(5,2) is nonsplit.
(This follows from the main theorem.) The elementary abelian normal subgroup
E = [O5(L),02(L)] of order 25 has 31 involutions from a single conjugacy class in
G. Its centralizer Cq(E) = Cr(E) is special of order 25+10 and its normalizer
L contains a subgroup of shape E - SL(5,2), the famous nonsplit Dempwolff
extension (cf. Thompson [27] and Griess [17]).

The subgroup L of G of shape 53.SL(3,5) is split. Unpublished work of
McLaughlin shows that H2(SL(3,5),F) = F5 and that in a nonsplit extension

1—-E—L— SL(3,5)—1

with E = F§ the group X = C/D, where D is a hyperplane of E and C =

CL(E/D) satisfies O5(X) = 5'*2 (extraspecial). It follows (cf. Curtis and Reiner

[13, Corollary (50.7)]) that any faithful character of L has degree at least 5-124 =

620, whence the group L = E.SL(3,5) in G is a split extension. A Sylow 5-group
" of L has exponent 5.

The following result is essentially due to Jacobson (cf. Chevalley [7])

2.3. PROPOSITION. Let L be a groupopemtmg as-a group of automorphz'sms
on the finite dimensional Lie algebra g and acting completely reducibly (e.g., L
finite). If g is reductive, then so is Cg(L).

PROOF. Write a = Cg(L) and let F' be the sum of all nontrivial L-submodules
‘of g. Then a is a subalgebra of g such that g is the direct sum of a and F, and
[a, F] C F. Therefore, by [7, Chapter V, §2, no. 7], a is reductive. O
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The induction hypothesis with respect to closed Lie subgroups will primarily
be used through the following :

2.4. COROLLARY. If Lisa finite quasisimple subgroup of the complex Lie
group G. of type Eg, then L fizes no nonzero vector of the Lie algebra g of G or
L = L/Z(L) can be embedded in a Lie group whose type is one of A; (1< <7T),
D; (5<j<T), Ex (6<k<T).

- PROOF. Suppose 1 fixes a vector in g. In view of Proposition 2.3 there is a
nonzero toral element fixed by I. Therefore L centralizes a torus T  in G. Since
Ca(T) is reductive and connected, has rank at most 8 — dim 7" and is generated
by root groups from a system for a maximal torus containing 7', we are done. O

2.5. LEMMA. If L is a finite subgroup of G, then x|z, where x is the char-
acter of G on the adjoint module g, 1s a sum of (not necessarily irreducible) real
characters, and : c
' 3 (x(9)? - 3x(6*)x(9) +2x(¢°)) > 0.
gEL ’

PROOF. As L is compact, it can be embedded in a maximal compact subgroup
of G; therefore, L acts as a group of automorphisms on a real compact form gr

of g and preserves the nondegenerate real anisotropic symmetric bilinear Killing——

form kg on gr. The inequality can be written as (A®x|z,1) > 0, and as
such expresses the fact that L preserves an alternating trilinear form on g, viz.,
(z,y,2) — «([z,9],2) (z.9,2€8). O |
2.6. PROPOSITION. Let G be a simple adjoint Lie group of type X, say,
where X is one of A; (1<1<8),D; (5<1< 8), or Eg. If L is a nonabelian
finite stmple subgroup of G, then L is one of the groups in Table 3. (Each L
is gtven only once, namely on the first line containing the type X of a group m
which it occurs.) ' ' '
TABLE 3

All nonabelian finite simple groups L embeddable

in a closed Lie subgroup of type X
X L ]

Ay Alts

Az  Alte,L(2,7)

Az Alt7,PSU(4,2)

As L(2,11)

Ay Alts, L(2,13), L(3, 4), PSU(3, 3),PSU(4,3), J2
Ag Altg, L(2,8), PSQ7,2)

A7 Altg, L(2,17), L(3, 4),PS17(8,2)

Ag Altig, L(2,19)

Ds Altii, Miy

Dg¢ Altyo,Alt13, L(3,3), M12

D7 Altig, Altys, L(2,25), P Sp(4,5),G2 3)
Ds  Altys, Alti7, L(2, 16), L(2, 29)

Es 3D4(2), 2F4(2),L(2,27)

PROOF. As for all but the last type X, this is straightforward from standard
representation theory and the classification of finite simple groups (cf. Landazuri
and Seitz [21]). As for the case X = Eg, see Cohen and Wales [11]. O
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Note that the pair L, X does not always correspond to an embedding of the
simple group L in:G = Eg(C); for instance L(3,4) has a central extension by a
group of order 4 which embeds in SL(8,C) and hence in G, but, according to
the Theorem 1.1, there is no subgroup in G isomorphic to L(3,4).

3. Small subgroups of Eg(C). Throughout. the rest of the paper, G shall
-denote E5(C), g the Lie algebra of G (of dimension 248), and x the character of
G on g. According to Moody and Patera [24], the number of conjugacy classes
in G of elements of order a divisor of ¢ is the coefficient of ¢* in the power series
expansion of

1
C@=)(1—2)2(1 - 8)2(1 - t4)2(1 - ts)(l - t8)°
This series begins as follows:

1+t +3t2 + 563+ 10t* + 1585 + 2718 + 30t7
+63t% + 9027 + 13510 + 187¢11 4 270412 + 364113 +

Thus, the number of conjugacy classes of elements of order 7 (1 <7 <13) is the
coefficient of £ in

t+ 262 + 4¢3 + 7t + 1485 + 2065 + 3847
© +53t% +85¢% + 118¢10 + 186t + 23612 + 363113 +

Fix a Cartan subspace h of g and a root system ® C h* of h. We shall index
the roots of a fundamental set in ® (with respect to some ordermg coming from

a Borel) as in Bourbaki [6]:
o—o—f—o—o—.o—.o

13 4 5 6.7 8

Each semisimple automorphism of g-is-conjugate in G = autg to an element
ha(¢) € G acting trivially on h and by the scalar multiplication with ¢®*# on the
‘root space associated with 3 € ®. (Here, - denotes the usual dot product with
respect to the fundamental basis of roots in 3. )

3.1. PROPOSITION (Feaszbzlzty of characters on g). The elements of order
k=2,3,4,5,6, and 7 in G = Eg(C) are given explicitly (up to a conjugacy) in
Table 4. The values of x on these elements are as listed in the last column of
' this table.

Each linein Table 4 corresponds to the element ho (€27m5/ k) of G (for my =
1), and nonconjugate powers (for ma,... > 1). The first column contains a label
the first digit of which indicates the order k of this element; between square
brackets are the exponents mg,... of nontrivial powers representing.distinct
conjugacy classes of elements of the same order and letters indicating the labels
of conjugacy classes of powers by prime divisors of & (in decreasing order of the
_ power). i
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Representatives ha (e2™™i /%Yy of conjugacy classes
in Eg(C) of elements of order k = 2, 3,4,5,6, and 7

label a centralizer . multiplicity of trace
[exps, powers] e2mii/k for ong
3=0,...,[(k+1)/2]

2A (0,0,0,0,0,0,0,1) A1Eq 136 112 24
2B (1,0,0,0,0,0,0,0) Ds 120 128 -8
3A (0,1,0,0,0,0,0,0) As 80 84 -4
3B (0,0,0,0,0,0,1,0) A2Es 86 81 5
3C (1,0,0,0,0,0,0,0) D7Ty 92 78 14
3D (1,0,2,0,1,2,0,1) ETy 134 57 77
4A[A] (0,0,0,1,0,0,0,0) A7Aq 66 56 70 -4
4B[B] (1,0,1,0,0,0,0,0) ATy 64 64 56 -8
“4C[B] (0,0,0,0,0,1,0,0) A3Ds 60 64 -60 0
4D[A] 2,9,,0,0,0,0,0,1) A1DeT:y 70 56 66 4
4E[A) (0,0,0,0,0,0,1,0) A1EeT: 82 56 54 28
4F[B] (2,1,0,0,0,0,0,0) D7Ty 92 64 28 64
4G[A] (0,0,0,0,0,0,0,1) ErTy 134 56 2 132
5A[2] (2,2,0,0,0,0,0,0) ATy 64 56 36 8 + 207
5B(2] (0,1,0,0,0,0,0,1) AsA1Ty 52 49 49 3
5C (1,2,1,4,0,1,2,3) AgAy 48 50 50 -2
5D[2] (0,0,0,0,0,1,0,0 A2DsTy 54 .51 46 3457
5E[2] (0,0,0,0,0,0,1,0) A1EeT: 82 54 29 28 + 257
5F[2] (3,1,0,0,0,0,0,0) D7Ty 92 64 14 28 + 507
5G (1,0,0,0,0,0,0,1) DeT2 68 45 45 23
5H(2] (0,0,0,0,0,0,0,1) E:Ty 134 56 1 78+ 557
6A[B, A] (0,1,0,0,0,0,0,0) ATy 64 56 28 16 © 76
6B[B, D] (1,2,0,0,0,0,0,0) ATy 64 29 28 70 -5
6C[A, A] (0,0,1,0,0,0,0,0) AsA1T: 54 42 42 28 24
6D[B, C] (1,0,3,0,0,0,0,0) AeT2 50 43 35 42 16
6E[A, C] (1,1,1,0,0,0,0,0) AT 50 35 43 42 0
6F[A, B] (0,0,0,1,0,0,0,0) AsA2Ar 46 36 45 40 -3
6G[A, A} (0,1,0,0,0,0,1,0) AsAxTy 44 38 46 36 0
6H([B, B] (1,2,3,5,4,3,2,1) AsA1AITL 42 42 39 4 1
61[B, A] (0,0,0,1,0,0,0,1) A4A3Ty 40 44 40 40 4
6J(4,C} (1,2,3,1,2,3,1,2) A3zD4Ty 44 40 38 48 -2
6K[B, B| (0,0,0,0,0,1,0,0) “A2DsTy 54 48 33 32 37
" 6L[B,C] (1,2,3,4,5,0,1,2) A1 A1 DsTy 52 36 42 40 6
6M[B, D] (1,0,0,0,0,0,0,2) A1 DeTy 70 32 25 64 13
. 6N[A, D] (2,0,0,0,0,0,0,1) A1 DTy 70 24 33 64 -3
60[A, B] (1,0,0,0,0,0,1,0) A1 DTz 50 38.- 43 36 9
6P[A, B] (0,0,0,0,0,0,1,0) A1EeTy 82 54 27 4 105
6Q[B, C} (4,1,0,0,0;0,0,0) D7Ty 92 64 14 0 142
6R[A, C] (4,0,0,0,0,0,0, 1) DeT2 68 44 34 24 54
6S[A, D] (0,0,0,0,0,0,0,1) E/Ty 134 56 1 0 189
6T[A, D] (0,0,0,0,0,0,1,1) EeTy 80 29 28 54 27
TA[2,4] "(0,1,0,0,0,0,0,0) ATy 64 56 28 8 16 + 480 + 200>
7B[2,4] (2,4,0,0,0,0,0,0) AgA1T1 52 35 21 42 52 — 7o — 2102
7C[2,4} (4,4,0,0,0,0,0,0) AgT2 50 42 29 28 20+ 140 +0?
7D[2,4] (4,1,5,2,6,0,0,0) AsA1T> 40 34 37 33 —l4o+40%
7TE[2,4] (2,0,0,2,0,0,0,0) A4AsTy 40 40 34 30 2 + 100 + 40
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label o centralizer multiplicity of trace
[exps, powers] e2mii/k for ong
J=0,...,[(k+1)/2].

7F[2,4)] (0,0,0,2,0,0,0,0).  AsA2A; Ty 36 35 35 36 2—0—o2
7G[2,4] (1,2,0,0,0,0,1,0) A DsTy 54 48 30 19 13 + 290 + 1102
(1,1,0,0,1,1,0,0) A2D.T; 38 35 35 35 3

71[2,4] (0,0,0,0,0,1,0,1) A1D5Te 50 35 28 36 30— o0 — 802
73[2,4] (0,0,0,0,0,0,2,4) A1EsTy 8254 27 2 30 + 520 + 2502
7K[2, 4] (1,0,0,0,0,0,0,0) D:Ty 92 64 14 . 0 64 + 640 + 1402
7L[2,4] (1,0,0,0,0,0,0,1) DgT: 68 44 33 13 15 + 310 + 2002
T™[2, 4] -(1,6,0,0,0,0,0,0) E7Ty . 134 56 .1 0 132 + 560 + 02
7N : (1,2,3,4,0,0,0,0) EeTs 80 28 28 28 52

TABLE 4 (con’t)

" Here, 7= (1+v5)/2 and 0 = 2cos(27/7). [Sor2 =74+ 1;0% = —0?4+20+1.]

PROOF. Straightforward computation for each o gives the indicated cen-
tralizer type and eigenvalue multiplicities of the elements A, (e2™/%) listed. In
general these invariants distinguish as many conjugacy classes as there should
be in view of the above formula, and representatives for all classes have been
found. The only difficulty occurs for the elements of order 5 with trace 3. It
can be argued as follows that such an element, z say, cannot be conjugate to
its square. First of all, note that, since —id € W (Esg), each semisimple element
of G is conjugate to its inverse. Since the centralizer Cg (z) of z is a connected
closed Lie subgroup of type AgA; T, there is a unique 1-dimensional semisimple
subalgebra t; centralized by Cg(z). The normalizer of (z) acts rationally on
this torus so the action group is Z; at most (and since —1 € W(Esg), actually
coincides with Z;). Now, z is the exponential of some u € t1, 80 it is conjugate
to its inverse, but not to any other power. 0O

3.2. REMARK. Let v be a character of L of degree 248. A necessary condltlon
for L to be embeddable in G with x|z = % is that, for each g€ Loforder k<7,
there is an element z € G of the same order with x(z) = v(g). We shall say that
is feasible on g if it satisfies this condition. In the sequel, ‘any groups L will be
eliminated as possible subgroups of G by this feasibility condition. The following
character of 5z(8), however, is feasible 14, + 14; + 64, +65. + 91, (its character
values are: x(24) = —8,x(44) = 0,x(4B) = 0,x(54) = =2,x(74) = 0 + 1,
where the notation for elements of Sz(8) follows the Atlas [12]), while Sz(8)
does not appear in the main theorem. Thus, sometimes, a more detailed analys1s
is required.

It is of interest to know the precise structure of the centralizers of these
elements of small order. It is well known that they are connected (cf. Springer
and Steinberg [26] or Chevalley [7]). See also Borel and Tits [5] for further
information concerning the centers of these centralizers.

3.3. LEMMA. Letye@G.
(i) If y 1s an involution with trace —8 on g, then its centralizer is 1somorphic to
the half-spin group HSpin(16, C), i.e., the quotient of the spin group Spin(16, C)
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by a central involution outside the kernel of the natural map Spin(16,C) —
S0(16,C). .

(ii) If y is an involution with trace 24 on g, then (y) is the full center of
C = Cg(y) of type A1Ey, and occurs in the commutator subgroup [C1,C1] of
either central product factor Cy of C..

- (iil) If y has order 3 and trace —4 on g, then the centralizer of y has a center
of order 3; it is the quotient 3- PSL(9,C) of SL(9,C) by its central subgroup of
order 3.

(iv) Suppose that y is an element of order 4 such that Cg(y?) has type Dg and
Cg(y) has a component of type A7. Then Cg(y) = GL(8,C). Also, Ng({y)) =
Ca(y)(7), where v has order 2 and acts on Cg(y) = GL(8,C) by the inverse
transpose. ’ S

PROOF. (i) Since the group contains a central involution and a full maximal
torus, it must be a nonsplit central extension of PSO(16,C); by identification
of its representation on the —1 eigenspace of the central involution as a half-spin
representation and on the fixed point space as the adjoint representation (again,
by use of the root system), it must be the half-spin group.

(i), (iii). Similar arguments work.

(iv) Let 7: Cg(y?) — PSO(16,C) be an epimorphism with kernel (), and
let p: SO(16,C) — PSO(16, C) be the natural quotient map. We may assume
7(y) = p(u), where v € SO(16, C) is a diagonal element with eigenvalues ¢ and
—1, both having multiplicities' 8. Therefore the connected group C(y) has type
. A7T; and we must specify the center of the A7 factor and how the two fac-
ters intersect. We may assume Cg(y?) corresponds to the subset {2,3,...,8,0}
of the extended Dynkin diagram. Cg(y?) corresponds to the stabilizer of a
direct sum decomposition of C® into a pair of maximal isotropic subspaces,
i.e., the ¢ and —i eigenspaces of p(u). All such stabilizers are conjugate in
0O(16, C) but fall into two orbits under SO(16, C). Representatives of these two
classes of GL(8, C) subgroups of SO(16,C) correspond to subsets {3,...,8,0}
and {2,3,4,...,8,0} of the set of nodes {2,3,...,8,0} corresponding to our Dg.
Now, we may assume the semisimple factor S of C(y) corresponds-to the sub-
set {3,...,8,0} of the extended Dynkin diagram. (It seems a priori possible
that .S would correspond to {2,4,:..,8,0}. However, S would then commute
with P = SL(2,C) corresponding to node 1; then SP has a root lattice of type
A7 A; of determinant 16 and with cokernel Z4. Since this lattice is embedded in
the Eg lattice, Z(SP) = Z4, and y? is the involution of Z(S) = Z4; therefore,
7(S) = SL(8,C)/Zy, where Zy = Z4, which is certainly false as 7(S) should
be SL(8,C).) We observe that the group H corresponding to {1,3,...,8,0} is
isomorphic to SL(9,C)/Z, where Z = Z3 is a group of scalar matrices and H
contains a subgroup R = GL(8,C) (via the standard embedding of GL(8,C)
in SL(9,C) putting the 8 x 8-matrix in the upper left corner and its inverse
determinant as the (9,9)-entry). We may take S < R. Certainly, Cq(S) is
reductive of Lie rank 1, so without loss of generality, we may take y € Z(R), a
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1-dimensional torus in Cg(S). Since dim R = dim Cg(y) = 64, and R < Cg(y),
Cs(y)/R is finite. Connectedness of Cg(y) forces R = Cg(y), and the first
statement is proved. As for the last statement notice that Ny, = GL(S C)(v),

where H; = Ng((v)), (v) = ( )= O

3.4. COROLLARY. Suppose Lisa quaszszmple ﬁnzte group with simple quo-
tient L, and z is an element of order a in Z(L). If L < G, then L is embeddable
in a connected closed Lie subgroup of G of type X, where X 1is one of Dg, E7 if
a=2;As,F¢ ifa=3;A7,D5 ifa =4; A4 if a = 5; As ‘z'f‘a = 6.

. PROOF. The relevant Lie subgroup is a factor of the central product decom-
position of Cg(2z). The proof comes down to verifying (by means of Table 4)
that the centralizer C of z in G with 2 € [C, C] has central product factors which
are embeddable in a group of type X. O , g

By Borel and Serre [3], every supersolvable subgroup normalizes a maximal
torus. In particular, finite p-subgroups of G belong to Ng(T') for some maximal
torus T of G. Since the structure of Ng(T'), of shape T-W (Eg) where W (Eg) de-
notes the Weyl group of type Ejs, is well known, this provides strong information
on the structure of such a p-subgroup:

3.5. LEMMA. IfL is a ﬁnite p-subgroup of G, then either p > 7 and L. s
abelian of rank at most 8, or there 15-a power q of p such that L can be embedded
in a group of shape : :

(i) Z8.28.2% Dihg for p=2;

(ii) Z8.((Zs wrZ3) x Z3) forp=3;

(iii) Z&.5% for p=5;

(iv) Z8.7 forp=1T.

For a proof of this and the following result, the reader is referred to Cohen
and Seitz [9].

3.6. PROPOSITION {COHEN AND SEITZ [9]). Ifp is a prime, the p-rank of
G (t.e., the mazimal number a for which an elementary abelian p-subgroup of G
of order p® exists) is equal to 8 unless p = 2, in which case it is9. Moreover, there
is a unique congugacy class of elementary abelian p-subgroups in G of mazimal

order.

Adams [1] has classified all elementary abelian 2-groups in G' which are maxi-
mal with respect to containment. (Up to conJugacy, there are prec1se1y two, one,
the above, has rank 9, the other has rank 8.) -
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3.7 LEMMA. IfE is a Klein four-group embedded in G, then up to conjugacy,
E 1s one of the followmg four groups:

TABLE &
"~ Klein four-subgroups of G
E# centralizer automizer multiplicities
BBB ' D4D4.2Z- Symg 56 64 64 64
BBA _A7T1.Z2 Z2 64 56 56 72
BAA A1A1Dg Zy 72 56 64 64
AAA EgTo.Zo Symg 80 56 56 56

In the first case (type BBB), the centralizer C' of E contains an involutton in-
terchanging the two central product factors isomorphic to Spin(8,C), and Ng(E)
splits over C° (i.e., Ng(E) is a semidirect product of the normal subgroup C°
and a subgroup isomorphic to Symg XZs).

PROOF. By Springer and Steinberg [26] all elementary abelian groups of order
4 are embeddable in a maximal torus T of G. The action of W(Es) Ng(T)/T
on the 2-torsion V of T is that of PSO™(8,2) = W (Es)/Z(W (Eg)) on its stan-
dard module. Involutions in T' of type 2A (cf. Table 4) in G correspond to
nonisotropic points of this module. Applying Witt’s Theorem to the orthogonal
space underlying V, we find four classes of Klein four-subgroups in T', correspond-
ing to totally isotropic, hyperbolic, degenerate, and elliptic lines, respectively,
with E# containing precisely 3,2,1,0 involutions of type 2B (cf. Table 4) in the
respective cases. v
In order to determine the structure of N = Ng(E), let z, yev generate E.
. The centralizer J = CG(a:) is a quotient of its universal cover J by an involution.
Since the centralizer of a semisimple element in the simply connected group Jis
_ connected, the index of the connected group C° in C'= C;(y) is 2 or 1 according
to whether there does or does not exist an element in J interchanging the two
inverse images of y.

Let z be of type 2A and write J = SK where S = SL(2,C) and K
2. E7(C). If E# has type BAA, then we can take y € K of type B, and so,
as K is simply connected, Cy(y) = Ck(y)S is connected. If E# has type BBA
or AAA, we can choose y; € K and ys € S of order 4 such that y;y» and
y? = y2 = 7. Elements of order 4 in K and S are rational, so there are g; € K
and g; € S such that y* = yz_ = zy;. In particular, g;go commutes with y,
and, as its inverse image in the simply connected cover of SK does not centralize
the inverse image of y, it must lie in C —C°. .

Now suppose that z,y, and zy are of type 2B. Then-J = HSpin(16, C), and
y can be chosen as the element whose inverse image in J maps to an element
with eigenvalue distribution —18,18 in SO(16,C). Take v to be an element of
J whose inverse image in J maps to an involution % in SO(16, C) interchanging
the two eigenspaces of 4. Then v is an involution in J interchanging the two
- central product factors of C' of type D4. Therefore, N = Ng(E) contains a
subgroup Ny of index 2 stabilizing the two Dy’s; N is complemented by (v).
Additionally, from the Weyl group structure (using that E is a totally isotropic -
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2-space in V') we find that N induces the full linear group GL(2,2) = Sym, on E.
Finally C° = No N C = Spin(8, C) o Spin(8, C) (with center E), and N = NyJ,
so N/C° = Ny /C° x C/C° = N/C x N[Ny = Symg XZs.

Let H be the normalizer in N of (v, E), let K be the stabilizer in H of each
of the two central product factors Jy,J2 of J, and let S be the subgroup of
K consisting of all zvzv~! for z € J;. Then projection onto J;/E shows that
SE/E is isomorphic to PSO(8,C); also, SN E =1 and [v,K] < E, so that
SE is the direct product of S and F and is contained in K. By a Frattini
argument applied to the involution vE/E of the normal subgroup J/E of N/E
(observe that J/E has a unique class of involutions outside J;J2/E), we must
have N = JH and hence N = JK. Thus K induces Symy; on E and so, by
knowledge of Aut D4(C), there is a subgroup L of K containing E such that
K/E is the semidirect product of SE/E = PSO(8,C) and L/E = Symg,. Now
L must be isomorphic to Sym, (it permutes the 4 elements of Sym, faithfully)
so contains a subgroup M, say, isomorphic to Symz and complementing £. We
conclude that N is the semidirect product of C' and M, and hence also the
semidirect product of C° and (v) x M. O ,

In the next two propositions we continue with the investigation of elementary
abelian 2-groups all of whose involutions are of the same class.

3.8. PROPOSITION. Let T be a mazimal torus of G and denote by N its
normalizer in G. The group N/T is isomorphic to W(Eg) and acts on the 2-
torsion V. of T as on the natural module for QO+ (8,2) = W(Es)/Z(W(Es)).
The singular and nonsingular elements of V' are involutions in G of trace —~8
and 24, respectively. Fiz a mazimal singular subspace Zy of V and denote by
Zs the subgroup of N generated by Zy and a fized element z € N mapping to
~id € W/(Eg) under the ndtural morphism N — N/T. Then Zs is as described
in Remark 2.2; thus, Z5# consists of 31 involutions of trace —8 on g, and any
two subgroups of Zs of the same order are conjugate in G. For m =1,2,3 denote - -
by Zm a fized subgroup of Zs of order 2™. Then, if E is an elementary abelian
subgroup of G of order 2%, for some k > 2, all of whose tnvolutions have type

2B (cf. Table 4), then k < 5 and E is conjugate to Zy. If N and C denote the
normalizer and centralizer of E, respectively, then C/C° has order 22"71-1 gnd
N/C = L(k,2). : ,

() If k = 3, then J = C° is the central product of eight fundamental SL(2, C)’s,
say J; (1 <1< 8), with center Z = Z(J) = 2% such that E is the unique hyper-
plane in Z disjoint from each Z(J;)*. Furthermore, C/J = 2% acts regularly on
Z — E, and the actions of N on Z — E and on {J;|1 <1 < 8} are the same.

(i) If k = 4, then C° is a mazimal torus of G and the group C/C° has shape
2t : ‘

(i) If k =5, then C° =1 and C has shape 25.2'%, (nilpotency class 2).

PROOF. In view of the preceding lemma. we inay restrict to' £ > Z, of
rank at least 3. First, suppose E has rank 3. Cqmputing inner products of
characters, we get dim Cy(E) = (248 + 7(—8)) = 24. Choose z € E — Zo. If 2



SUBGRCUPS OF THE LIE GROUP OF TYPE Esg 381

were to interchange the two central product factors of C(Z2)°, we would have
dim C4(E) = 28, a contradiction. Therefore, z € C(Z2)°, and so E is contained
in a maximal torus of G. From the previous lemma it is clear that E is (conjugate
to) a singular subspace of V' of dimension 3, and from the Weyl group action
we obtain that N/C is the full linear group GL(3,2) on E. Having established
uniqueness up to conjugacy, we may construct a convenient example of E (cf.
[9]) in order to further analyze its normalizer. To this end, fix a maximal torus
T and take the following set of eight pairwise orthogonal roots, written in terms
of coefficients with respeét to the fundamental roots as indexed in §3: 22343210,
01122210, 00000010, 01121000, 00001000, 01000000, 00100000, and 23465432.
Let J; (1 < ¢ < 8) be the fundamental SL(2,C) with respect to the ith root
from this set of 8, set J = J;---Jg, and write ¢; for the generator of Z(J;).
Then Z = {g;|1 < 7 < 8), the center of J, is an elementary abelian group of
order 16. More precisely, the e; satisfy the relations [[,.; e; = 1, where I is one
of the tuples

4567, 2367, 1256, 1247 2345, 1357, 1346,
(1) 1238, 1458, 3478, 3568, 1678, 2468, 2578,
12345678. :

(These words constitute the so-called extended Hamming code [8, 4,4], cf. Sloane
and MacWilliams [22, p. 27].) Thus, Z3 = {e;e;|1 <4< j <8}, and Z — Z3 =
{e;]1 <7 < 8}. Now the eight elements (e;)1<i<g are all of type 2A, and the seven
elements (ese;)1<i<j<s are all of type 2B; the subgroup of all ‘even elements’ (of
type 2B or 1) is a conjugate of E. Taking E to be equal to this group, we find
that J = C° (recall that the dimension of Cy(E) is 24). From connectedness
" of J, it follows that Z can be embedded in a maximal torus as well. The Weyl
group induces a group of shape 23.GL(3,2) on Z, and so N/J is isomorphic to
this group, and C is the inverse image in NV of O(/N/J) under projection mod J.
Also, from the Weyl group action on Z, it is clear that C/J = Oy(N/J) = 28
acts regularly on Z — E. Finally, since J; = C(Cg(e;)°)°, the actions of N/J
on the e; and on the J; are the same.

Next assume E has rank 4 and contains Z3. Then dim Cg(E) = 8, so element
z € E — Z, normalizes each J; of Cg(Z3) with a 1-dimensional fixed ppoint
_subgroup. In particular, z € J can be embedded in a maximal torus 7" of
G contained in J, so that E is conjugate to Zs indeed. Also, C° coincides
with T. From the Wey! group action we obtain a group of shape 2176, GL(4,2)
normalizing E, and so C' = T.2"%, N/C = GL(4.2) = Altg. o

Suppose F has rank 5 and contains Zs. Then dim Cg(E) =0, so N is a finite
group and z € E — Z, inverts T. Consequently, 2T corresponds to a generator
of Z(W(Es)), and we may take z = z; ---2g with 2z; € J; of order 4 inverting
the 1-dimensional torus T N'J; of J;. The coset zT for such a z is readily seen
to be a single Ng(T')-class of involutions (for instance, use the structure of the
individual J; = SL(2, C) to show that any two z € E — Z; must be conjugate).
~ Since z sends each root space of T to its opposite and acts on the Lie algebra
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of T by scalar multiplication with —1, it must have trace —8 and be of type
2B, indeed. (See Remark 2.2 for other comments on existence.) The remaining
statements for k£ = 5 follow from Griess [17].

Finally, the existence of E in G with rank 6 would imply (1,x|z) = é(248 +
63(—8)) < 0, which is absurd. 0O :

3.9. - PROPOSITION. Let T,N, and V be as above. Take E5 to be a 2-
dimensional anisotropic subspace of V.. Then there is a 2-dimensional torus S
containing Eo and contained in a subgroup R = G9(C) of a fundamental sub-
group of type Eg (fizing pointwise an 8-dimensional subspace of a 27-dimensional
irreducible for 3 - E6(C)). Take involution e € Ng(S) mapping to the nontrivial
central element of Nr(S)/S = W(Gz2). Then E3 = (E,,e) is an elementary
abelian subgroup of G of order 8 all of whose involutions have type 2A; its cen-
tralizer C in G is isomorphic to F4(C) x E and Ng(E) = 23 - L(3,2) x F4(C),
while Cq(Cg(E)°) = G2(C). Furthermore, if E is an elementary ebelian sub-
group of G of order 2% for some k > 3, all of whose involutions have trace 24,
then E i3 conjugate to Es.

PROOF. As for existence of E3, observe that there is a unique class of involu-
tions and a unique class of elementary abelian subgroups of order 8 in B. Now
the trace of an involution in R on a 27-dimensional module for 3 - E¢(C) is 3.
From the embedding of 3- Eg(C) in G it is then clea_?rv that the involutions in this
group have trace 24. (The trace of such an involution is 3 on the 27-dimensional
module and —2 on the adjoint for Eg, whence 8 -1+ (—2) +6-3 = 24 on g.)
Also, from the embedding of E in G2(C) we see that N induces GL(3 2) on E
(cf. Cohen and Wales [10]).

Let E > E» be of rank 3, and take z € E— E,. We have d1mC’ (E) =52 If 2

were contained in C(E)°, then E would be embeddable in a maximal torus of G,
which is impossible as V' does not contain totally anisotropic spaces of dimension
3. Therefore, z lies outside C(E)° and induces an outer automorphism on
Y, the central product factor of type Eg and inverts the toral factor S. 'The
only 52-dimensional subalgebra arising as the fixed points of an involutory outer
automorphism of Y is well known to be of type Fy, and all such automorphisms
of this kind are conjugate (cf. Helgason [18, Chapter X]). This establishes that
E is unique up to conjugacy and that C = Fy(C) x E (recall that z inverts
S). Thus C° = F4(C) is entirely contained in Y, so Cg(C®) contains Cg(Y),
a fundamental SL(2,C) containing S, the existence of E in Cg(C®), and the
fact that dim Cg(C°) = 14 (the representation of F4(C) on each of the six 27-
dimensional irreducible subrepresentations of g for Y decomposes into 1 + 26,
and the adjoint for Y into 52+-26, so that dim Cg(C°) = dimCg(Y)+6-1 = 14),
imply that Cq(C°) = G5(C).

Finally, suppose that £ > FE3 has rank 3. Then there must be an element
y € Cg(E3)° = F4(C) such that yE3 consists of involutions of type 2A only,
and dimCg(E) = 11—6(248 + 15 x 24) = 38. But there are only two classes of -
involutions in Fy(C) with centralizer types A;C3 and By, respectively, leading
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to dim Cg(E) = dim Cs (y) = 17,28, in the respective cases (where f denotes the
Lie algebra of Cg(E3)), a contradiction. O

The maximal elementary abelian subgroup of order 28 found by Adams [1] is
conjugate to E x F, where E = Ej3 is as above and F is the elementary abelian
subgroup of Cg(E)° = F4(C) generated by the 2-torsion of a maximal torus of
F4(C) and an involution in the normalizer of that torus mapping to the central
involution of the Weyl group of type F4 under the projection modulo the torus.

4. The module M for 2 - E;(C). It can be seen from the relevant invo-
-lution in G that K = 2 E7(C) occurs as a closed connected Lie subgroup of
G centralizing a fundamental subgroup C = SL(2,C). The restriction to K
of the G-representation on g decomposes into a 3-dimensional fixed point space
on which C acts adjointly, an adjoint module of dimension 133, and two irre-
ducibles of dimension 56. We shall now be concerned with such an.irreducible
K-constituent M of dimension 56. '

By the same procedure as for Eg, we can determine representatives of conju-
gacy classes of elements of small order in 2 - E7(C) (cf. Cohen and Wales [11]
for similar results concerning 3 - F5(C)). Thus from Moody and Patera [24], we
obtain that the number of conjugacy classes in G of elements of order a divisor
of 7 is the coefficient of #* in the power series expansion of

(1-8)1—-£2)2(1 - 3)(1 - #4)(1 - yt)(1 — y£2)(1 — y3)’

with respect to the base (y7¢¢)o<;<1,0<i where y? = 1. Consequently, the number
of conjugacy classes of elements of order ¢ (1 <4 < 13) is the coefficient of # in

t+3t% 4+ 5¢% + 11¢* 4 214% + 35¢° + 63¢7
+97¢8 + 153¢° + 22910 + 35121 + 47482 + 714813 -+

/

and so (with the conventions of the previous proposition) we obtain

4.1. PROPOSITION ( Feastbility of characters on M). Let K be the pointwise

_ stabilizer in G of the root space corresponding to the longest root 23465432 of ®.

Then K < Cg(e) and K = (e) - E;(C), where e is the involution hg(—1) of G

with 8 = (0,0,0,0,0,0,0,1). The elements of order k ='2,3,4,5,6, and 7 in K

are given ezplicitly (up to conjugacy) in Table 6, where o = (;) € Z8 satisfies
201 + 3ag + 4oz + 6ag + Sas + 406 + 3a7 + 208 =0 (mod k).
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TABLE 6

Representatives ko (e27™3%/F) of conjugacy classes
of elements in 2 - E7(C) of order k = 2,3,4,5,6, and 7

AsA1To

label a centralizer multiplicity of ¢27%/k class
[exps, powers] ' C in K on M forj=0,....k—1 in G
2A (0,0,0,0,0,0,0,1) Ey 056 2A.
2B (1,0,0,0,0,0,0,1) A1 Dg 32 24 2A
2C (1,0,0,0,0,0,0,0) A1Dg 24 32 2B
3A (0,1,0,0,0,0,0,0) AeTe 14 2121 3A
3B (0,0,0,0,0,0,1,0) EeTy 227 27 3B -
3C (0,0,0,1,0,0,0,0) AsAz 20 18 18 3B
3D (,1,1,0,0,0,0,0) A1DsTy 20 18 18 3C
3E (1,0,1,0,0,0,0,0) DeT2 32 1212 3D
4A[A] (0,2,0,0,0,0,0,1) A7 028 028 4A
4B[B}- (0,0,1,0,0,0,0,0) AsA1Ty 1212 20 12 aA
4CI[C] (1,1,0,0,0,0,1,0) AsT2 12 16 12 16 4B
4D[C] (0,1,0,0,1,0,0,0) AzAz Ay 121612 16 4C
4E[C] (0,0,0,0,0,1,0,0) " - A1 DsTy 416 20 16 4C
4F(B] (0,0,1,0,0,1,0,0) A1 A1D4Ty 16 12 16 12 4D
4G[B] (1,0,0,0,0,0,0,1) DeTy 0123212 4D
4H[A] (2,2,0,0,0,0,0,1) EeTy 028 028 4E
41[B] (1,0,0,1,0,0,0,0) AsAIT: 2012 12 12 4K
4J[C] (0,0,0,0,0, 1,0,2) A1DsTy 2016 416 4F
4K[B] (2,0,1,0,0,0,0,0) DeTy 3212012 4G
5A[2] (1,1,0,0,0,0,0,0) AsTy 12 71515 7 5A
5B(2] (0,0,0,1,1,1,0,0) ~ AsAiT» 1012 11 11 12 5B
5C|[2] (2,0,0,0,2,1,0,1) AeTy 021 7 721 ' 5B
5D[2] (0,0,0,0,1,0,0,0) AsAsTy 610 15 15 10 5C
'5E[2] (0,9,0,1,0,1,0,0) AzA24; 1210121210 5D
5F[2] (1,0,0,0,0,0,1,0) . DsT» 210171710 5D
5G[2] (0,0,1,1,0,0,0,0) A5 ATy 20 61212 6 5E
© 5H[2] (0,0,0,0,0,0,1,1) EsTy 0 12727 1 5E
51[2) (0,0,0,0,0,1,0,3) A1DsTy 2016 2 216 5F
5] (1,1,1,1,0,0,0,0) ~ Ai DT> 16 10.10 10 10 5G
5K[2] (1,0,2,0,0,0,0,0) DeTy 32 01212 0 5H
BA[C, A] (2,0,0,0,1,3,1,0) AsTs 1215 6 2 615 6A
6BI[C, E] (1,0,1,0,0,0,0,0) AsTy 12°6 620 6 6 6B
6C[A, A] (2,0,0,0,2,0,0,5) AeTh 021 014 021 6C
6D[B, A] (2,0,0,0,1,0,1,0) AdAi T 101011 41110 6C
6E[C, D] (2,0,0,0,1,1,1,4) AsTs 1011 710 711 6D
6F[B, D] (2,0,0,0,1,1,1,1) A4Ts 10 7111011 7 6E
6G[A,C] (2,0,0,0,2,0,2,5) AsAs 018 020 018 6F
6H[B,B] (1,9,0,0,2,1,0,1) As ATy 2121501512 6F
61[B, C] (0,0,0,1,0,0,0,0) AzA24:1Ty 8 6121212 6 6F
6J[B, A] (2,0,0,0,1,4,5,4) AsTy 2 6151215 6 6G
6K[B, A] (1,0,0,0,2,0,0,3) Az AsT 8 912 612 9 6G
6L[C, C] (1,0,0,0,1,3,1,4) AsALITY 0 6122012 6 6H
6M[C, B] (1,0,0,0,2,1,0,4) AsALTy 01512 21215 6H
6N[C, O] (2,0,0,0,1,1,3,4) A3A;A1T> 810 812 810 6H
60[C, A] (2,0,0,0,1,0,1,3) 41110101011 61
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label a ; centralizer multiplicity of e274/% class
[exps, powers] in K onMforj=0,....,k—1  inG
6P[C, A] (1,0,0,0,2,0,0,0) - A3A:Ts 612 9 8 912 61
6Q[C,D] . (2,0,0,0,2, 1,0,0) A3A1A1A T, 810 812 810 6J
_ 6R[C,D] - (2,0,0,0,0,1,4,2) A1 DsT; 48101610 8 6J
6S[C, C} (1,0,0,0,2,2,0,2) AzA ATy - 12126 8612 6K
6T[C, B] (2,0,0,0,0,1,2,2) DsTs . 21611 01116 6K
6U[B, D] (1,0,0,0,3,0,1,2)  AsA;A1A:T 12 810 810 8 6L
6V(B, D] (2,0,0,0,0,0,2,1) AL DsT; 018 020 018 6L
6W[B, D] . (0,0,0,0,0,1,0, 1) A1DsTy 0 2162016 2 6L
6X[C, E] (2,0,0,0,0,1,0,2) Ay A1 DTy 16 8 416 4 8 . 6M
6Y[C, E] (1,0,0,0,0,0,0,2) DT 0 0123212 0 6M
6Z[B, E] (2,0,0,0,0,1,0,5) A1 A1 DsTy 16 4 816 8 4 6N
6AA[A, E] (2,0,0,0,0,0,0,1) DeTi 012 032 012 6N
6BB[B, C] (2,0,0,0,1,1,3,1) AzA1 AT 12 810 810 8 ‘60
6CC[B, B] (2,0,0,0,0,1,2,5) DsTs 01116 21611 60
6DD(B, C] (1,0,0,0,1,3,1,1) AsAiT - 2012 6 0 612 6P
6EE[A, B] (2,0,0,0,0,0,4,1) EeT: 027 0 2 027 6P
6FF[C,D] (2,0,0,0,0,5,0,0) ~ AiDsTy 2016 2 0 216 Q
6GG|[B,D] (2,0,0,0,0,1,4,5) A1 D4Ts 1610 8 4 810 6R
6HH[B, E| (1,0,0,0,0,0,0,5)- DT 3212 0 0 012 6S
GII[B,E] (2,0,0,0,1,2,1,2) AsT> 20 6 6126 6 6T
7A[2; 4] (1,0,0,0,3,1,2,4) AsT2 126 11515 1 6 7A
7B[2,4] (1,0,0,0,3,0,0,2) AeT; 0721 00207 7B
7C[2, 4] (1,0,0,0,1, 1,4,6) AgA Ty ©101010 3 31010 7B.
7D(2, 4] (1,0,0,0,1,1,1,0) AiTs 10 6 61111 6 6 70
7TE[2,4] (1,0,0,0,2,2,0,4) AsT» 015 6 7 7 615 7D
TF[2,4] (1,0,0,0,2,0,1,3) AsAiTs 8897798
7G[2,4] (1,0,0,0,1,1,3,4) AgAiTy 4 510111110 5 7E
7H[2,4 . (1,0,0,0,2,0,3,0) AsAsT> 612 6 7 7 612 TE
71[2, 4] (1,0,0,0,3,0,1,4) A4ASTy 01015 3 31510 R
73(2,4] (1,0,0,0,1,0,3,6) AgA1Ts 2 510121210 5 7F
7K[2, 4] (1,0,0,1,1,0,0,4) AzA2 ATy 69799709 7R
7L[2, 4] (1,0,0,0,0,2,2,6) DsTs 210 11616 110 7G
™2, 4] (1,0,0,1,2,0,3,4) ApAs ATy 12°6 41212 4 6 7G
N (1,0,0,0,0,1,1,6) D4sT3 2.99 9 9 99 TH
70 (1,0,0,1,0,0,1,5)  A2A1A1A41Ty 888888 8 7H
7P(2,4] (1,0,0,0,0,0,1, 1) DsTs 0 110171710 1 71
7Q(2, 4] (1,0,0,0,1,1,0,5) AsA1AL T, 126 88 886 71
7R[2,4] ) (1,0,0,2,0,0,0,0) AsA1 Ty .20 012 6 612 0 7J
78(2,4] (1,0,0,0,0,0,6,4) EeTi 0012727 1 0. 73
7T{2,4] (1,0,0,0,0,0,5,2) A1 DsTy 2016- 2 0 0 216 K
7U[2, 4] (1,0,0,0,0,1,0,4) A1D4To 1610 8 2 2 810 7L
7Vi2,4] (1,0,0,0,0,0,0,6) DeTy 3212 0 0 0 012 ™
T™W (1,0,0,0,'2,2,'2,1) AT 200 6 6 6 6 6 6 - 7N

TABLE 6 (con’t)

The proof is as in §3.1. In order to compute the multiplicities on M, we have
taken for M the module spanned by the root spaces of g with respect to y € ®
such that ~ has inner product 1 with the longest root. Let ¢ denote the character
of K on M. A character 9 of a group L will be called feasible on M if, for each
element g € L of order < 7, there is an element z € K of the same order such

that ¢(z) = ¥(g)-
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As a corollary of the above proposition we obtain

4.2. COROLLARY. Let T be a mazimal torus in K = 2 - E,(C).

(i) The element —id € W(E;) = Nk (T)/T lifts to elements of order 4 in
Nk(T) < K. All such elements of order 4 are conjugate by an element of T.

(ii) The perfect central extension 4 - PSL(8,C) occurs as a subgroup of K,
whence PSQ*(8,2) <4-PSL(8,C)< K <G. O

We shall now consider M. The next result is a slightly -adapted version of
Kantor and Skopets [20].

&
4.3. LEMMA. On M there ezist a K-invariant nondegenerate alternating
bilinear form (-,-) and a K-invariant symmetric quadrilinear form (5y-5°) such
that, for z,%y,2 € M, writing zyz for the unique element of M satisfying

(w,2,9,2) = (w,292)  (ue M),
we have the identity
(zzz)7y = (y,2,7,7)2 ~ (2, 9)272.

PROOF. Let § < G be the fundamental SL(2,C) centralizing K. Take a
torus T in § and an element 7 € S of order 4 inverting 7. The Lie algebra g
has a grading by T-eigenspaces: g = > _,.,., &, where, choosing a surjective
morphism A - ¢ from C# to T, we have tA(z) = Az whenever z € g;. Now
dimgyo = 1; in fact, for ¢ = 32, there are ¢; € g; with h = [e2, e—2] such that
(e:) = g; and (e+2, h) is the adjoint for S. The adjoint k for K complements (h)
. in go. We identify M with g_; and write e = e_5. The element 7 interchanges
g: and g_;, and, as it is contained in § < Cg(K), induces the identity on k.
By inspection of the adjoint for S, we can take 7 and e+2 50 that 7(e_2) = —ey,
and 7(ez) = e—g. Thus, 7h = —h. Observe that [z, h] = z after a suitable sign
change in the e12’s. Define the bilinear map z,y — (z,y) on M to C and the
trilinear map z,y, 2 — zyz on M into M by

[z,4] = 2(z, y)e—2
and _
zyz = [[z,le42,9]}, 2] + (2, 9)z + (2, 2)y + (2,9)z (z,9,2€ M).
Then (-,-) is obviously bilinear and alternating and readily seen to be nonde-
generate The trilinear map can be shown to be symmetric by intensive use
of the Jacobi identity, and similarly for the symmetry of the quadrilinear map

u,T,y, 2 (u,2,9,2), u, z,y,2 € M. Finally, the identity also follows from such

computations. O

The above identity shows that M has the structure of a so-called Freudenthal
triple system. It can be shown that the triple system on M determines g up
to isomorphism (cf. [20]). The following result, due to Mars [23], describes the
orbit structure of K on M. Here, R,(X), for X a Lie group, stands for the
unipotent radical of X. ' :
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4.4. PROPOSITION. There are four K-orbits on the collection of 1-spaces ()
mn M: '

(a) (z,z,z,z) # 0, with pointwise stabilizer K, isomorphic to 3 - Eg(C);

(b) zzz # 0, (z,z,z,z) =0, with K; = F4(C);

(¢) zzz = 0, 2zM # (z), with Ky /R, (K,) = Spin(11, C);

(d) zzz =0, 2zM = (z), with K;/Ry(K;) = Eg(C).

5. Finite simple subgroups of G. Recall that G = Eg(C) and x is the
character afforded by the adjoint representation of G, i.e., the natural represen-
tation on its Lie algebra g. In the remainder of this paper, K is a closed Lie
subgroup of G isomorphic to 2- E7(C), M is a K-module as in §4. Furthermore,
L is a finite quasisimple group with nonabehan simple factor group L.

5.1. Alternating subgroups of G. The characters of Alt1g of degree at most 248
are given in the Atlas [12]. From this and Proposition 3.1 it is straightforward
to derive that L < G, L =2 Alt;g implies '

(1) , Xz = 94 + 354 + 364 + 2 X 84,

(with character values: .x(24) = 24,x(2B) = —8,x(34) = 77,x(3B) = 14,
X(3C) = 5,x(44) = 4,x(4B) = 4,x(4C) = 0, x(54) = 23,x(5B) = —2,x(64) =
-3,x(6B) = 6,x(6C) = —2,x(7A) = 3). This character is realized by the
embedding Alt;g < 3-PSL(9,C) < Eg(C). The restriction of x to 3- PSL(9,C)
decomposes into the adjoint representation (of degree 80) of PSL(9, C), the third
“exterior power of the natural representation and the contragredient of the latter
(both of degree 84) (see Dynkin [15, Table 25, p. 205]). Since no 248-dimensional
character of Alt;; has a restriction to a subgroup Altyo equal to the character in
(1), there is no subgroup in G isomorphic to Alti;. As Alt,, < Alt, for m < n,
we have found

5.1.1. Alt, embeds into G if and only if n < 10.
‘ - 5.1.2. IfL=Al, and Z(f/) #1, then L embeds into G if and only if n < 17.

PROOF. For n < 17, observe that 2 - Alt, < 2 - Alt;z < Spin(16,C) and
that 2 - Alty7 maps to Alt;7 under the natural map Spin(16,C) — SO(16,C),
so the center does not vanish under the natural map from Spin(16, C) to the
half—spm ’group of type Dg If n > 18 ’and f, isa subgroup of G isomorphic to
1nvolut10n say e. By the feasibility condition (Proposition 2.7), this involution
has centralizer type A;E7, so that we must have Alt, < E'7(C) But this is
absurd in view of traces of involutions (cf. Table 6).

Finally, the statements concerning 3- and 6-fold covers of Altg and Alt; are

trivial consequences of known representations of these groups. O

5.1.3. (fpf) If L £ G,L = Alty, and x| has no nonzero fized vectors in g,
then n € {5,6,7,10}. If n =5, or 10, the character is as given in. Table 1. Also,
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for n =5, this character is realized via an embedding in the unigue SL(4,C)
acting without fized points (see Dynkin [15, p. 202]).

PROOF. By the above, we may restrict attention to 5 < n < 9.
Suppose n = 5. Then

(1,xl2) = %4—8 ix(2A) - 3x(3A) + EX(54) + 1x(5B)
>4+ 2+ 28 +2(~4)+ 19 >0,

and equality occurs only if x(24) = —8, x(34) = —4, and x(54) = x(5B) =
This determines x|, as claimed [the restriction of x to SL(4, C) decomposes mto ,
a sum of two distinct irreducibles of degree 45 (with highest weights 210 and 012
in Dynkin’s notation), two of degree 15 (weight 101), and two of degree 64 (We1ght
111)]. :

Next, let n =8, and suppose L has no fixed points in g. Observe that every
character has degree 0 mod 7, except for the pair of complex conjugate ones
of degree 45, the one of degree 64, and the one of degree 20. Our elements of
order 7 are rational. Let a be the number of times 45, + 45, occurs, let b be
the number of times 64 occurs, and let ¢ be the number of times 20, occurs.
We have 90a + 64b + 20c < 248. Thus, a < 2,b < 3, and ¢ < 12. Also, since
248 =3 (mod 7), 6a+b+6c = 90a+64b+20c =3 (mod 7). The traces on the-
adjoint module for rational elements of order 7 are 3 and 52. Only 3 is possible
here. Therefore, b > 3, and so b = 3. We conclude that a4+ ¢ = 0 (mod 7).
Since only 248 — 192 = 56 dimensions remain, we conclude that a +¢ = 0. Thus,
these 56 dimensions must be made up with characters of degrees 7, 14, 21, 28,
35, and 56. There are several ways to make the 2-central involution 24 have
trace —8 (obv1ously, trace 24 is impossible here). A glance at the table shows
that we may not tolerate an irreducible ¢ with 1(24) # —(1)/7, so we are left
with degrees 7, 21, and 28. Then the non-2-central involution has positive trace
unequal to 24, unless the degree 7 character occurs with multiplicity 8, in which
case the trace on an element of type 34 is 32 4+ 3 X 4 = 44, a contradiction with "
Proposition 3.1. This proves that every subgroup isomorphic to Altg in G has a
nonzero fixed vector in g.

Finally, the proof for Altg is similar. Since a straightforward but tedious check
of the character table of Altg against Table 5 will also give the result, we shall
dispense with details. ' O '

5.1.4. (E7) Alt, embeds in E7(C) if and only if n <9.

PROOF. Since, by §4.2, Altg < 4- PSL(8,C) < K and, by the above, Alt;q <
E7(C) would imply an embedding of the nonsplit 2- Alt;o in K, which is absurd
as the only faithful irreducible character degrees < 56 of 2 - Alty are 32 and
16. O

9.2. The two-dimensional linear groups. Throughout this section, L = L(2, q)
and § = SL(2,q). We shall employ the character table of S (p odd) as given in,
e.g., Dornhoff [14]
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5.2.1. If n =2, then
() L £ G implies q € {2,3,4,5,7,8,9,11,13,16, 17,19, 25, 27,29, 31, 32, 61};
(i) S < G and g odd imply q € {3,5,7,9,11,13, 17,19, 25, 27, 29,31, 37}.

PROOF. First, suppose g even. Both S and L have an elementary abelian
subgroup U, say, of order ¢ = 2™ for some m, all of whose nontrivial elements
belong to a single conjugacy class. Suppose that S or L is a subgroup of G and
consider the restriction of x to U. If an involution u € U has trace x(u) = —8,
then (x|v,1) > 0 gives 0 < 248 + (g — 1)(~8), so that ¢ < 32. On the other
hand, if an involution in U has trace 24, then integrality of (1,x|y) yields the
divisibility condition 248 + (¢ — 1)24 = 0 (mod q), whence, again, ¢ < 32. So,
in view of Table 4, ¢ < 32.

Next, suppose ¢ is an odd prime. Then the Borel subgroup of L is supersolv-
able, so by Borel and Serre [3], we have that (g—1)/2 is the order of an element in
~ W(Es). It follows that g is one of the following primes: 3,5,7,11,13, 17,19,29,31,

37, 41, 61. (We use that W has no element of order 21 to eliminate ¢ = 43. )

We next show that ‘¢ = 41 does not occur.. The degrees of the irreducibles
of § = SL(2,41) are {1,21,40,41,42}. If S or L is embedded in a proper
Lie subgroup of G of positive dimension, then, by Proposition 2.6 we may take
this group to be 2 - E7(C). On the 56-dimensional module M for 2 - E;(C),
dim Cp(S) > 14, whence Cg(S) has dimension at least 3 + 14 + 14 = 31 and so
contains a toral subalgebra of rank at least 4. It follows that S is embedded in

~a fundamental Lie subgroup of rank at most 4, but a look at the degrees of the
irreducibles for S rules this out.

Now, if ¢ = p® (a > 1) is an odd prime power, then we must have s(e-1) <

' 248 whence g < 497, and it remains to eliminate g = p® € {34, 3%, 53, 72, 73}.

Suppose S < G for ¢ € {3%,3%,5%,72,7%}. By Proposition 3.1 we must have
8§ < 2-E7(C), and S has a nontrivial representation of degree < 56. Therefore
g =3%or 72, and § fixes (pointwise) a subspace of M, a 56-dimensional space
for 2. E7(C) of dimension at least 6, whence dimCg(S) > 2-6+ 3 = 15. By
Proposition 2.3, Cg(S) contains a toral subalgebra t of rank at least 3; but then
the Lie group of t contains an elementary abelian subgroup of order 22 in its
torus, hence an involution with centralizer type Dsg, so that S/Z(S) embeds into

~ PS0O(16,C), a contradiction.

Finally, assume L < G for g € {34,3%,5%,72,7%}. By Proposition 3.1 and the

above paragraph, we see that L fixes no nonzero.vector in g. The degrees < 248

~ of nontrivial irreducible representations of L are 41, 80, 81, 82, if ¢ = 3%, 121,
242, 243, 244 if ¢ = 35, 63, 124, 125, 126 if ¢ = 53, 25, 48, 49, 50 if ¢ = 72, and
171 if ¢ = 73. Since no linear combination with nonnegative integral coeflicients
of these degrees can be formed yielding 248 if ¢ = 3%,3%, or 73, we are left with
q € {53,7%}. If ¢ = 5%, then x|z is the sum of two characters of degree 124.
Since the trace of an involution on such a character is 0, the value of x on an
involution of L is 0, contradicting Proposition 2.6.
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Assume g = 72. Let b € L be an element of order 25. A look at the character
table of L and Proposition 3.1 readily yields that x|z, is the sum of four irreducible
characters of degree 50 and one irreducible character, 9 say, of degree 48, with
trace —8 on an involution and x(b) = ¥(b) = —2 cos(2m5/25) for some j with j #
0 (mod 25). We derive x(6%) = ¢(b5) = —2 cos(2m;j/5), and (using Proposition
3.1) x(b°) = -2 and 5 =0 (mod 5). Consequently,

I#0 (mod 5)

1 ol ‘

120 (mod 5)

dim Cg(b) = % (248+4(—2) + > x(b‘))

where! € {0,...,24}. As Cg(b®) has type A4 A4 by Proposition 3.1, the following
lemma establishes that (b), and therefore L, cannot be embedded in G.

5.2.2. G contains no element b of order 25 with x(b) € Q(200$(27r/5)),
Cg(bs) = sl; @ sl and dim Cg(b) <10. :

PROOF. Since b acts on a complement of Cg (b°) with eigenvalues exp(27il/25)
(I # 0 (mod 5)) occurring in ten algebraically conjugate 20-tuples, the trace of
b on Cg(b%) must be a sum of 48 = dim Cy (b°) elements of the form exp(2mil/5)
(0 £ ! < 5), the nontrivial ones occurring in complex conjugate pairs and the
trivial ones being precisely d := dim Cg(b) in number. It follows that, on Cg (b°),
the element b has spectrum : : :

d x 1, ¢ x exp(2mi/5), a x exp(4mi/5), a x exp(wi/5), ¢ x exp(3i/5),

for certaina,c € Z>o with d + 2a + 2¢ = 48. On the other hand, we know that
the centralizer in G of b° has type A4 A4, whence, by a simple check is isomorphic
to SL(5,C) 0 SL(5,C), a central product with center (b°), represented by the
diagonal exp(27i/5) in either factor. Moreover, the action of this group on
Cg(b®) is the adjoint action on sl (C) @ sl15(C). In particular, b can be written
in the form b1b; where each b; is a diagonal element of SL(5,C) with nonzero
entries exp(27#(3 + 5m;,)/25) (1 < r < 5), where 0 < m;, < 4. In its action
on the adjoint b has eigenvalues 1 with multiplicity 8 (from the main diagonals)
while the remaining eigenvalues are of the form o

exp(2mi(m; — my) /25)

for k#1(1<kl<5)andj =12 As dim C, (b) < 10, there are at most
10 — 8 = 2 eigenvalues equal to 1 among them. But such an eigenvalue will
only occur for one value of j, say 7 = 1, because such occurrences come in
pairs (namely k,{ pairs with [, k). Therefore, the numbers (mar)1<i<s are all
distinct. But then {mg)l < I < 5} = {0,1,2,3,4} and b2 has determinant
I, exp(274(3 + 5m21)/25) # 1, contradicting that b, belongs to SL(5,C). O
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5.2.3. Let g = 16. Then L does not fir a nontrivial subspace of g, and x|
is as indicated in Table 1 (with x(24) = —8, x(34) = —4, and x(54) = —-2).
Moreover, L(2,16) is not embeddable in the simple group E;(C).

PROOF. ‘Let B be a Borel subgroup of L. Since all elements of Oz(B)#* are
from the same conjugacy class, Os(B) is conjugate to the group Z, of Proposition
3.8. Thus, involutions of L have trace —8 on g and an element i € B of order 15
is contained in the normalizer of the maximal torus T' = Cg(O3(B))°. According
to Springer [25], h permutes the root spaces of T on g in orbits of length 15
and the eigenvalues of its action on the Lie algebra of T are the 8 primitive
15th roots of unity. Therefore h, h3, h® have trace 1, —4,—2 on g. In particular
(x|B,1) = 0, so L has no nonzero fixed vectors in g. A look at the character
table shows that x|z has shape 12 x 15, + 174 + 17, + 175 + 17¢, and the last
statement readily follows. O

'5.24. Let g=25. Then G contains both S and L.

PROOF. L is contained in EG(C) (cf. Cohen and Wales [11]) and S is con-
tained in Spin(13,C). O .

5.2.5. Let g =27. Then G does not contain SL(2,27) and if L < G, it lies
in a natural Fy (centralizing a subgroup E3 as in Proposition 3.9).

PROOF. Let L < G,ﬁ = S or L. Straightforward use of Table 4 and the
character table of L, shows that x| ; involves the trivial character. Therefore (cf.
“Corollary 2.4 and Proposition 2.6), L < K (up to conjugacy). Thus, setting
b = Cg(L), we have dimb > 1. We prove that b has Lie rank at least two.
Suppose not. Then, as sly = Cg(K) C b, we must have b = sl, and the
character ¢ of L on the Lie subalgebra k of K has no trivial constituents. ‘Also,
since SL(2,27) is not contained in Spin(16, C), the center of L must be contained
in the center of K, so Z(L) coincides with the kernel of ¢. Therefore, ¢ has
constituents of degrees 13, 26, 27, and 28 only. Now u € U# has trace 5 on
g, and so, by Table 6, trace —25 or 2 on M. Consequently, its trace ¢(u) on
k equals 5 — 3 — 2 x (=25 or 2) = 52 or —2. By inspection of the character
table of L(2,27), we obtain ¢(u) = mag — m, where m; denotes the number of
irreducibles of degree 7, and m = mgg + m13 (as the irreducibles of degree 13
are nonreal, they occur in palrs) Thus, ¢(u) —2 = myg — m. Together with
the degree equation 133 = 28mqg + 27mq7 + 26m this yields 7 = 3m + mg7. In
- particular, m < 2. Let a be the sum of half the number of characters of degree
13 and the number of characters having value 2 at an involution A € L — Z(L).
Then, according to the character table of L, ¢(h) = 2a + (m — a)(—2) — mar,
but according to Table 6, this value is equal to 5, so @ > 3. But then m >3, a
contradiction. Thus, b has Lie rank at least 2, indeed. '

Now let t be a Cartan subalgebra of b. Then G; = Cg(t) is semisimple
with factors of type A; (1 <7 <6), D; (1 <7 <86), Eg, and contains L. The
character table of L implies that Eg is at hand. By considering an irreducible
27-dimensional submodule of g for G; = 3 - Eg(C), we get L= L(2,27) and, as
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the trace of an involution of G on the 27-dimensional module is —5 or 3, that

L = L fixes a nonzero vector; since the minimal degree of a faithful representation

exceeds 10, knowledge of vector stabilizers in such a 27-dimensional module

1mphes that' L embeds in a natural closed Lie subgroup of G1 isomorphic to
Fy(C) (cf. Cohen and Wales [11]). O

5.2.6. Let q = 29. There is a subgroup in Spin(15, C) isomorphic to L(2,29),
whence also in G. Furthermore, if S.< G, then S lies in a conjugate of K.
Finally, if L < E7(C), then L lifts to SL(2,29) in 2 - E;(C).

PROOF. As involutions of L have eigenvalue pattern 17_, ~18 in the orthogonal
15-dimensional representation, L < HSpin(15,C), and S cannot be embedded .
in HSpin(16, C). Therefore, the first and the second statements follow (use §3.3
and §3.4). i

Suppose now that L < K = 2- E;(C). There can be no fixed points in
M in view of Proposition 4.4. The nontrivial irreducible degrees for L are 15,
28, 29, 30.- Letting m; be the number of irreducibles of degree 7, we obtain
from the degree equation on M that mis + mog + 2m30 =0 (mod?7). But
mys < 3,mo9 < 1, and mze < 1. Therefore mys = mag = map = 0, whence
mgg = 2. This forces the trace of an involution in L on M to be 0, which

contradicts Proposition 4.1. O
5.2.7. Let ¢ = 31. Then S is not contained in G. If L is in G, X|r as

wndicated in Table 1 (in particular, x|r is rational valued) and the subgroups of
L listed in Table 7 have the indicated centralizers in G.

TABLE 7.
Subgroups of L = L(2,31) with centralizers in G for L < G-

Z> HSpin(16, C) Dihg A‘l1
Zy GL(8,C) Dih;g Ty
Zg A§T2 Dihgs T4
Zis . A%Tz Dihg By
Z;3 3-PSL(9,C) " Dihyjgr "~ B2B»>

- Zs - AgAy . Dihsg Ty
Zis A§T4 Alty Ag Ao

“Z3y- Ts Sym, As
Zf_z, . D4D4.Zo Alts 1

Fl‘Ob31.15 1 .

PROOF. The degrees of irreducibles are 1, 15, 16, 30, 31, 32; the characters of
degrees 15 and 16 are nonreal, so must occur in pairs. If S is embedded in G, it
must lie in a subgroup K of the form 2- E7(C) with Z(K) = Z(S). On M, S has
fixed point subspace of dimension at least 8, a contradiction with Z (K) = Z(8).
Consider the possibility that L < G. If L lies in a proper Lie subgroup of strictly
positive dlmensmn, reasoning as above shows that the latter must be conjugate
to K and a = Cg(L) has dimension at least 3 +8+ 8 = 19. Consequently, a
contams a total subalgebra of dimension at least 3, and L is embedded in a Lie
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group of rank at most 5, which is impossible. In particular, the trivial character
is no constituent of x|z.

Take k and u to be elements of order 15 and 31 in L such that B = (h){u) =
N ({u)) is a Borel subgroup of L, and set H = (), U = (u). Observe that u is
rational in G as every semisimple element in G is real and h normalizes U. Since
the trivial constituent does not occur, x(u) = 0, whence a = Cg(U) is a Cartan
subalgebra of g. Since H actsonaasa subgroup of order 15 in the Weyl group,
h must be a regular element (cf. Springer [25]). Therefore, it permutes the 240
roots in cycles of length 15 and acts on the Cartan subalgebra a with eigenvalues
the 8 primitive 15th roots of unity. In particular, x(h) = 1, x(h®) = —4, and
x(h?) = —2. Let m; be the number of irreducibles of degree ¢ occurring in
x|z. Then, as we have seen above, mis is even; set m = (mq5/2) + mao. Now
—m+mz2 =248 =0 (mod 31), whilemn < 8 and ma2 < 7. Therefore, m = mag.
Thus, 62m + 31mg; = 248, whence . -

(2) ma1+2m=8, mg <8 and m<4

Suppose a is the number of irreducible constituents of x|z of degree 32 with
value —1 at h5. Then there are m —a irreducibles of degree 32 with value 2 at
h®, and, using (2), we see —4 = 4x(h®) =ma; —a +2(m —a) = 8- 3a, whence
a=4,m=4,and mz = 0. In particular, x|z has shape

(4 — m30)(15a + 15(,) + mgzo X 304 + 4 x 32..

Now the restriction x (k) = 0 forces the degree 32 constituents to be 324, 32¢,32f,
and 324. It remains to determine the trace on g of elements of order a power
of two. Let fi be an element of order 16 in L; denote by f; (1 < ¢ < 3) its
24~%th power, and by ¢ an involution of L inverting fs. Thus f; is an involution;
inspection of the character table of L shows that x(f1) = —8. Consequently (cf.
Lemma 3.7), {f1,t) is a Klein four-group with centralizer, D say, of type DsDs.
Now, f, normalizes (f1,t) but does not centralize it. : :

Suppose f2 stabilizes the two Dy’s. Then fa, a preimage in S0(16,C) of
‘the image of f2 € Cg(f1) = HSpin(16, C) in PSO(16,C), stabilizes the two
8-dimensional eigenspaces of an involution f € SO(16,C) corresponding to t €
Cé(f1), so f2 and T commute. If f» has order 4, it squares to the center of
S0(16,C), and must have eigenvalue pattern 8, —48, so that det fo = 1. On
the other hand, f, induces a nontrivial action on Z(D), whence det fa=-1,2
contradiction. Thus fo is an involution. Let m; for i = 0,1 be the multiplicity
of the f-eigenvalue —1 on the f-eigenspace with respect to (—1)*. Then the
multiplicities of the eigenvalues —1 of fo and fot are mo+my and mg + 8 — ma,
respectively. Since fa and fot have orders 4 and 2, respectively, we must have
mo+my =2 (mod 4), and mo —m1 = 0 (mod 4). Thus, mg =m1 = lor3
(mod 4). Multiplying by a suitable central element of SO(16,C), we may take
mo = 1 or 3. Thus (mg, 1) is one of (1, 1),(1,5),(3,3),(3,7), and the type of
Cg(_(fg,t)) is readily seen to be B3 B3Ts, Ay B3 B3T1, AlAleBg, A1 B3ByT; of
dimension 44, 36, 26, 35, in the respective cases. On the other hand, since fa_
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squares to an involution in G with a centralizer of type Dg, it must have trace
x(f2) € {8,0,64} (cf. Table 4), and so the dimension of the centralizer in g of
P= (f 25 t) is )

(xlp, 1) = -;-(248 +5(=8) + 2x(f)) € {26,28,42}.

' Clearly, only dimension 26 fits; so. x(f2) =0 (and Cg(P) has type A1 A; B, Bs).

As 31, does not occur in x|; and degree 32 irreducibles vanish at nonidentity
2-elements, x(f2) = 0 implies that x(y) = 0 for all y € L of order 2%, > 2.
Thus,

dim Ce((f4,1)) = o5 (248 +17(~8)) ¢ Z,

~again a contradiction:

Consequently, f» interchanges the two central product factors of D, whence
dim Cg((f2,t)) = 28. On the other hand, f> is rational, so the same number
can be computed as (Xl<f2>:1) = £(248 + 5(—8) + 2x(fz2)). Consequently,
x(f2) = 8, and, by §3.1 and §3.3, f, has centralizer C = GL(8,C) in G. Let b be
the number of irreducibles of degree 30 with value 2 at fo. Then, evaluating the
decomposition of x| at f; yields (4—mj30)(—2)+ (—=2(m3g—b)+2b) = 8, whence
b =4, m3p = 4, and x|, has shape ex30p+(4—c) X 300 +324+32, 4325 +32, for
some integer c. It follows that x(f3) = 0, and Cg(f3) = (248+(—8)+2-8+4.0) =

'32. Therefore, as an element in C = GL(8,C), the eigenvalue distribution
of f3 must be {e,—e}*, where ¢ is a prime 8th root of unity (observe that
its centralizer must have type A3A3Th, whence be isomorphic to GL(4,C) x
GL(4,C)). By inspection of the decomposition of X|z established so far, we
obtain that 3. 4; 16)=1 X(f§) = 0. Consequently, dimg(f,) = (248 — 8 +
2-8) =16. It follows that the centralizer of Ja in C is of type A; Ay A A,
with eigenvalue distribution {¢1,¢%,¢%, ¢13}2, where ¢ is a square root of £. In
particular, f4 is rational in Ng(C) = Ng(f2) (cf. Lemma 3.3). Finally,

0= 3 xU)=8xx(f),

gcd(i,i(i):l

0 x(fs) = 0 and, evaluating x(f;) on the character decomposition, we find
0 = x(fs) = (4 —2¢)V/2, whence ¢ = 2, and the character is shown to be asin
Table 1. O s : s :

5.2.8. REMARK. Let A®x be the character of G on Neg. In A\? xlz, 30,
occurs with multiplicity 72 and 32, with multiplicity 65. Therefore, the character
of G on the fundamental module ker{ A’ g — g} of dimension (*5%)—248 = 30380
restricts to a character of L. (Of course, if it did not, we would have eliminated
the possibility of an embedding L < G.)

9.2.9. If ¢ = 32, then L < G implies that Xlz i a sum of 8 degree 31 irre-
ductble characters. If a and b denote the number of constituents ¢ which satisfy
¢(z) = —2 and 1, respectively, for z € L of order 3, we have (a,b) = (4,4) or
(1,7). In particular, x|z is not rational. oo : :
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PROOF. Take L < G. If L < K, the trace on M of an involution in L must
be 8 or —8; impossible. Consequently (cf. Corollary 2.4), L has no nonzero fixed
points in g. The character table implies that x|z is the sum of 8 irreducibles of
degree 31. Here x(z) = { —4,5}, so (a,b) must be one of (4,4) or (1.7). O

5.2.10. Suppose g=3T7. Then L does not embed in G and if S <@, it liesin
~ a conjugate of K=2-E7(C).

PROOF. Suppose L < G. We argue as follows that L has nonzero fixed points
in g. Assume not. Let a,b,c,d, respectively, be the sum of the multiplicities
‘of the characters of degrees 19,36,37,38. Then 248 = 19a + 36b + 37¢ + 38d,
whence a < 13,b < 6,¢ < 6,d < 6. Using the above degree equation we get
1=-2b—c¢ (mod19), a+c=0 (mod?2), and 192~ b+d =26 (mod 37).
The last congruence implies @ > 1 in view of the bounds on a,b, and d. But
then ¢ > 1 is odd, whence ¢ € {1,3,5}, andso b= (-1 —¢)/2= —1,-2,0r -3
. {mod 19), a contradiction with b < 6. Therefore, the trivial character is involved

“in x|, and so, by Corollary 2.4 we may assume L < K, where K =2- E(C).

We next eliminate the possibility of L in K. Consider a Frobenius subgroup
F = Frobsy.,s of L. As F is supersolvable, there is a maximal torus T of K
with F < Ng(T). Then F N T is of order 37 and F/(F NT) of order 18. The
involution of the latter group commutes with a cyclic group of order 9 in W(E7),
hence is —id in the usual reflection representation of W(E7). By Corollary 4.2
the T-coset of this element in Nx(T) consists of elements of order 4 only. On
the other hand,’ the structure of F" implies the existence of an element of order
2 in the coset, a contradiction.

‘Finally, if § < G, then obviously Z (8)# cannot have centrahzer type Dg, so

S< Cg(Z(S)) =SL(2, C) o K, whence S < K (up to conjugacy). O

5.2.11. If g = 61, then S cannot be embedded in G and L < G zmplzes that
XL = 624 + 625 +62. + 624 15 a sumlof four algebraically conjugate distinct
wrreductble characters.

The proof is a straightforward feasibility test.

5.2.12. If L = L(2,7) acts without fized points as a group of automorphism -
on g, then x| 1is as indicated in Table 1.

PROOF. By the same argument as for Alts, §5.1.3, we obtain x(24) =
8 A TAY — _A vi4dA) = ﬂ and v(7A\ = "3 ||

U,A\U‘L/— s A\=42y a11Q

- 5.2.13. (max) If g = 31,32,61, then L is not contained in a proper closed Lie
subgroup of G of positive dimension.

PROOF. Suppose H is a closed Lie subgroup of G containing L. Since L is
simple, we can (and shall) take H to be quasisimple. Suppose ¢ = 31 or 61.
Embedding a Borel subgroup B of L in the normalizer of a maximal torus T'
of H, we find that' O,(B) is a subgroup of T and that the quotient B /Op(B)
can be embedded in Ng(T')/T. Since the Weyl group of H contains an element
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of order 15, and H has rank at most 8, the type of H must be Fg. Next, let
q = 32. The Lie algebra h of H must be of rank at most 8 and have dimension :
a multiple of 31 strictly smaller than 248; but according to the clasmﬁcatwn of
“simple Lie algebras this is impossible. 0O

5.2.14. (E7) If L can be embedded in E;(C), then‘q € {4,5,7,8,9,11,13,17,
19, 25,27, 29, 37}

PROOF. Direct from §§5.2.1, 5.2.3 for ¢ = 16 and §5.2.13 for ¢ = 31,32,61.. O
5.3. The linear groups L(n,q) with n > 3.. In this section, Lisa (poss1bly
trivial) central extension of L = L(n,q) with n > 3.

5.3.1. Supose L can be embedded in G.

(1) IfL L is simple, then (n,q) = {(3,2),(3,3),(3,5), (4,2)}.

(i) If L is quasisimple but not simple, then it is one of 2 - L(3,2) = SL(2,7),
2-L(3,4),4: L(3,4) (the extension with a faithful 8- dzmenszonal representation),
6-L(3,4),2- L(4,2) = 2- Alts. .

PROOF As its p-Sylow is nonabelian, we must have pe€{2,3,57} Also by
Lemma 3.5, n < 3if p > 5, n <4ifp=23, and n < 6 if p = 2. Furthermore,
- SL(2,9) < L, and so from the previous section we obtain g € {2,3,4,5,7,8,9,16,
25,27}. By Landazuri and Seitz [21], L(n, ¢) has degrees > ¢" ™! — 1 if ¢ > 5.
Thus ¢ < /248 + 1, and q € {2,3,4,5,7,8,9} remain. Suppose ¢ = 8,9. The
degrees < 248 of nontrivial representations of SL(3,q) are ¢> + ¢,¢> + ¢ + 1,
and so, by Proposition 2.6, an embedding of L into G leads to an embedding in
- 2. E7(C), which i in turn is contradicted by the fact that the degrees are > 56.

. Thus ¢ < 7.

Let us first consider n = 3. For SL(3,7), the nontr1v1al characters of degrees -
< 248 have degrees 56, 57, 152, so again, L = L(3,7),SL(3;7) would imply
L < K = 2. E;(C) but then the existence of a nontrivial representation on M
implies that L=Lis simple and the restriction to L of the character of K on
M must be irreducible of degree 56. Hence an involution z in L has trace 8 on
M, and so x(z) = —8 (cf. Tables 4 and 6). But there is no character of L(3,7)
of degree 248 having value —8 on z. We conclude ¢ < 5. )

Since L(3,2) = L(2,7), we are left with L(3,4). The character table yields

that L(3,4) has no fixed point free character which is feasible on g, whence by
Propositiorn 3.1 an embedding in G leads to an embedding in E-(O) g]a-nca

POUSIVIVA C.4 Qi CIRDTUUILy ATGUS W Gua TIUDCRLLE i SUT (NS ). ‘;

at Table 6 shows that the trace of an element of order 5 on M must be 6; but
this is incompatible with the characters of L(3,4). '

The covers of L(3,4) are more intricate. The Schur multiplier of L(3 4) is
isomorphic to Z4 x Z4 X Z3. Perfect groups 2- L(3,4),6 - L(3,4) and 4 - L(3,4)
embed in G via subgroups of G isomorphic to 4- PSL(8,C), SL(6,C), SL(8,C),
respectively. A nonsplit central extension L whose center has order a multiple
of 3 distinct from 6 cannot be embedded in G since otherwise, by Corollary 3.4,
L would be embeddable in 3 - EG(C) or SL(Q C), a contradiction.
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Now let n = 4. If ¢ = 3, then a direct check of the character table against
Table 5 shows that L cannot act fixed point freely on g. Thus, by Proposition
2.6, we must have (up to isomorphism) L < K/Z(K), but then the trace on
M of an involution in L cannot be :!:8 Hence L(4, 3) and SL(4,3) cannot be
embedded in G, and p = 2.

If L = L = L(4,4), then SL(3,4) < L leads to a contrad1ct1on Therefore,

g=2.

Next consxder n = 5. Then, by the above, ¢ = 2. The character table forces
each involution to have trace 24 on g. There is an elementary abelian 2-group -
Ain L of order 2. Then

(x]a,1) = (248 +63 x 24) ¢ Z,

a contradiction. Consequently, no quas1s1mple group with simple factor isomor-
phic to L(5,2) can be embedded in G. Finally, this implies the same result for
L(n,q) withn>6. 0O

We record the result of a straightforward feasibility check: .

5.3.2. IfSL(3,5) = L(3,5) = L < G, then x| 15 as described in Table 1. O
By Alekseevskii [2] this embedding is realized. '

5.3.3. (fpf) Suppose L < G acts on g without fized points. Then (n,q) =
(3,2) or (3,5) and x|r s as in Tuble 1, or (n,q) = (3,3).

534, (Er). Suppose L < E7(C). Then L = L(3,2),L(3,3),L(4,2),
L(3 4), and each of these groups occurs. o

O

T

PROOF Straightforward; observe that L(3,4) lifts to 2-L(3,4) in 4 PSL(3 4),
while the latter Lie group embeds in K. 0O

5.4. The unitary groups. Let I be a quasisimple group with simple factor
L = PSU(n, q), where ¢ = p® is a power of the prime number p and n > 3.
Suppose L is a subgroup of G. Since, by Lemma 3.5, Sylow r-subgroups of L
must be abelian for r > 11, we have p < 7.

Until further notice, assume n = 3. Then Lis a quotient of SU(3,q). We list
some useful properties of L, or rather its Borel subgroup

5.4.1. LEMMA. Let B be a Borel subgroup of L. Set U O,(B) and let
H = Z,, complement U in B; then m = (¢° — 1)/ ged(3,q¢ + 1) and |U| = ¢>.
Also, |Cy(Z(U))] = mo := (g + 1)/ ged(3,q + 1) and the subgroup of order
g — 1 in H operates regularly on Z(U)#; thus, elements of Z(U) are rational.
Iz eU-—ZU), |Cy(z) = ¢* and [U,z] = Z(U). Suppose ¢ is an irreducible
character of B which is nontrivial on Z(U). Then ¢(1) = q(g — 1) and ¢ is
induced from a character p of degree q of UHy, where Hy < H,|Ho| = mo, and
ker p is a subgroup of order p>~* of Z(U). So, ifz € Z(U) and ¢ 1s any character
of B, then there is an integer k > 0 such that ¢(z) = ¥(1) — kq(g — 1) —kq =
(1) — kq?. In particular, ¥(z) = ¥(1) (mod p**'). Moreover, if ¢ = 2, then
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M(U) =2Z(U) = Fy, everyz € U — Z(U) has order 4, and Cs(z) = 2%. On
the other hand, if q is odd, then U has exponent p. O

5.4.2. Let B be a Borel subgroup of U(3,4). Then B is not embeddable in G.

PROOF. Take U, B,H as above, and write Z = Z(U). Then Z < [c,qy,

where C = Cg(Z), and Z# is contained in a single conjugacy class of G. By
Lemma 3.7 this yields that the involutions in Z have trace —8 on g, and that C
is a central product of two groups C; 2 Spin(8, C) (¢ =1,2) with center Z. Let
m; be the natural map C — C;|Z = PSQ(8, C), and denote by U; the inverse
image of m;(U) in C;. Since U is nonabelian and U < U U, at least one U;
is, say for ¢ = 1. Since B < Ng(Z) and B’ has odd index in B, it normalizes
‘both Us; since U;/Z is a nontrivial B-module and a quotient of the irreducible
FyB-module U/Z, we must have Uy /Z = U/Z = 2. Also, U; is nonabelian, so
Ui — Z must contain an element of order 4, and by the action of B, it follows
that all elements in U; — Z have order 4, and that Z = [U1,U1):
- Let p: Cy — SO(8, C) be the natural map. Then Z, = ker p < Z, and so (W)
is an extraspecial group 21 (the type is minus as p(Uy) has an automorphism of
order 5 coming from B). Let z € U;—Z with 22 € ker p. Then, by representation
theory of 211, the element p(z) is an involution with eigenvalue pattern —14, 14
and hence lifts to involutions in Cy, a contradiction with lz] = 4.

5.4.3. Letp = 3; IfL is a subgroup of G, then q € {3,8} and Z(L) = 1.
Moreover, if L = PSU(3,8) embeds in G, it embeds in K and x|z is as given in
Table 1.

PRQOF. Let z be an element of order p in a Sylow p-center of L. It is rational
and its trace on g is of the form x(z) = —248 — mq? for some integer m. Now,
§5.4.1 implies that (g —1)g < 248, whence ¢ < 16. As before, let B be a Borel
of L, and set U = O,(B).

Suppose p = 7. Then ¢ = 7 and L = L. If the trivial character appears
in x|z, Corollary 2.4 and Proposition 2.6 force L < 'K (up to conjugacy). But
the degrees < 248 of irreducible characters are 1, 42, and 43, so the adjoint
for K picks up fixed points as well, and L < Eg(C), which is absurd in view
of character degrees. So we may assume (x|z,1) = 0. In view of Table 4, the
permissible values of x(z) are 3 and 52. But the character table reveals only

. negative values on nontrivial characters of degree at most 248 at z. Therefore
p<5. ~
Suppose p = 5. Then q = 5. If [ = SU (3,5), the existence of a central
element of order 3 in [I:, fJ] implies that L is embedded in a Lie subgroup of
Eg or Ag. The former is ruled out by Cohen and Wales [11] and the latter is
absurd as SU(3, 5) has no 9-dimensional nontrivial character. So we may assume
L = PSU(3,5) is in G. An element of order 7 in L is conjugate to its square,
hence is rational in G and has trace either 3 or 52. From the character table of
- L it follows that such a character value cannot be achieved with a character of L
of degree 248 unless it involves the trivial character. Thus, L has nonzero fixed
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vectors. In view of Proposition 2.6, this implies that L may be embedded in K
But a look at Table 6 shows that L does not possess a feasible character on M.
This contradiction shows that PSU(3,5) is not contained in G. We conclude
that p =2 or 3. ' '

Suppose p=3. Then g=3 or 9. If g =9, the character table qulckly forces
the trivial character to appear, with multiplicity ¢ > 248 — 3 x 73 = 29. This
-implies that an element of order 3 has trace at least 29, hence 77; but this is
impossible to achieve. So ¢ = 3. [There are embeddings of U(3,3) in G via, for
instance, ‘Ag(C) or B3(C), and we do not try to classify them at this time.]

Finally, let p = 2. Since U(3, 2) is solvable, we are left with ¢ =4,8,16. Now
g = 4 is eliminated in §5.4.2 and it follows from PSU(3,4) < PSU(3,16) that
. g cannot be 16.  We are left with ¢ = 8. In this case, the character table easily
proves that SU(3,8) does not embed in G and that if PSU(3,8) does, it embeds
in K and has character decomposition 3 x 1, + 133, +2X 56,. O

REMARK. There are several embeddings of the uorel of PSU(3, 8) in G (in
fact, in Ng(Zg) of §3.8).

544. Letn > 4. If L < G, then [ = PSU(4,2), 2- PSU(4,2), or 6
PSU(4,3).

PROOF. First consider n = 4. Since SU(3,q) is contained in SU(4,q), we
have ¢ € {2,3,8}. As ¢ = 8 leads to a contradiction with Landazuri and Seitz
[21] and for ¢ = 2 both L and its central cover 2- L are embeddable (via SL(6 C)
and SL(4, C), respectively), we may assume ¢ = 3.

It is readily checked that L = PSU(4, 3) has no feasible characteron g without
~ fixed vectors. So, by Proposition 2.5, L must be embeddable in K. But it is
readily seen that L does not afford a feasible character on M.

Next, we consider the covers L < G of L'= PSU(4,3). The Schur multiplier
of PSU(4,3) is Z12 X Z3. Put Z = Z(L) and assume Z > 1. If | Z| is divisible
by 3, then L lies in a Lie subgroup of type Ag or Eg (cf. Corollary 3.4). If
L < 3-PSL(9,C), the character of L on the natural module for SL(9,C) is
forced to break up as 3 x 1, + 6, giving |Z| = 6. In 3 - Eg(C) there are two
classes of involutions with centralizers of type AsA; and DsT1, respectively. If
L < 3- E¢(Q), the character table for L quickly shows that [Z] = 6 and that L
embeds in the central product factor of the involution centralizer of type AsA;

QT In MY A

isomorphic to SL(6,C). Assume, therefore, that [Z| divides 4. Then L lies in
K since it has no nontrivial irreducible representation of degree < 16; moreover
|Z| = 2, since the character table of 4 - L does not allow for a faithful feasible
character on M. Furthermore, the trace of an involution of L on M forces the
restriction to be a 56-dimensional irreducible, yielding trace 1 on an element of
order 5, in conflict with Table 6. We conclude that Z must have order 6.

~ Finally, consider n > 5. By the embedding of a nontrivial quotient of SU(4, q)
in f/, we must have ¢ = 2. The character table of I = L then forces igvolutiqns
to have trace 24. Since L contains an elementary abelian 2-group of order 2%,
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this conflicts with Proposmon 3.9. The conclusion is that, for n = 5, and hence
for n > 5, the group L does not embed in G. 0

5.5. The orthogonal and symplectic groups.
9.5.1. Let L = PSQ)~(2n,q), n > 4. Then L cannot be embedded in G.

: P ROOF By Landazuri and Seitz [21], all projective nontrivial represerntations
of PSQ~ (2n g), n > 4, have degree

> (@ D@ 1) > ¢ gl > ¢ 4 B

so the existence of a central extension in G implies ¢® + ¢ < 248, ie,q =2
From the character table in the Atlas [12] it is readily seen that no central

extension of PS(17(8,2) and therefore neither of PSQ~(2n,2), n > 4, has a

feasible character on g. O

5.5.2. Let L = PSQ(2n+1,9), n > 2. If L < G, then L = PSO(7,2),
2- PSQ(7,2), or 2 PSO(5,5) 2 Sp(4, 5).

PROOF. L contains a central extension of PSQ~ (2n, q) so by the prev1ous
paragraph.n < 3.

Suppose first n = 3. Now L = PSQ+ (7 ¢) contains a central extension of
PSQO~(6,9) = PSU(4,q), so by §5.4.4, g = 2 or 3. If ¢ =3, then IZ(L)] must
divide 3, for otherwise there is no faithful character of I, of degree at most 248.
Also, if the center has order 3, the only nontrivial character degree < 248 is
27, again leading to a contradiction with Proposmon 2.6. Thus, L = L, and
2-PSU(4,3) < L, which contradicts §5.4.4. The’ concluswn is that ¢ = 2. Both

PSQ(7,2) and its universal cover 2 - PSQ(7 2) embed in G, via SL(7,C) and
- SL(8,C), respectively.

Next, let n = 2. Then PSQ(5,q) = PSp(4, q) contains an extension of
L(2,¢%), so by §5.2, ¢ € {2,3,4,5}. Since PSQ(5,2) = Altg and PSQ(5,3) =
PSU(4,2) have been dealt with, we may assume q € {4,5}.

FL=Lx PSQ(s, 4); there is an elementary abelian subgroup of order 2% ;
“all of whose involutions are from a single conjugacy class (2C in the Atlas);
the trace of such an involution on g in a feasible character must be 24 by the .

character table; on the other hand, Proposition 3.9 shows that there are no such
elementary abelian subgroups of order 16. Thus, g = 5.

Let L = PSQ(5,5). Then a direct check shows that L has no feamble char-

acter on g, whence L cannot be embedded in G (cf. Proposition 3.1 ). Thus

L < G implies that |Z(L)] = 2. [The group 2 - PSQ(5,5) embeds in G via

Spin(13,C).] O .
5.5.3. Suppose L = PSQO*(2n,q), where n > 4. Then L < G implies L

PSQO*(8,2), and all possibilities for L occur. Moreover, if L = L, then Xl
as gwen in Table 1. ,

IR

&
»

PROOF. L contains a central extension of 'L(n,g), so by §5.3.1, (n,q) = (4,2).
Now 22 - L embeds in each central product factor of D4(C) o D4(C) isomorphie
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to Spin(8, C), 2 L embeds in SL(8, C), and L embeds in 4-SL(8,C). The final
statement follows from the feasibility conditions. O

In view of the preceding, we need, for the symplectic case, only deal with ¢
odd and n > 3.

5.5.4. Suppose L = PSp(2n,q) with q 6dd and n > 3. Then L cannot be
 embedded in G. ' '

PROOF. Again, from L(2,¢") < PSp(2n,q) and §4.2, we obtain that an
embedding in G may only occur if (n,q) = (3,3). So take L = P Sp(6,3). Then
L has a subgroup isomorphic to N : Sp(4, 3), where N is an extraspecial group
of shape 3'** and of exponent 3. Let z generate the center of N. By Corollary
3.4, and the fact that N does not have an embedding in a Lie group of type
As, the centralizer in G of z must be a Lie group of type Eg. Thus x(z) = 5.
Furthermore, if y € N — (2), then

so x(y) = 5. It follows that Cg(y) is of type Eg as well. Then, on a 27-
dimensional module for the central product factor E of type Eg¢ in Cg(z), the
element y must have trace 0 (cf. Cohen and Wales [11]). Thus, if ¢ denotes the
character of E on this module,

("IIIN’ 1)

a contradiction. O :
--5.6. The remaining groups of Lie type

1 s +2x )+ 240x(y)) €z,

243(248 27 +240 x 0) ¢ Z,

5.6.1. Let L be a finite szmple group of ezceptzonal Lie type and untwisted ( but
not G(2)' = PSU(3,3)). If L <G, then L = G2(3). The latter group occurs in
G via Spin(14, C), but not in K. Also, every embedding of G (3) factors through
a Lie subgroup isomorphic to Spin(14,C), and the character of Go (3) on g is as
given in Table 1. ~

PROOF. By Landazuri and Seitz [21] all nontrivial projective representations
of Ee(q), E7(q), and Eg(q) are of degree > ¢%(¢®> — 1) > 29 > 248 = dimg.

F4(2) has only one degree < 248, namely 52. As 248 = 44 (mod 52) an
embedding of this group in G would lead to an embeddmg in a centralizer of

- a 3-dimensional torus, a contradiction with Proposition 2. 6. If ¢ > 2, then, by

Landazuri and Seitz [21] the minimal degree of a projective representation of
Fy(q) is at least ¢*(¢® — 1) if ¢ is odd, and > ¢7(¢® — 1)(g—1)/2 if g is even, in
particular exceeding 248. Therefore neither ¥ (g) nor a central extension of it
can be embedded in G. :

Finally, suppose L = G2(g) (g > 2) or a central extension is embedded in
G. Since L contains subgroups isomorphic to SL(3,q) and to SU(3, q), §85.3
and 5.4 yield that ¢ € {2,3}. Clearly, Go(3) < Spin(14,C) < G, and, if L=
3 - G2(3), we must have L < E4(C), a contradiction with Proposition 2.6. The
only real feasible characters of L = G(3) are ¢; = 1, + 2 X 78, + 91, and
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2 = 15 + 2 X 14, + 64, + 64 + 91,. Since there is a nonzero fixed vector in
g, Corollary 2.4 and Proposition 2.6, and nonfeasibility on M yield that L is
contained in a Lie subgroup D of type D,;. But D centralizes a torus, hence an
involution, and so is contained in Dg with representation degrees 120 (adjoint)
and 128 (half-spin). As D has an adjoint of dimension 91, there must be a D-
submodule of g of dimension 120 — 91 = 29. If X|z = 41, this is impossible,
whence x|z = 2. Finally, since L does not leave invariant a H6-dimensional
subspace of g, it cannot be contained in K. 0 :

We now proceed to the twisted case.

5.6.2. Let L = Sz(8) =2B,(8). The Borel subgroup of L. does not embed in
G, whence nesther does L. : '

Let B be a Borel subgroup of L. The structure of B is 23+3 :7, and O2(B) has
order 64. Let A = (a) be a subgroup of B of order 7, and set Zo =1(02(B)) &

23, Then B — Z; consists of elements of order 4 only. ‘As F3A-modules, Z,

and O3(B)/Zy are dual (since Zp must be a quotient of, hence isomorphic to,
N (04(B) /Zo). Suppose now that B is a subgroup of G. From Propositions 3.8
and 3.9 it is clear that Zf consists of 7 involutions with trace —8 on g, and so,
by Proposition 3.8, C = Cg (Zo) has a normal subgroup J = Jy---Jg, a central
product of 8 copies J; of SL(2,C), such that C/J = 23 and Z := Z(J) =
2%. Furthermore Ng(Zy) = Ng(Z) = C.SL(3,2) = J.28.5L(3,2), and B <
Ng(Z). We claim that J N Oz(B) = Oy(B). For, otherwise, Ng(Z) N Oz(B) —
J # O, whence Ox(B)J/J = 23, an irreducible F3A-module of dimension 3.
But then O5(B)J/J = C/J, which is an irreducible 3-dimensional F3A-module
- isomorphic to Zy (this can be seen by consideration of the nonsingular pairing
C/J x {eg)/Zo — Zy given by commutation), contradicting that O, (B)/Zy is an
F; A-module isomorphic to the dual of Zy.

Thus, we must have O3(B) < J. We shall show that this also leads to a

contradiction. A permutes the seven elements in Z — Z# cyclically, whence

the seven centers Z(J;), and accordingly the seven groups J;, so that A is not

contained in J and ANJ = 1. Now, without loss of generality, A can be taken

0 as to permute the J; according to the permutation (1,2, 4,3,6,7,5) on the

indices. Thus as an FyA-module, Z; is irreducible. (The element a acts with
minimal polynomial A®+A+1.) As Oy(B) < J, we have without loss of generality
Y=y1--ys € JNO2(B)—Z with y; € J;. Now (y2)Z/Z == 23 must be the dual
of Zy as an A-module. We can embed each ¥ in a torus of J;. Let z; = Yiq.
Consider the module D = (z;,y;)1<;<8Z/Z = 216 for A. Let F be the subgroup
of D consisting of all elements in a product of J; for 7 ranging over the words
in (1) of §3.8. Then F is an FyA-submodule of D of dimension 2 x 4 = 8, The
quotient D/F is isomorphic to the sum of two copies of Z as an F3A-module, so
O2(B) must be contained in F. But each element in F — Z consists of involutions
in view of (1) of §3.8, whereas it should contain elements of order 4 in order for
'F' to contain Oy (B). This contradiction shows that Oy(B) does not embed in J
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with the proper A-action; the conclusion is that B is not embeddable in Ng(J),
and hence not'in G. '

Now, choose a Borel subgroup B of L such that B is an extension of the
‘Borel group B of L. Assume B < G and let Y = Z(L). If Y contains an
involution of trace —8, we embed a central extension of B into SO(16, C), which
is incompatible with the character table. So every involution in Y has trace 24.
If |Y| = 4, then, by Lemma 3.7, B < Eg(C), which is absurd. So Y] = 2.
Then the involution in Y# must have centralizer of type E;. But from Table
6 we see that an involution on the 56-space has trace 8,—8, or 56, whereas
faithful representations of B have trace 0 or —16 on noncentral involutions, a
final contradiction. 0O

5.6.3. Suppose L is a finite simple group of twisted Chevalley type (# 2Dy, #
2G2(3)' = L(2,8),# Sz(2)). If L < G, then L = 3D4(2) or 2F4(2)'. Both
groups occur in G. Any embedding of the latter two groups factors through Fg(C),
and their characters on g are as given in Table 1.

PROOF. Let L =3Dy4(q). As L contains a central cover of G2(g), we conclude
from the above that ¢ = 2 or.3. If ¢ = 3, let P be a parabolic of shape
31+881(2,27)Z,. Representation theory of the extraspecial group of shape 3178
and Corollary 3.4 show that we must have 31785L(2,27) = P’ < ES, a central
product of a group isomorphic to 3 Eg(C) and a group isomorphic to SL(3,C);
but then the projection onto the factor S/Z(S) must be trivial, whence P' < E.
However P’ does not have a faithful character of degree 27. Hence ¢ = 2. (See.
Cohen [8] for an embedding of Aut3D,(2) in F4(C).) Beside the character in
~ Table 1, there is one other feasible character of 2D4(2) on g, viz. 52, + 196,.
~Suppose x|z is the latter, and let U be aa‘l'L-invariantv; subspace of g of dimension
52. In view of the decomposition AZ 52,+1274,, and 52, @196, = 637, +2184,+
2457, + 2457, + 2457, the space U must be an ideal of g, a contradiction with
the simplicity of g. Therefore the character of D4(2) on g is as indicated in
Table 1.

Let g = 22™+1 where m > 0 and let L be a (possibly trivial) central extension

of the derived group of 2Fy(q). Since, by Landazuri and Seitz [21], L has nontriv-
ial projective representations of degree > q4(g — 1)1/q/2 only, the latter number
cannot exceed 248, whence m = 0 and ¢ = 2. If L = 2F4(2)’, the nontrivial
character degrees < 248 are 26, 27, 78. All of the corresponding characters have
positive rational traces on elements of order 5. The feasible characters on g are
P =8x1,+6x27,+78, and 1 = 14X 1, +6x 26, +78,. If L < E¢(C), then,
by [11], the character of L on the Lie algebra and on a 27-dimensional module
for E(C) must both be irreducible, and so x|z = 1. If L is not contained in
Eg(C), then, by Corollary 2.4, we must have L < K. But then, by the character
table, L has fixed points on M, which is absurd because of Proposition 4.4. This
proves the statements concerning the Tits group 2Fy(2)".

Let ¢ = 2?™*1 where m > 0 and let L be a (possibly trivial) central ex-
tension of Sz(g) which is embedded in G. By [21], L has nontrivial projective
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representations of degree > (g — 1)4/¢/2 only, so ¢ < 32. Then q€{8,32}. In
the last case [ = L = §2(32), and x| must be the sum of the two irreducibles
of degree 124. The dimension of the centralizer in g of an element of order 25 is
25 (248+4x (—2)4+20x (~2)) = 8, so is a Cartan subalgebra. On the other hand
its fifth power has centralizer sls @ sls of dimension 48, and we have a contra-

- diction with 5.2.2. [Alternately, one can reason that the only feasible character
decomposition for x|z is 124, + 124, and calculate (A® x|z,1) = 0 to finish by
Lemma 2.5.] Thus, ¢ = 8, which has been eliminated in 5.6.2.

Let ¢ = 3*"*1, where m > 0 and let L be a subgroup of G isomorphic
to (a possibly trivial) central extension of 2G5(q). By [21], L has nontrivial
projective representations of degree > g(g— 1) only, so ¢ < 27, whence m = 0,a
contradiction. Finally, 2 Eg(q) can be ruled out similarly. This ends the proof of
the twisted case. O

5.7. The sporadic groups. Let L be a finite sporadic simple group. .If L< G,
then L is one of M11,2- My2,2 - Jo.

PROOF. Neither M2 nor any of its nonsplit central covers has a feasible
character on g. So, the only Mathieu groups L that could be ‘contained in G
or have a central extension in G are My; and My;. Indeed, My; < 2- My, <
Spin(11,C) < G. : /

We next prove that M;, cannot be embedded in G. Assume L < G, L= M.
In view of Proposition 3.1, there are only two feasible character shapes for x|z
(viz. 1,42 x 11, + 16, +2 x 55, + 99, and 2x 11, +16, +454+3x55,). In both
events, there is a single irreducible constituent of degree 16. But the character
of degree 16 is not real, so cannot occur in x|r with multiplicity oné (cf. Lemma
25. e |

The remaining sporadic groups with a nontrivial projective character of degree
at most 248 are Ji,Js, J3, HS,McL, Suz, He, Ru, Figy, and F5. -We observe -
that 2 - J> is embedded in SL(6,C). By feasibility of characters on g, using.
the tables in the Atlas-[12]; all other possibilities are easily ruled out, except -
for (possibly) HS, He, and F3. But Mss is a subgroup of HS, and PSp(4,4)
is a subgroup of He, so only F3 remains to be considered. Now F3 has trivial
Schur multiplier. S. Norton has pointed out that the character in question does
not admit an alternating trilinear form. Another way of seeing that F3 is not a
subgroup of G is to consider its subgroup isomorphic to 3-G4(3) centralizing an

element in e € F3 of order 3. Since, in an embedding of F3 in G, the element e

must have trace 5, a look at Table 4 shows that containment of F3 in G would
imply containment of G2(3) in Cg(e)/(e) = E¢(C). But then G2(3) would be a
subgroup of Eg(C) which is not true according to Cohen and Wales 1. o
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