

Thread algebra for strategic interleaving

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2004). Thread algebra for strategic interleaving. (Computer science reports;
Vol. 0435). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/a146eef1-43b5-4db8-bbc0-4d0977f2c0ca

Thread Algebra for Strategic Interleaving

J.A. Bergstra1,2 and C.A. Middelburg3

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

janb@science.uva.nl
2 Department of Philosophy, Utrecht University,

P.O. Box 80126, 3508 TC Utrecht, the Netherlands
janb@phil.uu.nl

3 Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

keesm@win.tue.nl

Abstract. We present an extension of the polarized process algebra
BPPA, an algebraic theory about sequential program behaviors. The
extension is called thread algebra and is proposed as a tool for the de-
scription and analysis of multi-threaded program behaviors. Strategic
interleaving refers to the form of concurrency where some interleaving
strategy is used rather than arbitrary interleaving. Strategic interleav-
ing is considered characteristic of multi-threading. Multi-threaded con-
currency is more limited than general concurrency based on arbitrary
interleaving.

Keywords: thread algebra, multi-threading, polarized process algebra,
strategic interleaving operators, execution architectures, deadlock free-
dom.

1998 CR Categories: D.1.3, D.2.4, D.3.3, F.1.2, F.3.1.

1 Introduction

Theories about concurrent processes such as ACP [4], CCS [12], and CSP [9]
are based on arbitrary interleaving of parallel processes. However, when dealing
with multi-threading, the dominant form of concurrency as provided by recent
object-oriented program notations such as C# [8] and Java [2], arbitrary inter-
leaving is not the most useful intuition. A thread may be considered a process
describing a program under execution. Multi-threading involves some form of
parallel composition of different threads. Attempting to give an informal defini-
tion of a thread we arrive at a listing of keys aspects and properties: (i) athread
is the behavior of a sequential program as run on a machine, (ii) at any time
it has some form of unique identity, (iii) it will have a time of creation and its
individual history thereafter, (iv) during its life it co-exists with zero or more
other threads in some execution architecture, (v) its actions may affect the state
of system components present in the architecture, and (vi) external observations
of a thread are made indirectly via the behavior of system components which
have been activated by the thread.

1.1 Strategic Interleaving versus Arbitrary Interleaving

Discrete behaviors (also called processes) proceed by ‘doing’ steps in a sequential
fashion. The simplest view on the parallel composition of two discrete behaviors
involves so-called interleaving. In an interleaving steps of both processes occur
in some order where at each time only one step is taken either from the first or
from the second process. Threads will be modeled as discrete behaviors, and each
approach to their their parallel composition inherits from the theory of parallel
composition of discrete behaviors.

Arbitrary Interleaving Arbitrary interleaving has been proposed by many
authors as a plausible, general, if not idealized model of the operation of con-
current systems. Arbitrary interleaving models take into account the totality of
all possible interleaving orders in a single model. In the case of arbitrary in-
terleaving, putting two or more processes in parallel results in another process
which incorporates all conceivable ways the steps of the given processes can
be interleaved. Each different mathematical representation of processes induces
its own way of obtaining the parallel composition of a number of processes in
an arbitrary interleaving fashion. One might say that the concept of arbitrary
interleaving depends upon the mathematical representation of processes under
consideration.

True Concurrency In contrast to arbitrary interleaving concurrency so-called
true concurrency models have been proposed which, in some cases better grasp
the concept of parallelism. In true concurrency models one intends to avoid
causal dependencies that may solely arise from the sequencing of activities given
by any arbitrary interleaving of two behaviors. There are numerous true concur-
rency models just as there is a multitude of arbitrary interleaving (concurrency)
models. For the theory and practice of computer programming, however, another
contrast with arbitrary interleaving comes to mind.

Strategic Interleaving Rather than assuming some mechanism of arbitrary
interleaving it may be assumed that some deterministic interleaving strategy de-
termines the ordering of performing actions from various threads. This strategy
need not be known to a programmer who may be happy to know that some
strategy chosen from a collection of adequate strategies is applied. We propose
to use the phrase ‘strategic interleaving’ to indicate a more constrained alterna-
tive to arbitrary interleaving in much the same way as true concurrency is its
alternative in the less constrained direction.

Strategic interleaving is viewed by the authors as a modeling technique specif-
ically aimed at questions arising in connection with multi-threaded programs and
systems.

2

1.2 Thread Algebra versus Process Algebra

Thread algebra is an algebraic theory of behaviors specifically designed for the
specification and analysis of strategic interleaving. Process algebra, in contrast,
has the much more general purpose of providing a general theory of parallel
composition of systems. Process algebra is designed to have parallel composition
operators with fundamental properties such as commutativity and associativity,
which are not considered essential in thread algebra due to the ‘axiom’ that in a
multi-threaded execution architecture each thread has its unique place, although
at some level of abstraction almost nothing may be known about that place. In
this paper that place will take the form of the position of a thread in the so-called
thread vector.

Thread algebra1 is a design on top of the polarized process algebra that
serves in [5, 3] as the semantic basis for a theory of sequential programs and their
behavior. Polarized process algebra is far less general than ACP style process
algebra and its design focuses specifically to the semantic analysis of sequential
deterministic programs. The semantics of a sequential program is supposed to
be a polarized process. Polarization in process algebra is understood in [5] along
the axis of the client-server dichotomy. Basic actions in a polarized process are
either request expecting a reply or service offerings promising a reply. Thread
algebra may be viewed as client side polarized process algebra because all running
programs and for that reason all threads are viewed as clients generating requests
for their environment.

1.3 A Taxonomy of Services

The well-known client server dichotomy fails to provide the terminology that we
need for the present purposes. Taking the thread as the particular kind of client
under consideration a phrase is required to indicate the system part to which
the commands of a thread might be directed. In [6] the dichotomy has been
given as program versus state machine. Here the program represents a thread,
though less abstract and a state machine is a reactive component to which a
program issues its instructions. This suggest that threads coordinate the activity
of reactive components. So we could propose reactor as a technical term for a
system component to which a thread issues it commands. A disadvantage of
the term reactor, however, is that it fails to have a meaning independent of the
concept of an actor. In addition a thread may issues its commands to an active
component just as well.

Looking for an abstract term or phrase that instantiates the concept of a
component accepting commands issued by a thread which has some independent
significance as well we arrive at ‘service’. Thus a thread issues its commands (in
the sequel called basic actions) to one or more services. Services can be specified

1 The phrase ‘thread algebra’ can be found on the web as proposed by James Orsilio
around 1990. It has served as the theoretical basis of a software product of Orthstar.
No information regarding its mathematical content seems to have been published,
however. No other occurrences of this phrase have been observed by the authors.

3

and analyzed in a service algebra, which is of no concern to us here, however.
In the setting of multi-threading services may be classified in several ways. A
major distinction is between target services and para-target services; another
distinction is between shared services and local services:

target services. A target service processes commands in a context observable
for external parties. Printing a document, sending an email or showing infor-
mation on a display are typical examples of calling a target service. Writing
information to permanent memory is another example, because permanent
memory may be observed from other running programs, in particular pro-
grams that start execution after the writing thread has terminated. The very
reason for any collection of threads to be run always resides in the collective
effect which all commands involved have on the target services provided by
the execution environment.

para-target services. Services that are not target services will be called para-
target services. Alternative names might be auxiliary services, internal ser-
vices and so on. We propose to use the phrase para-target in order to avoid
any misleading connotations.

local services. A local service is accessible to a single thread only. If it has a
state that state is initialized when the thread is created and its state is under
complete control of that thread. Local services split in local target services
and local para-target services. Local para-target services exist to support a
thread in creating useful, or at least intended, behavior towards (local or
shared) target services.

shared services. A shared service in a multi-threaded system provides its ser-
vice to all existing threads. Just as local services shared services can be
distinguished in shared target services and shared para-target services.

To simplify the setting it will be assumed that all services are either local or
shared, thus disregarding the possibility that a service is accessible to some class
of threads only and also that there are no local target services. This leaves us with
execution architectures that provide shared target services, shared para-target
services and local para-target services.

1.4 Thread Vectors and Strategic Interleaving

In order to deal with multi-threading it is assumed that the pool of threads of a
system takes the form of a linearly ordered list, called the thread vector. Strategic
interleaving operators describe interleaving strategies on thread vectors. These
operators are the content of thread algebras. The main purpose of this paper is to
specify a number of strategic interleaving operators that provide an understand-
ing of how multi-threaded systems may be executed. By limiting the discussion
to the relatively simple setting of thread algebra only a restricted number of
strategic interleaving operators can be modeled. The key advantage, however, is
that interleaving strategies characteristic of multi-threading, one might even say
intended for multi-threading, can be specified in a concise and comprehensible

4

way. The family of strategic interleaving operators (SIOPs) grows by introduc-
ing more features for thread behavior and interaction, the simplest case being
cyclic rotation. Features treated in this paper include thread creation, thread
termination, action enabledness tests, and locking/unlocking of services.

By designing an incremental SIOP hierarchy complicated program notation
designs can be understood by indicating what might be a plausible implemen-
tation for some set of multi-threading features.2

1.5 Outline of the Paper

After the introduction of threads as polarized processes, thread vectors are in-
troduced to represent the state of a multi-threaded system. A thread vector only
takes into account the state of control of a multi-threaded system under execu-
tion. A SIOP now maps thread vectors on a single polarized process. A process
obtained via a SIOP is called a multi-thread. A portfolio of SIOPs is displayed,
all based on cyclic scheduling.

Then an informal account of the co-operation of threads and multi-threads
with a combination of services is given. This leads to a family of examples demon-
strating the the notion of a deadlock is sensitive to the ordering of a thread vector
as well as to the particular interleaving strategy.

Thereafter a formalization is given of para-target services, and the interac-
tion between threads and multi-threads and para-target services (both local and
shared) is specified by means of the use-operator. A restricted from of commu-
tativity and idempotence is found for the use-operator. Then a formal definition
of a deadlock is given that validates the observations made earlier in a slightly
more informal setting.

2 Basic Polarized Process Algebra BPPA

In this Section, we discuss BPPA, a form of process algebra which is tailored
to the use for the description of sequential program behavior. In BPPA, it is
assumed that there is a fixed but arbitrary finite set of basic actions A with
tau 6∈ A. We write Atau for A ∪ {tau}. BPPA has the following constants and
operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Atau, a binary postconditional composition operator E a D .

2 We feel that this kind of description is hardly doable in ordinary arbitrary interleav-
ing based process algebra, mainly because the necessity to maintain a commutative
and associative parallel composition forces one into a use of choice which is not com-
monly implied in the use of multi-threading. The use of states and guards (evaluated
conditions) is also more easily supported in thread algebra.

5

We introduce action prefixing as an abbreviation: a ◦ x abbreviates x E a D x.
We use infix notation for postconditional composition. Viewing the basic action
as an argument as well, we have a ternary postconditional composition operator

E D , where the middle argument must be a basic action or tau. The special
action tau will emerge as the result of calculations within the thread algebra.

2.1 Informal Explanation

The operational intuition behind this syntax is that each basic action represents
a command which is to be processed by the execution environment of the process.
More specifically a basic action is taken as a command for a service offered by
the environment. The processing of a command may involve a change of state of
this environment, or more specifically of a service provided by the environment.
At completion of the processing of the command, the service concerned produces
a reply value. This reply is either T or F and is returned to the polarized process
under execution. The process x E a D y will proceed as x if the processing of a
leads to the reply T (called a positive reply) indicating the successful processing
of a, and it will proceed as y if the processing of a leads to the reply F (called a
negative reply) indicating the unsuccessful processing of a. The action tau plays
a special role. Its execution will never change any state and always produce a
positive reply. It is a concrete internal action. Here concrete is meant as the
opposite of abstract which implies that its presence matters and there is no
abstraction made of it via equations that remove these actions in some contexts.
Its name is taken from the CCS notation for silent step in (non-polarized) process
algebra, but the Greek letter is not used here because the characteristic equations
of such silent steps are not implied.

2.2 CPO structure, Recursion and Continuity

Folllowing [3] a CPO structure can be imposed on the domain of BPPA. Then
guarded recursion equations represent continuous operators having appropriate
fixed points. These matters will not be repeated here, taking for granted that
guarded systems of recursion equations allow one to define unique polarized pro-
cesses. Guardedness is a requirement that guarantees that repeated substitution
of the righthand sides of equations for the lefthand side variables eventually
produces an expression of the form D, S or P E a D Q. As systems of equations
become more involved, especially if infinite systems are considered, guardedness
may become hard to define and it may also become undecidable. In the sequel
of this paper all recursion equations may easily be classified as guarded, though
a formal definition of guardedness covering all cases is not presented here.

2.3 Projective Limit Model

The projective limit characterization of process equivalence on polarized pro-
cesses is based on the notion of a finite approximation of depth n. When for all

6

Table 1. Axioms for the operators πn()

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x Ea D y) = πn(x) E aD πn(y) P3

(
∧

n≥0
πn(x) = πn(y)) ⇒ x = y AIP

n these approximations are identical for two given polarized processes, both pro-
cesses are considered identical. This allows one to eliminate recursion in favor of
the infinitary proof-rule AIP. Following [5] approximation of depth n is phrased
in terms of a so-called projection operator πn(). The projection operators are
defined inductively by means of the axioms in Table 1. In P3, a stands for an
arbitrary action from Atau.

2.4 Structural Operational Semantics

As mentioned above, the behavior of a polarized process depends upon its ex-
ecution environment. Each action performed by the polarized process is taken
as a command to be processed by the execution environment. At any stage, the
commands that the execution environment can accept depends only on its his-
tory, i.e. the sequence of commands processed before and the sequence of replies
produced for those commands. When the execution environment accepts a com-
mand, it will produce a positive reply if its processing succeeds and a negative
reply if its processing fails. Whether the processing of the command succeeds
or fails usually depends on the execution history. However, it may also depend
on external conditions. For example, when the execution environment accepts
a command to write a file to a diskette it will usually succeed, but not if the
diskette turns out to be write-protected.

In the structural operational semantics, we represent an execution environ-
ment by a function ρ : (A × {T, F})∗ → P(A×{T, F}) that satisfies the following
condition: (a, b) 6∈ ρ(α) ⇒ ρ(α y 〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T, F}, and
α ∈ (A × {T, F})∗. We write E for the set of all those functions.

Given an execution environment ρ ∈ E and an action a ∈ A, the derived ex-
ecution environment of ρ after processing a with success, written ∂

∂a

+

ρ, is defined

by ∂
∂a

+

ρ(α) = ρ(〈(a, T)〉 y α); and the derived execution environment of ρ after

processing a with failure, written ∂
∂a

−

ρ, is defined by ∂
∂a

−

ρ(α) = ρ(〈(a, F)〉 y α).
The following transition relations on closed terms are used in the structural

operational semantics of BPPA:

a binary relation 〈 , ρ〉 a−→ 〈 , ρ′〉 for each a ∈ Atau and ρ, ρ′ ∈ E ;
a unary relation 〈 , ρ〉↓ for each ρ ∈ E ;
a unary relation 〈 , ρ〉↑ for each ρ ∈ E .

7

Table 2. Structural operational semantics of BPPA

〈S, ρ〉↓ 〈D, ρ〉↑

〈x E a D y, ρ〉
a
−→ 〈x, ∂

∂a

+

ρ〉
(a, T) ∈ ρ(〈 〉)

〈x E a D y, ρ〉
a
−→ 〈y, ∂

∂a

−

ρ〉
(a, F) ∈ ρ(〈 〉)

〈x E a D y, ρ〉↑
(a, T) 6∈ ρ(〈 〉), (a, F) 6∈ ρ(〈 〉)

〈x E tau D y, ρ〉
tau
−−→ 〈x, ρ〉

Table 3. Structural operational semantics for the operators πn()

〈x, ρ〉
a
−→ 〈x′, ρ′〉

〈πn+1(x), ρ〉
a
−→ 〈πn(x′), ρ′〉

〈x, ρ〉↓

〈πn+1(x), ρ〉↓

〈x, ρ〉↑

〈πn+1(x), ρ〉↑ 〈π0(x), ρ〉↑

Table 4. Structural operational semantics for the constants 〈X|E〉

〈〈tX |E〉, ρ〉
a
−→ 〈x′, ρ′〉

〈〈X|E〉, ρ〉
a
−→ 〈x′, ρ′〉

X = tX ∈ E
〈〈tX |E〉, ρ〉↓

〈〈X|E〉, ρ〉↓
X = tX ∈ E

〈〈tX |E〉, ρ〉↑

〈〈X|E〉, ρ〉↑
X = tX ∈ E

The three kinds of transition relations are called the action step, termination,
and deadlock relations, respectively. They can be explained as follows:

〈t, ρ〉
a
−→ 〈t′, ρ′〉: in execution environment ρ, process t is capable of first per-

forming action a and then proceeding as process t′ in execution environment
ρ′;

〈t, ρ〉↓: in execution environment ρ, process t is capable of terminating success-
fully;

〈t, ρ〉↑: in execution environment ρ, process t is neither capable of performing
an action nor capable of terminating successfully.

The structural operational semantics of BPPA is described by the transition
rules given in Table 2 where a ranges over A. The structural operational seman-
tics for the operators πn() is described by the transition rules given in Table 3
with a ranging over Atau.

In the presence of recursion, the structural operational semantics needs a
special provision, namely constants for the solutions of guarded systems of re-
cursion equations. We add to the constants of BPPA, for each guarded system
of recursion equations E and each variable X that occurs as the left-hand side
of an equation in E, a constant standing for the unique solution of E for X .
This constant is denoted by 〈X |E〉. The structural operational semantics for the
constants 〈X |E〉 is described by the transition rules given in Table 4 (with a
ranging over Atau). Here we write 〈t|E〉 for t with, for all X that occur on the
left-hand side of an equation in E, all occurrences of X in t replaced by 〈X |E〉.

8

Bisimulation equivalence is defined as follows. A bisimulation is a symmetric
binary relation B on closed terms such that for all closed terms t1 and t2:

– if B(t1, t2) and 〈t1, ρ〉
a−→ 〈t′1, ρ

′〉, then there is a t′2 such that 〈t2, ρ〉
a−→ 〈t′2, ρ

′〉
and B(t′1, t

′
2);

– if B(t1, t2) and 〈t1, ρ〉↓, then 〈t2, ρ〉↓;
– if B(t1, t2) and 〈t1, ρ〉↑, then 〈t2, ρ〉↑.

Two closed terms t1 and t2 are bisimulation equivalent, written t1 ↔ t2, if there
exists a bisimulation B such that B(t1, t2). If B is a bisimulation and B(t1, t2),
then we say that B is a bisimulation witnessing t1 ↔ t2.

Bisimulation equivalence is a congruence. This follows immediately from the
fact that the transition rules for BPPA constitute a transition system specifica-
tion in path format (see e.g. [1]).

Pairs consisting of a closed term and an execution environment are sometimes
called configurations. A variant of bisimulation equivalence that is coarser could
be obtained by relating configurations instead of terms. However, different from
bisimulation equivalence as defined above, that variant would not even be a
congruence with respect to the simplest strategic interleaving operator added
to BPPA in this paper. In the terminology of [13], bisimulation equivalence as
defined above is stateless bisimulation equivalence and the intended variant is
initially stateless bisimulation equivalence.

3 Thread Vectors and Multi-Threads

In [5] its has been outlined how and why polarized processes are a natural can-
didate for the specification of sequential program semantics. Assuming that a
thread is a process representing a program being run it is reasonable to view all
polarized processes as threads. A thread vector is a sequence of threads. Thread
vectors are denoted as follows: 〈 〉 for the empty sequence, 〈x〉 for a sequence of
length one, and α y β for the concatenation of two sequences. We assume that
the following identity holds: α y 〈 〉 = 〈 〉 y α = α.

Strategic interleaving operators turn a thread vector of arbitrary length into
a single thread. This single thread obtained via a strategic interleaving operator
is also called a multi-thread. Formally, however both threads and multi-threads
are polarized processes and there is no further difference in type. The main
objective of thread algebra is to specify a collection of strategic interleaving
operators, capturing some essential aspects of multi-threading.

Subscripts of strategic interleaving operators will be used to indicate features
which are dealt with in addition to the minimum given by the cyclic interleav-
ing operator ‖csi() introduced first. Superscripts will be used to encode state
information when needed.

3.1 Strategic Interleaving by Cyclic Rotation

The axioms for cyclic interleaving (‖csi()) are given in Table 5. In CSI4, a stands

9

Table 5. Axioms for the strategic interleaving operator ‖csi()

‖csi(〈 〉) = S CSI1

‖csi(〈S〉 y α) = ‖csi(α) CSI2

‖csi(〈D〉 y α) = SD(‖csi(α)) CSI3

‖csi(〈x E aD y〉 y α) = ‖csi(α y 〈x〉) E aD ‖csi(α y 〈y〉) CSI4

Table 6. Axioms for the operator SD()

SD(S) = D S2D1

SD(D) = D S2D2

SD(x Ea D y) = SD(x) Ea D SD(y) S2D3

Table 7. Structural operational semantics for the operators ‖csi() and SD()

〈x1, ρ〉↓, . . . , 〈xk , ρ〉↓, 〈xk+1, ρ〉
a
−→ 〈x′

k+1
, ρ′〉

〈‖csi(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉
a
−→ 〈‖csi(α y 〈x′

k+1
〉), ρ′〉

(0 ≤ k < n)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉
a
−→ 〈x′

k+1
, ρ′〉

〈‖csi(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉
a
−→ 〈‖csi(α y 〈D〉 y 〈x′

k+1
〉), ρ′〉

(0 ≤ k < n, 0 < l ≤ k)

〈x1, ρ〉↓, . . . , 〈xn, ρ〉↓

〈‖csi(〈x1〉 y . . . y 〈xn〉), ρ〉↓

〈x1, ρ〉 6−→, . . . , 〈xn, ρ〉 6−→, 〈xl, ρ〉↑

〈‖csi(〈x1〉 y . . . y 〈xn〉), ρ〉↑
(0 < l ≤ n)

〈x, ρ〉
a
−→ 〈x′, ρ′〉

〈SD(x), ρ〉
a
−→ 〈SD(x′), ρ′〉

〈x, ρ〉↓

〈SD(x), ρ〉↑

〈x, ρ〉↑

〈SD(x), ρ〉↑

for an arbitrary action from Atau. In CSI3, the auxiliary deadlock at termination
operator SD() is used. This operator turns termination into deadlock. Its axioms
appear in Table 6. In S2D3, a stands for an arbitrary action from Atau.

The structural operational semantics for the operators ‖csi() and SD() is
described by the transition rules given in Table 7. Here 〈x, ρ〉 6−→ stands for the
set of all negative conditions ¬ (〈x, ρ〉 a−→ 〈t′, ρ′〉) where t′ is a closed term of
BPPA, ρ′ ∈ E and a ∈ A.

Bisimulation equivalence is also a congruence with respect to the operators
‖csi() and SD(). This follows immediately from the fact that the transition
rules for BPPA extended with these operators constitute a complete transition
system specification in relaxed panth format (see e.g. [11]).

Structural operational semantics can also be given for each of the other strate-
gic interleaving operators treated in this paper. We will refrain from doing so.
For those other strategic interleaving operators, the description of the structural
operational semantics is similar, but moderately till considerably more involved,
and it explicit presentation adds at most marginally to a better understanding
of the interleaving strategy concerned.

10

Table 8. Axioms for the strategic interleaving operator ‖W2

csi ()

‖W2

csi (〈 〉) = S CSIW1

‖W2

csi (〈S〉 y α) = ‖W2

csi (α) CSIW2

‖W2

csi (〈D〉 y α) = SD(‖W2

csi (α)) CSIW3

‖W2

csi (〈x Ea D y〉) = ‖W2

csi (〈x〉) Ea D ‖W2

csi (〈y〉) CSIW4

‖W2

csi (〈x Ea D y〉 y 〈u E bD v〉 y α) =

a | b ◦ ‖W2

csi (α y 〈x〉 y 〈u〉)

C a#bB

‖W2

csi (〈u E bD v〉 y α y 〈x〉) Ea D ‖W2

csi (〈u E b D v〉 y α y 〈y〉) CSIW5

3.2 Basic Action Width Two and Beyond

The equations from Table 5 exclude basic actions from different threads from
being performed simultaneously. The number of basic actions that can be per-
formed simultaneously is called the basic action width. In these terms ‖csi()
provides basic action width one only. Actions a and b are independent, written
a # b, if both can be performed simultaneously with an effect that equals the
effect of performing them in any of the two possible orderings. The result of
performing independent actions a and b simultaneously is considered to be a
basic action, which is denoted by a | b.

Assuming that independence is known as a relation given on actions, a strate-
gic interleaving operator may issue a | b whenever possible. Simultaneous basic
action issuing is vital for so-called micro-threads which are used to speed up
processors by maximizing execution width, see e.g. [10]. In order to specify a
strategic interleaving operator for width 2 it is a reasonable simplification to
assume that basic actions independent of other basic actions always return T.
Moreover the simultaneous execution of two independent basic actions generates
a positive return value in all circumstances. Thus, if an action may return both
results it cannot be performed simultaneously with any other basic action. A
strategy with action width 2 is presented in Table 8. In CSIW4 and CSIW5,
a and b stand for arbitrary actions from Atau. A similar but more complicated
axiomatization can be found for higher widths of course. The remainder of this
paper focusses on the case of basic action width one which is vital for an under-
standing of multi-thread computer programming, leaving a development in the
direction of processor architecture for future elaboration.

As an auxiliary operator use is made of the conditional operator C B ,
where the second argument must be a boolean value. For each boolean value a
defining equation is needed: x CTB y = x and x CFB y = y.

3.3 Step Counting

A simple variation of ‖csi() is ‖k,l

csi() which is equipped with counters and gives
each thread a fixed number k of consecutive turns. The superscript l indicates

11

Table 9. Axioms for the strategic interleaving operator ‖k,l

csi()

‖k

csi(x) = ‖k,1

csi(x) CSIsc0

‖k,l

csi(〈 〉) = S CSIsc1

‖k,l

csi(〈S〉 y α) = ‖k,1

csi(α) CSIsc2

‖k,l

csi(〈D〉 y α) = SD(‖k,1

csi(α)) CSIsc3

‖k,l

csi(〈x Ea D y〉 y α) =

(‖k,1

csi(α y 〈x〉) Ea D ‖k,1

csi(α y 〈y〉))

C k = lB

(‖k,l+1

csi (〈x〉 y α) E aD ‖k,l+1

csi (〈y〉 y α)) CSIsc4

Table 10. Additional axiom for ‖k,l

csi() with yield action

‖k,l

csi(〈x E YIELD D y〉 y α) =

tau ◦ (‖k,1

csi (α y 〈x〉) C α 6= 〈 〉 B ‖k,l+1

csi (〈y〉)) CSIscY

that l − 1 of the k steps have already been performed. Its axioms are given in
Table 9. In CSIsc4, a stands for an arbitrary action from Atau. CSIsc0 defines an
additional operator: ‖1

csi(). Clearly for all x, ‖csi(x) = ‖1

csi(x). The advantage
of this interleaving strategy is that fewer context switches, i.e. moves from one
thread to another one are scheduled, which may in some cases speed up the
execution of a system.

An Action YIELD Yielding within a thread stands for handing over control
to another thread. This becomes meaningful in the step counting strategy with
k > 1. In Table 10 an axiom for a yield action is given. Recall that the special
action tau serves as an internal action.

3.4 Current Thread Persistence

Having available an action YIELD or any other action that invokes rotation of
the thread vector, cyclic rotation may be dropped in favor of rotations explicitly
asked for by the thread. A strategy of this kind is said to provide current thread
persistence, thus expressing that the current thread switches to another thread
only when needed. The family of strategies that is outlined below will be based
on cyclic rotation rather than on current thread persistence because some form of
rotation taking place outside the control of the individual threads is considered
essential for multi-threading at any rate. Table 11 provides axioms for a current
thread persistent strategy.

3.5 Thread Creation or Forking

Forking off a thread is a step in the execution of some thread which gives rise
to the creation of a new additional thread which will be running in the same

12

Table 11. Axioms for a strategy with current thread persistence ‖ctp()

‖ctp(〈 〉) = S ctpSI1

‖ctp(〈S〉 y α) = ‖ctp(α) ctpSI2

‖ctp(〈D〉 y α) = SD(‖ctp(α)) ctpSI3

‖ctp(〈x Ea D y〉 y α) = ‖ctp(〈x〉 y α) E aD ‖ctp(〈y〉 y α) ctpSI4

‖ctp(〈x EYIELD D y〉 y α) = tau ◦ (‖ctp(α y 〈x〉) C α 6= 〈 〉 B ‖ctp(〈y〉)) ctpSIY

Table 12. Additional axiom for πn() with fork actions

πn+1(x E NT(z) D y) = πn(x) E NT(πn(z))D πn(y) PNT

context. We intend to separate the action of forking off the thread from the
interleaving strategy subsequently dealing with the new thread. In particular a
fork action may succeed, giving rise to a new thread indeed or fail in which case
no new thread is created. This case distinction is returned as the result of a fork
action to the thread which performed the fork, allowing it to make its further
execution dependent on whether or not the fork actually succeeded. That may
depend on a variety of aspects which are immaterial for the act of forking as
such. In order to formalize these intuitions an operator ‘new thread’ (NT(x)) is
introduced which represents the act of trying to fork off a thread x. Thus NT(x)
is viewed as a basic action ignoring the way the new thread may be dealt with
by an interleaving strategy.

There are some axioms for the thread forking operator because it may appear
inside recursive definitions of threads. To deal with that matter the projective
limit model characterization of process identity on polarized processes will be
used that easily carries over to this case.

The projection operators are extended inductively by means of the axiom in
Table 12. The working of AIP in this case can be appreciated when considering
a recursive process definition such as:

P = R E a D S

Q = P E NT(R E a D Q) D D

R = Q E d D e ◦ S.

Then πn(P) is provably equal to a closed term for each n. The axioms for ‖csi,f ()
(cyclic interleaving with forking) are given in Table 13. In CSIf4, a stands for an
arbitrary action from Atau different from the actions of the form NT(x) and the
action NT. Here, the additional basic action NT is used. Its processing succeeds if
the creation of a new thread can take place and its processing fails if the creation
of a new thread cannot take place. For instance, the thread vector may be run
in an execution environment that constrains its length. Then NT will return T

only if the number of threads, i.e. the length of the thread vector, is still below
the maximum set for it.

13

Table 13. Axioms for the strategic interleaving operator ‖csi,f ()

‖csi,f (〈 〉) = S CSIf1

‖csi,f (〈S〉 y α) = ‖csi,f (α) CSIf2

‖csi,f (〈D〉 y α) = SD(‖csi,f (α)) CSIf3

‖csi,f (〈x Ea D y〉 y α) = ‖csi,f (α y 〈x〉) E aD ‖csi,f (α y 〈y〉) CSIf4

‖csi,f (〈x ENT(z) D y〉 y α) = ‖csi,f (α y 〈z〉 y 〈x〉) ENT D ‖csi,f (α y 〈y〉) CSIf5

Table 14. Axioms for the strategic interleaving operator ‖k,l

csi,f ()

‖k

csi,f (x) = ‖k,l

csi,f (x) CSIscf0

‖k,l

csi,f (〈 〉) = S CSIscf1

‖k,l

csi,f (〈S〉 y α) = ‖k,1

csi,f (α) CSIscf2

‖k,l

csi,f (〈D〉 y α) = SD(‖k,1

csi,f (α)) CSIscf3

‖k,l

csi,f (〈x Ea D y〉 y α) =

(‖k,1

csi,f (α y 〈x〉) E aD ‖k,1

csi,f (α y 〈y〉))

C k = lB

(‖k,l+1

csi,f (〈x〉 y α) Ea D ‖k,l+1

csi,f (〈y〉 y α)) CSIscf4

‖k,l

csi,f (〈x ENT(z) D y〉 y α) =

(‖k,1

csi,f (α y 〈z〉 y 〈x〉) E NT D ‖k,1

csi,f (α y 〈y〉))

C k = lB

(‖k,l+1

csi,f (〈x〉 y α y 〈z〉) E NT D ‖k,l+1

csi,f (〈y〉 y α)) CSIscf5

3.6 Forking Combined with Step Counting

Features can be combined by integrating different equation systems for specifi-
cations of interleaving strategies. Table 14 displays the result of combining in
a single scheduling operator both multi-threading with forks and step counting
per thread (without yielding). In CSIscf4, a stands for an arbitrary action from
Atau different from the actions of the form NT(x) and the action NT.

3.7 Blocked Thread Forking

One can imagine that thread forking is only temporarily blocked if it is disabled.
This motivates an interleaving strategy that postpones, when thread forking is
disabled, the processing of a fork action NT(x) until thread forking is again en-
abled. This implies that the thread containing the fork action can only proceed
in one way: its processing never fails. For this strategy, axiom CSIf5 from Ta-
ble 13 must be replaced by axiom CSIbf5 from Table 15. Here, an additional test
action ?NT is used. Its processing succeeds if thread forking is enabled and its
processing fails if thread forking is disabled. The enabledness condition may, for
example, be that the number of active threads is less than a given maximum.

14

Table 15. Alternative axiom for ‖csi,f () with blocking fork actions

‖csi,f (〈x E NT(z)D y〉 y α) =

‖csi,f (α y 〈z〉 y 〈x〉) E ?NT D ‖csi,f (α y 〈x E NT(z) D y〉) CSIbf5

The modified strategic interleaving operator has not been given a special name
because another strategy will be developed below, which is proposed as the more
canonical approach.

3.8 Separating Blocked Thread Forking from Failed Thread Forking

The preceding strategy is only adequate if enabledness of thread forking entails
success of thread forking. Otherwise, a better strategy is one that separates
blocked thread forking from failed thread forking. In such a strategy, thread
forking may still fail if it is not blocked. For instance, thread forking may be
considered blocked if a given maximum number of threads is already active,
whereas it may be considered failed if there is not enough free memory space
left at the time the thread forking is carried out. Failure of thread forking is
considered an exception. Blocking of thread forking by itself, even if all actice
threads try to perform a fork action, does not lead to a deadlock because thread
forking may become enabled by external events at any time. Instead, the test
action ?NT is repeatly performed until it succeeds.

Another interpretation of blocking and failure is consistent with these equa-
tions as well: a thread forking is blocked if there is no free processor (assuming
a multi-processor system), whereas it fails if the number of active threads is too
high, the latter being viewed as a programming error. Here it should be assumed
that the execution of a polarized process invokes a process with a bounded num-
ber of threads, while the number of processors allocated to that process may
vary in time due to circumstances not under the control of the process or its
execution engine. Moreover it is considered useful to admit at most one active
thread per available processor. Thus thread forking requests for a processor, and
in case that is currently unavailable, thread forking is blocked. This is reasonable
as the process cannot have a bookkeeping of available processors. It may, how-
ever, setup its own bookkeeping of active threads and an attempt to have too
many threads active at the same time may be considered a design flaw meriting
a failure (exception) rather than blocking.

Leaving out the step counting for the moment this leads to a strategy with
fork blocking and fork failure as in Table 16, which should be regarded as an
extension of Table 5, after renaming the interleaving strategy operator ‖csi()
to ‖csi,bff (). This is in our opinion the most convincing description of forking
that can be found in the current setting.

Step counting can easily be added to the previous strategy. It leads to a
strategy as in Table 17, which should be regarded as an extension of Table 9,
after renaming the interleaving strategy operator ‖k,l

csi() to ‖k,l
csi,bff ().

15

Table 16. Axiom for ‖csi,bff (), i.e. ‖csi() with blocking and failing fork actions

‖csi,bff (〈x E NT(z)D y〉 y α) =

(‖csi,bff (α y 〈z〉 y 〈x〉) ENT D ‖csi,bff (α y 〈y〉))

E ?NT D

‖csi,bff (α y 〈x ENT(z)D y〉) CSIbff5

Table 17. Axiom for ‖k,l

csi,bff (), i.e. ‖k,l

csi() with blocking and failing fork actions

‖k,l

csi,bff (〈x E NT(z)D y〉 y α) =

((‖k,1

csi,bff (α y 〈z〉 y 〈x〉) C k = l B ‖k,l+1

csi,bff (〈x〉 y α y 〈z〉))

ENT D

(‖k,1

csi,bff (α y 〈y〉) C k = l B ‖k,l+1

csi,bff (〈y〉 y α))

)

E ?NT D

‖k,1

csi,bff (α y 〈x ENT(z)D y〉) CSIscbff5

3.9 Terminating a Named Thread

Threads may influence one-another during their life-time. In this section it will
be assumed that (i) threads are named by positive natural numbers which, (ii)
should occur as the first parameter of the thread forking action NT(k, x), and
(iii) forking is possible unless a thread with the intended name already exists.
Threads present initially are all given name 0. In a superscript of the strategic
interleaving operator a vector of thread names is given, one for each thread in
the thread vector in the corresponding ordering. Two modification operators on
name vectors and thread vectors are needed: β − k is the sequence obtained
from β by removing k if it occurs in it and β itself otherwise. Secondly, ρβ−k(α)
removes from thread vector α the thread(s) named k if k occurs in β and leaves
the thread vector unchanged otherwise. The new features then comprise the
ability to ‘terminate’ a named thread from within another (or in fact the same)
thread, and the option to test if a named thread is still alive. Equations for
‖β

csi,fn() are presented in Table 18 which is based on Table 13, ignoring the
possibility that thread forking is blocking. In CSIfn4, a stands for an arbitrary
action from Atau different from the actions of the form NT(k, x), the actions of
the form terminate!k, and the actions of the form isalive?k.

4 Focus, Method and Guard

A useful format for basic actions is the so-called focus method notation (FMN)
of [5]. In FMN an action consists of two parts called focus and method respec-
tively. The focus comes first and is separated from the method with a dot. The

16

Table 18. Axioms for the strategic interleaving operator ‖β

csi,fn()

‖csi,fn(α) = ‖
~0

csi,fn(α) CSIfn0

‖β

csi,fn(〈 〉) = S CSIfn1

‖
〈s〉yβ

csi,fn (〈S〉 y α) = ‖β

csi,fn(α) CSIfn2

‖
〈s〉yβ

csi,fn (〈D〉 y α) = SD(‖β

csi,fn(α)) CSIfn3

‖
〈s〉yβ

csi,fn (〈x Ea D y〉 y α) = ‖
βy〈s〉
csi,fn (α y 〈x〉) E aD ‖

βy〈s〉
csi,fn (α y 〈y〉) CSIfn4

‖
〈s〉yβ

csi,fn (〈x ENT(k, z) D y〉 y α) =

tau ◦ (‖
βy〈k〉y〈s〉
csi,fn (α y 〈z〉 y 〈x〉) C k 6∈ β B ‖

βy〈s〉
csi,fn (α y 〈y〉)) CSIfn5

‖
〈s〉yβ

csi,fn (〈x E terminate!k D y〉 y α) = tau ◦ (‖β

csi,fn(α) C k = sB

(‖
βy〈s〉
csi,fn (α y 〈y〉) C k 6∈ β B ‖

β−ky〈s〉
csi,fn (ρβ−k(α) y 〈x〉))) CSIfn6

‖
〈s〉yβ

csi,fn (〈x E isalive?k D y〉 y α) =

tau ◦ (‖
βy〈s〉
csi,fn (α y 〈x〉) C (k = s ∨ k ∈ β) B ‖

βy〈s〉
csi,fn (α y 〈y〉)) CSIfn7

focus indicates a service in an execution architecture for which the action rep-
resents a command, the method denotes that command proper. The syntax of
foci and methods is the same: a nonempty sequence of alphanumeric strings
separated by colons with the additional constraint that the first sequence is
non-empty e.g ‘f2:g::hh’ but not ‘:ff :g’. Complete actions in FMN are e.g:
‘stack:a4.push:23’ or ‘system:my.threadvector:currentthread:remove’. In the
absence of a focus some default focus is meant. In this paper the default focus is
the thread vector TV. The question mark and exclamation mark of the manip-
ulation instructions for threads terminate! and isalive? are simply turned into a
semi-colon in FMN. Thus, in order to phrase these actions in terms of FMN one
obtains: TV.terminate:k and TV.isalive:k.

Now we will extend FMN to FMNen by introducing for each focus f and
method m a basic action f?m, which issues the request to the service with focus
f whether it is able to process method m. Basic actions of this form will be called
enabledness requests, guarding tests or simply guards. If the reply is positive m
is said to be enabled, otherwise it is blocked. It is an important constraint that
processing an enabledness request cannot change the state of any service.

Internal steps (tau) are not connected to a particular focus. An internal
step is always considered to be enabled. This is clear if one understands that
internal steps arise from calculations on threads and services as the residue of
the execution of enabled actions.

Threads are supposed initially not to contain any guarding tests for infor-
mation on whether or not a method is enabled, because it is the task of the
strategic interleaving to deal with blocking actions and enabledness of actions,
by making use of guarding tests. In other words the SIOPs may (but need not)
introduce guarding tests.

We will discuss a number of cyclic interleaving strategies in the absence of
forking first to keep things simple and readable. The axioms for cyclic inter-

17

Table 19. Axioms for the strategic interleaving operator ‖csi,ba()

‖csi,ba(〈 〉) = S CSIba1

‖csi,ba(〈S〉 y α) = ‖csi,ba(α) CSIba2

‖csi,ba(〈D〉 y α) = SD(‖csi,ba(α)) CSIba3

‖csi,ba(〈tau ◦ x〉 y α) = tau ◦ ‖csi,ba(α y 〈x〉) CSIba4

‖csi,ba(〈x E f.m D y〉 y α) =

(‖csi,ba(α y 〈x〉) E f.m D ‖csi,ba(α y 〈y〉))

E f?m D

‖csi,ba (α y 〈x E f.m D y〉) CSIba5

leaving with blocking actions, denoted with ‖csi,ba(), are given in Table 19.

The Role of a Focus When used in a thread, or more precisely stated in the
description of a basic action that occurs in a thread a focus plays the role of a
name of a service to which the action will be issued. The action proper is given
by the method. Thus ‘f :2.m:3’ issues request ‘m:3’ to the service named ‘f :2’.
Different services may accept the same request and execute these differently.
Below the notion of an execution architecture will be used for an environment
that provides services for a set of foci. In an execution environment a focus
provides a name for a service.

Classification of Foci A focus provides a handle to a service in an execution
environment. These services are classified in either of 4 categories: target local
services (not used in the sequel), para-target local services, target shared services
and para-target shared services. It will be assumed that this classification can
be derived from the foci, so that three sets of foci are used: Fptls for all foci
under which a para-target local service is known, Fptss for all foci under which
a para-target shared service is known, and Ftss for all foci under which a target
shared service is known.

Test Result Preservation and Focus Classification For a focus f in Fptls

if a test f?m has been performed and produces a negative reply this means that
the thread on which behalf the test has been performed will deadlock. No other
thread or external factor may influence the state of the service with focus f , and
being the behavior of a sequential program the thread has no alternative than
to proceed with f?m which is a blocked action. There is no reason to repeat the
test at a later stage as its outcome will be the same. Because of this fact it is
reasonable to combine a new thread with the para-target local services of which
the focus occurs in actions that are contained in the thread. This is formalized
in detail in Section 7.3. For a focus in Fptls it will be assumed that there is at
most one thread that contains actions in which that focus occurs.

18

For a focus g in Ftss if a test g?m has been performed with result b, the state
of the service with focus g may change at any stage due to external causes. For
that reason it is practical to repeat the test that had a negative reply after some
time, thus waiting for a moment where the action g.m is enabled. There is no
reason to record any outcome of the test g?m in order to be consulted by (the
program implementing) some SIOP.

For a focus h in Fptss if a test h?m has been performed with result F, the
state of the service with focus h may change whenever, and only if some other
thread succeeds in executing an action of the form h.m′ for some method m′.
For that reason it is only practical to repeat test after a negative reply after
an event h.m′ has occurred. Each negative outcome of a test of the form h?m
should be recorded in order to be consulted by some SIOP. Recorded tests need
not be repeated. But if an action is performed all negative results of tests of
the form may be dropped (V = V − h.) as each test may have a different result
again.

Avoiding Redundant Tests Strategic interleaving according to Table 19 has
several obvious shortcomings: i) if all threads are blocked there is no loop detec-
tion in place, ii) the same test may be applied twice or more without any state
change in between, iii) the first thread to request some action may not be the
first thread granted permission to do so. The first two of these problems can be
met by maintaining the set of all tests of the form h?m with h ∈ Fptss that have
failed since the last action of the form h.m′. Such tests need not be repeated
before they have been removed from this set. The axioms for this interleaving
strategy with memory are given in Table 20. The auxiliary function V − f. re-
moves from V all actions with focus f . The notation f. is used for the collection
of all basic actions with focus f . The superscript i is a counter which counts the
number of threads which have been found blocked and for which this judgment
is still valid with certainty. Only if a thread is found blocked at a request for a
para-target service this counter is increased. If a target service is found blocked
busy waiting takes place because at some later stage of the computation some
external activity influencing the state of the (blocked) target service may allow
the request to be granted even without any intermediate activity of the multi-
thread under execution. In CSIbam6 this counter is reset to 0 after an action
has been executed by a para-target shared service because it is not known how
many threads have been blocked by actions for the same service and the ‘worst
case’ must be taken into account. If all threads are blocked, i.e. the number of
threads equals the number of threads that are certainly blocked, a deadlock is
unavoidable.

5 Locking and Unlocking

A typical role for a service is that of a data type server, another role is that of an
external device driver. A para-target service does nothing else but maintaining a
state and producing replies on the basis of that state. Thus a para-target service

19

Table 20. Axioms for the strategic interleaving operator ‖V,i

csi,bam()

‖csi,bam(α) = ‖∅,0

csi,bam(α) CSIbam0

‖V,i

csi,bam(〈 〉) = S CSIbam1

‖V,i

csi,bam(〈S〉 y α) = ‖V,0

csi,bam(α) CSIbam2

‖V,i

csi,bam(〈D〉 y α) = SD(‖V,i

csi,bam(α)) CSIbam3

‖V,i

csi,bam(〈tau ◦ x〉 y α) = tau ◦ ‖V,i

csi,bam(α y 〈x〉) CSIbam4

f ∈Fptls ⇒ ‖V,i

csi,bam(〈x E f.m D y〉 y α) =

(‖V,i

csi,bam(α y 〈x〉) E f.m D ‖V,i

csi,bam(α y 〈y〉))

E f?m D

‖V,i

csi,bam (α y 〈D〉) CSIbam5

f ∈Fptss ⇒ ‖V,i

csi,bam(〈x E f.m D y〉 y α) =

D

C i ≥ length(α)B

(‖V,i+1

csi,bam(α y 〈x E f.m D y〉)

C f.m ∈ V B

((‖V −f.,0

csi,bam(α y 〈x〉) E f.m D ‖V −f.,0

csi,bam(α y 〈y〉))

E f?m D

‖
V ∪{f.m},i+1

csi,bam (α y 〈x E f.m D y〉)

)

) CSIbam6

f ∈Ftss ⇒ ‖V,i

csi,bam(〈x E f.m D y〉 y α) =

(‖V,i

csi,bam(α y 〈x〉) E f.m D ‖V,i

csi,bam(α y 〈y〉))

E f?m D

‖V,i

csi,bam (α y 〈x E f.m D y〉) CSIbam7

functions as a data type server. Technically a para-target service is a function
F : Σ+ → {T, F}, where Σ is the set of methods that the service is able to
process. This function is called the reply function of the para-target service. It
determines the reply produced on the processing of a sequence of methods from
Σ.

In the case where it is possible that certain methods get blocked, the reply
function delivers D in case a method is not enabled. It is assumed, moreover
that all enabledness requests are themselves always enabled, and produce correct
results as well. Thus the reply function for a para-target service with blocking
is a mapping F : (Σ ∪ ?Σ)+ → {T, F, D} that satisfies the following constraints:
F (σy〈m〉) ∈ {T, F} ⇔ F (σy〈?m〉) = T and F (σy〈m〉) = D ⇔ F (σy〈?m〉) =
F and F (σ) = D ⇒ F (σ y 〈?m〉) = D.

Now a para-target shared service with locking is equipped with two methods
lock and unlock. In all states either of the two methods is enabled, and its

20

execution moves the service to some state in which the other one is enabled. It
is assumed that initially lock is enabled.

All threads are supposed to work accordingly to the concept of locking as
follows. If a thread successfully performs the action f.lock it is said to acquire
the lock (for f). Now it possesses the lock until the lock is released by performing
f.unlock. Now for each focus f in Fptss all commands f.m must be performed in
a phase in which the thread is in possession of the lock of f . If threads adhere this
rule (a matter to be ensured by the procedures for generating and or accepting
threads by the system) and under the assumption that the para-target shared
service works as stated by preventing successive lock-ings without intermediate
unlock-ing, it is guaranteed that (i) at most a single thread can possess the lock
for a para-target shared service at a give stage and (ii) a thread in possession of
the lock for a para-target shared service has exclusive access to that service.

5.1 A Single Thread Deadlock

By compromising the requirement that threads perform locking and unlocking
in an alternating order a single thread may lead to a deadlock. Consider

P = ‖csi,bam(〈f.lock ◦ f.lock ◦ f.unlock ◦ f.unlock ◦ S〉).

In P the second attempt to obtain the lock of f fails and the execution will
deadlock. By requiring that threads alternate locking and unlocking of the same
lock single thread deadlocks disappear just like in the case of Java which features
no single thread deadlocks either.

5.2 Deadlocks and their Dependence on Thread-Order

We say that a thread vector deadlocks given some strategy if that strategy
acting on it produces a process ending in D. This may depend on the replies
generated by target shared services. For instance, if f ∈ Ftss, the thread vector
〈SE f.m DD〉 will deadlock under ‖csi,bam() after a negative reply by the service
in focus f . After a positive reply it properly terminates, and in the case of
blocking it waits till f.m is found enabled.

More interesting deadlocks are those which arise from the coexistence of
threads, and which would disappear in the absence of one or more of the threads.
In particular deadlocks may be entirely due to the interaction with para-target
shared services and para-target local services. Avoiding such deadlocks is en-
tirely in the hands of the designer of the threads in a thread vector (i.e. the
programmer of a multi-threaded program). An archetypical example of an ‘in-
teresting’ deadlock is as follows, where f and g are foci of different para-target
shared services.

P = ‖csi,bam(〈f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S〉 y

〈g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S〉).

21

The deadlock occurs because the cyclic interleaving strategy allows both threads
to perform their initial locking actions and subsequently neither thread is able
to proceed with the next locking action.

Let h be the focus of a para-target shared service with a method idle which
is never blocked and will not cause any change of state. idle is like tau but it
needs a focus, unlike tau. Now the following system deadlocks as well:

Q = ‖csi,bam(〈h.idle ◦ f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S〉 y

〈g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S〉).

This deadlock works the same way as the previous one taking into account that
the first thread makes one redundant step.

Placing both threads in a different order in the thread vector, however, makes
the deadlock disappear, because now the first thread can take both locks before
the second thread is able to perform a locking action:

R = ‖csi,bam(〈g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S〉 y

〈h.idle ◦ f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S〉).

Indeed in the case of R the step h.idle prevents the second thread from prema-
turely taking the lock that the first thread will need to complete its execution.

5.3 Deadlocks and their Dependence on Interleaving Strategy

Deadlock behavior is dependent on the interleaving strategy as well as on thread
ordering. To substantiate that point we will first develop a step counting version
of the strategy capable of dealing with method blocking. To simplify the matter
para-target local services are not considered in this strategy. Table 21 contains
equations for this strategy. Thread forking has been added as well. The under-
lying conceptual decision is that a deadlock can occur only if all threads are
blocked and none of the threads attempts a fork. The idea is that ‖1

csi,bafm()
coincides with ‖csi,bam() on all thread vectors (not involving forks of course).
Now in connection with deadlock behavior the following can be observed:

1. there is a thread vector α such that ‖1

csi,bafm(α) runs into a deadlock whereas

‖2

csi,bafm(α) does not;

2. there is a thread vector β such that ‖2

csi,bafm(β) runs into a deadlock whereas

‖1

csi,bafm(β) does not.

For α one may simply take the thread vector used in P in Section 5.2. The
following example for β combines previous ideas. In ‖2

csi,bafm(β) in the first round
both threads process the locking and subsequent unlocking of e. In the second
round both threads take their first lock, and in the third round both threads
are blocked. When executing ‖1

csi,bafm(β) thread X takes the lock on e, then Y
is blocked. Subsequently X releases the lock on e, which is then taken by Y . In
the next round X takes the lock on f and Y releases the lock on e. Then both

22

Table 21. Axioms for the strategic interleaving operator ‖V,k,l,i

csi,bafm()

‖k

csi,bafm(x) = ‖∅,k,0,0

csi,bafm(x) CSIscbam0

‖V,k,l,i

csi,bafm(〈 〉) = S CSIscbafm1

‖V,k,l,i

csi,bafm(〈S〉 y α) = ‖V,k,0,0

csi,bafm(α) CSIscbafm2

‖V k,l,i

csi,bafm(〈D〉 y α) = SD(‖V,k,0,0

csi,bafm(α)) CSIscbafm3

‖V k,l,i

csi,bafm(〈tau ◦ x〉 y α) = tau ◦

(‖V k,l,1

csi,bafm(α y 〈x〉) C k = l B ‖V k,l+1

csi,bafm(〈x〉 y α)) CSIscbafm4

‖V,k,l,i

csi,bafm(〈x E f.m D y〉 y α) =

D

C i ≥ length(α)B

(‖V,k,1,i+1

csi,bafm (α y 〈x E f.m D y〉)

C f.m ∈ V B

(((‖V −f.,k,1,0

csi,bafm (α y 〈x〉) E f.m D ‖V −f.,k,1,0

csi,bafm (α y 〈y〉)

C l = kB

(‖V −f.,k,l+1,0

csi,bafm (〈x〉 y α) E f.m D ‖V −f.,k,l+1,0

csi,bafm (〈y〉 y α))

)

E f?m D

(‖V,k,l,i

csi,bafm(α y 〈x E f.m D y〉)

C f 6∈ FptssB

‖
V ∪{f.m},k,l,i+1

csi,bafm (α y 〈x E f.m D y〉)

)

)

) CSIscbafm5

‖V,k,l,i

csi,bafm(〈x ENT(z) D y〉 y α) =

((‖V,k,1,i

csi,bafm(α y 〈z〉 y 〈x〉) C k = l B ‖V,k,l+1,i

csi,bafm (〈x〉 y α y 〈z〉))

ENT D

(‖V,k,1,i

csi,bafm(α y 〈y〉) C k = l B ‖V,k,l+1,i

csi,bafm (〈y〉 y α))

)

E ?NT D

‖V,k,1,i

csi,bafm (α y 〈x E NT(z)D y〉) CSIscbafm6

threads perform a silent step, after which X can take its second lock. Because of
the particular setup the strategy ‖1

csi,bafm() causes Y to be processed so much
slower then in the two step cyclic strategy (in comparison to X of course), that
X can acquire both locks simultaneously, which fails in the two step strategy.

β = X y Y,

X = 〈e.lock ◦ e.unlock ◦ f.lock ◦ h.idle ◦ g.lock ◦ h.idle ◦

g.unlock ◦ h.idle ◦ f.unlock ◦ h.idle ◦ S〉

23

Y = 〈e.lock ◦ e.unlock ◦ h.idle ◦ g.lock ◦ f.lock ◦ h.idle ◦

f.unlock ◦ h.idle ◦ g.unlock ◦ h.idle ◦ S〉.

Formalized proofs of the properties of these examples, as well as the other
examples from Sections 5.2 and 5.3, require a formalization of the phenomenon
of a deadlock. This is postponed till Section 7.2, where a formalization is given
in terms of an operator, called the use operator, introduced in Section 7.1.

Examples without an Explicit Thread Vector One might say that these
examples concerning strategy dependence of deadlock behavior make use of an
element foreign to common programming namely the explicit construction of
a thread vector. Below the examples have been adapted to polarized processes
with forks instead. The execution of forks gives rise to thread vectors, but no
‘user control’ of thread vectors is presupposed. Moreover it is taken for granted
that forking always succeeds. The process P ′ generates after one execution step
of a cyclic non-counting strategy the initial configuration of P from Section 5.2,
and it will also deadlock, R′ on the other hand will not deadlock.

P ′ = ‖1

csi,bafm(g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S

E NT(f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S) D

S)

R′ = ‖1

csi,bafm(h.idle ◦ g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S

E NT(f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S) D

S)

5.4 Using Programs rather than Processes

Polarized processes, or threads in our setting, are semantic abstractions from
programs. Using polarized processes a significant independence from particular
program notations is obtained. At the same time it is useful to understand these
matters also with some particular program notation at hand. For this purpose the
notation of the program algebra PGA can be used. We refer to [5] for PGA. An
extension with a fork instruction can be as follows: fork#k; X starts up a forked
thread which semantically coincides with #k; X . At the same time it returns a
boolean reply reporting on the success or failure of the thread creation. If true,
the current thread proceeds as X , otherwise as #2; X . Recalling from [5] that
|X | represents the extraction of a polarized process (thread) from a program,
additional equations for process extraction in the case of a fork instruction read
as follows:

|fork#k; X | = NT(|#k; X |) ◦ |X |

|+fork#k; X | = |#1; X | E NT(|#k; X |) D |#2; X |

|−fork#k; X | = |#2; X | E NT(|#k; X |) D |#1; X |

24

5.5 A Methodological Implication

A consequence of the observations made in Section 5.3 is that a manifestation of
a deadlock for some thread vector on one system (modeled by some interleaving
strategy), has no implications for the deadlock behavior of the same thread
vector on another system (modeled by another strategy). This makes it rather
difficult to provide a definition of deadlock that is independent of the interleaving
strategy. The only reasonable option is to say that a thread vector leads to a
deadlock in some context if for some (adequate) interleaving strategy it ends up
in deadlock.

This analysis of deadlock, however, requires one to specify the class of in-
terleaving strategies, and then to evaluate an existential quantifier over that
class. Clearly interleaving strategies must be in some sense correct. Our claim
is then this: for the programmer working with multi-threading it is a plausible
assumption that he/she has in mind a number of examples of correct interleav-
ing strategies, in the way some of these have been specified above. However,
the assumption that he/she has in mind a general survey theory of strategic
interleaving which permits a precise interpretation of the mentioned existential
quantifier needed is unwarranted.

As a consequence the notion of a deadlock as a phenomenon visible or compre-
hensible at an abstraction level at which no definite specification of the interleav-
ing strategy has yet been given may be considered problematic. For that reason
the concept of a deadlock is best understood as an operational phenomenon at
an abstraction level of strategic interleaving, i.e. given one or a number of cor-
rect interleaving strategies for the program notation at hand. Stated differently:
deadlock behavior is a strategy dependent concept from the theory of strategic
interleaving for multi-threaded systems.

Having available a significant collection of strategies one may intend to en-
force deadlock freedom with respect of these strategies. Step counting strategies
involve a numerical parameter, and in general more of such parameters may
occur, thus leading to a combinatorial explosion of strategies of a certain form.
Using automated tests a large set of interleaving strategies can be dealt with,
however, thus producing empirical evidence of deadlock freedom at least. To
predict deadlock freedom with complete certainty, however, a complete grasp of
the possible strategies which may be used at run-time is necessary.

6 Execution Architectures for Multi-Threading

In order to understand the working of a multi-threaded program on a machine
in its simplest form the setup of execution architectures such as proposed in [7]
is used and extended from the single thread case to the case involving a thread
vector. Now an execution architecture is given by (i) a thread vector together
with (ii) a strategic interleaving operator, and (iii) a number of services known
within the architecture under their focus. After application of a strategic inter-

25

leaving operator, a polarized process is obtained, the process or multi-thread
under execution, which operates in the context of the services.3

If the multi-thread under execution issues a command (basic action) f.m and
the architecture contains a service F with focus f , then control is given to F to
process method m. Processing m may lead to a state change in F and it may
also involve interaction of F with the environment of the architecture. In any
case, after the processing is completed, control is returned to the process under
execution, together with a mandatory boolean reply value. If the architecture
does not contain a service with focus f , its use turns the thread issuing the
command into D.

A para-target service is deterministic in its replies to the multi-thread under
execution and it has no other interaction with anything inside or outside the
execution architecture. It might equally be called a state machine component.
Para-target services are used by a multi-thread under execution in the sense that
commands for a para-target service are only issued in order to ‘profit’ from the
boolean reply that is returned. A para-target service may be used as a shared
memory for the threads in a multi-thread under execution.

After process execution has terminated (if ever) a para-target service will
immediately be reset to its initial state. Output cannot be generated by a para-
target service and persistent data cannot be stored by a para-target service.
Recall that services that are not para-target services are called target services.
Typically a target service may print some data, send an email, read some sensor
data or activate other mechanical equipment. The overall intuition is that:

1. programs are written by people or machines for some purpose;
2. programs denote polarized processes, which can be interleaved according to

various strategies;
3. given some interleaving strategy, realized by an execution architecture, the

resulting polarized process is a multi-thread under execution, thereby induc-
ing machine behavior, which if all goes well is intended behavior;

4. the intentions about that behavior only pertain to interactions with target
services;

5. interactions with para-target services takes only place in as far as it is needed
to generate the intended behavior in relation to target services.

7 Formalizing Para-Target Services

Para-target services as discussed in Section 1.3 extend the state machine behav-
iors of [6] by allowing commands to be blocked. Because a para-target service
has an auxiliary role only and admits no interaction with any external system
components its behavior may be formalized, following [6], by means of reply
functions. The definition of reply functions below takes blocking into account.

3 It operates exactly in the way a polarized processes operates in its execution envi-
ronment as proposed in [7].

26

Table 22. Axioms for /f

S /f H = S use1

D /f H = D use2

(tau ◦ x) /f H = tau ◦ (x /f H) use3

f 6= g ⇒ (x E g.mD y) /f H = (x /f H) E g.mD (y /f H) use4

(x E f.m D y) /f H = tau ◦ ((x C H(〈m〉) B y) /f
∂

∂m
H) use5

f 6= g ⇒ (x E g?mD y) /f H = (x /f H) E g?mD (y /f H) use6

(x E f?m D y) /f H = tau ◦ ((x C H(〈m〉) = T ∨ H(〈m〉) = F B y) /f H) use7

In order to keep the notation as simple as possible enabledness test actions are
left implicit in the definition of a reply function.

With Kfocus we will denote the collection of foci and with Kmeth we will
denote the collection of methods. The same set of methods will be used for
all services. A para-target service is formally given by a mapping, the so-called
reply function, F : Kmeth

+ → {T, F, D}, with the property that F (α) = D ⇒
F (α y 〈m〉) = D for all sequences of methods α and for all methods m. It
is a reasonable assumption that a reply function for a para-target service is
computable.

Given a reply function F and a method m, the derived reply function of F
after processing m, written ∂

∂m
F , is defined by ∂

∂m
F (α) = F (〈m〉 y α).

7.1 Use Operator for Para-Target Services

The connection between a polarized process x and a para-target service F is
given by the use operator, which expresses that in the architecture at hand F is
present under focus f , and the commands along focus f of x are to be processed
by F . This operator is justified because the para-target services are not modified
or used by any other system component except the threads in the thread vector.
The defining equations for the use operator are in Table 22.

Because the conditional operator C B is used with the additional truth
value D, a third defining equation is needed for this operator: x CDB y = D.

The use operator permits an encapsulation of the para-target services in the
polarized process representing the thread vector after strategic interleaving.

Two use operator applications are independent if they concern different foci.
In that case the order of application does not matter.

Theorem 7.1 (Commuting Uses).
f 6≡ g ⇒ (x /f F) /g G = (x /g G) /f F

Proof. This has been demonstrated in a setting without blocking methods in [6].
In spite of the fact that several definitions have a somewhat different form in that
paper, the proof carries over without difficulty and will not be redone here. ut

In the case of dependence, one of the two services is redundant: (x /f F) /f G =
x /f F .

27

7.2 The Phenomenon of a Deadlock

The use operator permits us to give a precise definition of deadlock behavior.
This requires a notation for repeated internal steps:

tau0(x) = x

tau
k+1(x) = tau ◦ tau

k(x).

A multi-thread P in the context of para-target services F1,. . . ,Fn, under focus
f1,. . . ,fn shows a deadlock if for some k, Pcontext = ((P /f1

F1)/f2
F2) . . ./fn

Fn =
tau

k(D).4

Besides a deadlock there may be a livelock or proper termination (also called
convergence). A livelock occurs if Pcontext = tau◦Pcontext and proper termination
takes place if Pcontext = tauk(S) or Pcontext = tauk(g.m ·Q) for some basic action
g.m with g 6∈ {f1, . . . , fn}.

Proposition 7.1 (Correctness of Deadlock Examples).
This formalization and the axioms given for the operators concerned suffice
to prove all claims made about the presence and absence of deadlocks in Sec-
tions 5.1, 5.2 and 5.3.

Proof. The proof of each claim amounts to a careful equational rewriting. We
only show the proof of the first claim made in Section 5.2.

(‖∅,0
csi,bam(〈f.lock ◦ g.lock ◦ g.unlock ◦ f.unlock ◦ S〉 y

〈g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S〉) /f F) /g G

= tau
2((‖∅,0

csi,bam(〈g.lock ◦ f.lock ◦ f.unlock ◦ g.unlock ◦ S〉 y

〈g.lock ◦ g.unlock ◦ f.unlock ◦ S〉) /f F) /g G)

= tau
4((‖∅,0

csi,bam(〈g.lock ◦ g.unlock ◦ f.unlock ◦ S〉 y

〈f.lock ◦ f.unlock ◦ g.unlock ◦ S〉) /f F) /g G)

= tau5((‖
{g.lock},1

csi,bam (〈f.lock ◦ f.unlock ◦ g.unlock ◦ S〉 y

〈g.lock ◦ g.unlock ◦ f.unlock ◦ S〉) /f F) /g G)

= tau6((‖
{f.lock,g.lock},2

csi,bam (〈g.lock ◦ g.unlock ◦ f.unlock ◦ S〉 y

〈f.lock ◦ f.unlock ◦ g.unlock ◦ S〉) /f F) /g G)

= tau6(D) .

In each step axiom CSIbam6 is applied. In addition, axioms use3–use7 are applied
in the first two steps, axioms use3 and use6–use7 are applied in the second two
steps, and axiom use2 is applied in the last step. Moreover, use is made of the
following properties of the locking mechanism:

#lock(α) − #unlock(α) = 0 ⇔ H(α y 〈lock〉) = T ,

#lock(α) − #unlock(α) 6= 0 ⇔ H(α y 〈lock〉) = D ,

4 As D is not an action in most program notations it is taken for granted that the
semantic translation from a program to its thread will not by itself produce an
occurrence of D. In the setting of thread algebra interesting examples of deadlocks
should involve thread vectors with D-free threads.

28

Table 23. Additional axiom for ‖csi,bff () with initialization of a local service

‖csi,bff (〈x E NT(z) D y〉 y α) =

(‖csi,bff (α y 〈z /f Finit〉 y 〈x〉) ENT D ‖csi,bff (α y 〈y〉))

E ?NT D

‖csi,bff (α y 〈x E NT(z)D y〉) CSIbffps5

for all reply functions H and sequences of methods α. Here, #m(α) denotes
the number of occurences of m in α. The proofs of the other claims made in
Sections 5.2 and 5.3 are similar, but in the case of the claims made in Section 5.3
the proofs are rather long. ut

7.3 Initialized Para-Target Local Services

Suppose that each thread is granted the use of para-target local service F , with
focus f , with initial state Finit. With help of the use operator a strategy can be
specified in this case. If the matter is considered without step counting and test
memory, it amounts to the replacement of the equation for thread creation from
Table 16 by the equation given in Table 23.5

A weakness of the setup in Table 23 lies in the fact that Finit lies outside
the algebraic framework of the thread algebra. It would be more systematic if
an algebra of services is used to denote various services.

For the purpose of the description of multi-threaded systems the technique
used to specify services is immaterial, however. For that reason no further expo-
sition of the service algebra will be given here.

8 Classes and Static Methods

In object oriented program notations recursion in the form of recursive method
calls plays an essential role. In this Section an extension of the thread algebra
is given which treats classes with static methods at the level of threads. This
is needed for modeling synchronization in Java for instance. Although synchro-
nization is just a matter of locking and unlocking, several particular phenomena
take place. If a thread has claimed (i.e. locked) a lock any subsequent attempt
made by the thread to acquire the lock again (before releasing the lock) will
succeed. In contrast, in the example in Section 5.1 a deadlock occurs because a
thread attempts to acquire the same lock twice without unlocking in between.
Moreover, Java provides means for a thread to temporarily release a lock, to

5 The precise way of dealing with local services has obvious consequences for deadlock
behavior and it is an issue which is not so easily dealt with in the most general way.
As such it constitutes an issue where the strategy dependence of the concept of a
deadlock is apparent and where at the same time the task to define deadlocks in an
entirely strategy independent fashion is not an obvious one.

29

Table 24. Axioms for polarized termination

x E SD y = S PT1

x E S+D y = x PT2

x E S−D y = y PT3

x E DD y = D PT4

x E (u E aD v) D y = (x Eu D y) E aD (x E v D y) PT5

hand it over to another thread and to claim it back in a later stage. This is
the so-called ‘wait’ and ‘notify’ mechanism, which is connected with recursion
as well.

Recursion, locking and unlocking in the presence of recursion, and the tem-
porary release of a lock will be explained below in a way consistent with each of
the previously discussed SIOPs that can deal with blocking actions.

In order to deal with recursion thread algebra is extended with two additional
constants: S+ and S− representing termination with a positive or a negative re-
sult. These are the polarized termination constants. Postconditional composition
may now be extended by allowing the middle argument to be an entire thread. Its
axioms appear in Table 24. Using polarized termination threads may appear as
subroutines of other threads. With BPPApt the collection of polarized processes
that may end in S+, S− or in D is denoted.

8.1 Classes as Named Collections of Named Threads

The term ‘method’ will now be used with its OO programming connotation,
which should be distinguished from its role in the context of services. Both uses
have in common, however, that they represent a request for which a boolean
reply is expected.

A class C is given as a finite collection of pairs of a class method6 name m
and a thread p, where p is supposed always to end in a polarized termination or
in D. A class description then has the form:

class:C = {

m1 = p1,

...

mk = pk

}

It will be said that the class method names mi that occur in this listing constitute
the class method interface of the class C. Having available this very simple class

6 Class methods are often referred to as static methods. Class methods are called with
a class (C..m, with C a class and m a method), this in contrast to instance methods
which are called with a reference to an object. Instance methods are not covered in
this paper, however.

30

notation the thread algebra notation may be extended with class method calls
by means of actions of the form C..m. It is of course admitted that such actions
occur inside the threads pi as well. The semantics of processes with these actions
is given by the following equation which allows a recursive removal of all static
method calls in favor of postconditional composition on threads given a context
that provides a thread for each method name in each class method interface.

x E C..mi D y = x E pi D y

There is no plausible meaning in the case no definition of a method m is available
in the environment, though D may be a reasonable choice. That case must be
excluded in advance by means of conditions on thread descriptions, or stated
differently by means of static type checking techniques. We will use combined
definitions of zero or more classes and processes that may involve class method
calls on these classes. As a first example consider the definition

class:G = {

m1 = S+ E g.m1 D S−,

m2 = S+ E g.m2 D S−,

m3 = S+ E g.m2 D S−

}

class:H = {

m1 = S+ E h.m1 D S−,

m3 = S+ E h.m3 D S−,

}

P = G..m2 ◦ (D E G..m1 D (H..m3 ◦ S))

Then the semantics of class method calls implies:

P = g.m2 ◦ (D E g.m1 D (h.m3 ◦ S)).

This illustrates that class method calls may be considered a generalization of
service method calls. As a second example consider the following process defini-
tion:

class:Ca = {

m1 = f.u1 ◦ f.u2 ◦ Ca..m2 ◦ S+,

m2 = S+ E g.v2 D S−,

m3 = f.u3 ◦ f.u4 ◦ S+

}

class:Cb = {

n1 = h.w1 ◦ (S+ E h.w3 D S−),

m1 = S− E Ca.m2 D S+

}

P = h.w0 ◦ (D E Cb..n1 D (Ca..m3 ◦ S))

31

In this case one may derive:

P =

h.w0 ◦ (D E h.w1 ◦ (S+ E h.w3 D S−) D (Ca..m3 ◦ S)) =

h.w0 ◦ h.w1 ◦ (D E h.w3 D (Ca..m3 ◦ S)) =

h.w0 ◦ h.w1 ◦ (D E h.w3 D (f.u3 ◦ f.u4 ◦ S))

8.2 Synchronized Methods

The class definition syntax is now adapted to allow an optional keyword ‘syn-
chronized’ to precede the definition of a class method. It will be enclosed in
brackets. To understand the purpose of this feature it is assumed that for each
class C there is a unique service classlock:C which will provide a lock for that
class. If a synchronized class method is called, the class lock of the relevant class
must be acquired first (by the thread calling the class method) and at the end
of the execution of the body of the method the class lock is released again. This
leads to an extended class and process definition syntax. The following exam-
ple, features a thread vector rather than a single thread. Indeed synchronized
methods are only relevant in the context of multi-threading.

class:Ca = {

m1 = f.u1 ◦ f.u2 ◦ Ca..m2 ◦ S+,

(synchronized) m2 = S+ E g.v2 D S−,

m3 = f.u3 ◦ f.u4 ◦ S+

}

class:Cb = {

(synchronized) n1 = h.w1 ◦ (S+ E h.w3 D S−),

m1 = S− E Ca.m2 D S+

}

P = 〈h.w0 ◦ (D E Cb..n1 D (Ca..m3 ◦ S))〉 y 〈Ca..m2 ◦ S〉

The defining equation for synchronized method calls (i.e. calls of methods that
have the ‘synchronized’ keyword preceding their defining equation), is:

x E C..mi D y =

(classlock:C.unlock ◦ x)

E (classlock:C.lock ◦ pi) D

(classlock:C.unlock ◦ y)

8.3 Lock Administration Operators for each Lock

Unfortunately the semantic description of synchronized class methods s given
above falls short of giving an account of synchronized class methods in Java

32

Table 25. Axioms for lock administration operators

LAC(x) = LAC,0(x) LA1

LAC,n(S) = S LA2

LAC,n(S+) = S+ LA2p

LAC,n(S−) = S− LA2n

LAC,n(D) = D LA3

f 6= classlock:C ⇒ LAC,n(x E f.m D y) = LAC,n(x) E f.m D LAC,n(y) LA4

LAC,0(x E classlock:C.lock D y) = classlock:C.lock ◦ LAC,1(x) LA5a

LAC,n+1(x E classlock:C.lock D y) = tau ◦ LAC,n+2(x) LA5a

LAC,0(x E classlock:C.unlock D y) = D LA5b

LAC,1(x E classlock:C.unlock D y) = classlock:C.unlock ◦ LAC,0(x) LA6a

LAC,n+2(x E classlock:C.unlock D y) = tau ◦ LAC,n+1(x) LA6b

because the same lock may be claimed twice in the case of recursion. Still the
locking and unlocking actions have some importance even if a lock is claimed
because only after as many unlockings as lockings the lock is in fact released.
To take this into account threads are transformed by the lock administration
operator (LA ()) before being put in the thread vector. For each class used in
a thread a different lock administration operator is required. The lock adminis-
tration operator carries a count for each lock concerning the number of times it
has been claimed thus making sure that the class lock is locked only once and
subsequent claims on the lock as well as releases of it are granted automatically
until the last one which requires unlocking the class lock. Lock administration
operators are specified in Table 25. The use of the lock administration operators
is exemplified by an adaptation of the example of Section 8.2 where the thread
vector P is now given by:

class:Ca = {...

}

class:Cb = {...

}

P =

〈LA
Ca(LA

Cb(h.w0 ◦ (D E Cb..n1 D (Ca..m3 ◦ S))))〉y

〈LA
Ca(LA

Cb(Ca..m2 ◦ S))〉

8.4 Wait and Notify

Java’s synchronization primitives involve actions ‘wait’ and ‘notify’ that can be
applied to so-called object locks. A version of ‘wait’ that works for class locks (in
the absence of ‘notify’) may be written as C..wait with the defining equation:

C..wait = classlock:C.wait ◦ classlock:C.unwait

33

Here ‘wait’ and ‘unwait’ are methods having exactly the same effect on the lock
as ‘lock’ and ‘unlock’ respectively. The reason for introducing synonyms for ‘lock’
and ‘unlock’ is that the methods introduced by expanding C..wait should not
be touched by the lock administration operators

This definition of ‘wait’ allows a thread to release a lock temporarily while
keeping track of the nesting of its locking and unlocking attempts. The appro-
priate use of this definition for ‘wait’ is that it is used as a substitution operator
ELIMwait() replacing ‘C..wait’ by ‘classlock:C.wait ◦ classlock:C.unwait’.

In the absence of the action ‘notify’ this modeling of ‘wait’ is reasonable.
Notification, however, introduces another aspect. It is assumed that the lock
for a class represents some condition which must hold just before the lock is
acquired by any thread. Stated differently, the purpose of the locking mechanism
is to ensure the truth of that condition at the time of acquiring the lock. Each
thread blocked by that lock is waiting for the same condition φC to be satisfied.
A typical example of such a condition is that some natural number m takes
a positive (i.e. non-zero) value. Now an action ‘C..notify’ represents a thread
giving the message to ‘the system’ that it has now ensured that the condition
φC holds true. Having done so, it may release the lock of C by either exiting
its synchronized method body that claimed the lock or by performing an action
‘C..wait’. After the class lock has been released in this particular way (i.e. by
a thread claiming the lock after a ‘wait’ performed by another thread owning
the lock after providing a notification in advance) the interleaving strategy must
ensure that one of the waiting threads (if any of those still exist) is permitted to
acquire the lock, thus making sure that the condition φC holds when the lock is
obtained by the waiting thread. A thread performing an action ‘notify’ need not
immediately terminate thereafter. Instead it is permitted to perform subsequent
steps under the assumption that the condition φC is an invariant for each of
these steps until termination takes place.

In order to model notification the classlock service will be redesigned to a
more involved service with an infinite state space. In addition to the existing
states classlock:C(locked) and classlock:C(unlocked), for each n > 0 there are
states

classlock:C(locked, n),
classlock:C(unlocked, n),
classlock:C(lockedAndNotified, n), and
classlock:C(unlockedAndNotified, n).

The notation is simplified by writing classlock:C(locked) = classlock:C(locked, 0)
and classlock:C(unlocked) = classlock:C(unlocked, 0).

‘C..wait’ is translated into ‘classlock:C.wait ◦ classlock:C.unwait’, and the
action ‘C..notify’ is translated into ‘classlock:C.notify’. All methods of the service
‘classlock:C’ return T when performed. What matters is which methods are
blocked as the only influence of the service ‘classlock:C’ is to force threads
to wait by being blocked under certain circumstances. Here is a survey of the
transitions of ‘classlock:C’.

34

unlocked, n = 0. This state is the initial state, and the only enabled method
in this state is
‘lock’ leading to the state classlock:C(locked, 0),

locked, n = 0. The enabled methods from this state are
‘unlock’ which brings it in the state classlock:C(locked, 0) and
‘wait’ bringing it into state classlock:C(unlocked, 1),

unlocked, n > 0, the only enabled action is
‘lock’ which brings it in state classlock:C(locked, n),

locked, n > 0. This state admits three methods:
‘unlock’ which brings it in the state classlock:C(unlocked, n),
‘notify’ which brings it in the state classlock:C(lockedAndNotified, n) and
‘wait’ bringing it into state classlock:C(unlocked, n + 1).
The method ‘wait’ takes place if a thread in possession of the classlock for
C performs ‘classlock:C.wait’ thus becoming an additional waiting thread.
The classlock for C can now be acquired by any other thread irrespective
of whether or not it will produce a notification before releasing the lock. In
practical cases if the new thread acquiring the lock performs a wait itself, it
will probably do so because it finds condition φC not satisfied thus releasing
the lock while becoming an additional waiting thread without producing a
notification.

lockedAndNotified, n > 0. Now the two enabled methods are
‘notify’ which will not change the state, and
‘unlock’ is which leads to the state classlock:C(unlockedAndNotified, n).
Successive notifications may ‘get lost’ because ‘notify’ leaves the state un-
changed.

unlockedAndNotified, n > 0. From this state only the method
‘unwait’ is enabled which leads to state classlock:C(locked, n − 1).
This takes place if after a notification one of the waiting threads (which one
is to be determined either explicitly of implicitly by the particular interleav-
ing strategy at hand) regains the lock thus reducing the number of waiting
threads by one.

The service ‘classlock:C’ thus specified can be used in connection with any
of the previously defined interleaving strategies provided these can deal with
blocked methods. It should be used in combination with recursion and lock
administration operators.

In this way a reasonably formal and reasonable accurate explanation of some
of the Java synchronization primitives has been obtained. The purpose our de-
scription of ‘wait’ and ‘notify’ is not to write a full precision Java semantics,
however, but to provide a simple introduction to and explanation of the kind of
thread synchronization mechanisms on which Java multi-threading is based.

9 Different Processes on the Same Machines

A process in the sense of conventional operating system terminology may be
identified with a multi-thread under execution. In order to prevent confusion

35

with the terminology from process theory as process of this kind will be termed
a system process. In the case of multi-processing, a single execution architec-
ture may involve several system processes. Thus multi-processing refers to the
concurrent existence of different system processes rather than to the concurrent
existence of different threads in a single system process.

The complexity of describing multi-processing in thread algebra arises from
the fact that different multi-threads may interact with the same components.
Unix sockets are shared components for different system processes. At the level
of thread algebra sockets represent target services for the threads in a single
multi-thread whereas at system level sockets have a purely auxiliary nature.

Deadlocks are to be defined per multi-thread as before, where the para-target
services are only those components for which the use is not shared with other
multi-threads. Multi-process execution models cannot be formalized as easily
as multi-threads, however, even if a very simplistic viewpoint towards strategic
interleaving is adopted. In the case of multi-threads it is important to model some
vital operating system activity, however minimal, including at least: starting a
process from data containing a description of a startup thread (e.g. a program
for it), terminating the process by a forced quit, monitoring termination and
deadlocks and providing options for proceeding thereafter.

If all of these matters are ignored it is reasonable to model the cooperation
of several system processes as the first strategic interleaving (‖csi() as given
in Table 5) of the various multi-threads per system process. The multi-threads
may be placed in a vector by ordering them alphabetically on process names.
Variations regarding this ordering, step counting, a variable number of steps
depending on the process name or a process priority are reasonable. Thus when
describing a multi-processing execution architecture in the simplest setting two
strategic interleaving operators are needed: a local one for the thread vectors
(assuming that single system processes admit multi-threading) and and a global
one (at the level of the machine) operator for interleaving the various multi-
threads that denote system processes. The result of a strategic interleaving of
several multi-threads may be termed a multi-system process.

10 Conclusions

We have outlined a theory of threads and multi-threads based on strategic in-
terleaving. It has been developed to the amount of detail needed to capture a
reasonable definition of deadlock. Then it is demonstrated that the occurrence
of deadlocks thus defined depends on strategies and on the ordering of thread
vectors.

The claim is put forward that the basic intuitions concerning deadlocks in the
setting of programming with a program notation for multi-threading exist at the
level of abstraction implicit in the polarized process algebra model of threads.
As a consequence a deeper understanding of deadlocks and deadlock freedom
robust against a very wide choice of interleaving strategies is not considered a
part of those intuitions. Thus, whereas we have succeeded in the specification

36

of a number of plausible interleaving strategies that demonstrate various key
features concerning the cooperation of threads, at the same time we have not
developed a theory that easily allows one either to develop the most general
notion of an interleaving strategy, or to develop a clear picture of the collection
of all possible correct interleaving operators.

Of course both developments are possible, but we contend that in both ap-
proaches one will engage in a course of thought not immediately helpful, or
needed for a programmer, whereas the theory outlined in this paper seems to con-
vey no information that might be considered redundant or even counterproduc-
tive for a programmer who wants to develop a first intuition of multi-threading
by reading a self-contained theoretical paper rather than by experimenting with
a program notation and a system implementing its executions.

Several topics for future research can be formulated along this line of work:
the extension of this theory to a theory for parallel and distributed execution ar-
chitectures; manageable models for concepts such as thread mobility and threads
logging in to another machine in a network.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 197–292. Elsevier, Amsterdam, 2001.

2. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

3. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proceedings

of ICALP 2003, volume 2719 of Lecture Notes in Computer Science, pages 1–21.
Springer-Verlag, 2003.

4. J. A. Bergstra and J.-W. Klop. Process algebra for synchronous communication.
Information and Control, 60 (1/3):109–137, 1984.

5. J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of

Logic and Algebraic Programming, 51(2):125–156, 2002.
6. J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal

of Logic and Algebraic Programming, 51(2):175–192, 2002.
7. J. A. Bergstra and A. Ponse. Execution architectures for program algebra. Logic

Group Preprint Series 230, Department of Philosophy, Utrecht University, Utrecht,
2004.

8. J. Bishop and N. Horspool. C# Concisely. Addison-Wesley, 2004.
9. S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. Journal of the ACM, 31(8):560–599, 1984.
10. C. Jesshope. Implementing an efficient vector instruction set in a chip multi-

processor using micro-threaded pipelines. Australian Computer Science Commu-

nications, 23(4):80–88, 2001.
11. C. A. Middelburg. An alternative formulation of operational conservativity with

binding terms. Journal of Logic and Algebraic Programming, 55(1/2):1–19, 2003.
12. R. Milner. A calculus of communicating systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.

37

13. M. R. Mousavi, M. A. Reniers, and J. F. Groote. Congruence for SOS with data.
Computer Science Report 04-05, Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, January 2004.

38

	1. Introduction
	2. Basic polarized process algebra BPPA
	3. Thread vectors and multi-threads
	4. Focus, method and guard
	5. Locking and unlocking
	6. Execution architectures for multi-threading
	7. Formalizing para-target services
	8. Classes and static methods
	9. Different processes on the same machines
	10. Conclusions
	References

